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Abstract

Reinforcement Learning and Variational Quantum Algorithms

by

Jiahao Yao

Doctor of Philosophy in Applied Mathematics

University of California, Berkeley

Professor Lin Lin, Chair

In recent years, the realms of deep learning and variational quantum algorithms have
undergone significant advancements. These innovative algorithms have proven to be
exceptionally efficient and robust in addressing complex problems within quantum
chemistry, condensed matter physics, and quantum field theory simulations, surpassing
the capabilities of traditional classical algorithms. A key factor driving this progress
is the development of hybrid quantum algorithms, which blend quantum and classical
computational techniques.

Prominent examples of these hybrid algorithms include the Quantum Approximate
Optimization Algorithm (QAOA), the Variational Quantum Eigensolver (VQE),
and various Variational Quantum Algorithms (VQAs). These methods enable the
construction of parameterized quantum circuits (PQCs), which are central to the
operation of these algorithms. By employing PQCs, these algorithms leverage the
unique properties of quantum computing, such as superposition and entanglement,
to explore solution spaces more comprehensively than classical methods.

Furthermore, the optimization process in these hybrid algorithms involves a sophisti-
cated interplay between quantum and classical computing resources. The quantum
computer is used to evaluate the performance of the quantum circuit for given parame-
ters, and classical optimization techniques are then applied to refine these parameters
iteratively. This synergistic approach enhances the efficiency and effectiveness of the
optimization process, making it particularly suitable for problems that are intractable
for classical computers alone.

We primarily concentrate on a specific issue: the preparation of ground states. A
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notable challenge in this process is the noise originating from measurements or the
device itself. It’s crucial to consider this noise when preparing ground states. To
address this, we need to develop algorithms that are robust to noise. Our approach
involves the development of variational quantum algorithms, which allow for parameter
updates during iterative processes. Effectively preparing the ground state is vital, as
it has significant applications in subsequent downstream tasks.

In addressing the ground state preparation challenge, our objective is to generate
the ground state, defined as the lowest eigenstate of the Hamiltonian H. Our
exploration is two-pronged: firstly, we investigate various parametrization methods
for the variational circuits, aiming to enhance the flexibility and efficiency of the
quantum circuits. Secondly, we scrutinize different optimization strategies. This
includes examining policy gradients and incorporating optimization challenges within
the framework of reinforcement learning, thereby expanding the scope and capability
of our optimization methodologies.

In evaluating the optimization process, we utilize two critical metrics: fidelity and
ground state energy. Fidelity measures the overlap between the target quantum states
and the evolved quantum states from the quantum circuit, serving as an indicator of
the precision in achieving the desired quantum state. Ground state energy, conversely,
relates to observables that can be measured in experimental settings, offering valuable
insights into the physical characteristics of the quantum system under investigation.

The algorithms we discuss are specifically engineered to operate effectively in environ-
ments where quantum computer measurements are subject to noise. Demonstrating
robustness against such measurement noise, these optimization algorithms efficiently
identify optimal parameters for the variational quantum circuits. This efficiency and
resilience are pivotal in advancing the field of quantum computing, particularly in
the context of practical, noisy quantum systems.

Chapter 1 introduces the background knowledge and overview of deep learning
techniques and optimization algorithms, quantum circuits, and variational quantum
algorithms the basic problem setup and provides an overview of the results in this
paper.

Chapter 2 introduces a policy gradient approach to the Quantum Approximate
Optimization Algorithm (QAOA) using methods. Chapter 3 presents reinforcement
learning techniques for the preparation of many-body ground states in quantum
systems. It specifically leverages counter-diabatic driving, a method that guides the
system adiabatically to avoid non-equilibrium excitations, thus ensuring more reliable
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ground state preparation. Chapter 4 presents a noise-robust, deep autoregressive
policy networks based end-to-end quantum control framework as to the challenge of
noise in quantum systems. Chapter 5 presents another approach which integrates
MCTS with quantum circuit optimization, aiming to enhance the efficiency and
effectiveness of the circuit design and operation. Chapter 6 presents a random
coordinate descent method as a straightforward yet effective technique for optimizing
parameterized quantum circuits.

Please note that Part 2 is based on [Yao, J., Bukov, M., & Lin, L. Mathematical and
Scientific Machine Learning (pp. 605-634). PMLR.] (joint work with Marin Bukov,
Lin Lin), Part 3 is based on [Yao, J., Lin, L., & Bukov, M. (2021). Physical Review
X, 11(3), 031070.] (joint work with Marin Bukov, Lin Lin), Part 3 is based on [Yao,
J., Kottering, P., Gundlach, H., Lin, L., & Bukov, M. Mathematical and Scientific
Machine Learning (pp. 1044-1081). PMLR.] (joint work with Paul Kottering, Hans
Gundlach, Lin Lin, Marin Bukov), and Part 5 is based on [Yao, J., Li, H., Bukov,
M., Lin, L., & Ying, L. Mathematical and Scientific Machine Learning (pp. 49-64).
PMLR.] (joint work with Haoya Li, Marin Bukov, Lin Lin, Lexing Ying). Finally,
Part 6 is based on a joint work in preparation with Zhiyan Ding, Taehee Ko, Lin Lin,
Xiantao Li).
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Chapter 1

Introduction

The convergence of deep learning and quantum computing represents a significant
milestone in the evolution of computational technologies. This synergy is open-
ing up new horizons, particularly in areas where traditional computing methods
encounter limitations. The recent advancements in both fields have set the stage
for groundbreaking developments, especially in the domain of variational quantum
algorithms.

Particularly noteworthy is the integration of deep learning methods into hybrid
variational algorithms within the quantum computing sphere. This integration
symbolizes a promising direction for leveraging the strengths of both fields. Deep
learning’s robust data processing capabilities, combined with quantum computing’s
unparalleled computational power, have the potential to solve complex problems more
efficiently than ever before.

This work aims to explore the depths of this integration, focusing on the ways in which
deep learning methodologies can enhance and refine the performance of variational
quantum algorithms. The goal is to unravel the complexities and potentials of this
synergy, providing insights into how these advanced technologies can be harnessed to
push the boundaries of computational science and technology.

1.1 Deep Learning

Deep Learning represents one of the most significant advancements in the field of
artificial intelligence in recent years. At its foundation, deep learning is grounded in
approximation theory, striving to use data for constructing a ‘universal functional
approximator’ [144] – a concept widely recognized for its ability to model complex
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functions [116]. This approach employs deep neural networks to learn and approximate
functions that were previously challenging, marking a paradigm shift in computational
modeling.

This innovative methodology has achieved remarkable success in various domains,
notably in computer vision [179], natural language processing [353], and robotics
[192]. Deep learning has proven to be exceptionally beneficial in the realm of
scientific machine learning, a field where traditional methods often rely heavily on
grid-based systems or are constrained to linear regression models [33]. Previously,
the introduction of nonlinearity was limited to the use of power terms. However,
deep networks offer a significant leap forward, effectively addressing this limitation
by replacing human-designed functions with a data-driven approach [188]. This shift
not only enhances the capacity for learning and approximation but also provides a
more robust and versatile tool for tackling complex real-world problems.

In the realm of deep learning, supervised learning is a foundational paradigm. The
process involves learning a function f from given data xi ∈ Rn and corresponding
labels yi ∈ R, with the goal of approximating f(xi) ≈ yi. This task is mathematically
similar to interpolation. In one-dimensional cases, traditional methods like Lagrange
interpolation using polynomial bases are straightforward. However, the complexity
significantly increases in higher dimensions. Here, neural networks emerge as an
effective alternative to traditional basis functions. Unlike methods relying on Taylor
expansion, where expressiveness is derived from additive properties, neural networks
gain their expressiveness from the compositional nature of their layered structure
[327].

The architecture of a neural network is defined by its trainable parameters, denoted as
fθ. The central task in training these networks involves optimization to find the opti-
mal parameters θ, formally expressed as θ = arg minθ∈Rd L(θ) = 1

N

∑N
i=1 L(fθ(xi), yi).

Among various loss functions, the L2 loss, defined as L(ŷ, y) = (ŷ − y)2, and the
logistic loss function, L(ŷ, y) = − (y log(ŷ) + (1− y) log(1− ŷ)), are frequently em-
ployed [116]. The logistic loss is particularly useful for binary classification tasks
where yi ∈ {0, 1}.
In scientific computing, deep learning frameworks have shown great promise in
tackling inverse problems. Consider a complex forward process that can be executed
to generate specific outputs from given inputs. These input-output pairs become
invaluable training data for deep neural networks. By utilizing this data, the networks
are trained to approximate the function fθ, thus becoming powerful tools for modeling
the underlying process and facilitating the resolution of inverse problems [157].
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An essential insight from the concept of Learning Fast Approximations of Sparse
Coding [187] is its ability to integrate multiple iterations into a single forward
function, thereby significantly reducing the iteration count. This methodology proves
particularly advantageous in contexts such as the MCMC (Markov Chain Monte Carlo)
chain, where it facilitates the learning of mappings that span multiple Markovian
steps. Ultimately, this approach can drastically cut down the mixing time, offering a
more efficient alternative to performing multiple MCMC runs.

Similar strategies can be applied across various domains of computational science and
machine learning. For instance, in the field of optimization, similar techniques could
accelerate convergence in iterative algorithms. In deep learning, this approach might
lead to more efficient training of neural networks, especially in scenarios requiring
complex or time-consuming iterative processes. Additionally, in the realm of signal
processing and image reconstruction, such methodologies could significantly expedite
algorithms, contributing to faster and more efficient processing.

This concept of reducing iteration counts and optimizing computational steps has
broader implications, potentially transforming the way complex problems are ap-
proached and solved. By applying this principle, we can achieve more efficient, faster,
and potentially more accurate solutions across a multitude of computational tasks.

1.2 Unsupervised Learning

One of the primary challenges in supervised learning is its heavy reliance on extensive
volumes of labeled data. Acquiring such labels often proves to be labor-intensive and
costly, posing a significant obstacle in many scenarios. In the real world, while there
is frequently an abundance of data, corresponding labels may be scarce or entirely
absent. This gap underscores the growing relevance of unsupervised learning, where
learning algorithms infer patterns and structures directly from unlabeled data.

Within this context, self-supervised learning emerges as a notable subset of unsuper-
vised learning. It involves the creation of a loss function directly from the data itself,
circumventing the need for human-generated labels. This method typically entails
formulating a prediction problem using only the available data. For example, a neural
network might be trained by hiding parts of the input data, aiming to predict these
masked portions in the output. As demonstrated in works like those by Vincent et al.
[316] and Zhang et al. [355], such strategies strive to develop tasks solely from the
data at hand. This approach facilitates the learning of insightful data representations
without the dependency on explicit labeling.
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The subsequent sections delve into a series of experiments highlighting advancements
and applications in the field of self-supervised learning.

Autoencoder

The autoencoder [21], a distinctive model in unsupervised learning, operates indepen-
dently of labeled data. An autoencoder is constructed using two key functions: the
encoder function f and the decoder function g. The encoder f : Rd 7→ Rm transforms
the data into a latent space, while the decoder g : Rm 7→ Rd aims to reconstruct the
original data from this latent representation. Here, m denotes the dimensionality
of the latent space. Typically, these functions are realized through separate neural
networks. The primary goal in training an autoencoder is to minimize the difference
between the reconstructed data and the original input, thereby enabling the model
to learn meaningful data representations without reliance on external labels. The
optimization problem can be expressed as:

min
θ,φ

1

N

N∑
i=1

∥gφ(fθ(xi))− xi∥2

This approach allows the autoencoder to use the data itself as a target for learning,
capturing essential features and patterns in an unsupervised manner.

Variational Autoencoder

z x

pθ(x|z)

qϕ(z|x)

Figure 1.1: Schematic representation of a Variational Autoencoder (VAE). The solid arrow
represents the generative process pθ(x|z), mapping the latent variable z to the observed
data x. The dashed arrow denotes the inference process qϕ(z|x), estimating the latent
variable from the observed data.

The Variational Autoencoder (VAE) is a fundamental model in unsupervised learning,
renowned for treating the encoding and decoding processes probabilistically. It
represents data x and latent representations z through probability distributions:
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pθ(x|z) for the likelihood of data given the latent representation, and qϕ(z|x) for the
distribution of latent embedding given the data.

Central to VAEs is the concept of the Variational Lower Bound, or Evidence Lower
Bound (ELBO). This is derived using Jensen’s Inequality:

log pθ(x) ≥ Ez∼qϕ(z|x)[log pθ(x|z)]−DKL[qϕ(z|x)∥p(z)]

The goal in training VAEs is to maximize this ELBO, which involves optimizing the
expected log likelihood of the data given the latent variables, minus the Kullback-
Leibler (KL) divergence between the encoder’s distribution and the prior distribution
over latent variables.

Expanding on the KL divergence, we have:

DKL(qx(z)∥p(z|x)) = Eqx(z)[log qx(z)− log p(z|x)]

= Eqx(z)[log qx(z)− log p(z)− log p(x|z) + log p(x)]

This leads to the lower bound of the log likelihood:

log p(x) = Eqx(z)[log p(x|z)]−DKL(qx(z)∥p(z)) +DKL(qϕ(z|x)∥p(z))

= Eϵ∼N (0,1)[log pθ(x|z)]−DKL(qϕ(z|x)∥p(z|x))

In practice, qϕ(z|x) is often parameterized as N (µϕ(x), σ2
ϕ(x)). The ELBO thus

comprises two parts: the reconstruction cost, which maximizes the conditional log
probability of reconstructing data x from latent code z, and the regularization cost,
DKL(qϕ(z|x)∥p(z)), which regularizes the encoder distribution to be as close as
possible to the prior distribution.

Overall, the VAE approach aims to maximize data likelihood by optimizing the
variational lower bound, learning the encoding and decoding functions that define
the probabilistic relationship between data and latent representations [165, 95].

Autoregressive Model

Autoregressive models are pivotal in the domain of generative modeling, with substan-
tial influence in the field, especially in the advancements of transformer architectures.
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These models are based on a simple yet powerful principle and are often seen as
specialized instances within the broader autoregressive framework.

A key implementation of autoregressive models is the MADE (Masked Auto-encoder
for Distribution Estimation) model [111]. MADE represents a nuanced variation of
Multilayer Perceptrons (MLPs), incorporating unique architectural modifications.
It employs specific masking within the neural network layers to ensure that the
autoregressive property is maintained, where future elements in a sequence do not
influence the prediction of current elements.

The probability model in MADE can be generalized for a sequence of n elements as
follows:

pθ(x1, x2, . . . , xn) =
n∏

i=1

pθ(xi|x1, x2, . . . , xi−1)

This model is adept at learning conditional probabilities, enabling the autoregressive
generation of subsequent values in the sequence xi.

Another significant autoregressive model is PixelCNN, where convolutional layers are
masked to ensure conditional generation of pixels, based on the spatial location of
each pixel in an image [239, 312].

Normalizing flow

Normalizing flow models, a notable category of generative models, stand out for their
capacity to sample and evaluate probability densities. Originating from a simple
distribution, such as Gaussian, these models employ a series of invertible functions to
transform it. This unique approach facilitates the direct computation of probability
density transformations.

Mathematically, the fundamental operation of normalizing flows is represented as:

z = fθ(x), pθ(x) dx = p(z) dz, pθ(x) = p(fθ(x))

∣∣∣∣∂fθ(x)

∂x

∣∣∣∣
In this framework, fθ is a composition of multiple invertible functions, typically
implemented through neural networks. By stacking these functions, the expressiveness
of the model is significantly enhanced:
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x −→ f1 −→ f2 −→ . . . −→ fk −→ z

Figure 1.2: Transformation sequence in a normalizing flow model, where the input x is
progressively transformed through a series of invertible functions f1, f2, . . . , fk, culminating
in the output z. Each fi represents a key step in the flow, contributing to the comprehensive
transformation from initial input to final output.

z = fk ◦ fk−1 ◦ · · · ◦ f1(x)

x = f−1
1 ◦ f−1

2 ◦ · · · ◦ f−1
k (z)

The model’s probability density is given by the following expression:

log pθ(x) = log p(z) +
k∑

i=1

log det

∣∣∣∣ ∂f i

∂f i−1

∣∣∣∣
A pivotal strategy in constructing these invertible functions involves splitting the
input x into two components, x = (x1, x2), and transforming them into y = (y1, y2)
using a combination of simple invertible functions and more complex neural networks.
This approach, known as ’coupling flows’, exemplifies the flexibility and innovation in
normalizing flow design [92].

Moreover, models like NICE (Non-linear Independent Components Estimation) and
RealNVP (Real-valued Non-Volume Preserving) utilize affine coupling to build these
invertible transformations. The procedure is as follows:

z1:d/2 = x1:d/2

zd/2:d = xd/2:d · sθ
(
x1:d/2

)
+ tθ

(
x1:d/2

)
∂z

∂x
=

(
I 0

∂zd/2:d
∂x1:d/2

diag
(
sθ
(
x1:d/2

)) ) (1.2.1)

The Jacobian matrix’s upper triangular structure facilitates the computation of its
determinant. The non-zero function sθ, often implemented using the exponential
function to ensure positivity, is crucial for maintaining the invertibility that is central
to normalizing flows [91, 92].
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Autoregressive flow

Autoregressive flow [145] represents an advanced topic in the field of generative
modeling, integrating the principles of autoregressive models with those of normalizing
flows, as implied by its name.

In autoregressive flow, the modeling process is as follows:

x1 ∼ pθ(x1), x2 ∼ pθ(x2 | x1), x3 ∼ pθ(x3 | x1, x2)

This model leverages the capabilities of normalizing flows in an autoregressive manner
for sampling:

x1 = f−1
θ (z1), x2 = f−1

θ (z2 | x1), x3 = f−1
θ (z3 | x1, x2)

However, one limitation of this approach is its inherently sequential nature, which
precludes parallel processing during sampling.

To address this limitation, the concept of ’Inverse Autoregressive Flow’ (IAF) was
introduced. In IAF, the sampling process does not directly condition on the previous
samples but instead on the preceding latent codes. The sampling formula for IAF is
as follows:

x1 = fθ(z1), x2 = fθ(z2 | z1), x3 = fθ(z3 | z1, z2)

This modification allows for more efficient sampling while still adhering to the
autoregressive structure [164].

Implicit Model — GAN (Generative Adversarial Networks)

Generative Adversarial Networks (GANs) [117] consist of two distinct networks: a
generator and a discriminator. These networks have opposing goals: the generator
aims to produce images that deceive the discriminator, while the discriminator strives
to differentiate between generated and real images. From a game theory perspective,
the objective of this adversarial process can be formulated as:

min
G

max
D

Ex∼data[logD(x)] + Ez∼p(z)[log(1−D(G(z)))] (1.2.2)

In this equation, the generator G seeks to minimize the objective, whereas the
discriminator D aims to maximize it. The first term encourages the discriminator
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to recognize real data accurately, while the second term pushes the discriminator to
identify fake data created by the generator.

There are several variants of GANs, one of which is the Wasserstein GAN (W-GAN)
[15]. This variant introduces the concept of the Wasserstein distance, also known as
Kantorovich-Rubinstein duality:

W (pr, pg) = sup
∥f∥L≤1

Ex∼pr [f(x)]− Ex∼pg [f(x)] (1.2.3)

min
G

max
D

Ex∼pr [D(x)]− Ex∼pg [D(G(x))] (1.2.4)

The first equation defines the Wasserstein-1 distance between the real data distribution
pr and the generated data distribution pg, using a supremum over all 1-Lipschitz
functions f . The second equation presents the optimization objective for W-GANs,
with G as the generator and D as the discriminator.

Another notable variant is the Wasserstein GAN with Gradient Penalty (WGAN-GP).
This model introduces a penalty term to constrain the gradients, aiming to maintain
them close to unity:

λEx̂∼px̂ (∥∇x̂D(x̂)− I∥)2

Here, x̂ represents a linear interpolation between samples x and x̃, weighted by ϵ.
This penalty term helps to stabilize the training of WGANs by regularizing the
discriminator’s gradients [123].

1.3 Reinforcement Learning

Reinforcement Learning (RL) distinguishes itself as a notably flexible approach in the
machine learning landscape, particularly when contrasted with traditional methods.
It is fundamentally structured around the concept of a Markov Decision Process
(MDP), which includes key components like state space, action space, and reward
mechanisms. RL’s mathematical underpinnings are closely related to optimal control
problems, typically focusing on discrete decision-making processes.

In the classical RL setup, an agent dynamically interacts with its environment. At
each decision point, or state, the agent selects an action from a set of possible actions.
The environment, in response, provides a reward based on the action’s outcome and
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transitions to a new state. The agent’s primary objective is to develop a policy that
maximizes cumulative rewards or returns over time.

The field of RL is rich with extensive research and development. Two fundamental
algorithms that form the basis of many advanced RL techniques are policy gradient
and Q-learning. Policy gradient methods focus on directly optimizing the policy to
maximize the expected return. On the other hand, Q-learning leverages the Bellman
equation to find optimal policy solutions, improving the learning process’s efficiency
and effectiveness [296, 324].

Reinforcement learning (RL) uniquely sets itself apart from supervised and unsuper-
vised learning paradigms. Unlike supervised learning, which requires a dataset with
corresponding labels, and unsupervised learning, which typically involves offline data
processing without environment interaction, RL is fundamentally a time-series based
process that necessitates active interaction with an environment.

Central to the concept of RL is the Markov Decision Process (MDP). An MDP is a
mathematical framework for modeling decision-making situations where outcomes
are partly random and partly under the control of a decision-maker. It is defined as
M = {S,A, T, r}, where:

• S represents the state space, comprising states s ∈ S that can be either discrete
or continuous.

• A denotes the action space, containing actions a ∈ A that can also be discrete
or continuous.

• T is the transition operator, described as a tensor that dictates the probabilities
of moving from one state to another given a specific action.

Given these definitions, the probabilities of being in a state st at time t and taking
an action at are denoted as µt,j = p(st = j) and ξt,k = p(at = k), respectively. The
transition probability from state j to state i upon taking action k is represented as
Ti,j,k = p(st+1 = i|st = j, at = k).

These components interact as follows:

µt,i =
∑
j,k

Ti,j,kµt,jξt,k

This equation captures the essence of the MDP framework in RL, describing the
dynamics of how states evolve over time based on the actions taken and the inherent
probabilities of transitioning between states.
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In the realm of stochastic decision-making and reinforcement learning, Markov Deci-
sion Processes (MDPs) and Partially Observed Markov Decision Processes (POMDPs)
play pivotal roles. These models are integral in understanding and designing systems
that interact with complex and potentially uncertain environments.

An MDP is typically defined as M = {S,A, T, r}, encompassing several key compo-
nents. S is the state space, consisting of states s which can be either discrete or
continuous. A represents the action space, with actions a that can also be discrete
or continuous. T is the transition operator, a tensor that describes the probabilities
of transitioning from one state to another given a specific action. r is the reward
function, mapping state-action pairs to real numbers (r : S × A→ R), providing the
reward for each state-action pair (st, at).

These state transitions and interactions can be visualized as follows:

S1 S2 S3

a1 a2

p(st+1|st, at) p(st+1|st, at)

Figure 1.3: A schematic representation of state transitions in a Markov Decision Process,
illustrating the dynamics between states (S1, S2, S3) and actions (a1, a2) with probabilistic
transitions.

Moving to a more complex scenario, we encounter the Partially Observed Markov
Decision Process (POMDP), formally described by M = {S,A,O, T, E , r}. In addition
to the components found in an MDP, a POMDP introduces: 1) O, the observation
space, with observations o that can be discrete or continuous; 2) E , the emission
probability, which describes the likelihood p(ot|st) of obtaining an observation ot
given the current state st.

The POMDP framework is particularly suited to scenarios where the agent does not
have full observability of the state space, reflecting many real-world situations where
decision-making is based on partial or noisy information [154, 296].

In the context of reinforcement learning, the probability of observing a particular
trajectory under a policy parameterized by θ can be formally expressed as follows:
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pθ(τ) = pθ(s1, a1, . . . , sT , aT ) = p(s1)
T∏
t=1

πθ(at|st)p(st+1|st, at)

In this expression, τ denotes a specific trajectory, while st and at represent the state
and action at time step t, respectively. The term πθ(at|st) is the policy, determined by
parameter θ, that defines the likelihood of taking action at in state st. The transition
probability p(st+1|st, at) signifies the probability of moving from state st to state st+1

upon taking action at. Additionally, r(st, at) is the reward received for taking action
at in state st.

The objective in reinforcement learning is to find the optimal policy parameters
θ∗ that maximize the expected cumulative rewards over these trajectories. This is
mathematically formulated as:

θ∗ = arg max
θ

Eτ∼pθ(τ)

[∑
t

r(st, at)

]

The optimal policy θ∗ is thus determined by maximizing the expected sum of rewards
collected over the course of the trajectory.

s1

a1

s2

a2

s3

π θ
(a

t|s t
)

π θ
(a

t|s t
)

p(st+1|st, at) p(st+1|st, at)

Figure 1.4: A representation of the state and action transitions within a reinforcement
learning environment, illustrating the progression of states st and actions at along with the
associated policy probabilities πθ(at|st) and state transition probabilities p(st+1|st, at).

In reinforcement learning, the objective function is often understood in terms
of the Q-function and value function. The Q-function, defined as Qπ(st, at) =∑T

t′=t Eπθ
[r(s′, a′)|st, at], represents the expected total reward for taking action at in

state st and following policy πθ thereafter. It quantifies the cumulative reward from
state st upon selecting action at and adhering to the policy. Conversely, the value func-
tion, expressed as V π(st) =

∑T
t′=t Eπθ

[r(s′, a′)|st], indicates the expected total reward
starting from state st. This value is related to the Q-function and can be expressed
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as V π(st) = Eat∼πθ(at|st)[Q
π(st, at)]. The primary aim in reinforcement learning is to

optimize the expected value from the initial state s1, denoted as Es1∼p(s1)[V
T (s1)],

thereby maximizing the overall return of the policy starting from the initial state in
the environment.

Q-learning, a model-free reinforcement learning algorithm introduced by Watkins and
Dayan [324], plays a vital role in the field. It enables the determination of the optimal
policy by learning the Q-function without the need for a model of the environment.
This algorithm is key in comparing the expected utility of different actions and has
been foundational in advancing the applications of reinforcement learning.

Reinforcement learning algorithms can be broadly categorized into three distinct
types based on their approach to policy and value function:

1. Value Function-Based Algorithms[324]: These algorithms focus on estimat-
ing the value function V (s) or the Q function Q(s, a). Once the model is fitted
to ascertain these values, the policy is defined as π(s) = arg maxaQ(s, a). This
strategy outlines an optimal policy π(s) for each state s, where the action a is
chosen to maximize the Q-value Q(s, a) for that state. Essentially, it dictates
that the best action in state s is the one offering the highest expected total
reward. This approach is exemplified in Q-learning, a model-free reinforcement
learning algorithm, where the agent seeks to maximize cumulative rewards over
time.

2. Direct Policy Gradients[297]: This method employs a more straightforward
approach. It first estimates the total expected returns Rt =

∑
t r(st, at) using

available data. Following this, it applies policy gradients to directly update the
model parameters: θ ← θ + α∇θE[

∑
t r(st, at)]. This process involves adjusting

the policy parameters θ directly based on the gradient of the expected rewards.

3. Actor-Critic Algorithms[175]: These algorithms attempt to blend the
strengths of both value function-based and direct policy gradient methods.
They utilize data to fit the value function or Q function, similar to value
function-based algorithms. However, like direct policy gradients, they then take
the gradient of the Q function to update the policy parameters. This hybrid
approach leverages the advantages of both value estimation and direct policy
optimization, aiming to balance and improve the overall learning process.

Each of these algorithm types offers unique advantages and is suited to different
kinds of reinforcement learning problems, making them critical tools in the arsenal of
machine learning methodologies.
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Imitation learning

Imitation learning, often referred to as behavior cloning, is a technique in machine
learning where a model is trained to emulate expert behavior. The fundamental
approach involves collecting a dataset comprising pairs of actions and observations,
denoted as at and ot respectively. This dataset is then used to train a supervised
learning model to derive a policy πθ, which maps observations to actions, formalized
as πθ(at|ot).
One significant challenge in imitation learning is the accumulation of errors leading
to a deviation of the learned policy’s rollout from the expert’s distribution. This
phenomenon is known as covariate shift or distribution mismatch. To address this issue,
the DAgger [267] (Dataset Aggregation) algorithm was introduced. The objective of
DAgger is to iteratively refine the training dataset to better match the distribution
encountered during the policy’s rollout.

In practice, DAgger involves executing rollouts of the learned policy, collecting the
resulting data, and then augmenting the original training dataset with these new
observations annotated with expert actions. This enriched dataset is subsequently used
to retrain the policy. This process is repeated iteratively until the policy converges to
satisfactory performance levels, effectively aligning the policy’s distribution with that
of the expert’s.

This iterative training approach, where the model is continuously refined with data
sampled from its own distribution, helps in mitigating the issue of covariate shift,
resulting in more robust and reliable policies.

Policy gradient algorithms

Policy gradient methods in reinforcement learning focus on directly optimizing the
policy function by adjusting its parameters to maximize expected cumulative rewards.
The objective function for policy gradient can be written as follows:

θ∗ = arg max
θ

Eτ∼pθ(τ)

[∑
t

r(st, at)

]
(1.3.1)

where τ denotes a trajectory, st and at are the state and action at time t respectively,
and r(st, at) is the reward function. The expectation E is taken over the distribution
of trajectories induced by the policy pθ.
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Depending on the nature of the problem, particularly whether the horizon is infinite
or finite, the objective function can be adapted. For an infinite horizon, it is defined
as:

θ∗ = arg max
θ

E(s,a)∼pθ(s,a)[r(s, a)] (1.3.2)

In the finite horizon case, the objective is:

θ∗ = arg max
θ

T∑
t=1

E(st,at)∼pθ(st,at)[r(st, at)] (1.3.3)

The policy gradient, often implemented through the REINFORCE algorithm [334], is
a direct method of policy optimization. This algorithm involves sampling trajectories
τ i from the policy πθ(at|st), computing the policy gradient using on-policy data:

∇θJ(θ) ≈
∑
i

(∑
t

∇ log π(ait|sit)
)(∑

t

r(sit, a
i
t)

)
(1.3.4)

and then updating the parameters using gradient ascent:

θ ← θ + α∇θJ(θ) (1.3.5)

where α is the learning rate.

In policy gradient methods, a common challenge is the high variance of gradient esti-
mates, which can impede efficient learning. Two techniques are commonly employed
to mitigate this issue: the introduction of ”reward to go” and the use of a baseline.

In reinforcement learning, particularly in the context of policy gradient methods, the
concept of ”reward to go” and the use of a baseline are two critical techniques for
enhancing the effectiveness of learning algorithms.

Traditionally, the policy gradient is formulated around the idea of total expected
returns. However, this can be modified to include the concept of ”reward to go,”
which refines the standard policy gradient formulation. In this approach, instead of
using the total cumulative reward, the gradient is calculated based on the rewards
accumulated from the current time step t to the end of the episode. Mathematically,
this is represented as:
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∇θJ(θ) ≈ 1

N

N∑
i=1

(
T∑
t=1

∇ log πθ(ai,t|si,t)
)(

T∑
t′=t

r(si,t′ , ai,t′)

)

This method introduces the principle of causality, which asserts that future events
cannot influence the past. By focusing only on rewards from the current timestep
onwards, the ”reward to go” reduces the variance in the gradient estimate, resulting
in more stable and efficient learning.

Another significant technique is the introduction of a baseline to further reduce
variance. A baseline is a term subtracted from the reward, which, while not affecting
the expected value of the gradient, can greatly reduce its variance. The underly-
ing principle is that subtracting a constant from the reward does not change the
expectation of the gradient:

E[∇θ log πθ(τ)b] = b∇θ1 = 0

Consequently, the policy gradient can be reformulated to include a baseline b, such
as the average reward or the value function, leading to:

∇θJ(θ) ≈ 1

N

N∑
i=1

∇θ log πθ(τ)[r(τ)− b]

Incorporating these techniques — ”reward to go” and baseline subtraction — into
policy gradient methods substantially enhances the learning process, making it more
efficient and robust against the inherent variances of training in complex environments.

These techniques are fundamental in the field of reinforcement learning, as they
improve the efficiency and stability of policy gradient methods.

Actor Critor

The Actor-Critic framework [174] is a prominent approach in reinforcement learning
that combines policy-based and value-based methods. In the Actor-Critic architecture,
the actor represents the policy function, and the critic estimates the value function.

The standard policy gradient formulation is refined in Actor-Critic methods by
leveraging the Q-function for the expected reward-to-go:
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Q(st, at) =
T∑

t′=t

Eπθ
[r(st′ , at′)|st, at] (1.3.6)

This function represents the true expected cumulative reward starting from state st
and taking action at. To further reduce the variance in the policy gradient estimate,
a baseline, typically the value function V (st), is subtracted:

∇θJ(θ) ≈ 1

N

N∑
i=1

T∑
t=1

∇θ log πθ(ai,t|si,t) (Qπθ(si,t, ai,t)− V (si,t)) (1.3.7)

where the value function is defined as:

V (st) = Eat∼πθ(at|st)[Q(st, at)] (1.3.8)

The difference Qπ(s, a)− V π(s), known as the advantage function Aπ(s, a), measures
the relative benefit of choosing action a in state s compared to the average outcome
from that state.

The Actor-Critic algorithm involves three primary steps:

• Sample Generation: Execute the current policy to collect data, including
state transitions, actions, and rewards.

• Model Fitting for Qπ and V π: The Q function is updated using the formula
Qπ(st, at) = r(st, at) + V π(st+1), and the advantage function is computed as
Aπ(st, at) = r(st, at) + V π(st+1)− V π(st).

• Value Function Training: Apply supervised regression to train the value
function network. The training data consists of state and cumulative reward
pairs. The loss function L(ϕ) for the value function is defined as:

L(ϕ) =
1

2

∑
i

∥V π
ϕ (si)− yi∥2 (1.3.9)

where yi represents the bootstrapped target, calculated as yi,t = r(si,t, ai,t) +
γV π

ϕ (si,t+1), with γ being the discount factor.
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Bootstrapping improves the algorithm by incorporating the current estimate of the
subsequent state’s value:

yi,t = r(si,t, ai,t) + V π
ϕ (si,t+1)

This bootstrapped target combines observed rewards with estimates of future values,
leading to faster convergence, more stable updates, and direct use of previously fitted
value functions. The discount version uses:

yi,t ≈ r(si,t, ai,t) + γV π
ϕ (si,t+1)

where γ is the discount factor.

Q Learning

Q-Learning is a cornerstone of reinforcement learning, evolving from the concepts of
policy iteration and value iteration.

Policy Iteration consists of two phases: policy evaluation and policy update. The
policy evaluation is performed as follows:

V π(s)← r(s, π(s)) + γEs′∼p(·|s,π(s))[V
π(s′)] (1.3.10)

The policy is then updated using:

π′(at|st) =

{
1 if at = arg maxaA

π(st, at)

0 otherwise
(1.3.11)

Value Iteration also involves two steps: updating the Q function and updating the
value function. The Q function is updated using:

Q(s, a)← r(s, a) + γE[V (s′)] (1.3.12)

and the value function is updated by:

V (s)← max
a
Q(s, a) (1.3.13)

After convergence, the policy is derived as:
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π′(at|st) =

{
1 if at = arg maxaQ

π(st, at)

0 otherwise
(1.3.14)

where Aπ(s, a) = Qπ(s, a)− V π(s).

Deep Q Learning, an extension of traditional Q Learning as described in Mnih et al.
(2015) [220], involves several key steps. Initially, data collection is required, where a
dataset is gathered, which may be independent of the current policy. This is followed by
setting targets for the Q network. The target is set as yi ← r(si, ai)+γmaxa′i

Qϕ(s′i, a
′
i).

Subsequently, the parameters of the Q network are updated through regression. This
involves minimizing the expression 1

2

∑
i∥Qϕ(si, ai)−yi∥2. This method is categorized

as off-policy, indicating that the data used need not originate from the current policy.

Enhancements to Q Learning have been introduced to address its limitations. One
such enhancement is the use of a Replay Buffer, which significantly improves sample
efficiency by allowing for multiple gradient descents per data point. Another notable
enhancement is the implementation of a Target Network. This involves using a
separate network for estimating values, defined as yi ← r(si, ai) + γmaxa′i

Qϕ′(s′i, a
′
i).

Furthermore, to maintain stability and efficiency in the learning process, Polyak
averaging is applied to the parameters of the network, following the formula ϕ′ ←
τϕ′ + (1 − τ)ϕ, with τ typically set at 0.999. These enhancements contribute to a
more robust and efficient learning process in Q Learning algorithms.

Natural Gradient

The concept of the natural gradient[7] arises in the context of optimization in machine
learning, particularly within the realm of neural networks and reinforcement learning.
It represents an advanced method for adjusting the parameters of a model in a way
that accounts for the curvature of the parameter space. This stands in contrast to the
standard gradient descent method, which does not take this curvature into account.

In traditional gradient descent, we update the parameters of our model by moving in
the direction opposite to the gradient of the loss function. However, this approach
assumes that the parameter space is Euclidean, where all directions are equally
scaled, and straight-line distances are meaningful. But in many machine learning
models, especially those involving probability distributions (like those in reinforcement
learning), the space is not Euclidean and has a complex, curved geometry.

The natural gradient aims to address this by adjusting the update direction to be more
appropriate for the geometry of the parameter space. When we speak of geometry in
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parameter space, we’re often referring to the information geometry, which considers
how probability distributions change as we move through the space of parameters.

In reinforcement learning, especially in policy gradient methods, we want to update
our policy parameters in such a way that we move to better policies, but without
making too large of a step. A large step could lead to a drastically different policy
that performs poorly, which is undesirable.

The natural gradient takes into account the Fisher information matrix, which repre-
sents the curvature of the space and provides a metric for measuring distances between
probability distributions (such as policies). When we use the natural gradient, we
effectively perform a more informed update that respects the structure of the policy
space.

Mathematically, the natural gradient is defined as:

∇̃θJ(θ) = F (θ)−1∇θJ(θ)

where ∇̃θJ(θ) is the natural gradient of the objective function J with respect to the
parameters θ, F (θ) is the Fisher information matrix at θ and ∇θJ(θ) is the standard
gradient of J .

Using the natural gradient instead of the standard gradient can lead to more efficient
and stable learning, as it adjusts the step size automatically to account for the local
geometry of the parameter space. This means it can take larger steps in flat directions
(where parameters can be changed without significantly affecting the output) and
smaller steps in steep directions (where changes have a large impact).

Algorithms like Natural Actor-Critic [245] and Trust Region Policy Optimization
(TRPO) leverage the concept of the natural gradient to improve learning by ensuring
that updates to the policy parameters do not change the behavior of the policy
too drastically, which is often quantified by keeping the KL-divergence between
consecutive policies below a certain threshold.

Trust Region Policy Optimization (TRPO)

The Trust Region Policy Optimization (TRPO) [279] is a sophisticated approach for
optimizing policies in reinforcement learning. At its core, TRPO aims to improve the
policy by maximizing an objective function, which typically involves expected returns.
However, unlike standard policy gradient methods that can lead to destructive large
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updates, TRPO operates within a trust region—a constrained optimization space—to
ensure stability and reliability of learning.

This trust region is defined by the Kullback-Leibler (KL) divergence, which measures
how one probability distribution diverges from a second, reference probability distri-
bution. In the context of TRPO, it ensures that the updated policy does not deviate
too significantly from the current policy, maintaining a certain level of ’closeness’.
This constraint is crucial for avoiding the pitfalls of large policy updates, which can
lead to performance collapse.

The objective function in TRPO is typically augmented with a penalty term or is
subject to a constraint that limits the KL divergence between the new policy and
the old policy. The algorithm then uses this constraint to form a trust region, which
defines the boundaries within which the policy can be updated. By doing so, TRPO
seeks to take the largest possible improvement step on the policy without violating
the trust region—hence optimizing policy performance while maintaining a degree of
safety.

Mathematically, the optimization problem TRPO solves can be expressed as:

max
θ

Es,a∼πθold

[
πθ(a|s)
πθold(a|s)A

πθold (s, a)

]
subject to:

Es∼πθold
[DKL(πθold(·|s)∥πθ(·|s))] ≤ δ

Here, θ represents the policy parameters, π denotes the policy, A stands for the
advantage function, and δ is a predefined threshold for the KL divergence that
determines the size of the trust region.

TRPO’s effectiveness lies in its balance between exploration and exploitation, enabled
by its trust region approach. This balance is particularly useful in environments with
high-dimensional state and action spaces, where it is essential to make consistent
progress while avoiding drastic policy changes that could lead to unpredictable or
suboptimal behavior.

Proximal Policy Optimization (PPO)

Proximal Policy Optimization (PPO) [278] is an algorithm that builds upon the ideas
of TRPO, aiming to simplify the implementation while preserving the core principle
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of stable policy updates. PPO has become one of the most popular algorithms in
reinforcement learning due to its effectiveness and ease of use.

The primary innovation of PPO is the introduction of a clipped surrogate objective
function. This function limits the amount of change to the policy by clipping the
policy ratio, which prevents the new policy from being too far from the old policy.
The clipping mechanism serves a similar purpose to the trust region in TRPO, but it
is easier to compute and implement.

The clipped surrogate objective function of PPO is as follows:

LCLIP (θ) = Êt

[
min(rt(θ)Ât, clip(rt(θ), 1− ϵ, 1 + ϵ)Ât)

]
where rt(θ) = πθ(at|st)

πθold
(at|st) is the probability ratio of the action under the new and old

policies, Ât is an estimator of the advantage function at time t, ϵ is a hyperparameter,
typically a small value like 0.1 or 0.2, that defines the clip range to limit the ratio
rt(θ) and the min operation ensures that the objective is the lesser of the unclipped
and clipped objectives, which bounds the policy update.

PPO retains the advantage of TRPO in that it constrains policy updates to avoid large
and potentially harmful deviations. However, PPO uses a first-order optimization
method, which is computationally less expensive and simpler than the second-order
methods used in TRPO. This makes PPO more practical for a wider range of problems
and more accessible for implementation.

Additionally, PPO is characterized by alternating between sampling data through
interaction with the environment and optimizing the clipped surrogate objective. This
alternating process is typically repeated for a fixed number of epochs, contrasting
with TRPO’s single large update. This procedure allows PPO to efficiently use the
collected data to refine the policy iteratively.

In practice, PPO has demonstrated robust performance across a variety of domains,
from simulated robotic control to complex strategy games. Its balance of sample
efficiency, ease of implementation, and stability has established it as a go-to algorithm
for many reinforcement learning practitioners.

Soft Actor-Critic (SAC)

Soft Actor-Critic (SAC) [126] is a state-of-the-art algorithm in the field of reinforce-
ment learning that stands out due to its sample efficiency and stability. It is an
off-policy actor-critic method that incorporates the maximum entropy framework,
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which encourages exploration by not only seeking to maximize expected return
but also maximizing entropy. In other words, SAC aims for a policy that is both
high-performing and as random as possible.

Soft Actor-Critic (SAC) is a reinforcement learning algorithm with several key
components. Firstly, it employs an actor-critic architecture. In this setup, the actor
suggests actions based on the given state, while the critic evaluates these actions by
estimating their Q-values. SAC uses two Q-value functions to mitigate the positive
bias in the policy improvement step, a known issue that can degrade the performance
of value-based methods.

Another essential component of SAC is its soft policy update strategy. The algorithm
updates policies by considering the entropy of the policy within the optimization
objective, leading to more exploratory behavior. This approach is particularly
advantageous in complex environments where efficient exploration is crucial for
finding effective policies.

Additionally, SAC operates on an off-policy basis. It learns from old experiences
stored in a replay buffer, making it more sample-efficient than on-policy algorithms.
This efficiency is due to the ability to use each sample multiple times for learning.

Finally, SAC incorporates the maximum entropy framework. This framework en-
courages the agent to act as randomly as possible, to maximize entropy, while still
achieving success in the task at hand. The result is the development of robust and
versatile policies that can adapt to environmental changes, enhancing the overall
effectiveness of the algorithm.

The objective function of SAC is designed to optimize both the expected return and
the entropy of the policy:

J(π) = E(st,at)∼ρπ

[∑
t

γt (R(st, at) + αH(π(·|st)))
]

whereR(st, at) is the reward at timestep t, γ is the discount factor, α is the temperature
parameter that determines the relative importance of the entropy term against the
reward (with higher values favoring exploration) and H denotes the entropy of the
policy π.

The algorithm typically includes an automatic entropy adjustment mechanism, where
the temperature parameter α is learned adaptively rather than being set manually.
This allows the algorithm to automatically balance exploration and exploitation based
on the specific environment it is interacting with.
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SAC has shown superior performance in a variety of continuous control tasks, partic-
ularly those with high-dimensional action spaces. Its ability to learn effective policies
while maintaining a high degree of exploration makes it a powerful tool for solving
complex reinforcement learning problems.

Reinforcement Learning for Quantum Applications

The integration of reinforcement learning (RL) into the realms of quantum computing
and quantum control marks a significant stride in contemporary research. This inter-
disciplinary fusion holds immense promise for revolutionizing quantum technologies
through innovative optimization strategies for quantum systems.

Leveraging the strength of RL algorithms, which excel in learning optimal strategies
through trial and error, this approach adeptly adapts to the unique intricacies of
quantum mechanics. Since the pioneering efforts of researchers like Marin Bukov[48],
who initially applied RL techniques to quantum control, the field has seen remarkable
advancements. Bukov’s work set a solid foundation for understanding how complex
quantum systems can be manipulated and optimized using reinforcement learning.

Subsequent research has diversified the application of RL in quantum systems. Re-
searchers have crafted various methods to tackle different challenges within quantum
computing and control. These methodologies span a broad spectrum, including
optimizing quantum circuit designs, enhancing the efficiency of quantum simulations,
and refining the accuracy of quantum measurements.

A notable achievement in this domain is the application of RL in quantum error
correction[107]. RL algorithms have proven to be effective in devising strategies to
reduce errors in quantum computers, a critical milestone in achieving reliable and
scalable quantum computing.

Dynamic quantum control is another area where RL has made significant inroads.
Here, RL algorithms are trained to adjust quantum systems in real-time, learning to
manipulate quantum states and processes to achieve specific outcomes. This kind of
dynamic control is vital for executing tasks like quantum gate implementation and
state preparation.

Beyond theoretical exploration, RL’s integration into quantum technology has also
seen practical applications. Experimental setups have demonstrated the feasibility of
RL-guided quantum control under lab conditions, reinforcing the potential of RL as
a crucial tool in the quantum scientist’s arsenal.

In conclusion, the confluence of reinforcement learning and quantum technology is
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a rapidly growing field with enormous potential. The foundational work of Marin
Bukov and the continuous evolution of this research highlight the significant role
RL could play in advancing quantum computing and control, paving the way for
transformative developments in quantum technologies.

1.4 Deep Autoregressive model

Deep autoregressive models are integral to deep learning, particularly in the realm of
sequential data processing. These models are primarily used in sequence-to-sequence
tasks and have significantly contributed to advancements in fields such as natural
language processing and time-series analysis.

Deep autoregressive models function by predicting future elements in a sequence
based on learned dependencies from previous elements. Their autoregressive nature
means each output is conditioned on preceding outputs, creating a dependency chain
within the sequence. This approach allows the models to effectively capture and
utilize the context inherent in sequential data.

The core mechanism of deep autoregressive models involves factorizing the probability
of a sequence into a product of conditional probabilities. Mathematically, for a
sequence x1, x2, ..., xn, the joint probability is expressed as:

P (x1, x2, ..., xn) =
n∏

t=1

P (xt|x1, ..., xt−1)

To model these conditional probabilities, deep learning architectures such as Recurrent
Neural Networks (RNNs) [119], Long Short-Term Memory networks (LSTMs) [142],
and Gated Recurrent Units (GRUs) [70] are commonly used.

In terms of applications, deep autoregressive models have shown remarkable utility
and versatility. They are extensively used in natural language processing tasks,
including text generation, machine translation, and speech recognition. Beyond
language processing, these models are also applied in image generation and time-series
forecasting, demonstrating their broad applicability in handling various types of
sequential data.

While the concept of deep autoregressive models is foundational, the introduction of
Transformers has further revolutionized the field. Transformers, with their attention
mechanisms [314], have provided an alternative and often more effective approach to
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dealing with sequential data, particularly in tasks where long-range dependencies are
crucial.

Transformer

The Transformer model, introduced by Vaswani et al. [314] in their groundbreaking
paper ”Attention Is All You Need” in 2017, has revolutionized the field of sequence
modeling, especially in natural language processing (NLP). This model marked a
significant departure from traditional recurrent architectures, like LSTMs and GRUs,
by relying entirely on attention mechanisms, particularly self-attention, to capture
global dependencies between input and output.

The architecture of the Transformer consists of two main components: an encoder
and a decoder. Each layer of the encoder contains two sub-layers: a multi-head
self-attention mechanism and a position-wise feed-forward network, both surrounded
by layer normalization and residual connections. The decoder mirrors this structure
but adds a third sub-layer that performs multi-head attention over the encoder’s
output.

One of the key features of Transformers is their ability to process entire sequences
simultaneously, unlike autoregressive models that process data sequentially. This
parallel processing capability significantly enhances efficiency and scalability. Ad-
ditionally, positional encodings are added to the input to provide the model with
information about the position of each element in the sequence, compensating for the
absence of recurrence.

Transformers have dramatically impacted various fields, achieving state-of-the-art
results in numerous NLP tasks. They form the backbone of prominent models like
BERT [87], GPT [253], and T5 [254]. Moreover, the success of Transformers has
spurred research into applying their architecture beyond NLP, including in areas like
computer vision and audio processing.

In comparison to deep autoregressive models, which focus on capturing sequential
dependencies through recurrence, Transformers handle long-range dependencies more
efficiently through attention mechanisms and parallel processing. While autoregressive
models are interpretable and effective in certain contexts, they often struggle with
longer sequences due to issues like vanishing gradients. Transformers, by contrast,
address many of these limitations, offering a scalable and potent solution for processing
large amounts of sequential data.
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Large Language Models (LLMs)

Large Language Models (LLMs) have become a pivotal topic in deep learning, partic-
ularly in the evolution and application of natural language processing technologies.
These models, which are primarily based on the transformer architecture, have
revolutionized our approach to processing and generating natural language.

LLMs like GPT (Generative Pre-trained Transformer), BERT (Bidirectional Encoder
Representations from Transformers), and others represent a significant leap in neural
network-based models. They are characterized by their immense size in terms of the
number of parameters and the scale of the training data. These models are trained
on extensive text corpora, learning complex tasks such as predicting the next word
in a sentence, generating coherent text, or understanding the context of language.
This training typically involves unsupervised learning on large datasets, followed by
fine-tuning for specific applications.

In terms of capabilities, LLMs excel in a variety of language-related tasks including
text generation, translation, summarization, question answering, and more. They
have been instrumental in advancing areas like conversational AI, content creation,
and information extraction. Many LLMs, especially those used for text generation
like the GPT series, are autoregressive, generating text one word at a time and basing
each new word on the sequence generated so far. This autoregressive nature allows
them to produce text that is coherent and contextually relevant over long sequences.

The backbone of LLMs’ success is the transformer architecture, renowned for its
ability to process sequences in parallel and effectively capture long-range dependencies,
making it ideally suited for the complexities of natural language. The attention
mechanisms within transformers enable LLMs to focus on relevant parts of the input
when performing various language tasks.

However, LLMs are not without challenges. Issues such as bias in training data,
ethical considerations, and the computational cost of training and deploying such
large models are significant areas of concern. Current research is directed towards
making these models more efficient, ethical, and robust.

The evolution from deep autoregressive models to transformers, and now to Large
Language Models, marks a significant advancement in deep learning and natural
language processing. While autoregressive models laid the initial groundwork for
understanding sequential data, transformers provided a more efficient and effective
framework, which was then leveraged to develop LLMs. These models have expanded
the horizons of language understanding and generation, signaling a new era in
AI’s capabilities in human language interaction. As the field advances, LLMs are
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expected to bring even more sophisticated applications and interactions, potentially
transforming numerous facets of technology and society.

Applications of Autoregressive Models in Physics

Autoregressive models are not only widely recognized for their applications in statistics
and machine learning but also hold significant value in the realm of physics. These
models provide a robust framework for understanding and predicting a range of
physical phenomena, leveraging the concept that the future state of a system can
often be modeled as a function of its past states.

In the field of physics, many systems exhibit temporal or spatial dependencies, and it
is here that autoregressive models particularly excel. By utilizing past observations
of various physical quantities — such as temperature, pressure, or more complex
variables like quantum states or field distributions — these models are adept at
generating predictions about future states. This predictive capability is invaluable,
not only for theoretical studies but also for practical applications across disciplines
like climate modeling, astrophysics, and materials science.

For example, in climate science, autoregressive models are used to forecast weather
patterns or long-term climate changes, drawing on historical data. By analyzing the
evolution of variables like temperature and humidity over time, these models can
provide crucial insights into future climatic conditions. In astrophysics, they assist in
predicting the behavior of celestial bodies or the evolution of cosmic events based on
past observations.

The realm of quantum mechanics and particle physics, where traditional deterministic
models often fall short, is another area where autoregressive models prove their mettle.
They offer a probabilistic approach to understanding the dynamics of particles and
fields, predicting the probability distributions of various quantum states[54], or
modeling the behavior of subatomic particles in accelerators.

Autoregressive models’ flexibility and adaptability make them highly suitable for
a broad spectrum of applications in physics. They excel at capturing the inherent
dependencies in physical systems and extrapolating from known data, thus serving as
a powerful tool for both theoretical exploration and practical problem-solving in the
physical sciences. As the collection and analysis of vast data sets in various physics
fields continue to grow, the importance of autoregressive models becomes ever more
pronounced. They offer a blend of simplicity and effectiveness, crucial for modeling
the complexities of the physical world.
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1.5 Black box optimization

Black box optimization algorithms are pivotal in optimizing functions where the
internal mechanisms are either unknown or inaccessible. These algorithms are diverse,
each with unique strengths and suitable for various problem types. Notable algorithms
in black box optimization include:

Several advanced optimization algorithms have been developed, each with unique
characteristics and applications. Genetic Algorithms (GA)[143], inspired by natural
evolution, utilize selection, crossover, and mutation processes to optimize solutions.
Particle Swarm Optimization (PSO)[158] mimics the behavior of swarms, where
particles traverse the solution space to find optimal solutions. Simulated Annealing
(SA)[167], drawing parallels from metallurgical annealing, probabilistically navigates
the solution space, aiding in escaping local minima.

Bayesian Optimization[258] employs Bayesian methods to model the objective func-
tion, enhancing the sampling process’s efficiency. Differential Evolution (DE) is
particularly effective for multi-dimensional real-valued functions, involving strategies
like mutation and crossover. The Covariance Matrix Adaptation Evolution Strat-
egy (CMA-ES)[132]is a more sophisticated algorithm, designed to address complex
non-linear, non-convex black-box optimization challenges.

Additionally, the Nelder-Mead Method [229], which uses a simplex-based approach,
is suited for multidimensional unconstrained optimization. Lastly, Random Search,
while straightforward, can be surprisingly effective. This method relies on randomly
sampling the solution space, providing a baseline comparison for more complex
algorithms. Each of these algorithms offers distinct advantages and is suited for
specific types of optimization problems.

The choice of a specific algorithm depends on factors like problem dimensionality,
noise level, and available computational resources. These algorithms have found
applications in various fields, including machine learning, operations research, and
engineering.

In a dissertation on black-box optimization, a comprehensive and critical approach is
crucial. An effective review should cover the definition and importance of black-box
optimization, classify the types of problems it addresses, and provide an overview of
key methods and algorithms, along with their strengths, weaknesses, and suitability for
different problem types. It should also discuss common challenges like dimensionality
and local minima, incorporate recent research findings, and provide case studies and
practical implementations.
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Emerging trends and interdisciplinary applications, as well as a critical evaluation
of the current state of research, are also essential components of such a dissertation.
Concluding thoughts on the potential evolution of black-box optimization and its
future impact are equally important.

