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If B is a subalgebra of a von Neumann algebra A ⊂ B(H)
and B contains the rank one projections corresponding to an 
orthonormal basis of H, then a linear B-bimodule projection 
P on A with range B is of the form

P (x) =
∑
j

pjxpj x ∈ B(H)

for orthogonal projections pj in A which are diagonal with 
respect to the basis. An analogous result holds if A = B(H)
and B is a weakly closed ternary ring of operators.

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

In ring theory and in the context of algebras, idempotents have many well-established 
uses. In particular, if e ∈ R is an idempotent of a ring R, then the subring eRe has 
unit e and there is an eRe-bimodule projection x �→ exe from R onto eRe. The kernel 

* Corresponding author.
E-mail addresses: plutar@tcd.ie (R. Pluta), brusso@math.uci.edu (B. Russo).
https://doi.org/10.1016/j.laa.2018.07.030
0024-3795/© 2018 Elsevier Inc. All rights reserved.

https://doi.org/10.1016/j.laa.2018.07.030
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/laa
mailto:plutar@tcd.ie
mailto:brusso@math.uci.edu
https://doi.org/10.1016/j.laa.2018.07.030
http://crossmark.crossref.org/dialog/?doi=10.1016/j.laa.2018.07.030&domain=pdf


R. Pluta, B. Russo / Linear Algebra and its Applications 557 (2018) 188–200 189
eR(1 −e) +(1 −e)Re +(1 −e)R(1 −e) of the projection is a complementary eRe-submodule 

of R.
In probability theory, and in the theory of von Neumann algebras, the notion of 

conditional expectation (as a completely positive map E : M → M on a von Neumann 

algebra M , with M commutative in the case of probability theory) satisfies similar 
algebraic properties as the Peirce projections on a ring R or on an algebra A. A result 
of J. Tomiyama states that a unital and bounded projection E : A → A with range 

S = E(A) a C*-subalgebra of A must have norm one, must be positive, must satisfy the 

conditional expectation property E(s1xs2) = s1E(x)s2 (for s1, s2 ∈ S, x ∈ A) and also 

the Schwarz type inequality E(x)2 ≤ E(x2) for self-adjoint x (see [1, II.6.10.2]). In one of 
the themes of recent research, the notion of injective operator space, a similar algebraic 

‘conditional expectation’ property plays a significant role, interacting with the notion of 
a ternary ring of operators (TRO, see [11]).

In [7], T. Y. Lam proposed abstracting the algebraic properties of the Peirce projection 

Ee : R → R associated with an idempotent e in a ring R, which is given by Ee(x) = exe, 
(x ∈ R), and investigating algebraic properties that hold in this more general context. His 
proposal is to consider (additive) maps E : R → R with E ◦E = E, S = E(R) a subring 

of R under the assumption that E is an S-bimodule map (which means that it satisfies 
the conditional expectation property E(s1xs2) = s1E(x)s2 for s1, s2 ∈ S, x ∈ R). Lam 

refers to such subrings S as ‘corners’.
We consider this notion principally in the context of a (complex) C*-algebra A in place 

of a ring R and with the assumption that the corner S = E(A) is a complex subalgebra. 
Our aim is to characterize such corners as fully as we can, ideally by establishing that they 

are related to the ranges of the more well-known completely positive (unital) conditional 
expectations.

In the general approach of Lam (in the context of rings), although a ring-theoretic 

Lam corner S of a unital algebra A need not be a subalgebra, if S is a subalgebra then 

the corresponding projection E must be linear (that is, homogeneous), which justifies 
the definition of corner algebra we use (Definition 2.1). Thus we adopt a definition 

modified from the ring-theoretic one (which insists that we deal with corners that are 

subalgebras and have vector space complements, or equivalently we deal only with linear 
projections E).

