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Abstract: Isthmic spondylolysis results in fracture of pars interarticularis of the lumbar spine, found
in as many as half of adolescent athletes with persistent low back pain. While computed tomography
(CT) is the gold standard for the diagnosis of spondylolysis, the use of ionizing radiation near
reproductive organs in young subjects is undesirable. While magnetic resonance imaging (MRI)
is preferable, it has lowered sensitivity for detecting the condition. Recently, it has been shown
that ultrashort echo time (UTE) MRI can provide markedly improved bone contrast compared
to conventional MRI. To take UTE MRI further, we developed supervised deep learning tools to
generate (1) CT-like images and (2) saliency maps of fracture probability from UTE MRI, using ex vivo
preparation of cadaveric spines. We further compared quantitative metrics of the contrast-to-noise
ratio (CNR), mean squared error (MSE), peak signal-to-noise ratio (PSNR), and structural similarity
index (SSIM) between UTE MRI (inverted to make the appearance similar to CT) and CT and between
CT-like images and CT. Qualitative results demonstrated the feasibility of successfully generating
CT-like images from UTE MRI to provide easier interpretability for bone fractures thanks to improved
image contrast and CNR. Quantitatively, the mean CNR of bone against defect-filled tissue was 35,
97, and 146 for UTE MRI, CT-like, and CT images, respectively, being significantly higher for CT-like
than UTE MRI images. For the image similarity metrics using the CT image as the reference, CT-like
images provided a significantly lower mean MSE (0.038 vs. 0.0528), higher mean PSNR (28.6 vs. 16.5),
and higher SSIM (0.73 vs. 0.68) compared to UTE MRI images. Additionally, the saliency maps
enabled quick detection of the location with probable pars fracture by providing visual cues to the
reader. This proof-of-concept study is limited to the data from ex vivo samples, and additional
work in human subjects with spondylolysis would be necessary to refine the models for clinical use.
Nonetheless, this study shows that the utilization of UTE MRI and deep learning tools could be
highly useful for the evaluation of isthmic spondylolysis.

Keywords: lumbar spine; pars; low back pain; image processing; image regression; bone fracture

1. Introduction

Low back pain (LBP) is common in pediatric and adolescent patients, particularly in
athletes. Spondylolysis is defined as a bony defect in the pars interarticularis of the vertebral
neural arch of the lumbar spine. In particular, isthmic spondylolysis [1], characterized by
unilateral or bilateral bone stress injury secondary to repetitive mechanical spinal loading
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during activity [2,3], is found in as many as 50% of adolescent athletes with persistent
LBP [2,4–9]. Failure to make the correct diagnosis may lead to a premature return to
activities that can be detrimental to the healing of the spondylolysis.

For clinical evaluation of isthmic spondylolysis, a physical exam such as palpation
of spinous processes, musculature around affected spinous processes [10], and the single
leg extension test [11,12] may be used with a limited diagnostic benefit [13]. Imaging is
also frequently performed. Plain radiography, the first line of imaging, has low sensitivity
(~60%) [14]. Computed tomography (CT) is currently the reference standard for the de-
tection of pars fractures, with sensitivity as high as 90% [15]. However, due to undesired
radiation exposure (5–10 mSv) and the exposure of reproductive organs, particularly in
young patients, the use of CT is being discouraged in favor of magnetic resonance imaging
(MRI), which does not expose young athletes to ionizing radiation.

