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Breaking C—N Bonds: From Designing Cross-Coupling Reactions to Facilitating CO>
Conversion with Transition Metal Catalysts
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Professor Jenny Y. Yang, Chair

The utility of transition metals as mediators of chemical transformations cannot be
understated. Transition metal complexes are capable of catalyzing a vast variety of reactions, from
cross-coupling and cross-electrophile coupling reactions that allow for the synthesis of structurally

diverse molecules, to CO: valorization to generate fuel.

For catalysis that focuses on the construction of privileged motifs for the production of new
drugs or bioactive materials, a major concern is chemoselectivity and variety of reagents available
as coupling partners. One method in particular that seeks to address this is cross-electrophile
coupling, which typically exploits Ni catalysts to differentiate between electrophilic coupling
partners. The coupling partners can also contain non-traditional electrophiles, such as amines or

sulfonamides.

Research efforts focused on decreasing the impact of CO2 emissions must work to design
processes that generate high-value products without requiring a high input of energy. One method

that addresses this concern is combined CO- capture and CO> conversion, where electrochemistry

XiX



can be utilized to perform CO2 conversion under mild conditions. Many complexes typically used

in harsh hydrogenation reactions may be repurposed as electrocatalysts.

Chapter 1 and Chapter 2 describe the design of new Ni-catalyzed cross-coupling and
cross-electrophile coupling reactions. These new methods exploit Ni’s capacity to engage sluggish
electrophiles and demonstrate the use of sulfonamide C—N bonds as reliable coupling partners.
Chapter 1 shows the scope of a new Kumada cross-coupling reaction that avoids B-hydride
elimination with pB-branching substrates. Chapter 2 details the domino cross-electrophile
dicarbofunctionalization of propargyl piperidines to afford highly functionalized vinyl
cyclopropanes.

Chapter 3 details the exploration of an isolated dihydride, formed by reducing the
commercially available hydrogenation catalyst Ru-MACHO®, which demonstrates the ability to

convert CO; and carbamate to formate.
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INTRODUCTION



0.1 Transition Metal-Catalyzed Transformations

The ubiquity of transition metals in chemical research cannot be understated.*® Not only
do transition metals allow for the synthetic mimicry of natural systems, but the design of novel
reactions in complex natural product synthesis also relies heavily on transition metal catalysts.* °
Cross coupling reactions are heavily relied upon to build structural complexity, particularly for
synthetic access to natural products and their derivatives.®® With the 2010 Nobel Prize in
Chemistry, awarded for palladium-catalyzed cross-coupling reaction development, the
transformative power of transition metal catalyzed cross-coupling reactions was acknowledged by
the world.!

0.1.1 From Cross-Coupling to Cross-Electrophile Coupling

Scheme 0.1. Cross-Coupling and Cross-Electrophile Coupling Reactions

A. Cross-Coupling
R'-[M] R2- X TM Catalyst R'- R2
N

—_

nucleophile electrophile

B. Cross-Electrophile Coupling
RI_ X RZ_ X TM Catalyst

+ —_— R'- R?

electrophile electrophile reductant

While traditional cross-coupling reactions are well-precedented and established, some
clear caveats exist that limit scope. In a cross-coupling reaction, chemoselectivity is achieved by
utilizing a nucleophilic reagent and an electrophilic coupling partner (Scheme 0.1A).° These
nucleophilic reagents vary, and can include Grignard, organolithium, and other carbon-based
nucleophiles. The increased reactivity associated with nucleophilic reagents can limit the scope of
cross-coupling reactions, preventing the use of substrates containing more susceptible groups such
as aldehydes. In contrast, cross-electrophile coupling (XEC) reactions, also referred to as reductive
cross-coupling reactions, combine two electrophilic coupling partners to produce a product, along

with a reducing agent to aid in catalyst turnover (Scheme 0.1B).2° Ni-based catalysts are



particularly useful in XEC, because they can undergo multiple parallel pathways (ie. Ni'"" or
Ni®"), allowing for easier differentiation between electrophiles.t*1®
0.1.1.1 Engaging C-N Bonds in Catalysis

Scheme 0.2: Selected Examples of Csp>-N Bonds in Cross-Coupling Reactions

Doyle (2012) Watson (2017)
i . 0,
NiCl, glyme (5 mol %) oh ) Ni(OAc),-4H,0 (10 Tol %) Ar
Ligand (10 mol %) nBu BF,4 BPhen (24 mol %)
/Q’]\”—S Ri /= Ry” "R
R nBuZnBr (3 equiv) R)\/NHTS >—N \@ / Ph + ArB(OH), KOt-Bu (3.4 equiv) 2 !
dioxane/DMA, 23 °C, 6 h 16 examples R, EtOH (5 equiv) 25 eé(agT$leS
58-84% PH dioxane, 60 °C, 24 h 46-81%

The exploration of new carbon-based electrophiles for cross-coupling has mostly shifted
from alkyl or aryl halides to electrophiles containing C-O bonds.'* 618 However, utilizing C-N
bonds in cross-coupling reactions can provide opportunities to build complexity from easy-to-
install functionalities, such as aryl Katritzky salts (Scheme 0.2).%° % In contrast to cross-coupling,
homocoupling is a major drawback of XEC, extending from issues in differentiating between

electrophilic reagents.*

Scheme 0.3: Selected Examples of C—N Bonds Utilized in XEC Reactions

Martin, 2016
R I@ NiCl, R,

2@ phenanthroline ligand
R n X N|\/|e3 R _n A COzH
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Watson, 2019
Ry Ph o NiCl,sDME
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. | MgCl,, Mn RJ Ar
Ph Ph NMP, 80 °C

While recent developments of XEC methods have incorporated organic reductants or

electrochemical techniques to avoid the use of reactive nucleophiles as reducing agents (Scheme
0.3), much is still unknown about the mechanistic aspects of XEC reactions and how catalysts
engage different types of electrophiles.?>-2® Future XEC reaction development efforts must focus

on a combination of less detrimental reducing agents with advanced mechanistic investigations.



0.1.2 CO:2Reduction and Electrochemistry

CO2 remains the most abundant greenhouse gas, with atmospheric concentrations
continuing to rise steadily.?* While concerning, the ubiquity of CO2 in the atmosphere provides a
challenge to chemists interested in producing feedstock chemicals or chemical fuels.> 2%/
Research efforts dedicated to decreasing the impact of CO2 emissions must work to design

processes that generate high-value products without requiring a high input of energy.?

C1+

g

Figure 0.1. General process of CO; reduction using light-derived electrochemistry to produce C1+ products. Figure
adapted from Hidden Analytical.?°

Previous Yang group work has demonstrated selective reduction of CO> to formate using
homogeneous electrocatalysis with metal hydride intermediates.®%-3* Metal hydrides are a powerful
class of complexes, and display varying levels of reactivity depending on metal identity, ligand
environment, and solvation effects.>>3” As the Yang group and others have demonstrated, metal
hydrides can be generated via electrochemical cycles for CO; reduction.®%3* These approaches
mimic biological process by aiming to use light-derived energy to drive electrochemical

transformations (Figure 0.1).> %4% One method that addresses this concern is combined CO;
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capture and CO- conversion, where electrochemistry can be utilized to reduce captured-CO;
substrates.***3 This is in stark contrast to hydrogenation catalysis, which exploits extreme
temperatures and pressures to regenerate the active catalyst and hydrogenate captured-CO-
substrates.*? 44-47
0.1.2.1 Reactive CO2 Capture

Reactive capture of CO, (RCC) involves the direct conversion of captured CO following
the reaction of gaseous CO- and a capture reagent.*® Traditional carbon capture and utilization
(CCU) methods rely on thermal energy to convert CO; to value-added products, whereas
electrochemical RCC can provide a less energetically costly alternative.?> 4% 4° Electrochemical

conversion of CO- to products like formate and methanol has provided an excellent platform for

RCC methods, as the conversion step can be performed under mild conditions.*>

[LM]n -2 H+
electrode

[LMH]™1

Carbamate <—— CO, + Amine

[LIVI]n .
Formate  Amine

Figure 0.2. Cycle of proposed electrochemical RCC of CO; with amines.

In Figure 0.2, a catalytic cycle for RCC is proposed based on previous work reported by the
Yang group.®® In this cycle a carbamate (formed by reacting an amine with CO> gas) is reduced by
a metal hydride that can be regenerated by electrochemical reduction followed by protonation with
an acid. An example of this chemistry from the Kang group successfully utilizes an Fe—H to
generate formate and methanol in a sequential reduction, starting from carbamates as the

substrate.>* Amines act as useful CO, sorbents and be regenerated for reuse under hydrogenative



and electrochemical conditions.>>° Carbamates, the substrates for reduction or hydrogenation that
are formed by reacting amines with CO», have great synthetic utility in C—C bond forming
reactions, and can serve as useful substrates for the identification of RCC catalysts.%® 7
0.2 Research Goals

The work described herein describes the successful development of a new Kumada cross-
coupling reaction using benzylic sulfonamides (Figure 0.3A), the expansion of a XEC reaction
that results in the carbodifunctionalization of propargylic piperidines (Figure 0.3B), and the
synthesis, isolation, and characterization of a Ru-MACHO® dihydride capable of reducing CO-
and dimethylammonium dimethyl carbamate to formate (Figure 0.3C). These advances explore

the use of Ni and Ru transition metal complexes and involve the engaging of a C—N bond to

generate valuable products.

Chapter 1 Chapter 2 Chapter 3
A. B. C. CcO
_ClI _ClI
P>Ni\ P;Ni\ H, | .PPhy
=] Cl p Cl H(Rlu\P hy
) Me N—
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AR AR P : Vi €O, —=COOH
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P

Figure 0.3. Overview of the transformations described in this thesis. A: Chapter 1. B: Chapter 2. C: Chapter 3.
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1.1 Introduction

The development of cross-coupling reactions using transition metal catalysis has
transformed synthetic organic chemistry, leading to new and effective ways to form carbon-carbon
bonds.® The use of palladium catalysts is prevalent in cross-coupling reactions, however the role
of nickel in transition metal-catalyzed cross-coupling reactions has grown rapidly over the past
two decades.* Palladium catalyst reactivity is well understood, but nickel provides an inexpensive
alternative. Because nickel is more electropositive in comparison to palladium, nickel catalysts
can undergo more facile oxidative addition.*® This reactivity has allowed for the development of
cross-coupling reactions that involve the activation of bonds often considered challenging to

engage, such as carbon-oxygen and carbon-nitrogen bonds.*%-*2

Scheme 1.1: Kumada Cross-Coupling of Acyclic, Uncharged Sulfonamides

A. Previous Work from the Jarvo Group

Me. _Ts
N ((R)-BINAP)NICl, (15 mol %) Me N
s Ph MeMgl (2.0 equiv) S I Ph ) Ph
/ PhMe, 24 h ’
1.1 1.2 1.3
54%2 40%*?

B. Contributions to This Work

Me. T
ey TS

((R)-BINAP)NICl, (15 mol %) Me
MeMgl (2.0 equiv) S

7777777777777777777 > I

PhMe, 24 h

1.4 1.5

aYield determined by "H NMR based on the comparison to PhTMS as internal standard.

Typically, carbon-nitrogen bonds are difficult to engage in cross-coupling reactions and
are activated by incorporating ring strain or charge in the cross-coupling substrates.*® The Doyle
and Watson groups have demonstrated this reactivity through the use of styrenyl aziridines and
Katritzky pyridinium salts as electrophilic coupling partners.}**®> The Jarvo group has gained
particular interest in cross-coupling and cross-electrophile coupling reactions of less activated

sulfonamides, and has previously demonstrated the Kumada cross-coupling reaction of benzylic
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sulfonamides (Scheme 1.1A).1%Y" However, a significant amount of side product resulting from
competitive B-hydride elimination was produced. The goal of this work was to develop a Kumada
cross-coupling reaction that suppressed B-hydride elimination. To progress towards this goal, |
synthesized four substrates containing various degrees of B-branching (Scheme 1.1B) to subject to
the Kumada cross-coupling reaction conditions, and also examined the impacts of heat on product
outcome.
1.2 Results and Discussion
1.2.1 Synthesis of Sulfonamide Substrates for Cross-Coupling

In order to further the development of the Kumada cross-coupling reaction of
sulfonamides, 1 first investigated the effect that a cyclohexyl group would have on B-hydride
elimination. The target substrates could be accessed in three steps from commercially available
aldehydes as outlined in Scheme 1.2A. An imine condensation reaction with aldehyde 1.6 and p-
toluenesulfonamide afforded imine 1.7. Grignard addition with cyclohexylmethylmagnesium
bromide then afforded 1.8. Methylation using sodium hydride and iodomethane afforded the -

branched sulfonamide substrate 1.9.
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Scheme 1.2: Synthesis of Kumada Cross-Coupling Substrates

H,NTs MgBr
Ti(OEt),

NaH, Mel

g"’
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T
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s kg
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B.
0 H,NTs MgBr
Ti(OEt), NaH, Mel
S h o—— - .
| CHCly, 0°Ctort, THF, 18 h THF, 18 h
reflux, 3 d o 98%
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reflux, 3 d o 71%
quant. 64% 1.13 .

o
) B
o
T

1.6

With B-branched substrate 1.9 in hand, | then investigated the Kumada cross-coupling
reaction. When subjected to previously optimized Kumada cross-coupling conditions, substrate
1.9 produced a 69% vyield of 1.17 with 22% production of 1.18 from B-hydride elimination
(Scheme 1.3). No starting material was observed after the cross-coupling reaction, and | was
unable to isolate products from other potential decomposition pathways. This increase in yield and
decrease in B-hydride elimination in comparison to the previously demonstrated reaction (Scheme
1.1A) was encouraging. | then synthesized and examined substrates 1.4, 1.14, and 1.16 following

the synthetic routes shown in Scheme 1.2 (B-D).

Scheme 1.3. Kumada Cross-Coupling Reaction of Sulfonamide 1.9

Me. _T:
NI ((R)-BINAP)NICI, (15 mol %) Me
MeMgl (2 equiv) AN
0 e, 261 1 o9

1.9 1.17 1.18
69%? 22%2

2Yield determined by "H NMR based on the comparison to PhTMS as an internal standard.
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Substrates 1.4 and 1.14 provide direct comparisons to the previously examined
benzothiophene-containing sulfonamide 1.1, and both cyclohexyl and isopropyl functionalities
suppressed B-hydride elimination to less than 15% (Scheme 1.4A, B). These results indicate that
steric bulk near the reaction center influences the conversion of substrate to product. To further
investigate B-hydride elimination, I synthesized sulfonamide 1.16, which contains no B-branching.
| expected to observe a significant amount of 1.23 production from the B-hydride elimination
pathway. However, the yield of 1.22 was high in comparison to formation of 1.23 (Scheme 1.4C).
To examine this reactivity further, 1 will investigate the outcome of Kumada cross-coupling

reactions with substrates containing less steric bulk, and more extended alkyl substituents.

Scheme 1.4. Scope of Kumada Cross-Coupling of Acyclic Sulfonamides

A Mey Ts ((R)-BINAP)NICI, (15 mol %) Me
MeMgl (2 equiv) S S A
I
PhMe, 24 h /
1.5 1.19
48%?2 15%?2
B. Mes\ T 1e ((R)-BINAP)NICI, (15 mol %) Me Me Me
MeMgl (2 equiv) S AN
S Me S I Me I Me
I PhMe, 24 h
114 1.20 1.21
55%32 12%:2
C. ((R)-BINAP)NICl, (15 mol %)
Me. TS O MeMgl (2 equiv) Me O N
OO PhMe, 24 h OO 5 OO O
3
1.22 1.23
1.16 76%a'b 10%a.b

2Yield determined by "H NMR based on the comparison to PhTMS as an internal standard. °Isolated yield of 1.22 and
1.23: 80%, 9%, respectively.