While simple examples show that Lam corners S in C*-algebras need not be self-
adjoint subalgebras, Peirce corners in C*-algebras and certain ‘generalized’ Peirce corners 
behave like self-adjoint corners (see [10, section 3.6]). In Proposition 2.5, we character-
ize corners in finite dimensional C∗-algebras that contain the diagonal and use that in 

Theorem 1 to characterize corners of von Neumann algebras that contain the diagonal 
in some basis for H. A consequence of this result is a version where the range of the 

projection on B(H) is a weakly closed ternary ring of operators (Theorem 2).
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2. Main result

Let B(H) be the algebra of bounded linear operators on a Hilbert space H, with 
inner product 〈·, ·〉, and with an orthonormal basis (ξi)i∈I (which may be countable or 
uncountable). For any i ∈ I, consider the diagonal operator ξi ⊗ ξ∗i ∈ B(H) defined 
by (ξi ⊗ ξ∗i )(ξ) = 〈ξ, ξi〉 ξi for ξ ∈ H, which is the orthogonal self-adjoint projection of 
H onto the one-dimensional subspace of H spanned by ξi. This terminology for such 
operators ξi⊗ ξ∗i recalls the notion of ‘diagonal matrices’ eii ∈ MI(C) with 1 on the (i, i)
position and 0 elsewhere. We shall call a (self-adjoint) projection p ∈ B(H) a diagonal 
projection if pξi ∈ Cξi for each i ∈ I.

The objects of study in this section are corner algebras S of C*-subalgebras of B(H), 
with S containing the diagonal operators ξi ⊗ ξ∗i . We need the following definitions.

Definition 2.1. Let A be an algebra. A subalgebra S of A is called a corner algebra (or 
simply a corner) of A if there exists a vector subspace M of A such that

A = S ⊕M, SM ⊂ M, MS ⊂ M.

M is called a complement of S.

Corners of concrete C∗-algebras need not be closed in any of the operator topologies 
(see [10, section 3.2]), but our main examples of corners will be closed subalgebras of 
B(H).

Definition 2.2. Corners of the form pAp, where p is an idempotent in A are called Peirce 
corners. If e1, . . . , en are idempotents in an algebra A with eiej = 0 for i �= j, then the 
corner ⊕n

i=1eiAei is called a generalized Peirce corner.

It is shown in [7, Proposition 2.1] that S is a corner of A if and only if there exists a 
linear S-bimodule map E : A → A with E(A) = S and E ◦ E = E .

Proposition 2.3. If R is a ring and e1, . . . , en are idempotents in R with eiej = 0 for 
i �= j, then the generalized Peirce corner S = ⊕n

i=1eiRei has a unique complement and 
the unique idempotent mapping on R with range S is given by E(x) =

∑n
i=1 eixei.

Proof. Let M be a complement for S and let E0 be a corresponding idempotent 
S-bimodule map with range S. The idempotent e =

∑n
i=1 ei is the identity element 

for S and it follows from R  x = s + m (s ∈ S, m ∈ M) that exe = s + eme with 
eme ∈ M . So E0(x) = s = E0(exe).

Note that for z ∈ S we have z =
∑n

k=1 ekzek.
For y ∈ eRe we have y = eye =

∑n
i,j=1 eiyej =

∑n
i=1 eiyei +

∑
i�=j eiyej . For i �= j we 

have E0(eiyej) =
∑n

k=1 ekE0(eiyej)ek =
∑n

k=1 E0(ekeixejek) = 0. Hence eiyej ∈ M for 
i �= j and E0(y) =

∑n
i=1 eiyei.
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It follows that for x ∈ R,

E0(x) = E0(exe) =
n∑

i=1
eiexeei =

n∑
i=1

eixei.

Furthermore, any complement M of S must be equal to the kernel of E . Indeed, if 
x = s +m, then E(x) = s +

∑
i eimei and 

∑
i eimei ∈ M ∩ S = {0} so that if x ∈ ker E , 

s = 0 and x ∈ M . Similarly, M ⊂ ker E . �
We will need the following result, which follows from Wedderburn’s theorem.

Proposition 2.4 ([2, Proposition 5.2.6]). Any semisimple finite-dimensional algebra R
over an algebraically closed field k is a direct product of full matrix rings over k.

Proposition 2.5. Let A be a C*-subalgebra of B(H), where H is finite dimensional with 
orthonormal basis ξ1, . . . , ξn. Let E : A → A, have range S which is a subalgebra of A
containing the rank 1 projections eii = ξi ⊗ ξ∗i . Suppose E is an idempotent S-bimodule 
linear map. Then S is a self-adjoint generalized Peirce corner and ‖E‖ = 1. Moreover 
there are orthogonal diagonal projections p1, . . . , pk in A such that E(x) =

∑k
j=1 pjxpj. 

(Each pj is a sum of some of the eii.)