Conventional MRI is often prescribed if a plain X-ray and physical exam are inconclu-
sive. It provides good soft tissue contrast and bone marrow changes that may be suggestive
of an early isthmic spondylolysis [16,17], but it has low sensitivity for detecting bony de-
fects, and inconclusive diagnosis will require an additional CT scan. In recent studies where
CT was used as the reference standard, the sensitivity of conventional sagittal and axial
MRI for the diagnosis of spondylolysis was 73–92% for a variety of pars fractures [18–21],
suggesting ~20% lower sensitivity compared to a CT exam [16,17,22]. Efforts have been
made to improve sensitivity by optimizing imaging planes and trying various axial and
sagittal oblique planes [23], as well as utilizing fat-suppressed and fluid-sensitive sequences
that sometimes reveal signals from the scar tissues filling the pars defect [24]. But these
add complexity and time and do not always improve the diagnosis. The main reason
for the lower sensitivity of conventional MR protocols includes short T2 properties of the
cortical bone and the osteofibrous scar tissues near the pars defect, whose signals decay
rapidly [25,26] in conventional MR sequences using echo times (TE) greater than 10 ms. As
a result, there is very little contrast between the cortical bone and the pars defect, which
hinders the diagnosis.

Recently, we have shown that a newer technique known as ultrashort time-to-echo
(UTE) MRI depicts the osseous components of the lumbar spine with higher contrast than
conventional MRI and improves the detection of experimental spondylolysis [27]. UTE-
based MRI techniques can utilize TE of 1 ms or less [28–39] and acquire sufficient MR
signal from the scar tissue to detect spondylolysis. UTE MRI can depict cortical bone with
a uniform contrast (i.e., low signal for the bone and the air and high signal for all other
tissues), making it relatively easy to isolate and visualize the bone, with conventional image
processing. Past studies have also shown that cortical bone morphology (e.g., surface
contour) measured on UTE MRI is similar to that measured on CT [38,40].

While a marked advancement, even UTE MRI images have undesirable characteristics
that may hinder the detection of spondylolysis. These include uneven shading from
posterior surface coils, varying signal intensities from the soft tissues, and relatively low
contrast for bone compared to CT. Additionally, general radiologists are not familiar with
UTE MRI images, as these are relatively new and are only beginning to become available
on many MRI scanners. On the other hand, radiologists are very familiar with spine CT,
and it is relatively fast and easy to identify pars defects on CT images. It would be clinically
impactful if tools became available to generate CT-like images from MRI images and to
provide suggestions for the locations of pars defects.

We believe deep learning models could be useful in this regard. Deep learning models
have been proposed for generating pseudo-CT or CT-like images from MRI, particularly
for attenuation correction for PET/MR setting [41–44], as well as for cranial bone imag-
ing [45–47] during stereotactic radiotherapy. Using a single modality can shorten treatment
planning time and reduce the risk of misregistration. Several different deep learning
techniques have been proposed to achieve CT-like synthesis from MRI data [48]. These
included atlas-based and voxel-based techniques. Atlas-based techniques [49,50] use pairs
of MRI and CT atlas that are averaged from multiple datasets. When new MRI data are
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obtained, the MRI atlas is deformed to match the data, and the deformation is applied
to the CT atlas to create the CT-like image. Created for dosimetry purposes, atlas-based
techniques introduce significant error for the personalized assessment of bone morphology.
For voxel-based techniques, conversion of MRI voxel signal intensity to Hounsfield units
(HU) at different anatomic regions using simple [51] or complex regression models [52]
have been used. Deep learning approaches including U-Net [53] and generative adversarial
network (GAN) [46,53] have also been introduced, showing good results in predicting the
dose needed for radiotherapy.

However, little attention has been given to the generation of CT-like images for di-
agnostic purposes. Additionally, while bone fracture detection in medical images using
deep learning has been an ongoing area of research [54], existing techniques may be sub-
optimal in terms of 3D visualization of the regions with high fracture probability. We
hope to expand on past work while focusing on spinal bone imaging, generating sharp
and high-contrast CT-like images from UTE MRI images, and fracture maps to aid in the
diagnosis and the detection of the injured area. As mentioned above, no attempt has been
made to create CT-like images for the spine using deep learning, a region with complex
bone anatomy, or a dedicated network for the detection of spondylolysis. While we will
utilize networks that have been described previously, the application to this anatomy and
disease is novel with a significant clinical benefit.

