UC Merced

Proceedings of the Annual Meeting of the Cognitive Science Society

Title

Learning to count: a neural network model of the successor function

Permalink https://escholarship.org/uc/item/91z2p9h1

Journal Proceedings of the Annual Meeting of the Cognitive Science Society, 44(44)

Authors Gupta, Vima Varma, Sashank

Publication Date 2022

Peer reviewed

Learning to count: a neural network model of the successor function

Vima Gupta

Georgia Institute of Technology, Atlanta, Georgia, United States

Sashank Varma

Georgia Tech, Atlanta, Georgia, United States

Abstract

What does it mean for a neural network to become a "cardinal principal knower"? We trained a multilayer perceptron to compute the successor of the numbers 0-99. N and N+1 were one-hot encoded on the input and output layers, respectively; the hidden layer had 8 units. 80% of the (N, N+1) pairs constituted the training data, the remaining 20% the test data. The mean cosine similarities of the hidden layer representations of the (N, N+1) pairs was 0.77 (0.79) when N was in the training (test) set. The network learned a continuous notion of number: the hidden-layer representations of N and N+1 were comparable whether they did (0.74) or did not (0.78) cross a tens boundary. Thus, the network did not "discover" place-value. Ongoing research is exploring place-value encoding of inputs and outputs, and also structuring of the training data to better reflect the numerical environment of the child.

In J. Culbertson, A. Perfors, H. Rabagliati & V. Ramenzoni (Eds.), *Proceedings of the 44th Annual Conference of the Cognitive Science Society*. ©2022 The Author(s). This work is licensed under a Creative Commons Attribution 4.0 International License (CC BY).