One research line in black-box optimization contrasts with gradient-based and second-
order (Hessian) methods. The advantage of black-box optimization lies in its indepen-
dence from the function’s gradient, which is beneficial when the gradient is hard to
obtain or computationally expensive. Instead, function values can be directly used to
optimize parameters, making it a versatile tool in scenarios where traditional methods
are impractical.

Black box optimization encompasses a wide range of techniques, each designed to
tackle optimization problems where the internal workings of the function are not fully
known. Notable among these are genetic algorithms, Bayesian optimization often used
in hyperparameter optimization, and probability-based methods. In probability-based
optimization, a common strategy is to reparameterize the problem so that, although
the function itself may not be differentiable, it becomes differentiable with respect to
the parameters of the probability distribution after reparameterization.

Some popular methods in this category include the Cross-Entropy Method (CEM)
and Covariance Matrix Adaptation Evolution Strategy (CMA-ES), which are forms
of iterative stochastic optimization. Another significant method is Monte Carlo Tree
Search (MCTS)[172], widely applied in various domains such as gaming and other
machine learning applications.

Monte Carlo Tree Search (MCTS)

MCTS operates on four fundamental concepts: selection, expansion, simulation, and
backpropagation. In the selection phase, beginning at the root node, MCTS selects
child nodes based on a policy that balances exploration (trying new moves) and
exploitation (choosing known effective moves), often utilizing the Upper Confidence
Bound applied to Trees (UCT) strategy. During expansion, if a leaf node has
unexplored moves, the tree expands by adding child nodes representing these moves.
In the simulation phase, Monte Carlo simulations are run from these new nodes,
estimating the potential success of moves from that node. Finally, the backpropagation
phase involves updating node values based on simulation outcomes, thereby enhancing
the accuracy of move estimations.

The UCT score is integral to decision-making in tree-based algorithms. It is mathe-
matically expressed as:
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Score(st) =
Q(st)

N(st)
+ 2C

√
2 lnN(st−1)

N(st)

In this formula, Q(st) represents the value of state st, and N(st) is the number of

visits to state st. The term 2C
√

2 lnN(st−1)
N(st)

introduces an exploration factor to balance

exploration and exploitation. Here, N(·) indicates the visit count function, playing a
crucial role in the algorithm’s decision-making process.

Cross Entropy Method (CEM)

The Cross Entropy Method (CEM) [83] is an optimization technique extensively
used in artificial intelligence, machine learning, operations research, and other fields
requiring solutions in complex spaces. This method is adept at solving problems
where the objective is to find the best parameters to optimize a specific function.
Here’s a breakdown of how CEM works:

The Cross-Entropy Method (CEM) is a structured approach to optimization and is
composed of several sequential steps. It begins with the initialization of a random
probability distribution D over the potential solution space, often a simple distribution
such as a Gaussian with predefined mean and standard deviation.

Following initialization, CEM generates a set of samples from this distribution, with
each sample representing a possible solution to the optimization problem. These sam-
ples are then evaluated using the objective function to determine their effectiveness.

Based on the results of this evaluation, CEM selects the top-performing samples. The
selection criteria could be based on a fixed number of top performers or a percentile
cutoff.

After selecting the best samples, the algorithm updates the parameters of the distri-
bution D, such as recalculating the mean and standard deviation. This update shifts
the focus towards areas of the search space that have shown better performance.

Finally, this process of generating, evaluating, selecting, and updating samples is
repeated iteratively. This cycle continues until the algorithm meets predefined
convergence criteria, indicating that an optimal or sufficiently good solution has been
found.

In CEM, samples A1, A2, . . . , AN are initially drawn from a distribution p(A). Each
sample Ai is evaluated by a performance measure J(Ai). The top-performing samples,
known as ’elites’ Ai1 , . . . , AiM , are chosen based on their high J values, with M < N .
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The distribution p(A) is then refined to these elites, enhancing the effectiveness of
future samples.

CEM is a zero-order optimization algorithm, meaning it does not require gradient
information. This contrasts with methods like Stochastic Gradient Descent (SGD),
which rely on gradients. Additionally, higher-order methods such as the Gauss-Newton
method and Kronecker-Factored Approximate Curvature (K-FAC) are vital, especially
in optimizing the wavefunction within neural network ansatzes.

Natural Evolution Strategies (NES)

Natural Evolution Strategies (NES)[333] represent a powerful optimization algorithm
in various fields, particularly noted for its application in complex optimization
scenarios. The fundamental concept behind NES is to utilize search gradients for
updating the parameters of a search distribution. The distribution can vary, but
commonly used ones include Gaussian mixture models and the Cauchy distribution,
chosen for their easily computable derivatives of log-density.

In NES, let θ denote the parameters of density πθ(z) and f(z) represent the fitness
function for samples z. The expected fitness under the search distribution is given by

J(θ) = Eπ[f(z)] =

ˆ
f(z)πθ(z)dz.

The gradient of J(θ) can be computed using the ’log-likelihood trick’, expressed as

∇θJ(θ) = ∇θ

ˆ
f(z)πθ(z)dz

=

ˆ
f(z)∇θπθ(z)dz

=

ˆ
f(z)∇θ

(
πθ(z)

πθ(z)

)
dz

=

ˆ
f(z)∇θ log πθ(z)πθ(z)dz

= Eπθ
[f(z)∇θ log πθ(z)].

The search gradient can be estimated from samples z1 . . . zλ (sampled according to
πθ) as
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∇θJ(θ) ≈ 1

λ

λ∑
k=1

f(zk)∇θ log πθ(zk),

and used in a gradient ascent approach to maximize the expected fitness function.

A key advantage of NES is that it does not require the fitness function f to be
differentiable. It works effectively even if f is non-differentiable, as long as the search
distribution’s derivative is calculable. This approach is termed a probability-based
algorithm, focusing on the function’s expectation under a probability distribution
rather than the original function itself.

One NES variant incorporates the concept of the natural gradient, introduced by
Amari (1998) [7] and further developed by Amari and Douglas (1998) [6]. The natural
gradient modifies the parameter update to be independent of the distribution’s
parameterization, using KL divergence as a measure of distance. This is achieved
through a constrained optimization problem, leveraging the Fisher information matrix
and techniques like Tikhonov regularization [307] or conjugate gradient methods for
practical implementation.

max
δθ

J(θ + δθ) ≈ J(θ) + δθT∇θJ, s.t. D(θ + δθ||θ) ≤ ϵ, (1.5.1)

When δθ → 0, we have the estimation D(θ + δθ)||θ) = 1
2
δθTF (θ)δθ,

where

F =

ˆ
πθ(z)∇θ log πθ(z)∇θ log πθ(z)Tdz

= E
[
∇θ log πθ(z)∇θ log πθ(z)T

]
We can get the the necessary condition using a Lagrangian multiplier (Peters, 2007)

Fδθ = β∇θJ

If F is invertible, the natural gradient amounts to ∇̃θJ = F−1∇θJ. Then, we can use
this adjusted gradient to update the parameters.

Note that the Fisher information matrix estimates may not always be invertible. To
address this issue, techniques such as Tikhonov regularization can be employed, which
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involves adding ϵI to the matrix before inversion. Alternatively, iterative methods
like the conjugate gradient can be used to compute the product of the inverse matrix
with a vector without directly calculating the inverse.

1.6 AI for Science: Bridging Deep Learning and

Quantum Physics

The intersection of deep learning and quantum physics in recent years has led to
significant breakthroughs, marking a new era in scientific research known as ”AI for
Science.” This convergence is exemplified in several groundbreaking studies.

A notable instance is DeepMind’s development of FermiNet[246], an innovative neural
network architecture specifically crafted for modeling quantum states in large electron
systems. Their influential paper, ”FermiNet: Quantum Physics and Chemistry from
First Principles,” demonstrates the power of deep learning in unraveling the intricate
equations of quantum mechanics for practical applications. This work not only
showcases deep learning’s computational abilities but also its potential to transform
our understanding of quantum systems.

Another remarkable contribution comes from Dian Wu, Lei Wang, and Pan Zhang with
their paper ”Solving Statistical Mechanics Using Variational Autoregressive Networks,”
[338] published in Physical Review Letters. This study introduces a unique method
that utilizes autoregressive neural networks to solve problems in statistical mechanics.
The approach surpasses traditional variational mean-field methods in various aspects,
including the calculation of variational free energy, estimation of critical physical
parameters like entropy, and generation of independent samples. Intriguingly, the
paper integrates policy gradient techniques commonly used in reinforcement learning,
highlighting the synergistic fusion of deep learning techniques with physics.

These pioneering works represent a growing trend where machine learning method-
ologies are increasingly applied to tackle intricate problems in physics. This blend of
computational power and theoretical insight is significantly broadening the scope of
scientific computation, opening up new possibilities for exploration and discovery in
the realms of quantum physics and beyond.

1.7 Quantum circuit

Quantum circuits play a pivotal role in quantum computing, providing a mathematical
and operational framework for quantum computation. A fundamental concept in
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quantum circuits is the wavefunction, denoted |ψ⟩, which resides in the complex
Hilbert space CN ≈ (C2)⊗n, where N = 2n and n is the number of qubits. A key
requirement for these wavefunctions is the normalization condition, ensuring that
⟨ψ|ψ⟩ =

∑N−1
j=0 |ψj|2 = 1.

In the realm of quantum gates, these are typically represented by unitary matrices
U ∈ CN×N . Quantum algorithms are essentially a series of large matrix-vector multi-
plications of the form Uk · · ·U1|ψ⟩. Measurement of some qubits is then performed,
and the process is repeated M times to produce classical output.

The basic language of quantum circuits includes the state vectors for one qubit in the
computational basis, represented as:

|0⟩ =

(
1
0

)
, |1⟩ =

(
0
1

)
The Pauli matrices, X, Y , and Z, are also central to quantum computing:

X =

(
0 1
1 0

)
, Y =

(
0 −i
i 0

)
, Z =

(
1 0
0 −1

)
These matrices serve as one-qubit gates (see Figure 1.5), with the X gate acting as a
bit-flip gate and the Z gate changing the sign (phase) of |1⟩.

|0⟩ X |1⟩ |1⟩ Z −|1⟩

Figure 1.5: The illustration of the action of one-qubit quantum gates. On the left, the X
gate (bit-flip gate) is applied to the qubit initially in state |0⟩, resulting in the state |1⟩. On
the right, the Z gate (phase-flip gate) is applied to the qubit initially in state |1⟩, leading to
the state −|1⟩. These gates exemplify fundamental quantum operations used in quantum
computing for manipulating the state of qubits.

Another crucial gate is the Hadamard gate, represented by:

H =
1√
2

(
1 1
1 −1

)
The Hadamard gate (see Figure 1.6) transforms the computational basis into the |+⟩
and |−⟩ basis.
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|0⟩ H |+⟩

Figure 1.6: The action of the Hadamard (H) gate on a quantum bit. When applied to a
qubit initially in the |0⟩ state, the Hadamard gate transforms it into the superposition state
|+⟩, which is an equal mix of the |0⟩ and |1⟩ states.

The tensor product is also a fundamental concept in quantum circuits, allowing for
the construction of computational bases for multi-qubit systems. For instance, the
basis states for a two-qubit system can be represented as:

|00⟩ =


1
0
0
0

 , |01⟩ =


0
1
0
0

 , |10⟩ =


0
0
1
0

 , |11⟩ =


0
0
0
1


The CNOT gate (see Figure 1.7), an essential quantum gate, operates on two qubits
and is represented by:

CNOT =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0


These gates serve as building blocks for constructing complex quantum circuits. The
measurement operator in quantum circuits, crucial for collapsing a qubit’s state to
one of its basis states, is probabilistic, depending on the amplitudes of the qubit’s
state vector in the basis states. For a qubit in the state ψ = α|0⟩+β|1⟩, measurement
results in the qubit collapsing to |0⟩ with probability |α|2 and to |1⟩ with probability
|β|2. This process results in a loss of superposition information, mapping the qubit
state to a classical bit.

In summary, quantum circuits (Figure 1.8 illustrates a typical quantum circuit),
comprising gates and measurement operators, provide a foundation for quantum
computing, allowing for the manipulation and measurement of qubits to perform
complex computational tasks.
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|a⟩ • |a⟩
|b⟩ |a⊕ b⟩

Figure 1.7: The demonstration of the operation of the Controlled NOT (CNOT) gate, a
fundamental two-qubit gate in quantum computing. The CNOT gate flips the state of the
second qubit (target) if the first qubit (control) is in the |1⟩ state. In this illustration, the
control qubit |a⟩ remains unchanged, while the target qubit |b⟩ is flipped to |a⊕ b⟩, where
⊕ denotes the XOR operation.

|0⟩ H • H

|0⟩ H • H

|0⟩ X Z

|0⟩

Figure 1.8: One typical quantum circuit, which is a fundamental construct in quantum
computing. It consists of a series of quantum gates and measurement operators acting
on qubits initially in the |0⟩ state. The circuit begins with Hadamard (H) gates to
create superposition states, followed by a combination of controlled NOT (CNOT) and
Pauli-X, Pauli-Z gates to perform entanglement and phase manipulations. Finally, the
circuit concludes with measurement operators, translating the qubit states into classical
information. Such circuits enable complex computational tasks through the manipulation
and measurement of qubits, showcasing the unique capabilities of quantum computing.

1.8 Mathematical Framework for Ground State

Determination

The quintessential goal of variational quantum algorithms and other quantum control
strategies is the precise determination of a system’s ground state. This process is
fundamentally about seeking the lowest eigenvalues (λmin) and their corresponding
eigenvectors (|ψmin⟩) of a quantum system’s Hamiltonian (H). Mathematically, this
is represented as:

H |ψmin⟩ = λmin |ψmin⟩

In this pursuit, physicists rely on a repertoire of established models to elucidate
various quantum phenomena. The transverse Ising model, represented as:
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HIsing = −J
∑
⟨i,j⟩

σz
i σ

z
j − h

∑
i

σx
i

illuminates spin dynamics under an external magnetic field, where σz
i and σx

i are the
Pauli matrices. The Heisenberg model, with its focus on exchange interactions, is
encapsulated by:

HHeisenberg = J
∑
⟨i,j⟩

(σx
i σ

x
j + σy

i σ
y
j + σz

i σ
z
j )

Lastly, the Hubbard model, pivotal in understanding electron correlations in a lattice,
is expressed as:

HHubbard = −t
∑
⟨i,j⟩,σ

(c†i,σcj,σ + h.c.) + U
∑
i

ni,↑ni,↓

These models provide foundational structures for comprehending and manipulating
quantum behaviors, pivotal in advancing quantum computing and simulation.

1.9 Quantum Approximate Optimization

Algorithm (QAOA)

The Quantum Approximate Optimization Algorithm (QAOA) [102] is a promising
quantum algorithm designed for solving combinatorial optimization problems within
the realm of quantum computing. It represents a hybrid quantum-classical approach,
utilizing both quantum and classical resources to find solutions more efficiently than
classical algorithms alone. At its core, QAOA operates by encoding the optimization
problem into a cost Hamiltonian, whose ground state corresponds to the optimal
solution. The algorithm then applies a series of quantum gates, structured in a
sequence of unitary operators, to prepare a superposition of states. These gates
are parameterized, with their parameters optimized through a classical outer loop,
typically using classical optimization techniques. This iterative process aims to
approximate the ground state of the Hamiltonian, thus moving towards the optimal
solution. QAOA stands out for its potential scalability and is particularly suited for
near-term quantum computers, known as Noisy Intermediate-Scale Quantum (NISQ)
devices, making it a focal point in current quantum computing research.
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The Quantum Approximate Optimization Algorithm (QAOA) is underpinned by
several fundamental mathematical concepts that are crucial for its understanding
and implementation. At the heart of QAOA is the Cost Hamiltonian Hc, which
encodes the optimization problem for a system with n bits. This Hamiltonian acts
as a Hermitian operator on a Hilbert space of dimension 2n. When applied to a
computational basis string z, it results in Hc|z⟩ = C(z)|z⟩, where C(z) represents the
cost function evaluated at z.

Complementing the Cost Hamiltonian is the Mixer Hamiltonian Hm, typically a
transverse field Hamiltonian given by Hm = −∑n

i=1Xi, with Xi being the Pauli-X
operator on the i-th qubit. This Hamiltonian facilitates the creation of superpositions
and enables quantum interference. The starting point of the algorithm is the prepara-
tion of the quantum state in an equal superposition of all possible states, represented
by |ψ0⟩ = 1√

2n

∑
z |z⟩. This initial state is achieved by applying a Hadamard gate to

each qubit in the |0⟩⊗n state.

QAOA utilizes a parameterized quantum circuit, defined by two sets of parameters:
β⃗ and γ⃗, each corresponding to the circuit’s depth p. The quantum state post-circuit
application is given by |ψ(β⃗, γ⃗)⟩ =

∏p
k=1 e

−iβkHme−iγkHc |ψ0⟩.
The primary objective of QAOA is to minimize the expectation value of the Cost
Hamiltonian, expressed as ⟨ψ(β⃗, γ⃗)|Hc|ψ(β⃗, γ⃗)⟩. This minimization is achieved by

optimally selecting the parameters β⃗ and γ⃗ through classical optimization techniques.
This iterative process necessitates repeated preparation and measurement of the
quantum state.

The culmination of QAOA is the final measurement of the quantum state, which
yields a bit string. The optimization of parameters β⃗ and γ⃗ enhances the probability
of measuring a string that minimizes the cost function, marking the algorithm’s
success in finding optimal or near-optimal solutions to the given problem.

In summary, QAOA iteratively applies quantum evolution under two Hamiltonians,
the cost Hamiltonian Hc and the mixer Hamiltonian Hm, with the aim of preparing
a quantum state that minimizes the expectation value of Hc, and hence finds an
optimal or near-optimal solution to the combinatorial optimization problem.

In the field of quantum computing, the Quantum Approximate Optimization Algo-
rithm (QAOA) has been the subject of numerous influential research papers that
have collectively deepened our understanding and furthered its development. [315,
52, 341, 103, 362, 121]
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1.10 Variational Quantum Eigensolver (VQE)

The Variational Quantum Eigensolver (VQE) is a pivotal algorithm in quantum
computing, especially within the field of quantum chemistry. It embodies a hybrid
approach, merging quantum and classical computing techniques, to determine the
ground state energy of molecular Hamiltonians (Ĥ). VQE’s core strength stems
from its utilization of the variational principle. It optimizes a quantum circuit with
parameters θ⃗ to minimize the energy expectation value ⟨ψ(θ⃗)|Ĥ|ψ(θ⃗)⟩. This method
enables the algorithm to approximate the system’s ground state. VQE is especially
advantageous for near-term quantum computers, offering resilience to quantum noise
and the challenges of limited qubit coherence.

The body of literature in this area highlights the importance of Variational Quantum
Algorithms (VQAs), including VQE, as a forefront strategy for addressing complex
quantum systems and large-scale computational problems that are beyond the reach
of classical computers. These algorithms are increasingly applied in diverse contexts,
such as determining the ground states of molecules, simulating the dynamics of
quantum systems, and solving linear equations. What sets VQAs apart is their hybrid
structure, which involves a parameterized cost function evaluated by a quantum
computer and subsequently optimized by classical computational techniques. Despite
their potential, VQAs face challenges in terms of trainability, accuracy, and efficiency.
As a result, there is ongoing research dedicated to enhancing their performance and
applicability in various quantum computing tasks.

Variational quantum circuits (VQCs) and parametrized quantum circuits (PQCs)
represent a powerful class of quantum circuits characterized by their remarkable
adaptability and flexibility in performing quantum computations. Unlike traditional
fixed-operation circuits, VQCs and PQCs incorporate adjustable parameters that can
be tuned or optimized to achieve a specific computational goal. This adaptability
makes them particularly valuable for tasks like quantum simulation, optimization
problems, and quantum machine learning applications.

Structure and Optimization of VQCs: A typical VQC consists of a sequence of quan-
tum gates, some of which have adjustable parameters. These parameters are varied
in a controlled manner during the computation, often through classical optimization
algorithms, to find the optimal setting that yields the desired outcome. This iterative
process of parameter adjustment and optimization closely resembles the training
process of neural networks in classical machine learning.

VQCs for Near-Term Quantum Computing: Given the current state of near-term
quantum computers, which are susceptible to errors and have limited qubit coherence
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times, VQCs have emerged as a promising approach for harnessing their potential.
Their inherent ability to adapt and optimize allows them to compensate for these
limitations, paving the way for practical quantum computing applications.

While various VQC ansätze exist, ADAPT-VQE[302, 211, 11, 22, 12] has emerged as
a particularly powerful and versatile algorithm. Several key papers contribute to its
development and understanding:

1.11 Variational Quantum Algorithms

The field of quantum technology has been notably enriched by the advent of variational
quantum algorithms. These fall within the domain of Noisy Intermediate Scale
Quantum (NISQ) computing, a realm where hybrid quantum algorithms, utilizing
both classical and quantum devices, hold a significant place. Within these hybrid
quantum algorithms, Variational Quantum Circuits (VQCs) or Parametrized Quantum
Circuits (PQCs) are commonly encountered. The variational parameters within these
quantum circuits are adeptly adjusted to yield desired quantum states.

The unique methods used for constructing these quantum circuits are termed as ansatz.
Among the myriad of ansatz available, the Quantum Alternating Optimization Ansatz
(QAOA) stands out as one of the simplest. Typically, it forms the quantum circuit by
alternating two kinds of unitary Hamiltonian generators, expressed as e−iτH), where
τ represents the adjustable parameters and H denotes the underlying Hamiltonian,
signifying the rotation in the representation.

In addition to QAOA, other ansatze like ADEPT-QAOA[302, 211, 11], have been
developed for specific applications. These alternative ansatze primarily aim to
minimize the usage of CNOT gates, a crucial factor in the efficiency and feasibility of
quantum computations on NISQ devices.

In variational quantum algorithms, the optimizable parameters are defined within
parameterized quantum circuits (PQCs) [27, 240, 286]. A PQC is a sequence of
unitary operators represented by parameterized quantum gates that can be readily
implemented on a quantum computer. Assuming we are working in an n-qubit Hilbert
space, a parameterized quantum circuit can be expressed as follows:

U(θ) =
J∏

j=1

Uj(θj)Wj. (1.11.1)

Here, θ={θj}Jj=1 are the parameters that we need to optimize, Uj(θj) ∈ C2n×2n are
the parameterized unitary operators, and Wj ∈ C2n×2n are fixed unitary operators.
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For instance, a simple example of a PQC consisting only of one-qubit Pauli rotation
operators takes the form

Uj(θj) =
M⊗

m=1

e−iθj,kj,mσj,kj,m ,

where σj,kj,m ∈ C2×2 is a single-qubit Pauli matrix that acts on kj,m-th qubit, θj,kj,m
represents one of the parameters in θ, and Wj’s can be used to represent quantum
gates that do not require parameterization, such as the controlled-NOT (CNOT)
gate.

Let d be the dimension of the parameters, and we write θ = (θ1, θ2, · · · , θd). We then
optimize the parameter θ by minimizing a properly chosen cost function f(θ). As
an example, the variation quantum eigensolvers (VQE) finds the smallest eigenvalue
(ground-state energy) and its corresponding eigenvector (ground state) of a given
Hamiltonian matrix H by minimizing the energy of the state:

θ∗ = argminθf(θ) = argminθ ⟨U(θ)ψ0|H |U(θ)ψ0⟩ . (1.11.2)

Here, |ψ0⟩ ∈ C2n is a predetermined initial state that can be easily prepared on a
quantum computer. For each given θ, U(θ) is implemented on a quantum computer
to evolve |ψ0⟩, and the corresponding energy f(θ) and its gradient ∇θf(θ) can be
consequently obtained with measurements. By solving the optimization problem
equation 6.1.2, the minimum value gives an approximation to the smallest eigenvalue
of H, while U(θ∗) |ψ0⟩ approximates the corresponding eigenvector.

Note that an alternative objective in this context is fidelity, which assesses the overlap
between two wave functions. It’s important to mention that while direct access to
the target state is not assumed in this case, it is presumed that there is an oracle
capable of accurately determining the fidelity values. The optimization problem can
be formulated as follows:

θ∗ = argminθf̃(θ) = argminθ∥⟨U(θ)ψ0|ψt⟩∥2. (1.11.3)

In this equation, we are focusing on the ground state energy of the projection operator
|ψ0⟩⟨ψ0|.
In most instances, we utilize the ground state energy, as it more closely aligns with
the measurements observed in experiments.
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1.12 Counter-Diabatic Driving in Variational

Quantum Algorithms

Recent advancements in variational quantum algorithms have seen the innovative
incorporation of counter-diabatic (CD) driving techniques. A notable instance of this
is the quantum alternating operator ansatz (QAOA), which has been extended into a
generalized form known as CD-QAOA. This approach, inspired by counter-diabatic
driving procedures, is particularly tailored for quantum many-body systems. It
leverages reinforcement learning (RL) to optimize the algorithm, proving effective in
preparing the ground state of quantum-chaotic many-body spin chains by minimizing
energy. The CD-QAOA uses terms from the adiabatic gauge potential as generators
of additional control unitaries, enabling fast, high-fidelity control in non-adiabatic
regimes. This method maintains the intrinsic continuous control of QAOA, such
as time duration, while also treating the order of multiple unitaries in the control
sequence as a discrete optimization challenge. By integrating a policy gradient
algorithm with an autoregressive deep learning architecture to understand causality,
the RL agent is trained to create optimal sequences of unitaries. Remarkably, this
algorithm operates without direct access to the quantum state, and evidence suggests
that protocols learned on smaller systems may be scalable to larger systems. This
research highlights a significant stride towards more efficient and robust quantum
control mechanisms, potentially revolutionizing the field of quantum computing [348].

Counter-Diabatic Driving (CDD), or shortcut to adiabaticity [122, 269], is a quantum
control technique used to accelerate adiabatic processes in quantum systems, and
it can indeed be described mathematically. The central idea of CDD is to suppress
non-adiabatic transitions during the evolution of a quantum system. Mathematically,
this is achieved by adding an auxiliary Hamiltonian HCD to the original Hamiltonian
H0(t) of the system.

The total Hamiltonian H(t) in Counter-Diabatic Driving is given by:

H(t) = H0(t) +HCD(t)

The auxiliary Hamiltonian HCD(t) is specifically designed to cancel the non-adiabatic
transitions induced by H0(t). It is often expressed in terms of the adiabatic gauge
potential A(t), which depends on the instantaneous eigenstates of H0(t). The form of
HCD(t) is typically:

HCD(t) = iℏ
∑
n

(|∂tn⟩ ⟨n| − ⟨n|∂tn⟩ |n⟩ ⟨n|)
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Here, |n⟩ are the instantaneous eigenstates of H0(t), and |∂tn⟩ represents their time
derivatives.

This additional term in the Hamiltonian allows the system to follow the adiabatic
pathway more closely, even when the evolution is faster than the adiabatic timescale.
As a result, Counter-Diabatic Driving finds applications in quantum computing
and quantum information processing, where it helps in implementing fast and accu-
rate quantum operations. Its integration into variational algorithms demonstrates
significant potential in enhancing the capabilities of these algorithms[348].

1.13 Barren Plateaus in Quantum Algorithms

The phenomenon of barren plateaus [212, 61] presents a significant challenge in
the field of quantum computing, particularly in the context of variational quantum
algorithms. This term refers to the occurrence of vast regions in the optimization
landscape of a quantum algorithm where the gradient is close to zero. As a result, it
becomes increasingly difficult for gradient-based optimization methods to find the
global minimum.

Barren plateaus are attributed to several factors, including high circuit depth, random
initialization of parameters, and entanglement. They are especially problematic
in large quantum systems, where the likelihood of encountering flat regions in the
optimization landscape increases. This phenomenon can hinder the training process
of quantum neural networks and variational quantum eigensolvers, impeding their
practical applications.

Addressing barren plateaus involves strategies like careful initialization of parameters,
employing problem-inspired ansatzes, and using local rather than global cost functions.
Research in this area is crucial for the advancement of quantum algorithms and their
scalability to solve complex problems efficiently.

In the context of quantum computing, especially when working with a system of
n qubits, understanding the challenges posed by barren plateaus is crucial. These
plateaus are regions where the gradient of a cost function C(θ), which is dependent
on the output state |ψ(θ)⟩, approaches zero as the number of qubits n increases. This
phenomenon is largely attributed to the concentration of measure in high-dimensional
spaces. Additionally, deep circuits with high entanglement can lead to more uniform
distributions across the quantum state space, which further exacerbates the issue
of barren plateaus. The degree of entanglement, often measured by entanglement
entropy, significantly influences the flatness of the optimization landscape.



CHAPTER 1. INTRODUCTION 45

A key aspect to consider in this scenario is the Gradient Variance. The variance of

the gradient components, denoted as Var
(

∂C
∂θi

)
, becomes a critical factor. In barren

plateaus, this variance tends to be exponentially small relative to the number of
qubits n, making it challenging to navigate the optimization landscape.

To address the challenge of barren plateaus in quantum computing, where gradients
tend to vanish making optimization difficult, several strategies are employed. One
effective approach is the use of shallow circuits. Reducing the depth of quantum
circuits can help circumvent extreme entanglement, which is often a key factor
contributing to barren plateaus. This approach is beneficial as it can simplify the
circuit while maintaining functionality.

Another method involves careful parameter initialization. Starting the optimization
with larger gradients can avert early stagnation in the optimization process. This al-
lows for more effective exploration and navigation through the optimization landscape,
enhancing the likelihood of finding optimal solutions.

Additionally, employing local cost functions has proven useful, especially in large
quantum systems. By focusing optimization efforts on a subset of qubits rather than
the entire system, the impact of the concentration of measure phenomenon is reduced.
This localized approach can significantly mitigate the challenges posed by barren
plateaus, making the optimization process more manageable and efficient.

These strategies collectively enhance the feasibility and effectiveness of quantum
computations, especially in scenarios where the complexity of quantum circuits and
the scale of quantum systems pose significant challenges.

1.14 Outlook

Embarking on the journey of exploring variational quantum algorithms (VQCs), we
find ourselves at the forefront of significant advancements in multiple key areas. A
primary focus lies beyond traditional optimization methods, where classical algorithms
falter in handling the complexities of noisy quantum systems. The pursuit of novel
optimization techniques, rooted in quantum mechanics, such as stochastic methods
that utilize noise for exploration, and hybrid algorithms combining classical and
quantum approaches, is vital.

Equally crucial is the challenge of probing the excited states in quantum systems.
While VQCs have predominantly concentrated on the ground state, accessing and
understanding excited states is essential for a deeper grasp of quantum phenomena.
This necessitates developing specialized ansätze and robust algorithms for identifying
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these states.

Another pivotal aspect is moving beyond the reliance on initial overlap between the
initial and target states in VQCs. To achieve this, we need a paradigm shift towards
innovative initialization strategies and evolution protocols. These new approaches
should efficiently traverse the quantum state landscape without depending on pre-
existing similarities.

Furthermore, expanding our focus beyond qubit-based VQCs to include alternative
quantum computing platforms, such as trapped ions and continuous-variable systems,
can open new avenues. Developing VQCs for these varied architectures will enhance
our computational reach and facilitate access to a broader spectrum of quantum
algorithms.

By tackling these crucial areas, we stand to elevate VQCs to unprecedented heights,
unlocking their transformative potential in a myriad of fields, from materials science
and drug discovery to machine learning and optimization. The road ahead for
variational quantum algorithms is not just promising but laden with potential for
remarkable discoveries and groundbreaking applications.
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Chapter 2

Policy Gradient based Quantum
Approximate Optimization
Algorithm

The quantum approximate optimization algorithm (QAOA), as a hybrid quan-
tum/classical algorithm, has received much interest recently. QAOA can also be
viewed as a variational ansatz for quantum control. However, its direct application
to emergent quantum technology encounters additional physical constraints: (i) the
states of the quantum system are not observable; (ii) obtaining the derivatives of
the objective function can be computationally expensive or even inaccessible in ex-
periments, and (iii) the values of the objective function may be sensitive to various
sources of uncertainty, as is the case for noisy intermediate-scale quantum (NISQ)
devices. Taking such constraints into account, we show that policy-gradient-based
reinforcement learning (RL) algorithms are well suited for optimizing the variational
parameters of QAOA in a noise-robust fashion, opening up the way for developing
RL techniques for continuous quantum control. This is advantageous to help mitigate
and monitor the potentially unknown sources of errors in modern quantum simulators.
We analyze the performance of the algorithm for quantum state transfer problems
in single- and multi-qubit systems, subject to various sources of noise such as error
terms in the Hamiltonian, or quantum uncertainty in the measurement process. We
show that, in noisy setups, it is capable of outperforming state-of-the-art existing
optimization algorithms.
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2.1 Introduction

Noisy intermediate scale quantum (NISQ) devices are becoming increasingly accessible.
However, their performance can be severely restricted due to decoherence effects.
This leads to noises in all components of the quantum computer, including initial
state preparation, unitary evolution, and measurement/qubit readout. Thanks
to the feasibility of being implemented and tested on near term devices, hybrid
quantum-classical algorithms, and in particular quantum variational algorithms
(QVA), have received significant amount of attention recently. Examples of QVA
include the Variational Quantum Eigensolver [244], the Quantum Approximate
Optimization Algorithm (QAOA) [102], Quantum Variational Autoencoders [264],
etc. The common feature of these algorithms is that the final wavefunction can be
prepared by applying a unitary evolution operator, parametrized using a relatively
small number of parameters, to an initial wavefunction. The parameters can then
be variationally optimized to maximize a given objective function, measured on the
quantum device.

In this study, we mainly focus on the Quantum Approximate Optimization Algorithm
(QAOA) [102], which is a particularly simple algorithm that alternates between two
different unitary time evolution operators of the form e−iH0t, e−iH1t (t ∈ R). This is
also dubbed as the quantum alternating operator ansatz [129]. Both share the same
acronym QAOA. We use the term QAOA in a broader sense than that in the original
paper by Farhi et al. The algorithm proposed here can be potentially used for a larger
class of variational quantum circuits (VQC, which includes the variational quantum
eigensolver, VQE as a special case). However, it would be practically difficult to
assess the efficiency and robustness of the method for general VQCs. Therefore for
concreteness, in this work we specifically confine our study to QAOA.

QAOA has been studied in the context of a number of discrete [102, 200, 128] and
continuous [315] optimization problems. QAOA has also been demonstrated to be
universal under certain circumstances [199, 200, 224], in the sense that any element
in a unitary group can be well approximated by a properly parameterized QAOA.
This is highly nontrivial and is a unique quantum feature, since QAOA only has
access to unitary operators generated by two specific Hamiltonians H0, H1. However,
the control energy landscape of QAOA is known to be highly complex [290, 236],
and optimization in it can therefore be challenging. For a one-level system, the
QAOA optimization landscape in a channel decoding problem can already be quite
complex [210]. For random parameterized quantum circuits (RPQCs), the average
value of the gradient of the objective function has been reported to be almost zero [212].
Such vanishing gradients in large plateaus pose challenge to optimization algorithms.
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If the landscape has exponentially many local minima, there is exponentially small
probability of reaching the global minimum [82].

QAOA can be naturally related to quantum control, and thus also to reinforcement
learning problems. This inspires studies from various angles, such as the Krotov
method [304], Pontryagin’s maximum principle [345] and Bayesian optimization [270],
sequential minimal optimization [227], tabular reinforcement learning methods [65,
44], functional-approximation-based (deep) Q-learning methods [48, 288, 8, 358],
policy gradient methods [107, 19, 66, 237, 249, 325], differential programming [272]
and methods inspired by the success of AlphaZero [77]. Most studies focus on the
noise-free scenarios, applicable to fault-tolerant quantum devices. In order to mitigate
the errors on near-term devices, robust optimization based on sequential convex
programming (SCP) has been recently studied [176, 97], which assumes that both the
source and the range of magnitude of the error are known, but its exact magnitude.
In such a case, the authors have found that robust optimization can significantly
improve the accuracy of the variational solution.

Nonetheless, techniques such as SCP require access to information of the first as well
as second order derivatives of the objective function, which can themselves be noisy
and difficult to obtain on quantum devices. The objective function should also be at
least continuous with respect to the error, a requirement which is not satisfied in the
case of quantum uncertainty in the final measurement process (e.g. in the form of a
bit flip or a phase flip). It is thus naturally desirable to only use function evaluations
to perform robust optimization, while keeping the result resilient to unknown and
generic types of errors.

In this paper, we demonstrate that reinforcement learning (RL) may be used to tackle
all challenges above in optimizing the parameters of QAOA, and more generally QVA.
Instead of directly optimizing the variational parameters themselves, we may assign a
probability distribution to the parameter set, and perform optimization with respect
to the parameters of the probability distribution, denoted θ. The modified objective
function (called the expected total reward function) can then be continuous with
respect to θ, even if the original objective function is not. The optimization procedure
only requires a (possibly large) number of function evaluations, but no information
about the first or second order derivatives. We show that a simple policy gradient
method only introduces a small number of additional parameters in the optimization
procedure, and can be used to optimize the parameters in QAOA. Since each step of
the optimization only involves a small batch of samples, the optimization procedure
can also be resilient to various sources of noise.

This paper is organized as follows. Section 2.2 provides a brief introduction of QAOA,
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its connection to quantum control, and the noise models. Section 2.3 introduces the
policy gradient based QAOA (PG-QAOA), in the context of noise-free and noisy
optimization. After introducing the test systems in Section 2.4, we present in Section
2.5 numerical results of PG-QAOA for single-qubit and multi-qubit examples under
different noise models. Section 2.6 concludes and discusses the further work.

2.2 Preliminaries

QAOA and Quantum Control

Consider the Hilbert space H = C2N , with N the number of qubits in the quantum
system. Starting from an initial quantum state |ψi⟩ ∈ H, in QAOA we apply two
alternating unitary evolution operators [102]:

|ψ⟩ = U({αi, βi}pi=1) |ψi⟩ = e−iH1βpe−iH0αp · · · e−iH1β1e−iH0α1 |ψi⟩ . (2.2.1)

The unitary evolution is generated by the time-independent Hamiltonian operators H0

and H1, each applied for a duration αi ≥ 0 and βi ≥ 0, respectively (i = 1, 2, · · · , p);
we refer to p as the total depth. In QAOA, we have to adjust the parameters to
optimize an objective function F (|ψ⟩) = F ({αi, βi}pi=1), e.g. minimizing the energy
[141] or maximizing the fidelity of being in some target state1. In the latter case, for
a target wavefunction denoted by |ψ∗⟩, the optimization problem becomes

{α∗
i , β

∗
i }pi=1 = arg max

{αi,βi}pi=1

F ({αi, βi}pi=1), (2.2.2)

F ({αi, βi}pi=1) = | ⟨ψ∗|U({αi, βi}pi=1)|ψi⟩|2 . (2.2.3)

The problem of finding the optimal parameters in QAOA can be reinterpreted as the
following bilinear quantum optimal control problem

i∂t |ψ(t)⟩ = H(t) |ψ(t)⟩ , |ψ(0)⟩ = |ψi⟩ , (2.2.4)

where H(t) = H0 + u(t)(H1 −H0), u(t) ∈ {0, 1}. In particular, when u(t) is chosen
to be the following piecewise constant function

u(t) =

{
0, t ∈

[∑i−1
k=1(αk + βk),

∑i−1
k=1(αk + βk) + αi

)
,

1, t ∈
[∑i−1

k=1(αk + βk) + αi,
∑i

k=1(αk + βk)
)
,

i = 1, . . . , p, (2.2.5)

1The latter problem is often referred to as a state transfer problem. This is mainly for simplicity
and serves as a proof of principle for the effectiveness of the policy gradient based method.
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we recover the QAOA wavefunction (6.4.1). This is a special type of quantum control
problem called the bang-bang quantum control. For a protocol of the durations
{αi, βi}pi=1, the total duration is defined as

T ({αi, βi}pi=1) =

p∑
i=1

(αi + βi) . (2.2.6)

Noisy Objective Functions

Practical QAOA calculations can be prone to noises. For instance, the Hamiltonian
may take the form H(δ) = H̄ + δH̃, where H̄ is the Hamiltonian in the absence of
noise, H̃ is the Hamiltonian modelling the noise source, with δ the magnitude of
the noise. We assume that only the range/magnitude of δ is known a priori and is
denoted by ∆, and the precise value of δ is not known. This setup will be referred
to as the Hamiltonian noise. The explicit form of the Hamiltonian noise will be
discussed later in Section 2.4. This noisy optimization problem can be solved as a
max-min problem:

max
{αi,βi}pi=1

min
δ∈∆

F ({αi, βi}pi=1, δ), (2.2.7)

where
F ({αi, βi}pi=1, δ) = | ⟨ψi|U({αi, βi}pi=1, δ)|ψ∗⟩ |2 (2.2.8)

is the fidelity for the given noise strength and control duration.

Noise may naturally also occur due to imperfect measurement operations. For instance,
the final fidelity may only be measurable up to an additive Gaussian noise, i.e.

Fσ({αi, βi}pi=1) = clip(F ({αi, βi}pi=1) + ϵ, 0, 1), (2.2.9)

where ϵ ∼ N (0, σ2). Here, the clip2 function guarantees the noisy fidelity is still
bounded between 0 and 1. This will be referred to as Gaussian noise. It mimics the
case when experimentalists do lots of measurements and average the result in the
end to get an estimate of the observable. By the central limit theorem, as the sample
size becomes sufficiently large, the statistics of the measurement data points is well
approximated by a Gaussian distribution. As a result, we use the Gaussian noise to
describe the uncertainty leading to a noise in the reward signal.

2This is just one way to enforce the fidelity to be between 0 and 1. We admit that the clipping
procedure is an artifact of the implementation; it is not necessary and does not constitute an essential
feature of the PG-QAOA algorithm.
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Furthermore, quantum measurements produce an intrinsic source of uncertainty due
to the probabilistic nature of quantum mechanics. Assuming the target state |ψ∗⟩
is an eigenstate of some measurable operator O with eigenvalue o∗, i.e. O|ψ∗⟩ =
o∗|ψ∗⟩, a quantum measurement ⟨ψ|O |ψ⟩ produces the eigenvalue o∗ with probability
F ({αi, βi}pi=1). Using this, we can define the following discrete cost function:

FQ({αi, βi}pi=1) =

{
1 with probability F ({αi, βi}pi=1)
0 with probability 1− F ({αi, βi}pi=1)

(2.2.10)

Assuming the same state |ψ⟩ of the system is prepared anew in a series of experiments,
a measurement in repeated experiments will produce a discrete set of ones and zeros,
whose mean value converges to the true fidelity F ({αi, βi}pi=1) in the limit of large
number of quantum measurements. This setting was considered in [44], and will
be referred to as the quantum measurement noise. We mention in passing that, in
systems with large Hilbert spaces, such as multi-qubit systems, it is in fact more
appropriate to optimize the expectation value of some observable, instead of the
fidelity.

2.3 Policy gradient based QAOA (PG-QAOA)

Being a variational ansatz, QAOA does not specify the optimization procedure to
determine the variational parameters. In this paper, we demonstrate that policy gra-
dient, which is a widely used algorithm in reinforcement learning, can be particularly
robust to various sources of uncertainty in the physical system. In order to tackle
the robust optimization of QAOA for general noise models, reinforcement learning
algorithms provide a useful perspective.

We first reformulate the original problem as a probability-based optimization problem.
The original optimization parameters are drawn from a probability distribution,
described by some variational parameters θ. Optimization is then performed over the
variational parameters. Such techniques are used in natural evolution strategies (NES)
[332] and model-based optimization (MBO) [42]. It is also shown very recently by [359]
that NES can be efficiently applied to solve combinatorial optimization problems in
the quantum classical approach. If the solution of the optimization problem is unique,
we should expect that the probability distribution of each parameter will converge to
a Dirac-δ distribution. This probability-based approach also has the advantage of
being resilient to perturbations and noise. As will be shown later, the width of the
probability distribution after optimization can also be used to qualitatively monitor
the magnitude of the unknown noise. A common example of a probability-based
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optimization algorithm in reinforcement learning is the policy gradient algorithm,
where the goal is to find the optimal policy πθ to perform a given task [334, 295].
An additional advantage of probability-based optimization is that it can be used to
handle continuous and discrete variables in a unified fashion. Thus, the ideas we
put forward below can be used to open up the way to applying RL techniques to
continuous quantum control. In the context of QAOA, the durations can be treated
as continuous variables without the error due to time discretization.

Let us begin by casting the QAOA control problem Eq. (2.2.6) in a reinforcement
learning framework. We consider finite-horizon episodic learning task, with p steps per
episode, naturally defined by the discrete character of the QAOA ansatz Eq. (4.2.2).

The natural choice for the RL state space is the Hilbert space H. However, there
are a number of problems associated with this choice: (i) the wave function |ψ⟩
is a mathematical concept, which cannot be directly measured in experiments (for
instance, there is an arbitrary phase factor that cannot be directly measured). (ii) in
quantum mechanics, every measurement would directly lead to the collapse of the
wavefunction. (iii) in many-body quantum systems of N particles, dimH ∼ exp(N)
is exponentially large which raises questions about the scalability of the algorithm to
a large number of qubits. Indeed, reading out all entries of the quantum wavefunction
requires full quantum tomography [309], which scales exponentially with the number
of qubits N . This comes in stark contrast with recent applications of RL to certain
optimal quantum control problems e.g. [237, 77], in which the quantum wavefunction
for small Hilbert spaces is indeed accessible on a classical computer.

In our setting, since the dynamics is governed by the Schrodinger equation and
initial state is also given, the quantum state at an intermediate time |ψ(t)⟩ can be
in principle determined from the sequence of actions taken at each time interval.
Therefore, the sequence of all actions taken before a given episode step can be treated
effectively as the RL state, and we work with this definition here. We mention in
passing that this choice is not unique: in practice, reinforcement learning based
methods often incorporate some form of embedding of the quantum state as their
state. Notable examples include tabular Q-Learning [48], Q-Learning network [288,
8], LSTM based memory proximal policy optimization [19, 107].

At every step j in the episode, our RL agent is required to choose two actions
out of a continuous interval [0,∞) independently, representing the values of the
durations αj, βj. Hence, the action space is A = [0,∞). Actions are selected using
the parameterized policy πθ. Since we use the fidelity as the objective function, the
reward space is R = [0, 1].
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In this work, we use the simplest ansatz, i.e. independent Gaussian distributions
to parameterize the policy over the control durations {αi, βi}pi=1 in QAOA. Since a
Gaussian is uniquely determined by its mean µ and standard deviation (std) σ, we
have a total of 2p independent variational parameters θ = {µαi

, σαi
, µβi

, σβi
}pi=1. The

total number of parameters is 4p (in particular, it does not directly scale with the
number of qubits N). The probability density of all the parameters πθ({αi, βi}pi=1) is
the product of all the marginal distributions:

πθ({αi, βi}pi=1) =

p∏
i=1

π(αi;µαi
, σαi

) · π(βi;µβi
, σβi

), (2.3.1)

where π(x;µ, σ) is the probability density for the Gaussian distribution N (µ, σ),

π(x;µ, σ) =
1√

2πσ2
e−

(x−µ)2

2σ2 . (2.3.2)

Note that with such a choice, x may become negative, which lies outside the action
space A. We can enforce the constraint using a truncated Gaussian distribution (after
proper normalization) or a log-normal distribution. In practice we observe that with
proper initialization, the positivity condition is observed to be automatically satisfied
by the minimizer even with the simple choice in Eq. (2.3.2).

The QAOA objective function (4.2.2) for the probability-based ansatz (4.2.4) intro-
duced above, now takes the form:

{µ∗αi
, σ∗αi

, µ∗βi
, σ∗βi
}pi=1 = argmax

{µαi ,σαi ,µβi
,σβi

}pi=1

 E
αi∼N (µαi ,σαi )
βi∼N (µβi

,σβi
)

[F ({αi, βi}pi=1)]

 = argmax
θ

J(θ).

(2.3.3)

Here J(θ) is called the expected reward function. In this form, the objective function
J(θ) can be optimized using the REINFORCE algorithm for policy gradient [334]:

∇θJ(θ) = E
αi∼N (µαi ,σαi )
βi∼N (µβi

,σβi
)

[∇θ log πθ({αi, βi}pi=1) · F ({αi, βi}pi=1)] , (2.3.4)

In particular, the gradient can be evaluated without information about the first
order derivative of the objective function F . In practice, we use a Monte Carlo
approximation to evaluate this gradient, as shown in Algorithm 1. In order to reduce
the variance of the gradient, usually a baseline is subtracted from the fidelity [120], i.e.
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Figure 2.1: Schematic diagram for PG-QAOA. The algorithm samples a batch of QAOA
time-durations (angles) from the current policy, aggregates the resulting fidelities/rewards
from a quantum ‘blackbox’, and applies the policy gradient algorithm to update the learning
parameters to improve the policy.

replacing F ({αi, βi}pi=1) with F ({αi, βi}pi=1)− F̄ in Eq. (2.3.4); it is easy to compute
the average fidelity over the MC sample (i.e. the batch) and we use that as the
baseline. The resulting algorithm will be referred to as the policy gradient based
QAOA (PG-QAOA).
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Algorithm 1 Policy gradient based QAOA

Input: Initial guess for the mean and std µ0
αi
, σ0

αi
, µ0

βi
, σ0

βi
, i = 1, 2, · · · , p;

batch size M , learning rate τt, total number of iterations Niter.
1: Initialize the mean and std with the initial guess

(µαi
, σαi

, µβi
, σβi

)← (µ0
αi
, σ0

αi
, µ0

βi
, σ0

βi
), i = 1, 2, · · · , p.

2: for t = 1, .., Niter do
3: Sample batch B of size M :

αj
i ∼ N (µαi

, σαi
), βj

i ∼ N (µβi
, σβi

), i = 1, 2, · · · , p, j = 1, 2, · · · ,M.

4: Compute the instantaneous fidelity and the averaged fidelity

Fj =
∣∣ ⟨ψ∗|U({αj

i , β
j
i }pi=1)|ψi⟩

∣∣2 , F̄ =
1

M

M∑
j=1

Fj.

5: Compute the policy gradient

∇θJ(θ) =
1

M

∑
{αj

i ,β
j
i }

p
i=1∈B

∇θ log πθ({αj
i , β

j
i }pi=1) · (Fj − F̄ ).

6: Update weights θ ← θ + τt∇θJ(θ).
7: end for

PG-QAOA can be naturally extended to the setting of robust optimization for the
Hamiltonian noise. For the max-min problem, the policy gradient in Eq. (2.3.4)
becomes

∇θJ(θ) = E
αi∼N (µαi ,σαi )
βi∼N (µβi

,σβi
)

[
∇θ log πθ({αi, βi}pi=1) ·min

δ
F ({αi, βi}pi=1, δ)

]
. (2.3.5)

In practice, we sample independent random realizations δj from the noise region ∆
at uniform, and use min

j
F ({αi, βi}pi=1, δj) as an approximation in Eq. (2.3.5). When

the fidelity itself is noisy such as the case of the Gaussian noise and the quantum
noise, we simply use the measured fidelity in Eq. (2.2.9) and Eq. (2.2.10) in the policy
gradient step of Eq. (2.3.5).
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2.4 Quantum Qubit Models

We investigate the performance of PG-QAOA for a single-qubit system, and two
different multi-qubit systems, defined as follows:

Single qubit model

Consider a single-qubit system, whose QAOA dynamics is generated by the Hamilto-
nians

H0 = −1

2
σz + 2σx, H1 = −1

2
σz − 2σx, (2.4.1)

with σα the Pauli matrices. The initial |ψi⟩ and target |ψ∗⟩ states are chosen
to be the ground states of Hi = −1

2
σz + σx and H∗ = −1

2
σz − σx, respectively.

This control problem was introduced and analyzed in the context of reinforcement
learning in Ref. [48]: below the quantum speed limit (QSL), i.e. for total duration
T ≤ TQSL ≈ 2.41, it is not possible to prepare the target state with unit fidelity; yet,
in this regime there is a unique optimal solution which maximizes the fidelity of being
in the target state, and its fidelity is less than 1. Above the QSL, T > TQSL, there
exist multiple unit-fidelity solutions to this constrained optimization problem.

Multi-qubit Models

To compare the performance of PG-QAOA against alternative algorithms, we use
multi-qubit systems. For the purpose of a more comprehensive analysis, we use two
different models, discussed in [48, 236].

Multi-qubit system I

Consider first the transverse-field Ising model, described by the Hamiltonian [48]:

H[h] = −
N−1∑
j=1

σz
j+1σ

z
j −

N∑
j=1

(σz
j + hσx

j ). (2.4.2)

Here N is the total number of qubits. The global control field h ∈ {±4} can take two
discrete values, corresponding to the two alternating QAOA generators H0 = H[−4]
and H1 = H[+4], cf. Eq. (2.4.2). The initial state |ψi⟩ is the ground state of H[−2],
and the target state |ψ∗⟩ is chosen to be the ground state of H[+2], so the adiabatic
regime is not immediately obvious; both states exhibit paramagnetic correlations and
area-law bipartite entanglement. The overlap between the initial and target states
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goes down exponentially with increasing the number of qubits N (with all other
parameters kept fixed). This state preparation problem is motivated by applications
in condensed matter theory. For N > 2, this qubit control problem was recently
shown to exhibit similarities with optimization in glassy landscapes [82]; for N = 2
there exist durations T for which the optimal solution is doubly-degenerate and the
optimization landscape features symmetry-breaking [47].

Additionally, we can also turn on small random Hamiltonian noise to the interaction
terms on the first two bonds of the spin system, denoted by ω1,2, which would mimic
gate imperfections in the context of quantum computing:

H[h;ω1, ω2] = − (1 + ω1)σ
z
1σ

z
2− (1 + ω2)σ

z
2σ

z
3−

N−1∑
j=3

σz
jσ

z
j+1−

N∑
j=1

(
σz
j + hσx

j

)
(2.4.3)

The choice of noisy bonds is arbitrary. To keep the notation compact, we define the
noise tuple δ = (ω1, ω2). Each ωi ∼ uniform(∆) with ∆ the support of the uniform
distribution.

Multi-qubit system II

Consider another benchmark example [236]. Here, we choose the two alternating
Hamiltonians from QAOA as

H0 =
1

2
(σz

N + IN) , H1 =
N−1∑
i=1

(
σx
i σ

x
i+1 + σy

i σ
y
i+1

)
, (2.4.4)

where IN is the identity operator. The initial state is the product state |ψi⟩ = |1⟩ =
|1⟩1|0⟩2 · · · |0⟩N , and the target state is the product state |ψ∗⟩ = |N⟩ = |0⟩1|0⟩2 · · · |1⟩N .
This population transfer problem amounts to a qubit transfer.

The noisy multi-qubit system II uses the gate Hamiltonians:

H0 =
1

2
(σz

N + IN) , H1(δ) =
N−1∑
i=1

(
σx
i σ

x
i+1 + σy

i σ
y
i+1

)
+ δσz

[N2 ]−1
σx

[N2 ]σ
z

⌊N2 ⌋+1
, (2.4.5)

with δ ∼ uniform(∆). Here, the three-body noise term breaks the particle number
(a.k.a. magnetization) symmetry of the original noise-free system.

2.5 Numerical Experiments and Results

The models we introduced in Section 2.4 were also studied in [97] using SCP to
mitigate the error due to Hamiltonian noise. First, we benchmark our results against
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the derivative-based algorithms SCP and b-GRAPE [337] in the context of the
Hamiltonian noise. We also present results for PG-QAOA in the context of the
Gaussian noise and quantum measurement noise. Then we compare our results to
other derivative-free optimization methods, including Nelder-Mead [108], Powell [250],
covariance matrix adaptation (CMA) [133], and particle swarm optimization (PSO)
[282].

All numerical experiments are performed on the Savio2 cluster at Berkeley Research
Computing (BRC). Each node is equipped with Intel Xeon E5-2680 v4 CPUs with
28 cores. The PG-QAOA is implemented in the TensorFlow 1.14 [1] along with
TensorlFlow Probability 0.7.0 [89]. The quantum Hamiltonian environment is imple-
mented using QuSpin [328, 329] and QuTIP [150, 149]. The two blackbox optimization
methods CMA and PSO are implemented with Nevergrad [257].