Expanding upon our past study on UTE MRI of the lumbar spine spondylolysis, the
purpose of this proof-of-concept study was to develop deep learning U-Net-based tools
that read in UTE MRI images of cadaveric lumbar spines and output (1) CT-like images for
easier interpretation and (2) a saliency map of fracture probability for quick detection of
pars fracture. It is hoped that these experimental tools may be refined and translated in the
future for the clinical evaluation of isthmic spondylolysis.

2. Materials and Methods

This study involved the use of de-identified MRI images of cadaveric specimens and
was exempted by the institutional review board.

2.1. Imaging Data

In our previous study [27], we obtained cadaveric lumbar spines (n = 4; 3 female,
1 male, 54 ± 18 years) en bloc, with muscles intact. We requested samples without previous
history of surgery to avoid complications with possible instrumentation. No other selection
criteria were used. At randomly chosen sites of pars interarticularis (n = 20 sites), bone
fractures were created with a surgical saw to simulate spondylolysis (Figure 1). Speci-
mens were scanned on a 3-Tesla MRI scanner (General Electric Healthcare, Discovery 750)
in the sagittal plane with conventional SE T2 (Figure 2A; TR = 4600 ms, TE = 102 ms,
matrix = 224 × 224, slice = 3 mm, FOV = 24 cm, time = 2:14 min) and 3D UTE (Figure 2B;
TR = 40 ms, TE = 0.03 ms, number of spokes = 6000; matrix = 256 × 256, slice = 2 mm,
FOV = 24 cm, FA = 2 deg, time = 4:00 min). These parameters were chosen to mimic those
used in clinical settings, with similar spatial resolution and scan time.

Computed tomography (CT) scans (Figure 2D) were performed on a 256-MDCT
scanner (Revolution; General Electric Healthcare, Chicago, IL, USA): 120 kV, 100 mA, slice
= 0.625 mm, reconstruction diameter = 50 cm, and matrix = 512 × 512.

Image registration: The MRI and CT images were stacked to create individual 3D
volumes for each specimen and rescaled to have the same voxel size of (0.625 mm)3. Three-
dimensional rigid body image registration was performed using FMRIB’s linear image
registration tool (FLIRT) [55] using only translation and rotation. The co-registered images
were cropped in-plane to 224 × 384 voxels while leaving the number of slices unmodified.
The images were then augmented via translation, rotation, rescaling, and the combination
of all three while keeping the final cropped image size of 224 × 384. After augmentation
of 509 image pairs, a total of 2545 training image pairs were available for training. In this
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proof-of-concept study to demonstrate feasibility and utility, due to the limited available
data, we used all datasets for training and for results. No separate testing data were used.
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Figure 2. Right-sided imaging of a cadaveric spine, showing typical sagittal images of an experimental
pars fracture at L4. On the conventional T2 images, (A) the experimental pars defect on the right L5
level is not visible. In contrast, raw (B) and inverted (C) UTE images can depict the fracture (arrow),
albeit with a lower contrast compared to the CT image (D).

2.2. Deep Learning: Image Regression Model

We built a convolutional neural network (CNN) based on 2D U-Net architecture
(Figure 3A) [56] modified (Figure 3B) to perform a supervised image-to-image regression.
The 2D U-Net was chosen based on its generally robust performance under many appli-
cations and our familiarity with the model from past studies. The model was written in
Matlab with Deep Learning Toolbox (R2022b) and trained on a Windows computer with
an RTX3090 GPU. UTE MRI images were normalized and used as the input (Figure 4A).
Corresponding CT images (Figure 4B) were used as the ground truth for the supervised
learning. The image regression model has 64 convolution filters with a 3 × 3 kernel size,
2 convolution operations at each step, with an encoder depth of 5 (Figure 3A). The final
output layer (Figure 3B) is an image regression layer instead of a pixel classification typi-
cally used for U-Net image segmentation. The model was trained to 100 epochs using the
default setting (Adam optimizer, root mean squared error loss function, shuffling image
every epoch, and mini batch size of 8). We provide a pseudocode below in Section Matlab
Code for Image Regression.
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Matlab Code for Image Regression