Proof. We identify B(H) with Mn(C). Since S = E(A) is a finite dimensional algebra 
over C and by [6, Theorem 1], semisimple, it must be isomorphic to a finite direct sum 
of full matrix algebras over C by Proposition 2.4. Let eii denote the n-by-n matrix with 
entry 1 in the (i, i) position and 0 elsewhere, and let

φ : S → Mn1(C) ⊕ · · · ⊕Mnk
(C)

be an isomorphism. Since eii ∈ S (1 ≤ i ≤ n), it follows that φ(eii) is an idempo-
tent in Mn1(C) ⊕ · · · ⊕ Mnk

(C), and so φ(eii) = fi1 ⊕ · · · ⊕ fik with fij ∈ Mnj
(C)

(1 ≤ j ≤ k) an idempotent. Since eii is minimal in S, we must have fij �= 0 for 
just one j; φ(eii) = fij for some j. Moreover φ(eii) = fij must be a rank one idem-
potent in Mnj

(C), and we can partition {1, . . . , n} into k classes where the jth class 
is Cj =

{
i : φ(eii) ∈ Mnj

(C)
}
. Put pj =

∑
i∈Cj

eii, and let 1n denote the n-by-n
identity matrix. Then φ(1n) =

∑n
i=1 φ(eii) =

∑k
j=1 φ(pj) is the identity of φ(S). 

Hence φ(pj) ∈ Mnj
(C) is the identity. It follows that Cj must have nj members 

and 
∑k

j=1 nj = n. Therefore, if x ∈ S, then φ(x) ∈ Mn1(C) ⊕ · · · ⊕ Mnk
(C) and 

φ(x) =
∑k

j=1 φ(pj)φ(x)φ(pj) = φ(
∑k

j=1 pjxpj), so S ⊆
⊕k

j=1 pjApj and

dimS ≤ dim
k⊕

pjApj =
∑

dim pjApj

j=1 j
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≤
∑
j

(rank pj)2 =
∑
j

(rank φ(pj))2

=
∑
j

n2
j = dimφ(S) = dimS.

Therefore S =
⊕k

j=1 pjApj , and since 
⊕k

j=1 pjApj is a generalized Peirce corner of A, 
E(x) =

∑k
j=1 pjxpj by Proposition 2.3. Thus E is a positive unital map and so ‖E‖ = 1. 

(That ‖E‖ = 1 follows also from [1, II.6.9.4].) �
Remark 2.6. If R = Mn(C) and E(x) = tr (x)1 then C1 is a corner of R but E is not of the 
form 

∑k
j=1 pjxpj for orthogonal projections p1, . . . , pk, since then pi = E(pi) = tr (pi)1

implies E is the identity map. Thus the assumption on the rank one projections in 
Proposition 2.5, and in Theorem 1, is essential.

Our main result, Theorem 1 below, is an infinite dimensional version of Proposi-
tion 2.5. For motivation purposes, we shall give a constructive proof in the case that 
A = B(H), with H a separable Hilbert space with orthonormal basis ξ1, . . . , ξn, . . .. Let 
E : A → A be an idempotent S-bimodule linear map with range S which is a subalgebra 
of A containing the rank 1 projections ξi ⊗ ξ∗i .

If α ⊂ I is a finite set, we write π = πα for the orthogonal projection of H onto the 
span{ξi : i ∈ α}, which is πα =

∑
i∈α ξi ⊗ ξ∗i and is in the range of E . Let Aα = {x ∈ A :

x = πxπ} = πAπ, a C∗-subalgebra (in fact a self-adjoint Peirce corner) of A. Note that 
if x ∈ Aα then E(x) = E(πxπ) = πE(x)π ∈ Aα.

We now define Eα : Aα → Aα by Eα = E|Aα
(restriction of E) and we can check 

easily that Eα is an idempotent Eα(Aα)-bimodule map on Aα. Moreover the range of Eα
contains the diagonal and so Proposition 2.5 applies. (Of course, Aα � B(παH).)