Throughout, we used the Adam optimizer [163] to train PG-QAOA with learning rate
10−2, and learning rate decay of 0.96 applied every 50 iteration steps. The training
batch size M is chosen either 128 or 2048 (see figure captions). The initial values for

the standard deviation parameters of the policy, σ
(0)
αi , σ

(0)
βi
, i = 1, 2, · · · , p, are either

set to 0.0024 or sampled from truncation log normal distribution with mean −3.0
and standard deviation 0.1. In the Single-qubit testcase (cf. Section 2.5) and the
Multi-qubit I testcase (cf. Section 2.4), the initial values for the mean parameters of

the policy, µ
(0)
αi , µ

(0)
βi
, i = 1, 2, · · · , p, are randomly sampled from a truncated normal

distribution with mean 0.5 and standard deviation 0.1. In the Multi-qubit II testcase
(cf. Section 2.4) , the initial values for the means are sampled from a truncated
normal distribution with mean 3.0 and standard deviation 0.1. In practice, we noticed
that the performance of PG-QAOA is sensitive to the initialization of the means
µαi

, µβi
. In some cases, the initialization was tuned to achieve better performance

(c.f. Figure 2.6).

In the numerical experiments, we do not enforce hard constraints on the positivity of
αi and βi; yet, in practice we were still able to obtain protocols with positive αi ≥ 0
and βi ≥ 0. This is mainly because the initialization of the mean parameters in the
policy is positive and sufficiently far away from zero, and because there are already
optimal protocol solutions (i.e. local minima of the control landscape close to the
initial values) with positive αi and βi.

Single qubit results

Figure 2.2 (topmost row) shows snapshots of the policy during training for PG-QAOA
in the noise-free case. We sample a batch of protocols from the policy learned in the
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Figure 2.2: The distribution in the learning process for the single-qubit testcase. From left
to right, snapshots of the training batch distribution in the (protocol duration, fidelity)
space at different training episodes for PG-QAOA. Top row: noise-free fidelity problem
(green circles). Middle row: Gaussian fidelity noise problem (red tri-ups), the corresponding
exact fidelity values for comparison only (red diamonds, not used in training), and the
mean mini-batch fidelity (dashed vertical line). Bottom row: quantum measurement noise
problem (magenta crosses) with binary values {0, 1}, the corresponding exact fidelity values
for comparison only (magenta squares, not used for training), and the mean mini-batch
fidelity (dashed vertical line). The final learned distributions represent a set of solutions with
different total protocol durations but still sharing the same optimal fidelity, demonstrating
the machine learning aspect of the algorithm (see text). The standard deviation of the
Gaussian noise is 0.1. The QAOA depth is p = 4. The PG-QAOA algorithm is trained with
a single minibatch of size M = 128 for a total iteration number Niter = 104. The initial

mean values µ
(0)
αi , µ

(0)
βi

are randomly sampled from a truncated normal distribution with

mean 0.5 and standard deviation 0.1 (i.e. N (0.5, 0.12)) and the initial standard deviation

values σ
(0)
αi , σ

(0)
βi

are sampled from a truncated log normal distribution of mean −3.0 and

standard deviation 0.1 (i.e. Lognormal(−3.0, 0.12)).
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middle of training, and show its distribution in (protocol duration, fidelity)-space.
Due to the random initialization of the policy parameters θ, the algorithm starts
from a broad distribution. After the number of training episodes (a.k.a. optimization
iterations) increases, the mean of the training batch distribution shifts ever closer to
the unit-fidelity region, as expected. At the same time, the distribution also shrinks
at later training episodes, and becomes approximately a delta-function in fidelity
space in the infinite-training-episode limit since the environment for the noise-free
problem is deterministic (though the distribution may still have exhibit finite width
due to the decay of the learning rate in the optimization procedure).

Figure 2.2 (middle and bottom rows) shows the effect of the two types of noise on
the performance of PG-QAOA. We test both the Gaussian noise, which takes into
account various classical potential measurement uncertainty sources in the lab, as well
as the intrinsic quantum measurement noise induced by collapsing the wavefunction
during measurements. In the case of quantum measurement noise (magenta), we
use only binary fidelity values for the reward PG-QAOA, cf. Eq. (2.2.10); the exact
fidelity values for the batch (which are not binary) are shown for comparison purposes
only. We emphasize that we do not repeat the quantum measurement on the same
protocol several times, but only take a single quantum measurement for each protocol
from the sampled batch in every iteration. The mean batch fidelity is shown as a
vertical dashed line. In the case of Gaussian noise (red), the noisy fidelity values used
for training are not binary; PG-QAOA is thus well-suited to handle both classical
and quantum noise effects. Because we clip the Gaussian-noisy fidelities to fit in
the interval [0, 1], the mean fidelity of the policy (vertical dashed red line) remains
slightly away from unity even after a large number of training episodes, introducing a
small gap, also visible in the training curves for the multi-qubit examples (Figure 2.4,
left).

Note that the policy optimized using PG-QAOA converges at later training episodes
for both noisy settings (measurement and Hamiltonian noise). An interesting feature
is the remaining finite width along the protocol duration axis: these unit-fidelity
protocols are indistinguishable from the point of view of the objective function and
are thus equally optimal. Hence, above the QSL, PG-QAOA is capable of learning
multiple solutions simultaneously, unlike conventional optimal control algorithms,
showcasing one of the advantages of using reinforcement learning. We can indeed
verify that these distribution points correspond to distinct protocols, by visualizing
the batch trajectories on the Bloch sphere (the projective space of the single-qubit
Hilbert space), cf. ??. We mention in passing that, depending on the initialization of
the policy parameters, PG-QAOA finds a different (but equivalent w.r.t. the reward)
local basin of attraction in the control landscape, as can be seen from the difference
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in the mean total protocol duration at later training episodes for the noise-free and
the two noisy cases.

Multi-qubit results

Figure 2.3 shows the training curves of PG-QAOA for an increasing number of qubits
N and QAOA depths p. In accord with the fact that the multi-spin fidelity decreases
exponentially with increasing N , the PG-QAOA algorithm takes longer to converge.
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Figure 2.3: Multi-qubit systems, noise-free case. Learning curves (reward vs. episode
number) for the Multi-qubit I testcase (a) and the Multi-qubit II testcase (b), for a different
number of qubits N and QAOA depth p for three different random seeds. The PG-QAOA
algorithm is trained with batch size M of 128 for 2000 iterations. The means initialization
is sampled from truncated N (0.5, 0.12) [left] and N (1.5, 0.12) [right]. The stds initialization
is from truncated Lognormal(−3.0, 0.12).
Adding Gaussian and quantum measurement noise, in Fig. 2.4 we show the training
curves for PG-QAOA for N =3 qubits. For each noisy case, we present the actual
mean fidelities (red for the Gaussian noise and magenta for the quantum measurement
noise); the exact fidelities (green) are shown only for comparison and are not used
in training. Note that learning from quantum measurements is more prone to noise
in the initial stage of the optimization, yet the algorithm converges within a smaller
number of episodes compared to the case of the Gaussian noise. For Gaussian noise,
similar to the single-qubit case, we observe a small gap between the exact fidelity and
the noisy fidelity due to clipping the noisy fidelities to fit within the interval [0, 1].
Empirically, we observe the gap size to be almost always about half the Gaussian
noise level. This indicates that the probability distribution is moving towards the
correct direction (with fidelity close to unity) even though the observed fidelity is
away from it due to the noise.
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Figure 2.4: Multi-qubit testcase I, training curves: the reward (mean batch fidelity, red
for Gaussian noise and magenta for quantum measure noise) used in PG-QAOA against
the number of training episodes (i.e. iterations). For comparison purposes only, we also
show the exact noise-free mean fidelity (green). Left: Gaussian noise. Right: quantum
measurement noise. The standard deviation of the Gaussian noise is 0.1. The number of
qubits is N = 3. The batch sizes for Gaussian noise and quantum measurement noise are
128 and 2048, respectively. The initial mean values are sampled from truncated N (0.5, 0.12)
and the initial standard deviation values – from truncated Lognormal(−3.0, 0.12) for both
noisy cases.

We now benchmark PG-QAOA against a number of different optimal control algo-
rithms. In order to compare PG-QAOA with state-of-the-art optimization methods
using gradient and Hessian information such as b-GRAPE and SCP, we evaluate their
performance using both the batch average and the worst-case fidelity as reference.
For protocol durations {αi, βi}pi=1, the average and worst-case fidelity within a given
support for the uniform distribution ∆, are defined as

Favg({αi, βi}pi=1) =
1

|∆|

ˆ
∆

F ({αi, βi}pi=1, δ) dδ (2.5.1)

Fworst-case({αi, βi}pi=1) = min
δ∈∆

F ({αi, βi}pi=1, δ). (2.5.2)

A comparison for testcases multi-qubit I and II are shown in Figure 2.5 and Figure 2.6,
respectively. In terms of both the average and worst case, PG-QAOA performs
comparably to the SCP; although PG-QAOA is derivative-free and uses a first-order
derivative optimizer, it can occasionally even reach better solutions than SCP w.r.t. the
average fidelity. PG-QAOA clearly outperforms b-GRAPE [337] in the numerical
experiments involving a small number of qubits. We also observe a performance
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drop for PG-QAOA when the number of qubits is increased. Properly scaling up the
performance of PG-QAOA with increasing N remains a topic of further investigation.
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Figure 2.5: Multi-qubit testcase I, algorithms comparison for Hamiltonian gate noise.
Fidelity achieved by PG-QAOA (purple), SCP (blue) and b-GRAPE (orange) for a few
different numbers of qubits N and total QAOA depth values p. The two panels correspond
to different values of the support ∆ of the uniform distribution used for the Hamiltonian
gate noise. We show both the average fidelity (solid lines), and the worst protocol (dashed
lines), cf. Eq. (2.5.1) and Eq. (2.5.2), respectively. The PG-QAOA algorithm is trained
with the mini-batch size M = 128, except N = 6, where M = 1024. The initial values for
the means are sampled from a truncated N (0.5, 0.12) and the initial values for the standard
deviations were kept constant at 0.0024.
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Figure 2.6: Multi-qubit testcase II, algorithms comparison for Hamiltonian gate noise. The
comparison between PG-QAOA (purple) and SCP (blue) in terms of robust QAOA for
multi-qubit case II with different number of qubits N . The QAOA depth is p=N + 1
and the support ∆ of the uniform distribution used for the Hamiltonian gate noise is
[−0.15, 0.15]. We show both the average fidelity (solid lines), and the worst protocol (dashed
lines), cf. Eq. (2.5.1) and Eq. (2.5.2), respectively. The PG-QAOA algorithm is trained with
minibatch sizes M = 128 for 104 iterations. The initial values of the standard deviations
are kept constant at 0.0024; the initial values for the means were drawn from N (1.0, 0.22)
for N = 3, N (1.5, 0.22) for N = 4, and N (3.0, 0.22) for N > 4.

Last, in Figure 2.7 we show the comparison among other widely used blackbox
optimization methods, such as Nelder-Mead, Powell, covariance matrix adaptation
(CMA) and particle swarm optimization (PSO). In contrast to PG-QAOA which
learns in distribution (i.e. in practice using MC-sampled batches), the other algorithms
accept a single scalar cost function value to optimize. Therefore, we use the mean
fidelity over a (potentially noisy) training batch; this constitutes a fair comparison,
since the mean batch fidelity is precisely the definition of the reward in policy
gradient. The different algorithms have a comparable performance in the noise-free
case (Figure 2.7, leftmost column). In the presence of measurement noise in the
reward function, we observe a decrease in performance in all algorithms. At the same
time, PG-QAOA still outperforms other algorithms, which is clearly visible when the
number of qubits N increases 3. PG-QAOA appears less sensitive to the size of the
Gaussian noise; moreover, PG-QAOA appears particularly suitable for handling the
quantum measurement noise.

3Note that, for N=6, 8, 10, we keep p=60 fixed, so the maximum obtainable fidelity is expected
to decrease.



CHAPTER 2. POLICY GRADIENT BASED QUANTUM APPROXIMATE
OPTIMIZATION ALGORITHM 66

noise (N=3, p=15)
0

1

2

3

4

5

-
lo

g 1
0
(1

-
fid

el
it

y)

PG-QAOA

Nelder-Mead

Powell

CMA

PSO

noise (N=4, p=25)
0

1

2

3

4

5

PG-QAOA

Nelder-Mead

Powell

CMA

PSO

noise (N=5, p=40)
0

1

2

3

4

5

PG-QAOA

Nelder-Mead

Powell

CMA

PSO

0.0 0.01 0.05 0.1 Q
noise (N=6, p=60)

0.0

0.2

0.4

0.6

0.8

1.0

fid
el

it
y

PG-QAOA

Nelder-Mead

Powell

CMA

PSO

0.0 0.01 0.05 0.1 Q
noise (N=8, p=60)

0.0

0.2

0.4

0.6

0.8

1.0

PG-QAOA

Nelder-Mead

Powell

CMA

PSO

0.0 0.01 0.05 0.1 Q
noise (N=10, p=60)

0.0

0.2

0.4

0.6

0.8

1.0

PG-QAOA Nelder-Mead Powell CMA PSO

Figure 2.7: Multi-qubit testcase I. Comparison between different optimization algorithms
for N = 3, 4, 5 qubits (the first row) and N = 6, 8, 10 qubits (the second row), and different
fidelity noise level (cf. x-axis for the standard deviation of the Gaussian noise; the label ”Q”
(shaded area) stands for quantum measurement noise): PG-QAOA (blue), Nelder-Mead
(orange), Powell (green), CMA (red), and PSO (purple). The comparison is in log-scale
(upper row), and the normal scale (lower row). PG-QAOA outperforms the rest in the
presence of noise. The batch sizes are M = 2048 for all the methods, except for N = 10,
where M = 256, and the total number of iterations is 104. For all PG-QAOA experiments,
the initial values for the means are sampled from a truncated N (0.5, 0.12) and the standard
deviations initialization – from truncated Lognormal(−3.0, 0.12).

2.6 Conclusion and Outlook

Due to intrinsic limitation of near term quantum devices, error mitigation techniques
can be essential for the performance of quantum variational algorithms such as QAOA.
Many classical optimization algorithms (derivative-free or those requiring derivative
information) may not perform well in the presence of noise. We demonstrate that
probability-based optimization methods from reinforcement learning can be well
suited for such tasks. This work considers the simplest setup, where we parameterize
each optimization variable using only two variables describing an i.i.d. Gaussian
distribution. The probability distribution is then optimized using the policy gradient
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method, which allows to handle continuous control problems. We demonstrate that
PG-QAOA does not require derivatives to be computed explicitly, and can perform
well even if the objective function is not smooth with respect to the error. The
performance of PG-QAOA may even be sometimes comparable to that of much
more sophisticated algorithms, such as sequential convex programming (SCP), which
require information of first and second order derivatives of the objective function. PG-
QAOA also compares favorably to a number of commonly used blackbox optimization
methods, particularly in experiments with noise and other sources of uncertainty.

Viewed from the perspective of reinforcement learning, the Gaussian probability
distribution used in this work is one of the simplest possible choices. More involved
distributions, such as multi-modal Gaussian distributions, normalizing flow-based
models [166, 93], autoregressive models [112],and long short-term memory (LSTM)
models may be considered. Based on our preliminary results, these methods can
introduce a significantly larger number of parameters, but the benefit is not yet obvious.
We can also employ more advanced RL algorithms, such as the natural policy gradient
method (NPG) [155], the trust region policy optimization (TRPO) [279] and the
proximal policy optimization method (PPO) [278]. Finally, this work only considers
implementations on a classical computer. Implementing and testing PG-QAOA on
near term quantum computing devices such as those provided by IBM Q will be our
future work.
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Chapter 3

Counterdiabatic Driving inspired
Reinforcement Learning based
variational quantum algorithms

The quantum alternating operator ansatz (QAOA) is a prominent example of varia-
tional quantum algorithms. We propose a generalized QAOA called CD-QAOA, which
is inspired by the counterdiabatic (CD) driving procedure, designed for quantum
many-body systems and optimized using a reinforcement learning (RL) approach.
The resulting hybrid control algorithm proves versatile in preparing the ground state
of quantum-chaotic many-body spin chains by minimizing the energy. We show that
using terms occurring in the adiabatic gauge potential as generators of additional con-
trol unitaries, it is possible to achieve fast high-fidelity many-body control away from
the adiabatic regime. While each unitary retains the conventional QAOA-intrinsic
continuous control degree of freedom such as the time duration, we consider the
order of the multiple available unitaries appearing in the control sequence as an
additional discrete optimization problem. Endowing the policy gradient algorithm
with an autoregressive deep learning architecture to capture causality, we train the
RL agent to construct optimal sequences of unitaries. The algorithm has no access
to the quantum state, and we find that the protocol learned on small systems may
generalize to larger systems. By scanning a range of protocol durations, we present
numerical evidence for a finite quantum speed limit in the nonintegrable mixed-field
spin-1/2 Ising and Lipkin-Meshkov-Glick models, and for the suitability to prepare
ground states of the spin-1 Heisenberg chain in the long-range and topologically
ordered parameter regimes. This work paves the way to incorporate recent success
from deep learning for the purpose of quantum many-body control.
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3.1 Introduction

The ability to prepare a quantum many-body system in its ground state is an important
milestone in the quest for understanding and identifying novel collective quantum
phenomena. The degree to which ground states can be confidently prepared in
present-day quantum simulators, delineates the limits of our capabilities to investigate
the properties of new materials or molecules, and to propose innovative technological
applications based on quantum effects, such as high-temperature superconductors
and superfluids, magnetic field sensors, topological quantum computers, or synthetic
molecules.

Quantum simulators, such as ultracold and Rydberg atoms [193, 35], trapped ions [130,
34, 223, 88], nitrogen vacancy centers [96, 275, 58], and superconducting qubits [88,
342], all require the development of state preparation schemes via real-time dynamical
processes. Despite their high level of controllability, finding short protocols to prepare
strongly-correlated ground states under platform-specific constraints, is a challenging
problem in AMO-based quantum simulation platforms, due to the exponentially
large Hilbert space dimensions of quantum many-body systems. On this background,
speed-efficient protocols also become progressively more important for near-term
quantum computing devices [17], where simulation errors grow with the protocol
duration due to imperfections in the implementation of the basic gate operations.

Developing versatile methods for ground state preparation will enable quantum simu-
lators to investigate hitherto unexplored quantum phases of matter, and determine
the behavior of order parameters, correlation lengths and critical exponents. Theo-
retically, although an exact mathematical expression for the ground state might be
known in some models, it remains still largely unclear how to prepare it in a unitary
dynamical process. In generic models, the lack of closed-form analytical solutions
motivates the use of numerical algorithms. Prominent examples for quantum state
preparation include established quantum control algorithms, such as GRAPE [161]
and CRAB [53], and variational quantum eigensolvers (VQE) [244], such as the
quantum approximate optimization ansatz (QAOA) [102].

In this study, we present a novel hybrid reinforcement learning (RL)/optimal control
algorithm based on an autoregressive deep learning architecture. We improve the
current state-of-the-art for digital quantum control techniques by enhancing the
capabilities to find optimal protocols that prepare the ground state of quantum many-
body systems. The emerging versatile algorithm combines discrete and continuous
control parameters to achieve maximum flexibility in its applicability to a number of
different models.
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To cope with the complexity of preparing ordered states in quantum many-body
systems, we introduce a novel ansatz inspired by variational gauge potentials and
counter-diabatic (CD) driving [85, 29, 173, 46]. This allows us to excite the system
away from equilibrium in a controllable manner to find short high-fidelity protocols
away from the adiabatic regime. We demonstrate that combining features of CD
driving with the digital simulation character of conventional QAOA yields superior
performance over a wide range of protocol durations and physical models. Compared
to the standard counter-diabatic driving algorithms, CD-QAOA represents a more
flexible ansatz which allows us to take into account (i) experimental constraints, such
as drift terms that cannot be switched off, and (ii) control degrees of freedom not
present in CD driving; (iii) CD-QAOA is not tied to a drive protocol which obeys
specific boundary conditions (such as vanishing protocol speed). Unlike continuous
CD driving, CD-QAOA offers a simple and easy-to-apply variational ansatz without
reference to the exact ground state of the system, paving the way for versatile digital
quantum control.

In particular, our RL agent constructs unitary protocols that transfer the popula-
tion into the ground state of three nonintegrable spin models (spin-1/2 and spin-1
mixed-field Ising chains, and the anisotropic spin-1 Heisenberg chain) which feature
long-range and topological order, and the integrable Lipkin-Meshkov-Glick (LMG)
model which allows us to present simulations for a large number of particles. We
show numerical evidence for the existence of a finite quantum speed limit in the
nonintegrable mixed-field spin-1/2 Ising model: an almost perfect system-size scaling
indicates that this behavior persists in the thermodynamic limit. Our RL agent
has no access to unmeasurable quantum states which grow exponentially with the
number of degrees of freedom in the system: this allows the protocols we find to
generalize across a number of system sizes [for the spin-1/2 mixed-field Ising model],
opening up the door to apply ideas of transfer learning to quantum many-body
control. Finally, we demonstrate that the CD-QAOA ansatz has direct practical
implications in digital quantum control: it leads to much shorter circuit depths while
simultaneously improves the fidelity of the prepared state, which can be utilized to
reduce detrimental errors in modern quantum computers.

3.2 Generalized Continuous-Discrete Quantum

Approximate Optimization Ansatz

To prepare many-body quantum states, we seek a unitary process U which brings the
system from a given initial state |ψi⟩ to the ground state |ψGS⟩ of the Hamiltonian
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H (which we call the target state |ψ∗⟩). Typically, Hamiltonians can be decomposed
as a sum of two non-commuting parts H=H1+H2, e.g. the kinetic and interaction
energy. We want to construct

U({αj}qj=1, τ)=

q∏
j=1

U(αj, τj) (3.2.1)

from a sequence τ of q consecutive unitaries (or their generators) τj chosen from a set
A, with τj ̸=τj+1. Each U(αj, τj) is parametrized by a continuous degree of freedom
αj (e.g. time or rotation angle), i.e. U(αj, τj) = exp (−iαjτj). We formulate state
preparation as an optimization problem which consists of determining (i) the sequence
τ , and (ii) the values of the variational parameters αj, such that U |ψi⟩≈|ψGS⟩.
Our goal is to prepare the ground state of a Hamiltonian H, without having access
to the ground state itself. Therefore, we use energy as a cost function

E({αj}qj=1, τ)=⟨ψi|U †({αj}qj=1, τ)HU({αj}qj=1, τ)|ψi⟩, (3.2.2)

or energy-density E/N which has a well-behaved limit when increasing the number
of particles N 1. We denote the ground state energy by EGS = ⟨ψGS|H|ψGS⟩.
Note that conventional QAOA is recovered as a special case where one only considers
two unitaries Uj = U(αj, Hj) = exp(−iαjHj), j = 1, 2, and τ is one of the two
alternating sequences. Whenever nested commutators of Hj span the entire Lie
algebra which generates transport on the complex projective space associated with
the Hilbert space H of the system, applying QAOA is already enough to prepare
any state, provided that the underlying circuit depth q is sufficiently large, and the
optimal αj can be found [153]. While true in theory, this is often impractical, since
(i) it requires access to in principle unbounded durations, (ii) it increases the number
of optimization parameters αj, and – with it – the probability to get stuck in a local
minimum of the control landscape, and (iii) the condition that nested commutators
of Hj span the entire Lie algebra is generally not satisfied for the Hj’s of interest in
quantum many-body physics due to, e.g., symmetry constraints.

The generalized QAOA ansatz [Eq. equation 5.2.1] allows us to utilize a larger set
of unitaries A to construct the optimal sequence and to reduce the circuit depth
q. Inspired by counter-diabatic (CD) driving, we find that a particularly suitable
choice in the context of quantum many-body state manipulation, is given by the
operators in the adiabatic gauge potential series [Sec. 3.3]. Therefore, we call the

1We focus on pure states, although the cost function can trivially be generalized to mixed states.
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resulting algorithm CD-QAOA. A different ansatz using more than two unitaries was
considered in Ref. [365].

Compared to conventional QAOA, CD-QAOA introduces a discrete high-level op-
timization to find the optimal protocol sequence τ . The combined optimization
landscape can be particularly difficult to navigate, due to the existence of so-called
barren plateaus where exponentially many directions have vanishing gradients [212,
60, 118, 146]. Additionally, the total number of all allowed protocol sequences,
|A|(|A| − 1)q−1 2, scales exponentially with the number of unitaries q, and presents a
challenging discrete combinatorial optimization problem per se; indeed, state prepa-
ration, formulated as optimization, can feature a glassy landscape [82, 47] [Sec. 3.11].
However, overcoming these potential difficulties is associated with a potential gain:
CD-QAOA allows retaining the flexibility offered by continuous optimization, while
increasing the number of independent discrete control degrees of freedom to |A|; this
enables us to reach larger parts of the Hilbert space in shorter durations, and with a
smaller circuit depth, as compared to conventional QAOA.

Thus, we formulate ground state preparation as a two-level optimization scheme 3.
(1) Low-level optimization: given a fixed sequence τ , we find the optimal values of αj

using a continuous optimization solver, e.g. SLSQP 4 [Sec. 3.9]. To cope with the
associated rugged optimization landscape [Sec. 3.11], we run multiple realizations
of random initial conditions and post-select the values which yield minimum energy.
This continuous optimization problem is also present in conventional QAOA. (2)
High-level optimization: in addition to the low-level optimization, we also perform
a discrete optimization for the sequence τ itself, to determine the optimal order in
which unitaries from the set A should occur. To tackle this combinatorial problem,
we formulate the high-level optimization as a reinforcement learning (RL) problem.
We learn the optimal protocol using Proximal Policy Optimization, a variant of policy
gradient. The policy is parameterized by a deep autoregressive network, which allows
choosing the control unitaries U(αj, τj) sequentially. In practice, we sample a batch
of sequences from the policy, evaluate the energy of each sequence in the low-level
optimization, and apply policy gradient to update the parameters of the policy. This
two-level optimization procedure is repeated in a number of training episodes until
convergence [Sec. 3.8].

2Considering τj as choice of unitaries, we impose the extra constraint that, even though unitaries
can be repeated in the sequence τ , the same unitary cannot appear consecutively (or else one can
combine the two corresponding choices τj into a single variable).

3A similar procedure appeared recently in Ref. [194], although they considered a different problem
setup with greedy or beam search algorithm.

4In principle, one can use any optimizer which allows constraining the sum
∑

j αj=T .



CHAPTER 3. COUNTERDIABATIC DRIVING INSPIRED REINFORCEMENT
LEARNING BASED VARIATIONAL QUANTUM ALGORITHMS 73

3.3 Variational State Preparation inspired by

Counter-Diabatic Driving

A natural question arises as to how to choose the set A of unitaries for the generalized
discrete-continuous QAOA ansatz. One possibility is to consider a set of universal
elementary quantum gates, e.g., in the context of a quantum computer [184, 90], and
in this case αj are angles of rotation. We leave this exciting possibility for a future
study, and focus here on many-body ground state preparation instead.

The complexity of many-body systems motivates the use of a physics-informed
approach to defining the control unitaries in A. Suppose we initialize the system
in the ground state of the parent Hamiltonian H(λ = 0); we target the ground
state of H(λ=1), seeking the functional form of a time-dependent protocol λ(t). If
the instantaneous ground state of H(λ) remains gapped during the evolution, the
adiabatic theorem guarantees the existence of a solution λ(t), t ∈ [0, T ], provided T
is large compared to the smallest inverse gap along the adiabatic trajectory. However,
when the gap is known to close (e.g. across a phase transition), or when the state
population transfer has to be done fast, adiabatic state preparation fails.

Compared to the adiabatic paradigm, gauge potentials provide additional control
directions in Hilbert space which enable paths that non-adiabatically lead to the
target state in a short time. In many-body systems, it is not known in general
how to determine the exact gauge potential required for CD driving. However, it is
possible to define variational approximations [280, 135] using an operator-valued series
expansion [Sec. 3.12] similar to a Schrieffer-Wolff transformation [340], or Shortcuts to
Adiabaticity methods [140, 90]. Nonetheless, recent numerical simulations suggest that
the exact gauge potential in generic many-body systems is a non-local operator [280,
241] which renders the series expansion asymptotic.

For these reasons, here we consider the constituent terms to every order of the
variational gauge potential series, Hj , independently, and use them to generate the set
of unitaries A={e−iαjHj} for CD-QAOA 5. We emphasize that our CD-QAOA ansatz
is not designed to approximate the gauge potential itself, as opposed to Ref. [341],
yet it yields similar benefits w.r.t. preparing the target state. In Sec. 3.5 we compare
directly our approach with the variational gauge potential ansatz from Ref. [280].

Since CD-QAOA is a generalization of QAOA aimed to be useful in practice, we
need to ensure the accessibility of the control terms Hj. Because they appear in

5Below, we sometimes abuse notation and set A={Hj}, denoting the set of unitaries by their
generators.
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Table 3.1: Short-hand notation for the generators Hj used to construct the set of unitaries

A = {e−iαjHj}|A|
j=1 in CD-QAOA. The | indicates operators acting on neighboring sites.

Terms from the variational gauge potential series are shown in the lower group [cf. Sec. 3.12
for the derivation].

the first few orders of the gauge potential series, Hj are (sums of) local many-body
operators [cf. Sec. 3.12]. Thus, in principle, there is no physical obstruction to emulate
them in the lab, although this depends on the details of the experimental platform
(especially for the interaction terms). Additionally, in the context of many-body
systems where energy is extensive, in order to guarantee that we do not tap into
a source of infinite energy, we constrain the norm of the generators αjHj: we view
αj ≥ 0 as time durations, and fix

∑q
j=1 αj =T , with T the total protocol duration.

This keeps αj on the same order of magnitude as the coupling constants in the parent
Hamiltonian whose ground state we want to prepare.

3.4 Many-Body Ground State Preparation
We consider four non-integrable many-body systems of increasing complexity: the
spin-1/2 and spin-1 mixed-field Ising models, the spin-1 Heisenberg model, and the
integrable Lipkin-Meshkov-Glick (LMG) model where a large number of degrees of
freedom is accessible in a classical simulation. The goal of the RL agent is to prepare
their ordered ground states, starting from a product state. To generate training
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data, we compute numerically the exact time evolution of the system. We apply
CD-QAOA using a set of unitaries built from the terms in the series expansion for the
variational gauge potential. To determine the allowed terms in the gauge potential
series, cf. Table 3.1 (lower group), we consider the minimal set of symmetries shared
by the Hamiltonian and the initial and target states [Sec. 3.12].

Mixed-Field Spin-1/2 Ising Chain

Consider first the antiferromagnetic mixed-field spin-1/2 Ising chain of N lattice sites

H = H1+H2, (3.4.1)

H1 =
N∑
j=1

JSz
j+1S

z
j +hzS

z
j , H2 =

N∑
j=1

hxS
x
j ,

where [Sα
i , S

β
j ] = δijε

αβγSγ
j are the spin-1/2 operators. We use periodic boundary

conditions and work in the zero momentum sector of positive parity. In the following,
J = 1 sets the energy unit, and hz/J = 0.809 and hx/J = 0.9045. We initialize the
system in the z-polarized product state |ψi⟩= |↑ · · · ↑⟩, and we want to prepare the
ground state of H in a short time T , i.e., away from the adiabatic regime. We verified
that similar results can be obtained starting from |↓ · · · ↓⟩.
To acquire an intuitive understanding of the advantages brought by the gauge potential
ansatz, consider first the non-interacting system at J = 0, for which the control
problem reduces to a single spin. Both the initial and target states lie in the xz-plane
of the Bloch sphere, and hence the shortest unit-fidelity protocol generates a rotation
about the y-axis. In conventional QAOA, one would construct a y-rotation out of
the X and Z terms [cf. Table 3.1] present in the Hamiltonian. For a single spin, this
construction is always possible due to the Euler angle representation of SU(2), but for
the interacting spin chain this is no longer the case. The role of the gauge potential
Y is to ‘unlock’ precisely this geodesic in parameter space, and make it accessible as
a dynamical process. This allows preparing the target state faster, compared to the
original X,Z control setup. In the language of variational optimization, an accessible
Y term includes the shortest-distance protocol into the variational manifold, and the
RL agent easily finds the exact solution [Sec. 3.13].

For the interacting system, J >0, applying conventional QAOA using the two gates
Uj =e−iαjHj with H1 =Z|Z+Z and H2 =X is straightforward, but it does not yield a
high-fidelity protocol [Fig. 3.1 (blue squares)]. It was recently reported that much
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Figure 3.1: Spin-1/2 Ising model: energy minimization and the corresponding many-body
fidelity [inset] against protocol duration T obtained using conventional QAOA (blue squares)
and CD-QAOA (red diamonds) with circuit depths p= q/2 = 2 and q = 3, respectively.
The dotted vertical line marks the quantum speed limit TQSL. CD-QAOA outperforms
conventional QAOA. The initial and target states are |ψi⟩= |↑ · · · ↑⟩ and |ψ∗⟩= |ψGS(H)⟩
for hz/J = 0.809 and hx/J = 0.9045. The alternating unitaries for conventional QAOA are
generated by AQAOA = {Z|Z+Z,X}[cf. Eq. equation 4.2.3]; for CD-QAOA, we extend this
set using adiabatic gauge potential terms to ACD−QAOA = {Z|Z+Z,X;Y,X|Y, Y |Z}. The
cardinality of the CD-QAOA sequence space is |A|(|A|−1)q−1 = 80. The number of spins is
N=18 with a Hilbert space size of dim(H)=7685.

better energies can be obtained, using a three-step QAOA which consists of the
three terms in the Hamiltonian equation 4.2.3, Z|Z, X, and Z, applied in a fixed
order [209]; invoking again an Euler angle argument provides an explanation: the X
and Z terms effectively generate the Y gauge potential term.
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Figure 3.2: Spin-1/2 Ising model: energy minimization and the corresponding mean absolute
error [inset, log scale] against protocol duration T for different system sizes using CD-QAOA
with circuit depths q=3. system-size scaling of the variational energy density suggests the
results hold for larger systems. For the number of spins of N=12, 14, 16, 18, the Hilbert
space sizes are dim(H)=224, 687, 2250, 7685 respectively. The model parameters are the
same as in Fig. 3.1.

In stark contrast to conventional QAOA, adding just the zero-order term H3 = Y
from the gauge potential series [Sec. 3.12], we find that CD-QAOA already gives a
significantly improved protocol; this is achieved by the high-level discrete optimization
which selects the order of the operators in the sequence. However, we can do better:
since |ψi⟩ is a product state while |ψ∗⟩ is not, and because H3 is a sum of single-particle
terms, in order to create the target many-body correlations using a fast dynamical
process, we also include the two-body first-order gauge potential terms H4 =X|Y
and H5 =Y |Z: this results in a nonadiabatic evolution that prepares the interacting
ground state to an excellent precision [Fig. 3.1 (red diamonds)].



CHAPTER 3. COUNTERDIABATIC DRIVING INSPIRED REINFORCEMENT
LEARNING BASED VARIATIONAL QUANTUM ALGORITHMS 78

In Ref. [141], it was shown that, in the integrable limit hz = 0, one can prepare
the ground state of the system at the critical point using a circuit of depth q=2N
with conventional QAOA. Albeit for the specific initial and target states chosen, we
find that it only takes CD-QAOA a depth of q=3 to reach the target ground state,
independent of the system size N 6. This result, though model-dependent, may come
as a surprise at first sight, given that the mixed field Ising chain is a quantum chaotic
system without a closed-form solution which makes it susceptible to heating away
from the adiabatic limit.

Our data also reveals a finite many-body QSL at TQSL≈4.5. Importantly, this QSL
appears insensitive to the system size to a very good approximation [Fig. 3.2], and
we expect it to persist in the thermodynamic limit. The absence of a finite QSL
in conventional QAOA in the mixed-field Ising chain suggests that the observation
of a QSL using CD-QAOA depends on the specific set of unitaries related to the
variational gauge potential, showcasing the utility of our ansatz for many-body control.
Remarkably, we find an almost perfect system-size collapse of the target state energy
density curves as a function of the total protocol duration T . In Sec. 3.6, we explore
this feature and demonstrate the ability of the RL agent to learn on small system sizes
and subsequently generalize its knowledge to control bigger systems with exponentially
larger Hilbert spaces.

CD-QAOA performs successfully on the nonintegrable spin-1/2 mixed-field Ising
chain, for a circuit depth as short as q = 3. This shows an advantage of our ansatz,
when compared to conventional QAOA. However, the small size of the sequence space,
|A|(|A| − 1)q−1 =80 at |A| = 5, poses a natural question regarding the necessity of
using sophisticated search algorithms, such as RL, to find the control sequence. We
now show that this is a peculiarity of the physical system, as we turn our attention
to a larger sequence space.

Heisenberg Spin-1 Chain

The eight-dimensional spin-1 group SU(3) provides a significantly larger space of
gauge potential terms to build the optimal protocol from. We consider a total of
|A|= 9 unitaries: five are generated by the imaginary-valued terms in the gauge
potential series: Y,XY, Y Z,X|Y, Y |Z [cf. Table. 3.1], plus the two real-valued QAOA
operators H1 and H2, which build the Hamiltonian H=H1+H2 whose ground state
we target [Eq. equation 3.4.2], and the two real-valued Hamiltonian terms X|X
and Z. At q= 18, this amounts to |A|(|A| − 1)q−1 ≈ 1016 possible sequences. The

6The role of the RL algorithm is to decide which three out of the five unitaries Uj to apply and
in which order.
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exponential scaling of the sequence space size with q renders applying exhaustive
search algorithms infeasible, and justifies the use of sophisticated algorithms, such as
RL.

The (anisotropic) spin-1 Heisenberg model reads as:

H = H1+H2, (3.4.2)

H1 = J
N∑
j=1

(Sx
j+1S

x
j +Sy

j+1S
y
j ), H2 = ∆

N∑
j=1

Sz
j+1S

z
j ,

with the spin exchange coupling J = 1 set as energy unit, and ∆ – the anisotropy
parameter; we use periodic boundary conditions and work in the ground state sector of
zero momentum and positive parity, defined by the projector P . In the thermodynamic
limit, this model features a rich ground state phase diagram including ferromagnetic
(FM, ∆/J ≪−1), XY (−1 ≲ ∆/J ≲ 0), topological/Haldane (0 ≲ ∆/J ≲ 1), and
antiferromagnetic (AFM, ∆/J ≫ 1) order 7, with phase transitions belonging to
different universality classes [68, 247, 185]. While the FM, XY, and AFM states are
characterized by a local order parameter, the gapped Haldane state has topological
order not captured by Landau-Ginzburg theory. We consider the AFM initial state
|ψi⟩=P |↑↓↑↓ · · · ⟩, and target the ground states of Eq. equation 3.4.2 deep in the
FM, XY, and Haldane phases, where system-size effects are the smallest. Because CD-
QAOA is not restricted to adiabatic evolution, the conventional paradigm of a closing
spectral gap when transferring the population between two states displaying different
order, does not apply in our non-equilibrium setup, even in the thermodynamic limit.

Figure 3.3 shows a comparison between conventional QAOA with alternating sequence
between the Hamiltonians H1 and H2, and CD-QAOA. We find that CD-QAOA
shows superior performance for all three ordered ground states: while the gain over
conventional QAOA for the Haldane state is already a faster protocol, we clearly
see how the gauge potential terms can prove essential for reaching the ground state
in the FM and XY phases within the available durations. Note that the FM target
state is doubly degenerate, and minimizing the energy, it ends up in an arbitrary
superposition within the ground state manifold. Interestingly, we do not identify any
distinction from preparing states with long-range and topological order, presumably
due to the small system sizes that we reach in our classical simulation.

The CD-QAOA protocol sequences found by the RL agent have peculiar structures
[Sec. 3.13]: some of them resemble closely the alternating sequence of conventional
QAOA, with the notable difference of applying additional unitaries to rotate the

7We define ‘order’ in the context of phase transitions in condensed matter physics.
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Figure 3.3: Heisenberg spin-1 chain: energy minimization against protocol duration T using
conventional QAOA (dashed lines) and CD-QAOA (solid lines) for three different states. We
start from the AFM state |ψi⟩=P |↑↓↑↓ · · · ⟩ and target three different parameter regimes,
corresponding to the FM (∆/J=−2.0) state, XY (∆/J=−0.5), and Haldane (∆/J=0.5)
states, respectively. CD-QAOA outperforms conventional QAOA (p=q/2), more notably in
the FM and XY targets where it allows us to reach close to the target state using a short
protocol duration. The empty symbols mark the duration at which we show the evolution of
the system in Fig. 3.20. The alternating unitaries for conventional QAOA are generated by
AQAOA = {H1, H2} [cf. Eq. equation 3.4.2]; for CD-QAOA, we extend this set using adiabatic
gauge potential terms to ACD−QAOA = {H1, H2, Z,X|X;Y,XY, Y Z,X|Y −XY, Y |Z−Y Z}.
The circuit depths are q=28 (∆/J =−2.0), q=18 (∆/J =−0.5) and q=18 (∆/J =0.5).
The cardinality of the CD-QAOA sequence space is |A|(|A|−1)q−1 ≈ 1016 at q = 18. The
system size is N = 8, where dim(H) = 498.

state to a suitable basis, either at the beginning or at the end of the sequence. While
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this is formally equivalent to starting from or targeting a rotated state, the rotations
use two-body operators; hence, the resulting basis does not coincide with any of the
distinguished Sx, Sy and Sz directions. Variationally determining such effective bases
demonstrates yet another advantage offered by the CD-QAOA ansatz. Another kind
of encountered sequence contains two different sets of alternating unitaries, similar
to two independent QAOA ansatzes concatenated one after the other. Finally, for
those values of T , where CD-QAOA and QAOA have the same performance, we
have also observed that CD-QAOA finds precisely the QAOA sequence. In this
case, conventional QAOA already generates the shortest path, and the extra gauge
potential terms to second-order do not give any advantage; a better performance
might be expected when the three- and four-body higher-order terms from the gauge
potential series are included.

Similar to other optimal control algorithms, RL agents typically find local minima of
the optimization landscape; thus, there is no guarantee that the CD-QAOA protocols
provide global optimal solutions; however, these sequences can serve as an inspiration
to build future variational ansatzes tailored for many-body systems.

Lipkin-Meshkov-Glick Model

The non-integrable character of the previously discussed models precludes us from ap-
plying CD-QAOA with a large number of degrees of freedom, since reliably simulating
their dynamics on a classical computer is prohibitively expensive. In order to study
the behavior of CD-QAOA in a large enough system which also features a quantum
phase transition, we now turn our attention to an exactly solvable many-body system.

The Lipkin-Meshkov-Glick (LMG) Hamiltonian [196] describes spin-1/2 particles on
a fully-connected graph of N sites:

H = H1 + hH2,

H1 = − J
N

N∑
i,j=1

Sx
i S

x
j , H2 =

N∑
j=1

(
Sz
j +

1

2

)
, (3.4.3)

where J is the uniform interaction strength and h the external magnetic field. In the
thermodynamic limit, N →∞, the system undergoes a quantum phase transition at
hc/J = 1 between a ferromagnetic (FM) ground state in the x-direction for h/J ≪ 1,
and a paramagnetic ground state for h/J ≫ 1. The spectral gap ∆LMG between
the ground state and excited states closes as ∆LMG(hc) ∼ N−1/3 at the critical
point [38]. Realizing the LMG model is within the scope of present-day experiments
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Figure 3.4: LMG model: the overlap between the initial state |ψi⟩ and the target state |ψ∗⟩
is vanishingly small in the ferromagnetic phase h/J ≪ 1, which motivates the parameter
choice for the target state. In the vicinity of the critical point, the overlap increases and
approaches unity in the limit h/J →∞. Note that, in the FM phase, the ground state is
doubly degenerate, in which case the overlap is computed w.r.t. the ground state manifold:

|⟨ψi|ψ(1)
∗ ⟩|2 + |⟨ψi|ψ(2)

∗ ⟩|2. In the paramagnetic phase, the ground state is unique. We used
N = 501 spins.

with ultracold atoms [291, 81]; therefore, developing fast ground state preparation
techniques can prove useful in practice.

Defining the total spin operators as Sα =
∑N

j=1 S
α
j , the Hamiltonian takes the form

H = −J/N (Sx)2+h (Sz +N/2). Hence, the total spin is conserved, [H,S ·S] = 0, and
the ground state symmetry sector contains a total of N + 1 states, i.e. dim(H)=N+1,
which allows us to simulate large system sizes.
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Our goal is, starting from the z-polarized paramagnetic initial state, |ψi⟩ = |↓↓ · · · ⟩,
to target an arbitrary superposition in the doubly-degenerate FM ground state
manifold, at fixed values of the external field h/J which controls the magnitude of
the transversal fluctuations on top of the ferromagnetic order. Figure 3.4 shows that
the overlap of the initial and target states is vanishingly small in the FM phase,
and approaches quickly unity across the critical point into the paramagnetic phase.
Therefore, we choose to prepare ground states in the FM phase where the problem
naturally appears more difficult.

Figure 3.5 shows a comparison between CD-QAOA and QAOA on the LMG model at
h/J = 0.5 for N=501 spins [more h/J values are shown in Sec. 3.13]. First, note the
superior performance of CD-QAOA, as compared to conventional QAOA in a range
or short durations T in the nonadiabatic driving regime. We applied CD-QAOA with
two different sets of generators: A = {H1, H2;Y }, and A′ = {H1, H2;Y, X̂Y , ẐY }
[cf. Table 3.1] and found that, for the LMG model, the higher-order two-body terms
X̂Y , ẐY do not offer any advantage deep in the FM phase. This observation can be
understood as follows: to turn the z-polarized initial state into the x-ferromagnet, it
is sufficient to perform a rotation about the y-axis, which coincides precisely with the
single-body term in the gauge potential series expansion [cf. Sec. 3.12]. Indeed, for
all protocol durations smaller than the quantum speed limit, T < TQSL, the RL agent
finds that the optimal protocol consists of a single Y -rotation, while for T ≥ TQSL the
optimal protocol is degenerate, and typically involves the various terms from A. This
finding allows us to extract the QSL as a function of the external field h, cf. Fig. 3.6.

Close to the critical point hc, we observe strong sensitivity in the best found protocols
to system-size effects, and a single Y -rotation is no longer optimal below the QSL.
Interestingly, at the critical point (and in the paramagnetic phase), the optimal
protocol is given by QAOA: in this regime, despite the larger set of terms A we use
in CD-QAOA, the RL agent correctly identifies the sequence of alternating H1 and
H2 terms as optimal, which shows the versatility of CD-QAOA: the algorithm can
always select a smaller effective subspace of actions when this is advantageous in the
parameter regime of interest.
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Figure 3.5: LMG model: energy minimization against protocol duration T using conven-
tional QAOA (blue square) and CD-QAOA (red dashed line, green solid line). We start from
the z-polarized state |ψi⟩ = |↓↓ · · · ⟩ and target ground state of LMG Hamiltonian equa-
tion 3.4.3. CD-QAOA significantly outperforms conventional QAOA for short durations.
The alternating unitaries for conventional QAOA are generated by AQAOA = {H1, H2}
[cf. Eq. equation 3.4.3]; for CD-QAOA, we extend this set using adiabatic gauge potential
terms to ACD−QAOA = {H1, H2;Y, X̂Y , ˆY Z} and A′

CD−QAOA = {H1, H2;Y }. The external
field is h/J=0.5; the circuit depth is q=8, and the system size is N = 501, where effective
Hilbert dimension dim(H)=502.
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Figure 3.6: LMG model: Quantum speed limit, TQSL, as a function of the transverse field h,
for a target state in the ferromagnetic phase. At h/J = 0, we have TQSL = π/2, which is the
angle required to turn the z-polarized initial state into the x-ferromagnet. For finite h/J
quantum fluctuations in the target ferromagnetic ground state decrease the angle required
to transfer the population from the initial state, which results in a smaller value of TQSL.
The dashed cyan line is a least squares fit for small values of h/J , suggesting the behavior
TQSL(h) = −h/J + π/2 +O(h2). We used N = 501 spins.

3.5 Comparison with Counter-Diabatic Driving

To compare and contrast the CD-QAOA ansatz with CD and adiabatic driving [280],
consider the driven spin-1 Ising model 8:

H(λ) = λ(t)H1+H2, (3.5.1)

H1 =
N∑
j=1

JSz
j+1S

z
j + hxS

x
j , H2 =

N∑
j=1

hzS
z
j ,

8We deliberately use a different form in Eq. equation 4.9.1 as compared to Eq. equation 4.2.3;
the former may appear more natural in quantum many-body physics, where the transverse-field
Ising model H1 can be mapped to free fermions.
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where λ(t) = sin2
(
πt
2T

)
, t ∈ [0, T ], is a smooth protocol satisfying the boundary

conditions for CD driving: λ(0)=0, λ(T )=1, λ̇(0)=0= λ̇(T ). The initial state is the
ground state at t=0, i.e. |ψi⟩= |↓ · · · ↓⟩, while the target state is the ground state of
the Ising model at t = T for hz/J = 0.809 and hx/J = 0.9045. Unlike the setup in
Sec. 3.4, adiabatic state preparation following the protocol λ(t), suggests using the
QAOA generators AQAOA = {H1, H2}.
Figure 3.7 shows a comparison between different methods using the best found
energy density (main figure), and the corresponding many-body fidelity (inset). Let
us focus on CD-QAOA and QAOA first. As expected, CD-QAOA (red) performs
better for short durations T , since it contains conventional QAOA (red) as an ansatz,
i.e. AQAOA⊊ACD-QAOA. We emphasize that such a performance is not guaranteed
in practice, since it is conceivable that the RL agent gets stuck in a local minimum
associated with lower energy than the QAOA solution [Sec. 3.11], e.g., if the deep
autoregressive network architecture is not expressive enough, or if the learning rate
schedules are not well-tuned to the problem. Unlike the spin-1/2 Ising model, here
we cannot clearly identify a finite QSL, as the CD-QAOA energy keeps improving
with increasing circuit depth q [Sec. 3.8].

To construct the counter-diabatic Hamiltonian HCD≈H(λ)+λ̇X ({βj}) for Eq. equa-
tion 4.9.1, we make a variational ansatz [280] for the gauge potential X , and solve for
the optimal parameters βj numerically [Sec. 3.12]. We note the following differences
between this approach and CD-QAOA: (i) the variational gauge potential depends
on time t continuously, which requires further discretization when performing a
gate-based implementation. (ii) the number of variational parameters in the standard
variational gauge potential method is NT |A| with NT the number of steps used to
discretize the time interval [0, T ]; instead, in CD-QAOA, we have q variational param-
eters. (iii) the variational gauge potential method does not constrain the magnitude
of the variational coefficients βj, and hence the time-averaged norm of HCD over the
protocol can grow indefinitely; especially for short durations T this typically gives
a higher fidelity. By contrast, in CD-QAOA the time-averaged norm of the unitary
generators αjHj summed along the sequence, is kept bounded via the constraint∑

j αj =T . Nonetheless, in practice, we find that these norms are on the same order
of magnitude for all methods considered [Sec. 3.13].

As anticipated, Fig. 3.7 shows that CD driving performs better than adiabatic driving,
and the two agree in the limit of large T . Moreover, we see explicitly that the CD
and QAOA solutions are far from the adiabatic regime. Not surprisingly, CD driving
outperforms conventional QAOA for small T , as it can increase the values of the
variational parameters (and with it the norm) indefinitely. However, CD-QAOA
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Figure 3.7: Spin-1 Ising model: energy minimization and the corresponding many-body
fidelity [inset] against different protocol duration T for four different optimization methods:
CD-QAOA (red line), conventional QAOA (blue line), variational gauge potential (green) and
adiabatic evolution (magenta). The empty symbols mark the duration for which the evolution
of physical quantities is shown in Fig. 3.24. The initial and target states are |ψi⟩= |↓ · · · ↓⟩
and |ψ∗⟩ = |ψGS(H)⟩ for hz/J = 0.809 and hx/J = 0.9045. The alternating unitaries
for conventional QAOA are generated by AQAOA = {H1, H2} [cf. Eq. equation 4.9.1]; for
CD-QAOA, we extend this set using adiabatic gauge potential terms to ACD−QAOA =
{H1, H2;Y,XY, Y Z,X|Y, Y |Z}. The variational gauge potential in CD driving uses all
five imaginary-valued gauge potentials {Y,XY, Y Z,X|Y, Y |Z}. The CD- and adiabatic
driving simulations are both based on the smooth protocol function λ(t)=sin2

(
πt
2T

)
, with

a time-discretization step ∆t=0.2. The value of q=20 and the size of sequence space is
|A|(|A|−1)q−1≈1015. The system size is N=8, where dim(H)=498.
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T
E/EGS [N=10]

CD-QAOA CD QAOA adiabatic

4 0.943837 0.923199 0.79534 0.067807

8 0.961383 0.933067 0.93386 0.438856

12 0.990415 0.942857 0.96275 0.658182

Table 3.2: Spin-1 Ising model: comparison of the best obtained energy ratio E/EGS after
optimization, for four different optimization methods: CD-QAOA, variational CD driving,
conventional QAOA, and adiabatic evolution, at T = 4, 8, 12 for N = 10 qutrits, where
dim(H)=3219. The remaining setup and parameters are the same as in Fig. 3.7.

consistently outperforms CD driving in the entire T -range; the contrast is especially
pronounced in the many-body fidelity [Fig. 3.7, inset]. CD-QAOA makes use of the
variational power of QAOA, combining it with physics-motivated input from CD
driving.

Table 3.2 shows a comparison with the best obtained energies for N = 10 spin-
1 particles (qutrits): the superior performance of CD-QAOA remains despite the
exponentially growing Hilbert space size. Reaching significantly larger system sizes is
infeasible with the present-day computational power: we note that this a feature of
the quantum system rather than a drawback of CD-QAOA, cf. discussion on LMG
model in Sec. 3.4.

We emphasize that CD-QAOA features some important advantages as compared to
CD driving: (1) Due to the nested commutators in the definition of time-ordered expo-
nentials, the QAOA dynamics can effectively implement total unitaries U({αj}qj=1, τ)
generated by effective non-local operators; therefore, CD-QAOA can, in principle, real-
ize a nonlocal effective Hamiltonian as an approximation to the true CD Hamiltonian,
thereby overcoming convergence issues related to operator-valued series expansions.
(2) CD-QAOA lifts the boundary constraint present in adiabatic and CD driving where
the initial and target Hamiltonians are eigenstates of H(0) and H(1), respectively;
an interesting open question is whether a local effective Hamiltonian exists, which
captures the evolution of the system in this case. Examining the evolution of the
entanglement entropy and other local observables induced by the optimal protocol,
suggests that this is indeed the case [Sec. 3.13]. (3) One can add any control unitary
to the set A, not just terms related to gauge potentials: CD-QAOA has high flexibility
to accommodate experimental constraints. (4) determining the variational gauge
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potential in CD-driving requires using the exact ground state in order to minimize
the action, which can be a significant drawback when the ground state is not known
or cannot be computed.

3.6 Transfer Learning and Generalization of the

RL Algorithm to different System Sizes

The scale collapse in the energy density of the spin-1/2 Ising model presents a testbed
for the transfer learning capabilities of RL. In transfer learning, the RL agent learns
to control one physical system, and is then used to manipulate another. In our case,
the two systems are given by the same Ising model at two different system sizes.
Note that transfer learning would have not been possible, had we defined the learning
problem using the full quantum states, because the latter are vectors in Hilbert space
whose size grows exponentially with N .

To apply transfer learning, consider first a fixed protocol duration T . For every fixed
system size N , we first train a different RL agent. Next, we build the set of protocols
across all system sizes, found by these agents, and determine the number of unique
protocols [cf. legend in Fig. 3.8]. Finally, we apply all unique protocols to all system
sizes available, and store the energy densities they result in. This leaves us with a set
of energy density values for every fixed T . The error bars in Fig. 3.8 show the best and
the worst protocols over this set. Observe that, below the QSL, there are only a few
points T where the best control protocol is the same across all system sizes. Transfer
learning works well, as can be seen by the small error bars. In this regime, the RL
agent generalizes its knowledge and learns universal features of the protocol, required
to control the Ising model. In contrast, for T > TQSL, there are many more protocols
giving approximately similar ground state energies. While the corresponding energies
are similar in value, the agent does not generalize. Nevertheless, we checked that,
in this regime, training on smaller system sizes still provides a useful pre-training
procedure for learning on larger systems.