% data directories
imageDir = “directory for MRI images”
labelDir = “directory for CT images”

% create image and label datastores
imds = imageDatastore(imageDir)
pxds = imageDatastore(labelDir)

% combined training datastore
dsTrain = combine(imds,pxds)

% create the baseline U-net
imageSize = [384 224]
encoderDepth = 5;
network1 = unetLayers(imageSize,2,‘EncoderDepth’,encoderDepth)

% create 2D convolution and regression layers to replace base Unet
layer_conv = “2D convolution layer with 1 channel output”
layer_reg = “regression layer with 1 channel output”

% remove softmax and segmentation layers and replace with regression layer
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network2 = “command to remove segmentation layer from network1”
network2 = “command to replace final 2D convolution layer with layer_conv”
network2 = “command to replace softmax layer with layer_reg”

% change options to match your PC hardware
train_options = trainingOptions(‘adam’,. . .
‘LearnRateDropFactor’,0.05, . . .
‘LearnRateDropPeriod’,5, . . .
‘Shuffle’,’every-epoch’,. . .
‘MaxEpochs’,100, . . .
‘MiniBatchSize’,8); %, . . .

% start training
Regression_Network = trainNetwork (dsTrain, network2, train_options)

%%%%%%%% inference post training %%%%%%%%
CT_like_image = predict(Trained_Network, input_MRI)

2.3. Deep Learning: Saliency Mapping Model

Another CNN model was built for pars defect detection. The purpose of this model
was to provide visual cues to help the reader locate the problem area of the spine. We
used the same architecture as the image regression model, except at the output end, we
used a softmax activation followed by a pixel classification layer instead of a regression
layer. For training, augmented UTE MRI images (Figure 4A) were annotated using ImageJ
by segmenting regions of pars fractures as binary images (Figure 4C). After training, we
visualized the activation or “saliency map” of the final convolution layer prior to softmax
activation (Figure 3C), which contains the probability of the presence of the pars defect
(Figure 4C). This model was also trained to 100 epochs using the default setting (Adam
optimizer, cross-entropy loss function, shuffling image every epoch, and mini batch size
of 8).

Matlab Code for Saliency Mapping

% data directories
imageDir = “directory for MRI images”
labelDir = “directory for annotations for pars defects”

% create image and label datastores
imds = imageDatastore(imageDir)
pxds = imageDatastore(labelDir)

% combined training datastore
dsTrain = combine(imds,pxds)

% create the baseline U-net
imageSize = [384 224]
encoderDepth = 5;
network1 = unetLayers(imageSize,2,‘EncoderDepth’,encoderDepth)

% add class weights since the volume of defect is very small
tbl = countEachLabel(pxds);
numberPixels = tbl.ImagePixelCount;
frequency = tbl.PixelCount ./ numberPixels;
classWeights = 1 ./ frequency;

% replace the last layer with a weighted classification layer
layer1 = “segmentation layer with weighted class weights”
network2 = “command to replace the last segmentation layer with layer1”

% change options to match your PC hardware
train_options = trainingOptions(‘adam’,. . .
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‘InitialLearnRate’,1e-5,. . .
‘Shuffle’,’every-epoch’,. . .
‘Verbose’,true,. . .
‘MaxEpochs’,100, . . .
‘MiniBatchSize’,8);

% start training
Saliency_Network = trainNetwork (dsTrain, network2, train_options)

%%%%%%%% saliency mapping post training %%%%%%%%

testimg = imread(“test image”);
act = activations(net1,testimg,’Softmax-Layer’); % “see” the activation layer
figure
imagesc(act(:,:,2))

2.4. Outcome Measures
2.4.1. Similarity Measures between CT and CT-like Images

To compare the quantitative similarity of (i) inverted UTE (Figure 2C) and CT im-
ages and (ii) CT-like and CT images, we determined the mean squared error (MSE;
Equation (1)) [57] and peak signal-to-noise ratio (PSNR; Equation (2)) [57] for each im-
age pair (n = 509) as follows:

MSE =
∑
(

SICTlike
i − SICT

i

)2

n
(1)

PSNR = 10 × log10

(
2552

MSE

)
(2)

where SICT like
i is the signal intensity of an i-th voxel in a CT-like image, SICT

i is the signal
intensity of an i-th voxel in a CT image, and n is the number of voxels in an image (i.e.,
224 × 384 = 86,016 voxels). The values were then averaged for all of the data.