1.2.2 Effect of Temperature on Kumada Cross-Coupling Reaction

Low temperature was utilized in attempts to slow the rate of B-hydride elimination. After initial
results at room temperature were obtained, | selected sulfonamide 1.14 as a model substrate, and
performed the Kumada cross-coupling reaction at 0 °C (Table 1.1, entry 1). | observed a 31% yield
of product 1.20, 3% vyield of 1.21 from the B-hydride elimination pathway, and 38% starting

material still present. I hypothesized that the remaining starting material may be converted to
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product if the reaction were to proceed at 0 °C over a longer period. To investigate this hypothesis,
the reaction was allowed to stir for 48 h (Table 1.1, entry 2). However, | observed similar results
to those of the standard reaction conditions (Scheme 1.4B) and saw that the yield of 1.20 only
increased to 43%, while B-hydride elimination resulted in a 13% yield of 1.21. These low-
temperature Kumada cross-coupling data are consistent with the reduced rate of B-hydride

elimination, but do not appear to promote greater conversion of substrate to product.

Table 1.1. Examination of the Effect of Temperature on Kumada Cross-Coupling

Me. _Ts
N™ "Me  ((R)-BINAP)NICI, (15 mol %) Me  Me e
s MeMgl (2 equiv) S Me + S X Me
/ Me | |
PhM
14 ° 20 2

Entry Temp. Time % Yield 20® % Yield 212

1 0°C 24 h 31 3

2 0°C 48 h 43 13

aYield determed by 'H NMR based on a comparison
to PhTMS as an internal standard.

1.3 Conclusion

In conclusion, | expanded the scope of the Kumada cross-coupling reaction utilizing
acyclic, benzylic sulfonamides with limited B-hydride elimination. While temperature had limited
impact on product distribution, B-branching substrates were well-tolerated by the method and only
produced 10% of the B-hydride elimination product at the lowest. The developed Kumada cross-
coupling reaction was further expanded by my coworkers to incorporate enantioenriched cyclic
sulfonamide substrates, affording acyclic products in good yields with high stereoselectivity.*®
This reaction was also applied to access an analog of a known ATPase inhibitor, displaying the
broad synthetic utility of the method. The developed Kumada cross-coupling reaction detailed here

displays the utility of nickel catalysis in engaging Csp®~N bond-containing electrophiles.
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1.4 Experimental
1.4.1 General Procedures for Substrate Synthesis

All reactions were carried out under a N2 atmosphere, unless otherwise noted. All
glassware was oven- or flame-dried prior to use. Tetrahydrofuran (THF), diethyl ether (Et20),
dichloromethane (CH2ClI>), and toluene (PhMe) were degassed with Ar and then passed through
two 4 x 36 inch columns of anhydrous neutral A-2 alumina (8 x 14 mesh; LaRoche Chemicals;
activated under a flow of argon at 350 °C for 12 h) to remove H20.%° Other solvents were purchased
anhydrous commercially, or purified as described. *H NMR spectra were recorded on Bruker
DRX-400 (400 MHz *H), GN-500 (500 MHz H, 125.4 MHz **C), CRYO-500 (500 MHz *H,
125.8 MHz 3C), or AVANCE-600 (600 MHz *H, 150.9 MHz *3C, 564.7 MHz °F) spectrometers.
Proton chemical shifts are reported in ppm () relative to internal tetramethysilane (TMS, & 0.0).
Data are reported as follows: chemical shift (multiplicity [singlet (s), broad singlet (br s), doublet
(d), doublet of doublets (dd), triplet (t), doublet of triplets (dt), doublet of doublet of triplets (ddt),
quartet (q) quintet (quin), sextet (sextet), apparent doublet (ad), multiplet (m), coupling constants
[Hz], integration). Carbon chemical shifts are reported in ppm () relative to TMS with the
respective solvent resonance as the internal standard (CDCls, & 77.16 ppm). NMR data were
collected at 25 °C. Analytical thin-layer chromatography (TLC) was performed using Silica Gel
60 F254 precoated plates (0.25 mm thickness). Visualization was accomplished by irradiation with
a UV lamp and stains were used as needed. Flash chromatography was performed using SiliaFlash
F60 (40-63 um, 60 A) from SiliCycle. Automated chromatography was carried out on a Teledyne
Isco CombiFlash Rf Plus. Melting points (m.p.) were obtained using a MelTemp melting point
apparatus and are uncorrected. High resolution mass spectrometry was performed by the

University of California, Irvine Mass Spectrometry Center.
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1.4.1.1 Method A: Imine Condensation of p-Toluenesulfonamide with Aldehydes

H,NTs Ts
O Ti(OEt)4 N (1.1)

Ar H CH,Cls, Ar H
reflux, 3 d

This procedure is adapted from a procedure reported by Zhang.?° To a flame-dried round-
bottom flask equipped with a stir bar was added aldehyde (1.0 equiv) and p-toluenesulfonamide
(1.0 equiv). The flask was equipped with an oven-dried reflux condenser, evacuated, and backfilled
with N2. CH2Cl, (70. mM in substrate) and Ti(OEt)4 (2.0 equiv) were added to the flask, and the
reaction mixture was allowed to stir at reflux for 3 d. After cooling to room temperature, the
reaction mixture was quenched with H>O and filtered via vacuum filtration. The layers were
separated and the aqueous layer was washed with CH2Cl (x 3). The combined organic layers were
washed with brine, dried over Na>SOyg, filtered, and concentrated in vacuo. The imine product was
typically carried into the next step without further purification.

1.4.1.2 Method B: Preparation of Grignard Reagents

Mg°
(1.2)

R” MgBr
THF, rt, 4 h

To a flame-dried two-neck flask equipped with a stir bar and reflux condenser was added
magnesium turnings (5.0 equiv). The flask and magnesium turnings were flame-dried under
vacuum, and the flask was then back-filled with N2. THF (5.0 M in alkyl bromide) and a crystal
of iodine (ca. 2 mg) were added to the flask. Alkyl bromide (1.0 equiv) was added dropwise over
30 minutes to maintain a gentle reflux. The mixture was allowed to stir at room temperature for 3
h, and the resulting Grignard reagent was transferred to a flame-dried round bottom flask. The

Grignard reagent was titrated to 0.3 M—0.7M by the Knochel method.?*
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1.4.1.3 Method C: Grignard Addition to Imines

AN
Ts R MgBr H. _Ts
N (2.5 equiv) N (1.3)

R

Ar® H 0°Ctort, THF, 18h  Ar
To a flame-dried flask equipped with a stir bar was added fresh Grignard reagent (2.5 equiv
in THF). The reaction mixture was cooled to 0°C and imine (1.0 equiv) dissolved in THF was
added dropwise to flask. The reaction mixture was warmed to room temperature and allowed to
stir for 18 h. The reaction mixture was quenched with saturated aqueous NH4Cl and extracted with
EtOAc (x 3). The combined organic layers were washed with brine, dried over Na>SOs, filtered,
and concentrated in vacuo.

1.4.1.4 Method D: Methylation of Sulfonamides

H. T8 NaH, Mel Me. _Ts
N N (1.4)

Ar)\/R THF, 18 h Ar)\/R

This procedure is adapted from a procedure reported by Jarvo.?? To a suspension of NaH
(1.3 equiv) in THF (50. mM in NaH) was added a solution of sulfonamide in THF (1.0 equiv, 0.50
M in substrate) dropwise. Reaction mixture was allowed to stir for 1 h at room temperature, then
Mel (1.1 equiv) was added dropwise, and the reaction mixture continued to stir for 18 h. The
reaction mixture was quenched with saturated aqueous NH4Cl and extracted with EtOAc (x 3).
The combined organic layers were washed with brine, dried over NaSOs, filtered, and

concentrated in vacuo.

23



1.4.2 Method E: General Kumada Cross-Coupling Reaction Procedures

Me.-Ts  ((R)-BINAP)NICl, (15 mol %) )Mey
MeMgl (2.0 equiv) R (1.5)
R > Ar
Ar)\/
PhMe, 24 h

In a glovebox, an oven-dried 7 mL vial equipped with a stir bar was charged with ((R)-
BINAP)NICI> (15 mol %), acylic sulfonamide (1.0 equiv) and PhMe (0.20 M in substrate). MeMgl
in Et20 (2.0 equiv) was added dropwise and the reaction mixture was allowed to stir for 24 h at
room temperature. The reaction was removed from the glovebox, quenched with MeOH, filtered
through a plug of silica gel eluting with Et2O, and concentrated in vacuo. Phenyltrimethylsilane
(PhTMS; 8.6 pL, 50. umol) was added and the yield was determined by *H NMR based on
comparison to PhTMS as internal standard before further purification.

1.4.3 Preparation of Methylmagnesium lodide

Mg
Me-l ———— >  Me-Mgl (1.6)
Et,0, rt, 2 h
Under a N2 atmosphere, a three-necked flask equipped with a stir bar, reflux condenser,
and Schlenk filtration apparatus was charged with magnesium turnings (2.80 g, 115 mmol). The
flask and magnesium turnings were then flame-dried under vacuum and the flask was backfilled
with N2. Anhydrous Et,O (25 mL) and a crystal of iodine (ca. 2 mg) were added to the flask. The
reaction mixture was brought to 0 °C and freshly distilled iodomethane (5.0 mL, 80. mmol) was
slowly added over 30 min to maintain a gentle reflux. The reaction mixture was brought to room
temperature and allowed to stir for 2 h, then filtered through the fritted Schlenk filter into a pear-

shaped flask under N2 atmosphere. The pear-shaped flask was capped with a septum, sealed with

parafilm, and stored in the glovebox under a N2 atmosphere for up to eight weeks without
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detrimental effects. The resulting Grignard reagent was titrated by Knochel’s method to 2.4 M to
3.0M2

1.4.4 Preparation of ((R)-BINAP)NICI:

MeCN, reflux
NiCl,-6H,0 + (R)-BINAP _— (R-BINAP)NiCI, ~ (1:7)
24 h

This method is based on a procedure reported by Jamison.?® To a flame-dried flask
equipped with a stir bar was added NiCl2:6H20 (1.0 equiv). The flask was placed under vacuum
and flame-dried until most of the nickel compound had turned from emerald green to yellow-
orange. Some of the green hydrate complex is necessary for the reaction to proceed. The flask was
allowed to cool to room temperature, and the solid was dissolved in MeCN (50. mM). The chiral
(R)-BINAP (1.0 equiv) was added to the reaction flask, which was then fitted with a reflux
condenser. The reaction mixture was heated to reflux and allowed to stir for 24 h. The reaction
was cooled to room temperature and the black crystalline product was vacuum filtered. The
precipitate was washed with excess MeCN.

1.4.5 Characterization Data of Kumada Cross-Coupling Products

£ 0

2-(1-cyclohexylpropan-2-yl)naphthalene (1.17) was prepared according to Method E. The
following amounts of reagents were used: ((R)-BINAP)NIClz (11 mg, 15 pumol, 15 mol %), 1.9
(44 mg, 0.10 mmol, 1.0 equiv), PhMe (0.50 mL, 0.20 M in substrate), and methymagnesium iodide
(70. pL, 2.9 M, 0.20 mmol, 2.0 equiv). Before purification, a *H NMR vyield of 69% was obtained
based on comparison to PhTMS as an internal standard. The compound was purified by flash

chromatography (0-20% EtOAc/hexanes) to afford the title compound as a clear, colorless oil (14
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mg, 0.055 mmol, 55% isolated yield). TLC Rf = 0.74 (100% hexanes); *H NMR (500 MHz,
CDCl3), § 7.78 (m, 2H), 7.60 (br s, 1H), 7.43 (m, 2H), 7.35 (dd, J = 8.6 Hz, 1.4 Hz, 1H), 7.25 (s,
1H), 2.99 (sext, J = 1H), 1.81 (d, J = 12.8 Hz, 1H), 1.62 (m, 5H), 1.46 (m, 1H), 1.28 (d, J = 6.9
Hz, 3H), 1.13 (m, 4H), 0.89 (g, J = 12.3 Hz, 2H); *C NMR (125.8 MHz, CDCls) § 145.8, 133.8,
132.3, 128.0, 127.72, 127.68, 126.0, 125.9, 125.2, 125.1, 46.3, 37.0, 35.3, 33.9, 33.5, 26.9, 26.4,

26.4, 23.1; HRMS (TOF MS ClI+) m/z calcd for C1gH24 (M)* 252.1878 found 252.1868.

Me

2-(1-cyclohexylpropan-2-yl)benzo[b]thiophene (1.5) was prepared according to Method E. The
following amounts of reagents were used: ((R)-BINAP)NICI; (11 mg, 15 pumol, 15 mol %), 1.4
(43 mg, 0.10 mmol, 1.0 equiv), PhMe (0.50 mL, 0.20 M in substrate), and methymagnesium iodide
(70. pL, 2.8 M, 0.20 mmol, 2.0 equiv). Before purification, a *H NMR vyield of 48% was obtained
based on comparison to PhTMS as an internal standard. The compound was purified by flash
chromatography (0-15% Et>O/pentanes) to afford the title compound as a clear, colorless oil
(isolated yield was not determined due to the coelution of product formed through A-hydride
elimination). TLC Rf = 0.74 (100% pentanes); *H NMR: (600 MHz, CDCls) & 7.83 (d, J = 7.2
Hz, 1H), 7.72 (d, J = 7.8 Hz, 1H), 7.36 (m, 1H), 7.30 (m, 1H), 7.06 (s, 1H), 3.27 (sext, J = 12.6
Hz, 1H), (d, J = 12.8 Hz, 2H), 1.69 (m, 4H), 1.53 (m, 1H), 1.40 (d, J = 6.8 Hz, 3H), 1.33 (m, 2H),
1.22 (m, 2H), 0.95 (m, 2H); **C NMR (150.9 MHz, CDCls) § 153.6, 140.2, 138.9, 124.1, 123.4,
122.9,122.4,119.0, 66.0, 46.7, 35.2, 33.7, 33.3, 26.8, 26.4, 23.8, 15.4; HRMS (TOF MS Cl+) m/z

calcd for C17H2S (M)* 258.1442, found 258.1453.
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Me Me

Me

2-(4-methylpentan-2-yl)benzo[b]thiophene (1.20) was prepared according to Method E. The
following amounts of reagents were used: ((R)-BINAP)NICI, (11 mg, 15 pumol, 15 mol %), 1.14
(39 mg, 0.10 mmol, 1.0 equiv), PhMe (0.50 mL, 2.0 M in substrate), and methymagnesium iodide
(70. pL, 2.8 M, 0.20 mmol, 2.0 equiv). Before purification, a *H NMR yield of 55% was obtained
based on comparison to PhTMS as an internal standard. The compound was purified by flash
chromatography (0-20% EtOAc/hexanes) to afford the title compound as a clear, colorless oil
(isolated yield was not determined due to the coelution of product formed through g-hydride
elimination). TLC Rf = 0.71 (100% hexanes); *H NMR (600 MHz, CDCls) 6 7.76 (d, J = 7.9 Hz,
1.9 Hz, 1H), 7.66 (d, J = 7.8 Hz, 1H), 7.32-7.21 (m, 1H), 7.12 (d, J = 8.7 Hz, 1H), 6.83 (d, J = 8.7
Hz, 1H), 3.17 (sext, J = 6.83, 1H), 1.90-1.82 (m, 1H), 1.68-1.53 (m, 1H), 1.50-1.44 (m, 1H), 1.35
(d, J = 6.8 Hz, 3H), 0.90 (d, J = 22.7 Hz, 6.5 Hz, 6H); 3C NMR (150.9 MHz, CDCls) & 129.5,
124.1,123.4,122.9,122.4,119.1, 113.9, 48.4, 34.2, 29.9, 25.7, 23.6, 22.9, 22.4; HRMS (TOF MS
Cl+) m/z calcd for C14H18S (M)* 218.1129, found 218.1186.

oYY

2-(5-phenylpentan-2-yl)naphthalene (1.22) was prepared according to Method E. The following
amounts of reagents were used: ((R)-BINAP)NICI, (5.6 mg, 7.5 pumol, 15 mol %), 1.16 (22 mg,
50. pumol, 1.0 equiv), PhMe (0.25 mL, 0.20 M in substrate), and methymagnesium iodide (40. pL,

2.8 M, 0.10 mmol, 2.0 equiv). Before purification, a *H NMR vyield of 76% was obtained based on
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comparison to PhTMS as an internal standard. The compound was purified by flash
chromatography (0-20% EtOAc/hexanes) to afford the title compound as a clear, colorless oil (11
mg, 40. umol, 80%). TLC R = 0.74 (100% hexanes); *H NMR (500 MHz, CDCl3) 6 7.79 (d, J =
8.1 Hz, 1H), 7.77 (d, J = 8.2 Hz, 2H), 7.57 (s, 1H), 7.42 (td, J = 6.8 Hz, 1.2 Hz, 2H), 7.32 (dd, J =
8.4 Hz, 1.7 Hz, 1H), 7.23 (t, J = 7.5 Hz, 2H), 7.14 (t, J = 7.4 Hz, 1H), 7.11 (d, J = 7.0 Hz, 2H),
2.87 (sext, J = 5.5 Hz, 1H), 2.58 (m, 2H), 1.71 (m, 2H), 1.60 (m, 1H), 1.51 (m, 1H), 1.31 (d, J =
6.9 Hz, 3H); 1*C NMR (125.8 MHz, CDCl3) 6 145.2, 142.7, 133.7, 132.3, 128.5 (2C), 128.3 (2C),
128.0, 127.7, 127.6, 125.94, 125.91, 125.7, 125.3, 125.2, 40.1, 37.8, 36.1, 29.6, 22.4; HRMS

(TOF MS Cl+) m/z calcd for Co1Ha2 (M)* 274.1721, found 274.1710.