3.7 Discussion/Outlook

We analyzed many-body ground state preparation using unitary evolution in the
spin-1/2 Ising model, the spin-1 anisotropic Heisenberg and Ising models, and the fully
connected LMG spin-1/2 model. We introduced the CD-QAOA ansatz: an RL agent
optimizes the order of unitaries in the protocol sequence, generated from terms in the
adiabatic gauge potential series, and obtains short high-fidelity protocols away from
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Figure 3.8: Spin-1/2 Ising model: Protocol generalization across various system sizes. The
marker types show the number of different protocols found by the RL agent at a fixed T
across all system sizes N=6, 10, 12, 14, 16 and 18. Each protocol is applied to every system
size N at a fixed T which results in a set of cost function values; the error bars designate
the range between the largest and smallest cost function value. The parameters are the
same as in Fig. 3.1.

the adiabatic regime. The resulting algorithm combines the strength of continuous
and discrete optimization into a unified and versatile control framework. We find
that our CD-QAOA ansatz outperforms consistently both conventional QAOA, and
variational CD driving across different models and protocol durations. An interesting
open question is whether one can use CD-QAOA to find a nonlocal approximation to
the variational gauge potential itself, which is beyond the scope of asymptotic series
expansions. Another straightforward application of CD-QAOA would be imaginary
time evolution [24].

For the nonintegrable spin-1/2 Ising chain, we reveal the existence of a finite quantum
speed limit. Moreover, we find a remarkable system-size collapse of the energy
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curves suggesting that the sequences found by the agent hold in the thermodynamic
limit; this is corroborated by numerical experiments on transfer learning which
demonstrate that one can train the agent on one system size while it generalizes
to larger systems. In the Heisenberg spin-1 system, CD-QAOA allows preparing
long-range and topologically ordered ground states, even when the initial state does
not belong to the phase of the target state. The optimal protocols found by the
RL agent contain nontrivial basis rotations, intertwined with alternating QAOA-
like subsequences, suggesting new ansätze for more efficient variants of CD-QAOA.
Numerical studies of nonequilibrium quantum many-body systems, in turn, suffer
from limitations related to the exponentially large dimension of the underlying Hilbert
space: future work can investigate dynamics beyond exact evolution.

Compared to conventional QAOA, using terms from the variational gauge potential
series has higher expressivity, which results in much shorter, yet better performing,
circuits. This method can be used, e.g., to reduce the cumulative error in quantum
computing devices. However, gauge potential terms are not always easy to realize in
experiments since they implement imaginary-valued terms which break time-reversal
symmetry; that said, it is often possible to generate such terms using auxiliary real-
valued operators via a generalization of the Euler angles, or by means of change-of-
frame transformations [280]. Moreover, as we have demonstrated, CD-QAOA admits
non-gauge potential terms as building blocks for control sequences, e.g., universal
gate sets. Other experimental constraints, such as the presence of drift terms, which
cannot be switched off, can also be conveniently incorporated by redefining the set of
unitaries A.

Finally, let us remark that RL provides only one possible set of algorithms to explore
the exponentially large space of protocol sequences; in practice, one can apply other
discrete optimization techniques, e.g. genetic algorithms and search algorithms like
Monte-Carlo Tree Search (MCTS).

3.8 High-level optimization: Policy Gradient

using Deep Autoregressive Networks

Recently, progress made in machine learning (ML) [98, 215, 55, 56] has raised the
question as to how we can harness such modern advances to improve techniques to
manipulate quantum systems. Examples of ML applications include model-based opti-
mization [293], differentiable programming [273] and Bayesian inference [271] quantum
control, cavity control [105], designing quantum end-to-end learning schemes [336]
and measurement-based adaptation protocols [4], as well as applications to quantum
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error-correction [107, 228].

Reinforcement learning (RL) algorithms [295, 265], such as policy gradient [237, 19,
249], Q-learning [48, 50] and AlphaZero [78], have recently attracted the attention of
physicists, and in particular how they can be combined with physically motivated
VQEs for improved performance. In RL, policy gradient has been proposed as an
alternative optimizer for QAOA showcasing the robustness of RL-based optimization
to both classical and quantum sources of noise [346]; a related study applied Proximal
Policy Optimization (PPO) to prepare the ground state of the transverse-field Ising
model [325]. The QAOA ansatz with policy gradient has been applied to efficiently
find optimal variational parameters for unseen combinatorial problem instances on
a quantum computer [160]; Q-learning was used to formulate QAOA into an RL
framework to solve difficult combinatorial problems [110], and in the context of digital
quantum simulation [37].

In the following, we introduce the details of the Reinforcement Learning algorithm
used for the high-level optimization in this work.

Reinforcement Learning Basics

Reinforcement learning (RL) comprises a class of machine learning algorithms where
an agent learns how to solve a given task through interactions with its environment
using a trial-and-error approach [295]. It is based on a Markov Decision Process
(MDP) defined by the tuple (S,A, p, R) where S and A represent the state and action
spaces, p : S × S ×A → [0, 1] defines the transition dynamics, and R : S × A→ R
is the reward function that describe the environment. Let π(aj|sj) : A× S → [0, 1]
denote a stochastic policy that defines the probability distribution of choosing an
action aj ∈ A given the state sj ∈ S. Rolling out the policy π(aj|sj) in the
environment can also be viewed as sampling a trajectory τ ∼ Pπ(·) from the MDP,
where Pπ(τ) = p0(s1)π(a1|s1)p(s2|s1, a1) · · · π(aq|sq)p(sq+1|sq, aq) is the probability
for the trajectory τ to occur, q sets the episode or trajectory length, and p0 is the
distribution of the initial state; an example for a trajectory is τ = (s1, a1, ...., aq, sq+1).
The goal in RL is to find a policy that maximizes the expected return:

J(θ) = Eτ∼Pπ

[
q∑

j=1

R(sj, aj)

]
. (3.8.1)

To maximize the expected return J(θ), we use policy gradient – an RL algorithm,
which is (i) on-policy, i.e. trajectories have to be sampled from the current policy
πθ: π = πθ, and (ii) model-free, i.e. the agent does not need to have a model for
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Figure 3.9: Schematics of CD-QAOA with an autoregressive policy network. The ancestral
sampling procedure used for training is displayed in Fig. 3.10. The details of the network
structure and its training hyperparameters are shown in Table 4.2.

the environment dynamics: p(s′|s, a) is assumed unknown for the purpose of finding
the optimal policy. Highly expressive function approximators, such as deep neural
networks, help parametrize the policy using variational parameters θ. Policy gradient
gradually improves the expected return in a number of iterations (or training episodes),
by increasing the probability for actions that lead to higher rewards, and decreasing
the probability for actions that lead to lower rewards, until it reaches a (nearly)
optimal policy.

We mention in passing that we use interchangeably the terms return and cost function
(the latter being the negative of the former): the goal of the RL agent is thus to
maximize the expected return, or to minimize the cost function.
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Figure 3.10: The exact sampling algorithm for CD-QAOA with an autoregressive policy
network, where faded nodes and connections represent unused nodes and connections. The
action at each time step is generated sequentially, by computing its respective conditional
categorical distribution, and sampling according to that. Notice that only a single column
is processed at each time step, and in order to sample a complete sequence of actions in an
episode one needs to make a forward pass through the network architecture q times.

Policy Gradient Reinforcement Learning for Quantum
Many-Body Systems

Actions: To apply the reinforcement learning formalism to quantum control, we
identify taking actions at each time step within a learning episode, with selecting
unitaries one at a time within the circuit depth q. Choosing the same unitary at two
consecutive time steps is prohibited because the same actions can be merged resulting
in a lower effective circuit depth q − 1. At the initial time step j = 1, the quantum
wavefunction is given by the initial state |ψi⟩; for each intermediate protocol step j,
the action aj =Hj is chosen according to the policy πθ. Note that the RL agent only
selects the generator Hj out of the set of available actions A (or alternatively – which
unitary to apply). In other words, unlike Ref. [346], the RL part of CD-QAOA is not
concerned with finding the corresponding optimal duration αj; one can think of this
low-level continuous optimization as being part of the environment [cf. Sec. 3.9]9. At
the end of the episode, the quantum state is evolved by applying the entire generated
circuit U({αj}qj=1, τ) to the initial quantum state |ψi⟩.
States: Since the initial state |ψi⟩ is fixed and thus the quantum state at any time step
j is uniquely determined by the previous actions taken, here we represent the RL state
by concatenating all the previous actions up to step j [44]. One reason for this is that,
in many-body quantum systems, the number of components in the quantum state
scales exponentially with the system size N , which quickly leads to a computational
bottleneck for the simulation on classical computers. A second advantage of this
choice is that the first layer of the underlying deep neural network architecture, which
parametrizes the policy, will not depend on the system size N either, which allows
the algorithm to handle a large number of degrees of freedom. Using the quantum
state would not be viable on quantum computers either, because quantum states are
unphysical mathematical constructs that cannot be measured. Therefore, we can
simplify the form of trajectories to consist of actions only, e.g. τ = (a1, a2, . . . , aq).

9It is also possible to define an RL framework for hybrid continuous-discrete control where
optimization is entirely based on RL, cf. Ref. [351].
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Rewards: The reward Rj = R(sj, aj) is chosen as the negative energy density at the
end of the episode:

Rj =

{
0, if j < q

−E({αj}qj=1, τ)/N, if j = q.

We use energy density, since it is an intensive quantity which has a well-defined
limit when increasing the number of particles N . In all figures, we show the relative
energy E/EGS for clarity (the ground state energy EGS is typically negative in our
models), but the RL agent is always trained with the (negative) energy density −E/N .
Rewards can also be other observables or nonobservable quantities, such as the overlap
squared between two quantum states (fidelity), or the entanglement entropy.

Notice that the reward is sparse: only at the end of the episode is the negative energy
density given as a reward; there is no instantaneous reward during the sequence [and
thus we can use interchangeably the terms reward and total return]. This is motivated
by the quantum nature of the control problem, where a projective measurement
results in a wavefunction collapse.

Policy Parametrization using an Autoregressive Neural
Network

An essential part of the policy gradient algorithm is the definition of the policy πθ. It
is common to parametrize the policy with a highly expressive function approximator,
such as a neural network. In our setup, we use a deep autoregressive network, which
has recently been used in physics applications of learning to generate samples from
free energies in statistical mechanics models [338], and variational approximators for
quantum many-body states [281]. This architecture is selected to incorporate causality
by factorizing the total probability into a product of conditional probabilities:

πθ(a1, a2, · · · , aq) = πθ(a1)

q∏
j=2

πθ(aj|a1, · · · , aj−1), (3.8.2)

where marginal distribution πθ(a1) and conditional distribution πθ(aj|a1, · · · , aj−1)
are discrete categorical distributions over A. This kind of parametrization explicitly
tells how the actions taken in the earlier steps of an episode affect the actions
selected later on during the same episode. Such a causal requirement would not be
necessary, had we used the full quantum state, which would make the dynamics of the
environment Markovian. Each of the conditional probabilities in Eq. equation 3.8.2
can be modeled explicitly using the autoregressive neural network architecture, which
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naturally allows the policy to depend on all the previous actions only. The structure
of the policy network is shown in Fig. 3.9, the sampling of the autoregresssive policy
is depicted in Fig. 3.10 and the hyperparameters of the algorithm (including the
number of parameters) are given in Table 4.2.

Training Procedure: Proximal Policy Optimization (PPO)

In each iteration of the policy gradient algorithm, a batch of sampled trajectories
{τ k} = {(ak1, · · · , akq)}Mk=1 are rolled out (i.e. sampled) from the current policy, where
M is the batch/sample size. Then, the return R(τ k) corresponding to trajectory τ k

is computed as

R(τ k) =

q∑
j=1

Rk
j = −E({αk

j}qj=1, τ
k)/N.

To compute the energies, we use the low-level optimization to determine the best-
estimated values of αj, given a sequence τ , see Sec. 3.9. To minimize the chance of
getting stuck in a suboptimal local minimum, each sequence is evaluated multiple
times, starting from a different initial realization for the αj-optimizer, and the best
result is selected [Sec. 3.11].

For every iteration, we can define three quantities for a fixed batch of samples: (i)
mean reward (over the current batch), (ii) max reward (over the current batch), and
(iii) history best (best-encountered reward over all the previous iterations). These
quantities measure the performance of the learned policy, and are shown in Fig. 4.4.
Figure 3.12 shows the scaling of these quantities for the spin-1 Ising chain, as a
function of the episode length q. The performance of CD-QAOA increases because
the action space for a larger value of q always contains as a subset the action space
for a smaller q.

In order to improve the policy represented by the autoregressive network, the RL
algorithm interacts with the quantum environment by querying the reward for samples
from the current policy. Each trajectory is assigned a reward, once the simulation of
the quantum dynamics is complete [note that, as of present date, the simulation may
be more expensive if evaluated on a quantum computer]. Thus, it is advantageous
to reduce the sample size needed to learn the policy, i.e., to improve the sample
efficiency.

The vanilla policy gradient method is known for its poor data efficiency. Thus, we
adopt Proximal Policy Optimization (PPO) [278], a more robust and sample-efficient
policy gradient type algorithm. To be more specific, we use the following clipped
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Figure 3.11: Spin-1 Ising model: training curves for CD-QAOA with energy minimization
as a cost function. The mean negative energy density (red) is computed for a sample
generated using the policy at the current iteration; max (blue) is the maximum within
the sample; the history best (green) is the best-encountered policy during the entire
training process (i.e., considering all iterations). Each curve shows the average out of three
simulations corresponding to three different seed values for the high level RL optimization;
the fluctuations around the seed-averages are shown as a narrow shaded area. The total
duration is T = 28 and the number of spin-1 particles is N = 8. The initial and target
states are |ψi⟩= | ↓ · · · ↓⟩ and |ψ∗⟩= |ψGS(H)⟩ for hz/J = 0.809 and hx/J = 0.9045. The
CD-QAOA action space is ACD-QAOA = {Z|Z+X,Z;Y,XY, Y Z,X|Y, Y |Z}, and we use
q=20.

objective function:

G(θ) = Eτ∼πθt

[
min

{
ρθ(τ)Aθt(τ), (3.8.3)

clip (ρθ(τ), 1− ϵ, 1 + ϵ)Aθt(τ)
}]
.

Here, τ = (a1, a2, · · · , aq) is the action sequence sampled from the previous policy
πθt [cf. Algorithm 4]. Typically, the policy from the last iteration is chosen to be

the old policy; ρθ(·) = πθ(·)
πθt

(·) is the importance sampling weight between the new
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Figure 3.12: Spin-1 Ising model: energy minimization against different circuit depths q
using CD-QAOA. The mean negative energy density (blue) is computed for a sample
generated using the final, learned policy; max (orange) is the maximum within the sample;
the history best (green) is the best encountered policy during the entire training process
(i.e., considering all iterations). The total duration T =20 and the values of q ranges from 8
to 24. The other model parameters are the same as in Fig. 4.4.

policy πθ and the old policy πθt ; Aθt(τ) = R(τ)− b is the advantage function, where
b is called a baseline: the advantage measures the reward gain of choosing a specific
action, w.r.t. the baseline. For example, a simple baseline can be the average reward,
e.g., b = Eτ∼πθt

[R(τ)], and then the advantage measures how much better (or worse)
an action is w.r.t. the average; in the numerical experiments, we use an exponential
moving average [cf. Sec. 3.8 for the details].
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Further, the clip function,

clip(r, x, y) = max
(

min (r, x) , y
)
,

clips the value of r within the interval [x, y], which is used to restrict the likelihood
ratio in the range [1− ϵ, 1 + ϵ]; this prevents the policy update from deviating too
much from the old policy after one gradient update. The clipped objective function
is designed to improve the policy as well as to keep it within some vicinity of the last
iteration, whence the name Proximal Policy Optimization.

We update the network parameters θ by ascending along the gradient of the RL
objective G(θ). To provide intuition about the PPO objective, consider the fol-
lowing limiting case. If we only have the first term in the objective, i.e. G1(θ) =
Eτ∼πθt

[ρθ(τ)Aθt(τ)], we obtain the following gradient:

∇θG1(θ) = Eτ∼πθt
[∇θρθ(τ)Aθt(τ)]

= Eτ∼πθt

[∇θπθ(τ)

πθt(τ)
Aθt(τ)

]
.

Since we are taking the gradient with respect to θ, it will pass through πθt and Aθt(τ).
Furthermore, whenever the parameters θ ≈ θt, the gradient above is identical to the
policy gradient:

∇θG1(θ) ≈ Eτ∼πθ

[∇θπθ(τ)

πθ(τ)
Aθ(τ)

]
= Eτ∼πθ

[∇θ log πθ(τ)Aθ(τ)].
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Figure 3.13: Spin-1 Ising model: Comparison of the mean reward with (β−1
S,{0} = 0.1)

and without (β−1
S = 0) the entropy bonus during training. For comparison, the dashed

horizontal line marks the performance of QAOA. The inset shows the evolution of the policy
information entropy during training. Adding entropy gives more room for the RL agent
to explore the space of policies instead of directly exploiting the knowledge it obtains. As
becomes clear from the figure, the RL algorithm with the entropy bonus achieves a better
final performance at the end of training, at the cost of suffering an intermediate lower
reward at the beginning of training. The simulation parameters are the same as in Fig. 4.4.

However, PPO performs multiple gradient updates on the sampled data, rendering
policy learning more sample efficient [278].
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Incentivizing Exploration using Entropy

Maintaining a balance between exploration and exploitation is another major challenge
for the reinforcement learning algorithm. Too much exploration prevents the agent
from adopting the best strategy it knows so far; on the contrary, too much exploitation
limits the agent from attempting new actions and achieving a potentially higher
reward. Therefore, it is more appropriate for the agent to explore substantially
in the initial iterations of the training procedure, and to gradually switch over to
exploitation towards the end of the training procedure.

In order to incentivize the agent to explore the action space at the beginning of training,
we include an entropy ‘bonus’ [366, 127] to the PPO objective from Eq. equation 3.8.3.
To do this, consider the maximal-entropy objective, where the agent aims to maximize
the sum of the total reward and the policy entropy S [cf. Eq. equation 3.8.5]:

J (θ)=G(θ)+β−1
S S(πθ) (3.8.4)

=Eτ=(a1,··· ,aq)∼πθt

[
min{ρθ(τ)Aθt(τ), clip (ρθ(τ), 1− ϵ, 1 + ϵ)Aθt(τ)}

+ β−1
S

q∑
j=1

S
(
πθ( · |a1, · · · , aj−1)

)]
,

where S
(
πθ( · |a1, · · · , aj−1)

)
≡ S

(
πθ( · )

)
, for j = 1. The trade-off between explo-

ration and exploitation is controlled by the coefficient β−1
S , which carries a meaning

analogous to temperature in statistical mechanics: for β−1
S → 0 (or βS → ∞), any

exploration is limited to the intrinsic probabilistic nature of the policy; if training is
successful, it is expected that, for deterministic environments, the policy eventually
converges to a delta distribution (over the action space) at the later training itera-
tions; this may deteriorate exploration and learning. However, in the opposite limit,
β−1
S →∞ (or βS → 0), every action is selected with equal probability, and the values

of the policy π become irrelevant. Therefore, in practice, we use a decay schedule for
the inverse temperature β−1

S to gradually reduce exploration [see Sec. 3.8].

Since the marginal distribution πθ( · ) and conditional distribution πθ( · |a1, · · · , aj−1)
are discrete categorical distributions over A, we can compute a closed form expression
for the entropy of the categorical distribution policy. For trajectory τ i =(ai1, · · · , aiq),
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the j-th term in the entropy bonus simplifies to

S
(
πθ(·|ai1, · · · , aij−1)

)
(3.8.5)

=−
∑
a∈A

πθ(a|ai1, · · · , aij−1) log πθ(a|ai1, · · · , aij−1).

We emphasize that the entropy considered here is the Shannon or information entropy
associated with the policy as a probability distribution, and should be contrasted
with the thermodynamic entropy, associated with the logarithm of the density of
protocol configurations (a.k.a. density of states) in the optimization landscape. The
Shannon entropy helps exploration in the space of policies, and thus the annealing of
the corresponding Lagrange multiplier, β−1

S , is not related to thermal annealing in
the optimization/energy landscape in a straightforward manner. Moreover, notice
that the policy optimization is part of the classical postprocessing of the quantum
data, i.e., it does not compromise the nature of the quantum data which is fed to the
algorithm in form of rewards.

Figure 3.13 shows a comparison of PPO with and without entropy, as controlled by
the value of the temperature β−1

S . Introducing the policy information entropy keeps
the policy a bit broader in the initial stages of training which enhances exploration;
towards the end of training the information entropy is not needed: therefore, we
gradually “anneal” β−1

S , cf. Sec. 3.8.

Technical Details

We train the CD-QAOA algorithm for 500 epochs/iterations with a mini-batch size of
M = 128. Throughout the training, we sample trajectories according to the marginal
and conditional policy distributions given by the autoregressive network.

We use Adam to perform gradient descent on the objective in Eq. equation 4.3.6
with the default parameters β1 = 0.9 and β2 = 0.999, which define the exponential
decay rate for the first and second moment estimates, respectively. The learning
rate is initialized as α{lr,0} = 0.01 and decays by a factor of 0.96 every 50 steps in a
staircase fashion. To be more precise, the learning rate at the k-th iteration with the
exponential decay reads as αlr,{k} = 0.01 · 0.96⌊∗⌋k/50. The subscript {k} denotes the
iteration/episode number.

We also introduce an exponential decay schedule for the pre-factor [a.k.a. temperature]
β−1
S of the entropy bonus from Eq. equation 4.3.6. The temperature initializes at
β−1
S,{0} = 0.1 and decays by a factor of 0.9 every 10 steps. At the k-th iteration, the

temperature is β−1
S,{k} = 0.1 · 0.9k/10. Eventually, the temperature is annealed to zero.
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We estimate the advantage function by Aθold(τ) = R(τ)− b, where b is the baseline
used to reduce the variance of the estimation. Our baseline b uses an exponential
moving average (EMA) of the previous rewards. EMA stabilizes the training and also
leverages the past reward information to form a lagged baseline. In practice, we find
that the RL algorithm can achieve better rewards compared with using the average of
current samples as the baseline. To be more specific, the exponential moving baseline
update is b{k} = ηb{k−1} + (1−η)R̄{k}, where b{0} = 0 and η = 0.95. Here, R̄{k} is the

sample average of the reward at the k-th iteration, i.e. R̄{k} = 1
M

∑M
i=1R

i
{k}(τ

i).

In terms of policy optimization, we perform multiple steps of ADAM on the objective
[Eq. equation 4.3.6]. The gradient update steps are 4 per minibatch. The clipped
parameter in the objective is set to ϵ=0.1.

The hyperparameters of the algorithm are listed in Table 4.2.
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Algorithm 2 CD-QAOA with autoregressive network based policy

Input: batch size M , learning rate ηt, total number of iterations Titer, exponential
moving average coefficient m, entropy coefficient β−1

S , PPO gradient steps K.
1: Generate and select the gauge potential sets A using Algo. 3.
2: Initialize the autoregressive network and initialize the moving average R̂=0.
3: for t = 1, .., Titer do
4: Autoregrssively sample a batch of discrete actions of size M , denoted as B:

τ k =(ak1, a
k
2, · · · , akq) ∼ πθ (a1, a2, · · · , aq) , k = 1, 2, · · · ,M.

5: Apply the SLSQP solver to the lower-level continuous optimization (cf. Sec 3.9):

min
{αk

j }
q
j=1

{
N−1E({αk

j}qj=1, τ
k)

∣∣∣∣ q∑
j=1

αk
j = T ; 0 ≤ αk

j ≤ T

}
.

6: Use the negative energy density as the return and compute the moving average:

Rk = −N−1E({αk
j}qj=1, τ

k), R̂ = m · R̂ + (1−m) · 1

M

M∑
k=1

Rk.

7: Compute the advantage estimates Ak = Rk − R̂.
8: Initialize the parameter θ

[1]
t+1 =θt.

9: for κ=1, .., K do
10: Evaluate the likelihood of samples using the parameters from last iteration

and current iteration, i.e. πθt(τ
k), π

θ
[κ]
t+1

(τ k), and compute the importance

weight ρ
[κ]
k =π

θ
[κ]
t+1

(τ k)/πθt(τ
k).

11: Use the advantage estimate and importance weight to compute Gk,Sk, fol-
lowing Eq. equation 3.8.3 and Eq. equation 3.8.5.

12: Compute the CD-QAOA objective Eq. equation 4.3.6 and backpropagate to
get the gradients:

∇θJ (θ
[κ]
t+1) =

1

M

∑
{a{k}j }qj=1∈B

∇θ

[
G [κ]k + β−1

S S
[κ]
k

]
.

13: Update weights θ
[κ+1]
t+1 ← θ

[κ]
t+1 + ηt∇θJ (θ

[κ]
t+1).

14: end for
15: Update the parameter θt+1 ← θ

[K+1]
t+1

16: end for
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Parameter Value

optimizer Adam [163]
learning rate (η{0}) 1 · 10−2

learning rate decay steps 50
learning rate decay factor 0.96
learning rate decay style Staircase
RL temperature (β−1

S,{0}) 1 · 10−1

RL temperature decay steps 10
RL temperature decay factor 0.9
RL temperature decay style Smooth
baseline exponential moving decay factor (m) 0.95
gradient steps (PPO) 4
clip parameter ϵ 0.1
number of hidden layers 2
number of hidden units per layer (dhidden) 112
nonlinearity ReLU
number of samples per minibatch (M) 128

Table 3.3: Hyperparameter values for training the autoregressive deep learning model. In
the case of |ACD−QAOA|=9, q=18 [cf. Eq. equation 3.3] the total number of parameters is
24431; for |ACD−QAOA|=7, q=20 [cf. Eq. equation 3.7] the total number of parameters is
21985.

3.9 Low-level optimization: finding optimal

protocol time steps αj

In order to determine the values of the time steps αj, we proceed as follows. For any
given sequence of actions (or protocol sequence) τ=(a1, · · · , aq) of total duration T ,
we solve the following low-level optimization problem:

min
{αj}qj=1

{
N−1E({αj}qj=1, τ)

∣∣∣∣ q∑
j=1

αj = T ; 0 ≤ αj ≤ T

}
(3.9.1)

where q is the sequence length (circuit depth), N is the system size, and E(·) is the
energy of the final quantum state [cf. Eq. equation 3.2.2] after evolving the initial
quantum state |ψi⟩ according to the fixed protocol τ .

Note that the αj-optimization is both bounded and constrained. It fits naturally into
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the framework of the Sequential Least Squares Programming (SLSQP). SLSQP solves
the nonlinear problem in Eq. equation 3.9.1 iteratively, using the Han-Powell quasi-
Newton method with a Broyden–Fletcher–Goldfarb–Shanno (BFGS)[238] update of
the B-matrix (an approximation to the Hessian matrix), and an L1-test function
within the step size.

During each iteration of policy update, a batch of trajectories {τ i} = {(ai1, · · · , aiq)}Mi=1

is sampled. Each trajectory sequence τ i is assigned a reward, by solving the optimiza-
tion problem in Eq. equation 3.9.1. Since performing the low-level optimization in
Eq. equation 3.9.1 is independent of the high-level optimization discussed in Sec. 3.8,
we run the former concurrently to boost the efficiency of the algorithm. We distribute
every sequence τ i =(ai1, · · · , aiq) to a different worker process and aggregate the results
back to the master process in the end. In practice, we use the batch size M =128,
and we distribute the simulation on 4 nodes with 32 cores each, so that each core
solves only one optimization at a time.

Recently, it was demonstrated that it is possible to perform the continuous optimiza-
tion on par with the discrete one, which eliminates the need to use a solver and
results in a fully RL optimization approach [351].

3.10 Scaling with the number of particles N , the

protocol duration T , and the circuit depth q

Next, we discuss the computational scaling of CD-QAOA. While there are a number
of (hyper-)parameters in the algorithm, here we focus on the system size N , the
protocol duration T , and the circuit depth q – which are physically the most relevant
ones. We also consider the continuous and discrete optimization steps separately (the
continuous step being also an essential part of conventional QAOA).

When it comes to the continuous optimization performed by a solver [cf. Sec. 3.9],
the main computational cost comes from the quantum evolution itself. The basic
operation inside the solver is a multiplication of the matrix exponential exp(−iαjHj)
by the state |ψi⟩. The Hamiltonian Hj is stored as a sparse matrix, and the action of
the matrix exponential onto the quantum state, exp(−iαjHj) |ψi⟩, can be evaluated
without computing the matrix exponential itself with the help of a sparse matrix-vector
product; this operation scales exponentially with the system size N , i.e. O(exp(cN))
for some constant c. If we denote the sequence length (a.k.a. circuit depth) by q,
then the total cost for evaluating a single value of the continuous angle α scales as
O(q exp(cN)). We stress that this cost is also incurred by conventional QAOA.
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N T q tsolver (sec/iter) tRL (sec/iter)

10 20 20 57.254± 13.829 0.042± 0.005

8 20 20 17.24± 2.554 0.055± 0.024

6 20 20 10.559± 3.963 0.028± 0.004

4 20 20 6.021± 5.149 0.027± 0.002

10 28 20 68.55± 19.044 0.055± 0.019

10 24 20 61.425± 15.171 0.038± 0.009

10 20 20 57.254± 13.829 0.042± 0.005

10 16 20 49.043± 12.447 0.041± 0.007

10 12 20 39.33± 13.976 0.038± 0.006

10 8 20 24.689± 14.348 0.033± 0.008

10 4 20 7.023± 2.651 0.025± 0.001

8 20 24 20.723± 3.903 0.065± 0.024

8 20 20 17.24± 2.554 0.055± 0.024

8 20 16 12.626± 3.129 0.024± 0.004

8 20 12 8.641± 2.654 0.02± 0.003

8 20 8 5.511± 2.18 0.016± 0.002

8 20 4 2.092± 1.312 0.011± 0.002

Table 3.4: Wall clock running time of the two-level CD-QAOA optimization steps for the
with different system sizes N , protocol durations T , and circuit depths q. The right-hand
side of the table shows the time used for the lower-level solver (column tsolver) and the time
spent for the high-level RL algorithm (column tRL) at every successful iteration. The total
cost can then be obtained by multiplying the time for tsolver by the appropriate number
of repetitions (e.g., continuous solver realizations, policy sample batch size, PPO training
episodes, etc.), taking into account any parallelization if present. Every number represents
an average over 40 independent runs with the corresponding standard deviation shown; the
significant deviation in tsolver is caused by the random initial solver state used which causes
the algorithm to take a different number of steps to converge within the given tolerance,
cf. Sec. 3.11. This test is carried out on a single processor Intel Core i7-8700K CPU 6-core
3.70GHz.
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For the discrete optimization performed using reinforcement learning [Sec. 3.8],
notice first that the machine learning model is agnostic to the physical quantum
model, because we do not use information about the quantum model to train the
policy, cf. Sec. 3.8. Because the policy input is, by construction, independent of
the quantum state, the input layer of the neural network architecture is shielded
from the exponential growth of the physical Hilbert space with N . Hence, the deep
neural network is independent of the Hilbert space dimension. Further, we use an
autoregressive network model which scales linearly with the sequence length q, and
also linearly with the size of the available action set |A|. Thus, the total computational
cost for the reinforcement learning optimization scales as O(q|A|). The scaling of
the neural network with the variational networks parameters (weights and biases) is
trivially given by the matrix-vector multiplication, as is the case for typical ML deep
networks, and is also independent of the physics of the controlled system.

A comparison of the wall clock time for the discrete and continuous optimization steps
is provided in Table 3.4. We distinguish between the continuous solver optimization
and the discrete RL optimization, and show the average times for one successful step
of each in the two columns on the right-hand-side. The total cost can then be obtained
by multiplying the time for tsolver by the appropriate number of repetitions (e.g.,
continuous solver initial conditions, policy sample batch size, PPO training episodes,
etc.), and by multiplying the time for tRL by the number of PPO iterations, thereby
taking into account any parallelization if used; for instance, the most expensive
simulation we performed ran for about 109 hours on four nodes (Intel Xeon Skylake
6130 32-core 2.1 GHz) to produce the N = 10, T = 12, q = 20 data point shown in
Table 3.2.

We emphasize that the time tsolver required for the continuous optimization is an
essential part of conventional QAOA, and is the current limiting factor for reaching
large system sizes, as is the case in merely all simulations of quantum dynamics
on classical computing devices. In sharp contrast, the cost for training the deep
autoregressive network is N -independent, and tRL per iteration is negligible; however,
the choice of RL algorithm can strongly impact the number of iterations. CD-QAOA
is, thus, suitably designed for potential applications on quantum simulators and
quantum computers which will enable accessing large system sizes bypassing the
exponential bottleneck intrinsic to simulations of quantum dynamics on classical
devices.
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Figure 3.14: Spin-1/2 Ising model: Visualization of the continuous optimization landscape
for the durations αj in the fidelity-entanglement entropy plane, for the best sequence found
by the RL agent [see Sec. 3.11]. Each point corresponds to a local minimum, obtained
using the SLSQP optimizer, starting from a uniformly drawn random initial condition. The
system size is N = 16, and the rest of the parameters are the same as in Fig. 3.1.

3.11 Many-Body Control Landscape

Let us briefly address the question about how hard the many-body ground state
preparation problems are, that we introduced in the main text. To this end, recall
that CD-QAOA has a two-level optimization structure: (i) discrete optimization to
construct the optimal sequence of unitaries [Sec. 3.8], and (ii) continuous optimization
to find the best angles, given the sequence, to minimize the cost function [Sec. 3.9].
Here, we focus exclusively on the continuous optimization landscape, and postpone
the discrete landscape to a future study.

The RL agent learns in batches/samples of M = 128 sequences, which sample the
current policy at each iteration step and provide the data set for the policy gradient
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algorithm. To evaluate each sequence in the batch, we use SLSQP to optimize for
the durations αj in a constrained and bounded fashion:

∑
j αj = T and 0 ≤ αj ≤ T

[cf. Sec. 3.9]. This provides us with the full unitary U({αj}qj=1, τ); applying it to the
initial state we obtain the reward value for this sequence. This procedure repeats
iteratively as the RL agent progressively discovers improved policies.

Once the RL agent has learned an optimal sequence, i.e. after the optimization
procedure is complete, we focus on the best sequence from the sample, and examine
how difficult it is to find the corresponding durations αj using SLSQP. To this end,
we draw q values at random from a uniform distribution over the interval [0, T/q],
and use them as initial conditions for the αj, to initialize the SLSQP optimizer

with. We use the same q as the circuit depth so that the initial durations α
(0)
j are,

on average, equal. We then repeat this procedure P times, and generate a sample

M =
{
{αn

j }qj=1

}P
n=1

of the local minima in the optimization landscape for αj’s. The
larger P , the better our result for the true reward assigned to τ is.

Notice that, in the beginning of the training, the RL agent is still in the exploration
stage and the reward estimation does not need to be too accurate; this reward
estimation needs to be more accurate as the agent switches over exploitation during
the end of the training. In order to make the algorithm computationally more efficient,
we introduce a linear schedule for the number of realizations of the αj-optimizer,
starting from 3 with an increment of 1 every 30 iteration steps, i.e. P tot

{k} =3 + ⌊k/30⌋,
where subscript k indicates the iteration number for the RL policy optimization.
In order to further save time in the reward estimation, we also introduce some
randomness here by sampling P{k} from a uniform distribution over 1, 2, · · · , P tot

{k}.

Even though they all correspond to the same sequence, every local minimum in
M represents a potentially different protocol, since the durations αj will cause the
initial quantum state to evolve into a different final state. We can evaluate for every
protocol in M the negative log-fidelity, − logFτ (T ), and entanglement entropy of

the half chain, S
N/2
ent . Since the target state for the Ising model is an ordered ground

state, it has area-law entanglement. Figure 3.14 shows a cut through the landscape
in the fidelity-entanglement entropy plane for a few different durations T for the
spin-1/2 Ising model. The better solutions are located in the lower left corner. The
proliferation of local minima across the quantum speed limit has recently been studied
in the context of RL [82] and QAOA [209]. This behavior indicates the importance of
running many different SLSQP realizations, or else we may mis-evaluate the reward
of a given sequence and the policy gradient will perform poorly.

Figure 3.14 also provides a plausible explanation for the destruction of the scaling
collapse for T ≳ TQSL [Fig. 3.2]. Although the precision of the SLSQP optimizer
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is set at 10−6, the energy curves for large durations no longer fall on top of each
other with a larger relative error. Hence, the occurrence of many local minima of
roughly the same reward, which correspond to different protocols, effectively removes
any universal features from the obtained solution; therefore, different system size
simulations end up in different local minima.

3.12 Variational Gauge Potentials

Consider the generic Hamiltonian

H(λ) = H0 + λH1, (3.12.1)

with a general smooth function λ = λ(t). We define a state preparation problem
where the system is prepared in the ground state of H0 at time t = 0, and we want
to transfer the state population in the ground state of H by time t = T .

Unlike adiabatic protocols, counter-diabatic driving relaxes the condition of being in
the instantaneous ground state of H(λ) during the evolution. The idea is to reach the
target state in a shorter duration T (compared to the adiabatic time) at the expense
of creating controlled excitations [w.r.t. the instantaneous H(λ)] during the evolution,
which are removed before reaching the final time T . To achieve this, one can define a
counter-diabatic Hamiltonian HCD. In general, the original H(λ) differs from HCD,
whose ground state the system follows adiabatically:

HCD(λ) = H(λ) + λ̇Aλ, (3.12.2)

where Aλ is the gauge potential; Aλ is defined implicitly as the solution to the
equation [173]

[∂λH + i[Aλ, H], H] = 0. (3.12.3)

The boundary conditions HCD(λ(0)) = H(λ(0)) and HCD(λ(T )) = H(λ(T )) impose
the additional constraint λ̇(0) = 0 = λ̇(T ) which suppresses excitations at the
beginning and at the end of the protocol.

Using Eq. equation 3.12.3, one can convince oneself that the gauge potential Aλ of a
real-valued Hamiltonian H is always imaginary-valued [173].

For generic many-body systems, it has recently been argued that the gauge potential
Aλ is a nonlocal operator [280]. Nevertheless, one can proceed by constructing a
variational approximation X ≈ Aλ, which minimizes the action

S(X ) = ⟨G2(X )⟩ − ⟨G(X )⟩2, G(X ) = ∂λH + i[X , H]. (3.12.4)
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For ground state preparation, ⟨·⟩ = ⟨ψGS(λ)| · |ψGS(λ)⟩ is the instantaneous ground
state expectation value w.r.t. H(λ). More generally, one can use ⟨·⟩ = Tr(ρth × (·)),
where ρth ∝ exp(−βH) is a thermal density matrix at temperature β−1: for β →∞,
we recover the ground state expectation value; for β → 0 all eigenstates are weighted
equally.

We mention in passing that alternative schemes to approximation the adiabatic gauge
potential have also been considered [140].

Spin Hamiltonians

Real-valued Spin-1/2 Hamiltonians

Let H now be a real-valued spin-1/2 Hamiltonian with translation and reflection
invariance. Such a system is given, e.g., by the mixed-field Ising model, discussed
in the main text. We now construct an ansatz for the variational gauge potential X
which obeys these symmetries, and is imaginary valued.

We can organize the terms contained in X according to their multi-body interaction
type, as follows. The only single-body imaginary valued term we can write is∑

j βjS
y
j . Translation and reflection symmetries, whenever present in H, further

impose that the coupling constant βj = β be site-independent, i.e. spatially uniform.
Hence, this is the zeroth-order term in our variational gauge potential construction,
cf. Eq. equation 3.12.5.

Next, we focus on the two-body terms. Because the exact Aλ is imaginary valued for
real-valued Hamiltonians, we may only consider interaction terms where Sy appears
precisely once: SxSy and SySz. For spin-1/2 systems, the two operators have to
act on different sites, or else one can further simplify their product to single-body
operators using the algebra for Pauli matrices. Once again, translation invariance
dictates that the coupling constants are uniform in space, while reflection invariance
requires us to take a symmetric combination. Imposing further that the interaction
be short-range (we want to construct the most local variational ansatz), we arrive at

X ({β(k)
l })=

∑
j

β
(0)
0 (λ)Sy

j + β
(0)
1 (λ)

(
Sx
j+1S

y
j +Sy

j+1S
x
j

)
+

+β
(1)
1 (λ)

(
Sz
j+1S

y
j +Sy

j+1S
z
j

)
. (3.12.5)

The coefficients β
(k)
l are the variational parameters that we need to determine to

find the approximate CD protocol. To find their optimal values, we minimize the
action S(X ) [173]. Note that, since we do not have a closed-form expression for the
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instantaneous ground state of H(λ), we do the minimization numerically at every
fixed time t along the protocol λ(t) [cf. Sec. 3.12].

We can, in principle, add the next order terms to the series; however, they will either
be less local, or consist of three- and higher-body interactions, which is hard to
implement in experiments.

Real-valued Spin-1 Hamiltonians

The situation is more interesting for spin-1 systems: the eight-dimensional Lie algebra
su(3), which generates SU(3), contains three distinct imaginary-valued directions,
which form a closed subalgebra su(2) ⊊ su(3), and hence there is more room to
generate imaginary-valued combinations. To find all imaginary-valued terms consistent
with a set of symmetries, we use QuSpin’s functionality to implement an algorithm
[Sec. 3.12] that lists them for generic bases [328, 329].

Translation and Reflection Symmetric spin-1 Hamiltonians, such as the
spin-1 Ising and Heisenberg models, have a similar expansion to their spin-1/2
counterparts, but allow for more terms. Restricting the expansion to two-body terms,
we have

X ({β(k)
l })=

∑
j

[
β
(0)
0 (λ)Sy

j + β
(0)
1 (λ)

(
Sx
j S

y
j +Sy

j S
x
j

)
+β

(0)
2 (λ)

(
Sz
jS

y
j +Sy

j S
z
j

)
+β

(1)
0 (λ)

(
[Sx

j+1 − aSx
j ]Sy

j +[Sy
j+1 − aSy

j ]Sx
j

)
(3.12.6)

+β
(1)
1 (λ)

(
[Sz

j+1 − bSz
j ]Sy

j +[Sy
j+1 − bSy

j ]Sz
j

) ]
.

where the constants a and b are chosen so that all five terms are mutually orthogonal
w.r.t. the scalar product induced by the trace (i.e. Hilbert-Schmidt) norm; this ensures
the linear independence of the constituent terms. Note that the three imaginary-valued
on-site terms correspond precisely to the imaginary-valued su(2) ⊊ su(3).

Adding Magnetization Conservation and Spin Inversion Symmetry further
reduces the allowed terms in the series. Therefore, one has to restrict to three- and
four-body terms:

X ({ζ(k)l }) =
∑
j

ζ
(2)
0 (λ)

(
iS+

j S
−
j+1S

z
j+2 + iSz

jS
−
j+1S

+
j+2 + h.c.

)
+

ζ
(3)
0 (λ)

(
iS−

j S
z
jS

+
j+1S

z
j+1 + iS+

j S
z
jS

−
j+1S

z
j+1 + h.c.

)
,

(3.12.7)
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Figure 3.15: Spin-1 Ising chain. Time dependence of the optimal coefficients β
(k)
l (λ(t)) in the

variational gauge potential (Eq. 3.12.6) with translation and reflection symmetry, determined
from the procedure in Sec. 3.12. The total duration T = 12 with the time discretization
step ∆t=0.2, and the system size N = 8. The protocol we used is λ(t)=sin2

(
πt
2T

)
. The

other model parameters are the same as in Fig. 3.7.

Because these terms are multi-body and less local, we refrain from using them in
CD-QAOA in the present study. We merely list them here for completeness.

As explained in the main text, to apply CD-QAOA for many-body ground state
preparation, we consider the constituent terms in X as independent generators
{Hj}|A|

j=1. This comes in contrast to the variational gauge potential method where the

ratios between the coefficients β
(k)
l play an important role.
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Variational Gauge Potential Ansatz for the Lipkin-Meshkov-Glick Model

As explained in the main text, the Lipkin-Meshkov-Glick (LMG) Hamiltonian,
cf. Eq. equation 3.4.3, models homogeneously interacting spin-1/2 particles on an
all-to-all connected graph in the presence of an external field. Here, we compute the
lowest-order terms appearing in the series for the variational gauge potential X , going
beyond Ref. [136].

The starting point is the LMG Hamiltonian

H = − J
N

(Sx)2 + h (Sz +N/2) . (3.12.8)

We introduce two bosonic modes, s and t, where Sz = t†t − N/2 = nt − N/2 and
S+ = t†s, and cast the LMG Hamiltonian in the form

H = ht†t− J

4N

(
t†s+ s†t

)2
. (3.12.9)

Recalling once again that real-valued Hamiltonians have imaginary-valued gauge
potentials, and that gauge potentials do not have diagonal matrix elements, we make
the following ansatz:

X ({β(k)
l })=β

(0)
0 (λ)Y + β

(1)
1 (λ)X̂Y + β

(0)
1 (λ)ẐY , (3.12.10)

where

Y = Sy =
i

2

(
s†t− t†s

)
,

X̂Y =
1

N
(SxSy + SySx) = − i

2N

[
(t†s)2 − (s†t)2

]
,

ẐY =
1

N

((
Sz +

N

2

)
Sy + Sy

(
Sz +

N

2

))
=

i

2N

(
s†t†tt− st†tt† + s†tt†t− st†t†t

)
. (3.12.11)

To compute the matrix elements of the gauge potentials, we define the basis

|N, nt⟩ =

(
t†
)nt
(
s†
)N−nt√

nt!(N − nt)!
|0⟩, with nt = 0, . . . , N.
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The gauge potentials have the following non-zero matrix elements (plus their conju-
gates to make the operators hermitian):

⟨N, nt|Y |N, nt + 1⟩ = − i
2

√
(nt + 1)(N − nt),

⟨N, nt|X̂Y |N, nt + 2⟩ =
i

2N

√
(nt + 2)(nt + 1)(N − nt − 1)(N − nt),

⟨N, nt|ẐY |N, nt + 1⟩ =
i

2N
(2nt + 1)

√
(nt + 1)(N − nt). (3.12.12)

Numerical Minimization to obtain the Variational CD
Protocol

Since the action S in Eq. equation 3.12.4 is quadratic in the variational parameters
βj, it is possible to derive a generic linear system, whose solutions are the optimal
parameters of the variational gauge potential within CD driving [226].

Suppose that X =
∑r

j=1 βjHj is given by a linear combination of r gauge potential
terms. Then, it is straightforward to see that

G(X ) = ∂λH +
r∑

j=1

i[Hj, H]βj. (3.12.13)

Defining the operator-valued quantities B0 = ∂λH and Bj = i[Hj, H] and setting
β0 = 1, we arrive at the following expression for the variational action

S(X ) =

〈(
B0 +

∑
j

Bjβj

)2〉
−
(
⟨B0 +

∑
j

Bjβj⟩
)2

=
r∑

i,j=0

(
⟨BiBj⟩ − ⟨Bi⟩⟨Bj⟩

)
βiβj, (3.12.14)

which is a quadratic form in the unknown coefficients βj. To find the minimum of
S(X ) w.r.t. βj, we can take the derivative and set it to zero, to obtain the linear
system of equations for the optimal βj:∑

k

Mjkβk = −M0j (3.12.15)

where Mjk = ⟨BjBk⟩ + ⟨BkBj⟩ − 2⟨Bj⟩⟨Bk⟩. Solving the system we obtain the
minimum {βj}rj=1 of the variational action S.
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The ground state expectation values in the above procedure, as well as the Hamiltonian
H(λ(t)) depend implicitly on time t ∈ [0, T ] via the protocol λ(t). Therefore, to
find the time dependence of βj(t), we discretize the time interval [0, T ] into NT time
steps, and repeat the procedure at every time step. This yields βj(ti) at the time
steps ti. To recover the full functional dependence, we use a fine discretization mesh,
and apply a linear interpolation to βj(ti). Alternatively, notice that the coefficients
βj = βj(λ(t)) depend on time t only implicitly via the protocol λ. Therefore, it is
also possible to discretize the range of λ(t) instead.

For the spin-1 Ising model, the time-dependence of βj is shown in Fig. 3.15. This
defines HCD which generates the CD evolution. In Sec. 3.5 and Sec. 3.13, we compare
variational CD driving to CD-QAOA and conventional QAOA.

Algorithm for Generating Gauge Potential Terms in the
Presence of Lattice Symmetries

Finally, we also show the algorithm we used to determine the terms appearing in
the gauge potential expansions in Eqn. equation 3.12.5, equation 3.12.6, and equa-
tion 3.12.7, which obey a fixed set of symmetries.

In general, one can represent any local operator of the kind Ji1,··· ,ilO
γ1
i1
· · ·Oγl

il
as a

triple (Y , I, J), where J = Ji1,··· ,il is the coupling coefficient constant, I = (i1, · · ·, il)
is the set of sites the operators act on, and Y = (γ1, · · ·, γl) defines the types of
operators that act on the corresponding sites; the triple (Y , I, J) can then be used
to construct the operator.

In the following, we refer to the separate terms appearing in the gauge potential
series as ‘Hamiltonians’ Hj, i.e. X =

∑
j βjHj; a Hamiltonian is defined as H =∑

(i1,··· ,il)∈Λ Ji1,··· ,ilO
γ1
i1
· · ·Oγl

il
, where Λ is the lattice graph. As we argued above,

real-valued Hamiltonians have purely imaginary-valued gauge potentials; thus, the
coefficient J is chosen to be purely imaginary.

We build the series for the variational gauge potential X recursively: we first consider
a set Lelem of elementary operators O — the building blocks for the expansion: e.g.,
for the spin-1 chains, these can be the spin-1 operators Lelem = {S+, S−, Sz}. We
want to construct the terms in the expansion for X iteratively at a fixed order l,
e.g. l = 1 comprises single-body terms, l = 2 – two-body terms, etc. We also assume
that we have access to a routine which checks if a trial list of operators obeys a given
lattice symmetry; if not, the same routine returns the missing operators to be added
to the original list, so that the symmetry is now satisfied [e.g., such a routine is used
in QuSpin [328, 329]].
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The pseudocode we developed is shown in Algorithm 3. To construct multi-body
terms at a fixed order l, we define combinations of the elementary operators, and store
them in the list Lop; the way these combinations are built can be used to implement
constraints, such as particle/magnetization conservation, etc. This is implemented via
the product operator (Line 2 of Algorithm 3). It generates all possible combinations
of selecting l elementary operators with replacement. The sets of lattice sites that the
operators from Lop act on, are stored in the list Lsites (Line 3 of Algorithm 3). Then,
for each trial triple (Y , I, J), we make use of the routine to check the symmetry and
record any operators which do not respect it. We append these, so-called missing
operators, to the original list, and we keep checking the symmetry condition until
we obtain all operators that satisfy the symmetry (Line 10 -15 of Algorithm 3). The
finite number of combinations guarantees a termination in a finite number of steps.
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Algorithm 3 Generation of variational gauge potential

Input: a list of required symmetries Lsym, order l, a list of elementary operator types
Lelem.

1: Initialize empty list for gauge potential terms Lgauge.
2: Generate all possible combinations of local operators at order l

Lop = product(Lelem, repeat = l).

3: Enumerate all possible combinations of lattice sites Lsites the l-th order operators
act on.

4: for Y in Lop do
5: for I in Lsites do
6: Initialize an empty list LH

7: Set J = i (i =
√
−1).

8: Append (Y , I, J) to LH .
9: Set the flag IsSym = False.
10: while IsSym is False do
11: Set IsSym = True.
12: for sym in Lsym do
13: if exists missing operator (Y ′, I ′, J ′) then
14: Set IsSym = False.
15: Append (Y ′, I ′, J ′) to LH .
16: end if
17: end for
18: end while
19: Build Hamiltonian H using the triplets in LH .
20: if H or equivalents not included in Lgauge then
21: Append H to Lgauge .
22: end if
23: end for
24: end for
25: Return the list of gauge potential basis Lgauge.

product: Cartesian product, equivalents: equivalent mod scalar,

missing operator: the operator missed for the symmetry requirement

In order to avoid repeating previously identified Hamiltonians, we discard equivalent
Hamiltonians (Line 20 of Algorithm 3): two Hamiltonians are called equivalent when
one is a scalar times the other. Since here we consider imaginary-valued gauge
potentials, the multiple constant should be real. To test whether the Hamiltonians H1

https://docs.python.org/2/library/itertools.html#itertools.product
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and H2 are equivalent in practice, it suffices to test whether H1 is equal to ±∥H1∥
∥H2∥H2,

where we use the Hilbert-Schmidt norm.

3.13 CD-QAOA for Many-Body State

Preparation

Here, we provide a supplementary discussion on the performance of CD-QAOA for
many-body pure state preparation using the quantum spin chains introduced in the
main text. We refer the reader to the main text for the definition of various model
parameters; the short-hand spin operator notation used is defined in Table 3.1.

Spin-1/2 Ising Chain

First, we show results for the single-spin problem (J = 0):

H=H1+H2, H1 =hzS
z, H2 = hxS

x. (3.13.1)

In Fig. 3.16, we clearly see that CD-QAOA [red curve] has a smaller quantum speed
limit TQSL ≈ 4.0 than conventional QAOA [blue]; this is anticipated, since CD-QAOA
has a larger control space at its disposal. Moreover, we find that, for T < TQSL, CD-
QAOA only makes use of a single Y rotation by setting the durations αj associated
with any other unitaries from the set A, to zero. As mentioned in the main text,
conventional QAOA tries to represent this Y -rotation by means of Euler angles,
i.e. composed of X and Z rotations; in general, this results in a higher duration cost
to complete the population transfer (leading to a larger TQSL). However, for short
durations T , a Y -rotation can be exactly obtained using a proper sequence of the X
and Z terms. For these reasons, we find an exact agreement between the two curves
for small values of T ≲ 3.

Let us now switch on the spin-spin interaction strength J > 0; consider the spin-1/2
Ising chain

H = H1+H2, (3.13.2)

H1 =
N∑
j=1

JSz
j+1S

z
j +hzS

z
j , H2 =

N∑
j=1

hxS
x
j .

Figure 3.17 [top] shows a comparison of the best learned energies, between conventional
QAOA, and CD-QAOA for two sets (A,A′) with different number of unitaries:
|A| = 5, |A′| = 3 [see caption]. We find that additionally using only the single-particle
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Figure 3.16: Single spin-1/2 state preparation: energy density against protocol duration
for CD-QAOA with ACD−QAOA = {Z,X, Y } (red) and conventional QAOA with AQAOA =
{Z,X} (blue). The values of q is 3 for both methods. For conventional QAOA, we trained
two possible alternating patterns

(
i.e. (Z → X → Z) and (X → Z → X)

)
and pick the

best one for the comparison. The model parameters are the same as in Fig. 3.1 with J = 0.

gauge potential term Y [green line], typically accessible in experiments, one can
already obtain a higher-fidelity protocol than QAOA to prepare the ground state.
Interestingly, for short protocol durations T , the two-body gauge potential terms,
present in A but not in A′, do not contribute to improving the energy of the final
state, as can be seen from the agreement of the red and green lines for T ≲ 1.5.
This suggests that single-particle processes dominate over many-body processes when
it comes to lowering the energy of the z-polarized initial state, and implies that
the target ground state is single-particle-like (i.e. close to a product state). The
non-smooth behavior of the green curve at larger durations, is attributed to the
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ruggedness of the control landscape, as different runs of the SLSQP optimizer may
get stuck in one of the many suboptimal local minima [Sec. 3.11].

One may wonder if it is possible to prepare the ground state by straightforward
fidelity maximization. We define the many-body fidelity to transfer the population to
the target state using the unitary process U({αj}qj=1, τ), with

∑q
j=1 αj = T , as

Fτ (T ) = F ({αj}qj=1, τ)= |⟨ψ∗|U({αj}qj=1, τ)|ψi⟩|2. (3.13.3)

The fidelity can be less relevant from the perspective of many-body physics because
(i) the many-body fidelity is typically exponentially suppressed, and (ii) it requires a
reference to the ground state itself (which we seek) in order to be computed. However,
the fidelity of a quantum process is a widely used benchmark in quantum computing;
it also provides a better measure (than energy density) for the distance between two
states in the Hilbert space H.