We also determined the structural similarity index (SSIM; Equation (3)) [58], an image
quality metric that compares the visual characteristics of the luminance, contrast, and
structure between images x and y (e.g., CT and CT-like images, respectively).

SSIM(x, y) =

(
2µxµy + c1

)(
2σxy + c2

)(
µ2

x + µ2
y + c1

)(
σ2

x + σ2
y + c2

) (3)

where µx and µy are the pixel sample means of image x and y, respectively; σxy is the
cross-correlation of x and y; σx and σy are the variance of x and y; c1 = (k1L)2, where
k1 = 0.01 and L is the dynamic range (i.e., 28 − 1 = 255 for 8-bit grayscale images); and
c2 = (k2L)2, where k2 = 0.03.

MSE is a traditional metric, and it measures the squared difference between the pixel
values of two images. PSNR is also a widely used metric, and it shows a ratio between
the maximum possible power of a signal and the power of the noise. While these metrics
are great for a perfectly registered set of images, they do not consider the structure of the
image. SSIM considers the perception of the human visual system, and it models image
distortion as a combination of factors that affect human perception. Since all three metrics
are commonly used in reporting image fidelity and similarity, we determined all of them in
this study.

2.4.2. Contrast-to-Noise Ratio (CNR)

To compare image contrast between the UTE, CT-like, and CT images, we measured
the mean signal intensity of the bone, pars defect, and paraspinal muscles using regions of
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interest (ROIs) (Figure 5A) at n = 11 pars defects. The standard deviation of the background
noise signal intensity was also measured. CNR was determined (Figure 5B) as the difference
between the mean signal intensity (SImean) of two ROIs divided by the standard deviation
(SISD) of the noise as follows (Equation (4)) [59]:

CNR1−2 =
SI1

mean−SI2
mean

SInoise
SD

(4)
Sensors 2023, 23, x FOR PEER REVIEW 9 of 16 
 

 

 
Figure 5. Contrast-to-noise ratios (CNRs) were measured on UTE, CT-like, and CT images of 
experimental pars defects created on three cadaveric spines. (A) Regions of interest for measuring 
the mean signal intensity of the bone, pars defect, and paraspinal muscles. (B) CNR of bone vs. pars 
defect and bone vs. surrounding muscles suggested the lowest CNR for UTE images compared to 
CT-like and CT images. (C) Width of pars defect was measured on UTE and CT-like images and 
correlated against the measurements on the reference CT images. 

2.4.3. Width Measurement of Pars Defects 
Additionally, at randomly selected pars defects (n = 11), we measured the width of 

the defects on registered UTE, CT-like, and CT images. Using the measurement on CT as 
the reference, we plotted the width measurements on CT vs. UTE and CT vs. CT-like 
images (Figure 5C). 

2.5. Statistics 
The values of MSE, PSNR, and SSIM involving inverted UTE and CT-like images 

were compared using a t-test. CNR values involving UTE, CT-like, and CT images were 
compared using ANOVA with the post hoc Tukey test. Correlations between defect 
widths measured on CT vs. UTE and CT vs. CT-like images were determined using 
Pearson correlation and linear regression.  

3. Results 
3.1. CT-like Images 

Compared to conventional MRI such as spin echo T2 (Figure 2A), UTE images 
depicted spinal bone distinctly (Figure 2B), and when inverted (Figure 2C), had a similar 
appearance to a CT image (Figure 2D). Even so, inverted UTE images had uneven shading 
from posterior surface coils, varying signal intensities from the soft tissues, gas/air inside 
the vertebral body being depicted with high signal intensity, and a relatively low contrast 
for bone, making them a less than perfect surrogate for CT images. 