1.4.6 Characterization Data of Starting Materials

H. _Ts
)

N-(2-cyclohexyl-1-(napthalen-2-yl)ethyl)-4-methylbenzenesulfonamide (1.8) was prepared
according to Method C. The following amounts of reagents were used: 4-methyl-N-(naphthalen-
2-ylmethylene)benzenesulfonamide 1.7 (789 mg, 250 mmol, 1.00 equiv),
(cyclohexylmethyl)magnesium bromide (9.0 mL, 0.70 M in THF, 6.3 mmol, 2.5 equiv), THF (8.3
mL, 0.30 M in substrate). The compound was purified by flash column chromatography (0-20%
EtOAc/hexanes) to afford the title compound as a yellow solid (98 mg, 0.24 mmol, 9%); m.p.
149-151°C; TLC Rf = 0.60 (20% EtOAc/hexanes); *H NMR (500 MHz, CDClz) 6 7.73 (d, J =
9.1 Hz, 1H), 7.62 (d, J = 8.4 Hz, 2H), 7.48-7.37 (m, 4H), 7.36 (br s, 1H), 7.13 (d, J = 8.5 Hz, 1H),
6.90 (d, J = 8.2 Hz, 2H), 4.82 (br d, J = 7.3 Hz, 1H), 4.54 (q, J = 7.6 Hz, 1H), 2.15 (s, 3H), 1.77—
1.56 (m, 7H), 1.24-1.15 (m, 1H), 1.14-1.00 (m, 3H), 0.98-0.79 (m, 2H); 13C NMR (125.8 MHz,

CDCls) 6 142.9, 138.4, 137.6, 133.1, 132.7, 129.1 (2C), 128.4, 127.8, 127.5, 127.1 (2C), 126.1,
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125.9, 125.8, 124.1, 56.0, 45.5, 33.9, 33.2, 33.0, 26.4, 26.1, 26.0, 21.3; HRMS (TOF MS ES+)

m/z calcd for C2sH20NO2SNa (M + Na)* 430.1817, found 430.1819.

Me\N/Ts ‘

N-(2-cyclohexyl-1(napthalen-2-yl)ethyl)-N,4-dimethylbenzenesulfonamide (1.9) was prepared
according to Method D. The following amounts of reagents were used: 1.8 (186 mg, 0.456 mmol,
1.00 equiv), NaH (17 mg, 0.70 mmol, 1.5 equiv), Mel (40. pL, 0.60 mmol, 1.1 equiv), THF (11
mL, 50. mM in substrate). The compound was purified by flash chromatography (0-10%
EtOAc/hexanes) to afford the title compound as a yellow oil (180 mg, 0.43 mmol, 86%). TLC Rt
= 0.37 (10% EtOAc/hexanes); *H NMR (500 MHz, CDCls) 6 7.87 (d, J = 9.2 Hz, 1H), 7.82 (dd,
J=11.3 Hz, 7.5 Hz, 2H), 7.75 (d, J = 8.2 Hz, 2H), 7.65 (br s, 1H), 7.56-7.51 (m, 2H), 7.49 (dd, J
= 8.5 Hz, 1.5 Hz, 1H), 7.30 (d, J = 8.0 Hz, 2H), 5.45 (brt, J = 7.7 Hz, 1H), 2.72 (s, 3H), 2.46 (s,
3H), 2.02-1.88 (m, 2H), 1.81 (d, J = 12.5 Hz, 1H), 1.78-1.72 (m, 2H), 1.72-1.60 (m, 2H), 1.26—
1.12 (m, 4 H), 1.09-0.87 (m, 2H); 3C NMR (125.8 MHz, CDCls) & 143.1, 137.6, 136.3, 133.1,
132.9,129.6 (2C), 128.2,128.1, 127.6, 127.3 (2C), 126.8, 126.6, 126.2, 57.5 (2C), 38.2, 34.2, 33.5,
33.4, 28.9, 26.6, 26.22, 26.21, 21.6; HRMS (TOF MS ES+) m/z calcd for C2sH31NO2SNa (M +

Na)* 444.1973, found 444.1968.

N-(1-(benzo[b]thiophen-2-yl)-2-cyclohexylethyl)-4-methylbenzenesulfonamide (1.12) was

prepared according to Method C. The following amounts of reagents were used: N-
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(benzo[b]thiophen-2-ylmethylene)-4-methylbenzenesulfonamide (1.11) (326 mg, 1.03 mmol, 1.00
equiv), (3-phenylpropyl)magnesium bromide (6.45 mL, 0.400 M in THF, 2.58 mmol, 2.50 equiv),
THF (3.5 mL, 0.30 M in substrate). The compound was purified via flash column chromatography
(0-15% EtOAc/hexanes) to afford the title compound as a yellow solid (260 mg, 0.62 mmol, 60%).
TLC Rf=0.46 (20% EtOAc/hexanes); m.p. 158-160°C; *H NMR (500 MHz, CDCls) & 7.67 (d,
J=7.9 Hz, 1H), 7.56 (d, J = 8.1 Hz, 2H), 7.34-7.21 (m, 3H), 7.00 (d, J = 8.0 Hz, 2H), 6.84 (s,
1H), 4.77 (q, J = 7.7 Hz, 1H), 4.64 (d, J = 7.8 Hz, 1H), 2.22 (s, 3H), 1.82-1.56 (m, 6H), 1.34-1.22
(m, 2H), 1.17-1.01 (m, 3H), 0.90-0.81 (m, 2H); 3C NMR (125.8 MHz, CDCls) & 144.8, 142.3,
138.4, 138.2, 136.6, 128.3 (2C), 126.2 (2C), 123.4, 122.6, 121.4, 121.2, 51.3 (2C), 44.7, 33.1,
32.14, 32.10, 25.5, 25.1, 25.1, 20.4 HRMS (TOF MS ES+) m/z calcd for C23H27NO2S2Na (M +

Na)* 436.1381, found 436.1376.

N-(1-benzo[b]thiophen-2-yl)-2-cyclohexylethyl)-N,4-dimethylbenzenesulfonamide (1.4) was
prepared according to Method D. The following amounts of reagents were used: 1.12 (170 mg,
0.41 mmol, 1.0 equiv), NaH (31 mg, 0.53 mmol, 1.3 equiv), Mel (30. uL, 0.45 mmol, 1.1 equiv),
THF (8.2 mL, 50. mM in substrate). The compound was purified by flash column chromatography
(20% EtOAc/hexanes) to afford the title compound as a clear, colorless oil (170 mg, 0.40 mmol,
98%). TLC Rf = 0.40 (10% EtOAc/hexanes); H NMR (500 MHz, CDCls) § 7.73 (d, J = 7.8 Hz,
1H), 7.70 (d, J = 8.3 Hz, 2H), 7.66 (d, J = 7.2 Hz, 1H), 7.30 (dtd, J = 16.4 Hz, 7.2 Hz, 1.3 Hz, 2H),
7.24 (d, J = 8.0 Hz, 2H), 7.05 (s, 1H), 5.50 (t, J = 7.6, 1H), 2.71 (s, 3H), 2.39 (s, 3H), 1.92-1.78

(m, 2H), 1.76-1.59 (m, 5H), 1.33-1.23 (m, 1H), 1.20-1.10 (m, 3H), 1.04-0.83 (m, 2H); 3C NMR
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(125.8 MHz, CDCls) & 144.1, 143.0, 139.4, 139.1, 137.0, 129.4 (2C), 127.2 (2C), 124.2, 123.3,
122.3,122.5, 122.1, 53.9, 40.3, 34.0, 33.4, 33.0, 28.7, 26.3, 26.0, 25.9, 21.4; HRMS (TOF MS

ES+) m/z calcd for C2sH29NO2S;Na (M + Na)* 450.1537, found 450.1530.

N-(1-benzo[b]thiophen-2-yl)-3-methylbutyl)-4-methylbenzenesulfonamide (1.13) was
prepared according to Method C. The following amounts of reagents were used: N-
(benzo[b]thiophen-2-ylmethylene)-4-methylbenzenesulfonamide (1.11) (389 mg, 1.23 mmol, 1.00
equiv), isobutylmagnesium bromide (7.7 mL, 0.40 M, 3.0 mmol, 2.5 equiv), THF (4.1 mL, 0.40
M in substrate). The compound was purified by flash column chromatography (0-20%
EtOAc/hexanes) to afford the title compound as a white powder (290 mg, 0.79 mmol, 64%). TLC
Rt = 0.58 (20% EtOAc/hexanes); m.p. 99-101 °C; *H NMR (400 MHz, CDCls) § 7.62 (d,J = 7.7
Hz, 1H), 5 7.57 (d, J = 8.3 Hz, 2H), 7.50 (d, J = 7.2 Hz, 1 Hz), 7.30-7.17 (m, 2H), 6.92 (d, J = 8.0
Hz, 2H), 6.82 (s, 1H), 5.55 (d, J = 8.1 Hz, 1H), 4.72 (q, J = 7.7 Hz, 1H), 2.14 (s, 3H), 1.79-1.54
(m, 3H), 0.85 (dd, J = 10.1 Hz, 6.4 Hz, 6H); 13C NMR (125.7 MHz, CDCls) § 145.4, 142.8, 139.1,
139.0, 137.4, 128.8 (2C), 126.9 (2C), 124.03, 124.01, 123.2, 122.1, 121.9, 52.7, 46.5, 24.5, 22.1,
22.0, 20.9; HRMS (TOF MS ES+) m/z calcd for C2oH2sNO2S2Na (M + Na)" 396.1068, found

396.1078.
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N-(1-benzo[b]thiophen-2-yI)-3-methylbutyl)-N,4-dimethylbenzenesulfonamide (1.14) was
prepared according to Method D. The following amounts of reagents were used: 1.13 (292 mg,
0.782 mmol, 1.00 equiv), NaH (24 mg, 1.0 mmol, 1.3 equiv), Mel (50. pL, 0.86 mmol, 1.1 equiv),
THF (17 mL, 50. mM in substrate). The compound was purified by flash column chromatography
(0-20% EtOAc/hexanes) to afford the title compound as a clear, colorless oil (210 mg, 0.55 mmol,
71%). TLC R = 0.44 (10% EtOAc/hexanes); *H NMR (500 MHz) & 7.70 (dd, J = 8.0 Hz, 6.1 Hz,
3H), 7.63 (d, J = 7.3 Hz, 1 H), 7.33-7.24 (m, 2H), 7.21 (d, J = 8.4 Hz, 2H), 7.03 (s, 1H), 5.47 (t, J
=7.5Hz, 1H), 2.72 (s, 3H), 2.36 (s, 3H), 1.86-1.77 (m, 1H), 1.74-1.59 (m, 2H), 0.97 (dd, J = 15.9
Hz, 6.6 Hz, 6H); 3C NMR (125.8 MHz, CDCls) & 143.9, 143.3, 139.5, 139.2, 137.0, 129.5 (2C),
127.4 (2C),124.4,124.4,123.5,122.7,122.2,54.9, 41.8, 28.9, 24.9, 22.8, 22.5, 21.5; HRMS (TOF

MS ES+) m/z calcd for C21H2sNO2S2Na (M + Na)* 410.1224, found 410.1227.

4-methyl-N-(1-(napthalen-2-yl)-4-phenylbutyl)benzenesulfonamide (1.15) was prepared
according to Method C. The following amounts of reagents were used: (4-methyl-N-(naphthalen-
2-ylmethylene)benzenesulfonamide (1.7) (1.10 g, 236 mmol, 150 equiv), (3-
phenylpropyl)magnesium bromide (4.6 mL, 0.50 M in THF, 3.5 mmol, 1.5 equiv), THF (18 mL,
0.20 M in substrate). The compound was purified by flash chromatography (0-20%
EtOAc/hexanes) to yield the title compound as a yellow solid (0.498 g, 1.16 mmol, 49%); m.p.
144-146°C; TLC Rf = 0.53 (20% EtOAc/hexanes); *H NMR (500 MHz, CDCl3) & 7.70-7.67 (m,
1H), 7.56 (d, J = 8.6 Hz, 2H), 7.44 (d, J = 8.3 Hz, 2H), 7.40-7.35 (m, 2H), 7.29 (s, 1H), 7.18 (t, J

= 7.4 Hz, 2H), 7.15-7.08 (m, 2H), 7.01 (d, J = 7.0 Hz, 2H), 6.82 (d, J = 7.9 Hz, 2H), 5.50 (d, J =
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7.9 Hz, 1H), 4.43 (g, J = 7.5 Hz, 1H), 2.50 (t, J = 7.7 Hz, 2H), 2.08 (s, 3H), 1.92-1.80 (m, 1H),
1.80-1.70 (m, 1H), 1.64-1.55 (m, 1H), 1.51-1.38 (m, 1H); *C NMR (125.8 MHz, CDCls) & 143.0,
141.8,137.8, 137.7, 133.0, 132.7, 129.1 (2C), 128.53, 128.50 (2C), 128.4 (2C), 127.9, 127.6, 127.1
(2C), 126.1, 126.0, 125.9, 125.8, 124.1, 58.6, 36.9, 35.4, 27.7, 21.3; HRMS (TOF MS ES+) m/z

calcd for Co7H27NO2SNa (M + Na)* 452.1660, found 452.1651.