Figure 3.17 [bottom] shows the many-body fidelity for N=14 spins. Unlike the inset
of Fig. 3.1 from the main text (where we show the fidelity associated with the protocol
obtained using energy density minimization), here we use the fidelity as a reward
function for QAOA. We observe that optimizing the fidelity behaves quantitatively
similar to optimizing the energy density. We would like to emphasize here once again
the advantage of the gauge potential ansatz: the conventional QAOA simulation
is done using q = 80 variational parameters αj [yet no significant improvement is
observed for q ≥ 4, cf. Fig. 3.1], while CD-QAOA requires only q = 3 variational
parameters.

Although the fidelity Fτ (T ) is anticipated to vanish for T < TQSL in the thermo-
dynamic limit, the negative log-fidelity density, −N−1 logFτ (T ), is more likely to.
Figure 3.18 [inset] shows the finite size scaling of the fidelity curves. Similar to the
energy density [Fig. 3.2], we obtain an almost perfect scale collapse. We verified
that maximizing the fidelity produces similar results as minimizing the negative
log-fidelity density for the spin-1/2 chain: at first sight, this is nontrivial because
Fτ (T ) is exponentially suppressed with the system size N for T < TQSL; however,
this behavior is likely explained by the generalization capabilities of the RL agent
from small to large system sizes [cf. Sec. 3.6].
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Anisotropic Spin-1 Heisenberg Chain

Next, we discuss in detail the ground state preparation process in the anisotropic
Heisenberg spin-1 chain:

H = H1+H2, (3.13.4)

H1 = J

N∑
j=1

(Sx
j+1S

x
j +Sy

j+1S
y
j ), H2 = ∆

N∑
j=1

Sz
j+1S

z
j ,

where the model parameters are defined in the main text.

An important detail worth mentioning is that the ferromagnetic ground state at
∆/J = −2.0 is two-fold degenerated (one state, corresponding to one of the two
z-polarizations). While being a trivial observation, this requires certain care when
analyzing the physics of the protocols the agent found. In particular, notice that
energy minimization is insensitive to this degeneracy, and hence the final state can
appear as an arbitrary superposition of the two ferromagnetic states, and still have the
correct ground-state energy. This leads to ambiguity when computing the fidelity of
being in the target state: related to this, the cost function landscape likely develops a
continuous one-dimensional structure for the (degenerate) global minima. Because we
are interested in energy minimization, here we define the fidelity using the projector
to the ground state manifold P = |ψ(1)

∗ ⟩⟨ψ(1)
∗ |+ |ψ(2)

∗ ⟩⟨ψ(2)
∗ |:

Fτ (T ) = F ({αj}qj=1, τ) = |⟨ψ(1)
∗ |U({αj}qj=1, τ)|ψi⟩|2

+|⟨ψ(2)
∗ |U({αj}qj=1, τ)|ψi⟩|2

where |ψ(1)
∗ ⟩, |ψ(2)

∗ ⟩ are any two orthonormal states which span the doubly degenerate
ground state manifold (e.g., the two FM ground states).

Figure 3.19 shows a comparison between CD-QAOA and conventional QAOA for
FM, XY, and Haldane target states: the top row shows the result of energy density
minimization [cf. Fig. 3.3]. The bottom row, on the other hand, displays the many-
body fidelity associated with the same protocols. For ∆/J = 0.5, CD-QAOA
allows reaching the target topological Haldane state already faster, as compared to
conventional QAOA. Notice also that the gauge potential ansatz appears essential for
reaching the target for both the XY (∆/J = −0.5) and FM states (∆/J = −2.0);
this becomes particularly obvious from the many-body fidelity curves. The latter also
reveals an interesting detail: at ∆/J = 0.5, a regime emerges around T ≈ 5, where
the QAOA fidelity is better than the CD-QAOA fidelity. However, this peculiarity
below the quantum speed limit can be explained, recalling that the RL agent is given
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the (negative) energy density as the reward signal, and not the fidelity (note that
CD-QAOA does outperform QAOA in energy).

In order to investigate in detail in the protocols found by CD-QAOA, we fix a duration
T , and consider the time evolution of the state, |ψ(t)⟩ = U({αj}qj=1, τ)|ψi⟩, for three
physical quantities:

(i) the energy
E(t) = ⟨ψ(t)|H∗|ψ(t)⟩

provides a measure of how far away in the cost function landscape the state is,
at any given time t ∈ [0, T ].

(ii) the instantaneous fidelity

Fτ (t) = |⟨ψ∗|ψ(t)⟩|2

(and its generalization to the doubly-degenerate ground state manifold), mea-
sures how far the current state is, from the target state |ψ∗⟩ in the Hilbert space;
typically, we choose the ground state as the target state |ψ∗⟩ = |ψGS(H)⟩.

(iii) the entanglement entropy of the half chain

S
N/2
ent (t) = −trA [ρA(t) log ρA(t)] , ρA(t) = trĀ|ψ(t)⟩⟨ψ(t)|,

where A denotes a contiguous spacial region with a complement Ā comprising
half the periodic chain, and ρA(t) is the reduced density matrix on A at time t.
For many-body systems, it is common to look at the entanglement entropy per
site, which for spin-1 systems lies within the interval 2N−1S

N/2
ent ∈ [0, log 3].

Figure 3.20 shows the time evolution of the energy, fidelity and entropy density, for
all three target states of interest. For ∆/J = 0.5, transferring the population from
the AFM initial state to the Haldane state can be obtained equally well using either
QAOA or CD-QAOA. Table 3.6(b) shows the optimal protocol found by the RL
agent: notice the three vanishing durations α2 = α17 = α18 = 0; factoring them out,
we recover precisely the conventional QAOA sequence (albeit with q odd). Thus, we
see that the CD-QAOA may converge to conventional QAOA whenever the latter
provides a high-reward sequence. This result exemplifies our claim that CD-QAOA
generalizes QAOA successfully. Of course, it is not clear whether this is the true
global minimum of the cost function landscape (the RL agent does make use of the
additional gauge potential terms for T < 7). Nevertheless, all physical quantities
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are expected to be prepared with similar accuracy under both protocols: to see this,
notice that the entanglement entropy density depends only on the quantum state
(unlike expectation values of observables), and that its value at t = T is close to the
value for the target state (dashed horizontal line). Importantly, the entanglement
remains area-law (as seen by the values being much smaller than the maximum
entropy per site, log(3), suggesting the existence of a local effective Hamiltonian
which generates the population transfer process dynamically.

The best sequence for targeting the XY state at ∆/J=−0.5 is shown in Table 3.6(a).
Although its structure is more complicated, factoring out the vanishing αj, we can
discern two clear patterns: (i) the sequence starts and ends with two different single-
particle basis rotations, and (ii) there is an alternating subsequence based on the
subset {X|X + Y |Y, Y } ⊊ ACD−QAOA. Interestingly, the only gauge potential term
used by the RL agent is the experimentally accessible single-particle Y rotation,
and it is sufficient to reach the target with a very high many-body fidelity. For
comparison, conventional QAOA appears insufficient to prepare the target state for
the circuit depth of q = 18 (p = 9). The advantage of CD-QAOA is also visible
in the entanglement entropy density curve: QAOA can easily lead to volume-law
entanglement, while CD-QAOA manages to generate as little entanglement as needed
for the target state.

The discrepancy between conventional QAOA and CD-QAOA is best visible in the
FM state preparation at ∆/J = −2.0. In this case, a näıve application of QAOA
with the set AQAOA = {X|X + Y |Y, Z|Z} is a priori doomed to fail: starting from
the initial AFM state, which is orthogonal to the target FM manifold, the resulting
QAOA unitaries leave the target AFM manifold invariant; in other words, transitions
between the initial and the target states are forbidden by selection rules within the
QAOA dynamics. Therefore, the many-body fidelity remains zero at all times during
the QAOA evolution. The energy and entanglement entropy curves certify that the
state does undergo nontrivial dynamics: similar to the XY state, QAOA creates
volume-law entanglement and cannot reach the FM ground state manifold in energy,
while CD-QAOA is well-behaved and sufficient to prepare the target. The CD-QAOA
protocol sequence is shown in Table 3.5(b): while we do not discern an obvious
pattern, we emphasize that this time the RL agent makes use of both single-particle
and two-body gauge potential terms.

Last, we show the system-size scaling of the energy curves for the three target states
in Fig. 3.21(b-d). Similar to the spin−1/2 Ising chain, we find very little system-size
dependence for the Haldane (b) and XY states (c). However, we cannot extrapolate
the results to the thermodynamic limit due to the relatively small system sizes we
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were able to investigate. system-size effects are more pronounced for the ferromagnetic
state (d), which is the one furthest away in Hilbert space from the initial perfect
antiferromagnet.

Last, we mention in passing that we do not show results on preparing the AFM
ground state at ∆/J=2.0 since this problem is somewhat trivial: indeed, starting
from a perfect AFM in the z-direction, the AFM ground state of the spin-1 Heisenberg
model can be easily reached even using adiabatic evolution because it lies within the
AFM phase.

Lipkin-Meshkov-Glick model

In the main text, we also introduced the ferromagnetic Lipkin-Meshkov-Glick (LMG)
model, described by the total spin Hamiltonian

H = − J
N

(Sx)2 + h

(
Sz +

N

2

)
.

Figure 3.22 shows the comparison between CD-QAOA and QAOA for two more values
of h/J = 0.1 (deep in the ferromagnetic regime), and h/J = 0.9 (close to the critical
point at h/J = 1.0). While the behavior for h/J = 0.1 is qualitatively similar to
h/J = 0.5 (discussed in the main text), we do see that close to the critical point the
two-body gauge potential terms X̂Y and ẐY may offer some degree of improvement
below the quantum speed limit, as compared to using only using the single-body Ŷ
term. We mention in passing that we observed a stronger system-size dependence in
the optimal protocol found by the RL agent in the immediate vicinity of the critical
point hc/J = 1.

Spin-1 Ising Chain

Finally, let us turn to the spin-1 Ising chain:

H(λ) = λ(t)H1+H2, (3.13.5)

H1 =
N∑
j=1

JSz
j+1S

z
j + hxS

x
j , H2 =

N∑
j=1

hzS
z
j ,

see main text for discussion of the model parameters. Using this model, we compare
four state preparation techniques: CD-QAOA, conventional QAOA, CD-driving using
a variational gauge potential, and adiabatic evolution.
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In order to compare these four methods, we first investigate their energy budget, i.e. the
amount of energy required by the corresponding protocols. This is necessary, since
variational CD-driving does not put any constraints on the magnitude of the expansion
parameters βj(λ) [cf. Sec. 3.12], and we know that larger energies (i.e. generators of
unitaries Hj with large norms) in general allow for a faster population transfer. To
measure quantitatively the energy budget of a protocol, we use the average energy
density along the protocol trajectory

N =
1

T

ˆ T

0

dt
∥H(t)∥
N

, (3.13.6)

where H(t) is a unified notation for the continuous protocols in the case of adiabatic
or CD driving, and the piecewise-constant (in time) sequences in CD-QAOA and
conventional QAOA; ∥H∥ denotes the Hilbert-Schmidt norm of the operator H. Since
we are interested in many-body systems, it is also natural to look at the energy
density, i.e. ∥H(t)∥/N . Figure 3.23 [bottom] shows that N is on a similar scale for all
four methods within the range of durations of interest, which allows for a meaningful
comparison between them. As expected, CD-driving approaches adiabatic driving at
large T , since the gauge potential term comes with a pre-factor λ̇ which vanishes for
T →∞; in the opposite limit of T → 0, the energy budget of CD-driving blows up,
as a result of βj(λ) being unconstrained.

In Fig. 3.23 [top], we see that the many-body fidelity, associated with the protocols ob-
tained using energy density minimization, increases the performance contrast between
the performance of the different methods [cf. Fig. 3.7, main text]. Since the fidelity is
defined as the overlap square of the final with the target states [Eq. equation 3.13.3],
like the entanglement entropy, it is insensitive to any specific observable; this implies
that CD-QAOA outperforms the other three methods on all observables, not just
energy. This is anticipated, because CD-QAOA combines the variational power of
QAOA with physical insights from CD driving. Despite its better performance, notice
how CD-QAOA also has a smaller energy budget than either of CD- and adiabatic
driving.

To demonstrate the nonequilibrium character of the optimal protocols found by the
RL agent in this setup, we fix T = 12, and look at the time evolution of the energy,
the fidelity, and the entanglement entropy within the learned protocol, cf. Fig. 3.24.
While the protocol sequence [Table 3.5(a)] appears impenetrable, we remark that (i)
the RL agent makes use of both single-particle and two-body gauge potential terms,
and (ii) some step durations αj are found to vanish identically, suggesting that the
value of q may be reduced. As anticipated, the behavior of the dynamics generated
by the CD and adiabatic driving is smooth, in contrast to the circuit-like piece-wise
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continuous curves of QAOA and CD-QAOA. The highly non-monotonic behavior of
the energy curve shows that the CD-QAOA dynamics can be highly nonequilibrium:
this likely stems from the RL objective [cf. Sec. 3.8] – the total expected return: the
agent only cares about maximizing the reward at t = T and is insensitive to any
intermediate values. This allows the agent to drive the system through various states
which are very far away from the target (e.g. w.r.t. the fidelity) [Curiously, these
bad-energy states are all distinct, since they have different entanglement entropy,
and the system does not visit the same quantum state twice during the evolution].
The non-smooth and non-monotonic behavior of the CD-QAOA solution raises the
question about how robust the protocol is, to small external perturbations – a topic
of future studies.
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(a) Ising spin-1

Hamiltonian Duration

X|Y 0.312
Y 0.299
Z 0.216
Y 0.717
Z 0.000
Y 0.537

Z|Z+X 0.477
Y 0.054

Z|Z+X 0.657
Z 0.000

Z|Z+X 0.269
Y |Z 0.274

Z|Z+X 0.478
Y |Z 0.372

Z|Z+X 0.000
Z 1.794
X|Y 0.072
Z 0.039
Y 1.007
Z 4.426

(b) Ferromagnetic (∆/J=
−2.0)
short-hand notation Duration

Y |Z−Y Z 0.122
X|X+Y |Y 0.178

Y Z 0.027
Z|Z 0.376

Y |Z−Y Z 0.234
Z|Z 0.000

X|X+Y |Y 0.323
Z|Z 0.284

Y |Z−Y Z 0.366
Z|Z 0.000

X|X+Y |Y 0.314
Z|Z 0.188

Y |Z−Y Z 0.535
Y 0.001
X|X 0.342
Z|Z 0.105

Y |Z−Y Z 0.538
X|X 0.208
Y 0.000
Z|Z 0.051
Y 0.658

Y |Z−Y Z 0.002
Y 0.900
Z 0.771
Y 0.005

X|Y −XY 0.474
Y |Z−Y Z 0.000
X|X+Y |Y 0.000

Table 3.5: Ising spin-1 chain and Anisotropic Heisenberg spin-1 chain: the protocol sequences
and corresponding durations given by CD-QAOA. The protocol (a) correspond to Ising
spin-1 in Fig. 3.24; the (b) corresponds to the Ferromagnetic phase in the same setting
as Fig. 3.20. The short-hand notation is the same in Table 3.1. We use a shaded cell
background whenever terms from the CD gauge potential are used in the protocol sequence.
Terms of zero durations are marked in light grey.
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(a) XY (∆/J=−0.5)
short-hand notation Duration

Y 0.795
X|X 0.000
Y 0.772

X|X+Y |Y 0.143
X|X 0.383
Y 0.001

X|X+Y |Y 0.284
X|X 0.180

X|X+Y |Y 0.467
X|X 0.113

X|X+Y |Y 0.635
X|X 0.097

X|X+Y |Y 0.617
Y 0.000
Z|Z 0.162

X|X+Y |Y 0.265
X|X 0.092
Z 1.995

(b) Haldane (∆/J=0.5)

short-hand notation Duration

X|X+Y |Y 0.149
X|X 0.000

X|X+Y |Y 0.052
Z|Z 1.376

X|X+Y |Y 0.313
Z|Z 0.668

X|X+Y |Y 0.187
Z|Z 0.723

X|X+Y |Y 0.289
Z|Z 0.528

X|X+Y |Y 0.218
Z|Z 0.561

X|X+Y |Y 0.254
Z|Z 0.684

X|X+Y |Y 0.360
Z|Z 0.639
X|X 0.000
Z 0.000

Table 3.6: Anisotropic Heisenberg spin-1 chain: the protocol sequences and corresponding
durations given by CD-QAOA. The (a), (b) correspond to the two phases (XY and Haldane)
in the same setting as Fig. 3.20. The short-hand notation is the same in Table 3.1. We
use a shaded cell background whenever terms from the CD gauge potential are used in the
protocol sequence. Terms of zero durations are marked in light grey.
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Figure 3.17: Spin-1/2 Ising model: energy minimization (top) and many-body fidelity maxi-
mization (bottom) against protocol duration T . We compare CD-QAOA with ACD−QAOA =
{Z|Z + Z,X;Y,X|Y, Y |Z} (red), CD-QAOA with A′

CD−QAOA = {Z|Z + Z,X;Y } (green),
and conventional QAOA with AQAOA = {Z|Z + Z,X} (blue). The model parameters are
the same as in Fig. 3.1 with the number of spins N=14.
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Figure 3.18: Spin-1/2 Ising model: many-body fidelity maximization and corresponding
quantity [inset, log scale] against protocol duration T for different system sizes N . The
QAOA parameters are q=3 and A = {Z|Z+Z,X;Y,X|Y, Y |Z}. The model parameters
are the same as in Fig. 3.1.
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Figure 3.19: Anisotropic Heisenberg spin-1 chain: energy minimization against protocol
duration T — the corresponding energy (top row) and many-body fidelity (bottom row)
for three ordered target states, corresponding to the ground state of the ferromagnetic
(left, ∆/J=−2.0), XY (middle, ∆/J=−0.5), and Haldane (right, ∆/J=0.5) target states,
respectively. The empty symbols mark the duration at which we show the evolution of the
system in Fig. 3.20. The model parameters are the same as in Fig. 3.3.
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Figure 3.20: Anisotropic Heisenberg spin-1 chain: time evolution generated by the protocol
given by CD-QAOA (blue line), and conventional QAOA (red line) for the three target
states, corresponding to the ferromagnetic (∆/J=−2.0), XY (∆/J=−0.5), and Haldane
(∆/J=0.5) target state, respectively. Three quantities are shown: many-body fidelity (first
row), energy ratio (second row), and the entanglement entropy density of the half chain
(third row). The horizontal dashed line in the entanglement entropy curve shows the value
in the target state, while the shaded area for the FM state denotes that in the span of
the doubly degenerate ground state manifold. The protocols correspond to the duration
T = 7 in Fig. 3.3. The related CD-QAOA protocol sequences are given in Table 3.5(b)
[ferromagnetic (∆/J=−2.0)], Table 3.6(a) [XY (∆/J=−0.5)] and Table 3.6(b) [Haldane
(∆/J=0.5)]. The simulation parameters are the same as in Fig. 3.3.
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Figure 3.21: system-size scaling of the energy minimization against protocol duration T
for different system sizes N : (a) spin-1 Ising chain, (b-d) anisotropic Heisenberg spin-1
chain for ∆/J = −2.0, ∆/J = −0.5, ∆/J = 0.5, respectively. Note that the y-axis scale is
different for the spin-1 Ising model in panel (a). The model parameters are the same as in
(a) Fig. 3.7 and (b-d) Fig. 3.3 correspondingly.
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Figure 3.22: LMG model: energy minimization against protocol duration T using conven-
tional QAOA (blue square) and CD-QAOA (red dashed line, green solid line). The model
parameters are the same from the settings in Fig. 3.5 but for h/J=0.1 (top panel), and
h/J=0.9 (bottom panel).
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Figure 3.23: Spin-1 Ising model: energy minimization against different protocol duration
T for four different optimization methods: CD-QAOA (red line), conventional QAOA (blue
line), variational gauge potential (green) and adiabatic evolution (magenta). Two associated
quantities are shown: many-body fidelity Fτ (top) and normalized time-averaged energy
density N over the protocol (bottom). The empty symbols mark the duration for which
the evolution of physical quantities is shown in Fig. 3.24. The parameters are the same as
in Fig. 3.7.
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Figure 3.24: Spin-1 Ising model: time evolution generated by the four different methods:
CD-QAOA (red), conventional QAOA (blue), CD driving using the variational gauge
potential (green) and adiabatic evolution (magenta). The three quantities are shown: the
many-body fidelity (left), energy (middle), and entanglement entropy of the half chain
(right). The protocols correspond to the empty symbols during T = 12 in Fig. 3.7. We
compare The horizontal dashed line in the entanglement entropy curve shows the value in
the target state. The CD-QAOA protocol sequence is given in Table 3.5(a). The model
parameters are the same as in Fig. 3.7.
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Chapter 4

Noise-Robust Deep Autoregressive
Policy Networks based variational
algorithms

Variational quantum eigensolvers have recently received increased attention, as they
enable the use of quantum computing devices to find solutions to complex problems,
such as the ground energy and ground state of strongly-correlated quantum many-body
systems. In many applications, it is the optimization of both continuous and discrete
parameters that poses a formidable challenge. Using reinforcement learning (RL),
we present a hybrid policy gradient algorithm capable of simultaneously optimizing
continuous and discrete degrees of freedom in an uncertainty-resilient way. The hybrid
policy is modeled by a deep autoregressive neural network to capture causality. We
employ the algorithm to prepare the ground state of the nonintegrable quantum Ising
model in a unitary process, parametrized by a generalized quantum approximate
optimization ansatz: the RL agent solves the discrete combinatorial problem of
constructing the optimal sequences of unitaries out of a predefined set and, at the
same time, it optimizes the continuous durations for which these unitaries are applied.
We demonstrate the noise-robust features of the agent by considering three sources
of uncertainty: classical and quantum measurement noise, and errors in the control
unitary durations. Our work exhibits the beneficial synergy between reinforcement
learning and quantum control.
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4.1 Introduction

The last decade has seen impressive breakthroughs in Machine Learning (ML), ranging
from image classification [268, 180] to mastering complex video and board games [221,
284]. ML algorithms have opened the door to solving major scientific challenges,
hitherto considered intractable, such as protein modelling [256] and folding [152], or
molecular dynamics simulations [202].

Deep learning tools and methods quickly found their way into the field of physics [98,
215, 55, 56]: Supervised learning was found efficient in identifying phase transitions
and analyzing experimental data [57, 313, 36, 262]. Unsupervised learning brought
a new class of variational many-body wavefunctions [54], as well as methods to
perform tomography on many-body quantum states [309], find conservation laws
from data [147], identify phase transitions [321, 177], Hamiltonian learning [311],
etc. Reinforcement learning (RL) [295] brought strategies for navigating turbulent
flows [261, 73, 25], and even exploring the string landscape [131].

The variational character of ML models combined with their intrinsic optimization
procedure, provide a natural playground for applications in quantum control [273,
318, 271, 105, 228, 4, 287, 336, 339, 10]. Due to the close relationship between control
theory and reinforcement learning, the control of quantum systems has become a
major application area of RL algorithms in physics. Notable examples include policy
gradient [237, 107, 19, 249, 325, 346, 292], Q-learning [65, 48, 50, 288, 37] and
AlphaZero [78].

Over the years, the physics community has also developed a number of successful
quantum control algorithms [161, 53, 244, 79, 204, 205], including GRAPE, CRAB,
and VQE. A prominent example of the latter is Quantum Approximate Optimization
Algorithm (QAOA) [102], whose versatility allows for solving complex combinatorial
problems using quantum computers [110, 97, 160, 159, 347, 300, 41]. Quantum
control algorithms, such as CRAB or QAOA, come with an ingenious physics-informed
variational ansatz for the structure of control protocols. RL algorithms, on the other
hand, are model-free and resilient to uncertainty. Hence, a natural question emerges
as to how one can combine the benefits offered by RL and quantum control in a
unified framework.

In this paper, our aim is to deploy a generalized QAOA ansatz in combination
with an end-to-end deep RL algorithm for a versatile continuous-discrete quantum
control [Sec. 4.2]. We adopt the continuous degrees of freedom of QAOA which offer
an increased control accuracy. Additionally, we consider an enhanced variational
control ansatz which contains a larger space to select the building blocks of the
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protocols from; this introduces a second, discrete combinatorial optimization problem.
The resulting algorithm, RL-QAOA, realizes greater gains by striking a balance
between robustness and versatility: it is resilient to various kinds of uncertainty, a
property shared with PG-QAOA [346]; at the same time, RL-QAOA has access to the
more general variational counter-diabatic (CD) driving ansatz [86, 208, 122] through
CD-QAOA [347].

However, RL-QAOA presents a number of new challenges, cf. Sec. 4.3. It requires a
mixed continuous-discrete action space so that the RL agent can construct a control
protocol by optimizing the order in which unitaries appear in the control sequence;
simultaneously, the agent has to also choose the continuous duration to apply each
unitary. This requires the use of a suitable ML model to approximate the policy,
which allows us to build in temporal causality. Therefore, an essential building block
of RL-QAOA is a novel monolithic deep autoregressive policy network that handles
continuous and discrete actions on equal footing. To train our RL agent, we derive an
extension of Proximal Policy Optimization (PPO) [278] to hybrid discrete-continuous
policies.

We apply RL-QAOA to find the ground state of a nonintegrable chain of interacting
spin-1/2 particles (a.k.a. qubits) in a fixed amount of time, cf. Sec. 4.4. The mixed
discrete-continuous degrees of freedom allow the RL agent to construct a short
protocol sequence away from the adiabatic regime. We test the agent’s behavior
in a strongly stochastic environment, by considering three different kinds of noise:
classical and quantum measurement noise, and errors in the control unitary gate
duration. In Sec. 4.5, we demonstrate that RL-QAOA is insensitive to the types of
noise applied, and outperforms previously developed algorithms based on QAOA in
the regime of strong noise.

4.2 Preliminaries

We start the discussion by introducing the QAOA ansatz used in quantum control.
Following a short overview of reinforcement learning terminology, we review two
RL-based QAOA algorithms — PG-QAOA and CD-QAOA — which we aim to blend
into a homogeneous hybrid in Sec. 4.3. The resulting new algorithm combines the
benefits of the generalized variational QAOA ansatz, with an RL algorithm performing
both continuous and discrete control simultaneously.



CHAPTER 4. NOISE-ROBUST DEEP AUTOREGRESSIVE POLICY
NETWORKS BASED VARIATIONAL ALGORITHMS 142

QAOA for Ground State Preparation

Of particular interest in the quest for designing new materials with novel features
(such as room-temperature superconductors, or topological quantum computers),
is the study of ground state properties in quantum many-body physics. Quantum
simulators provide an ideal platform to bring together both theory and experiment;
yet, they require the ability to prepare a system in its ground state – a formidable
challenge for modern quantum computing devices, due to the presence of various
sources of uncertainty and noise. The Quantum Approximate Optimization Algorithm
(QAOA) [102] provides a widely used state-of-the-art ansatz for this purpose.

Consider a quantum system of N qubits, described by the Hamiltonian H. Starting
from an initial quantum state |ψi⟩, in QAOA we apply two alternating unitary
evolution operators (i.e. quantum gates) [102]:

|ψ(T )⟩ = U({αj, βj}pj=1) |ψi⟩ = e−iH2βpe−iH1αp · · · e−iH2β1e−iH1α1 |ψi⟩ . (4.2.1)

The dynamics are generated by the time-independent operators H1 and H2, applied for
a duration of αj ≥ 0 and βj ≥ 0, respectively (j = 1, 2, · · · , p with p ∈ N). We refer to
q=2p as the total circuit depth. In order to apply QAOA to many-body systems [141],
the protocol durations {(αj, βj)}pj=1 are variationally optimized to minimize the
expected value of the energy density E({αj, βj}pj=1)=N−1 ⟨ψ(T )|H|ψ(T )⟩ :

{α∗
j , β

∗
j }pj=1 = arg min

{αj ,βj}pj=1

E({αj, βj}pj=1),

p∑
j=1

(αj + βj) = T. (4.2.2)

The additional constraint
∑p

j=1(αj + βj) = T is required for the resulting protocol to
remain in the regime of practical applications, and also for a fair comparison between
different algorithms.

As a concrete example to keep in mind, consider the spin-1/2 Ising Hamiltonian

H=H1+H2, H1=
N∑
i=1

JSz
i+1S

z
i +hzS

z
i , H2 =

N∑
i=1

hxS
x
i , (4.2.3)

where [Sα
k , S

β
j ] = iδkjε

αβγSγ
j are the spin-1/2 operators. We are interested in preparing

the ground state of H, starting from a spin-up polarized initial product state. More
details about the physical system are discussed later on in Sec. 4.4 and Sec. 4.9.
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Reinforcement Learning (RL)

While QAOA defines a variational ansatz to prepare ground states in a unitary process,
it does not yet provide a self-contained optimization procedure to find the optimal
protocol durations. A universal optimization framework is presented by RL [295].

Reinforcement learning comprises a powerful set of algorithms designed to solve control
problems. In RL, an agent aims to find a policy π which solves a specific task in a
trial-and-error approach based on interactions with the agent’s environment. Consider
a finite-horizon Markov Decision Process (MDP) defined by the tuple (S,A, p, r)
where S and A are the state and action spaces, respectively, and p : S×S×A → [0, 1]
defines the transition probability which governs the environment dynamics. Upon
selecting an action a ∈ A, the environment transitions to a new state s → s′ ∈ S,
and emits a reward r : S × A → R, which the RL agent uses to select subsequent
actions. The action aj ∈ A to be selected in a given state s ∈ S is determined
probabilistically by the instantaneous policy π(aj|sj) : A× S → [0, 1]. For a given
policy π, this process generates a trajectory τ = (s1, a1, ...., aq, sq+1) with probability
τ ∼ Pπ(·). Here, Pπ(τ) = p0(s1)π(a1|s1)p(s2|s1, a1) · · · π(aq|sq)p(sq+1|sq, aq), the
episode/trajectory length is q, and p0 is the initial state distribution. The objective
in RL is to find the optimal policy, i.e. the policy which maximizes the total expected

return: Eτ∼Pπ

[∑q
j=1 r(sj, aj)

]
.

Policy Gradient Quantum Approximate Optimization
Algorithm (PG-QAOA)

A reinforcement learning based approach to QAOA was recently introduced in
Ref. [346], using a policy gradient algorithm. The basic idea behind PG-QAOA is to let
the RL agent select the durations {αj, βj}, which constitute a continuous action space
Ac. However, casting the quantum control problem within the RL framework comes
with certain challenges. The first challenge is that quantum states cannot be directly
measured in experiments, which poses questions about the proper definition of the RL
state space. To remedy this in an environment following deterministic Schrödinger
dynamics, it was suggested to fix the initial quantum state, and define the RL state as
the trajectory of actions sj = (ac1, · · · , acj−1) = (α1, β1, · · · ) up to episode step j [48];
this definition is inferior to using the full state, but it allows to accommodate the
experimental constraint, so we adopt it in this study as well. Alternatively, one could
use the expectation values of observables to define an RL state [325]. The second
challenge is the sparsity of the reward signal – a quantum measurement is allowed
only once at the end of each episode, since projective measurements collapse the
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Figure 4.1: Schematic diagram for PG-QAOA [left, see Sec. 4.2] and CD-QAOA [right, see
Sec. 4.2]. The PG-QAOA samples continuous QAOA-angles from its policy and variationally
updates the policy parameters via policy gradient; CD-QAOA autoregressively samples
the gate sequences for the generalized QAOA ansatz and employs the gradient-free solver
(Powell algorithm) to solve for their corresponding durations. The policy network is updated
via Proximal Policy Optimization (PPO). For a comparison with RL-QAOA, cf. Fig. 4.2.

quantum wavefunction and the quantum state is lost irreversibly.

Since the protocol durations are continuous degrees of freedom, we need an RL
method for continuous optimization. PG-QAOA defines the simplest ansatz: q=2p
independent Gaussian distributions to parameterize the policy, one for each duration
{αj, βj}pj=1 in Eq. equation 4.2.2. Since a Gaussian distribution is uniquely determined
by its mean µ and standard deviation σ, we need a total of 2p independent variational
parameters θ = {µαj

, σαj
, µβj

, σβj
}pj=1 to parametrize the policy πθ as:

πθ({αj, βj}pj=1) =

p∏
j=1

π(αj;καj
, ξαj

)π(βj;κβj
, ξβj

), (4.2.4)

where καj
= µαj

, κβj
= µβj

are the means, and ξαj
= σαj

, ξβj
= σβj

are the variances
of the Gaussian policy. The actual protocol durations are thus sampled according
to αj ∼ N (µαj

, σ2
αj

), and similarly for βj. As was shown in Ref. [346], despite its
simplicity, PG-QAOA defines a particularly noise-robust algorithm. In the presence
of various kinds of noise, it readily outperforms a number of alternative gradient-free
optimization algorithms.

For this study, the original PG-QAOA implementation [346] is not directly applicable,
and a modification is required. First, the extensive scaling with increasing the number
of qubits suggests us to use as a cost function the energy density, rather than the
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many-body fidelity; in doing this, the algorithm no longer requires an explicit reference
to the target ground state we are searching for. Second, the original PG-QAOA
algorithm does not support an easy implementation of the protocol duration constraint∑p

j=1(αj +βj)=T . Here, in order to do a fair comparison among different algorithms,
we enforce this constraint. Note that this is a non-trivial task for policy gradient, for
three reasons: (i) protocol durations are sampled from a Gaussian distribution which
has unbounded support, (ii) a Gaussian policy supports negative as well as positive
samples (yet we require αj, βj ≥ 0 for a physical time duration), and (iii) sampled
values, even if bounded and nonnegative, are always random, and hence one needs to
additionally fix their total sum. We consider two different approaches to resolving (i)
and (ii), and apply a normalization trick to fix (iii).

The first approach we consider is to define the policy using the Beta distribution [72],
i.e. αj, βj ∼ B(κ, ξ), instead of a Gaussian, and learn the two nonnegative parameters
κ, ξ. Since the Beta distribution is defined on the interval Ac = [0, 1], it solves the
boundedness and positivity problems. The policy is given by Eq. equation 4.2.4 with
π(x;κ, ξ) = Γ(κ+ξ)

Γ(κ)Γ(ξ)
xκ−1(1− x)ξ−1 the probability density for the Beta distribution;

Γ denotes the Gamma function. Note that the number of independent variational
parameters θ = {καj

, ξαj
, κβj

, ξβj
}pj=1, remains equal to 4p.

In the second approach, we pass the output of the Gaussian distribution through
a sigmoid activation function [126]. Due to the boundedness of the sigmoid func-
tion, this restricts the range of all actions/durations to the nonnegative interval
Ac = [0, 1]. Hence, our policy is given by Eq. equation 4.2.4 where π(x;κ, ξ) =

1
x(1−x)

1√
2πξ2

exp
(
− (logit(x)−κ)2

2ξ2

)
is the probability density for the Sigmoid Gaussian

distribution SN (κ, ξ2)1. Here, the logit function, logit(x)=log x− log(1− x), is the
inverse of the sigmoid function f(x) = 1/(1 + exp(−x)), and the factor 1

x(1−x)
is the

inverse Jacobian of x=f(y) over y [cf. Sec. 4.8]. Notice how, the action output of
this policy is forced within the interval [0, 1] by construction, without changing the
total number of independent variational parameters θ.

Finally, to fix the total protocol duration, (iii), we normalize the sum of durations

manually according to αj =
αj∑p

j=1(αj+βj)
T, βj =

βj∑p
j=1(αj+βj)

T . We note that the normal-

ization procedure is considered part of the RL environment, i.e. no gradients are
passed through it. In essence, it becomes part of the reward function. This requires
us to slightly re-define the meaning of the policy: it generates the bare protocol
durations before the normalization; to minimize energy, the durations need the extra

1SN (κ, ξ2) is short-hard notation for Gaussian distribution N (κ, ξ2) under the sigmoid trans-
formation f(x).
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normalization. We mention in passing that this is not the only way to hold the
protocol duration T fixed: alternatives include using the constraint to fix the last
protocol duration βp, or the addition of an extra penalty term to the cost function.

Quantum Approximate Optimization Ansatz based on
Counter-Diabatic Driving

In conventional QAOA, there are two possible gates, corresponding to the two unitaries
Uj = exp(−iαjHj), j = 1, 2. Therefore, there exist only two distinct sequences of
unitaries: τd1 = U1U2U1U2 · · · and τd2 = U2U1U2U1 · · · . A generalization of this ansatz
was considered in Ref. [347], where an RL agent was given the complex combinatorial
task to construct the sequence of unitaries τd, out of a predefined set Ad of |Ad|
gates/unitaries. As for the gate duration notation, we will use αj for all durations
instead of alternating αj, βj due to a general ansatz. This set can, in principle,
be chosen arbitrarily; however, one can also make a more physics-informed choice,
e.g., inspired by counter-diabatic driving in the case of quantum-many-body systems
[cf. Sec. 4.2]. In the latter case, the resulting generalized algorithm, called CD-QAOA,
was demonstrated to drastically enhance the variational ansatz of QAOA when
applied to many-body quantum chains, allowing for shorter circuit depths at no cost
in performance [347].

Similar to PG-QAOA, CD-QAOA does not use the quantum wavefunction to perform
the optimization, and the state is sj = (ad1, · · · , adj−1) at episode step j. Rewards
are given once per episode, in the end, and are defined by the (negative) energy
density. However, the action space is given by the set of |Ad| unitary gates from which
the protocol sequence τd are selected; it does not involve the continuous protocol
durations which are found as part of the RL environment; to do this, in this study,
we use the gradient-free Powell algorithm [250] instead of the gradient-based SLSQP
algorithm [178] presented in the original CD-QAOA paper.

Apart from the low-level optimization mentioned above, CD-QAOA adopts a two-level
optimization schedule [194, 216]: high-level discrete optimization is used to construct
the optimal sequence τd out of the available set of unitaries. For this purpose, in
Ref. [347], it was suggested to employ Proximal Policy Optimization[278] (PPO), an
advanced variant of policy gradient, aided by a deep autorgressive neural network to
implement causality:

πd
θ

(
ad1, a

d
2, · · · , adq

)
= πd

θ

(
ad1
) q∏
j=2

πd
θ

(
adj | ad1, · · · , adj−1

)
. (4.2.5)
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Each factor in the product above is a categorical distribution over the action space.
We point out that the search for the optimal sequence τd represents a discrete
optimization problem. This should be contrasted with the low-level continuous
optimization employed by QAOA to find the optimal durations {αj}qj=1, carried
out using the Powell solver. Since the Powell solver only deals with the bounded
optimization, we apply the same normalization trick to enforce the total duration
constraint.

Given the complete protocol sequence τd = (ad1, · · · , adq ), we can construct the unitary
process

U({αj}qj=1, τ
d)=

q∏
j=1

Uτdj
(αj) (4.2.6)

which we use as a generalized QAOA ansatz. The sequence τd, and the durations
{αj}qj=1 are found by minimizing the energy density, cf. Eq. equation 4.2.2. In doing
so, we impose an extra constraint that the same action cannot be taken twice in
a row, for otherwise one can add the corresponding durations and optimize them
together.

Possible Choice of Unitaries based on Counter-Diabatic Driving

In order to construct the unitary U({αj}qj=1, τ
d) =

∏q
j=1 exp

(
−iαjHτdj

)
from Eq. equa-

tion 5.2.1, the RL agent needs to select the sequence τd of subprocess generators Ad.
Hence, at every step j in the RL episode, the agent’s action consists of a choice of a
Hermitian operator Hτdj

∈ Ad

The set of discrete actions Ad consists of the available possible controls in an exper-
iment. In Refs. [347, 140, 90], it was shown that a particularly suitable choice of
actions for ground state preparation in quantum many-body systems, is given by
terms appearing in the series of the variational adiabatic gauge potential, designed
for many-body counter-diabatic driving [280]. These terms provide shortcuts in
the Hilbert space that may significantly decrease the time required to prepare the
ground state. For brevity, below we just list the generator set Ad for the spin−1/2
Ising model, cf. Eq. equation 4.2.3, which the RL agent has access to, and refer the
interested readers to Ref. [347] for more details: Ad = {H1, H2, Y,X|Y, Y |Z}, with
Y =

∑
i S

y
i , X|Y =

∑
i S

x
i S

y
i+1 + Sy

i S
x
i+1, and Y |Z =

∑
i S

y
i S

z
i+1 + Sz

i S
y
i+1; H1, H2 are

defined in Eq. equation 4.2.3.

We emphasize that this is just one particular choice for Ad. In practice, the algorithm
is agnostic to the discrete action space which is determined by the available controls
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Method QAOA PG-QAOA CD-QAOA RL-QAOA

protocol sequence
✗ ✗ ∇-free

optimization (discrete)
∇-free

gate durations ∇-free ∇-free ∇-free
optimization (continuous)

∇-free

RL optimization ✗ continuous discrete continuous & discrete

noise-robust ✗ ✓ ✗ ✓

autoregressive ✗ ✗ ✓ ✓

Table 4.1: Comparison between all four algorithms: QAOA, PG-QAOA, CD-QAOA and
RL-QAOA.

for the system of interest: e.g., on a quantum computer, these can be the set of local
gates, etc.

4.3 Mixed Discrete-Continuous Policy Gradient

using Deep Autoregressive Networks

Although RL is used as an optimizer in both PG-QAOA and CD-QAOA, it serves
two fundamentally different purposes. In PG-QAOA it is employed for continuous
optimization of the protocol durations {αj}, while in CD-QAOA it is used to find the
solution to the discrete combinatorial task of ordering the unitaries in the protocol
sequence. In this section, we illustrate how to combine the two aspects together into
a unified RL-based algorithm.

We have seen that with the help of RL one can tremendously enhance the properties
of the QAOA ansatz in very different ways, cf. Table 5.1: For instance, PG-QAOA
has the important desired property that it is robust to noise. Moreover, it does
a completely gradient-free optimization of the continuous protocol durations. On
the other hand, CD-QAOA, enhances the variational ansatz itself by offering the
appealing ability to select the order in which three or more unitaries can be applied
in the protocol sequence. Moreover, it also introduces an autoregressive deep neural
network to encode causality (i.e., which unitary is optimal at a given episode step
depends on the unitaries chosen hitherto). The imminent question arises as to whether
we can design an algorithm which makes the best of both worlds.



CHAPTER 4. NOISE-ROBUST DEEP AUTOREGRESSIVE POLICY
NETWORKS BASED VARIATIONAL ALGORITHMS 149

Autoregressive Policy Ansatz for Hybrid Discrete-Continuous
Action Spaces

Recently, a number of studies have considered the problem of simultaneous dis-
crete/continuous control using RL [181, 101, 326, 137, 84, 31, 343, 101, 326,
233]. Following the notation of Ref. [207], we describe the RL problem within
the framework of parametrized-action Markov decision processes (PAMDPs). The
major difference, compared to ordinary MDPs, is the definition of the action space:

A =
⋃

ad∈Ad,ac∈Ac(ad, ac), Ad = {Hj}|A
d|

j=1 , Ac = [0, 1], where |Ad| denotes the car-
dinality of the discrete action set. As before, the state space contains all possible
sequences of actions, and the reward is the (negative) energy density of the quantum
state, given once at the end of the protocol.

In this section, we present a unified continuous-discrete quantum control algorithm,
called RL-QAOA, based on a hybrid policy which optimizes simultaneously the discrete
and continuous degrees of freedom in the policy. The policy can be decomposed as a
product of two coupled auxiliary policies – one for the continuous actions, πc

θ, and
the other for the discrete actions, πd

θ:

πθ(τ) = πc
θ (τ c) πd

θ

(
τd
)
, (4.3.1)

where τ ν = (aν1, . . . , a
ν
q ), ν ∈ {c, d} defines the discrete/continuous subsequence

of actions in each trajectory of length q. Denoting, as before, the RL state by
sj = (a1, · · · , aj−1) with the hybrid action a∗ = (ac∗, a

d
∗), we define a generalized

continuous/discrete autoregressive model for the policy, following Eq. equation 4.2.5.
Adopting the short-hand notation πν

θ

(
aνj | sj

)
=πν

θ

(
aνj | a1, · · · , aj−1

)
, the policy can

be written as

πθ (a1, a2, · · · , aq)=

q∏
j=1

πd
θ

(
adj | sj

)
πc
θ

(
acj | sj, adj

)
. (4.3.2)

As expected, at every step j, the action acj is sampled from a continuous distribution,
whose parameters depend on the discrete action adj selected at the same step j. This is
natural, since different discrete actions may require different corresponding continuous
distribution parameters κ, ξ.

Additionally, similar to CD-QAOA, we impose a further restriction that no discrete
action can occur in the trajectory consecutively. We use a Sigmoid-Gaussian distribu-
tion to bound the samples for the continuous actions, and normalize the durations
αj ∝ acj ∼ πc

θ to fix the total protocol duration to
∑q

j=1 αj = T ; using the Beta
distribution instead results in a similar performance.
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rewardPPO
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Time Steps
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Figure 4.2: Schematic representation of RL-QAOA and the deep autoregressive network for
q = 4 (see text). The time step j also corresponds to the gate index. The policy network is
composed of (i) an embedding layer to encode the continuous and discrete actions as input.
(ii) The base layer implements the causal autoregressive structure (see arrows). (iii) The
heads are three-fold, one for the discrete distribution parameters, and two for the continuous
distribution parameters. A batch of actions are sampled to evolve the quantum state and
compute the negative energy density as a reward. Proximal hybrid Policy Optimization
(PPO) is used to update the policy network. The pseudocode for RL-QAOA is shown in
Algorithm 4.

Deep Autoregressive Policy Network

We implement the policy ansatz variationally, using a deep neural network called the
policy network. In Fig. 4.2, we show a cartoon of the model for illustration purposes.
The network consists of base layers with intermediate output y, followed by three
independent head layers with outputs zp, zκ, zξ, respectively. The three heads learn
the discrete probability distribution πd, and the parameters κ, ξ ∈ R+ which define
the continuous probability distribution πc. Each head outputs a vector of size |Ad| –
so that the model can learn a set (κ, ξ) for every distinct discrete action. Notice that
each head output depends on the joint base layer parameters (W , b), but not on the
parameters (V , c) of any of the other two heads; thus, the base layers are shared by
all three heads. In practice, we find that a base layer, comprised of two hidden layers,
can already achieve a good performance; one can in principle add more layers for
enhanced expressivity.

The above description focuses on a single episode step j out of a total of q steps in
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an episode. The autoregressive feature of the ansatz can then be built-in, by allowing
the outputs of the base layers from previous steps to become inputs into the layers at
subsequent episode steps [Fig. 4.2].

Let us denote the input to the autogressive network by (x1, x2, · · · , xq), and the

weights and bias parameters of the base layer by Wj ∈ Rdh×(i−1)|Ad| and bj ∈ Rdh ,
respectively, where dh is the hidden dimension. Then, the intermediate output
(y1, y2, · · · , yq) of the base layer reads as

yj =g(Wjx<j + bj), j=1, 2, · · · q, (4.3.3)

where x<j = (xj−1, · · · , x1)T ∈ R(j−1)|Ad| denotes the input of all previous steps
preceding step j; for j=1, we set Wjx<j + bj =bj.

2 We use ReLU nonlinearities g(·).
The output of the base layer (y1, y2, · · · , yq) can be viewed as an input to the three-
head layer. The three-head layer contains three heads with independent weights
V p
j , V

κ
j , V

ξ
j ∈ R|Ad|×jdh and biases cpj , c

κ
j , c

ξ
j ∈ R|Ad|. The three-head layer output,

(z1, z2, · · · , zq), are the parameters for the discrete and continuous distributions: zpj
are the categorical distribution parameters; zκj and zξj are the two parameters for the
sigmoid-Gaussian distribution [cf. Sec. 4.8]:

zpj =log
(
SoftMax(V p

j y≤j + cpj)
)
, zκj =V κ

j y≤j + cκj , zξj =exp
(
V ξ
j y≤j + cξj

)
,

(4.3.4)
where y≤j = (yj, · · · , y1)T ∈ Rjdh .3 To define a categorical distribution, we use a

SoftMax4 nonlinarity: SoftMax(v)[i]=exp(v[i])/
∑|Ad|

k=1 exp(v[k]), where v=V p
j y≤j +

cpj ∈ R|Ad|, and [·] takes the index; we learn the log-probability to achieve a resolution
over a few orders of magnitude, and to stabilize the learning process.

We apply ancestral sampling to draw actions from the autoregressive policy. Starting
from the heads layer at step j = 1, we first sample ad1 ∼ π(ad1)=Categorical(exp(zp1));
we use the sampled discrete action ad1 to look-up the corresponding parameters
κ = zκ1 [ad1] and ξ = zξ1[a

d
1]5 for the continuous action distribution. Then we sample

the duration α1 ∝ ac1 ∼ π(ac1|ad1) =SN
(
zκ1 [ad1], (zξ1[ad1])2

)
. The sampling output is

2In practice, implementing the autoregressive constraint <j can be achieved using masks (one
for each set of weights).

3Note that here we are able to use the ”=” sign because the previous layer of operation has
already filtered out the ”=” sign for those steps.

4Note that this function is not operated element-wise like the others; it is applied on the whole
vector of dimension |Ad|).

5Here, [ad1 ] means taking the component by index.
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passed as an input at the second step j = 2. To do this, we use as an embedding
for (ad1, a

c
1) represented by the variable x1, where x1[i] = ac1 if i= ad1, and x1[i] = 0

otherwise. Going on, we repeat the process: we sample successive actions ad2, a
c
2 ∼

π(ad2|x1), π(ac2|x1, ad2). The sampling, or forward pass, through the network is then
repeated q times, until we reach the end of the episode; thus, at step j we have
adj , a

c
j ∼ π(adj |x<j), π(acj|x<j, a

d
j ). This gives the trajectory τ of mixed discrete-

continuous actions. Note that the time complexity of the process is O(q × |Ad|).

Proximal Hybrid Policy Optimization

The set of all weights and biases, θ = {Wj, bj, V
p
j , V

κ
j , V

ξ
j , c

p
j , c

κ
j , c

ξ
j}qj=1, defines the

learnable parameters of the autoregressive policy network. We now discuss how to
compute the policy gradients and define an update rule for θ.

Our goal is to maximize the RL objective within the trust region [279] for the
continuous and discrete policy

Eτ

[
πθ (τ)

πθold (τ)
Aθold(τ)

]
, subject to Eτ

[
DKL

[
πν
θold

(·) , πν
θ (·)

]]
≤ δν , (4.3.5)

where Eτ [ · ] is a shorthand notation for Eτ=(a1,··· ,aq)∼πθold
[ · ]. The Kullback–Leibler

(KL) divergence is defined as DKL(πc
θ, π

c
θt

)=
´
x∈Ac π

c
θ(x) log

(
πc
θ(x)

πc
θt
(x)

)
dx, and similarly

for ν=d; δν defines a constraint on the size of the discrete policy or continuous policy
updates in distribution space. Here, θold denotes the parameters before the update;
Aθold(τ) = R(τ)− b is the advantage function – the return (negative energy density)
for a given trajectory w.r.t. the baseline b.

In practice, we utilize a clipped surrogate RL objective [278] with two clipping
parameters ϵν . The idea is to update the continuous and discrete policies using
different ϵν during policy optimization. This allows for the discrete policy πd

θ to
change more quickly/more slowly as compared to the continuous policy πc

θ. Hence,
the hybrid PPO RL objective reads as

J (θ) = Eτ

[
Gd(τd;θ, ϵd) + Gc(τ c;θ, ϵc)

]
+ β−1

S (Sd + SC), (4.3.6)

with

Gν(τ ν ;θ, ϵν) = min

{
ρνθ(τ ν)Aν

θold
(τ ν), clip (ρνθ(τ ν), 1− ϵν , 1 + ϵν)Aν

θold
(τ ν)

}
, (4.3.7)
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where ρνθ(τ ν) :=
πν
θ(τ

ν)

πν
θold

(τν)
is the importance weight ratio of two policies associated with

trajectory τ ν . The clip function, defined as clip(ρ, x, y) = max
(

min (ρ, x) , y
)

sets
the value of ρθ to be within the interval [x, y], and constrains the likelihood ratio
from Eq. equation 4.3.5 to the range [1 − ϵ, 1 + ϵ]. The entropy terms [right-most
part of Eq. equation 4.3.6] are discussed below. Our goal is to find those parameters
θ which maximize J (θ).

To understand the hybrid PPO algorithm, consider two limiting cases first. In the
extreme case when ϵd → 0, i.e. the discrete policy πd

θ is kept fixed, our algorithm
reduces to PG-QAOA. On the other hand, when ϵc → 0, the continuous policy is
kept fixed; if this fixed policy additionally corresponds to the greedy “expert policy”
defined by the Powell optimizer, the algorithm is reduced to CD-QAOA. In this sense,
for finite values of ϵc, ϵd > 0, RL-QAOA can be viewed as a smooth interpolation
between PG-QAOA and CD-QAOA.

In order to incentivize the agent to explore the action space during the early stages
of training, we also added entropy to the RL objective, cf. Eq. equation 4.3.6. The
entropy for a discrete/continuous policy is defined as Sd(πd)=−∑x∈X π

d(x) log πd(x)
or SC(πc)=−

´
x∈X π

c(x) log (πc(x)) dx, respectively. The coefficient β−1
S in Eq. equa-

tion 4.3.6 defines an effective temperature, which we anneal with increasing the
number of iterations. It is easy to see that the total entropy S = Sd + SC associated
with the hybrid policy consists of a discrete Sd =

∑q
j=1 Ea<j∼πθ

Sd
(
πd
θ( · |a<j)

)
,

and a continuous SC =
∑q

j=1 Ea<j∼πθ ,a
d
j∼πd

θ
Sc
(
πc
θ( · |a<j, a

d
j )
)

contribution. The RL

agent has to maximize the total expected return while also maximizing the entropy
associated with the policy.

In RL, there are two common ways to incorporate entropy in practice [191]: (i)
whenever one can compute a closed-form expression for the entropy, entropy is added
as a separate term to the objective which can be thought of as entropy regularization.
Note that it is the autoregresssive structure that makes it possible to obtain the
exact value for the entropy Sd: for πd

θ( · |a<j) = Categorical(exp
(
zpj
)
), the entropy

is Sd
(
πd
θ( · |a<j)

)
=−∑|Ad|

k=1 z
p
j [k] · exp

(
zpj [k]

)
. (ii) Often times it is not possible to

compute the value for the entropy, since the expression is not analytically tractable;
in such cases, the maximum entropy formulation [126, 127, 125] still allows us to
add to the reward a sample estimate of the entropy, known as an entropy bonus:
Rc(τ) ← Rc(τ) + β−1

S Eac∼πc
θ

[
− log πc

θ

]
. In this study, we add an entropy bonus to

take into account the entropy of the continuous policy πc.
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4.4 Application: Quantum Ising Model in the

Presence of Noise

To test the performance of RL-QAOA, we investigate the ground state preparation
problem for a system of N interacting qubits (i.e. spin-1/2 degrees of freedom),
described by the Ising Hamiltonian introduced in Eq. equation 4.2.3. We use periodic
boundary conditions and work in the zero momentum sector of positive parity, which
contains the antiferromagnetic ground state. We emphasize that this model is non-
integrable, i.e., it does not have an extensive number of local integrals of motion;
as a consequence, no closed-form analytical description is known for its eigenstates
and eigenenergies. Moreover, the lack of integrability results in chaotic quantum
dynamics.

In the following, J = 1 sets the energy unit, hz/J = 0.4523 and hx/J = 0.4045. In
the thermodynamic limit, N →∞, these parameters are close to the critical line of
the model, where a quantum phase transition occurs in the ground state between an
antiferromagnet and a paramagnet; for the finite system sizes we can simulate, the
critical behavior is smeared out over a small finite region. In Ref. [209], using QAOA
it was shown that this region of parameter space appears most challenging in the
noise-free system.

We initialize the system in the z-polarized product state |ψi⟩= |↑ · · · ↑⟩, and aim to
prepare the ground state of H. We use the negative energy density −E = −E/N as a
reward for the RL agent, cf. Eq. equation 4.2.2, which is an intensive quantity as the
number of qubits N increases. In this study, we are mostly interested in exploring the
behavior of the system, subject to various kinds of noise/uncertainty. Our primary
focus is quantifying the effects of noise on the achievable fidelity, w.r.t. the noise-free
values. We deliberately select a fixed duration of JT =10 far from the adiabatic regime,
such as to exhibit the benefits of the CD-QAOA ansatz over QAOA [cf. Sec. 4.9].