CT-like images generated by our deep learning network addressed many of the 
limitations of the UTE MRI images. Compared to UTE MRI images that had uneven 
shading (Figure 6A,E), our deep learning generated CT-like images provided even signal 
intensity of soft tissues on the posterior side (Figure 6C,G). UTE MRI images depicted 
both the bone and the air in the vertebral body (Figure 6E, square) and the facet joint 
(Figure 6E, arrowhead) with a low signal intensity, while CT-like images correctly 
depicted the bone with high signal intensity and the air with low signal intensity (Figure 
6G). The correspondence between the ground truth CT (Figure 6B,F) and CT-like (Figure 
6C,G) images was excellent, but the CT-like images were visibly softer. Color maps 
showing the difference between CT and CT-like images (Figure 6D,H) suggested a good 
fitting during the supervised learning. The CT-like image also facilitated 3D rendering 
and visualization: the 3D bone renders of the CT (Figure 7A) and CT-like (Figure 7B) 
images were nearly identical, and the pars fractures were obvious on both renders 
(arrows). 

Figure 5. Contrast-to-noise ratios (CNRs) were measured on UTE, CT-like, and CT images of
experimental pars defects created on three cadaveric spines. (A) Regions of interest for measuring
the mean signal intensity of the bone, pars defect, and paraspinal muscles. (B) CNR of bone vs. pars
defect and bone vs. surrounding muscles suggested the lowest CNR for UTE images compared to
CT-like and CT images. (C) Width of pars defect was measured on UTE and CT-like images and
correlated against the measurements on the reference CT images.

2.4.3. Width Measurement of Pars Defects

Additionally, at randomly selected pars defects (n = 11), we measured the width of the
defects on registered UTE, CT-like, and CT images. Using the measurement on CT as the
reference, we plotted the width measurements on CT vs. UTE and CT vs. CT-like images
(Figure 5C).

2.5. Statistics

The values of MSE, PSNR, and SSIM involving inverted UTE and CT-like images
were compared using a t-test. CNR values involving UTE, CT-like, and CT images were
compared using ANOVA with the post hoc Tukey test. Correlations between defect widths
measured on CT vs. UTE and CT vs. CT-like images were determined using Pearson
correlation and linear regression.

3. Results
3.1. CT-like Images

Compared to conventional MRI such as spin echo T2 (Figure 2A), UTE images depicted
spinal bone distinctly (Figure 2B), and when inverted (Figure 2C), had a similar appearance
to a CT image (Figure 2D). Even so, inverted UTE images had uneven shading from
posterior surface coils, varying signal intensities from the soft tissues, gas/air inside the
vertebral body being depicted with high signal intensity, and a relatively low contrast for
bone, making them a less than perfect surrogate for CT images.

CT-like images generated by our deep learning network addressed many of the
limitations of the UTE MRI images. Compared to UTE MRI images that had uneven
shading (Figure 6A,E), our deep learning generated CT-like images provided even signal
intensity of soft tissues on the posterior side (Figure 6C,G). UTE MRI images depicted
both the bone and the air in the vertebral body (Figure 6E, square) and the facet joint
(Figure 6E, arrowhead) with a low signal intensity, while CT-like images correctly depicted
the bone with high signal intensity and the air with low signal intensity (Figure 6G). The
correspondence between the ground truth CT (Figure 6B,F) and CT-like (Figure 6C,G)
images was excellent, but the CT-like images were visibly softer. Color maps showing the
difference between CT and CT-like images (Figure 6D,H) suggested a good fitting during
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the supervised learning. The CT-like image also facilitated 3D rendering and visualization:
the 3D bone renders of the CT (Figure 7A) and CT-like (Figure 7B) images were nearly
identical, and the pars fractures were obvious on both renders (arrows).
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Figure 6. Results of image regression. UTE images (A,E) were used as input and trained on CT images
(B,F) to synthesize CT-like images (C,G). Difference between CT and CT-like images is shown as
color maps (D,H). Arrows indicate pars defects created experimentally. Compared to (E) UTE image
that depicted both the bone and air in the vertebral body (square) and the facet joint (arrowhead)
with low signal intensity, (F) CT-like image correctly depicted the bony structures with high signal
intensity and the air with low signal intensity. The overall correspondence between CT-like and CT
images was excellent, but CT-like images were not as sharp.
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showing the pars defect (arrow).