Me\N/Ts O

N,4-dimethyl-N-(1-(napthalen-2-yl)-4-phenylbutyl)benzenesulfonamide (1.16) was prepared
according to Method D. The following amounts of reagents were used: 1.15 (498 mg, 1.16 mmol,
1.00 equiv), NaH (36 mg, 1.5 mmol, 1.3 equiv) Mel (80. pL, 1.3 mmol, 1.1 equiv), THF (23 mL,
50. mM in substrate). The compound was purified by flash chromatography (0-20 % EtOAc) to
afford the title compound as a white solid (420 mg, 0.95 mmol, 82%). TLC Rf = 0.34 (20%
EtOAC); m.p. 99-101°C; *H NMR (500MHz, CDCl3) § 7.80-7.73 (m, 1H), 7.71 (d, J = 8.5 Hz,
1H), 7.69-7.61 (m, 2H), 7.51-7.39 (m, 3H), 7.34 (t, = 7.5 Hz, 1H), 7.25 (¢, J = 6.9 Hz, 3H), 7.17
(t,J=9.1Hz, 3H), 7.11 (d, J = 7.4 Hz, 2H), 5.26 (t, J = 7.7 Hz, 1H), 2.64 (t, J = 7.3 Hz, 2H), 2.60
(s, 3H), 2.34 (s, 3H), 2.03 (dt, J = 13.8 Hz, 7.7 Hz, 1H), 1.80 (dt, J = 15.1 Hz, 7.6 Hz, 1H), 1.69—
1.54 (m, 2H); 13C NMR (125.4 MHz, CDCls) & 143.1, 141.9, 137.5, 135.9, 133.1, 132.9, 129.6
(2C), 128.6 (2C), 128.5 (2C), 128.3, 128.1, 127.7, 127.3 (2C), 126.8, 126.5, 126.3 (2C), 126.0,
60.0, 35.6, 30.0, 28.9, 28.3, 21.6; HRMS (TOF MS ES+) m/z calcd for C2sH20NO2SNa (M + Na)*

466.1817, found 466.1816.
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1.6 1H and 13C NMR Spectra
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Chapter 2: Domino Cross-Electrophile Coupling

of Propargylic Tosylpiperidines

Portions of this chapter have been published:

Hewitt, K.A.; Xie, P.—P.; Thane, T.A.; Hirbawi, N.; Zhang, S.-Q., Matus, A. C.; Lucas, E. L.;
Hong, X.; Jarvo, E. R. ACS Catalysis 2021, 23, 14369.
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2.1 Introduction

The development of cross-electrophile coupling (XEC) reactions has made great strides in
generating valuable C—C bonds.! Typical cross-coupling reactions rely on the use of nucleophilic
coupling partners, whereas XEC reactions can avoid the use of these reactive reagents.* ® Product
selectivity is usually controlled by using electrophiles with differing electronics, which has led to
the use of non-traditional electrophiles. In an effort to engage stronger bonds for XEC, Ni has been
widely utilized due to its ability to undergo facile oxidative addition and engage in one- or two-
electron chemistry.* 810 This variety of reactivity, characteristic of Ni, makes it ideal for engaging

sluggish electrophiles.

Scheme 2.1: Cross-Electrophile Coupling (XEC) of Chlorotosylpiperidines

A. Established XEC Reaction (Jarvo, 2019)

TSNO\ ((R)-BINAP)NICI, (5 mol %) R,,WNHTS
' cl

R" MeMgl (1 equiv)
PhMe, rt, 24 h >20:1dr
> 20:1dr

R = aryl, vinyl

B. XEC of Propargylic Piperidines (This Work) Ph\@\
X

TsNO\ ,,,IV\/NHTS
¢‘ cl standard
reaction conditions not observed
[
Ph Ph
>20:1dr Me
Pz III'WNHTS

Me

73%, 2.5:1 dr

domino XEC product
A recent example of C—N electrophiles being used in XEC reactions include the use of
chlorotosylpiperidines (Scheme 2.1A).2 This XEC reaction in particular exploits the different
electronics of C—Cl and C-N bonds to afford an intramolecular transformation, affording
cyclopropane products with high functional group tolerance. Despite the need for stoichiometric

amounts of Grignard reagent to act as a reductant, the power of this transformation can be applied
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with a variety of substrates. Interestingly, when a propargyl substrate was utilized in this reaction,
instead of affording the expected propargyl cyclopropane, the alkyne participated in a domino

XEC reaction to afford a vinyl cyclopropane product (Scheme 2.1B).

Scheme 2.2: Selected Examples of Domino Reactions Involving XEC

Diao, 2018
(\Br NiBr,*DME
X + R-Br phenanthroline xij\/R
X=C,N,O Zn, DMA, 50 °C
Nevado, 2019
NiBryeglyme
I dtbbpy
R\/\ + | ;—R' +  l-alkyl TDAE
dioxane, 16 h
Chu, 2020
0 NiCl,sDME 0
BiOx ligand
/\/
Qj)l\o +  Ar—Br + C4Fo—I QYN\O/Y\CJ'FQ
N Mn, TMSCI N Ar
Me DME, -10 °C Me

Examples of domino XEC reactions which include the formation of multiple new C-C
bond are uncommon (Scheme 2.2) but do commonly rely on Ni catalysts.*"*3 Domino reactions
are particularly advantageous because they can act as a pathway to rapidly introduce molecular
complexity. With the discovery of this new reactivity and taking inspiration from the limited
variety of reported domino-XEC reactions, | sought to expand the scope of the domino XEC
dicarbofunctionalization reaction of tosylpiperidines to generate highly functionalized vinyl
cyclopropanes.

2.2 Results and Discussion
2.2.1 Synthesis of Piperidine Substrates

The need to utilize appropriate propargyl substrates for use in the domino reaction led to

the development of two synthetic routes, starting with commercially available aryl iodides

(Scheme 2.3) and aryl bromides (Scheme 2.4). This differentiation in route arose mainly from
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access to materials, however the aryl bromide substrates were more challenging to use with the
initial Sonogashira cross-coupling conditions used (Method B, vide infra). The addition of PPhs,
increase in concentrations of Pd catalyst and Cul, and heating were effective in pushing the cross-
coupling reaction forward, and the resulting propargylic alcohol substrates were converted to the
corresponding aldehydes via Swern oxidation. Along with a linear, homoallylic amine (Method C,
vide infra), the propargyl aldehydes were subjected to an aza-Prins cyclization to afford

chlorotosylpiperidines in good yields with excellent dr.

Scheme 2.3: Substrate Synthesis from Aryl lodides

Pd(PPh3),Cl, (1 mol % (Cocly,

)
o)
A+ " OH Cul (2 mol %) /\OH DMSO
= Ar = H
Et;N,1-5h EtsN, CH,Cly, 3h =
21 up to 99% up to 57% Ar
o FeCls TsN
BmimPFg
/ H t 2 ONHTs /// “
Ar 22 CeHsCF3, reflux, 24 h Ar
: up to 66% >20:1dr
Scheme 2.4: Substrate Synthesis from Aryl Bromides
Pd(PPh3),Cl, (2 mol %)
Cul (4 mol %) (COCI), o
PPhs (4 mol %) /\OH DMSO
AcBr vz on TTRETTR A / H
21 2z(1’Fr:r)§'(\)“jc Et3N, CH,Cly, 3h A =
) up to 57% r

up to 63%

o FeCls TsN(l
BmimPFg
/LH N S NHTs . cl
CgHsCF3, reflux, 24 h Ar

Ar
2.2 up to 66% >20:1dr

2.2.2 Cross-Electrophile Coupling Methods and Dicarbofunctionalization Scope
Previously established XEC conditions were utilized to generate carbodifunctionalized

products. The use of Mgl. was explored as an additive to increase yield, as it had previously

impacted the results of XEC with vinyl substrates, however the desired increase in yield was not

observed using propargylic substrates. The corresponding piperidines were subjected to the XEC
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conditions, and resulted in the formation of six unique cyclopropane products (Figure 2.1). Of
these results, only one cyclopropane product was identified to contain an (E)-alkene, and
interestingly this product was generated using the most sterically bulky substrate (piperidine 2.21
reacting to form cyclopropane 2.8). All other isolated products showed a small favoring of the
trans-alkene products, apart from cyclopropane 2.6, which showed no evidence of stereoselectivity
for the (E)- or (Z)-alkene isomer (1:1 E:Z). The stereospecificity observed during formation of the

cyclopropane moiety was later confirmed by a combination of theoretical and experimental data.'*

Figure 2.1: Scope of Difunctionalized Cyclopropane Products

TSNC]\ ((R)-BINAP)NICI, (5 mol %) Me
/// ol MeMgl (3 equiv) Ar%:,,lw NHTs
Ar Me
201 dr PhMe (0.4 M), 24 h
Me
Me Me Me
o, NHTs " NHT: ,
E V\/ MeO = W S Me = I"V\/NHTS
Me Me Me
64 %2, 1.5:1 E:Z 55 %2, 2:1 E:Z 60 %, 1.6:1 E:Z
2.3 2.4 tBu 2.5
FsC
3 Me Me Me Me
= "I,V\/NHTS _ "',V\/NHTS By = f,,,%/NHTS
Me Me Me
35 %, 1:1 E:2 55 %, 1.7:1 E:Z 50 %, 2.4:1 E:Z°
2.6 2.7 2.8

a. Run at 0.2 M in PhMe with 10 mol % ((R)-BINAP)NICI, and 1.0 equivalent of Mgl,. b. Yield and dr determined by 'H NMR using PhTMS as
internal standard. c. Reaction ran for 48 h.

After continued scope expansion by my coworkers, it was discovered that a smaller, alkyl
substrate proceeded through the domino XEC reaction with complete retention of stereochemistry

at the CyC|0pf0pane (>20:1 dr, favoring Figure 2.2: Other Piperidines Synthesized for XEC

trans).* Before completion of the scope, TsN O\ TsN
P cl = cl
two additional heteroatom-containing Me/s\©/ <Oj©/
(0]
21% from aza-Prins, >20:1 dr 16% from aza-Prins, >20:1 dr
29 210
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tosylpiperidines were synthesized for eventual use in the domino XEC reaction (Figure 2.2).
2.2.3 Mechanistic Investigation

The initial mechanism proposed for the domino XEC-dicarbofunctionalization is shown in
Scheme 2.5. Starting with the trans-piperidine, Ni coordinates to the alkene as Ni°, then undergoes
oxidative addition to open the piperidine, while nitrogen attaches to any Mg species in solution
that acts as a Lewis acid. The Grignard reagent MeMgl then transmetalates with Ni, and an
intramolecular Sn2-type reaction affords the trans-cyclopropane, while a ligand exchange with
one of (R)-BINAP’s phosphines allows Ni to remain coordinated to the alkyne. From the XEC
pathway, the Ni'' species can deliver a methyl group to the alkyne through a migratory insertion.
Then, to explain the trans-alkene results observed, the olefin can undergo an isomerization event.
After final transmetalation event with another equivalent of MeMgl, reductive elimination will
liberate the product and a ligand exchange with more starting material allows the cycle to begin
with XEC again. This mechanism combines known reactivity elucidated from work previously
described by the Jarvo lab, while the dicarbofunctionalization pathway may explain the
stereochemical outcome of the vinyl products.?

Density-functional theory (DFT) calculations revealed several key mechanistic details; the
stereochemistry of the vinyl cyclopropane products is determined by the initial oxidative addition
into the piperidine C—N bond and the intramolecular Sh2-type reaction. The first oxidative addition
step results in the inversion of stereochemistry, while the Sp2-type reaction is also stereoinvertive.
This net-retention of stereochemistry at the cyclopropane shows by all cyclopropanes isolated from
the domino reaction display trans-stereochemistry. Enantioenriched propargyl piperidines were
also synthesized and subjected to the domino XEC conditions, and exclusively afforded trans-

cyclopropanes with retention of stereochemistry.
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Scheme 2.5. Original Mechanism Proposed for Domino XEC Reaction

(\FI’ TsN
P-Ni .
2 o

/; Oxidative Addition
p Ar
o e
P P
/) Ts
P
C = (R)-BINAP
P
MeMgl
XEC Pathway Transmetallation

Start: TSN(:L
Cl

A
Dicarbofunctionalization
Pathway P/\
P, Cl Intramolecular Sy2-Type

Ar\\/ “Me Ts Reaction and Ligand Exchange

(\p TsN Pathway M.gm
[~ Insertion
e

" cl N
Ar F’\,/P Me Ts
/NI /l“'w\/N\MgX
Product cl Ar
Reductive

Elimination and
Ligand Exchange Dicarbofunctionalization

TSNK/:L Pathway Isomerization
cl

MeMgl Transmetallation
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Scheme 2.6: Mechanistic Experiments

A.
TsN XEC Conditions Ar _/_\_/NHTS
P >:C_,,’
Ar = Me H
2.M1
B.
OMe
XEC Conditions
no reaction
\\ (>95% 2.cyclopropane recovered)
2.M2

The final mechanistic aspect of the domino reaction, the dicarbofunctionalization pathway,
was probed through a series of creative synthetic experiments. Two key substrates were
synthesized, a propargyl piperidine with no Cl leaving group (2.M1), and an alkyny! cyclopropane
(2.M2) (Scheme 2.6). The substrate 2.M1 was subjected to the XEC conditions and produced an
allene product resulting from ring opening of the piperidine and single functionalization of the
original alkyne. Conversely, 2.M2 was subjected to the XEC conditions and produced no product,
providing evidence that the alkyne alone does not engage Ni for catalysis, and that the allenyl
intermediate precedes cyclopropane formation. In combination with the DFT studies performed, a
new mechanism was proposed based on experimental and theoretical data elucidated (Scheme 2.7).

This mechanism starts in the same way (Scheme 2.7), with coordination of Ni° to the
alkyne, oxidative addition, and coordination of nitrogen to a Mg Lewis acid. This forms an allenyl
Ni' intermediate, and the cycle can continue down two pathways. To form the Z-alkene product,
transmetalation with the coordinated Grignard reagent followed by an intramolecular Sn2” reaction
affords the cyclopropane and regenerates the alkyne with Ni coordinating. Migratory insertion
from Ni produces the singularly functionalized alkene, which then undergoes transmetalation once

more. Product is generated after a final reductive elimination.
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Scheme 2.7: Revised Domino XEC Mechanism

Me

\::ﬂ(z,z@x SM SM Me s

| (Z)-product (E)-product
_<_mlz__/_u

Ar o, N.
Reductive Reductive ﬂ/\ MgXx
P Elimination Elimination Me—Ni—p
k:.mﬂm:m:o: __u
ﬁ/ P wzQ
Me _u17_= Transmetallation
Cl

Ar

v p
r
Ni@
_U
__u Z-alkene Pathway E-alkene Pathway
Migratory Oxidative|Addition Me
Insertion Me Ar .__/._m
Amv«:v | Jk::ﬂ/\ “MaX
9
~ cKMg
PP i \ X—Ni~p
Are__Ni b
4 Me Ts

Intramolecular Sy2

Carbometalation Reaction

Intramolecular Sy2'

cl MgX
Reaction N
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The E-alkene product starts with the same oxidative addition and coordination step to
generate the allenyl Ni'" intermediate. Carbometalation produces a 4-membered Ni metallocycle,
which then goes through the intramolecular Si2 reaction to afford a vinyl cyclopropane. The Ni is
liberated through transmetalation with another equivalent of Grignard reagent and produces the E-
alkene after reductive elimination. This pathway dictates the stereochemistry of the cyclopropane
and alkene, whereas the Z-alkene pathway has stereochemistry for each moiety determined across
two separate steps (Sn2’ and migratory insertion). The DFT free-energy profiles for each pathway
were compared and showed that the Z-alkene pathway has a slightly lower (<1 kcal/mol) barrier
height than that of the E-alkene pathway, which mirrors the observed low selectivity between Z-

and E-alkene products.