With α = {1, . . . , n}, denote πn = πα, and An = Aα. By Proposition 2.5 we can write

En(x) =
kn∑
j=1

pnjxpnj for x ∈ An (2.1)

where the pnj are orthogonal diagonal projections in An for j = 1, . . . , kn.
We know that En = En+1|An. We now define by induction a family of projections 

in A. First, P1 = {e11} where e11 = ξ1 ⊗ ξ∗1 and E1(x) = e11xe11 for x ∈ A1. More 
generally, we define ei1i2 = ξi1 ⊗ξ∗i2 , for i1, i2 ∈ I. The projection E2 is either the identity 
on A2 � M2(C) or E2(x) = e11xe11 + e22xe22 for x ∈ A2. In the first case, we define 
P2 = {e11 + e22} and in the second case P2 = {e11, e22}. Each of these cases gives rise to 
two possible choices for P3, namely if P2 = {e11, e12}, then P3 is either {e11, e22 +e33} or 
{e11, e22, e33}; and if P2 = {e11+e22}, then P3 is either {e11+e22, e33} or {e11+e22+e33}; 
and so forth.
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By (2.1),

En+1(x) =
kn+1∑
j=1

pn+1,jxpn+1,j for x ∈ An+1.

Since En = En+1|An, we have pnj = pn+1,j for j = 1, . . . , kn − 1. As above, there are 
two possibilities. Either kn+1 = kn and pn+1,kn+1 = pn,kn

+ en+1,n+1; or kn+1 = kn + 1
and pn+1,kn

= pn,kn
and pn+1,kn+1 = en+1,n+1. Depending on which possibility holds, 

we define

Pn+1 = {pnj : j = 1, . . . kn − 1} ∪ {pn,kn
+ en+1,n+1}

or

Pn+1 = Pn ∪ {en+1,n+1}.

Finally we define

P = ∪∞
n=1Pn,

and to avoid overlap we define

Q = P − {p ∈ P : p ≤ q for some q ∈ P, q �= p}.

Note that Q consists of orthogonal diagonal projections, and that for each finite subset 
α ⊂ I, there is a finite subset Qα ⊂ Q such that Eα(x) =

∑
p∈Qα

pxp for x ∈ A. It follows 
that if σ, τ ∈ H are finite linear combinations of the basis vectors, say σ =

∑
i∈α σiξi

and τ =
∑

i∈α τiξi, and x ∈ A then

〈E(x)σ, τ〉 = 〈E(x)πασ, πατ〉 = 〈παE(x)πασ, πατ〉

= 〈E(παxπα)σ, πατ〉 = 〈Eα(x)σ, τ〉

=
〈⎛
⎝ ∑

p∈Qα

pxp

⎞
⎠σ, τ

〉
,

and therefore, since pσ = 0 = pτ if p ∈ Q −Qα, we may take τ = τβ =
∑

i∈β τiξi with 
β a finite subset of I containing α and then in the limit as τβ approaches an arbitrary 
vector τ ′ in H, we have

〈E(x)σ, τ ′〉 =
〈⎛
⎝∑

pxp

⎞
⎠σ, τ ′

〉
,

p∈Q
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so that

E(x)σ =

⎛
⎝∑

p∈Q
pxp

⎞
⎠σ.

We conclude

E(x) = S-lim(
∑
p∈Q

pxp) (for x ∈ A).

This completes the proof of the special case of Theorem 1 below in which A = B(H) with 
H separable. This argument does not seem to work if A is not equal to B(H), but some 
of its notation will be useful in the proof below of Theorem 1, which is valid for arbitrary 
A and H, and which is adapted from [10, Theorems 3.12.5 and 3.13.4] (however, see 
Remark 2.9(ii)). We first need a couple of Lemmas.

Lemma 2.7. A von Neumann algebra A ⊂ B(H) which contains all the rank one pro-
jections eii = ξi ⊗ ξ∗i corresponding to an orthonormal basis of H is necessarily atomic, 
that is, generated by its minimal projections, and is therefore a direct sum of factors of 
type I (see [4, Remark 1.10]).

Proof. If p is a non-zero projection in A, then q :=
∑

peii �=o eii is not zero and p(1 −q) = 0, 
so p = pq = pqp =

∑
peii �=0 peiip and peiip = p(ξi ⊗ ξ∗i )p = pξi ⊗ (pξi)∗ ∈ A so p

dominates each minimal projection qi = (‖pξi‖2)−1pξi⊗(pξi)∗. Indeed, with λi = ‖pξi‖2, 
p ≥ λiqi ⇒ ran(1 − p) = ker p ⊂ ker qi = ran(1 − qi), 1 − p ≤ 1 − qi, p ≥ qi. It follows 
that every projection in A is the sum of an orthogonal family of minimal projections, so 
A is generated as a von Neumann algebra by its minimal projections. �

The following lemma is well-known, so we omit its proof, which can be found in [10, 
Lemma 3.12.3].