Table 1 compares quantitative measures of image similarity between (1) inverted
UTE and CT images and (2) CT-like and CT images. All measures suggested greater
dissimilarity and fidelity of the inverted UTE images than CT-like images when compared
to the reference CT image. MSE of inverted UTE vs. CT (0.0528 ± 0.0340) was over
10 times greater than that of CT-like vs. CT (p = 2.6 × 10−133). PSNR of inverted UTE
vs. CT (16.5 ± 14.2 dB) was significantly lower (p = 6.6 × 10−53) than CT-like vs. CT
(28.6 ± 6.1 dB), and SSIM of UTE vs. CT (0.68 ± 0.19) was also lower (p = 0.0012) than that
of CT-like vs. CT (0.73 ± 0.28).
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Table 1. Similarity metrics between inverted UTE vs. CT and CT-like vs. CT.

Inverted UTE vs. CT CT-like vs. CT p-Value

MSE 0.0528 ± 0.0340 0.0038 ± 0.0054 2.60 × 10−133

PSNR (dB) 16.5 ± 14.2 28.6 ± 6.1 6.60 × 10−53

SSIM 0.68 ± 0.19 0.73 ± 0.28 0.0012

For the CNR of bone vs. defect (Figure 5B), UTE had the lowest value at ~35 ± 14
(mean ± SD), followed by CT-like at 97 ± 31 and CT at 146 ± 37. These differences were
statistically significant (post hoc p < 0.001 each). Trends were similar for the CNR of bone
vs. muscle.

The width of the defect measured on CT-like images matched more closely to those
measured on CT images. Linear regression of defect width on CT vs. CT-like images had a
slope of 0.86 (near 1.0) and R2 = 0.73. In contrast, CT vs. UTE had a slope of 0.63 with a low
R2 = 0.21.

3.2. Saliency Mapping

Figure 8 shows the results of saliency mapping. We performed supervised learning
using UTE images as the input (Figure 8A,E) and annotated regions of pars defect as
the ground truth, but instead of performing segmentation, class activation of the final
convolution layer was taken as the saliency heat map. Figure 8B,F shows heat maps fused
with the UTE image, and the colors indicate the probability of the presence of the pars
defect. When viewed side-by-side, this makes it quick and easy to detect and evaluate the
pars defect.
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(B,F) Saliency maps overlaid onto UTE images show colored areas covering the pars defects. Saliency
maps can also be fused with (C,G) CT-like images to create 3D fused rendering that highlights pars
defects. Note the high similarity between the fused rending using (C,G) CT-like vs. (D,H) CT images.

Combining saliency maps with CT-like images provides additional benefits. As
a demonstration, we created a fused 3D render of CT-like data with the saliency map
(Figure 8C,G), which could be useful for volumetric viewing and evaluation of the spinal
bones. Note the visual similarity between the 3D renders using CT-like (Figure 8C,G) and
CT (Figure 8D,H) images overlaid with fracture probability.
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4. Discussion

We have shown a proof-of-concept study for implementing deep learning models
to process UTE MRI images of human lumbar spines and to synthesize CT-like images
as well as fracture probability heat maps. Additionally, we demonstrated the potential
advantages of CT-like images over UTE images, including visual improvement and ease
of evaluating the bone, greater similarity measures to reference CT images, and higher
contrast-to-noise ratio. Saliency maps, when fused with UTE or CT-like images, provided
additional improvement in making it quick and easy to detect and evaluate the pars defect.