2.3 Conclusion

The scope of the domino XEC carbodifunctionalization reaction of tosylpiperidines was
expanded, and routes for accessing starting materials were established. Cyclopropanes containing
tetrasubstituted alkenes and primary sulfonamides were generated in good yields and high
stereoselectivity for trans-cyclopropane formation, though stereoselectivity about the
functionalized alkene was elusive. Further development of this reaction by my coworkers allowed
for the rapid synthesis of structural analogues to known histone demethylase inhibitors. At the time
of reporting, this was not only the first example of a reaction involving distinct XEC and
dicarbofunctionalization events, but was also the first report of propargyl aldehydes undergoing
an aza-Prins reaction to generate propargylic piperidines. The key allenyl Ni intermediates were
also confirmed experimentally and theoretically, allowing for better mechanistic understanding of

the domino transformation. Expansions of this work will focus on the replacement of MeMg|l as
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a coupling partner with other Grignard reagents, to investigate the boundaries of alkene
functionalization using this established work.
2.4  Experimental Details

All reactions were carried out under a N2 atmosphere, unless otherwise noted. All
glassware was oven- or flame-dried prior to use. Tetrahydrofuran (THF), diethyl ether (Et20),
dichloromethane (CH2Cl>), and toluene (PhMe) were degassed with Ar and then passed through
two 4 x 36 inch columns of anhydrous neutral A-2 alumina (8 x 14 mesh; LaRoche Chemicals;
activated under a flow of argon at 350 °C for 12 h) to remove H,0.% Other solvents were purchased
anhydrous commercially, or purified as described. *H NMR spectra were recorded on Bruker
DRX-400 (400 MHz *H), GN-500 (500 MHz H, 125.4 MHz *C), CRYO-500 (500 MHz *H,
125.8 MHz 3C), or AVANCE-600 (600 MHz *H, 150.9 MHz *3C, 564.7 MHz °F) spectrometers.
Proton chemical shifts are reported in ppm () relative to internal tetramethysilane (TMS, & 0.0).
Data are reported as follows: chemical shift (multiplicity [singlet (s), broad singlet (br s), doublet
(d), doublet of doublets (dd), triplet (t), doublet of triplets (dt), doublet of doublet of triplets (ddt),
quartet (g) quintet (quin), sextet (sextet), apparent doublet (ad), multiplet (m)], coupling constants
[Hz], integration). Carbon chemical shifts are reported in ppm () relative to TMS with the
respective solvent resonance as the internal standard (CDCls, & 77.16 ppm). NMR data were
collected at 25 °C. Analytical thin-layer chromatography (TLC) was performed using Silica Gel
60 F254 precoated plates (0.25 mm thickness). Visualization was accomplished by irradiation with
a UV lamp and stains were used as needed. Flash chromatography was performed using SiliaFlash
F60 (40-63 um, 60 A) from SiliCycle. Automated chromatography was carried out on a Teledyne

Isco CombiFlash Rf Plus. Melting points (m.p.) were obtained using a MelTemp melting point
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apparatus and are uncorrected. High resolution mass spectrometry was performed by the
University of California, Irvine Mass Spectrometry Center.

2.4.1 Preparation of ((R)-BINAP)NICl2

MeCN, reflux
NiCl,-6H,0 + (R)-BINAP _ ((R)-BINAP)Nicl,  (2-1)
24 h

This method is based on a procedure reported by Jamison.'® To a flame-dried flask
equipped with a stir bar was added NiCl.:6H20 (1.0 equiv). The flask was placed under vacuum
and flame-dried until most of the nickel compound had turned from emerald green to yellow-
orange. Some of the green hydrate complex is necessary for the reaction to proceed. The flask was
allowed to cool to room temperature, and the solid was dissolved in MeCN (50. mM). The chiral
(R)-BINAP (1.0 equiv) was added to the reaction flask, which was then fitted with a reflux
condenser. The reaction mixture was heated to reflux and allowed to stir for 24 h. The reaction
was cooled to room temperature and the black crystalline product was vacuum filtered. The
precipitate was washed with excess MeCN and dried en vacuo.

2.4.2 Preparation of MeMgl
Mg?®
Me-l ———— >  Me-Mgl (2.2)
Et,0,1t, 2 h

Under a N2 atmosphere, a three-necked flask equipped with a stir bar, reflux condenser,
and Schlenk filtration apparatus was charged with magnesium turnings (2.80 g, 115 mmol). The
flask and magnesium turnings were then flame-dried under vacuum and the flask was backfilled
with N2. Anhydrous Et.O (25 mL) and a crystal of iodine (ca. 2 mg) were added to the flask. The

reaction mixture was brought to 0 °C and freshly distilled iodomethane (5.0 mL, 80. mmol) was

slowly added over 30 min to maintain a gentle reflux. The reaction mixture was brought to room
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temperature and allowed to stir for 2 h, then filtered through the fritted Schlenk filter into a pear-
shaped flask under N2 atmosphere. The pear-shaped flask was capped with a septum, sealed with
parafilm, and stored in the glovebox under a N2 atmosphere for up to eight weeks without
detrimental effects. The resulting Grignard reagent was titrated by Knochel’s method to 2.4 M to
3.0M.Y

2.4.2.1 Method _A: Domino Cross-Electrophile Coupling Reaction of Propargylic
Tosylpiperidines

24.2.1.1 Cross-Electrophile Coupling without Mgl:

TN ((R)-BINAP)NICI; (5.0 mol %)
MeMgl (3.0 equiv) /@\/Me
. NHTs  (2.3)
/ Cl F = '/V\/
F\©// PhMe, rt, 24

Me
2.1 2.3

In a glovebox, an oven-dried 7 mL vial equipped with a stir bar was charged with piperidine
substrate (1.0 equiv), ((R)-BINAP)NICI> (5.0 mol %), and PhMe (0.20 M in substrate). MeMgl
(3.0 equiv) was added dropwise, the vial was capped, and the reaction was allowed to stir. The
reaction vial was removed from the glovebox after 24 h, quenched with methanol, filtered through
a silica gel plug eluting with 100% Et,O, and concentrated in vacuo. Phenyltrimethylsilane
(PhTMS; 8.6 pL, 50. umol) was added and the yield was determined by *H NMR based on
comparison to PhTMS as internal standard before further purification.

24.2.1.2 Cross-Electrophile Coupling with Mgl2
((R)-BINAP)NICI, (10 mol %)

TN MeMgl (3.0 equiv) Me
(l Mgl, (1.0 equiv) Ar}/,, NHTs (2:4)
o = /,V\/
Me

= cl
F PhMe, rt, 24

Ar
In a glovebox, an oven-dried 7 mL vial equipped with a stir bar was charged with piperidine

substrate (1.0 equiv), ((R)-BINAP)NICI2 (10. mol %), Mgl2 (1.0 equiv), and PhMe (0.20 M in
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substrate). The reagent MeMgl (3.0 equiv) was added dropwise, the vial was capped, and the
reaction was allowed to stir. The reaction vial was removed from the glovebox after 24 h, quenched
with methanol, filtered through a silica gel plug eluting with 100% Et,0O, and concentrated in
vacuo. Phenyltrimethylsilane (PhTMS; 8.6 pL, 50. umol) was added and the yield was determined
by *H NMR based on comparison to PhTMS as internal standard before further purification.
2.4.3 General Procedures for Substrate Synthesis

2.4.3.1 Method B: Sonogashira Cross-Coupling of Aryl Halides with Propargyl Alcohol
24.3.1.1 Sonogashira Cross-Coupling with Aryl Bromides

Pd(PPh3),Cl, (2 mol %)
Cul (4 mol %)

% 25
ArBr + 2 “OH PPhs (4 mol %) /\OH (2.5)

21 (iPr),NH Ar
24 h, 80 °C

This procedure was adapted from a procedure reported by Nagumo.!® To a flame-dried
round bottom flask charged with a stir bar was added Pd(PPhs).Cl> (2 mol %) and Cul (4 mol %).
Diisopropylamine (0.01 M in Cul) was added to the flask, and the suspension was allowed to stir
for five minutes. Aryl bromide (1.0 equiv) and propargyl alcohol (2.1, 1.1 equiv) were brought up
in diisopropylamine (1.0 M in aryl bromide), and the solution was added dropwise to the reaction
mixture. The reaction vessel was equipped with a reflux condenser, heated to 80 °C, and allowed
to stir for 24 h. After cooling to room temperature, the crude reaction mixture was filtered through
a pad of Celite. The filter cake was washed with EtOAc (x 3) and the combined solution was
concentrated in vacuo.
24.3.1.2 Sonogashira Cross-Coupling with Aryl lodides

Pd(PPh;),Cl, (1 mol %)

Al + ///\OH Cul (2 mol %) /\OH (2.6)

EtsN, 2 h Ar

2.1
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This procedure was adapted from a procedure reported by Tambar.’® To a flame-dried
round bottom flask charged with a stir bar was added Pd(PPhs).Cl. (1 mol %) and Cul (2 mol %).
EtsN (0.01 M in Cul) was added to the flask, and the suspension was allowed to stir for five
minutes. Aryl iodide (1.0 equiv) and propargyl alcohol (1.1 equiv) were brought up in EtsN (1.0
M in aryl iodide), and the solution was added dropwise to the reaction mixture. The reaction was
monitored by thin layer chromatography and typically went to completion after 2 h. The crude
reaction mixture was filtered through a pad of Celite. The filter cake was washed with EtOAc (x
3) and the combined solution was concentrated in vacuo.

2.4.3.2 Method C: Synthesis of Homoallylic Tosylamine

K,COj

/\/\ MeCN /\/\

= Br  + H,NTs = NHTs  (2.7)
60°C,3d homoallylic amine

2.2

This procedure was adapted from a procedure reported by Jiang.?° To a flame-dried two-
neck flask equipped with a stir bar was added 4-bromo-1-butene (1.0 equiv), p-toluenesulfonamide
(1.0 equiv), and K2COs (1.2 equiv). The flask was fitted with an air condenser and MeCN (0.25 M
in bromide) was added via cannula transfer. The reaction was heated to 60 C and allowed to stir
for 3 d. The reaction mixture was quenched with saturated aqueous NH4Cl and extracted with
EtOAc (x 3). The combined organic layers were washed with brine, dried over Na2SOg, filtered,
and concentrated in vacuo.

2.4.3.3 Method D: Swern Oxidation of Propargylic Alcohols to Aldehydes

(COcCly, 0
DMSO
/Zg(/\OH _ /ZZ(J\H (2.8)
Ar CH,Cl, Ar
Et;N, 3 h

To a flame-dried round bottom flask under N2 atmosphere charged with a stir bar was added

oxalyl chloride (1.3 equiv). CH2Cl> (0.37 M in oxalyl chloride) was added to the reaction flask and
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the reaction mixture was cooled to —78 C. Dimethyl sulfoxide (1.2 equiv) was added dropwise to
the reaction flask, and a vent was created to allow CO and CO; gasses to escape. After stirring for
15 min, alcohol substrate (1.0 equiv) as a solution in CH2Cl> (0.40 M in substrate) was added
dropwise, and the vent was removed. The reaction mixture was allowed to stir at —78C for 1 h.
EtsN (3.0 equiv) was added to the flask along with a vent, and the reaction mixture was allowed
to warm to room temperature and stir for an additional 3 h. The reaction mixture was quenched
with saturated aqueous NH4Cl and extracted with CH2Cl. (x 3). The combined organic layers were
washed with brine, dried over Na2SOs, filtered, and concentrated in vacuo.

2.4.3.4 Method E: Iron (111) Chloride/BmimPFs-Promoted Aza-Prins Reaction

0}

: FgC}I;F TsN O\ (2.9)
mim
R // H + NNHTS 6 e cl
] >
2.2

/
CgHsCF3 Ar//

This procedure was adapted from a procedure reported by Hasegawa.?! To a flame-dried
round-bottom flask equipped with a stir bar was added FeCls (1.5 equiv) and CeHsCF3 (0.10 M in
homoallylic amine). In a separate flask, a solution of aldehyde substrate (1.5 equiv) and
homoallylic amine (1.0 equiv) in CéHsCF3z (0.10 M in aldehyde) was prepared. The solution was
added to the reaction flask via syringe. The flask was fitted with a reflux condenser and N> inlet,
and the reaction mixture was heated to reflux. After stirring for 24 h the reaction mixture was
quenched with H>O and extracted with EtO (x 3). The combined organic layers were washed
sequentially with Na>S»03, saturated aqueous NaHCO3, and brine. The organic layers were dried
over NazxSOq, filtered, and concentrated in vacuo.

2.4.4 Characterization Data of Cyclopropane Products

Me
E = «,,,V\/NHTS

Me
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(E)-N-(2-(2-(3-(3-fluorophenyl)but-2-en-2-yl)cyclopropyl)ethyl)-4-

methylbenzenesulfonamide (2.3) The following amounts of reagents were used: 2.11 (78 mg,
0.20 mmol, 1.0 equiv), ((R)-BINAP)NICI2 (8 mg, 10 pumol, 5 mol %), methylmagnesium iodide
(0.21 mL, 2.8 M, 0.60 mmol, 3.0 equiv), PhMe (1.0 mL, 0.20 M in substrate). The compound was
purified by flash column chromatography (0-20% EtOAc/hexanes) to afford the title compound
as a clear yellow oil (39 mg, 98 pumol, 49%). The product is assigned to be a 1.5:1.0 mixture of
diastereomers based on *H NMR. TLC Rf = 0.41 (20%EtOAc/hexanes); 'H NMR (500 MHz,
CDCl3) 6 7.84 (d, J = 7.6 Hz, 2H, one diastereomer), 7.78 (m, 2H, other diastereomer), 7.40-7.33
(m, 4H, both diastereomers), 7.30 (m, 1H, other diastereomer), 7.23 (m, 1H, one diastereomer),
7.09-7.02 (m, 2H, both diastereomers), 7.02—6.90 (m, 4H, both diastereomers), 4.85 (m, 1H, one
diastereomer), 4.67 (m, 1H, other diastereomer), 3.13 (m, 2H, one diastereomer), 2.97 (m, 2H,
other diastereomer), 2.48 (s, 6H, both diastereomers), 2.39 (s, 3H, one diastereomer), 2.38 (s, 3H,
other diastereomer), 2.08 (d, J = 1.4 Hz, 3H, one diastereomer), 2.00 (d, J = 5.8 Hz, 2H, one
diastereomer), 1.52 (m, 2H, both diastereomers), 1.47 (d, J = 4.9 Hz, 2H, other diastereomer), 1.31
(d, J = 1.4 Hz, 3H, other diastereomer), 0.88 (m, 1H, one diastereomer) 0.78 (m, 1H, one
diastereomer), 0.64 (m, 1H, other diastereomer), 0.54 (m, 1H, other diastereomer), 0.24 (m, 2H,
both diastereomers); 3C NMR (125.8 MHz, CDCl3) § 162.8 (d, J = 245.2 Hz), 144.6 (d, J = 264.6
Hz), 137.34 (d, J = 68.0 Hz), 137.3 (d, J = 62.6 Hz), 132.1, 130.6, 129.8 (2C), 129.79, 129.78,
129.1, 128.0, 127.3 (2C), 127.2 (2C), 126.7, 125.9, 125.5, 124.6 (d, J = 2.9), 115.7 (d, J = 20.5),
112.8 (d, J=20.9), 43.44, 43.40, 43.21, 43.18, 33.8, 33.7, 23.0, 22.9, 22.2, 21.6, 21.5, 21.5, 20.9,
16.2, 15.8, 15.7, 15.6, 14.0, 13.8, 11.82, 11.79, 11.6; °F NMR (564.6 MHz, CDCls) 6 -113.79
(1F, one diastereomer), —114.17 (1F, other diastereomer); HRMS (TOF MS ES+) m/z calcd for

C22H26FNO2SNa (M + Na)* 410.1566, found 410.1556.
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Me