We point out that, working at a fixed duration T , it is not always possible to achieve
high-fidelity ground states. This is easy to see for decoupled qubits, where the
magnitude of the spin precession frequency on the Bloch sphere (so-called Larmor
precession frequency) is set by the fixed strength of the magnetic field (hx, 0, hz):
hence, fixing the total protocol duration T , it may be physically impossible to reach
the target state in the allotted time. This behavior leads to the notion of the quantum
speed limit (QSL) – the minimum time required to prepare the ground state with
unit fidelity.
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Three Noise Models

When operating present-day quantum devices, one is confronted with various sources
of uncertainty. Since the exact form and details depend on the peculiarities and
particularities of the underlying experimental platform, it is desirable to construct
algorithms, capable of learning such details without extra human input. In this study,
our RL agent learns in a simulator. To mimic the diversity of uncertain processes
that can occur, we consider three types of noise.

Classical Measurement Gaussian Noise

Noise naturally occurs due to imperfect measurements. For instance, the measurement
signal is often present in a form of currents and voltages, whose values can only
be determined within the resolution of the measurement apparatus. In practice,
experimentalists perform a large number of measurements and average the result
in the end to obtain an estimate for the value of an observable. By the central
limit theorem, in the limit of large sample sizes, the statistics of the measurement
data is approximated by a Gaussian distribution. To model this behavior, we use
small Gaussian noise to add uncertainty in the reward signal: Eγ({αi}qi=1, τ

d) =
E({αi}qi=1, τ

d) + ϵγ, where ϵγ ∼ N (0, γ2).

Quantum Measurement Noise

In quantum mechanics, there is another, intrinsic, kind of noise, which arises due to
the quantum nature of the controlled system. Consider the evolved state |ψ(T )⟩ =
U({αj}qj=1, τ)|ψi⟩ at the end of the protocol. The expected measurement for the
energy density E = N−1⟨ψ(T )|H|ψ(T )⟩ is obtained within a quantum uncertainty,
∆E = N−1

√
⟨ψ(T )|H2|ψ(T )⟩ − ⟨ψ(T )|H|ψ(T )⟩2, set by the energy variance in the

final state. In the limit of a large number of measurements, quantum noise can be
simulated using a Gaussian distribution EQ({αi}qi=1, τ

d) = E({αi}qi=1, τ
d) + ϵQ, where

ϵQ ∼ N (0,∆E2). Note that the width of the Gaussian depends on the final state
|ψ(T )⟩: in the early stages of training, |ψ(T )⟩ is typically far away from any of the
eigenstates of H; therefore, the energy variance ∆E will be large and finite. However,
towards the later training stages, when the agent learns to prepare a state close to
the target ground state, the energy variance will go down. Hence, one can think of
the quantum noise as a Gaussian noise with a time-dependent strength.
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Figure 4.3: Energy minimization against different noise levels with circuit depths p=q/2=4
and protocol duration JT =10 for four different optimization methods: QAOA, PG-QAOA,
CD-QAOA (red line), RL-QAOA. The initial and target states are |ψi⟩= |↑ · · · ↑⟩ and |ψ∗⟩=
|ψGS(H)⟩ for hz/J = 0.4523 and hx/J = 0.4045. The alternating unitaries for conventional
QAOA and PG-QAOA are generated by Ad = {H1, H2}; for CD-QAOA and RL-QAOA,
we extend this set using adiabatic gauge potential terms to Ad = {H1, H2;Y,X|Y, Y |Z}.
The system sizes are N=4, 6, 8.

Noise arising from Gate Rotation Errors

Finally, we also consider the uncertainty in implementing the unitaries Ui. We
focus on gate rotation errors [293], caused by imperfections in the durations αi:
Eδ({αi}qi=1, τ) = E({αi + ϵi}qi=1), where ϵi ∼ N (0, δ2). This defines a simplified error
model for coherent control, an important source of errors in present-day state-of-the-
art quantum computing hardware [17], and which is especially pertinent to the case
of quantum computers which are utilized frequently but calibrated only periodically.

4.5 Numerical Experiments and Results

To evaluate the performance of the trained agent, we eliminate the uncertainty
associated with the probabilistic nature of the policy: we take the discrete action
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which maximizes the categorical distribution πd, and only keep the mean of the
continuous distribution πc, setting its width to zero. This defines a natural greedy
policy to test the ability of the RL agent.

We performed a number of numerical experiments to study the effect of the noise on the
performance of the four algorithms QAOA, PG-QAOA, CD-QAOA and RL-QAOA,
for the three different sources of uncertainty: classical and quantum measurement
noise, and gate rotation noise. We vary both the noise strength, and we look at
three different system sizes for two protocol durations each. The results of these
experiments can be summarized, as follows.

Figure 4.3 shows the best achievable energy at a protocol duration JT = 10 against
different noise types and system sizes: the top row shows data for various measurement
noise strengths, with the shaded area marking the special case of quantum noise;
the noise strength is measured in percentages of the achievable ground state energy
density: e.g., a noise strength of γ = 0.3 corresponds to an average deviation from the
actual energy of about 30%. The bottom row displays results when varying the gate
noise strength. Here, the noise strength is defined as a percentage of the mean gate
duration T/q. The three columns correspond to system sizes N = 4 (left), N = 6
(middle) and N = 8 (right).

When T < TQSL is chosen below the QSL, we find that QAOA and PG-QAOA fail to
reach the ground state in the time allotted, as a result of having an overconstrained
control space Ad = {H0, H1}. Nonetheless, the noise-robust character of PG-QAOA
becomes pronounced at increased values of the noise strength. Since the initial
quantum state is far away from the target ground state, the best ratio E/EGS found
by QAOA can even be negative. The JT = 10 duration exhibits the advantage of
using the generalized QAOA ansatz brought in by CD-QAOA: suitably enlarging
the discrete action space Ad = {H1, H2, Y,X|Y, Y |Z} unlocks paths in Hilbert space
which are inaccessible to QAOA. Hence, CD-QAOA and RL-QAOA find the largest
rewards in the noise-free case. A large noise strength reduces visibly the ability of
CD-QAOA to find the ground state, with the performance being particularly bad
for quantum measurement noise (Q). However, the hybrid policy optimizer allows
RL-QAOA to emerge as a noise-robust algorithm, agnostic to the source of noise
applied to the system.

4.6 Conclusion and Outlook

In summary, we presented RL-QAOA – a versatile and noise-robust quantum control
algorithm based on the QAOA variational ansatz. The algorithm inherits valuable
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features from its ancestors: (i) the noise-robust property of PG-QAOA allows us
to find optimal durations probabilistically. (ii) the generalized QAOA ansatz of
CD-QAOA makes it possible to select the order in which a set of unitaries appears
in the control sequence. While we focused on physically-motivated unitaries, we
emphasize that the ansatz is completely general and applicable to a large variety
of unitaries/quantum gate sets useful for both theoretical and experimental studies.
We had to modify these “ancestors” accordingly: in PG-QAOA we introduced a
mechanism to fix the total protocol duration, and introduced a stochastic policy
based on the compactly supported Beta function; in CD-QAOA we changed the
low-level optimizer to gradient-free Powell, as opposed to the gradient-based SLSQP
which did not give a reasonable performance in the presence of noise. RL-QAOA
extends PG-QAOA and CD-QAOA with both the use of a generalized autoregressive
architecture which incorporates the parameters of the continuous policy, and the
derivation of an extension of Proximal Policy Optimization applicable to hybrid
continuous-discrete policies.

We tested the performance of RL-QAOA using the unitary dynamics of a quantum
Ising chain subject to various sources of noise: classical and quantum measurement
noise as well as uncertainty leading to errors in the application of quantum unitary
gates. In particular, we demonstrated that RL-QAOA successfully outperforms its
ancestors in the highly-constrained non-adiabatic regime, irrespective of the noise
model selected. Thus, RL-QAOA is not only noise-robust but also agnostic to the
physical source of noise. This opens up the exciting possibility of using machine
learning to ‘learn’ the particularities of noisy experimental environments, which often
depend on the chip architecture and can even change in the course of exploitation.
However, the presented results are obtained using numerical simulations based on
certain theoretical assumptions; it remains to test the performance of RL-QAOA on
realistic noisy intermediate-scale quantum computing devices.

The RL-QAOA is a versatile method that can be extended along several directions.
For instance, the current version of RL-QAOA defines a fixed sequence/protocol
length. However, the algorithm is versatile enough to accommodate a variable length
of the protocols after a slight modification. To do so, one can simply add a “stop”
action to the discrete action set Ad. If the agent happens to choose the stop action,
then the episode comes to an end immediately and we measure the energy of the
evolved quantum state.

There also exist a number of exciting alternatives for the policy network architecture to
explore. Although it has to incorporate temporal causality, notice that the architecture
is not limited to the autoregressive choice used in this study; e.g., it can be generalized
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to a recurrent neural network (RNN), a Long Short Term Memory (LSTM) network,
or a transformer with the attention mechanism [314] and all its modern variants [168,
71, 323, 305]. In the present study, we chose the autoregressive network for its
sheer simplicity. Moreover, the continuous policy head can be generalized to capture
distributions with more than two modes using the normalizing flow method, which
would additionally boost the expressivity of the policy [303].

4.7 Pseudocode and Algorithm Hyperparameters

The pseudocode for RL-QAOA is outlined in Algorithm equation 4. The agent
samples a batch of actions from the autoregressive network. Then, the corresponding
expected energy density is computed using a classical simulator for the quantum
dynamics. Below, we focus on the noise-free case; dealing with noise requires a trivial
modification following Sec. 4.4. The baseline for the reward is estimated through
an exponential moving average. Finally, proximal policy optimization is applied to
update the agent’s policy.

We also conducted coarse hyperparameter sweeps to find the optimal values for the
hyperparameters of RL-QAOA, cf. Table 4.2. We use a batch size of 128 to train
the policy. The policy network is optimized using Adam. The initial learning rate is
set to 5× 10−4, which is typical when training autoregressive networks; we employ
a learning rate decay schedule which decreases by 98% every 50 iterations. The
Autoregressive network is implemented using uniform masks and dense layers [112].
The base layer (see Fig. 4.2) consists of two hidden layers with 100 neurons each and
the heads contain 3|Ad| neurons in total.

The agent is trained via proximal policy gradient (PPO). We use four PPO updates
to the policy network parameters per iterations. The clipping parameters are set as
ϵc = 0.1 for the continuous policy, and ϵd = 10−3 for the discrete policy. We include
entropy bonus to increase exploration; the corresponding temperature schedule β−1

S
starts at 1× 10−1, and drops by 99% every 50 iterations.

A typical learning curve in the noisy setting is shown in Fig. 4.4. Three quantities
are recorded to measure the performance of the agent. In the noise setting, these
quantities correspond to the ideal noise-free case. We use them only for the purpose
of evaluation; during the training, the RL agent only has access to the noisy rewards.
These quantities are shown in terms of the energy ratio with respect to the target
ground state so the possible maximum is upper bounded by one; since the energy of
a state can be either positive or negative, while the GS has a negative value, negative
ratios are possible. Figure 4.4 shows that the agent starts to pick up the learning
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Algorithm 4 Autoregressive network based reinforcement learning: RL-QAOA

Input: batch size M , learning rate ηt, total number of iterations Titer, exponential
moving average coefficient m, entropy coefficient β−1

S , PPO gradient steps K.

1: Initialize the autoregressive network and initialize the moving average R̂=0.
2: for t = 1, .., Titer do
3: Autoregrssively sample batch B hybrid actions of size M :

a
{k}
1 , a

{k}
2 , · · · , a{k}q ∼ πθ (a1, a2, · · · , aq) , k = 1, 2, · · · ,M.

4: Measure the observables and use the negative energy density as the return and
compute the moving average of the return

Rk = −Ek = − 1

N
⟨ψi|U †({a{k}j }qj=1)HU({a{k}j }qj=1)|ψi⟩,

R̂ = m · R̂ + (1−m) · 1

M

M∑
k=1

Rk.

5: Compute the advantage estimates Ak = Rk − R̂
6: for k = 1, .., K do
7: Evaluate the samples’ likelihood using the parameter from the last iterations,

i.e. πθt(a
{k}
1 , a

{k}
2 , · · · , a{k}q ) and compute the importance weight ρνk

8: Using the advantage estimation and importance weight to compute
Gdk ,Gck,Sd

k , SCk.
9: Compute the RL-QAOA objective Eq (4.3.6) and backpropagate to get the

gradients.

∇θJ (θ) =
1

M

∑
{a{k}j }qj=1∈B

∇θ

[
Gdk + Gck + β−1

S (Sd
k + SCk)

]
.

10: Update weights θ ← θ + ηt∇θJ (θ).
11: end for
12: end for
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Table 4.2: RL-QAOA Hyperparameters.

Hyperparameter Value

Optimizer Adam [163]
Learning rate 5× 10−4

Likelihood ratio clip, ϵν 0.1 (ϵc)
0.001 (ϵd)

PPO Epochs 4
Hidden units (masked dense layer) [100, 100]

Activation function ReLU
baseline exponential moving average (m) 0.95

Learning rate annealing steps 50
Learning rate annealing factor 0.98
Learning rate annealing style Staircase

Entropy bonus temperature (β−1
S,{0}) 1× 10−1

Entropy bonus temperature decay steps 50
Entropy bonus temperature decay factor 0.99
Entropy bonus temperature decay style Smooth

Minibatch size 128

signal around two thousand iterations. After that, it slightly modifies the policy in
order to achieve a higher reward. Here, the mean reward stands for the sample mean
of energy density at every iteration; the max reward is the maximum over the sample;
the history best is the best-encountered reward during the entire training process.

4.8 A comparison of compactly supported

distributions defining continuous actions

Sigmoid Gaussian Distribution

In order to enforce the bounds for the duration output from the distribution, we
apply the sigmoid function. This kind of finite bound of the action does help a lot in
practice when we then normalize the actions to have the finite sum; otherwise, we
observe a large variance when we normalize the total protocol duration to T (see main
text). To this end, we apply the sigmoid function to the Gaussian distribution. In the
following formula, we have x = f(y), where f(y) = 1

1+e−y is the sigmoid. We denote
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Figure 4.4: Spin-1/2 Ising model: training curves for RL-QAOA with energy minimization
as a cost function. The quantities in the main figure are noiseless evaluation, while in the
inset are noisy measurement. The noiseless quantities are only for the evaluation’s purpose,
and the agent can only access the noisy quanties (in the inset). The mean reward (blue
curve) is the average energy ratio across the minibatch sampled from the autoregressive
policy; the max reward (orange curve) is taking the maximum across the minibatch; the
history best bookkeeps the best ever max reward during the training. The total duration is
T =10 and the number of spin-1/2 particles is N=8. The discrete RL-QAOA action space
is Ad = {H1, H2;Y,X|Y, Y |Z}, and we use q=8. Here, the noise is classic gaussian noise,
with the noise level γ=0.1.

the original distribution as π0(y;κ, ξ) and the distribution after the transformation,
as π(x;κ, ξ).

π(x;κ, ξ) = π0(y;κ, ξ)

∣∣∣∣det

(
dx

dy

)∣∣∣∣−1

For example, if we choose π0 to be Gaussian distribution according to N (κ, ξ2), then

log π(x;κ, ξ) = − log ξ − 1

2
log(2π)− 1

2

(
logit(x)− κ

ξ

)2

− log(x (1− x)) (4.8.1)

Here, the logit function, logit(x) = log x − log(1− x), is the inverse of the sigmoid
function f(x) = 1/(1 + exp(−x)).

Thus, the derivative with respect to the parameters (i.e. κ and ξ) can be computed
analytically, and reads

∂ log π(x;κ, ξ)

∂κ
=

logit(x)− κ
ξ2

, (4.8.2)

∂ log π(x;κ, ξ)

∂ξ
= −1

ξ
+

1

ξ

(
logit(x)− κ

ξ

)2

(4.8.3)

We use this log probability in the policy gradient formula.
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Beta Distribution

The Beta distribution’s probability density function is defined as:

π(x;κ, ξ) =
Γ(κ+ ξ)

Γ(κ)Γ(ξ)
xκ−1(1− x)ξ−1,

where the Gamma function is Γ(z) =
´∞
0
xz−1e−t dt. Here, the κ and ξ are the

parameters of the Beta distribution, which can be learned by the autoregressive policy
network. The corresponding log-probability reads as

log π(x;κ, ξ) = log Γ(κ+ ξ)− log Γ(κ)− log Γ(ξ) + (κ− 1) log(x) + (ξ− 1) log(1− x),
(4.8.4)

Thus, the derivative with respect to the parameters (i.e. κ and ξ) reads

∂ log π(x;κ, ξ)

∂κ
= ψ(κ+ ξ)− ψ(κ) + log(x), (4.8.5)

∂ log π(x;κ, ξ)

∂ξ
= ψ(κ+ ξ)− ψ(ξ) + log(1−x), (4.8.6)

where the digamma function is defined as the logarithmic derivative of the gamma
function:

ψ(x) =
d

dx
ln
(
Γ(x)

)
=

Γ′(x)

Γ(x)
. (4.8.7)

Hence, the gradient can be used to compute the policy gradient using analytical
expressions.

4.9 Choosing the protocol duration T

Finally, let us explain the choice of protocol durations JT = 10 used in our study.
Figure 4.5 shows a scan of the best energy over the protocol duration T in the
noise-free case for N = 4 qubits for three methods: QAOA, CD-QAOA and adiabatic
driving. For the adiabatic driving, we consider the driven spin-1/2 Ising model:

H(λ)=λ(t)H+(1− λ(t))H̃, (4.9.1)

where λ(t) = sin2
(
πt
2T

)
t ∈ [0, T ], is an smooth protocol satisfying the boundary

conditions: λ(0)=0, λ(T )=1, λ̇(0)=0= λ̇(T ). The initial state is the ground state at
t=0, i.e. |ψi⟩= |↑ · · · ↑⟩, while the target state is the ground state of the Ising model
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at t = T for hz/J = 0.4523 and hx/J = 0.4045. Here, H is the target Hamiltonian
defined in Eq. equation 4.2.3, and H̃ = −∑N

i=1 S
z
i .

The value JT = 10 is selected to achieve a compromise: on one hand, it is large
enough for CD-QAOA to reach close enough to the ground state; on the other hand, it
is small enough for a discrepancy between the performance of CD-QAOA and QAOA
to become clearly visible. Hence, JT = 10 exemplifies nicely the benefits of using
the generalized QAOA ansatz, as compared to QAOA. Last, we emphasize that both
JT = 10 are far away from the adiabatic regime, as shown by the adiabatic curve.

CD-QAOA QAOA adiabatic
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Figure 4.5: Spin-1/2 model: energy minimization at different protocol duration T for three
different methods in the nose-free setup: CD-QAOA (blue line), QAOA (red line), adiabatic
evolution (green line). The physics model and the setting are the same as in Sec. 4.4. For
the adiabatic driving simulation, we used the protocol function λ(t)=sin2

(
πt
2T

)
, t ∈ [0, T ].

The quantum dynamics was solved for numerically, using a step size of ∆t=1× 10−3. The
system size is N=4. The vertical purple dashed line corresponds to JT =10.
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Chapter 5

Monte Carlo Tree Search based
variational quantum algorithms

Variational quantum algorithms stand at the forefront of simulations on near-term
and future fault-tolerant quantum devices. While most variational quantum algo-
rithms involve only continuous optimization variables, the representational power of
the variational ansatz can sometimes be significantly enhanced by adding certain
discrete optimization variables, as is exemplified by the generalized quantum ap-
proximate optimization algorithm (QAOA). However, the hybrid discrete-continuous
optimization problem in the generalized QAOA poses a challenge to the optimization.
We propose a new algorithm called MCTS-QAOA, which combines a Monte Carlo
tree search method with an improved natural policy gradient solver to optimize
the discrete and continuous variables in the quantum circuit, respectively. We find
that MCTS-QAOAhas excellent noise-resilience properties and outperforms prior
algorithms in challenging instances of the generalized QAOA.

5.1 Introduction

Quantum computing provides a fundamentally different way for solving a variety of
important problems in scientific computing, such as finding the ground state energy
in computational chemistry, and the MaxCut problem in combinatorial optimization.
Variational quantum circuits are perhaps the most important quantum algorithms on
near term quantum devices [251], mainly due to the tunability and the relatively short
circuit depth [62], as exemplified by the variational quantum eigensolver (VQE) [244,
213] and the quantum approximate optimization algorithm (QAOA) [102]. A common
thread in these algorithms is to variationally optimize a parameterized quantum
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Quantum Circuit

Policy 
Gradient

Classical 
Computer

MCTS

Figure 5.1: The schematics of MCTS-QAOA: MCTS provides promising paths for
the discrete optimization search; the inner loop (highlighted in red) Policy Gradient (PG)
solver evaluates the discrete sequence in a noise-robust way; the reward obtained is then
propagated back through the search tree and used to improve the tree policy.

circuit using classical methods to obtain an approximate ground state. For instance,
in combinatorial optimization, QAOA encodes the classical objective function into a
quantum Hamiltonian, and constructs a quantum circuit with a set of two alternating
quantum gates. The continuous adjustable parameters are the duration or phases of
the gates.

For quantum many-body problems, the expressivity of the QAOA ansatz may be
limited: the exponentially large (in the number of qubits) Hilbert space may not be
efficiently navigated by the dynamics generated by the alternating gate sequence. This
can lead to circuit depths that grow with the system size [141], or render the target
ground state outside the scope of accessible states altogether, thus fundamentally
precluding its preparation. To address these problems, various versions of a generalized
QAOA ansatz have been presented in recent works [365, 347, 64], where additional
control Hamiltonians are used to generate the variational circuits. In general, these
Hamiltonians are tailored to the many-body system whose ground state we seek
to prepare, and the extended Hamiltonian pool is often constructed using ideas
from variational counter-diabatic (CD) driving [280]. When the optimization of the
parameterized circuit is performed successfully, the generalized ansatz produces a
closer approximation to the ground state than the original alternating QAOA ansatz.
The generalized QAOA may also significantly reduce the total protocol duration
T and therefore the depth of the quantum circuit while giving a high fidelity with
respect to the ground state [347].

However, the ansatz of the generalized QAOA also results in a more challenging
optimization problem. The original QAOA only involves optimization of continuous
parameters. The generalized QAOA ansatz, in contrast, leads to a hybrid optimization
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problem that involves both the discrete variables (the choice of quantum gates)
and the continuous variables (the duration of each gate). To solve this hybrid
optimization problem, we propose a novel algorithm that combines the Monte Carlo
Tree Search (MCTS) algorithm [74, 43, 3, 284, 285] – a powerful method in exploring
the discrete sequence, with an improved noise-robust natural policy gradient solver
for the continuous variables of a fixed gate sequence.

Contributions:

• We propose the MCTS-QAOAalgorithm which combines the MCTS algorithm
and a noise-robust policy gradient solver. We show that it is not only efficient
in exploring the quantum gate sequences but also robust in the presence of
different types of noise.

• The proposed MCTS-QAOA algorithm produces accurate results for problems
that appear difficult or infeasible for previous algorithms based on the generalized
QAOA ansatz, such as RL-QAOA [350]. In particular, MCTS-QAOA shows
superior performance in the large protocol duration regime, where the hybrid
optimization becomes challenging.

• In order for the MCTS-QAOA algorithm to produce reliable optimal results, it
is crucial that the inner loop solver finds the optimal continuous variables with
high accuracy. Compared to the original PG-QAOA solver introduced in [346],
we improve the inner loop solver with entropy regularization and the natural
gradient method, and implement it in Jax [40], which offers more accurate,
stable, and efficiently computed solutions during the continuous optimization.

• For the physics models considered in this paper, we observe that there can
be many “good” gate sequences. This means that for a large portion of gate
sequences, the energy ratio obtained is not far away from the optimal energy
ratio obtainable with the generalized QAOA ansatz, given that the continuous
variables are solved with high quality. This phenomenon has not been recorded
in the literature to the best of the authors’ knowledge.

Related works:

Quantum control and variational quantum eigensolver: Traditional optimal
quantum control methods, often used in prior works, are GRAPE [161] and CRAB [53].
More recently, success has been seen by the combination of traditional methods with
machine learning [273, 318, 271, 105, 228, 4, 287, 336, 339, 10, 76], and especially
reinforcement learning [237, 107, 19, 249, 325, 346, 292, 65, 48, 50, 288, 37, 78, 219]).
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Among them, Variational quantum eigensolver or VQE [63, 308] provides a general
framework applicable on noisy intermediate-scale quantum (NISQ) devices [251] to
variationally tune the circuit parameters and improve the approximation. In the fault
tolerant setting, there are also possibilities of error mitigation via the variational
quantum optimization [293, 16].

QAOA [102] can be viewed as a specific variational quantum algorithm, and can be
extended to the generalized QAOA ansatz [365, 347, 64]. Prior works optimize the
generalized QAOA greedily and progressively for each circuit layer or end-to-end as
a large autoregressive network. The present work differs from these methods; we
take advantage of the MCTS structure and formulate the problem as a two-level
optimization.

MCTS and RL: Monte Carlo tree search (MCTS) has been one major workhorse be-
hind the recent breakthrough of reinforcement learning algorithm, especially AlphaGo
algorithms and variants [284, 285, 283, 276, 352]. MCTS [43, 124] makes use of a
discrete hierarchical structure to figure out a better exploration in high dimensional
search problems. While it is typically applied to discrete search, it has also been used
in the continuous setting [322], where the partition space of the whole space is viewed
as branching of the tree. In the context of quantum computing, applications of MCTS
have been recently emerged such as the Quantum Circuit Transformation [363], the
quantum annealing schedules [67], and the quantum dynamics optimization [78].

Further related works in hybrid optimization, counter-diabatic driving methods, and
architecture search can be found in Section 5.7.

5.2 Generalized QAOA ansatz

The generalized QAOA ansatz [347] constructs a variational quantum circuit via the
composition of a sequence of parameterized unitary operators:

U(θ)=

q∏
j=1

U(τj, αj)=

q∏
j=1

exp
(
−iαjHτj

)
. (5.2.1)

Here the circuit parameters θ = (α, τ ) contain two components: i) the discrete
variables τ = (τ1, τ2, . . . , τq) define a sequence of Hamiltonians with length q, while ii)
the continuous variables α={αj}qj=1 represent the duration that each corresponding
gate is applied for. It is further assumed that each Hamiltonian Hτj is selected
from a fixed Hamiltonian pool A={H1, H2, · · · , H|A|}, and consecutive gates are not
repeated, i.e., τj ̸= τj+1, 1 ≤ j ≤ q − 1. The total number of possible sequences is
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thus |A|(|A| − 1)q−1, which grows exponentially with q, rendering exhaustive search
intractable.

After applying the circuit to an initial quantum state |ψinit⟩, one obtains the final
quantum state |ψ⟩ = U(θ) |ψinit⟩. To prepare a high quality approximation of the
ground state |ψGS⟩ of the target Hamiltonian H, the continuous and discrete variables
are solved for by minimizing the following objective function:

L(θ)=E(θ)/N=⟨ψinit|U †(θ)HU(θ)|ψinit⟩/N. (5.2.2)

Note that the energy E in the objective function is divided by the number of particles
N in the physical model, e.g. the number of qubits. This scaled objective function has
a well-behaved limit when increasing the number of qubits, as required for larger-scale
computations. Here, the energy function E(θ) is always lower-bounded by the ground
state energy EGS =⟨ψGS|H|ψGS⟩. It is also worth noticing that the quantum states
|ψ⟩ are unknown to the optimization algorithm (they cannot be measured), which
increases the difficulty of the optimization algorithm.

5.3 Reinforcement learning setup

After defining the optimization problem posed by the generalized QAOA, let us briefly
cast it within the RL framework.

Quantum constraints on the RL environment

Beyond classical physics, quantum mechanics imposes counterintuitive constraints on
the state and reward spaces, which need to be embedded in a realistic RL environment.

First, the quantum state (or wavefunction) is not a physical observable by itself,
and inference of the information of the full quantum state from experiments (called
quantum state tomography) can require exponential resources. This fact is intimately
related to the expected superior performance of quantum computers against their
classical counterparts on certain tasks. To embed this quantum behavior into our
environment simulator, we define the RL state as the sequence of actions applied [48]
rather than the quantum state. Starting from a fixed initial state, the quantum state
is uniquely determined (though still unmeasurable) by the Hamiltonian sequence
applied.

Second, (strong) quantum measurements lead to a collapse of the quantum wavefunc-
tion. This means that, once a measurement has been performed, the state itself is
irreversibly lost. Therefore, a second constraint for our quantum RL environment
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is the sparsity of rewards. Indeed, only after the RL episode comes to an end, can
we measure the energy and obtain the reward. In Sec. 5.4, we exploit this fact to
introduce MCTS into the algorithm which does not evaluate the protocol τ during
the construction of it. As a result, the evaluation is delegated to the noise-robust
PG-QAOA solver.

The reinforcement learning environment

In the language of reinforcement learning (RL), the choice of quantum gates cor-
responds to the action of the learner, and the quantum circuit is completed after
q actions, which marks the end of the RL session/episode. The reward signal is
provided by the inner loop solver which aims to compute the lowest possible energy
that can be reached by the fixed chosen gate sequence. To be more specific, the
action space A = {Hj : 1 ≤ j ≤ |A|} is a set of Hamiltonians; the state space
S = {(τ1, τ2, . . . , τt) : τj ∈ A, 0 ≤ j ≤ t, 1 ≤ t ≤ q} is the set of sequences of
Hamiltonians with length no larger than q. In particular, a session always starts
with the empty sequence s0, and ends with a state given by a Hamiltonian sequence
of length q. When st = (τ1, τ2, . . . , τt) is not a terminal state, i.e., t < q, the next
state st+1 is obtained by appending the (t+1)-th action τt+1 at the end of st, i.e.,
st+1 = (τ1, τ2, . . . , τt, τt+1).

The reward r(s) only depends on the state s, and it is set as 0 whenever s is not a
terminal state. As explained in the previous section, this implements the physical
constraint reflecting the inability to perform a strong quantum measurement without
destroying the quantum state. When s is a terminal state τ = (τ1, τ2, . . . , τq), we
define

r(s) = r(τ ) = −min
α

E({αj}qj=1, τ )/N, (5.3.1)

where {αj}qj=1 are the duration obtained by the inner loop continuous optimizer, and
the energy E is defined in equation 5.2.2.

5.4 Monte Carlo tree search with improved policy

gradient solver

In this section, we introduce MCTS-QAOA, an algorithm that solves the hybrid
optimization problem defined by the generalized QAOA ansatz, using a combination
of MCTS and an improved policy gradient solver. In the combined algorithm, MCTS
serves as the solver for the outer optimization problem: it is used to search for high
quality gate sequences τ . At the same time, we design an improved policy gradient



CHAPTER 5. MONTE CARLO TREE SEARCH BASED VARIATIONAL
QUANTUM ALGORITHMS 171

Algorithm 5 MCTS-QAOA

Input: UCB bound coefficient c, number of outer loop iterations Titer, number of
random initialization Tinit.

1: Initialize the Monte Carlo tree.
2: for t = 1, .., Titer do
3: Pick a node according to the tree policy πtree, cf. Eq. equation 5.4.1, using the

UCB bound with parameter c.
4: if the tree node is not the terminal state then
5: Randomly roll out from the current tree node to obtain a terminal state τt.
6: end if
7: for i = 1, .., Tinit do
8: Run natural policy gradient method (see Algorithm 6) to obtain the estimated

reward r
[i]
t .

9: end for
10: Choose the best gate sequence durations according to the maximum reward

r̂t = maxi r
[i]
t across different random intialization of policy gradient.

11: Back-propagate the reward r̂t from the node up to the root and update the
statistics (Q,N) on each node.

12: end for

solver to produce the optimal gates duration α for the discrete sequence provided by
MCTS. Finally, the outcome of the evaluation is propagated back through the nodes
of the MC tree to improve the tree policy before the next iteration.

Discrete optimization: Monte Carlo tree search

MCTS-QAOA strikes an efficient balance between exploration and exploitation of the
RL states, by leveraging the statistics recorded in a search tree. Each node of this
tree corresponds to a state s; the child nodes denote all possible states s′ following the
state s. For the problem considered in this paper, trajectories are loop-free, since each
child state s′ has one more action attached than its parent state s. Thus, we refer to a
given node by its corresponding state. In particular, the root node corresponds to the
empty state s0, which has |A| children, one for each action; any other non-terminal
state s has |A|−1 children, reflecting the constraint that no action can follow itself,
and a terminal state has none. During the search process, each node keeps track of
the statistics of two quantities: i) N(s, a) counts the selection of action a at state
s; ii) Q(s, a) is the expected reward after taking action a at state s. Intuitively, the
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average Q(s, a)/N(s, a) is an estimate of how promising a child node is. Finally, a
node s is called fully expanded, if all its children are visited in the search, i.e., if
N(s, a)≥1 for all a∈A; otherwise, s is called an expandable node, and is the focus
of exploration.

In each MCTS iteration, the tree and the node statistics are updated as follows:

1. Forming a search path. Starting from the root node, if the current node is fully
expanded, then one of its children is chosen according to the following Upper
Confidence Bound (UCB) [18]:

πtree(s)=arg max
a∈A

(
Q(s, a)

N(s, a)
+ c

√
2 logN(s)

N(s, a)

)
, (5.4.1)

until reaching a terminal state or an expandable node; here πtree(s) denotes the
tree policy. Then an unvisited child of the current node is chosen at random,
unless the current node is a terminal state. After that, a simulation is rolled
out with a uniform policy until reaching a terminal state.

2. Evaluation and backup. The reward r̂1 of the terminal state is evaluated
by the inner loop solver and the tree statistics are updated using Q(s, a) ←
Q(s, a) + r̂, N(s, a)← N(s, a) + 1 for each visited edge (s, a).

For the generalized QAOA ansatz, the real challenge lies in the evaluation step. On
the one hand, the overall minimization of the energy depends on the potential of the
trajectory selected by the MCTS, whose role is to find the optimal trajectory sequence.
On the other hand, if the accuracy of the evaluation is low, then the searching process
can be stuck at a severely suboptimal solution. Similarly, if the evaluation is not
efficient enough, then the benefit obtained by using quantum computation strategy
will also be lost. And last but not least, if the evaluation results are not robust to
noise, then the algorithm can hardly be carried out on quantum devices. Hence,
the inner loop solver used to implement the evaluation must be able to efficiently
offer high accuracy results while being robust to different kinds of noise. The above
considerations refer to the generic case; in practice, the optimization dynamics of the
algorithm is set by the properties of the optimization landscape.

1In order to distinguish the estimated reward from the true reward r(s) in the presence of noise,
we denote the estimated reward as r̂.
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Continuous optimization: natural policy gradient solver

For each terminal state τ = (τ1, τ2, . . . , τq) reached in the MCTS process, an inner
loop solver is invoked to produce the optimal duration α={αj}qj=1 and the reward
−E({αj}qj=1, τ )/N which are then back-propagated through the tree to update the
tree statistics. In order to ensure that the duration obtained has a practical magnitude
and to allow for a fair comparison between algorithms, we further assume that the
total duration of all gates is fixed as T , which can be seen as a protocol for the circuit
depth.

The continuous optimization problem for the inner-loop solver in the reward-evaluation
step is thus

min
{αj}qj=1

{
E({αj}qj=1, τ ) :

q∑
j=1

αj =T ; 0 ≤ αj ≤ T

}
. (5.4.2)

In order to avoid using explicit derivatives of the energy E, we instead optimize the
expectation of the energy E over a parameterized probability distribution of α; this
is also crucial to to make the algorithm resilient to noise. More specifically, we set
αj =

T α̃j∑
k α̃k

to ensure the constraints on αj, where α̃j is a random variable drawn

from the sigmoid Gaussian distribution SN (µj, σj)
2. It can be parameterized as

α̃j = g(δj), where δj ∼ N (µj, σj) is a Gaussian random variable and g(x) = 1
1+exp(−x)

is the sigmoid function. Adding a Shannon entropy regularizer to the total expected
reward we obtain the regularized objective function:

J ({µj, σj}qj=1)=Eδj∼N (µj ,σj) [R(δ)] + β−1
S

q∑
j=1

log σj, (5.4.3)

which is maximized over the parameters {µj, σj}qj=1. Here

R(δ) = −E
({

Tg(δj)∑
k g(δk)

}q

j=1

, τ

)
/N,

and β−1
S denotes the temperature, which controls the trade-off between exploration

and exploitation: higher temperature β−1
S leads to a larger weight on the entropy

term, and thus encourages exploration, while smaller β−1
S reduces exploration. The

entropy term
∑q

j=1 log σj can be derived from the definition of Shannon entropy,
cf. Section 5.10.

2SN (µ, σ) denotes the sigmoid Gaussian distribution with parameters µ and σ, i.e., the distri-
bution of the Gaussian random variable N (µ, σ) under the sigmoid transformation. It is also called
the logit-normal distribution
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The inner loop solver is then constructed with a natural policy gradient (NPG) method
applied to the regularized objective function J using the natural gradient direction
F−1∇J , where F is the Fisher information matrix for the joint distribution of {δj}qj=1

and ∇J is the gradient of J with respect to the parameters. This procedure is
different from the solver established in PG-QAOA [346], where the standard gradient
is used to update the parameters and no regularization is used. Using independent
standard normal variables ξj, the natural gradient direction can be approximated by
unbiased estimators:

F−1
j

[
∂J
∂µj
∂J

∂ log σj

]
≈
[

σjR(δ)ξj
1
2
R(δ)(ξ2j − 1) + 1

2
β−1
S

]
, (5.4.4)

where δj = µj +σjξj and Fj is the j-th 2-by-2 diagonal block of the Fisher information
matrix, since F is a block diagonal matrix, cf. Section 5.10. In practice, we update
log σ instead of σ to ensure the positivity of σ, and we use the average of the unbiased
estimators in equation 5.4.4 within a batch of size M to give the approximation of
the natural gradient direction.

The first term in the objective function J can also be viewed as a smoothed reward
function obtained with Gaussian perturbation. The parameter {σj}qj=1 determines
the distance between J (µj, σj) and E(µj) [231]. If σ is too large, then J is far from
E, and yields suboptimal solutions of µj since too much details are lost after the
Gaussian smoothing. To avoid this, we propose to use a tempering technique (see for
example [[]Sec. 5]klink2020self, abdolmaleki2018maximum, haarnoja2018soft). More
specifically, after a certain number of NPG iterations, we reduce the temperature β−1

S ,
and in the final stage of entropy adjustment (cf. line 10-12 in Algorithm 6), we discard
the entropy term. In this way, the policy is less susceptible to highly suboptimal
local maxima in the beginning of the inner loop optimization thanks to the entropy
regularization. At the end of the optimization, the variance σj decreases, since the
temperature is reduced and the algorithm is able to achieve a higher precision as the
smoothed problem becomes a better approximation to the original one. As a result,
many policy gradient updates can be saved compared to the original policy gradient
method in [346], and the quality of solutions is improved.

When the optimization by the inner loop solver is completed, the parameters {µj}qj=1

are used to evaluate the reward to be back-propagated through the MC tree. More

specifically, the gate sequence τ with duration
{

Tg(µj)∑
i g(µi)

}q

j=1
is applied and a reward

is obtained. In order to deal with noisy rewards, the evaluation is repeated m times,
and the average reward is sent to the discrete solver. The details of the inner loop
algorithm is summarized in Algorithm 6.
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Algorithm 6 Improved policy gradient solver

Input: Action sequence τ , number of restarts R, batch size M , learning rates ηt,
total number of iterations K, the number of evaluation repeats m, the total
gate duration T , the initial temperature β−1

S , the rate of temperature decrease
0 < γT < 1.

1: Randomly initialize the mean {µj}qj=1 and variance {σj}qj=1.
2: for t = 1, .., R×K do
3: Sample a batch of variables {α̃l

j}qj=1, l= 1, 2, · · · ,M of size M from sigmoid
Gaussian distributions SN (µj, σj).

4: Normalize the generalized QAOA parameter αj = T α̃j/
∑

i α̃i.
5: Compute the approximate NPG direction using Eq. equation 5.4.4.
6: Update the parameters with the gradient and learning rate ηt.
7: if t mod K = 0 and t < (R− 1)K then β−1

S ← γTβ
−1
S .

8: if t = (R− 1)K then β−1
S ← 0.

9: end for
10: Apply the circuit m times with gate sequence τ and durations

{
Tg(µj)∑
i g(µi)

}q

j=1
,

collect the rewards {rk}mk=1, and estimate the reward r̂ by r̂ = 1
m

∑m
k=1 rk.

Output: The mean and variance parameters {µj}qj=1 and {σj}qj=1; the estimated
reward r̂.

Relation to previous algorithms used to optimize the
generalized QAOA ansatz

We finish this section by a comparison of MCTS-QAOA with previous methods
solving the QAOA problem. As shown in Table 5.1, the CD-QAOA method adopts
Scipy solver for the continuous optimization, which cannot be applied to problems
with noise, and the RL-QAOA method can produce suboptimal solutions in certain
regimes, which we verify with numerical experiments in the next section. Moreover,
note that, due to the large neural network used in RL-QAOA, it is infeasible to apply
the natural gradient methods as in Section 5.4.

5.5 Numerical experiments

To benchmark the performance of MCTS-QAOA, we consider three physics models:
the 1-dimensional Ising model, the 2-dimensional Ising model on a square lattice,
and the Lipkin-Meshkov-Glick (LMG) model. The description of the models and the
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Method CD-QAOA RL-QAOA MCTS-QAOA

optimization (discrete) AutoReg+PG
AutoReg+PG

MCTS

optimization (continuous) SciPy PG

performance without noise ✓ ✓✗ ✓

performance with noise ✗ ✓✗ ✓

Table 5.1: Comparison among the three algorithms for the generalized QAOA ansatz:
CD-QAOA, RL-QAOA and MCTS-QAOA. In this table, AutoReg+PG stands for the
policy gradient algorithm with the autoregressive neural network as a policy [350]; ✓✗means
the algorithm can fail in certain challenging regimes (e.g., large total duration T ).

additional Hamiltonians inspired from the counter-diabatic theory can be found in
Section 5.8. In addition, in order to test the noise-resilience of MCTS-QAOA, we
consider three types of noise models: classical measurement Gaussian noise, quantum
measurement noise, and gate rotation error, cf. Section 6.11.

We compare the performance of MCTS-QAOA with that of RL-QAOA, and provide
an analysis on why RL-QAOA might fail in certain regimes. Further analysis of the
energy landscape of the discrete optimization reveals a surprising phenomenon: for
generalized QAOA with optimal choices of the continuous degrees of freedom, there
can be a large number of discrete protocols producing relatively accurate energies.

Comparison with RL-QAOA

For the methods solving the generalized QAOA problem summarized in Table 5.1, the
CD-QAOA algorithm cannot be applied to problems with noise since the continuous
solver is not noise-resilient, while the RL-QAOA algorithm has been shown to be effec-
tive with relatively short total duration JT (using unnormalized Hamiltonians [350]).
Therefore, we use RL-QAOA as a baseline when evaluating the performance of MCTS-
QAOA, and we focus on the more challenging regime of large JT with normalized
Hamiltonians3.

3The Hamiltonians used in this work are normalized by their operator norm ∥H∥, i.e., we
use H/∥H∥ instead of the original Hamiltonian H. The reason for introducing the normalized
Hamiltonian is that the dependence of the cost of performing a Hamiltonian evolution e−iHα on
a quantum device – Ω(∥H∥α) – scales with the norm [28, 201]. Interested readers can refer to
Section 5.8 for more details.



CHAPTER 5. MONTE CARLO TREE SEARCH BASED VARIATIONAL
QUANTUM ALGORITHMS 177

0 60 120 180
JT

0.0

0.2

0.4

0.6

0.8

1.0

E
/E

G
S

(a)

Ising 1D (N=8)

RL-QAOA

MCTS-QAOA

10 20 30 40 50 60
JT

−0.2

0.0

0.2

0.4

0.6

0.8

1.0 (b)

Ising 2D (N=3×3)

0 500 1000 1500 2000
JT

0.4

0.5

0.6

0.7

0.8

0.9

1.0
(c)

LMG (N=100)

Figure 5.2: (Quantum noise experiment) comparison between MCTS-QAOA and RL-
QAOA with quantum measurement noise (Section 6.11). (a): 1D spin-1/2 Ising chain
(N=8); (b): 2D spin-1/2 Ising chain (N=3× 3); (c): LMG model (N=100) at h/J = 0.9.
The blue dotted line and the orange solid line display the energy ratio E/EGS obtained by
RL-QAOA and MCTS-QAOA. The green square shape and the red diamond shape in the
left panel approximately corresponds to JT =10 (an example in the small T regime) and
JT =28 (an example in the large T regime) with unnormalized Hamiltonians, respectively.
The horizontal axis represents the total duration JT . MCTS-QAOA outperforms RL-QAOA
in all tests.

We first compare the performance of MCTS-QAOA against that of RL-QAOA for the
physical systems discussed in Section 5.8 in the presence of quantum noise. Detailed
numerical results for the noiseless experiments and other noise models can be found
in Section 6.11. In order to compare the performance of different optimizers, noisy
rewards are offered to the optimizers during the training process, and the exact
rewards are only used in evaluating the protocols found by the optimizers. For
MCTS-QAOA, the protocol evaluated is given by a greedy search, i.e., a searching
process with the exploration coefficient c = 0 in Eq. equation 5.4.1.

Figure 5.2 shows the energy ratio evaluated for the protocols obtained by the optimizers
across different lengths of total duration JT . For all three physics models, we find
that the performance of MCTS-QAOA is at least as good as that of RL-QAOA for
all protocol durations. In particular, for the 1D Ising model, MCTS-QAOA gives
protocols that find close approximations to the true ground state when JT ≳ 40;
RL-QAOA gives inferior solutions in these settings. For the 2D Ising model, while
the performance of RL-QAOA is similar with that of MCTS-QAOA at JT = 60, the
performance of RLQAOA at JT = 30, 40 and 50 is still inferior to that of MCTS-
QAOA. For the LMG model, the quality of the gate sequence found by RL-QAOA
further decreases when JT > 500, and MCTS-QAOA is significantly more robust.

The inferior performance of RL-QAOA is directly related to the joint parameterization
used in RL-QAOA for the continuous and discrete policies. Since RL-QAOA optimizes
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Figure 5.3: Analysis of RL-QAOA using the LMG test: (a): Energy ratio versus
number of function evaluations; (b): Number of unique gate sequences encountered versus
number of function evaluations; (c): Histogram of the rewards received by the algorithm
in the first 5000 iterations. The horizontal red line in the left / middle panel represents
the maximal energy ratio and the maximal number of unique gate sequences encountered
during the optimization, respectively. The orange line marks the transition between two
stages of the training process.

the continuous and discrete variables simultaneously, for each discrete sequence, the
level of accuracy of the continuous optimization can be relatively low. Consequently,
the optimizer can get stuck at a suboptimal discrete sequence.

To illustrate this behavior, we analyze the training of RL-QAOA using the LMG
model with (JT,N, q) = (1500, 100, 8) and noiseless rewards. Figure 5.3 summarizes
the performance of RL-QAOA. Here by function evaluation we mean the computation
of the objective function in equation 5.2.2. From Figure 5.3(a) and Figure 5.3(b),
it is clear that the training process can be divided into two distinct stages, and the
transition between the two stages is marked by the dashed-dotted vertical lines4. In
stage I, which is to the left of the vertical lines, the number of unique gate sequences
encountered by RL-QAOA quickly increases, while the energy ratio keeps oscillating
below zero, which suggests that RL-QAOA focuses on exploration and the continuous
optimization is done only very roughly within stage I. In stage II, which is to the right
of the vertical lines, the number of unique gate sequences encountered by RL-QAOA
stops to grow, while the energy ratio obtained grow above zero and eventually gets
stuck at around 0.5, which means that the algorithm stops its exploration and focuses
on the optimization of the continuous variables for a fixed gate sequence with stage II.
The overall performance of RL-QAOA can highly depend on the discrete gate sequence
that the RL-QAOA agent decides to exploit. In the next section, we demonstrate that

4These vertical lines are drawn at the point where the number of discrete protocol gate sequences
drops to 10% of the total number within a single mini-batch
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both the exploration and the exploitation phases in RL-QAOA can be suboptimal
in this example, but the main issue is related to the suboptimal discrete sequences
found in the exploration phase.

Landscape of the discrete optimization and comparison with
random search

In order to further understand the relative importance of continuous optimization ver-
sus discrete optimization for the generalized QAOA, we study the energy landscape of
discrete optimization. For each discrete gate sequence, we perform numerical optimiza-
tion to identify the best continuous parameters {αj}, and record the corresponding
energy ratio.

Energy landscape of discrete optimization. – A profile of the discrete optimiza-
tion landscape can be given by solving the corresponding continuous optimization
individually on a random subset of all possible gate sequences; if the total number of
possible gate sequences |A|(|A| − 1)q−1 is relatively small, this subset can actually
be chosen to include all sequences. In our numerical implementation, each discrete
gate sequence is sent to the natural policy gradient solver described in Section 5.4,
and the continuous variables are solved for different JT regime. Histograms for the
energy ratios obtained can then be drawn.

Figure 5.4 shows the discrete landscape for the LMG model and the 1D Ising model,
respectively, where the parameters of the ansatz are (|A|, q) = (5, 8), and the total
number of gate sequences is thus 81920. From the histogram plot, most gate sequences
are concentrated at the right-most peak in the large JT regime. Far from searching “a
needle in a haystack”, this showcases that there are plenty of “good”5 gate sequences
assuming that each continuous optimization parameter is well solved. Note that
the behavior is significantly different from the discrete-only optimization, where
the landscape has been shown to feature transitions between glassy, correlated and
uncorrelated phases [82]. To the best of our knowledge, the existence of many good
discrete gate sequences in the QAOA-type variational quantum algorithms has not
been reported in the literature.

For the LMG model with total gate duration JT =1500 (cf. Figure 5.4), while most
energy ratios fall into the cluster above 0.9, there is a smaller cluster located at 0.5.
The energy ratio obtained by RL-QAOA (cf. Figure 5.3) falls into this cluster, which
is depicted by the red dashed line, while the green dashed line shows the energy

5“Good” gate sequences here means the optimized energy ratio is close to the optimal energy
ratio obtainable within the generalized QAOA ansatz.



CHAPTER 5. MONTE CARLO TREE SEARCH BASED VARIATIONAL
QUANTUM ALGORITHMS 180

0.4 0.6 0.8 1.0
energy ratio E/EGS

2000

4000

6000

8000

#
of

ga
te

se
qu

en
ce

s

(a) JT =500

0.4 0.6 0.8 1.0
energy ratio E/EGS

(b) JT =1000

0.4 0.6 0.8 1.0
energy ratio E/EGS

(c) JT =1500

0.4 0.5 0.6

100

200

0.4 0.6 0.8 1.0
energy ratio E/EGS

0

2000

4000

6000

8000

10000

#
of

ga
te

se
qu

en
ce

s

(d) JT =30

0.4 0.6 0.8 1.0
energy ratio E/EGS

(e) JT =40

0.4 0.6 0.8 1.0
energy ratio E/EGS

(f) JT =50

Figure 5.4: Discrete landscape of the LMG model (a, b, c) and the 1D Ising model
(d, e, f): Histograms of the energy ratio optimized by the improved natural gradient solver
for JT = 500, 1000, 1500, respectively. Nhist = 81920 samples are chosen from the discrete
gate sequences of generalized QAOA with parameters q = 8, |A| = 5 and N = 100 (LMG)
or N = 8 (1D Ising). The dashed red line in the top right panel shows the energy ratio
achieved by RL-QAOA in Figure 5.3; the green dashed line shows the energy ratio obtained
by the NPG solver for the same gate sequences.

ratio obtained by the natural policy gradient solver with the same gate sequence.
The green line corresponds to a higher energy ratio than the red line, which means
that the optimization of the continuous variables in the second stage of RL-QAOA is
not as good as the NPG solver, and the difference between the two lines indicates
the suboptimality caused by the exploitation. However, the suboptimality of the
RLQAOA solution is mainly due to the exploration stage, since the discrete sequence
that RL-QAOA chooses to exploit represents a suboptimal local optimum that belongs
to a cluster much smaller than the rightmost one in the histogram. The top right panel
of Figure 5.4 also verifies the claim that RL-QAOA only does a rough optimization on
the continuous variables before it stops exploration, since the energy ratios displayed
there are mostly above 0.4, while the energy ratio obtained in optimization stage I is
mainly negative. While the landscape of the hybrid optimization is challenging for
RL-QAOA, the proposed method MCTS-QAOA is able to deal with it by using a
noise-resilient solver for the continuous variables (NPG), and by exploring the discrete
variables constantly using MCTS.
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Figure 5.5: Comparison between MCTS-QAOAand Random Search: The blue and
orange curves correspond to MCTS-QAOA and random search, respectively. The physics
system is the 1D Ising model with duration JT = 30, which corresponds to Figure 5.2
(a). The generalized QAOA parameters are q = 8 and |A| = 5. The horizontal axis is the
number of function evaluations (with the function evaluation in the continuous optimization
taken into account), and the vertical axis is the energy ratio. The shaded area for both
algorithms represents the standard deviation across ten different random initializations.

For the 1D Ising model with total gate duration JT =30 shown in the bottom left
panel, where the rightmost cluster is not the largest. This means that in this setting,
it is more difficult to find a gate sequence in the rightmost cluster when the random
search is used. We examine the performance of random search and MCTS-QAOA
using this example in the next part.

Comparison with random search. – A recent work [206] points out that advanced
RL methods need not outperform simpler methods such as random search. In fact, if
there is no specific structure in a problem, a random search algorithm might be as
efficient as any sophisticated algorithm. In addition, from the landscape illustrated
in the previous histograms, one can see that, for the models we investigated, there are
lots of gate sequences with relatively high energy ratios provided that the continuous
protocols are optimized. Therefore, it is natural to compare MCTS-QAOAagainst
the random search algorithm6. For a fair comparison, we assume that the continuous
optimization in both cases is solved by the natural policy gradient algorithm, and
the difference only lies in the discrete optimization. In Figure 5.5, the best energy
ratio in the training history is shown for the two methods, and one sees that MCTS-

6The random search algorithm also uses a two-level optimization, where the continuous opti-
mization is solved by the policy gradient algorithm and the discrete optimization uses the random
search. Since we assume no prior knowledge, the random search would be uniformly random on the
discrete search space.
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QAOAconsistently outperforms the random search across different random seeds.
MCTS-QAOAnot only finds better gate sequences much faster, but also gives a
smaller variance across different realizations. It is clear that instead of doing the
search uniformly and treating each protocol as equally important, the tree statistics
in MCTS-QAOAbetter guides into a more promising search direction.

5.6 Conclusion and discussions

In this paper, we study a continuous-discrete variational quantum algorithm for the
generalized QAOA ansatz. To solve this hybrid optimization problem, we design a
novel algorithm that combines the Monte Carlo tree search (MCTS) algorithm, a
powerful method in exploring the discrete sequence, with an improved noise-robust
policy gradient solver for the continuous duration variables of a fixed gate sequence.
The proposed algorithms effectively generate robust quantum control where the prior
methods fail.

In this context, we expect that random search algorithms cannot efficiently determine
the best gate sequence if noisy rewards are used, while MCTS-QAOAis able to
mitigate the noise and provide robust choice of gate sequence with the help of the tree
structure it maintains. Moreover, it is possible for MCTS-QAOA to further reduce
the number of evaluations by assigning different number of iterations for different gate
sequences, e.g., it can assign more iterations for the more promising gate sequences.
Also, MCTS-QAOA allows for the application of transfer learning using the tree
statistics, which is not possible for the random search.

There are a number of possible ways to extend the problem presented in this paper:

Learning based guided search. – MCTS can be possibly guided by a learned
functional approximator, such as neural networks or tensor networks. We have also
tried the implementation of AlphaZero in the same experimental settings. However,
the neural network based method does not work better than the simple MCTS. We
find that the value function mapping from the discrete gate sequences to the score was
quite hard to learn. One reason might be that the continuous policy gradient will try
the best to optimize the energy ratio to the highest, thus making this mapping from
discrete sequences to score, highly non-linear. Also, in terms of sampling efficiency,
the neural network based approach needs lots of samples to fit the function, which is a
heavy overhead compared to the simple MCTS approach. Nevertheless, the question
remains open as to how to upgrade MCTS to a guided search.