Compared to UTE images, CT-like images provided multiple advantages for bone
defect evaluation. First is the higher contrast-to-noise ratio for key regions of interest (i.e.,
cortical bone of pars interarticularis and scar tissue filling the pars defect). Reference CT
images provide a CNR value averaging ~150, while UTE images had a mean CNR value of
~35. Our CT-like images had only a slightly lower (albeit statistically significant) mean CNR
value near ~100. PSNR is a measure of image quality preservation between the original
and a degraded image. PSNR for CT-like images was ~29, which is considered good, while
for UTE images, PSNR was ~17, below the “acceptable” range [60].

While there have been many studies on deep learning models to create pseudo-CT
images from MRI, most of them focused on dosimetry for radiotherapy applications.
Relatively few studies exist with the goal of synthesizing images for diagnostic purposes.
While our study uses a relatively established and popular U-Net model [61,62], other
approaches exist, including a fully connected convolutional neural network (CNN) [63,64]
and a generative adversarial network (GAN) [63–65]. Our model, despite being trained on
a very limited dataset, provided a decent performance comparable to other models with
PSNR in the range of 24 to 28 dB [62–64,66,67] and SSIM in the range of 0.65 to 0.79 [61,64,67].
While not performed in this study, feature extraction using deep learning [68] may be
considered for the detection of pars defects, and the use of other models such as GAN
may provide advantages when the relationship between the source and output images
is difficult to establish (e.g., regression of conventional MRI images to CT images may
perform better with GAN than CNN).

This study has important clinical implications. Every year, many lumbar CT scans are
performed on young athletes. Adding to this, the low back is one of the most frequently
re-injured anatomy in sports. These factors can lead to a large number of repeated CT
scans in young subjects, which is undesirable in terms of cancer risk as well as potential
genetic risk for the next generation. If successful, a combination of MRI and deep learning
processing to generate CT-like images can alleviate these issues. Additionally, the costs
involved with receiving both MRI and CT can be reduced. Additionally, a deep learning
aid such as that shown in Figure 8 to suggest the probable location of pars defects can be
helpful for a faster and more accurate diagnosis while leaving the power of decision with
the reader. Finally, the tools developed here can be utilized for any other diseases and
injuries involving bone that currently require a CT scan to evaluate bone morphology.

This early study has several limitations. First, the size of our dataset was very limited,
and all of the data were used for both training and testing. The data were “opportunistic”
data from a previous study that was taken advantage of to perform this proof-of-concept
study. Additionally, we used only UTE MRI images, and the applicability of the model with
other types of MRI images (particularly clinical spin echo images that are more prevalent)
is not yet certain. Only sagittal images were used, so additional training on other planes
or developing a 3D deep learning model would be also needed. The training data are
dependent on the accurate registration of image pairs, which is not always achievable.
Most of all, only cadaveric sample images were used, and retraining would be necessary
with actual human subjects with and without spondylolysis. The same issue applies to
saliency mapping; while found to be useful in quickly drawing attention to the problem
area, it has not been validated in real patients with spondylolysis. In the future, we wish
to address the above limitations by expanding the work to include additional types of
MRI images in different planes, obtaining images from live human subjects in vivo, and
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obtaining data from patients confirmed with spondylolysis. Taking it even further, our
technique may be used to study a large population of subjects suspected of the condition.

5. Conclusions

In conclusion, this study shows a proof-of-concept development and utility of deep
learning tools to synthesize (1) CT-like images and (2) a saliency map of fracture probability.
We showed quantitatively and qualitatively that CT-like images can closely mimic the
reference CT images, and this may address many of the shortcomings of UTE MRI that
hinder the evaluation of isthmic spondylolysis. Taking it a step further, combining CT-like
images with a saliency map made it even easier to quickly identify pars defects. It is hoped
that this concept for deep-learning-based tools may be refined and translated in the future
for clinical evaluation of isthmic spondylolysis.
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