% NHTs
MeO

Me
(E)-N-(2-(2-(3-(3-methoxyphenyl)but-2-en-2-yl)cyclopropyl)ethyl)-4-

methylbenzenesulfonamide (2.4) The following amounts of reagents were used: 2.16 (81 mg,
0.20 mmol, 1.0 equiv), ((R)-BINAP)NICI2 (15 mg, 20. pmol, 10. mol %), methylmagnesium iodide
(0.21 mL, 2.8 M, 0.60 mmol, 3.0 equiv), PhMe (1.0 mL, 0.20 M in substrate), Mgl (56 mg, 0.20
mmol, 1.0 equiv). The compound was purified by flash column chromatography (0-30%
EtOAc/hexanes) to afford the title compound as a clear yellow oil (42 mg, 0.11 mmol, 55%). The
product is assigned to be a 2.0:1.0 mixture of diastereomers based on *H NMR. TLC R = 0.36
(20% EtOAc/hexanes); *H NMR (600 MHz, CDCls) 6 7.77 (d, J = 8.2 Hz, 2H, diastereomer 1),
7.70 (d, J = 8.2 Hz, 2H, diastereomer 2), 7.30 (m, 3H, diastereomer 1), 7.20 (m, 3H, diastereomer
2), 6.73 (m, 2H, both diastereomers), 6.68 (d, J = 7.6, 1H, diastereomer 1), 6.64 (m, 1H,
diastereomer 2), 4.61 (t, J = 6.1 Hz, 1H, diastereomer 1), 4.43 (t, J = 6.0 Hz, 1H diastereomer 2),
3.80 (s, 6H, both diastereomers), 3.07 (m, 2H, diastereomer 1), 2.91 (m, 2H, diastereomer 2), 2.42
(s, 6H, both), 2.02 (s, 3H, diastereomer 1), 1.95 (s, 3H, 2 diastereomer), 1.63 (m, 2H, both), 1.45
(m, 2H, diastereomer 1), 1.41 (s, 3H, diastereomer 2), 1.25 (s, 3H, diastereomer 1), 1.19 (m, 2H,
both), 0.81 (m, 1H, diastereomer 1), 0.72 (m, 1H, diastereomer 1), 0.68 (m, 1H, diastereomer 2),
0.59 (m, 1H, diastereomer 2), 0.48 (m, 1H, diastereomer 1), 0.18 (dt, J = 9.0 Hz, 4.8 Hz, 1H,
diastereomer 2); 13C NMR (150.9 MHz, CDCl3) § 159.5, 159.4, 147.2, 146.7, 143.5, 143.4, 137.2,
137.1, 132.0, 131.2, 129.9 (2C), 129.8 (2C), 129.7, 129.6, 129.2 (2C), 129.1 (2C), 127.3 (2C),
127.2 (2C), 121.3, 120.9, 114.5, 114.1, 111.5, 111.4, 55.2 (2C), 43.5, 43.2, 34.3, 33.7, 23.0, 22.2,
21.7,20.8,16.1, 15.7, 15.6, 13.8, 11.8, 11.6; HRMS (TOF MS ES+) m/z calcd for C23H20NO3SNa

(M + Na)* 422.1766, found 422.1758.
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Further characterization of cyclopropane products was performed by Hewitt, et al.*

2.4.5 Characterization Data of Starting Materials

oH
3-(3-fluorophenyl)prop-2-yn-1-ol (2.12) was prepared according to Method B. The following
amounts of reagents were used: 1-fluoro-3-iodobenzene (1.08 mL, 10.0 mmol, 1.00 equiv), 2.1
(0.64 mL, 11 mmol, 1.1 equiv) Cul (38 mg, 0.20 mmol, 2.0 mol %), Pd(PPhs).Cl, (70. mg, 0.10
mmol, 1.0 mol %), EtzN (20. mL, 0.50 M in aryl iodide). The compound was purified by flash
column chromatography (20% EtOAc) to afford the title compound as a clear orange oil (1.25 g,

8.32 mmol, 83%). TLC R = 0.15 (20% EtOAc/hexanes); 'H NMR (400 MHz, CDCls) § 7.28—

7.17 (m, 2H), 7.14-7.09 (m, 1H), 7.05-6.97 (m, 1H), 4.49 (s, 2H), 2.63 (br s, 1H). Analytical data

(0]

3-(3-fluorophenyl)propiolaldehyde (2.13) was prepared according to Method D. The following

are consistent with literature values.??

amounts of reagents were used: 2.12 (4.1 mL, 0.40 M in CHxCl, 1.7 mmol, 1.0 equiv), oxalyl
chloride (0.18 mL, 2.2 mmol, 1.3 equiv), dimethyl sulfoxide (0.14 mL, 2.0 mmol, 1.2 equiv),
CH2Cl> (5.8 mL, 0.37 M in oxalyl chloride), EtsN (0.69 mL, 5.0 mmol, 2.9 equiv). The compound
was isolated using flash column chromatography (0-20% EtOAc/hexanes, KMnOjs stain) to afford
the title compound as an orange oil (140 mg, 0.95 mmol, 56%). TLC Rf = 0.71 (20%
EtOAc/hexanes); H NMR (400 MHz, CDCl3) & 9.42 (s, 1H), 7.42-7.34 (m, 2H) 7.30-7.23 (m,

1H), 7.24-7.15 (m, 1H); Analytical data are consistent with literature values.?
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= Cl \+Hb .
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1.7%n0e™ 2.8% nOe 3.2% nOe

0.0% nOe
4-chloro-2-((3-fluorophenyl)ethynyl)-1-tosylpiperidine (2.11) was prepared according to
Method E. The following amounts of reagents were used: 2.13 (280 mg, 1.9 mmol, 1.5 equiv), 2.2
(amine) (0.63 mL, 2.0 M in CsHsCF3, 1.3 mmol, 1.0 equiv), FeClz (306 mg, 1.89 mmol, 1.50
equiv), BmimPFs (0.29 mL, 1.4 mmol, 1.5 equiv), CéHsCF3 (14 mL, 0.10 M in 2.13). The
compound was purified using column chromatography (10-20% EtOAc/hexanes) to afford the
title compound as an orange solid (190 mg, 0.48 mmol, 37%, >20:1 dr trans:cis). The dr was
determined based on the integration of resonances attributed to Hg in the *H NMR. TLC Rf= 0.50
(209% EtOAc/hexanes); m.p. 126-128 °C; 'H NMR (400 MHz, CDCl3) 6 7.71 (d, J = 8.3 Hz, 2H),
7.23 (d, J = 8.2 Hz, 2H), 7.20 (m, 3H), 6.99 (tdd, J = 8.5 Hz, 2.6 Hz, 0.8 Hz, 1H), 6.81 (d, J = 7.7
Hz, 1H), 6.56 (ddd J = 9.5 Hz, 2.6 Hz, 1.5 Hz, 1H), 5.12 (br s, 1H), 4.16 (tt, J = 12.0 Hz, 4.3 Hz,
1H), 3.86 (dquint, J = 12.3 Hz, 2.3 Hz, 1H), 2.95 (td, J = 12.5 Hz, 2.6 Hz, 1H), 2.36 (ddt, J = 12.6
Hz, 5.5 Hz, 2.5 Hz, 1H), 2.31 (s, 3H), 2.27-2.21 (m, 1H), 2.16 (td, J = 12.4 Hz, 4.8 Hz, 1H), 1.96
(qd, J = 16.6 Hz, 4.8 Hz, 1H); 3C NMR (125.4 MHz, CDCls) § 162.1 (d, J = 246.7 Hz), 144.0,
134.7,129.9 (d, J = 8.7 Hz), 129.6 (2C), 128.1 (2C), 127.4 (d, J = 3.2 Hz), 123.5, 123.4, 118.4 (d,
J=23.0Hz),85.5(d, J=3.3Hz), 83.8,52.8,47.2,42.1,41.3, 35.9, 21.4; *°F NMR (564.7 MHz,
CDCls) § —112.7 (1F); HRMS (TOF MS ES+) m/z calcd for CaoH1sCIFNO2SNa (M + Na)*

414.0707, found 414.0716.

OH
Me0\©/
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3-(3-methoxyphenyl)prop-2-yn-1-ol (2.14) was prepared according to Method B. The following
amounts of reagents were used: 1-iodo-3-methoxybenzene (0.60 mL, 5.0 mmol, 1.0 equiv),
propargyl alcohol (0.32 mL, 5.5 mmol, 1.1 equiv), Pd(PPh3).Cl, (35 mg, 50. umol, 1.0 mol %),
Cul (19 mg, 0.10 mmol, 2.0 mol %), EtzN (10. mL, 0.01 M in Cul). The compound was purified
using flash column chromatography (20% EtOAc/hexanes) to afford the title compound as a
yellow oil (757 mg, 4.67 mmol, 93%). TLC Rt = 0.14 (20% EtOAc/hexanes, KMNO;4 stain) *H
NMR (500 MHz, CDCl3) & 7.24-7.21 (m, 1H), 7.03 (d, J = 7.6 Hz, 1H), 6.97 (s, 1H), 6.88 (dd, J

= 8.3 Hz, 1.8 Hz, 1H), 4.52 (s, 2H), 3.80 (s, 3H), 1.72 (br s, 1H). Analytical data consistent with

(0]
H
MeOO/

3-(3-methoxyphenyl)propiolaldehyde (2.15) was prepared according to Method D. The

literature values.?*

following amounts of reagents were used: 2.14 (249 mg, 1.53 mmol, 1.00 equiv), oxalyl chloride
(0.17 mL, 2.0 mmol, 1.3 equiv), dimethylsulfoxide (0.13 mL, 1.8 mmol, 1.2 equiv), EtsN (0.64
mL, 4.6 mmol, 3.0 equiv), CH>Cl> (5.4 mL, 0.37 M in oxalyl chloride). The compound was
purified using flash column chromatography (0-20%) to afford the title compound as a yellow oil
(144 mg, 0.899 mmol, 59%). TLC R = 0.51 (20% EtOAc, KMNOj stain) 'H NMR (400 MHz,
CDCl3) 6 9.40 (s, 1H), 7.29 (t, J = 8.4 Hz, 1H), 7.18 (dt, J = 7.6 Hz, 1.2 Hz, 1H), 7.09 (dd, J = 2.6
Hz, 1.4 Hz, 1H), 7.02 (dd, J = 8.3 Hz, 2.6 Hz, 1H), 3.79 (s, 3H). Analytical data are consistent

with literature values.?®
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4-chloro-2-((3-methoxyphenyl)ethynyl)-1-tosylpiperidine (2.16) was prepared according to
Method E. The following amounts of reagents were used: 2.15 (290 mg, 1.8 mmol, 1.5 equiv), 2.2
(0.60 mL, 2.0 M in CeHsCF3, 1.2 mmol, 1.0 equiv), FeClz (292 mg, 1.80 mmol, 1.50 equiv),
BmimPFs (0.37 mL, 1.8 mmol, 1.5 equiv), C¢HsCF3 (18 mL, 0.10 M in XX). The compound was
purified using flash column chromatography (0-20% EtOAc/hexanes) to afford the title compound
as a yellow, crystalline solid (156 mg, 0.386 mmol, 32%, >20:1 dr trans:cis). The dr was
determined based on the integration of resonances attributed to Hg in the *H NMR. TLC Rf= 0.50
(20% EtOAc/hexanes); m.p. 115-117 °C; *H NMR (600 MHz, CDCl3) § 7.71 (d, J=8.3 Hz, 2H),
7.22 (d, J = 8.0 Hz, 2H), 7.14 (t, J = 7.8 Hz, 1H), 6.83 (ddd, J = 8.4 Hz, 2.6 Hz, 0.8 Hz, 1H), 6.56
(d, J = 7.6 Hz, 1H), 6.50 (dd, J = 2.5 Hz, 1.4 Hz, 1H), 5.12 (br s, 1H), 4.19 (tt, J = 12.0 Hz, 4.2
Hz, 1H), 3.84 (dquint., J = 12.5 Hz, 2.1 Hz, 1H), 3.77 (s, 3H), 2.97 (td, J = 12.5 Hz, 2.6 Hz, 1H),
2.38 (ddt, J = 12.7 Hz, 4.6 Hz, 2.5 Hz, 1H), 2.30 (s, 3H), 2.23 (m, 1H), 2.16 (td, J = 12.4 Hz, 4.8
Hz, 1H), 1.97 (qd, J = 12.6 Hz, 4.8 Hz, 1H); 3C NMR (150.9 MHz, CDCls) § 159.3, 144.0, 134.8,
129.6 (2C), 129.3, 129.1 (2C), 124.1, 122.8, 117.1, 114.1, 87.5, 82.6, 55.2, 52.9, 47.3, 41.9, 41.4,
35.8, 21.3; HRMS (TOF MS ES+) m/z calcd for C21H22CIFNOsSNa (M + Na)* 426.0907, found

426.0903.
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3-(3-(methylthio)phenyl)propiolaldehyde (2.17) was prepared according to Method D on a 1.68
mmol scale in quadruplicate. The following amounts of reagents were used: 3-(3-
(methylthio)phenyl)prop-2-yn-1-ol (synthesized from the corresponding aryl bromide following
Method B, 299 mg, 1.68 mmol, 1.00 equiv), oxalyl chloride (0.19 mL, 2.2 mmol, 1.3 equiv),
dimethylsulfoxide (0.14 mL, 2.0 mmol, 1.2 equiv), EtsN (0.71 mL, 5.0 mmol, 3.0 equiv), CH2Cl>
(55 mL, 040 M in oxalyl chloride). The compound was purified using flash column
chromatography (0-65% CH2Clz/hexanes) to afford the title compound as an orange oil (649 mg,
3.68 mmol, 55%). TLC Rf = 0.42 (65% CH:Clz/hexanes, KMNOj; stain); *H NMR (400 MHz,
CDCl3) & 9.43 (s, 1H), 7.45 (br s, 1H), 7.40-7.28 (m, 3H), 2.51 (s, 3H); 3C NMR (125.4 MHz,

CDClI3) 6 176.7, 140.0, 130.1, 129.6, 129.3, 129.0, 120.2, 94.5, 88.5, 15.5.

2.0% nOe
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H H
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4-chloro-2-((3-(methylthio)phenyl)ethynyl)-1-tosylpiperidine (2.18) was prepared according to
Method E. The following amounts of reagents were used: 2.17 (625 mg, 3.55 mmol, 1.50 equiv),
homoallylic amine (533 mg, 2.37 mmol, 1.00 equiv), FeCls (578 mg, 3.55 mmol, 1.50 equiv),
BmimPFs (0.73 mL, 3.55 mmol, 1.50 equiv), Ce¢HsCF3 (23 mL, 0.10 M in aldehyde). The
compound was purified using flash chromatography (0-20% EtOAc/hexanes) to afford the title
compound as a yellow oil (313 mg, 0.745 mmol, 21%, >20:1 dr trans:cis). TLC Rs = 0.61 (20%
EtOAc/hexanes, KMNO; stain); *H NMR (500 MHz, CDCls3) § 7.71 (d, J = 8.2 Hz, 2 H), 7.23 (d,

J=8.1Hz, 2H), 7.19-7.11 (m, 2H), 6.85 (s, 1H), 6.76 (m, 1H), 5.13 (br s, 1H), 4.18 (it, J = 12.0,
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4.2 Hz, 1H), 3.88-3.82 (m, 1H), 2.96 (td, J = 12.5, 2.5 Hz, 1H), 2.46 (s, 3H), 2.42-2.34 (m, 1H),
2.32 (s, 3H), 2.24 (ddd, J = 12.9, 4.1, 1.9 Hz, 1H), 2.17 (td, J = 12.5, 4.7 Hz, 1H), 1.98 (ddd, J =
25.1,12.6, 4.8 Hz, 1H); 13C NMR (125.8 MHz, CDCls) & 144.0, 139.0, 134.8, 129.6 (2C), 129.5,

128.7,128.2 (3C), 126.7, 122.4, 87.3, 83.3, 53.0, 47.4, 42.1, 41.5, 36.0, 21.6, 15.8.