Lemma 2.8. If (pi)i∈I are orthogonal projections in B(H), then we can define an idem-
potent S-bimodule map, E : B(H) → B(H), S being the range of E, by

E(x) =
∑
i∈I

pixpi = lim
α∈F(I)

∑
i∈α

pixpi

where the limit is taken in the strong operator topology of B(H) and F(I) denotes the 
collection of finite subsets α ⊆ I (ordered by inclusion).

Theorem 1. Let A ⊂ B(H) be a von Neumann algebra. Let E : A → A be an idempotent 
S-bimodule map, where S = E(A) is a subalgebra (not necessarily self-adjoint or norm 
closed) such that ξi ⊗ ξ∗i ∈ S for all i ∈ I, {ξi : i ∈ I} being an orthonormal basis of H. 
Then A is atomic, and E has the form
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E(x) =
∑
j∈J

pjxpj

for ‘diagonal’ orthogonal projections {pj : j ∈ J} ⊂ A (that is projections with pjξi ∈ Cξi
for each i ∈ I).

Proof. We adopt the notation of the discussion preceding Lemma 2.7, namely if α ⊂ I is 
a finite set, we write π = πα for the orthogonal projection of H onto the span{ξi : i ∈ α}, 
Aα = {x ∈ A : x = πxπ} = πAπ, and define Eα : Aα → Aα by Eα = E|Aα

. Eα is an 
idempotent Eα(Aα)-bimodule map on Aα whose range contains the diagonal.

We begin, as above, by assuming that A = B(H). Define a relation on I by i1 ∼ i2
if E(ξi1 ⊗ ξ∗i2) = ξi1 ⊗ ξ∗i2 . Since the range of E contains the diagonal, i ∼ i for all 
i ∈ I. As seen above, the projection E{i1,i2} is either the identity on A{i1,i2} � M2(C) if 
ei1i2 ∈ E(A), in which case ei2,i1 ∈ E(A); or E{i1,i2}(x) = ei1i1xei1i1 + ei2i2xei2i2 , so ∼ is 
symmetric. Moreover, if i1 � i2, then

E{i1,i2}(ei1i2) = ei1i1ei1i2ei1i1 + ei2i2ei1i2ei2i2 = 0. (2.2)

To show transitivity of ∼, assuming i1 ∼ i2 and i2 ∼ i3, we have ξi1 ⊗ ξ∗i3 = (ξi1 ⊗
ξ∗i2)(ξi2 ⊗ ξ∗i3) ∈ E(A), so we have an equivalence relation ∼ on I.

Take J to be the set of equivalence classes and for j ∈ J define

pj =
∑
i∈j

ξi ⊗ ξ∗i

(sum converging in strong operator topology).
Observe that

E(ξi1 ⊗ ξ∗i2) =
∑
j∈J

pj(ξi1 ⊗ ξ∗i2)pj (2.3)

for all i1, i2 ∈ I because if i1 ∼ i2 then pj(ξi1 ⊗ ξ∗i2)pj is zero for all equivalence classes j
other than the one containing i1, while pj(ξi1⊗ξ∗i2)pj = ξi1⊗ξ∗i2 when j is the equivalence 
class of i1. On the other hand, if i1 � i2, then both sides of (2.3) are zero, by (2.2)

Also observe that for x ∈ A, α a finite subset of I, and j ∈ J ,

pjπαxπαpj = pjxpj ,

since both sides are equal to 
∑

k,�∈j〈xξk, ξ�〉ξ� ⊗ ξ∗k.
It follows, as above, that if σ, τ ∈ H are finite linear combinations of the basis vectors, 

say σ =
∑

i∈α σiξi and τ =
∑

i∈α τiξi, and x ∈ A then

〈E(x)σ, τ〉 = 〈E(παxπα)σ, πατ〉
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=
〈⎛
⎝∑

j∈J

pjπαxπαpj

⎞
⎠σ, τ

〉

=
〈⎛
⎝∑

j∈J

pjxpj

⎞
⎠σ, τ

〉
,

and thus E(x) = S- lim(
∑

j∈J pjxpj) for x ∈ A. This completes the proof in case A =
B(H).

We now consider the general case. By Lemma 2.7, A is atomic, so that A = ⊕k∈KBk

where Bk � B(Hk) with H � ⊕k∈KHk. Each minimal projection of A belongs to one 
of the summands Bk as a minimal projection and the orthonormal basis {ξi : i ∈ I}
consists of the union of orthonormal bases in each Hk.