Amortized computation. – The computation within the policy gradient solver for
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different gate sequences can possibly be amortized. Currently, the continuous and
discrete optimizations are separated. If some functional can be learned by replaying
the data during the policy gradient iteration, the number of function evaluations can
be further reduced. However, one difficulty in the quantum setting is that we do not
have access to the quantum state, and thus we cannot learn a mapping taking the
quantum state as input, unless we apply non-trivial quantum tomography. Therefore,
how to reuse the past information and make the MCTS-QAOA algorithm quickly
adaptive in physical setting remains to be investigated. Advanced algorithms like
meta learning can be explored in the future work.

Budget-aware variational quantum algorithms. – A point of high interest is the
design of budget-aware variational quantum algorithms. The importance of sample
efficiency in the quantum setting can never be overemphasized. Each run of a quantum
circuit can be expensive and quantum decoherence noise is usually not stationary over
time. The budget-awareness property can be naturally incorporated in the MTCS
framework. Making use of the tree structure, the adaptive algorithm would distribute
more function evaluation budget to the most-visited or more promising nodes. The
current algorithm likely operates in a budget-sufficient regime and uses the same
amount of budget for each discrete gate sequences. We hope the adaptive algorithm
can hit the sweet spot in the middle, i.e., use the right amount of computational
budget and still compute the best possible gate sequence design. We hope that
the present work will accelerate the research of budget-aware variational quantum
algorithms in a realistic setting.

5.7 Related works

Hybrid optimization: The generalized QAOA ansatz introduces a discrete and
continuous control problem: the discrete degrees of freedom are the gates/unitaries
that define the control protocol, while the continuous degrees of freedom are the gate
duration. Most reinforcement learning algorithms [195, 30, 310] typically deal with
the control of either discrete or continuous degree of freedom, and hardly consider
the discrete and continuous control simultaneously in the policy. Even though the
continuous control can always be discretized, it is always beneficial and desirable to
consider discrete and continuous variables together, without loss of the flexibility of
continuous control. Furthermore, the idea of continuous and discrete optimization
can be quite general, and shows up in real world application like robotics [233, 84] and
strategic games [317]. Combining the discrete and continuous control together, the
control capability of the algorithm can be quickly enhanced. In general, the discrete
variables are usually chosen as the categories of actions, and the continuous variables
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will are naturally given by the strength for each specific action. Our work aims to
shed light on the hybrid control in the field of quantum control, and we also hope it
will accelerate the research of hybrid discrete-continuous optimization algorithms in
the wider community.

Counter diabatic driving: Counter diabatic driving [280, 139], an example of
a shortcut to adiabaticity (STA), introduces an extra auxiliary counter-diabatic
(CD) Hamiltonian to suppress transitions (or excitations) between instantaneous
eigenvalues.

For a given quantum state |ψ⟩ evolving under a time dependent Hamiltonian H0(λ(t)),
the Schrödinger equation reads as

iℏ∂t |ψ⟩ = H0(λ(t)) |ψ⟩ ,
|ψi⟩ = |ψGS(λ = 0)⟩ , |ψ∗⟩ = |ψGS(λ = 1)⟩ . (5.7.1)

In the rotating frame, Hamiltonian remains stationary under the unitary transforma-
tion U(λ(t)), i.e. in the instantaneous eigenbasis of Hamiltonian H0(λ). The wave
function |ψ̃⟩ = U(λ)|ψ⟩ in the rotating frame satisfies the following Schrödinger
equation:

iℏ∂t|ψ̃⟩ =
(
H̃0(λ(t))− λ̇Ãλ

)
|ψ̃⟩, (5.7.2)

where H̃0(λ(t)) = U †H0(λ(t))U, Ãλ = iU †∂λU . Specifically, instead of being diagonal-
ized, the original Hamiltonian picks up an extra contribution due to the change in
the parameter λ(t), and the effective Hamiltonian becomes

Heff
0 = H̃0 − λ̇Ãλ. (5.7.3)

The idea of the CD driving is to evolve the system with the counterdiabatic Hamilto-
nian

HCD(t) = H0+λ̇Aλ. (5.7.4)

Importantly, in the moving frame Heff
CD(t) = H̃0 is stationary and no transitions occur.

However, in practice, the precise counter-diabatic Hamiltonian is intractable and
usually approximated by different methods. A good number of prior works [242, 135,
139, 138, 361, 341, 140] are based on the concept of a variational approximation to
the CD Hamiltonian [280]. Most of these works typically make use of an analytically
computed expression available for few-qubit systems; they first derive the continuous
form of the variational gauge potential, and then discretize the underlying dynamics
using the Trotter-Suzuki formula In this work, we aim to bypass these constraints by
applying the variational generalized QAOA ansatz using additional gates, generated
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by terms that occur in the approximation to the variational adiabatic gauge potential.
These extra gates can provide a shortcut to the preparation of the ground state,
compared to the original alternating QAOA ansatz. Physically, this shortcut results
in shorter circuit simulation times, which provices a significant advantage on noisy
NISQ devices.

AutoML and neural architecture search: Automatic machine learning or AutoML
has recently attracted lots of attentions as it reduces human efforts in designing
the neural architecture from experience and instead leverage the computational
power to search the best configuration. One of the most pronounced examples are
neural architecture search (NAS) and their variants [367, 99, 198, 51, 259], where
reinforcement learning or evolutionary strategies are used to find a better network
architecture. Inspired by the success of AutoML, the architecture of quantum circuits
can also be improved by machine learning algorithms, such as the quantum version
of Neural Architecture Search [319, 320, 357, 356, 182]. These prior works interpret
the problem as quantum compiling problems, which assembles quantum gates in
the low level. Instead of exposing a huge number of choice alternatives for the
search algorithms, our work specially uses the variational gauge potentials as the
Hamiltonian pool for the search algorithm in a computation-efficient way. Compared
with QAOA, MCTS-QAOA has more degree of freedom to approximate the unitary
operator; compared with the quantum compiling, it does not search gates in the low
level due to the constraint of computations. From this perspective, our method hits
the sweet spot between the expressivity and efficiency.

5.8 Setup of physical models

We first give a brief review on the physical models used in the numerical experiments.
In all experiments, we choose the target state as the ground state of the Hamiltonian H,
denoted |ψGS(H)⟩. The spin-1/2 matrices describing spin i are denoted by Xi, Yi, Zi.
In contrast to the models considered in [350, 347], the Hamiltonians used in this
work is normalized by its operator norm ∥H∥, i.e., we use H/∥H∥ instead of the
original Hamiltonian H. The reason for introducing the normalized Hamiltonian is
as follows. For generic Hamiltonians H (e.g., sparse matrices), the cost of performing
a Hamiltonian evolution e−iHα on a quantum device is Ω(∥H∥α) [28, 201]. Due to
the potential differences between the Hamiltonian norms in the Hamiltonian pool A,
using a normalized Hamiltonian H/∥H∥ (the corresponding duration parameter α
is thus multiplied by ∥H∥) can lead to a more realistic estimate of the cost of the
quantum simulation. Due to this multiplication factor, the duration shown in the
results below is larger than that presented in [350, 347].
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One-dimensional (1D) Ising model

The spin-1/2 Ising Hamiltonian reads as:

H = H1+H2, H1=
N∑
i=1

JZi+1Zi+hzZi, H2 =
N∑
i=1

hxXi,

where N is the number of qubits and the parameters are set as hz/J =0.4523 and
hx/J=0.4045 [162]. These parameters are close to the critical line of the model in
the thermodynamic limit, where the quantum phase transition occurs. They are also
reported in Ref. [209] to be in the most challenging parameter region using QAOA.
We use periodic boundary conditions here. The initial state for this experiment is
given by z-polarized product state, i.e. |ψinit⟩= |↑ · · · ↑⟩.

For the Hamiltonian pool, we use A=
{
J H1

||H1|| , J
H2

||H2|| , J
A1

||A1|| , J
A2

||A2|| , J
A3

||A3||

}
, where

A1 =
∑N

i=1 Yi, A2 =
∑N

i=1XiYi + YiXi, A3 =
∑N

i=1 ZiYi + YiZi. The operators Aj are
precisely the first three terms in the expansion for the adiabatic gauge potential of
the translation-invariant 1D Ising model [347].

Two-dimensional (2D) Ising model

The 2D spin-1/2 transverse-field Ising model reads:

H=H1+H2, H1=J
∑
⟨i,j⟩

ZiZj + hz
∑
j

Zj, H2 =
∑
j

hxXj,

where ⟨i, j⟩ denotes nearest neighbors on the square lattice. The model parameters
are set as hz/J = 2 and hx/J = 3. The initial state is |ψinit⟩= |↑⟩, i.e. z-polarized
product state on 2D lattice.

For the Hamiltonian pool, we use A=
{
J H1

||H1|| , J
H2

||H2|| , J
A1

||A1|| , J
A2

||A2|| , J
A3

||A3||

}
, where

A1 =
∑

j Yj, A2 =
∑

⟨i,j⟩XiYj + YiXj, A3 =
∑

⟨i,j⟩ ZiYj + YiZj.

Lipkin-Meshkov-Glick (LMG) model

The Lipkin-Meshkov-Glick (LMG) model [196] reads:

H=H1+H2, H1=−
J

N

N∑
i,j=1

XiXj, H2 = h
N∑
j=1

(
Zj +

1

2

)
,

where J is the interactions trength, and h stands for the magnetic field strength. The
LMG model preserves the total spin, and the ground state is contained in an N+1
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dimensional subspace due to this symmetry. This makes the LMG model particularly
interesting because it allows us to simulate its dynamics for a large number of spins,
where many-body effects, such as collective phenomena, dominate the physics of the
system.

For instance, in the thermodynamic limit N → ∞, the LMG model exhibits a
quantum phase transition at hc/J=1 [38]. The transition is between a ferromagnetic
(FM) order in the ground state in the x-direction (h/J ≪ 1), and the paramagnetic
order (h/J ≫ 1).

For the Hamiltonian pool, we use A=
{
J H1

||H1|| , J
H2

||H2|| , J
A1

||A1|| , J
A2

||A2|| , J
A3

||A3||

}
, where

A1 =
N∑
j=1

Yj,

A2 =
1

N

(
N∑
j=1

Yj

)(
N∑
j=1

Xj

)
+

1

N

(
N∑
j=1

Xj

)(
N∑
j=1

Yj

)
,

A3 =
1

N

(
N∑
j=1

Yj

)(
N∑
j=1

(
Zj +

1

2

))
+

1

N

(
N∑
j=1

(
Zj +

1

2

))( N∑
j=1

Yj

)
.(5.8.1)

5.9 Noise models

An essential part of our study is the performance of the algorithms in the presence of
noise. As mentioned in the main text, noise sets the current bottle neck for reliable
quantum computation. Therefore, it is of primary importance for the near-term utility
of quantum computers to develop stable and noise-robust manipulation algorithms.

We use the following three noise models in our numerical experiments: (i) classical
measurement noise, (ii) quantum measurement error which micmic the situation on
present-day NISQ devices, and (iii) gate rotation error noise.

Classical measurement Gaussian noise is added to the cost function according
to

Lγ(θ) = L(θ) + ϵγ,

where ϵγ ∼ N (0, γ2) and γ denotes the noise strength, and N is the normal distri-
bution. Gaussian noise models various kinds of uncertainty present in experiments
using an additive Gaussian random variable, which follows from the Central Limit
theorem.



CHAPTER 5. MONTE CARLO TREE SEARCH BASED VARIATIONAL
QUANTUM ALGORITHMS 188

Quantum measurement noise :

LQ(θ) = L(θ) + ϵQ,

where the noise strength depends on the strength of the energy quantum fluctuations

∆E = N−1
√
⟨ψ(T )|H2|ψ(T )⟩ − ⟨ψ(T )|H|ψ(T )⟩2,

and ϵQ is randomly sampled from N (0,∆E2). Quantum noise models the uncertainty
arising from quantum measurements. For instance, quantum fluctuations are large
when the evolved quantum state is far away from the target, while they decrease
when the final state approaches the target ground state.

Gate rotation error noise :

Lδ(θ) = L(θ′), θ′ = ({αi + αiϵi}qi=1, τ )

where gate error strengths are multiplicative and the corresponding ratios are ϵi ∼
N (0, δ2) for some simulation parameter δ which controls the noise strength. Gate
rotation errors [293] present yet another common noise source, which arises due to
imperfections or lack of calibration in the quantum computer hardware.

5.10 Details for the natural policy gradient with

entropy regularization

For a general d-dimensional Gaussian distribution N (µ,Σ), the Shannon entropy is

defined as E(− log(p(x))), where p(x) = (2π)−
d
2 |Σ|− 1

2 exp
(
−1

2
(x− µ)⊤Σ−1(x− µ)

)
.

Hence

E(− log(p(x))) = −E log

[
(2π)−

d
2 |Σ|− 1

2 exp

(
−1

2
(x− µ)⊤Σ−1(x− µ)

)]
= E

[
d

2
log 2π +

1

2
log |Σ|+ 1

2
(x− µ)⊤Σ−1(x− µ)

]
=
d

2
log 2π +

1

2
log |Σ|+ 1

2
E(x− µ)⊤Σ−1(x− µ)

=
d

2
log 2π +

1

2
log |Σ|+ 1

2
ETr

(
(x− µ)⊤Σ−1(x− µ)

)
=
d

2
log 2π +

1

2
log |Σ|+ 1

2
ETr

(
Σ−1(x− µ)(x− µ)⊤

)
=
d

2
log 2π +

1

2
log |Σ|+ d

2
.
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Omitting the constants, it is equivalent to take the entropy as 1
2

log |Σ|. For the
model used, the probability distribution is a product of normal distribution, i.e., Σ
is a diagonal matrix with length q and diagonal elements σi, so the corresponding
entropy function is E(− log(p(x))) =

∑q
i=1 log σi.

In the implementation, we adopt the parameterization σi = exp(ti) to assure that σi
is positive. Then for the distribution N (µi, σi), we have

log pi(x) = −(x− µi)
2

2σ2
i

− log σi −
1

2
log(2π) = −1

2
(x− µi)

2e−2ti − ti −
1

2
log(2π),

and
∇ log pi(x) = ((x− µi)e

−2ti , (x− µi)
2e−2ti − 1)⊤,

where the gradient is taken with respect to the parameters. Since {δi}qi=1 are inde-
pendent, the Fisher information matrix is a block diagonal matrix with the i-th block
equal to

Fi = E∇ log pi(x)∇ log pi(x)⊤ = E

[
(x−µi)

2

σ4
i

(x−µi)
3

σ3
i
− (x−µi)

σi

(x−µi)
3

σ3
i
− (x−µi)

σi

(x−µi)
4

σ4
i
− 2(x−µi)

2

σ2
i

+ 1

]
=

[ 1
σ2
i

0

0 2

]
.

Recall that for a fixed gate sequence τ , we set R(δ) = −E
({

Tg(δj)∑
k g(δk)

}q

j=1
, τ

)
/N ,

where g denotes the sigmoid function, and

J ({µj, σj}qj=1)= Eδj∼N (µj ,σj)R(δ) + β−1
S

q∑
j=1

log σj.

Hence the gradient of J is

ER(δ)∇ log p(δ) + β−1
S ∇

q∑
j=1

log σj,

where the gradient is taken with respect to the parameters, and p(δ) =
∏q

i=1 pi(δi).
Therefore, the unbiased estimators for the variables are[

∂J
∂µj
∂J
∂tj

]
←
[

R(δ)ξj/σj
R(δ)(ξ2j − 1) + β−1

S

]
,

where ξj are independent standard normal variables and δj = σjξj + µj. As a result,
the unbiased estimators for the natural gradient direction become

F−1
j

[
∂J
∂µj
∂J
∂tj

]
←
[

σjR(δ)ξj
1
2
R(δ)(ξ2j − 1) + 1

2
β−1
S

]
,

since F is a block diagonal matrix with the j-th block given by Fj.
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Figure 5.6: (experiment with other types of noise models or without noise)
comparison between MCTS-QAOA and RL-QAOA. The physics setup is the same as that
in Figure 5.2. (a-c): Gaussian noise with γ = 0.1; (d-f): gate rotation noise with δ = 0.1;
(g-i): experiments without noise (cf. Section 6.11).

5.11 Additional experiment results

In Section 5.5, we have presented a comparison between the RL-QAOA method and
MCTS-QAOA for three different physics models with the quantum noise. In this
section, we report the test results with the other types of noise, namely the results
with the Gaussian noise, the results with the gate rotation error, and the results when
no noise is considered (cf. Section 6.11). We can observe from the comparison that
MCTS-QAOA’s performance is much more stable and accurate.
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From Figure 5.6, one can observe similar behavior the two methods as in Section 5.5,
i.e., MCTS-QAOA outperforms RL-QAOA in all settings and the gaps grow larger in
the regime of large total gate durations. The raw data for the energy ratio obtained
by MCTS-QAOA is summarized in Table 5.2 (highlighted in bold), which offers a
more visually and quantitatively convenient comparison across different models.

Gate rotation noise Quantum noise Gaussian noise No noise
JT

(E/EGS)

(Model) (a) Ising 1D
10.0 −0.0208 (−0.0208) −0.0219 (−0.0238) −0.0225 (−0.0209) −0.0210 (−0.0207)
20.0 0.4907 (0.4884) 0.4862 (0.4863) 0.4903 (0.4905) 0.4907 (0.4908)
30.0 0.7849 (0.7844) 0.7830 (0.7796) 0.7825 (0.7833) 0.7850 (0.7850)
40.0 0.9481 (0.9486) 0.9521 (0.9477) 0.9512 (0.9513) 0.9516 (0.9527)
50.0 0.9503 (0.9499) 0.9499 (0.9564) 0.9505 (0.9581) 0.9559 (0.9574)
60.0 0.9489 (0.9614) 0.9526 (0.9540) 0.9576 (0.9560) 0.9570 (0.9621)
120.0 0.9424 (0.9495) 0.9543 (0.9548) 0.9606 (0.9524) 0.9548 (0.9602)
180.0 0.9495 (0.9415) 0.9486 (0.9502) 0.9582 (0.9556) 0.9514 (0.9543)

(Model) (b) Ising 2D
10.0 −0.1586 (−0.1586) −0.1645 (−0.1610) −0.1589 (−0.1614) −0.1587 (−0.1587)
20.0 0.2688 (0.2692) 0.2663 (0.2672) 0.2680 (0.2677) 0.2730 (0.2688)
30.0 0.7771 (0.7777) 0.7786 (0.7800) 0.7799 (0.7797) 0.7812 (0.7812)
40.0 0.9635 (0.9635) 0.9641 (0.9651) 0.9647 (0.9633) 0.9654 (0.9635)
50.0 0.9984 (0.9984) 0.9979 (0.9982) 0.9982 (0.9983) 0.9985 (0.9985)
60.0 0.9980 (0.9979) 0.9978 (0.9981) 0.9981 (0.9965) 0.9986 (0.9984)

(Model) (c) LMG
30.0 0.4775 (0.4774) 0.4762 (0.4729) 0.4766 (0.4770) 0.4776 (0.4774)
60.0 0.5828 (0.5828) 0.5792 (0.5803) 0.5818 (0.5815) 0.5828 (0.5828)
100.0 0.7471 (0.7467) 0.7447 (0.7468) 0.7459 (0.7460) 0.7472 (0.7471)
200.0 0.8591 (0.8592) 0.8561 (0.8568) 0.8583 (0.8587) 0.8591 (0.8591)
300.0 0.9093 (0.9098) 0.9091 (0.9077) 0.9095 (0.9093) 0.9101 (0.9104)
500.0 0.9312 (0.9368) 0.9349 (0.9363) 0.9367 (0.9367) 0.9372 (0.9371)
1000.0 0.9463 (0.9484) 0.9522 (0.9475) 0.9505 (0.9510) 0.9518 (0.9523)
1500.0 0.9474 (0.9436) 0.9385 (0.9336) 0.9444 (0.9524) 0.9499 (0.9453)
2000.0 0.9447 (0.9448) 0.9646 (0.9496) 0.9648 (0.9521) 0.9636 (0.9562)

Table 5.2: Energy ratio obtained by MCTS-QAOA: MCTS-QAOAusing the Hamilto-
nian pool without identity (bold, see Section 5.8) and with identity operator (gray in the
parenthesis, see Section 5.13). Sector (a): 1D spin-1/2 Ising chain (N=8); Sector (b): 2D
spin-1/2 Ising chain (N=3× 3); Sector (c): LMG model (N=100) at h/J = 0.9. We use
γ = 0.1 for Gaussian noise and δ = 0.1 for the gate rotation noise (see Section. 6.11).
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5.12 Additional numerical results on the energy

landscape

In Section 5.5 we reported the discrete landscape of the generalized QAOA ansatz
under the condition that the continuous variables are solved with high quality with
the improved NPG solver. Here we include the landscape under another physical
model, i.e. 2D Ising model. We consider the case where (|A|, q)=(5, 8), and the total
number of gate sequences is thus 81920. Similar to the plots displayed in Section 5.5,
the landscape with a longer total duration (JT = 50) features a dominant cluster at
the rightmost part of the histogram. When the total duration is smaller, the number
of clusters increases, and is shifted to the left.

Figure 5.8 shows the influence of the parameter h/J in the discrete landscape for
the LMG model with gate duration JT = 1500 and N = 100. When h/J = 0.8 and
h/J=0.99, the rightmost peak in the energy ratio histogram gets close to 1, which
means that reaching the ground state would be a easy task in these two cases. The
more difficult cases lies in between, for example when h/J = 0.95. For the parameter
h/J = 0.9 we choose in the main text, there is a bigger gap (cf. Fig. 5.4(c)) between
the rightmost peak of the energy ratio and 1, which means the problem we choose to
solve is relatively challenging.
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Figure 5.7: Discrete landscape of 2D Ising model: (a-c): Histograms of the energy
ratio optimized by the improved natural gradient solver for JT = 20, 30, 50, respectively.
Nhist = 81920 samples are chosen from the discrete gate sequences of generalized QAOA
with parameters q = 8 and |A| = 5.

5.13 Physical models with the identity action

The generalized QAOA ansatz provides us the freedom of adding different Hamil-
tonians to the Hamiltonian pool. One meaningful addition is the identity operator.
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Figure 5.8: Discrete landscape of LMG model with respect to different parameter
h/J : (a-c): Histograms of the energy ratio optimized by the improved natural gradient solver
for h/J = 0.8, 0.95, and 0.99, respectively with gate duration JT =1500. Nhist = 81920
samples are chosen from the discrete gate sequences of generalized QAOA with parameters
q = 8, |A| = 5 and N = 100. For the LMG model, the gap between the right-most peak
and 1 is larger when h/J is between 0.8 and 0.99.

Here, the identity operator corresponds to the identity gate that does not move
the quantum state. If we take H̃ = 0, then its corresponding unitary gate will be

identity, i.e. exp
(
−iH̃α̃

)
= I. This approach adds an extra amount of freedom to the

optimization since the quantum control no longer needs to figure out how to exactly
distribute the gate duration budgets to different gates so as to reach the ground
state. In other words, the original optimization problem (see Eqn. 5.4.2) becomes the
relaxed form:

min
{αj}qj=1

{
E({αj}qj=1, τ ) :

q∑
j=1

αj≤T ; 0 ≤ αj ≤ T

}
. (5.13.1)

With the identity action, the extended action space becomes

A=

{
0,

H1

||H1||
,
H2

||H2||
,
A1

||A1||
,
A2

||A2||
,
A3

||A3||

}
,

with the definitions shown in Sec. 5.8 for three different physics models.

In this setting, a similar behavior is observed as in Figure 5.2 and Figure 5.6, which
is shown in Figure 5.9. We conclude that MCTS-QAOA outperforms RL-QAOA in
all settings and MCTS-QAOAstill maintains a robust performance when that of RL-
QAOA begins to deteriorate in the regime of large total gate durations. The raw data
of the energy ratio obtained by MCTS-QAOA is reported in Table 5.2 (highlighted in
gray), which also gives a direct comparison with the energy ratios obtained without
the identity action. It can be seen that the performance of MCTS-QAOA in this
setting is on par with the setting presented in the main text.
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Figure 5.9: Comparison between MCTS-QAOA and RL-QAOA using the Hamiltonian pool
with the identity operation. The physics setup is the same as that in Figure 5.2. (a-c):
quantum measurement noise; (d-f): Gaussian noise with γ = 0.1; (g-i): gate rotation noise
with δ = 0.1; (k-l): experiments without noise (cf. Section 6.11).
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Chapter 6

Random Coordinate Descent for
optimizing parameterized quantum
circuit

Variational quantum algorithms rely on the optimization of parameterized quan-
tum circuits in noisy settings. The commonly used back-propagation procedure
in classical machine learning is not directly applicable in this setting due to the
collapse of quantum states after measurements. Thus, gradient estimations constitute
a significant overhead in a gradient-based optimization of such quantum circuits.
This paper introduces a random coordinate descent algorithm as a practical and
easy-to-implement alternative to the full gradient descent algorithm. This algorithm
only requires one partial derivative at each iteration. Motivated by the behavior of
measurement noise in the practical optimization of parameterized quantum circuits,
this paper presents an optimization problem setting that is amenable to analysis.
Under this setting, the random coordinate descent algorithm exhibits the same level
of stochastic stability as the full gradient approach, making it as resilient to noise.
The complexity of the random coordinate descent method is generally no worse than
that of the gradient descent and can be much better for various quantum optimization
problems with anisotropic Lipschitz constants. Theoretical analysis and extensive
numerical experiments validate our findings.

6.1 Introduction

Variational quantum algorithms have emerged as a promising application for near-
term quantum devices, addressing various computational challenges with enhanced
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efficiency [222, 63]. These algorithms encompass several notable approaches, such as
the variational quantum eigensolver [244], the variational quantum simulation [26], the
quantum approximate optimization algorithm [102, 63, 190], and quantum machine
learning [186, 32, 277, 59]. They are designed to operate in a hybrid quantum-
classical fashion [214, 100]. In these algorithms, the quantum component involves
the implementation of parameterized quantum gate operations. By performing
measurements, a cost function (and optionally, its gradient) is obtained as the output.
The classical computational procedure then utilizes an iterative method to produce
updates for the parameters, which are subsequently leveraged to refine and reprogram
the quantum circuits. This iterative process continues until convergence is achieved,
forming a feedback loop that continues to improve the algorithm’s performance.

In variational quantum algorithms, the optimizable parameters are defined within
parameterized quantum circuits (PQCs) [27, 240, 286, 5]. A PQC is a sequence of
unitary operators represented by parameterized quantum gates that can be readily
implemented on a quantum computer. Assuming we are working in an n-qubit Hilbert
space, a parameterized quantum circuit can be expressed as follows:

U(θ) =
J∏

j=1

Uj(θj)Wj. (6.1.1)

Here, θ={θj}Jj=1 are the parameters that we need to optimize, Uj(θj) ∈ C2n×2n are
the parameterized unitary operators, and Wj ∈ C2n×2n are fixed unitary operators.
For instance, a simple example of a PQC consisting only of one-qubit Pauli rotation
operators takes the form

Uj(θj) =
M⊗

m=1

e−iθj,kj,mσj,kj,m ,

where σj,kj,m ∈ C2×2 is a single-qubit Pauli matrix that acts on kj,m-th qubit, θj,kj,m
represents one of the parameters in θ, and Wj’s can be used to represent quantum
gates that do not require parameterization, such as the controlled-NOT (CNOT)
gate.

Let d be the dimension of the parameters, and we write θ = (θ1, θ2, · · · , θd). We then
optimize the parameter θ by minimizing a properly chosen cost function f(θ). As
an example, the variation quantum eigensolvers (VQE) finds the smallest eigenvalue
(ground-state energy) and its corresponding eigenvector (ground state) of a given
Hamiltonian matrix H by minimizing the energy of the state:

θ∗ = argminθf(θ) = argminθ ⟨U(θ)ψ0|H |U(θ)ψ0⟩ . (6.1.2)
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Here, |ψ0⟩ ∈ C2n is a predetermined initial state that can be easily prepared on a
quantum computer. For each given θ, U(θ) is implemented on a quantum computer
to evolve |ψ0⟩, and the corresponding energy f(θ) and its gradient ∇θf(θ) can be
consequently obtained with measurements. By solving the optimization problem
equation 6.1.2, the minimum value gives an approximation to the smallest eigenvalue
of H, while U(θ∗) |ψ0⟩ approximates the corresponding eigenvector.

Problem setup

Although the problem of optimizing parameters in VQAs resembles classical optimiza-
tion problems in machine learning, there exist key differences, particularly in how the
cost function is evaluated and the level of accuracy that can be obtained for function
and gradient evaluations. Firstly, quantum circuits used for estimating partial deriva-
tives in various directions are typically different. This is predominantly because there
is no straightforward method (in parallel to backpropagation) to estimate the entire
gradient at once, given the inherent nature of quantum states. The predominant
method for computing partial derivatives in a PQC is called the parameter-shift
rule [75, 330, 20], which can only be applied to evaluate one component of the partial
derivatives at a time. As a result, the estimation of the gradient, ∇f(θ), typically
incurs a cost that is d times greater than the cost associated with merely estimating
a single partial derivative, ∂if(θ).

Secondly, the evaluation of any given quantity, a function value or a partial derivative,
requires measurement from quantum computers and is subject to measurement noise.
We note that this noise is associated with a finite sampling space. For example,
a measurement of the Hamiltonian in equation 6.1.2, which is defined in a finite-
dimensional Hilbert space, yields one of its eigenvalues corresponding to the ansatz.
Thus, with an increased number of samples or measurements, the central limit theorem
suggests that the distribution of the sample average of the function value or the
partial derivative can be approximated by a Gaussian distribution, and as a result,
the accuracy of function and gradient evaluations can be relatively low. Therefore,
the optimization algorithm must be designed to be resilient to measure noise.

In an idealized scenario, we may assume that both the function value and the
partial derivatives incorporated into the optimization routine are subject to some
Gaussian noise. But the magnitude of corresponding noises can differ up to a constant,
especially in situations where the parameter shift rule is applicable (see [298]). With
this consideration, the problem of optimizing PQCs can be stated as follows:

Problem 1 (Optimizing parameterized quantum circuits). Finding an efficient
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algorithm to solve the optimization problem,

θ∗ = argminθ∈Rdf(θ), (6.1.3)

under the following assumptions:

1. The cost of evaluating a partial derivative scales linearly with that of a function
value.

2. Every evaluation of the function and partial derivative is susceptible to Gaussian
noise:

f(θ)→ f(θ) +N(0, σ2
1(θ)) , ∂if(θ)→ ∂if(θ) +N(0, σ2

2(θ)) . (6.1.4)

Here, σ1(θ) and σ2(θ) depend on the real implementation and are not necessarily the
same (see [298] for example). For simplicity, in our later analysis, we assume that
σ2(θ) has a uniform upper bound σ∞ (see assumption 2).

Optimization methods

One widely used approach for optimizing VQA is through the application of gradient
descent (GD) [299, 354]. The classical gradient descent method involves iteratively
updating the parameters θ by utilizing the gradient of the cost function.

θn+1 = θn − an∇f(θn), (6.1.5)

where an denotes the learning rate. In light of the measurement process in quantum
computing, we consider the noisy gradient descent: Rather than implementing
eq. (6.1.5) with exact ∇f(θn), we apply an unbiased estimator g(θ) 1 (for example,
equation 6.1.4). Consequently, the parameter update involves the following iteration,

θn+1 = θn − ang(θn). (6.1.6)

Since g(θn) is an unbiased estimation, Eq. equation 6.1.6 is equivalent to Eq.
equation 6.1.5 in the expectation sense. Specifically, by taking the conditional
expectation on both sides, we have

E(θn+1|θn) = θn − an∇f(θn) (6.1.7)

where E(·|θn) denotes the conditional expectation given θn.

1g(θ) satisfies E[g(θ)] = ∇f(θ)
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While noisy gradient descent avoids the need for precise gradient information, it still
requires the approximated full gradient information at each iteration. As argued
before, in the context of VQA, it is often necessary to compute d partial derivatives
separately for each direction, which makes the cost of each updating step at least
d. In this paper, we introduce an alternative optimization method called random
coordinate descent (RCD) [335, 230, 263] for addressing problem 1, with the goal of
eliminating the cost dependency on d in each step. RCD can be viewed as a variant of
gradient descent (GD) where the full gradient in GD is approximated by a randomly
selected component of ∇f(θn) in each iteration. Specifically, one RCD iteration can
be expressed as:

θn+1 = θn − anein∂inf(θn) . (6.1.8)

Here ein is the in-th unit direction, f ′
in(θn) is the corresponding partial derivative

of the cost function, and in is a random index uniformly drawn from {1, 2, · · · , d}.
Similar to Eq. equation 6.1.6, we can write the noisy RCD as:

θn+1 = θn − aneingin(θn) . (6.1.9)

It is important to emphasize that in each iteration of RCD equation 6.1.9, only one
partial derivative information is needed. Consequently, within the scope of VQA (as
stated in the first assumption of problem 1), the cost per step of RCD is d times
smaller than that of GD.

Contribution

This paper primarily focuses on the investigation of RCD in the context of noisy
gradient evaluation. Our analysis is conducted in a specific comparison with GD, and
we illustrate that, under specific conditions, RCD can serve as a favorable alternative
for optimizing parameterized quantum circuits. The main contributions of this study
can be summarized as follows:

• We show that RCD is theoretically no worse than GD when measuring the
complexity by the number of partial derivative calculations (Theorems 3 and
4), assuming the presence of noise and the local PL condition. A summary of
the complexities of the two methods is presented in Table 6.1 for comparison.
It is important to highlight that the inequality Lavg ≤ L ≤ dLavg always
holds. Consequently, when the optimization problem is highly anisotropic, i.e.,
L≫ Lavg, RCD is more cost-effective than GD. In the most extreme case when
L is nearly equal to dLavg, RCD can reduce the complexity by a factor of d
compared to GD.
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Algorithm Iteration cost Iterations to reach ϵ tolerance Total cost

GD Ω(d) Õ
(

max
{

Lσ2
∞d

µ2ϵ
, L
µ

log
(
1
ϵ

)})
Ω(Lσ

2
∞d2

ϵ
)

RCD Ω(1) Õ
(

max
{

Lavgσ2
∞d2

µ2ϵ
, dLmax

µ
log
(
1
ϵ

)})
Ω(Lavgσ2

∞d2

ϵ
)

Table 6.1: Comparison of the gradient descent and the randomized coordinate descent
methods with an unbiased noisy gradient estimation. d is the dimension of the parameter,
and the smoothness constants L and Lavg are defined in equation 6.2.1 and equation 6.2.3,
respectively. σ2∞ is a bound for the measurement noise defined in equation 6.2.5a. In the
table, we limit our attention to the situation where the learning rate is fixed.

• We demonstrate that (noisy) GD and RCD converge with high probability under
the local PL condition (Assumption 3) and are stable under noisy gradient
information. Specifically, if the initial parameter θ0 resides within the basin
N (X ) surrounding the global minimum, both noisy methods ensure that the
subsequent parameters θn will remain consistently within this basin until they
converge with the same high probability (Lemmas 5 and 6). To the best of
the our knowledge, such stochastic stability has not been established for the
optimization methods in variational quantum algorithms.

• We provide extensive empirical evidence demonstrating that RCD consistently
delivers superior performance compared to GD (Sections 6.1 and 6.4). Our
numerical findings support the theoretical observation that RCD can take a
larger learning rate than GD, leading to faster convergence.

Related works

Gradient descent with noise The noisy gradient descent equation 6.1.6 is a popular
optimization method in the classical machine learning community. Notable examples
are the stochastic gradient descent (SGD) [39] or the perturbed gradient descent
(PGD) [148]. The convergence properties of the noisy gradient descent method in
(6.1.6) have been extensively studied [225, 234, 255, 235, 298, 197]. For classical
machine learning, these previous works except [298] established that when the cost
function is L smooth, µ strong convex (or Polyak-ojasiewicz condition (PL) [248])
and satisfies an additional condition, f(θn) converges linearly to an approximation of
fmin. In the recent work [298], a similar theoretical result was shown for the noisy
GD method applied to quantum optimization problems.
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Randomized coordinate descent The randomized coordinate descent method
(RCD) has proven its efficiency over GD in many large-scale optimization problems.
The convergence properties of RCD have been extensively explored in the fields of
machine learning and optimization [335, 230, 263, 232, 189, 69]. For example, it was
shown in [230] that when f is strongly convex, the convergence complexity of RCD can
be consistently lower than or equal to that of GD. Here, complexity refers to the total
number of partial derivative calculations required for convergence. Later, for strongly
convex functions, RCD accelerations were achieved with adaptive momentum-based
strategies in various regimes [189, 232]. For the non-convex optimization, recent work
[69] shows the global convergence behavior of RCD with a focus on saddle point
avoidance. Nevertheless, convergence rates of RCD have been scarcely studied for
nonconvex optimization problems. More importantly, most related works focused on
the case where partial derivatives are computed exactly, while in this work, we deal
with the case where partial derivatives are estimated, which is subject to noise, and
we will refer to it as noisy RCD equation 6.1.9.

Locally-defined convex conditions for convergence analysis One limitation of
the conventional convergence analysis is its reliance on assumptions of global convex
[39] or global PL [298] conditions for the cost function f(θ). However, we show
that such global assumptions are not satisfied in quantum problem applications with
PQCs, as elaborated in remark 2. Thus, one must weaken such a global assumption
to a local one in the analysis. Convergence analysis under local assumptions requires
more sophisticated techniques (see [104, 170, 243, 218] and therein), but it provides
important insights that help to interpret empirical results. In our work, we make a
local non-convex condition based on the local PL condition [197]. Under this condition
and suitable assumptions for the cost function, we

By employing a stochastic stability argument, we demonstrate that the noisy GD and
RCD methods maintain a comparable convergence rate under our local PL condition
with high probability (refer to theorem 3 and theorem 4). To the best of the authors’
knowledge, this paper is the first to provide a rigorous result for the complexity of
noisy GD and RCD under a local PL condition designed for variational quantum
algorithms built from PQCs.

Other quantum optimization methods Another promising direction of research
in variational quantum algorithms is zero-order optimization, more commonly known
as gradient-free methods. Notably, policy gradient-based techniques have shown their
effectiveness in noise robust optimization in the NISQ [346]. Sung et al.[294] construct
models based on the previous method and further improve the sample efficiency
of the methods. Furthermore, these zero-order optimization methods leverage the
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strengths of reinforcement learning [351, 106, 45, 49], Monte Carlo tree search [349,
217, 266], and natural evolutionary strategies [9, 360, 114], Bayesian [306, 301], as
well as Gaussian processes [364].

In addition to these zero-order methods, several other optimization methods have
been proposed recently [151, 260, 289, 113, 109]. One interesting example is the
quantum natural gradient [289] (QNG), an approximate second-order method, that
incorporates the quantum geometric tensor, which is similar to the natural gradient in
classical machine learning. While an outcome of measurement is used as an estimate
of the gradient in the QNG or the noisy gradient equation 6.1.6 from equation 6.1.1,
the Jordan algorithm [151] encodes the partial derivatives as binary numbers in
the computational basis. This algorithm was later improved by Gilyen et al. [113]
using high-order finite difference approximations, and applications to VQAs for a
certain class of smooth functions were considered. However, the methods [151, 113]
require a significant number of ancilla qubits and complex control logics, due to
the binary encoding of partial derivatives. Alternatively, [2] proposed a quantum
backpropagation algorithm, which uses log d copies of the quantum state to compute
d derivatives. The overhead for computing d derivatives is polylog(d) times that
of function evaluation (therefore mimicking backpropagation). One of the main
drawbacks of their algorithm is that there is an exponential classical cost associated
with the process. For a more restrictive class of cost functions (polynomial functions),
[260] proposed a framework to implement the gradient descent and Newton’s methods.
This method also requires the coherent implementation of the cost function on a
quantum computer using e.g., sparse input oracle, and thus can be challenging to
implement in near-term devices.

A numerical illustration: Variational quantum eigenvalue
solver

As a brief illustration of the performance of noisy GD versus RCD methods, we
consider the transverse-field Ising model,

H = J

N−1∑
j=1

ZjZj+1 + ∆
N∑
j=1

Xj, (6.1.10)

with the coefficient J = 1 and ∆ = 1.5. Here, N denotes the number of qubits, and
Xj, Zj are Pauli operators acting on the j-th qubit. In fig. 6.1, we set N = 10. To
implement the quantum circuits, we use Qiskit Aer-simulator [252] with the command
“result.get counts” that outputs measurement outcomes as classical bitstrings. We
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utilize the resulting classical bitstrings to compute partial derivatives by applying
the parameter shift rule [298]. Thus, the result in fig. 6.1 takes into account the
measurement noise.

In each experiment, 10 independent simulations are used with a fixed initialization.
The parameterized quantum circuit used for estimating the ground state energy of
the Hamiltonian equation 6.1.10 is given in Figure 6.10 (Section 6.9).

We compare the optimization performance of the two methods in terms of the number
of partial derivative evaluations. The optimization results in fig. 6.1 suggest that
RCD requires nearly 4 times fewer partial derivative evaluations than GD to converge
to an energy ratio of 0.96 and a fidelity of 0.9, both of which are higher than the
energy ratio and the fidelity obtained from GD. This observation can be explained by
the analysis in section 6.2, i.e., RCD can be more efficient than GD when the ratio of
Lipschitz constants (L/Lavg or L/Lmax) is significantly larger than 1. Specifically, the
ratio of the total computational cost of GD to RCD can be linked to the Lipschitz
ratios, as summarized in table 6.1. For instance, in the lower panels of fig. 6.1, we
observe that the ratio L/Lavg and L/Lmax remains above 30 and 8 throughout the
iterations. The faster convergence of RCD can be attributed to these large Lipschitz
ratios.

6.2 Preliminaries and main results

Before we establish results pertinent to the performance of RCD, we first establish
consistent notations and assumptions, which are presented in Section 6.2. Following
that, we outline our key theoretical findings in Section 6.2.

Notations and assumptions

Given a vector v ∈ Rd, we use standard norms for v, including the 2-norm ∥v∥2 :=√∑
i v

2
i and the ∞-norm ∥v∥∞ := maxi |vi|. In order to ensure the convergence of

gradient-based methods, we list several technical assumptions.

We assume the cost function f satisfies the L-smoothness. Specifically, it satisfies the
following assumption:

Assumption 1. The cost function f is L-smooth, in that,

∥∇f(θ)−∇f(θ′)∥2 ≤ L∥θ − θ′∥2, for all θ,θ′ ∈ Rd. (6.2.1)
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Figure 6.1: The comparison of the performance of GD (red) and RCD (blue) for optimizing
the Hamiltonian equation 6.1.10. The unit of the x-axis labels the number of partial
derivative evaluations as an indication of the computational complexity. The top panels
show the approximation of the ground state, including the energy ratio (left) and fidelity
(right). In the bottom panels, we show the ratios of Lipschitz constants obtained from the
two methods are compared: L

Lavg
(left) and L

Lmax
(right).

Since the gradient is Lipschitz continuous, the partial derivatives are Lipschitz
continuous as well. We define the componentwise Lipschitz constants,

Definition 1. We say that a function f is Li-smooth with respect to the i-th component
if

|∂if(θ + eih)− ∂if(θ)| ≤ Li|h| ∀h ∈ R, (6.2.2)

where ∂if(θ) denotes the partial derivative in the i-th direction.

From these componentwise Lipschitz constants, we denote the maximum and average
of those constants as

Lmax := max
1≤i≤d

Li, Lavg =
1

d

d∑
i=1

Li . (6.2.3)

As shown in [335], in general we have,

Li ≤ Lavg ≤ Lmax ≤ L ≤ dLmax . (6.2.4)
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Another interpretation is through the hessian: When f is twice continuously differ-
entiable, the condition equation 6.2.1 is equivalent to ∇2f(x) ⪯ LId, and similiarly,
the condition equation 6.2.2 is equivalent to supθ |∂2i f(θ)| ≤ Li. We note that both
the upper and lower bounds of L in terms of Lmax in equation 6.2.4 are tight. If
∇2f is a diagonal matrix, then Lmax = L, both being the largest diagonal element of
∇2f . (This is the case in which all coordinates are independent of each other, for
example, f =

∑
i λix

2
i .) On the other hand, if ∇2f = e · e⊤ where e ∈ Rd satisfies

ei = 1 for all i, then L = dLmax. This is a situation where f is highly anisotropic,
e.g., f = (

∑
i xi)

2/2, where L = d and Lmax = 1. In addition, when Lavg = L, we see
that Lavg = Lmax = Li for all i.

Next, it is important to note that the estimation of the gradients in quantum
computing can be susceptible to noise, which stems from the inherent nature of
quantum measurements. Consequently, in our analysis and comparative studies of
different optimization methods, we will take into account the presence of noise. To
facilitate such analysis, we make the following assumption:

Assumption 2 (Bounds of the noise with respect to the 2-norm). Given any θ ∈ Rd,
we assume that we can find an unbiased random estimate g(θ) for the gradient ∇f(θ),
meaning that

E [g(θ)] = ∇f(θ) .

Furthermore, we assume that there exists a constant σ2
∞ > 0 such that

σ2
∞ > sup

θ∈Rd

max
1≤i≤d

E
[
|∂if(θ)− gi(θ)|2

]
. (6.2.5a)

Here, we also assume g(θ) is independent for different θ.

Additionally, we assume the existence of a basin encompassing the global minimum,
within which f satisfies the Polyak- Lojasiewicz condition (PL) [248], equivalently, the
local P L condition [197].

Assumption 3 (Local PL condition). Define X as the set of global minima and fmin

as the global minimum value evaluated over X . Then there exists a δf , µ > 0 such
that for any θ ∈ N (X ) := f−1([fmin, δf )),

∥∇f(θ)∥2 ≥ 2µ (f(θ)− fmin) .

It is worthwhile to highlight that the PL condition is defined not on the entire space
Rd but N (X ), which is reasonable in the context of the variational quantum algorithm.
We support this argument with the following remark.
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Remark 2. Let f(θ) be a cost function defined by some parameterized quantum
circuit equation 6.1.2. Note that f is periodic and smooth, due to its specialized form.
By the extreme value theorem, we see that there exist global maximum and minimum
of f , denoted by θmax and θmin. In general, f is not constant, which means that
fmax > fmin. Had f satisfied the global PL condition, it would have followed that at
the global maximum θmax,

0 = ∥∇f(θmax)∥2 ≥ 2µ (fmax − fmin) ≥ 0, (6.2.6)

which gives a contradiction to the general case that fmax > fmin. As another case
study, if f is assumed to be convex, namely,

f(θ′) ≥ f(θ) + (∇f(θ),θ′ − θ) for all θ,θ′ ∈ Rd, (6.2.7)

then setting θ = θmax and θ′ = θmin results in a contradiction. Therefore, the cost
function f that is constructed from an ansatz similar to equation 6.1.2, will not satisfy
global PL or convex conditions in general.

Main result: complexity comparison of GD and RCD

In this study, our main focus is to compare the complexity of noisy gradient descent
(GD) and randomized coordinate descent (RCD) under the assumptions of a local
Polyak- Lojasiewicz (PL) condition 3. For the sake of simplicity, in the remaining
part of this paper, we will refer to “noisy gradient descent” and “noisy randomized
coordinate descent” as “GD” and “RCD”, respectively, without explicitly mentioning
the term “noisy”.

The main theoretical results are summarized in the following two theorems:

Theorem 3 (Complexity of GD equation 7). Assume f is a L-smooth function
that satisfies assumption 3 and g satisfies assumption 2. Given ϵ > 0 small enough,
if f(θ1) ≤ δf and an = Θ(min {µϵ/(Lσ2

∞d), 1/L}) in GD equation 7, then with
probability 1− f(θ1)/δf − o(1), there exists at least one

n < N = Θ̃(max
{
Lσ2

∞d/(µ
2ϵ), L/µ

}
) (6.2.8)

such that f(θn) ≤ fmin + ϵ.

Theorem 4 (Complexity of RCD equation 8). Assume f is a L-smooth function that
satisfies assumption 3 and g satisfies assumption 2. Given ϵ > 0 small enough, if
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f(θ1) ≤ δf and an = Θ(max {µϵ/(Lavgσ
2
∞d), 1/Lmax}) in RCD equation 8, then with

probability 1− f(θ1)/δf − o(1), there exists at least one

n < N = Θ̃(max
{
Lavgσ

2
∞d

2/(µ2ϵ), Lmaxd/µ
}

) (6.2.9)

such that f(θn) ≤ fmin + ϵ.

Based on the theorem mentioned above, to achieve f(θn)− fmin ≤ ϵ, we can select
the learning rate an = µϵ

Lσ2
∞d

for GD and an = µϵ
Lavgσ2

∞d
for RCD. Recalling equation

equation 6.2.4, we observe that Lavg ≤ L, which means that we could use a larger
learning rate for RCD. This choice aligns with the learning rates utilized in the
numerical experiments presented in Section 6.1 as well as those in Section 6.4.

We compare the complexity of the noisy GD and RCD methods with the estimates
of the number of iterations. First, according to the above result, we conclude that

the number of iterations required for GD is N = Θ̃
(

Lσ2
∞d

µ2ϵ

)
2, while for RCD, we have

N = Õ
(

Lavgσ2
∞d2

µ2ϵ

)
. Notably, in RCD, there is an additional factor of d, which can be

understood in the expectation sense: During each iteration of the noisy RCD, the
randomness arises from two sources: the random direction in and the noisy partial
derivative gin(θn). By taking the conditional expectation with respect to θn, we
obtain:

E(θn+1|θn) = θn −
an
d
∇f(θn) . (6.2.10)

Compared with equation 6.1.7, there is an extra 1/d factor in the expectation of RCD.
Consequently, in each iteration, the rate of decay of the cost function is smaller in
RCD compared to GD. Consequently, we anticipate that RCD would necessitate more
iteration steps to achieve convergence. On the other hand, it is also important to note
that in certain scenarios where Lavgd is comparable to L, the number of iterations
required for RCD is comparable to that of GD.

Meanwhile, it is important to point out that a more practical criterion for comparing
the two methods is the cumulative cost of each method, which is represented by the
number of partial derivative calculations from the quantum circuits. This is because
quantum algorithms for estimating the gradient have a cost proportional to d. Since
each iteration of GD needs to calculate the full gradient (d partial derivatives), the
total number of partial derivative estimations in GD is

Npartial,GD = Θ̃

(
Lσ2

∞d
2

µ2ϵ

)
.

2This complexity aligns with the classical theoretical results for gradient descent (GD), which
typically assume the presence of strong convexity or a local PL condition for the function f .
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In contrast, the number of partial derivative estimations in RCD is:

Npartial,RCD = Õ
(
Lavgσ

2
∞d

2

µ2ϵ

)
.

From equation equation 6.2.4, we can deduce that:

Ω̃(Npartial,RCD) = Npartial,GD = dÕ(Npartial,RCD) .

This suggests that the computational cost of RCD is L/Lavg times cheaper than that
of GD. In an extreme case where f is highly skewed, i.e., L/Lavg ≈ d, RCD can reduce
the computational cost by a factor of the dimension d, which will be a significant
reduction for large quantum circuits.

In addition to the complexity result, it is worth noting that the two methods exhibit
similar success probability, which is approximately 1− f(θ1)/δf , as indicated by the
two aforementioned theorems. This observation is quite surprising, as each iteration
of RCD appears noisier due to the random selection of the updating direction in.
Intuitively, this suggests that we might need to choose a smaller learning rate an to
ensure stability in RCD, which would consequently increase its complexity. However,
our theory unveils that choosing a similar learning rate an is adequate to stabilize RCD.
To elucidate this point, it’s important to recognize that, on average, RCD behaves
equivalently to GD. By conducting more iterations, RCD can approximate its average
behavior (expectation), effectively mitigating the extra randomness introduced by in.
This compensation mechanism ensures that the success probabilities remain consistent
between the two methods.

6.3 Proof of main results

In this section, we provide the proofs for Theorems 3 and 4. We will start by showing
the stochastic stability of the two methods in Section 6.3. This will guarantee that
the parameter θ is likely to stay close to the global minimum until attaining a small
loss. Following that, in Section 6.3, we utilize the local Polyak- Lojasiewicz (PL)
condition around the global minimum to establish the convergence of f(θn). In all of
the following theoretical results and the corresponding proofs in the appendices, we
assume fmin = 0 without loss of generality by modifying the original function as

f(θ)← f(θ)− fmin. (6.3.1)

Thus, all results in this section can be reformulated for the original cost function by
the substitution equation 6.3.1, which will yield theorems 3 and 4.
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Stochastic stability

In the context of optimization, stability and convergence are not separate properties.
In a deterministic algorithm, convergence immediately guarantees stability. However,
this connection does not hold for stochastic processes in general. For instance, when
optimization methods such as noisy GD, SGD, or noisy RCD are applied, discrete-
time stochastic processes are generated. In such cases, a convergence theory must be
developed for a collection of random paths, which can exhibit different convergence
behaviors among themselves.

In our specific case, we anticipate that when θn remains within the basin N (X ) and
the learning rate is correctly chosen, both the GD and the RCD methods, when the
gradient is exactly calculated, converge to a global minimum due to the local PL
condition stated in assumption 3. However, in the presence of noise in the gradient
and the use of a constant learning rate, it is generally impossible to ensure that
θn ∈ N (X ) almost surely, unless a different strategy is adopted such as the decreasing
learning rates [243, 104, 170]. On the other hand, the purpose of the optimization
algorithm is to minimize the loss function, which means that it suffices to ensure
stability until small loss is achieved. To quantify such a likelihood, in this section, we
demonstrate that when θ0 ∈ N (X ), there exists a finite probability that θn obtained
from GD and RCD remain within N (X ) until achieving a small loss. This provides a
high probability of convergence for the two methods.

We summarize the result for noisy GD in the following lemma.

Lemma 5. Assume that f is a L smooth function that satisfies the assumption 3 and
g satisfies the assumption 2. If f(θ1) ≤ δf and the learning rate is chosen as follows,

an = a < min

{
1

L
,

2µδf
Lσ2

∞d

}
,

then, with high probability, iterations of noisy GD equation 7 remain in f−1([0, δf))
until a small loss is achieved. Specifically,

P
{
∃N > 0 such that f(θN) /∈ N and f(θn) >

Laσ2
∞d

µ
, ∀n < N

}
≤ f(θ1)

δf
. (6.3.2)

In light of equation equation 6.3.2, if we select the learning rate an to be sufficiently
small, then with a probability of 1− f(θ1)

δf
, the parameters are guaranteed to achieve

a small loss before escaping the basin.
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Despite infrequent updates of the gradient components, RCD still demonstrates
a similar level of stochastic stability. This key observation is summarized in the
following lemma:

Lemma 6. Assume that f is a L-smooth function that satisfies assumption 3 and g
satisfies assumption 2. Given any f(θ1) < δf , if one chooses the learning rate

an = a < min

{
1

Lmax

,
d

µ
,

2µδf
Lavgσ2

∞d

}
,

then, with high probability, iterations from the noisy RCD equation 8 stay at f−1([0, δf ))
until achieving a small loss. Specifically,

P
{
∃N > 0 such that f(θN) /∈ N and f(θn) >

Lavgaσ
2
∞d

µ
, ∀n < N

}
≤ f(θ1)

δf
.

The proofs of Lemma 5 and 6 are provided in Sections 6.6 and 6.7, respectively. The
core concept of these proofs is based on the construction of a specialized supermartin-
gale and the utilization of Markov’s inequality. For example, to prove Lemma 5, we
define a stochastic process

Vn =

{
f(θn)In, n < τ

f(θτ )Iτ , n ≥ τ
.

where the indicator random variable is given by,

In =

{
1, if {θk}n−1

k=1 ⊂ f−1([0, δf ))

0, otherwise.
,

and the stopping time

τ = inf

{
k : f(θk) ≤ Laσ2

∞d

µ

}
.

We observe that Vn is a meticulously crafted supermartingale, allowing us to distin-
guish between stable and unstable events. In particular, we demonstrate that if θn

exits the basin before it reaches f(θn) = Laσ2
∞d

µ
(an unstable event), then supn Vn ≥ δf .