2.1% nOe

TsN /\ He
. TsN TsN

H, cl —_/CiH

P cl
0 7 >t H\H\Z(\/)
. H
<O A R ¢ R&L d 2.0% nOe
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2-(benzo[d][1,3]dioxol-5-ylethynyl)-4-chloro-1-tosylpiperidine (2.19) was prepared according
to Method E. The following amounts of reagents were used: 3-(benzo[d][1,3]dioxol-5-
yl)propiolaldehyde (synthesized from the corresponding aryl bromide, following Methods B and
D, 453 mg, 2.60 mmol, 1.50 equiv), homoallylic amine (389 mg, 1.73 mmol, 1.00 equiv), FeCl3
(422 mg, 2.60 mmol, 1.50 equiv), BmimPFe (0.54 mL, 2.60 mmol, 1.50 equiv), CeHsCF3 (26 mL,
0.10 M in aldehyde). The compound was purified using flash chromatography (0-20%
EtOAc/hexanes) to afford the title compound as a white solid (119 mg, 0.285 mmol, 16%, >20:1
dr trans:cis). TLC Rf = 0.45 (20 % EtOAc/hexanes, KMNOs stain); m.p. 134-136 °C; 'H NMR
(500 MHz, CDCl3) & 7.71 (d, J = 8.2 Hz, 2H), 7.24 (d, J = 8.1 Hz, 2H), 6.66 (d, J = 8.0 Hz, 1H),
6.53 (dd, J = 8.0, 1.3 Hz, 1H), 6.33 (s, 1H), 5.96 (s, 2H), 5.10 (br s, 1H), 4.18 (tt, J = 12.0, 4.2,
1H), 3.88-3.81 (m, 1H), 2.95 (td, J = 12.5, 2.4 Hz, 1H), 2.39-2.33 (m, 4H), 2.26-2.19 (m, 1H),
2.15 (td, J = 12.4, 4.7 Hz, 1H), 1.97 (ddd, J = 25.1, 12.6, 4.8 Hz, 1H); 13C NMR (125.8 MHz,
CDCl3) & 148.2, 147.4, 143.9, 135.0, 129.6 (2C), 128.2 (2C), 126.3, 114.9, 111.6, 108.4, 101.5,

87.7,81.2,53.1,47.4,42.1, 41.6, 36.0, 21.5.
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4-chloro-2-((3,5-dimethylphenyl)ethynyl)-1-tosylpiperidine (2.20) was prepared according to
Method E. The following amounts of reagents were used: 3-(3,5-dimethylphenyl)propiolaldehyde
(synthesized from the corresponding aryl bromide, following Methods B and D, 400 mg, 2.53
mmol, 1.50 equiv), homoallylic amine (380 mg, 1.69 mmol, 1.00 equiv), FeClz (410 mg, 2.53
mmol, 1.50 equiv), BmimPFe¢ (0.52 mL, 2.5 mmol, 1.5 equiv), CéHsCF3z (25 mL, 0.10 M in
aldehyde). The compound was purified using flash chromatography (0-20% EtOAc/hexanes) to
afford the title compound as a white solid (147 mg, 0.366 mmol, 22%, >20:1 dr trans:cis). TLC
Rf = 0.65 (20% EtOAc/hexanes, KMNO; stain); m.p. 123-125 °C; *H NMR (400 MHz, CDCls)
§7.73 (d, J = 8.3 Hz, 2H), 7.25 (d, J = 8.0 Hz, 2H), 6.93 (s, 1H), 6.62 (s, 2H), 5.15-5.11 (m, 1H),
4.21 (tt, J = 12.0, 4.3 Hz, 1H), 3.88-3.80 (m, 1H), 2.98 (td, J = 12.5, 2.6 Hz, 1H), 2.42-2.35 (m,
1H), 2.33 (s, 3H), 2.28-2.21 (m, 7H), 2.17 (td, J = 12.8, 4.8 Hz, 1H), 1.98 (qd, J = 12.7, 4.8 Hz,

1H).

2.1% nOe
TsN N
Me M cl //\ e
e é
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Me H ci TR T
\JH! H, Hn )
. R Hd R klst RN
o S 2.1% nOe
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0.0% nO
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4-chloro-2-((3,5-di-tert-butylphenyl)ethynyl)-1-tosylpiperidine (2.21) was prepared according
to Method E. The following amounts of reagents were used: 3-(3,5-di-tert-

butylphenyl)propiolaldehyde (synthesized from the corresponding aryl bromide, following
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Methods B and D, 688 mg, 3.03 mmol, 1.50 equiv), homoallylic amine (455 mg, 2.02 mmol, 1.00
equiv), FeCls (492 mg, 3.03 mmol, 1.50 equiv), BmimPFs (0.62 mL, 3.0 mmol, 1.5 equiv),
CeHsCF3 (30. mL, 0.10 M in aldehyde). The compound was purified using flash chromatography
(0-20% EtOAc/hexanes) to afford the title compound as a white solid (354 mg, 0.728 mmol, 36%,
>20:1 dr trans:cis). TLC Rf = 0.68 (20% EtOAc/hexanes, KMNOj; stain); m.p. 117-120 °C; *H
NMR (500 MHz, CDCls) § 7.75 (d, J = 8.2 Hz, 2H), 7.36 (s, 1H), 7.21 (d, J = 8.0 Hz, 2H), 6.93
(s, J = 1.6 Hz, 2H), 5.19 (br s, 1H), 4.26 (tt, J = 12.0, 4.2 Hz, 1H), 3.86-3.78 (m, 1H), 3.02 (td, J
=12.2, 1.7 Hz, 1H), 2.45-2.38 (m, J = 1H), 2.28-2.21 (m, 4H), 2.17 (td, J = 12.4, 4.7 Hz, 1H),
1.97 (ddd, J = 25.1, 12.6, 4.9 Hz, 1H), 1.30 (s, 18H); 13C NMR (125.8 MHz, CDCls) § 151.0 (2C),
143.7, 135.2, 129.5 (2C), 128.2 (2C), 125.7 (2C), 123.2, 121.0, 88.8, 81.6, 53.2, 47.5, 42.0, 41.8,

36.1, 34.9, 31.5 (7C), 21.6.

2.2% nOe
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TsN Ts
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H cl ciHs
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"/ H Hb k‘H R
X R d R A JHa 1.9% nOe
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1.7% nOe
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4-chloro-2-(p-tolylethynyl)-1-tosylpiperidine (2.22) was prepared according to Method E. The
following amounts of reagents were used: 3-(p-tolyl)propiolaldehyde (prepared from the
corresponding aryl halide following Methods B and F, 518 mg, 3.59 mmol, 1.50 equiv),
homoallylic amine (538 mg, 2.39 mmol, 1.00 equiv), FeCls (582 mg, 3.59 mmol, 1.50 equiv),
BmimPFes (0.74 mL, 3.59 mmol, 1.50 equiv), CeHsCFs (36 mL, 0.10 M in aldehyde). The
compound was purified using flash chromatography (0-20% EtOAc/hexanes) to afford the title
compound as a yellow solid (600. mg, 1.57 mmol, 66%, >20:1 dr trans:cis). TLC Rs = 0.68

(EtOAc/hexanes, KMNO; stain); m.p. 109-111 °C; *H NMR (600 MHz, CDCls) 6 7.70 (d, J =
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8.3 Hz, 2H), 7.21 (d, J = 8.0 Hz, 2H), 7.03 (d, J = 7.8 Hz, 2H), 6.86 (d, J = 8.1 Hz, 2H), 5.13-5.10
(m, 1H), 4.20 (tt, J = 12.0, 4.3 Hz, 1H), 3.90-3.77 (m, 1H), 2.96 (td, J = 12.5, 2.6 Hz, 1H), 2.40—
2.34 (m, 1H), 2.32 (s, 3H), 2.29 (s, 3H), 2.26-2.20 (m, 1H), 2.15 (td, J = 12.4, 4.8 Hz, 1H), 1.96
(ddd, J = 25.1, 12.7, 4.8 Hz, 1H); 3C NMR (125.8 MHz, CDCl3) § 143.8, 138.9, 134.9, 131.5

(2C), 129.6 (2C), 129.0 (2C), 128.1 (2C), 118.7,87.9,82.1,53.1, 47.4, 42.0, 41.6, 36.0, 21.6, 21.5.

2.3‘%3 nOe
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P ol Ha Cl i _Lci
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g ~ R M R‘yi?;"'d "1.8% nOe

3 1.6% nOe P
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2.0% nOe
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T
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4-chloro-1-tosyl-2-((4-(trifluoromethyl)phenyl)ethynyl)piperidine  (2.23) was prepared
according to Method E. The following amounts of reagents were used: 3-(4-
(trifluoromethyl)phenyl)propiolaldehyde (synthesized from the corresponding aryl halide
following Methods B and D, 522 mg, 2.63 mmol, 1.50 equiv), homoallylic amine (394 mg, 1.75
mmol, 1.00 equiv), FeCls (427 mg, 2.63 mmol, 1.50 equiv), BmimPFe (0.54 mL, 2.62 mmol, 1.50
equiv), CeHsCFs (26 mL, 0.10 M in aldehyde). The compound was purified using flash
chromatography (0-20% EtOAc/hexanes) to afford the title compound as an orange solid (310 mg,
0.702 mmol, 40%, >20:1 dr trans:cis). TLC Rs = 0.46 (EtOAc/hexanes, KMNQOj stain); m.p. 73—
75 °C; 'H NMR (600 MHz, CDCls) & 7.71 (d, J = 8.3 Hz, 2H), 7.49 (d, J = 8.1 Hz, 2H), 7.21 (d,
J=8.0 Hz, 2H), 7.08 (d, J = 8.0 Hz, 2H), 5.15 (br s, 1H), 4.16 (tt, J = 12.0, 4.2 Hz, 1H), 3.90-3.85
(m, 1H), 2.96 (td, J = 12.5, 2.6 Hz, 1H), 2.41-2.36 (M, 1H), 2.30-2.22 (m, 4H), 2.18 (td, J = 12.5,
4.8 Hz, 1H), 1.98 (ddd, J = 25.1, 12.7, 4.8 Hz, 1H); 3C NMR (125.8 MHz, CDCls) § 143.9, 134.9,
131.9 (2C), 129.6 (4C), 128.2 (4C), 125.2 (q, J = 3.7 Hz), 86.3, 85.6, 52.8, 47.3, 42.2, 41.3, 35.9,

21.5; 19F NMR (564.7 MHz, CDCl3) § —62.9 (3F).
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Chapter 3: Examining Structure and Reactivity
of Isolated Ru-MACHO® Dihydrides for

Reduction of CO, and Carbamates
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3.1 Introduction

Designing complex transformations of COz, enabled by transition metal catalysts, is a key
strategy for valorization of CO; to produce fuel and C1 building blocks.'® Research efforts focused
on decreasing the impact of CO2 emissions must work to design processes that generate high-value
products without requiring a high input of energy.* One method that addresses this concern is
combined CO; capture and CO- conversion. Current hydrogenation technology for this approach
requires harsh conditions and costly solvents.® The Prakash group and others have reported
efficient methods for capturing and converting CO- using amines.® ” Superbases such as DABCO
and TMG have been the most effective, and linear polyamines have also demonstrated the ability
to capture CO; in the form of carbamates.> 8 ° To hydrogenate these carbamates, homogenous Ru
pincer complexes are used as catalysts with molecular hydrogen to generate methanol.” However,
these methods typically require high temperatures (60—145 °C) and pressures (40-110 bar). If these
conversions can be performed using captured CO: in the form of carbamates and a Ru complex as
an electrocatalyst, the goal of an artificial photosynthetic approach to CO2 capture and conversion
using amines becomes more feasible.

The powerhouse hydrogenation catalyst Ru-MACHO® (3.1) has been widely utilized in
hydrogenation of CO.-captured products, including carbamates and hydroxide-captured CO2.1 >
10 Ru-MACHO-type catalysts (‘MACHO?’ describes PNP-pincer ligands with various alkyl or aryl
phosphines) have been utilized to perform catalytic hydrogenation of CO2, carbamates, and alkyl
carbonate salts to methanol.® These hydrogenations using carbamates and alkyl carbonate salts
demonstrate the strength of these catalysts, as substrates that are formed from CO. capture are
typically more challenging to transform.> ! Despite these advances in hydrogenation, little is

known about the reactive species responsible for hydrogenation with Ru-MACHO®. Many
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proposed mechanisms of hydrogenation feature trans-dihydride complexes, which align well with
previously reported Ru dihydride complexes.'? 1* Yet, despite widespread usage of Ru-MACHO®
and it’s analogues for hydrogenation, little has been reported regarding the active dihydride species
responsible for the reduction of substrates. The proposed structure most commonly featured in
hydrogenation literature is a trans-dihydride (3.2, Scheme 3.1), retaining the overall structure of
Ru-MACHO® by swapping the chloride ligand for a hydride, presumed to be from heterolysis of
H.. However, experimental and modeling data only assume the presence of this dihydride. *° The
goal of this work is to gain a more complete understanding of the reactivity of Ru-MACHO® and

COqy, for the purpose of utilizing Ru-MACHO® as an electrocatalyst for CO reduction.

Scheme 3.1. Methods of Reducing of Ru-MACHO in this Chapter

A. H Pl H SHN
(N,,,ﬁ'.\\Pth (Nu.'T' ~PPh;
Ru LiEtsBH (1.2 equi Ru
~ 3 .2 equiv)
P76 C0 PP OO
Ru-MACHO
Ru-MACHO Dihydride:
) "H,RUMACHO"
\’\(\.’l 3.2
H — ne \3
B. Ny, PPh, RARE
CRAS o
PhP” ¢ CO
Ru-MACHO
3.1

3.2 Results and Discussion
3.2.1 Synthesis and Characterization of H2Ru-MACHO Dihydrides

To access the proposed Ru-MACHO® dihydride, HRu-MACHO (3.2), two chemical
reduction methods were explored (vide infra). Initially, Super-Hydride® was utilized to produce
the proposed trans-dihydride 3.2 (Scheme 3.1A). This produced a single product observed by
NMR (Figure 3.1) but involved a challenging isolation from unreacted 3.1. The *H NMR spectrum

features broad peaks in the hydride region, which may be a result of the hydride atoms coordinating
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to Li atoms left behind following reduction with Super-Hydride® (Figure 3.1A), which would be

consistent with the isolated complex showing coordinating Li (vide infra).

A (s) B (m)
68.10 58.13
A. B
A(d) B (m)
-5.93 7.04
[
il
N \V‘ \ |
bl
V e
b \wmw«MWmWWWWM'W” ’ ) Ny
& &

-54 56 -58 -60 -62 -64 -66 68 -70 -7.2 -74 -76 -7.8 54 52

0 58 56
f1 (ppm) 1 (ppm)

Figure 3.1. NMR spectra of product isolated from Super-Hydride® reduction of Ru-MACHO® in THF-ds. A: 'H

NMR spectrum B: 3P NMR spectrum.

Alternative pathways of reduction of 3.1 were explored to allow for easier isolation of
dihydride. NaBH4 could not be utilized, as reacting 3.1 with NaBHj is the synthetic route for
generating Ru-MACHO-BH.! Instead, NaH was used to reduce 3.1 at 40 °C for 7 days. Complete
conversion to the reduced dihydride could be observed by NMR after cooling to room temperature

(Figure 3.2).