Denote by {ei : i ∈ I} the orthogonal minimal projections in the range of E which 
sum to 1. Define a relation on I by i1 ∼ i2 if 0 �= ei1Aei2 ⊂ E(A). Clearly i ∼ i for every 
i ∈ I since eiAei = Cei.

If i1 �= i2 and i1 ∼ i2 then the minimal projections ei1 , ei2 belong to the same summand 
Bk, and ei1Aei2 = Cu21 where u21 is the partial isometry in Bk � B(Hk) with initial 
projection ei2 and final projection ei1 . Moreover, with α = {i1, i2}, since Eα is either the 
identity on Aα or Eα(x) = ei1xei1 + ei2xei2 and Eα(u21) = u21, it follows that Eα is the 
identity so that 0 �= ei2Bkei1 ⊂ E(A) and ∼ is symmetric.

Finally, if i1 ∼ i2 and i2 ∼ i3, with Aα = {i1, i2, i3}, then ei1Aei3 = Cu21u32 ⊂ E(A), 
where u32 is the partial isometry in B(H) with initial projection ei3 and final projection 
ei2 .

Take J to be the set of equivalence classes and for j ∈ J define

pj =
∑
i∈j

ξi ⊗ ξ∗i .

Then as in earlier parts of the proof

E(ξi1 ⊗ ξ∗i2) =
∑
j∈J

pj(ξi1 ⊗ ξ∗i2)pj

for all i1, i2 ∈ I and therefore E(x) =
∑

j∈J pjxpj for all x ∈ A. �
Remark 2.9.

(i) Since E(1) = 1 and E is positive, ‖E‖ = 1 and E(A) is a C*-subalgebra of A.
(ii) Theorem 1 is an improvement of [10, Theorem 3.12.5] which had the additional 

assumption that E is a self-adjoint map.
(iii) The maximal abelian ∗-subalgebra associated with the orthonormal basis is more 

than just the linear span of the diagonal rank one operators ξi⊗ξ∗i . The maximal 
abelian ∗-subalgebra would be the weak*-closure of that span.
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(iv) There is a significant literature concerning idempotent D-module maps on von 
Neumann algebras, where D is a maximal abelian self adjoint subalgebra, for 
example [5], [12], [9]. These papers focus on proving algebraic properties of the 
range.

The referee has suggested an alternate approach to Theorem 1, under the additional 
assumption that the range S = E(A) contains the maximal abelian ∗-subalgebra D
associated with the orthonormal basis. In that case there is the additional conclusion 
that S is a von Neumann subalgebra of A. The proof proceeds along the following lines.

Assume that A = B(H). Since S contains D, and E is an S-bimodule map, E is given 
by a Schur multiplier, that is, in the orthonormal basis {ξi}, E is given by [xij ] �→ [aijxij ]
for a fixed infinite matrix [aij] (for the finite dimensional case, see [8, Exercise 4.4, p. 56], 
which could be used to shorten the proof of Proposition 2.5, and more generally see [13]). 
Using that E is idempotent, it follows that each entry aij is either 0 or 1, thus each matrix 
unit eij (corresponding to the given basis) is either in the image of E (that is, in S) or 
in the kernel ker E . It follows that S must in fact be self-adjoint. Namely, if for a fixed 
i and j, we have that eij ∈ S, then E(eji) = E(ejieij) = E(ejj) = ejj so eji /∈ ker E and 
therefore eji ∈ S. Further, S = ker(1 − E) is weak* closed since Schur multipliers are 
known to be weak* continuous. In the general (atomic) case, because of the form of E , 
it follows that E is a direct sum of Ek : Bk → Bk which are each weak*-continuous, so 
that E(A) is a von Neumann subalgebra.

Example 2.10. For a positive integer n, let Mn(C) denote the algebra of all n-by-n-ma-
trices over the field of complex numbers C. Then 

⊕∞
n=1 Mn(C) is a Type I finite von 

Neumann algebra with center isomorphic to 
∞. There are many ways to write the iden-
tity as a sum of projections 

∑
i∈I pi such that each pi is of the form pi = (pi,n)∞n=1 with 

pi,n ∈ Mn(C) diagonal. Such a sum 
∑

i∈I pi gives rise to projection on 
⊕∞

n=1 Mn(C) as 
in Theorem 1.