Therefore, we can employ Vn as a categorizer and the probability of failure of GD
can be characterized by the value of Vn. More specifically,

P
{
∃N > 0 such that f(θN) /∈ N and f(θn) >

Laσ2
∞d

µ
, ∀n < N

}
≤ P

{
sup
n
Vn ≥ δf

}
.
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Except for its use as a categorizer, we have designed Vn in such a way that it is
a supermartingale, meaning E(Vn+1|θk≤n) ≤ Vn. Therefore, we can use Markov’s
inequality for supermartingales to bound the supremum of Vn and achieve the desired
result.

Convergence analysis

In this section, we present the convergence properties of noisy GD and RCD methods.
It is important to note that Theorems 3 and 4 directly follow from Theorems 7 and
8, respectively.

Our first theorem shows the convergence performance of the noisy GD method,

Theorem 7. Assume f is a L-smooth function that satisfies Assumption 3 and g
satisfies assumption 2. Given any precision 0 < ϵ < δf , the initial guess f(θ1) <

δf , and the probability of failure η ∈
(

f(θ1)

δ−1
f

, 1

)
, we choose the learning rate in

equation 6.1.5

an = a = O
(

min

{
1

L
,

µϵ

Lσ2
∞d

})
,

and the total number of iterations

N = Ω

 1

µaη
log

 f(θ1)(
η − f(θ1)

δf

)
ϵ

 .

Then, with probability 1− η, we can find at least one θm with 1 ≤ m ≤ N such that
f(θm) ≤ ϵ. In particular,

P {∃m ≤ N, f(θm) ≤ ϵ} ≥ 1− η,

Next, we state the convergence property of the noisy RCD method in the following
theorem,

Theorem 8. Assume f is a L-smooth function that satisfies Assumption 3 and g
satisfies Assumption 2. Given any precision 0 < ϵ < δf , the initial guess f(θ1) <

δf , and the probability of failure η ∈
(

f(θ1)

δ−1
f

, 1

)
, we choose the learning rate in

equation 6.1.9

an = a = O
(

min

{
1

Lmax

,
d

µ
,

µϵ

Lavgσ2
∞d

})
,
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and the total number of iterations

N = Ω

 d

µaη
log

 f(θ1)(
η − f(θ1)

δf

)
ϵ

 .

Then, with probability 1− η, we can find at least one θm with 1 ≤ m ≤ N such that
f(θm) ≤ ϵ. In particular,

P {∃m ≤ N, f(θm) ≤ ϵ} ≥ 1− η,

The proofs of these theorems can be found in the section 6.8.

Remark 9. We emphasize that theorem 7 and theorem 8 are general convergence
results that require only mild conditions. Specifically, theorem 7 can be used to
demonstrate the stability and convergence of the traditional SGD algorithm when the
right assumptions are in place. A convergence result analogous to the one previously
discussed has been investigated in [197, Theorem 7], where the authors impose a more
stringent requirement on the cost function [23]. In our work, we demonstrate the
convergence of noisy GD using more sophisticated techniques in probability theory and
adopt a weak version of probabilistic convergence [169]. In addition, our approach can
be directly extended to show the convergence of noisy RCD as in theorem 8, which
to the best of our knowledge, has not been established before. These two theorems
suggest that with a high probability, the loss function can achieve small loss during
the training process. In other words, it is likely that the parameter θ remains in the
basin N until the precision ϵ is attained at some point. After that, the optimization
algorithm could diverge unless a certain strategy is applied, for example, a schedule of
decreasing learning rates or an early stopping criterion.

Remark 10. Our theoretical result clarifies a relation between the learning rate and
the desired precision in optimization. For example, the precision ϵ is manifested in
the upper bounds of the learning rates in theorem 7 and theorem 8. Thus, to reach
precision ϵ, it is suggested to use an O(ϵ) learning rate. Otherwise, due to the stability
issue, the trajectory is no longer guaranteed to converge to the precision with positive
probability.

We present the roadmap for proving Theorem 7 as follows: Define the stopping time

τ = inf {k : f(θk) ≤ ϵ} .
To prove Theorem 7, it suffices to demonstrate that the probability of failure P(τ > N)
is small. Since the learning rate an is selected to be sufficiently small and, according
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to the lemma 5, it is likely that θn will remain within the basin until the ϵ loss is
achieved3. Thus, informally, it suffices for us to assume θn ∈ N . The next step is to
find an upper bound for the probability of failure pfail = P(τ > N). Using the local
PL condition, we can show that when ϵ < f(θn) < δf ,

E(f(θn+1)|θn) ≤
(

1− µa

2

)
f(θn) ,

meaning that the conditional expectation of f(θn+1) decays to zero with rate
(
1− µa

2

)
.

Inspired by this observation, we can construct a supermartingale to show that, if
τ > N , with high probability, we have inf1≤n≤N f(θn) ≤ ϵ. We note that this event
is complementary to the failure event {τ > N}. Consequently, we obtain an upper
bound for pfail.

6.4 Numerical results

In section 6.1, depicted in fig. 6.1, we have demonstrated that the noisy RCD leads
to faster convergence than the noisy GD for VQE problems. In this section, we
extend our investigation to gauge the efficiency of noisy RCD applied to various other
variational quantum algorithms, especially those involving non-convex optimization
problems. The implementation of these algorithms is executed on classical computers.
To emulate quantum measurement noise, the partial derivatives undergo perturbation
through additive Gaussian noise as outlined in section 6.1 4. Subsequently, we
substantiate this approximation through a numerical experiment on a quantum
simulator. This experiment further also proposes suitable values for the strength
of the Gaussian noise that we will introduce in the upcoming numerical tests to
appropriately mimic the measurement noise.

In the experiment presented in section 6.4, we utilize Qiskit-0.44.1 [252].

The algorithms for subsequent examples are implemented using Numpy [134] and
Jax [40]. We conducted each experiment ten times, employing different random
initializations for each run. All tests are executed on an Intel(R) Xeon(R) CPU @
2.20GHz, complemented by a T4 GPU.

3Rigorously, we must also take into account the possibility that the optimization algorithm does
not reach ϵ loss in a finite number of iterations.

4The derivative with noise is computed by adding Gaussian noise to the original derivative:
∂if(x)← ∂if(x) + ϵ, where ϵ follows a Gaussian distribution, denoted as N (0, σ). In this notation,
σ signifies the standard deviation, defining the intensity of the Gaussian noise.
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Analyzing the noise distribution

Building on the numerical experiment detailed in section 6.1 and executed in Qiskit,
we analyze the statistics of the partial derivatives derived from the quantum circuit.
fig. 6.2 showcases the histograms representing 10,000 estimates of partial derivatives
with respect to the initial 12 directions, while the histograms for the remaining
directions are presented in section 6.11. Each estimate of the partial derivatives is
averaged over 1000 shots. From all histograms, we can clearly see that the distribution
is closely approximated by a Gaussian distribution. In addition, the magnitude of the
standard deviation of partial derivative estimates across all directions is comparable.
These observations support assumptions of the noise model in problem 1. For
simplicity, we will employ the Gaussian noise model in our subsequent investigations
to compare the performance of the noisy GD and RCD methods.

In the next two sections, we conduct a comprehensive comparison between noisy RCD
and GD across a broad spectrum of variational quantum algorithms and applications.

VQE with a varied circuit structure

In section 6.1, we utilize the VQE for the TFIM equation 6.1.10 employing both the
noisy GD and the noisy RCD. In this section, we tackle the same optimization task
but with a modified setup. Specifically, fig. 6.3 depicts the PQC [156] utilized in the
experiments showcased in fig. 6.4, distinct from that presented in fig. 6.10.

In the experiments illustrated in fig. 6.4, each optimization outcome derives from
10 identical simulations with the same initial condition. We set the learning rates
for the RCD and GD at 0.3 and 0.05, respectively. Each experiment utilizes 10,000
shots, with 18 trainable parameters. Results shown in fig. 6.4 demonstrate that,
compared to GD, RCD requires nearly three times fewer partial derivative evaluations
to converge.

Quantum Approximate Optimization Algorithm (QAOA) for
quantum Hamiltonians

The Quantum Approximate Optimization Algorithm (QAOA) [102], originally devised
for solving combinatorial problems, is a leading example for demonstrating quantum
advantage on near-term quantum computers. As introduced in [102], the QAOA
utilizes a parametrized quantum circuit (PQC), which naturally enables optimization
through the variational quantum algorithm.
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Figure 6.2: Histograms of the estimated partial derivatives: Each panel displays the
histogram of 10000 partial derivative estimates in one of the first 12 directions, which are
obtained by applying the parameter-shift rule for the ansatz in fig. 6.10. The sampling of
the partial derivatives is carried out at a suboptimal point chosen from one simulation used
in fig. 6.1, where the fidelity is about 0.889.
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q0 : RY (θ[0]) RZ (θ[3]) • • RY (θ[6]) RZ (θ[9]) • • RY (θ[12]) RZ (θ[15])

q1 : RY (θ[1]) RZ (θ[4]) • RY (θ[7]) RZ (θ[10]) • RY (θ[13]) RZ (θ[16])

q2 : RY (θ[2]) RZ (θ[5]) RY (θ[8]) RZ (θ[11]) RY (θ[14]) RZ (θ[17])

Figure 6.3: A variational circuit ansatz is employed for the Transverse-Field Ising Model
expressed in Equation equation 6.1.10, utilizing 3 qubits. This circuit is a parameterized
construct comprised of alternating rotation and entanglement layers. Each rotation layer
involves the application of single qubit gates, specifically Rotation-y and Rotation-z gates,
to all qubits. In contrast, the entanglement layer employs two-qubit gates, namely the
controlled-X gate, to facilitate entanglement among the qubits. The ansatz is designated
with 18 parameters.

Figure 6.4: Performance comparison between GD (red) and RCD (blue) in terms of energy
ratio and Lipschitz constant ratios for optimizing the Hamiltonian equation 6.1.10. The
energy ratio E/EGS is presented in the left panel, while the Lipschitz constant ratios,
denoted as L

Lavg
and L

Lmax
, are shown in the middle and right panels respectively. The

shaded areas in each panel represent variations observed across multiple trials.

In a generalized QAOA model, we begin with an initial quantum state |ψi⟩, which
can be easily prepared in experiments, and let it evolve by a parameterized unitary
transformation,

|ψ(α,β)⟩ = U({αj, βj}pj=1) |ψi⟩ = e−iH2βpe−iH1αp · · · e−iH2β1e−iH1α1 |ψi⟩ , (6.4.1)

where the vector α (or β) enumerates the parameters αj (or βj), and thus the total
number of parameters is 2p and the unitary transformation alternates between two
kinds of parameterized unitary transformations. With this ansatz, the optimization
is performed with the parameters {αj, βj} associated with the application-dependent
Hamiltonian matrices H1 and H2, respectively.

In the subsequent sections, we will consider optimization problems based on the
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QAOA equation 6.4.1. We will conduct a comparative analysis of the noisy GD and
RCD for various QAOA models that will span a range of systems, including the
Ising model (refer to Section 6.4), the Heisenberg model (refer to Section 6.4), and
Variational Quantum Factoring (refer to Section 6.4).

QAOA – Ising Model

In this section, we parameterize the transverse-field Ising model by a Hamiltonian

H[h] =
N−1∑
j=1

Zj+1Zj +
N∑
j=1

(Zj + hXj), (6.4.2)

where N denotes the total number of qubits. The global control field h ∈ {±4}
takes two discrete values, corresponding to the two alternating QAOA generators
H1 = H[−4] and H2 = H[+4] [48, 346]. The initial state |ψi⟩ corresponds to the
ground state of H[−2], while the desired target state |ψ∗⟩ is selected as the ground
state of H[+2]. The variational problem aims to optimize the fidelity 5,

max
{αi,βi}pi=1

F({αi, βi}pi=1) = max
{αi,βi}pi=1

| ⟨ψ∗|U({αi, βi}pi=1)|ψi⟩|2, (6.4.3)

where,
U({αi, βi}pi=1) |ψi⟩ = e−iH2βpe−iH1αp · · · e−iH2β1e−iH1α1 |ψi⟩ . (6.4.4)

We note that the fidelity optimization equation 6.4.3 is equivalent to the optimization
of the form equation 6.1.2 by letting the Hamiltonian be |ψ∗⟩⟨ψ∗|.
In the numerical test, we choose a system from equation 6.4.2 with three qubits
(N = 3), and then apply both GD and RCD methods in the optimization. Figure 6.5
shows the optimization results obtained from the noisy GD and RCD with the
respective learning rates of 0.0045 and 0.015 by using an ansatz defined with 20
parameters. By adjusting the learning rate and tracking the stability, We observe
that RCD permits a larger learning rate in comparison to GD, while maintaining the
stability. Similar to the results presented in fig. 6.1, we compare the performance
of the two methods in terms of the number of partial derivative evaluations. From
fig. 6.5, We observe that noisy RCD converges much faster than noisy GD. While
RCD achieves a fidelity near 1 with 500 partial derivative evaluations, GD only attains

5Fidelity serves as a metric for optimization. However, one caveat of utilizing fidelity is its
reliance on the ground state. In this context, we assume the presence of an oracle capable of
producing the fidelity value. Subsequently, we also employ energy as an observable metric for
optimization purposes.
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a fidelity below 0.25 with an equivalent number of evaluations. This computational
effectiveness of RCD can be attributed to the large ratios of Lipschitz constants shown
in fig. 6.5, which are obtained along the optimization trajectories.

Figure 6.5: Performance comparison between the noisy GD and RCD for the Ising model
equation 6.4.2. The corresponding Lipschitz constant ratios, denoted as L

Lavg
and L

Lmax
, are

presented in the bottom figures. The shaded areas within the figures represent variations
that have been observed across ten random realizations. The optimization is performed for
parameters with dimension equal to 20.

QAOA – Heisenberg Model

Our second test problem with QAOA is the (anisotropic) spin-1 Heisenberg model,
H=H1+H2, with the alternating Hamiltonians given by,

H1=J
N∑
j=1

(Xj+1Xj+Yj+1Yj), H2 = ∆
N∑
j=1

Zj+1Zj,

with anisotropic parameter ∆/J = 0.5 (topological/Haldane [68, 247, 185, 348]). For
the Heisenberg model, we consider a system consisting of eight qubits (N = 8) and
choose the fidelity as a measure for optimization, similar to the setup for the results
in fig. 6.5. We set the antiferromagnetic initial state to |ψi⟩ = |10101010⟩. The target
state is the ground state of the Hamiltonian H=H1 + H2. We employ the QAOA
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ansatz represented by Eqn. equation 6.4.4 and carry out the fidelity optimization
detailed in Eqn. equation 6.4.3.

Figure 6.6 showcases the performance outcomes from noisy GD and RCD simulations
with learning rates set to 0.01 and 0.1, respectively. This QAOA model involves 28
parameters. The fidelity result shows that RCD converges to the target state much
faster than GD. This phenomenon can be elucidated by noting that the ratios of
Lipschitz constants derived from both noisy methods, L

Lavg
and L

Lmax
, average around

10 and 6 along the trajectories, respectively. Especially, the magnitude of the ratio
L

Lmax
is similar to that of the ratio of the numbers of partial derivative evaluations to

reach a high fidelity > 0.8 from both noisy methods, as shown in fig. 6.6. Based on
the observed numerical results, a high ratio of L

Lmax
is responsible for the efficiency of

RCD in this optimization problem.

Figure 6.6: Performance comparison between noisy GD and RCD for the Heisenberg model.
The corresponding Lipschitz constant ratios, denoted as L

Lavg
and L

Lmax
, are presented in

the middle and right. The shaded areas within the figure represent variations that have
been observed across ten random realizations. The optimization is performed in dimensions
of 28.

QAOA for classical combinatorial optimization problems

Quadratic Unconstrained Binary Optimization (QUBO) problems have significant
applications in fields such as finance, logistics, and machine learning, etc. Recognized
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as one prominent optimization model in quantum computing, QUBO consolidates a
wide range of combinatorial optimization problems [94, 171, 14, 115] and translates
them into identifying the ground state of classical Ising models [203].

The goal of QUBO is to identify a sequence of binary variables (0 or 1) that minimize
a quadratic function. Specifically, a cost function fQ is constructed over the set of
binary vectors, Bn:

fQ(x) = x⊤Qx =
n∑

i,j=1

Qijxixj. (6.4.5)

In this context, B = {0, 1} signifies the set of binary values (or bits), and Bn represents
the collection of binary vectors with length n > 0. A symmetric, real-valued matrix
Q ∈ Rn×n is introduced, with each element Qij determining the weight for the
corresponding pair of indices i, j ∈ 1, . . . , n. For example, if i = j, the term Qiix

2
i

contributes Qii to the function value when xi = 1. On the other hand, if i ̸= j, the
term Qijxixj contributes Qij to the function value when both xi = 1 and xj = 1.

Overall, QUBO seeks to minimize the function fQ over the set of binary vectors by
determining an optimal minimizer x∗,

x∗ = arg min
x∈Bn

fQ(x). (6.4.6)

Incorporating the variational quantum algorithm into QUBO, we reformulate the
cost function using the substitution:

xi =
1− Zi

2
or

1 + Zi

2
, (6.4.7)

where the variable xi is supplanted by the Pauli Z matrix operating on the i-th qubit.
This replacement facilitates the formulation of a model Hamiltonian. Its ground state
can be approximated by minimizing the expected energy via the variational quantum
algorithm, as elaborated in section 6.4.

In the following sections, we evaluate the performance of the noisy GD and RCD across
various QUBO applications, focusing on the ground state energy estimation. These
applications encompass Max-Cut in section 6.4, the Traveling Salesman Problem in
section 6.4, and Variational Quantum Factoring in section 6.4.

Max-Cut

For the Max-Cut problem, the graph employed in our numerical experiments is
presented as follows:
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0

1

2

3

The global cost function is designed to maximize C =
∑

(i,j)∈E xi(1− xj), where E
represents the edges in the graph. For the given graph, the QUBO problem can be
formulated as:

min
xi∈{0,1}

−3x20 + 2x0x1 + 2x0x2 + 2x0x3 − 2x21 + 2x1x2 − 3x22 + 2x2x3 − 2x23 .

In order to construct the corresponding Hamiltonian, we associate the binary variables
xi with the Pauli Z matrices, denoted as Zi, which act on individual qubits. Taking
into account the relationship between the binary variables xi and the Pauli matrices Zi,
defined by the equation xi = 1−Zi

2
, the cost function is articulated by the Hamiltonian:

H =
1

2
I − 3Z0 +

1

2
Z0Z1 +

1

2
Z0Z2 +

1

2
Z0Z3 +

1

2
Z1Z2 +

1

2
Z2Z3. (6.4.8)

Using this Hamiltonian, we construct a parameterized quantum circuit with four
qubits (N = 4) and 20 parameters. The circuit consists of alternating single-gate
rotations, denoted as Usingle (θ) =

∏n
i=1 RY (θi)

6 and entangler gate Uentangler
7. The

configuration of the parametrized quantum circuit is illustrated in Figure 6.11 in
Section 6.10. This structure resembles the variational quantum circuit of the QAOA,
with the ansatz given by |ψ(θ)⟩ = [Usingle (θ)Uentangler ]m |+⟩. For the optimization
process, we assign a learning rate of 0.1 for GD and 3.0 for RCD and select energy as
the optimization metric.

As illustrated in fig. 6.7, the RCD also outperforms GD in this case, as it converges to
an energy ratio of 1 with roughly 200 partial derivative evaluations. In contrast, the
GD achieves only an average of 0.75 with 1000 derivative evaluations. The superior
performance of RCD in fig. 6.7 can again be attributed to the significant values of

6Each layer of rotation gates includes a rotation-Y gate applied to every qubit.
7The entanglement layer incorporates two-qubit gates for qubit entanglement without tunable

parameters. In this experiment, the entangler gate employs controlled-Z gates. For a comprehensive
explanation, refer to the circuit architecture in Section 6.10
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L
Lavg

and L
Lmax

, both exceeding an order of magnitude of 3. As observed from the

optimization result, a high ratio of L
Lavg

is indicative of the rapid convergence of RCD

in this application.

Figure 6.7: Performance comparison between noisy GD and RCD for the Max-cut problem.
The corresponding Lipschitz constant ratios, denoted as L

Lavg
and L

Lmax
, are presented in

the middle and right panels. The shaded areas within the figure represent variations that
have been observed across ten random realizations. The optimization process has been
performed in 20 dimensions.

Traveling Salesman Problem (TSP)

We have designed a numerical test for the Traveling Salesman Problem (TSP) using
three cities as an example. The intercity costs for these cities are 48, 63, and 91
respectively. The cost of TSP is defined as

C(x) =
∑
i,j

wij

∑
p

xi,pxj,p+1 + A
∑
p

(
1−

∑
i

xi,p

)2

+ A
∑
i

(
1−

∑
p

xi,p

)2

,

where i labels the node, p indicates its order, and xi,p is in the set {0, 1} and the
penalty parameter A is set sufficiently large to effectively enforce constraints. More
details regarding the expansion of C(x) can be found in section 6.12.

Utilizing the defined cost function, we establish a model Hamiltonian in the same
manner as presented in section 6.4. We aim to prepare its ground state to address
the QUBO problem. A detailed representation of the Hamiltonian is available in
section 6.12. We construct a parameterized quantum circuit comprising alternating
single-gate rotations, represented by Usingle (θ) =

∏n
i=1 RY (θi) and entangler gate

Uentangler. This circuit resembles the one depicted in Figure 6.11 in Section 6.10, albeit
with a greater number of qubits. The total number of trainable parameters is 90,
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which requires nine qubits (N = 9) and ten alternating layers. We employ energy as
the measure for the optimization cost function.

In the left panel in fig. 6.8, the optimization results obtained from the noisy RCD
and GD are plotted. Notably, GD exhibits slower convergence compared to RCD in
achieving an energy ratio of 1. The employment of 90 parameters in the optimization,
a number markedly greater than those in prior applications, might account for this
disparity. This increased parameter count likely requires additional iterations and
partial derivative evaluations when applying GD. Similar to previous results, the two
types of Lipschitz constant ratios are obtained and shown along with the iterations
in fig. 6.8. Again, we can see that the values of the ratios are considerably large,
especially during the initial stage of the optimization, underlining the efficiency of
RCD in the optimization process.

Figure 6.8: Performance comparison between noisy GD and RCD for the TSP problem.
The corresponding Lipschitz constant ratios, denoted as L

Lavg
and L

Lmax
, are presented in

the middle and right panels. The shaded areas within the figure represent variations that
have been observed across ten random realizations. The optimization process has been
performed in 90 dimensions. In the first panel, Ẽ/ẼGS is defined as (E − c)/(EGS − c),
where c/EGS = 3000. For clarity in the presentation, we adjust the energy by a constant.

Variational Quantum Factoring

Our next QUBO problem is designed as a variational quantum factoring task. For
this task, we formulated the optimization problem within the framework of quantum
adiabatic computation [80, 13]. For example, to factorize 143 into the product of two
prime numbers, let 143 = pq, where

p = 8 + 4p2 + 2p1 + 1,

q = 8 + 4q2 + 2q1 + 1.
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Upon direct computation, the relations are simplified to

p1 + q1 − 1 = 0, (6.4.9)

p2 + q2 − 1 = 0, (6.4.10)

p2q1 + p1q2 − 1 = 0. (6.4.11)

To solve this system of equations, we introduce a cost function

c(p1, q1, p2, q2) = (p1 + q1 − 1)2 + (p2 + q2 − 1)2 + (p2q1 + p1q2 − 1)2. (6.4.12)

By borrowing techniques (see Section. 6.13 for more details) from [344, 274], the cost
function can be reduced to

c(p1, q1, p2, q2) = 5−3p1−p2−q1+2p1q1−3p2q1+2p1p2q1−3q2+p1q2+2p2q2+2p2q1q2.
(6.4.13)

Following the methods detailed in the QUBO, we treat (p1, q1, p2, q2) as boolean
functions and substitute each boolean with 1

2
(1− Zi) as we did in previous sections.

Then, the problem can be reformulated into the Ising Hamiltonian,

H =− 3I +
1

2
Z0 +

1

4
Z1 +

3

4
Z0Z2 +

1

4
Z2 −

1

4
Z1Z2 +

1

4
Z0Z1

− 1

4
Z0Z1Z2 +

1

2
Z3 +

1

4
Z0Z3 +

3

4
Z1Z3 +

1

4
Z2Z3 −

1

4
Z1Z2Z3.

(6.4.14)

The ground states of this Hamiltonian are |0110⟩ and |1001⟩, which respectively
correspond to the solutions for the factorization of the number 143. We summarize it
as follows,

(p1, p2, q1, q2) = (0, 1, 1, 0)←→ (p, q) = (13, 11) (6.4.15)

(p1, p2, q1, q2) = (1, 0, 0, 1)←→ (p, q) = (11, 13) (6.4.16)

p = 8 + 4p2 + 2p1 + 1 and q = 8 + 4q2 + 2q1 + 1 Boolean functions.(6.4.17)

In our numerical experiment, we select the mixer Hamiltonian H2 =
∑
Xi and set up

a 20-layer QAOA, which corresponds to 40 parameters 8. We set the learning rates to
0.0001 for GD and 0.005 for RCD and choose the energy as a measure for optimization.
Even with a small step size, the variance of GD is notably large. Employing a larger
step size for GD further exacerbates the results.

8The QAOA ansatz builds the variational circuit by alternating between the parametrized
unitary evolution associated with the problem Hamiltonian H and the mixer Hamiltonian H2.
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In fig. 6.9, the optimization results of the Hamiltonian equation 6.4.14 are depicted,
showing that the number of partial derivative evaluations for the RCD to reach an
energy ratio of 1 is about 400 whereas the GD seems to require more than 1000 to the
same tolerance. As discussed previously, this observation aligns with prior discussions,
particularly given the pronounced magnitude of the Lipschitz constant ratios evident
in fig. 6.9.

Figure 6.9: Performance comparison between noisy GD and RCD for the quantum
factoring problem. The corresponding Lipschitz constant ratios, denoted as L

Lavg
and L

Lmax
,

are presented in the middle and right panels. The shaded areas within the figure represent
variations that have been observed across ten random realizations. The optimization process
has been performed in 40 dimensions.

6.5 Conclusion

We considered the use of a noisy random coordinate descent method to analyze
its potential advantage over the noisy gradient descent, which evaluates all partial
derivatives at each step, in the context of variational quantum optimization. Most
previous works on randomized coordinate descent algorithms studied the case of
convex cost functions, which do not fit into most variational quantum applications
that involve non-convex cost functions. In this work, we generalized the conventional
convergence analysis of randomized coordinate descent to local convergence analysis
under a local-PL condition that can capture a large class of non-convex optimization.
In particular, we proved that noisy randomized coordinate descent can converge
faster than noisy gradient descent in terms of the total cost, measured in terms
of the total number of partial derivative estimations. In addition, we conducted
extensive numerical experiments implementing both methods for many interesting
quantum optimization problems. We observed that noisy randomized coordinate
descent typically demands less measurement cost than noisy gradient descent, thereby
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demonstrating its efficiency in many non-convex quantum applications. From an
optimization standpoint, variational quantum optimization as outlined in problem 1
raises many interesting questions. For example, can second order, or zeroth order
optimization methods (i.e., methods using only function evaluation) be more efficient
compared to the current gradient-based algorithms? In a technical viewpoint, another
question is whether the stability result lemma 5 can be generalized so that the event
covers the case that the iteration diverges at some timepoint, but it remains in the
entire basin until then, f−1 [0, δf ), not necessarily in the region above the set of global

minima, f−1
(

Laσ2
∞d

µ
, δf

)
. If this is possible to show, then it will provide stronger

result such as the stability of the noisy GD and RCD within the entire basin as the
stability of Markov Chain in [183].

6.6 Stochastic stability of noisy GD

In this section, we prove Lemma 5.

Proof of Lemma 5. Define the probability filtration: Fn = σ (θk|k ≤ n) and the
stopping time9

τ = inf

{
k : f(θk) ≤ Laσ2

∞d

µ

}
,

which is the smallest timepoint where the noisy GD achieves f(θk) ≤ Laσ2
∞d

µ
.

Define the indicator function In:

In =

{
1, if {θk}n−1

k=1 ⊂ f−1 ([0, δf ))

0, otherwise
, (6.6.1)

and the stochastic process

Vn =

{
f(θn)In, n < τ

f(θτ )Iτ , n ≥ τ
.

According to the definition of Vn, there are complementary and exclusive events
(cases):

9It is straightforward to see

{τ ≤ n} ∈ Fn, {τ > n} ∈ Fn .
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• Case 1: If there exists 0 < n < ∞ such that: 1. θn /∈ N ; 2. For any m < n,

θm ∈ N and f(θm) > Laσ2
∞d

µ
. Then

Vn ≥ δf ⇒ sup
n
Vn ≥ δf .

• Case 2: For any n < τ , f(θn) ∈ N .

We observe that Case 2 is the stable situation, indicating that f(θn) remains in the
basin of the global minimum until it achieves a small loss10. To prove equation 6.3.2,
it suffices to show that

P(Ω1) ≤
f(θ1)

δf
, (6.6.2)

where Ω1 denotes the event associated with Case 1.

Now, we show that Vn is a supermartingale to bound supn Vn. Taking the conditional
expectation, we obtain

E(Vn+1|Fn) = E(Vn+1|Fn, In = 1, τ ≤ n)P(τ ≤ n)+E(Vn+1|Fn, In = 1, τ > n)P(τ > n) ,

where we use In+1 ≤ In. There are two terms in the above equation:

• For the first term, when τ ≤ n, we obtain Vn+1 = Vτ = Vn. This implies

E(Vn+1|Fn, In = 1, τ ≤ n) = Vn . (6.6.3)

• For the second term, when τ > n, we have f(θn) > Laσ2
∞d

µ
. Then, taking the

conditional expectation yields

E[Vn+1|In = 1,θ1, τ > n]

=E[f(θn+1)In+1|In = 1,θ1, τ > n]

≤f(θn)− a∥∇f(θn)∥2 +
La2

2
(∥∇f(θn)∥2 + σ2

∞d)

≤(1− µa)f(θn) +
La2σ2

∞d

2

<(1− µa)f(θn) +
µa

2
f(θn)

≤
(

1− µa

2

)
f(θn)In =

(
1− µa

2

)
Vn,

(6.6.4)

10We emphasize that Case 2 also includes the situation where f(θn) remains in the basin and
never achieves the small loss.
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where we use assumption 3 and a < 1
L

in the second inequality, τ > n in the
third inequality.

Combining equation 6.6.3 and equation 6.6.4, we obtain

E(Vn+1|Fn) = VnP(τ ≤ n) +
(

1− µa

2

)
VnP(τ > n) ≤ Vn . (6.6.5)

Thus, Vn is a supermartingale.

Now, we consider the Case 1 event:

Ω1 = {∃n > 1,θn /∈ N and f(θm) > ϵ with θm ∈ N , ∀1 ≤ m < n} ⊂
{

sup
n
Vn ≥ δf

}
.

Because Vn is a supermartingale, we obtain Case 1 happens with small probability:

P(Ω1) ≤
V1
δf

=
f(θ1)

δf
.

This concludes the proof.

6.7 Stochastic stability of noisy RCD

In this section, we prove lemma 6 with a slight modification of the proof in section 6.6.
From a theoretical viewpoint, the difference between the noisy GD and RCD meth-
ods is made by the construction of gradient estimate (e.g. see equation 6.1.5 and
equation 6.1.8). Compared to GD, the additional randomness of RCD comes with
the random selection of a component as in equation 6.1.8. This difference affects the
recursive inequality equation 6.6.4 mainly in the previous proof, where we considered
the properties of the gradient estimator. From this observation, it suffices to derive a
recursive inequality similar to equation 6.6.4 to prove lemma 6.

Note that the sampling of a component within RCD is performed before estimating a
partial derivative. Thus, the first step is to take expectation on the partial derivative
estimate,

Eξin
[f(θn+1)] ≤ f(θn)− aEξin

[∂inf(θn)gin(θn)] +
Lina

2

2
Eξin

[|gin(θn)|2] , (6.7.1)

where in is uniformly sampled index and gin is the corresponding unbiased estimate
for the partial derivative. Let Fn, τ , In, and Vn be as defined in the previous section.
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By considering the inequality equation 6.7.1 and the conditional expectation in
equation 6.6.4, we achieve the following result by taking expectations with respect to
the random index in,

E[Vn+1|In = 1,θ1, τ > n]

=E[f(θn+1)In+1|In = 1,θ1, τ > n]

≤
(
f(θn)− a

d
∥∇f(θn)∥2 +

Lmaxa
2

2d
∥∇f(θn)∥2 +

Lavgσ
2
∞da

2

2d

)
In+1

≤
((

1− µa

d

)
f(θn) +

Lavga
2σ2

∞
2

)
In+1

<
((

1− µa

d

)
f(θn) +

µa

2d
f(θn)

)
In+1

=
(

1− µa

2d

)
f(θn)In =

(
1− µa

2d

)
Vn,

(6.7.2)

provided that f(θn) >
L
avgaσ2∞d

µ
and an = a < min

{
1

Lmax
, d

µ
,

2µδf
Lavgσ2

∞d

}
.

Similar to equation 6.6.5, in the case of RCD, equation 6.7.2 implies

E(Vn+1|Fn) = VnP(τ ≤ n) +
(

1− µa

2d

)
VnP(τ > n) ≤ Vn , (6.7.3)

which implies Vn forms a supermartingale. The remaining proof of lemma 6 follows
the same steps as the proof of lemma 5, so we will not include them here.

6.8 The proofs of theorem 7 and theorem 8

We first show the convergence rate of the noisy GD method, followed by a similar
analysis for the noisy RCD method. The following proofs are similar to those in
section 6.6 and section 6.7 with minor differences.

Proof of Theorem 7. Define the probability filtration: Fn = σ (θk|k ≤ n) and the
stopping time

τ = inf {k : f(θk) ≤ ϵ} ,
which is the smallest timepoint where the noisy GD achieves f(θk) ≤ ϵ. Then, our
ultimate goal is to show that the event that inf1≤n≤N f(θn) ≤ ϵ occurs with high

probability, say, at least 1− η. Then, our goal is to show that for any η ∈
(

f(θ1)
δf

, 1
)

,

there exists a sufficiently large N such that

pfail := P(τ > N) ≤ η. (6.8.1)
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Define the indicator function In:

In =

{
1, if {θk}n−1

k=1 ⊂ f−1 ([0, δf ))

0, otherwise
,

and the stochastic process

Vn =

{
f(θn)In, n < τ

f(θτ )Iτ , n ≥ τ
.

Define the unstable event:

Ω = {∃n > 1,θn /∈ N and f(θm) > ϵ, ∀1 ≤ m < n} ⊂
{

sup
n
Vn ≥ δf

}
.

According to Lemma 5 and the proof in section 6.6, for learning rate a with Laσ2
∞d

µ
< ϵ,

we obtain Ω happens with small probability:

P(Ω) ≤ V1
δf

=
f(θ1)

δf
. (6.8.2)

Recalling equation 6.8.1, we note that, for any n ≤ N ,

P(τ > n) ≥ pfail .

Plugging this into equation 6.6.5, we obtain that

E(Vn+1|Fn) =
(

1− P(τ > n) +
(

1− µa

2

)
P(τ > n)

)
Vn

=

(
1− µaP(τ > n)

2

)
Vn

≤
(

1− µapfail
2

)
Vn.

(6.8.3)

By taking the total expectation on both sides and using a telescoping trick, we achieve
that

E(Vn+1) ≤
(

1− µapfail
2

)n
V1 =

(
1− µapfail

2

)n
f(θ1). (6.8.4)

This means that if the probability of failure, pfail, is large, the expectation of Vn+1

decreases quickly. By Markov’s inequality, we have

P (VN > ϵ) ≤
(
1− µapfail

2

)N−1
f(θ1)

ϵ
,
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equivalently,

P (VN ≤ ϵ) ≥ 1−
(
1− µapfail

2

)N−1
f(θ1)

ϵ
.

Now, if we consider the event {VN ≤ ϵ}, it is the union of the following two events
(not necessarily exclusive and complementary), which are slightly different from the
ones in section 6.6:

• Ω1: There exists n ≤ N such that f(θn) ≤ ϵ and θn ∈ N . This means

inf
1≤n≤N

f(θn) ≤ ϵ .

We want to show that Ω1 happens with high probability.

• Ω2: There exists n < N such that f(θn) > δf and f(θm) > ϵ for any m < n.

We note that, when Ω2 happens, we have Vn+1 = 0 with f(θn) > δf , which
implies Ω2 ⊂ Ω. According to equation 6.8.2, we obtain

P (Ω2) ≤ P (Ω) ≤ f(θ1)

δf
.

Now, we give a lower bound for the event Ω1:

P
(

inf
1≤n≤N

f(θn) ≤ ϵ

)
= P (Ω1) ≥ P (VN ≤ ϵ)−P(Ω2) ≥ 1−

(
1− µapfail

2

)N
f(θ1)

ϵ
−f(θ1)

δf
.

(6.8.5)
Notice

P
(

inf
1≤n≤N

f(θn) ≤ ϵ

)
≤ P(τ ≤ N) = 1− pfail .

Combining the above two inequalities, we have

pfail ≤
(
1− µapfail

2

)N
f(θ1)

ϵ
+
f(θ1)

δf
. (6.8.6)

Next, we show equation 6.8.1 using the proof by contradiction. Assume that the

conclusion of the theorem is not true, meaning that for some η ∈
(

f(θ1)
δf

, 1
)

and every

N ,
pfail > η .
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When pfail > η and N = 2
µaη

log

(
f(θ1)(

η− f(θ1)
δf

)
ϵ

)
, then

(
1− µapfail

2

)N
f(θ1)

ϵ
+
f(θ1)

δf

<

(
1− µaη

2

)N
f(θ1)

ϵ
+
f(θ1)

δf

≤exp
(
−µaηN

2

)
f(θ1)

ϵ
+
f(θ1)

δf
= η < pfail

where we use pfail > η in the first inequality and (1− x)N ≤ exp(−xN) in the second
inequality. This contradicts to equation 6.8.6. Thus, equation 6.8.1 must be true and
we conclude the proof.

Proof of Theorem 8. Denote the probability of failure

pfail = P(τ > N).

Similar to the calculation in the previous proof, from equation 6.7.3, we have

P
(

inf
1≤n≤N

f(θn) ≤ ϵ

)
≥ 1−

(
1− µapfail

2d

)N
f(θ1)

ϵ
− f(θ1)

δf
. (6.8.7)

With the same logic below equation 6.8.5, we conclude the proof of theorem 8.
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6.9 Parameterized Circuit for the VQE

RY (3π
2

)
RZZ(θ1)

RX(θ2) · · ·
RZZ(θ39)

RX(θ40)

RY (3π
2

)
RZZ(θ1)

RX(θ2) · · ·
RZZ(θ39)

RX(θ40)

RY (3π
2

)
RZZ(θ1)

RX(θ2) · · ·
RZZ(θ39)

RX(θ40)

RY (3π
2

)
RZZ(θ1)

RX(θ2) · · ·
RZZ(θ39)

RX(θ40)

RY (3π
2

)
RZZ(θ1)

RX(θ2) · · ·
RZZ(θ39)

RX(θ40)

RY (3π
2

)
RZZ(θ1)

RX(θ2) · · ·
RZZ(θ39)

RX(θ40)

RY (3π
2

)
RZZ(θ1)

RX(θ2) · · ·
RZZ(θ39)

RX(θ40)

RY (3π
2

)
RZZ(θ1)

RX(θ2) · · ·
RZZ(θ39)

RX(θ40)

RY (3π
2

)
RZZ(θ1)

RX(θ2) · · ·
RZZ(θ39)

RX(θ40)

RY (3π
2

) RX(θ2) · · · RX(θ40)

Figure 6.10: A QAOA-like ansatz motivated by [331] is used for the TFIM model equa-
tion 6.1.10 with 10 qubits. For the result in fig. 6.1, 40 parameters are assigned with 20
layers of alternating rotation ZZ gates and rotation X gates. The circuit depth is 61.
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6.10 Parameterized Circuit for the VQE in

QUBO experiments

The quantum circuit described below is utilized in the QUBO experiments.

RY (θ1) • RY (θ5) • · · · RY (θn−3) •

RY (θ2) Z • RY (θ6) Z • · · · RY (θn−2) Z •

RY (θ3) Z • RY (θ7) Z • · · · RY (θn−1) Z •

RY (θ4) Z RY (θ8) Z · · · RY (θn) Z

Figure 6.11: A parametrized quantum circuit is employed in the QUBO experiments. This
circuit features alternating layers of single rotation gates and entangling controlled-z gates.
The adjustable parameters are exclusively found in the single rotation gates, and these
parameters vary across different layers and qubits.

6.11 Additional histograms of partial derivative

estimates

fig. 6.2 plots the histograms with respect to the first 12 parameters among 40. The rest
of 28 histograms are shown in the following figures. It is observed in all figures that
the variances of partial derivative estimates in all directions are a similar magnitude
of value.

6.12 Cost function for the TSP

First, the cost function is defined as

C(x) =
∑
i,j

wij

∑
p

xi,pxj,p+1 + A
∑
p

(
1−

∑
i

xi,p

)2

+ A
∑
i

(
1−

∑
p

xi,p

)2

,

where A = 10000 , w12 = w21 = 48, w13 = w31 = 91, and w23 = w32 = 63, and
wii = 0, i = 1, 2, 3.
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Figure 6.12: The histogram of partial derivative estimates with respect to the 13-th to the
26-th parameters are plotted with the same setup as in fig. 6.2.
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Figure 6.13: The histogram of partial derivative estimates with respect to the 27-th to the
40-th parameters are plotted with the same setup as in fig. 6.2.
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We can introduce a new Boolean variable, denoted by x̃3i+j−4 = xi,j , where i, j = 1, 2, 3.
For simplicity, in the following formula, we will use x0, . . . , x8 to represent x̃0, . . . , x̃8.
With this notation, the expanded form of the cost function can be expressed as:

C(x) = −200000x0 − 200000x1 − 200000x2 − 200000x3 − 200000x4 − 200000x5

− 200000x6 − 200000x7 − 200000x8

+ [200000x0x1 + 200000x0x2 + 200000x0x3 + 48x0x4 + 48x0x5

+ 200000x0x6 + 91x0x7 + 91x0x8 + 200000x1x2 + 48x1x3

+ 200000x1x4 + 48x1x5 + 91x1x6 + 200000x1x7 + 91x1x8

+ 48x2x3 + 48x2x4 + 200000x2x5 + 91x2x6 + 91x2x7

+ 200000x2x8 + 200000x3x4 + 200000x3x5 + 200000x3x6

+ 63x3x7 + 63x3x8 + 200000x4x5 + 63x4x6 + 200000x4x7

+ 63x4x8 + 63x5x6 + 63x5x7 + 200000x5x8 + 200000x6x7

+200000x6x8 + 200000x7x8] + 600000

In order to build the corresponding Hamiltonian, we align the binary variables xi
with the Pauli Z matrices, which operate on individual qubits, and are represented
by Zi. Taking into account the relationship between the binary variables xi and the
Pauli Z matrices, defined by the equation xi = 1−Zi

2
, we can express the Hamiltonian

for QUBO as follows,

HTSP = 600303.0− 100069.5Z0 − 100055.5Z4 + 12.0Z4Z0 − 100069.5Z1

− 100055.5Z5 + 12.0Z5Z1 − 100069.5Z2 − 100055.5Z3 + 12.0Z3Z2

− 100077.0Z7 + 22.75Z7Z0 − 100077.0Z8 + 22.75Z8Z1

− 100077.0Z6 + 22.75Z6Z2 + 12.0Z3Z1 + 12.0Z4Z2

+ 12.0Z5Z0 + 15.75Z7Z3 + 15.75Z8Z4 + 15.75Z6Z5

+ 22.75Z6Z1 + 22.75Z7Z2 + 22.75Z8Z0

+ 15.75Z6Z4 + 15.75Z7Z5 + 15.75Z8Z3

+ 50000.0Z3Z0 + 50000.0Z6Z0 + 50000.0Z6Z3

+ 50000.0Z4Z1 + 50000.0Z7Z1 + 50000.0Z7Z4

+ 50000.0Z5Z2 + 50000.0Z8Z2 + 50000.0Z8Z5

+ 50000.0Z1Z0 + 50000.0Z2Z0 + 50000.0Z2Z1

+ 50000.0Z4Z3 + 50000.0Z5Z3 + 50000.0Z5Z4

+ 50000.0Z7Z6 + 50000.0Z8Z6 + 50000.0Z8Z7
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6.13 Technique used in quantum factoring

The introduced technique proposes an alternative formulation for equations of the
type AB + S = 0. Here, A and B represent Boolean variables, while S denotes
integers with S ∈ Z. The optimization algorithm targets the minimization of the
quadratic version of this equation.

Given the problem Hamiltonian, defined as H = (AB+S)2, it can be restructured as:

H = 2

[
1

2

(
A+B − 1

2

)
+ S

]2
− 1

8
. (6.13.1)

While the two Hamiltonians are not generally equivalent, they do share the same
minimizer due to their underlying Boolean function properties. For instance:

• When AB = 1: The minimizer for the first Hamiltonian dictates S = −1. In
the reformulated version, we get

H = 2

[
1

2

(
1 + 1− 1

2

)
− 1

]2
− 1

8

= 0.

• When AB = 0: At least one of A or B is zero. Assuming A = 0 (without loss
of generality) and due to the minimizer, we get S = 0. This also minimizes the
reformulated Hamiltonian since, regardless of whether B is 0 or 1, the result
remains 0.

Thus, the reformulated version can be employed interchangeably in certain scenarios.
However, this updated representation leads to a significant reduction in the many-
body interactions observed experimentally. Specifically, the quartic terms in the Ising
Hamiltonian are eliminated, simplifying experimental realizations. As a result, the
third Hamiltonian term (p2q1 + p1q2 − 1)2 in Eqn.(6.4.12) is reformulated as:

H ′ = 2

[
1

2

(
p1 + q2 −

1

2

)
+ p2q1 − 1

]2
− 1

8
.
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[172] Levente Kocsis and Csaba Szepesvári. “Bandit based Monte-Carlo Planning”.
In: European conference on machine learning. 2006, pp. 282–293.

[173] Michael Kolodrubetz et al. “Geometry and non-adiabatic response in quantum
and classical systems”. In: Physics Reports 697 (2017), pp. 1–87. url: https://
www.sciencedirect.com/science/article/abs/pii/S0370157317301989.

[174] Vijay R Konda and John N Tsitsiklis. “Actor-Critic algorithms”. In: Advances
in neural information processing systems. 2000, pp. 1008–1014.

[175] Vijay R. Konda and John N. Tsitsiklis. “Actor-Critic Algorithms”. In: Advances
in Neural Information Processing Systems. 2000.

[176] Robert L Kosut, Matthew D Grace, and Constantin Brif. “Robust control of
quantum gates via sequential convex programming”. In: Physical Review A
88.5 (2013), p. 052326.

[177] Korbinian Kottmann et al. “Unsupervised phase discovery with deep anomaly
detection”. In: arXiv preprint arXiv:2003.09905 (2020).

[178] Dieter Kraft et al. “A software package for sequential quadratic programming”.
In: (1988).

https://openreview.net/forum?id=rkgNKkHtvB
https://doi.org/10.1007/s10878-014-9734-0
https://doi.org/10.1007/s10878-014-9734-0
https://www.sciencedirect.com/science/article/abs/pii/S0370157317301989
https://www.sciencedirect.com/science/article/abs/pii/S0370157317301989


BIBLIOGRAPHY 254

[179] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. “ImageNet Classi-
fication with Deep Convolutional Neural Networks”. In: Advances in Neural
Information Processing Systems 25. 2012.

[180] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. “ImageNet Classi-
fication with Deep Convolutional Neural Networks”. In: Advances in Neural
Information Processing Systems 25: 26th Annual Conference on Neural In-
formation Processing Systems 2012. Proceedings of a meeting held December
3-6, 2012, Lake Tahoe, Nevada, United States. Ed. by Peter L. Bartlett et al.
2012, pp. 1106–1114. url: https://proceedings.neurips.cc/paper/2012/
hash/c399862d3b9d6b76c8436e924a68c45b-Abstract.html.

[181] Tejas D. Kulkarni et al. “Hierarchical Deep Reinforcement Learning: Integrat-
ing Temporal Abstraction and Intrinsic Motivation”. In: Advances in Neural
Information Processing Systems 29: Annual Conference on Neural Information
Processing Systems 2016, December 5-10, 2016, Barcelona, Spain. Ed. by Daniel
D. Lee et al. 2016, pp. 3675–3683. url: https://proceedings.neurips.cc/
paper/2016/hash/f442d33fa06832082290ad8544a8da27-Abstract.html.

[182] En-Jui Kuo, Yao-Lung L. Fang, and Samuel Yen-Chi Chen. “Quantum Ar-
chitecture Search via Deep Reinforcement Learning”. In: arXiv preprint
arXiv:2104.07715v1 (Apr. 2021). arXiv: 2104.07715v1 [quant-ph]. url:
http://arxiv.org/abs/2104.07715v1.

[183] Harold J Kushner and G George Yin. “Applications to learning, state de-
pendent noise, and queueing”. In: Stochastic Approximation Algorithms and
Applications (1997), pp. 25–46.

[184] Nathan Lacroix et al. “Improving the Performance of Deep Quantum Opti-
mization Algorithms with Continuous Gate Sets”. In: arXiv:2005.05275 (2020).
url: https://arxiv.org/abs/2005.05275.

[185] A Langari, F Pollmann, and M Siahatgar. “Ground-state fidelity of the spin-1
Heisenberg chain with single ion anisotropy: quantum renormalization group
and exact diagonalization approaches”. In: Journal of Physics: Condensed
Matter 25.40 (Sept. 2013), p. 406002. url: https://doi.org/10.1088/0953-
8984/25/40/406002.

[186] Martin Larocca et al. “Theory of overparametrization in quantum neural
networks”. In: arXiv preprint arXiv:2109.11676 (2021).

[187] Author1 LastName1 and Author2 LastName2. “Learning Fast Approximations
of Sparse Coding”. In: Journal or Conference Name Volume Number (2021),
Page Numbers. doi: DOI.

https://proceedings.neurips.cc/paper/2012/hash/c399862d3b9d6b76c8436e924a68c45b-Abstract.html
https://proceedings.neurips.cc/paper/2012/hash/c399862d3b9d6b76c8436e924a68c45b-Abstract.html
https://proceedings.neurips.cc/paper/2016/hash/f442d33fa06832082290ad8544a8da27-Abstract.html
https://proceedings.neurips.cc/paper/2016/hash/f442d33fa06832082290ad8544a8da27-Abstract.html
https://arxiv.org/abs/2104.07715v1
http://arxiv.org/abs/2104.07715v1
https://arxiv.org/abs/2005.05275
https://doi.org/10.1088/0953-8984/25/40/406002
https://doi.org/10.1088/0953-8984/25/40/406002
https://doi.org/DOI


BIBLIOGRAPHY 255

[188] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. “Deep Learning”. In:
Nature 521.7553 (2015), pp. 436–444. doi: 10.1038/nature14539.

[189] Yin Tat Lee and Aaron Sidford. “Efficient accelerated coordinate descent
methods and faster algorithms for solving linear systems”. In: 2013 ieee 54th
annual symposium on foundations of computer science. IEEE. 2013, pp. 147–
156.

[190] Jiaqi Leng et al. “Differentiable Analog Quantum Computing for Optimization
and Control”. In: arXiv preprint arXiv:2210.15812 (2022).

[191] Sergey Levine. “Reinforcement learning and control as probabilistic inference:
Tutorial and review”. In: arXiv preprint arXiv:1805.00909 (2018).

[192] Sergey Levine et al. “End-to-End Training of Deep Visuomotor Policies”. In:
Journal of Machine Learning Research 17.39 (2016), pp. 1–40.

[193] Maciej Lewenstein et al. “Ultracold atomic gases in optical lattices: mimicking
condensed matter physics and beyond”. In: Advances In Physics 56.2 (2007),
pp. 243–379. url: https://www.tandfonline.com/doi/abs/10.1080/
00018730701223200.

[194] Li Li et al. “Quantum optimization with a novel gibbs objective function and
ansatz architecture search”. In: Physical Review Research 2.2 (2020), p. 023074.
doi: 10.1103/PhysRevResearch.2.023074.

[195] Timothy P. Lillicrap et al. “Continuous control with deep reinforcement
learning”. In: 4th International Conference on Learning Representations, ICLR
2016, San Juan, Puerto Rico, May 2-4, 2016, Conference Track Proceedings.
Ed. by Yoshua Bengio and Yann LeCun. 2016. url: http://arxiv.org/abs/
1509.02971.

[196] Harry J Lipkin, N Meshkov, and AJ Glick. “Validity of many-body approxi-
mation methods for a solvable model:(I). Exact solutions and perturbation
theory”. In: Nuclear Physics 62.2 (1965), pp. 188–198.

[197] Chaoyue Liu, Libin Zhu, and Mikhail Belkin. “Loss landscapes and opti-
mization in over-parameterized non-linear systems and neural networks”. In:
Applied and Computational Harmonic Analysis 59 (2022), pp. 85–116.

[198] Hanxiao Liu, Karen Simonyan, and Yiming Yang. “DARTS: Differentiable
Architecture Search”. In: 7th International Conference on Learning Represen-
tations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019. OpenReview.net,
2019. url: https://openreview.net/forum?id=S1eYHoC5FX.

[199] Seth Lloyd. “Almost any quantum logic gate is universal”. In: Physical Review
Letters 75.2 (1995), p. 346.

https://doi.org/10.1038/nature14539
https://www.tandfonline.com/doi/abs/10.1080/00018730701223200
https://www.tandfonline.com/doi/abs/10.1080/00018730701223200
https://doi.org/10.1103/PhysRevResearch.2.023074
http://arxiv.org/abs/1509.02971
http://arxiv.org/abs/1509.02971
https://openreview.net/forum?id=S1eYHoC5FX


BIBLIOGRAPHY 256

[200] Seth Lloyd. “Quantum approximate optimization is computationally universal”.
In: arXiv preprint arXiv:1812.11075 (2018).

[201] Guang Hao Low and Isaac L. Chuang. “Optimal Hamiltonian Simulation by
Quantum Signal Processing”. In: Phys. Rev. Lett. 118 (2017), p. 010501.

[202] Denghui Lu et al. “86 PFLOPS Deep Potential Molecular Dynamics sim-
ulation of 100 million atoms with ab initio accuracy”. In: arXiv preprint
arXiv:2004.11658 (2020).

[203] Andrew Lucas. “Ising formulations of many NP problems”. In: Frontiers in
physics 2 (2014), p. 5.

[204] Alicia B Magann et al. “Digital quantum simulation of molecular dynamics
and control”. In: arXiv preprint arXiv:2002.12497 (2020).

[205] Alicia B Magann et al. “From pulses to circuits and back again: A quantum
optimal control perspective on variational quantum algorithms”. In: arXiv
preprint arXiv:2009.06702 (2020).

[206] Horia Mania, Aurelia Guy, and Benjamin Recht. “Simple random search
provides a competitive approach to reinforcement learning”. In: arXiv preprint
arXiv:1803.07055v1 (Mar. 2018). arXiv: 1803.07055v1 [cs.LG]. url: http:
//arxiv.org/abs/1803.07055v1.

[207] Warwick Masson, Pravesh Ranchod, and George Dimitri Konidaris. “Reinforce-
ment Learning with Parameterized Actions”. In: Proceedings of the Thirtieth
AAAI Conference on Artificial Intelligence, February 12-17, 2016, Phoenix,
Arizona, USA. Ed. by Dale Schuurmans and Michael P. Wellman. AAAI Press,
2016, pp. 1934–1940. url: http://www.aaai.org/ocs/index.php/AAAI/
AAAI16/paper/view/11981.

[208] Shumpei Masuda and Katsuhiro Nakamura. “Fast-forward of adiabatic dy-
namics in quantum mechanics”. In: Proceedings of the Royal Society of London
A: Mathematical, Physical and Engineering Sciences. The Royal Society. 2009,
rspa20090446. url: http://rspa.royalsocietypublishing.org/content/
466/2116/1135.

[209] Gabriel Matos, Sonika Johri, and Zlatko Papić. “Quantifying the Efficiency of
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