3. Ternary rings of operators

We shall use the main result from [11], stated in Lemmas 3.1 and 3.2 below.
For Hilbert spaces H and K, B(H, K) denotes the set of all bounded operators from 

H to K. A ternary ring of operators, TRO for short, is a norm closed subspace T ⊂
B(H, K) such that TT ∗T ⊂ T . For such T , the norm closed linear spans C =: 〈TT ∗〉
and D = 〈T ∗T 〉 are C*-subalgebras of B(K) and B(H) respectively. The linking algebra
of T is the C*-algebra

AT =
[
C T

T ∗ D

]
⊂ B(K ⊕H).
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If T is a TRO and P : T → T is a completely contractive projection onto a sub-TRO 
X, then P is a TRO conditional expectation in the sense that for a ∈ T, x, y ∈ X,

P (ax∗y) = P (a)x∗y

P (xa∗y) = xP (a)∗y

P (xy∗a) = xy∗P (a).

If T is a C*-algebra, the result was proved in [14, Corollary 3]. If T is a TRO, it was 
proved with the weaker assumption that P is a contractive projection in [3, Theorem 2.5].

A sub-TRO X of T is non degenerate if 〈XT ∗T 〉 = T and 〈TT ∗X〉 = T .

Lemma 3.1. ([11, Theorem 2.1]) Let T be a TRO and let P : T → T be a contractive 
projection with range X a non degenerate sub-TRO of T . Then there is a (C*-algebra) 
conditional expectation from the linking algebra AT onto the linking algebra AX ,

E =
[
E11 P

P † E22

]
: AT → AX ,

where P †(t) = P (t∗)∗ for t ∈ T ,

E11

(
n∑

i=1
aix

∗
i

)
=

n∑
i=1

P (ai)x∗
i and E22

(
n∑

i=1
x∗
i ai

)
=

n∑
i=1

x∗
iP (ai),

for ai ∈ T and xi ∈ X.

A W∗-TRO is a TRO T ⊂ B(H, K) that is closed in the weak operator topology.

Lemma 3.2. ([11, Theorem 3.3]) Let T be a W∗-TRO and let P : T → T be a normal 
contractive projection with range X a non degenerate sub-W∗-TRO of T . Then P extends 
to a normal conditional expectation from the linking von Neumann algebra A′′

T of T , onto 
the linking von Neumann algebra

A′′
X =

[
〈XX∗〉′′ X

X∗ 〈X∗X〉′′

]

of X.

Theorem 2. Let P : B(H) → B(H) be a normal contractive projection onto a non degen-
erate sub-W∗-TRO X of B(H). Suppose that there is an orthonormal basis {ξi : i ∈ I}
of H such that for all i ∈ I, ξi ⊗ ξ∗i ∈ 〈XX∗〉′′ ∩ 〈X∗X〉′′. Then there are pairwise 
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orthogonal diagonal projections {pj : j ∈ J} ∈ B(H) and pairwise orthogonal diagonal 
projections {qj : j ∈ J} ∈ B(H) such that

P (x) =
∑
j∈J

pjxqj for x ∈ B(H).

Proof. Let ξ′i = (ξi, 0) and ξ′′i = (0, ξi), so that {ξ′i, ξ′′i : i ∈ I} is an orthonormal basis 
for H ⊕H. Identifying AB(H) with M2(B(H)) = B(H ⊕H) shows that

ξ′i ⊗ (ξ′i)∗ =
[
ξi ⊗ ξ∗i 0

0 0

]
∈ A′′

X

and

ξ′′i ⊗ (ξ′′i )∗ =
[

0 0
0 ξi ⊗ ξ∗i

]
∈ A′′

X .

If E : B(H ⊕ H) → B(H ⊕ H) is the extension of P given by Lemma 3.1, then by 
Lemma 3.2 and Theorem 1, there are pairwise orthogonal diagonal projections rj ∈
B(H ⊕H) with

E

([
a x

y∗ b

])
=

∑
j

rj

[
a x

y∗ b

]
rj .

It follows by diagonality that rj =
[
pj 0
0 qj

]
and therefore

[
0 P (x)
0 0

]
= E

([
0 x

0 0

])
=

∑
j

[
0 pjxqj
0 0

]
,

where {pj : j ∈ J} and {qj : j ∈ J} are each a family of orthogonal and diagonal 
projections in B(H). �
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