B (m)| A (dd)

5.98 -6.72 A(s) B (d)
A. — —_—— B. 67.76 57.55
— —
‘"
w N
| I
| |
(i H“ \
il I
: I
—— T ———— - - - - . . ; T T ; ;
-5.5 -5.7 -5.9 -6.1 -6.3 -6.5 f (p;)?ng -6.9 -7.1 2 70 68 6 58 56 54 52 5C

64 62 60
f1 (ppm)

Figure 3.2. NMR spectra of product isolated from NaH reduction of Ru-MACHO® in THF-ds. A: *H NMR spectrum
B: 3P NMR spectrum.
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NaH reduction of 3.1 was repeated at a slightly elevated temperature (50 °C versus 40 °C).
The isolated product showed a singular peak in the hydride region by *H NMR and one doublet in
the 3P NMR spectrum (Figure 3.3). The hydride peak integration increased to two, corresponding

to a dihydride with equivalent hydride atoms.

A (d)

A (dd) 55.94
A' -6.49 B —
—_
T T T T T = T T T T T T T T T T T T
0 -61 -62 -63 -64 -65 -66 -6.7 -6.8 -6.9 -7. 62 60 58 56 54 52 50

f1 (ppm) f1 (ppm)

Figure 3.3. NMR spectra of product isolated from NaH reduction of Ru-MACHO® in THF-dg at 50 °C. A: *H NMR
spectrum B: 3P NMR spectrum.

3.2.1.1 Comparing NMR Data Across Methods

The NMR spectra of the products isolated from Super-Hydride® reduction versus NaH
reduction bare striking similarities (Table 3.1, entries 1-4). In contrast, the product isolated
following NaH reduction at 50 °C shows a singular doublet present in the 3P NMR spectrum with
a coupling constant that clearly matches the observed coupling present in the hydride region of the
H NMR spectrum (Table 3.1, entry 6), further supporting the formation of a dihydride product.
As NaH is commonly used as a base, the unknown dihydride may have resulted from deprotonation
of the amine in the pincer ligand. Another plausible explanation could be that the PNP ligand

detached and reattached, causing some type of isomerization to occur.
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NMR Distinct | & Shift T J-coupling .
Entry | Reductant Nucleus | Peaks (opm) Multiplicities (H2) Integration
] -5.93, | Broad multiplet
1 ! -
1 LiEts:BH H 2 7.04 | broad multiplet 1H, 1H
. 68.1 Broad singlet
31 1 H _
2| LIEGBH P 2 58.1 | broad multiplet P, 1P
) Multiplet, _
3 NaH 1H 2 ‘2382' doupletof | 94792114y 1h
e doublets '
67.8 Broad singlet
31 1 H =
4 NaH P 2 578 doublet d=925 1P, 1P
Doublet of dd =92.9
a 1 _ !
5 NaH H 1 6.49 doublets 228 2H
62 NaH sip 1 55.9 Doublet d=90.9 2P

Table 3.1. Summary of NMR data collected from Ru-MACHO® reductions in THF-dg. A: Reduction run at 50 °C.

3.2.1.2 Crystal Structures

Two crystals suitable for x-ray diffraction were isolated using the product isolated from
Super-Hydride® reduction. The recrystallization techniques explored are listed in Table 3.2, with
entry 11 representing the conditions used to isolate the following crystal structures. However, the

complexes isolated for x-ray diffraction showed two distinct cis-dihydride complexes, 3.3 and 3.4.

Entry | Solvent | °C | Co-solvent | Well Size? Result
1 toluene 25 pentane large powder
2 toluene | -40 pentane large powder
3 toluene 25 pentane small sir:::s
4 toluene | -40 pentane small needles
5 toluene | -40 pentane small powder
6 THF 25 pentane large powder
7 THF 25 pentane small powder
8 THF -40 none small none
9 THF -40 none medium none

10 THF -40 none large none
11 THF -40 pentane large crystals

Table 3.2 Selected recrystallization trials. ®Recrystallization trials were setup in 20 mL scintillation vials with internal
glass wells of varying sizes: Large well = 1 dram shell vial, flat bottom; medium well = 0.5 dram shell vial, flat bottom;
small well =5 mm glass tube.
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Figure 3.4 shows the first structure elucidated (3.3), including two cis-dihydride complexes
bridged by a coordinating Li atom, likely leftover from Super-hydride® use. The N atom in the
ligand backbone is deprotonated in both hydrides, and lithiated to Li atoms likely left behind

following Super-Hydride® reduction.

THF,  THF

H/Li\H

Figure 3.4. A: Crystal structure of 3.3. Thermal ellipsoids are drawn at 50% probability. Non-hydride hydrogen atoms
and non-coordinating solvent molecules are omitted for clarity. B: ChemDraw showing 3D line structure.

A second single crystal was grown using conditions identical to those described above
following Super-Hydride® reduction (Figure 3.5). The resulting structure (3.4) was markedly
different than the first, with no coordinating Li atoms present and a protonated nitrogen atom. The
hydride atoms are still cis to each other, and the crystal lattice (not depicted here) shows an unusual
hydrogen bonding interaction between two dihydride complexes, where the amine proton in one
molecule is donating to a hydride atom in another molecule. This indicates that the hydride atom
is so electron dense, it is acting as a hydrogen bonding acceptor, which has been observed in other
systems.® This interaction is unlikely to occur in solution but some complex *H NMR splitting

may be observed between molecules in solution using a NMR spectrometer with a stronger field.
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Figure 3.5. A: Crystal structure of 3.4. Thermal ellipsoids are drawn at 50% probability. Non-hydride and N-H

CO Ph,

hydrogen atoms and solvent molecules are omitted for clarity. B: ChemDraw showing 3D line structure.

It is unclear why these recrystallization conditions produced two different crystal
structures. The most likely explanation is that the lithiated, deprotonated dihydride complexes
crystallized using Li atoms for stability. Failed crystallization conditions typically yielded small,

needle-shaped crystals, which were generally of poor quality. However, the consistent positioning

of the hydrides indicates that the preferred geometry (cis-dihydride) is being observed.

Bond? | Distance (A)2 | Bond® | Distance (A)®
Rul-H1 1.577 Rul-H1 1.536
Rul-H2 1.688 Rul-H2 1.604
Ru2-H3 1.455 - -
Ru2-H4 1.687 - -

Table 3.3. Metal-hydride bond lengths determined experimentally via X-ray crystallography. Structural information

from 3.3. PStructural information from 3.4.

Structurally, observation of a cis-dihydride complex was not expected. It is also of note

that the Ru-H bond lengths vary from 3.3 to 3.4 (Table 3.3). Ru' dihydrides are known, but
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typically contain diphosphine ligands or require cis-trans isomerization before reactivity can be
observed.'® 17 In one example, a Ru-dihydride complex forms both cis- and trans-dihydride
isomers, although only the cis-dihydride is consumed for the reduction of a carbonate substrate.
However, both isomers were consumed in the reduction of CO> in solution.’® The same cis-
dihydride is presumed to isomerize to the trans-dihydride following reversible hydride transfer
from formate (Scheme 3.2). In contrast, 3.4 reacts to completion with CO», and the generated
formate then coordinates to the Ru complex. No hydride transfer from formate to the Ru complex

was observed, indicating 3.4 is a stronger hydride donor than formate.

Scheme 3.2. Mechanism of cis-trans isomerization (Heldebrant, 2016)

M CO;  [HCOOT | M\ " [Hcoor  co, ;
b P p P P P_T_P
R i o et
/R|U\P b Y~ O\ Pl P
H co,  [HCOOT [HCOO]  CoO,
35

P
< = CH3N[CH,P(CH,CHj3),]
p

A few structural comparisons can be made between 3.4 and Heldebrant’s cis-dihydride
(3.5); while both complexes contain 6-coordinate octahedral Ru'" and PNP ligands, 3.4’s singular
PNP ligand binds tridentate to Ru while 3.5 includes two bidentate PNP ligands. The greater degree
of movement allowed by 3.5’s bidentate ligands may explain the ease of isomerization. In an effort
to observe any possible isomerization of 3.4 to another isomer, a sample of 3.4 in THF-dg was
heated to 50 °C in an NMR tube for 30 minutes. No spectral changes could be observed via H
NMR and 3P NMR (*H coupled and decoupled). This likely indicates that 3.4 is the strongly
preferred isomer. While X-ray crystal structures have yet to be produced of the NaH-reduced
compound, the dihydride structure 3.4 is presumed to be the product isolated following NaH

reduction.
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3.2.2 Reactivity of Isolated H2Ru-MACHO
3.2.2.1 Stoichiometric Reactivity of Isolated H.Ru-MACHO and CO:

Following NaH reduction of Ru-MACHO® (for experimental details, vide infra), the
isolated dihydride product 3.4 was utilized in stoichiometric experiments with CO2. The parent
complex 3.1 does not display reactivity with CO. at ambient conditions, so any present starting
material present would not impact formate production.® X© The reducing agents used to generate

3.4 are also known not to have CO> reduction activity.

A. B.
31 cis-3.6 trans-3.6
VAT VAT VAT
HN,{'}' PPh, HN,,FI| \PPh;, HN,{'}' \PPh;,
[ Ru [ Ru’ [o) [ Ru’
PP | Yoo PmP7 | \oJ< PnsP” | Yo
, cl o}
o o) H o__oO
& L% \f
- : : : — H
e e R cis-3.6:trans-3.6 1:5.5

Figure 3.6. A: 'H NMR of hydride region (-14 ppm to —18 ppm) after exposing Super-Hydride®-reduced Ru-
MACHO® to 1 atm of CO; in THF-ds. B: Products formed after CO; reduction.

Starting with gaseous CO, a solution of 3.4 in THF-ds was exposed to 1 atm of CO; for 30
minutes. After 30 minutes, complete conversion of dihydride to formylated Ru'" complexes (cis-
3.6 and trans-3.6 in Figure 3.6B) was observed by NMR (Figure 3.6A). The formation of the
formyl complex trans-3.6 at § —17.1 ppm has been reported previously by Prakash,® while the
structure of the cis-dihydride complex at 6 —17.3 ppm (cis-3.6) is proposed here based on the
identical proton coupling constants between both triplet peaks.’® HSQC was also performed to
support the production of formate (Figure 3.7). A correlation between formyl proton and carbon
of Ru-bound-formate is visible between peaks at & 8.01 ppm from the 'H NMR spectrum and &

179.6 ppm from the '*C NMR spectrum (Figure 3.7). Excitingly, this observed reactivity shows
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that 3.4 displays the same COz-reduction capability of hydride complexes typically used for

electrocatalytic CO2 conversion.®

RuMACHO CO2, shaken
gHSQC
r20

r40
r60
r80

r100

f1 (ppm)

r120

140

160

180

200

220

7
f2 (ppm)

Figure 3.7. HSQC (x-axis: H; y-axis: *3C) of NMR-scale experiment with reduced Ru-MACHO® under 1 atm of
CO, in THF-ds.

3.2.2.2 Stoichiometric Reactivity of H2Ru-MACHO with Dimethylammonium Dimethyl
Carbamate
Hydrogenation with Ru-MACHO® may occur under high temperatures and pressure,
however, in order to design a mild electrochemical alternative it would be ideal to see reducing
activity from the Ru-MACHO-dihydride at room temperature. To this end, an NMR-scale
experiment was performed, where NaH-reduced Ru-MACHO® was treated with excess (greater

than 5 equiv) of dimethylammonium dimethyl carbamate, a commercially available and THF-
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soluble carbamate that serves as a proxy for a captured-CO; substrate. It is also of note that the
dihydride was exposed to air during the reaction, but no evidence of decomposition was observed
by NMR. Spectra were obtained approximately 20 minutes following carbamate addition (Figure
3.8), and clearly show the formation of formate and some hydrogen by *H NMR. The major peak
present in the 3P NMR spectrum is a broad singlet, with some trace dihydride leftover. A single
triplet is present in the hydride region at —17.3 ppm. These peaks are attributed to the formation of
a Ru(Il) complex that is not a dihydride, but is also not a formylated complex, or Ru-MACHO®.
However, with the return of the splitting observed in the *P{*H} NMR spectrum of Ru-
MACHO®), this new data indicates that the resulting complex has the same degree of symmetry

as the parent Ru-MACHO®.

| formate ”
~\

| ~ ]\l

‘ i
\ | A
DS S B VYA VAV WL

H> H

|
N A Al AN
L A N gt A e st VeV N et \~MW\,W\,««»a‘ww‘w,MW,M\WWM VAt

T T T T T T T T T T T T
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: T T T T T T
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Figure 3.8. NMR spectra after adding excess dimethylammonium dimethyl carbamate to 3.4 in THF-ds. A: *H NMR
spectrum, formyl proton and H; peaks are labeled. B: 3P NMR spectrum.

3.3 Conclusion

A cis-Ru-MACHO-dihydride was isolated, characterized, and assessed for stoichiometric
CO2 and carbamate reduction activity. This study reports structural information regarding the
proposed Ru-MACHO® dihydride responsible for many hydrogenation reactions involving
captured-CO,. Future work will rely heavily on this established reactivity with the purpose of

designing a mild electrochemical method utilizing Ru-MACHO® as an electrocatalyst.
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3.4 Experimental Details

Solvents were degassed by sparging with argon gas and dried by passage through columns
of activated alumina or molecular sieves. Deuterated solvents were purchased from Cambridge
Isotopes Laboratories, Inc. and were degassed and stored over activated 3 A molecular sieves prior
to use. *H NMR spectra were recorded on Bruker DRX-400 (400 MHz *H), GN-500 (500 MHz
H, 125.4 MHz *3C), CRY0-500 (500 MHz *H, 125.8 MHz 3C), or AVANCE-600 (600 MHz *H,
150.9 MHz 13C, 564.7 MHz °F) spectrometers. NMR data were collected at 25 °C unless otherwise
noted. NMR data are reported as follows: chemical shift (multiplicity [singlet (s), broad singlet (br
s), doublet (d), doublet of doublets (dd), triplet (t), doublet of triplets (dt), doublet of doublet of
triplets (ddt), quartet (q) quintet (quin), sextet (sextet), apparent doublet (ad), multiplet (m)],
coupling constants [Hz], integration). Chemical shifts are reported in ppm (8). X-ray diffraction
data were obtained at the UCI Department of Chemistry X-ray Crystallography facility using a
Bruker X8 Prospector APEX Il diffractometer. X-ray data were collected at 92 K, and APEX3%°
program package was used to determine the unit-cell parameters and for data collection (10
sec/frame scan time). The raw frame data was processed using SAINT?! and SADABS?? to yield
the reflection data file. Subsequent calculations were carried out using the SHELXTL? program
package. Infrared (IR) absorption data were collected on a Thermo Scientific Nicolet iS5 FTIR
spectrometer. Reagents were purchased from commercial vendors and used without further
purification unless otherwise noted. Metal complex Ru-MACHO® was purchased from STREM
Chemicals, Inc. and used without further purification. Impurities present in the 3'P NMR spectrum

of Ru-MACHO® in THF-ds are labeled below:
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Ru-MACHO

Dichloride PNP oxide
unidentified
T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T
70 68 66 64 62 60 58 56 54 52 48 46 44 42 40 38 36 34 32 30 28 26 24
f1 (ppm)

Figure 3.9. 'H NMR Spectra of Ru-MACHO® from STREM Chemicals in THF-ds. Impurities are labeled and were
present following opening of the purchased bottle in a glovebox.

3.4.1.1 Method A: Superhydride® Reduction

This procedure is adapted from a procedure reported by Milstein.?* In a glovebox, an oven-
dried 20 mL scintillation vial equipped with a stir bar was charged with Ru-MACHO®, and THF,
and the resulting suspension was allowed to stir for 30 min. The reducing agent LiEtsBH (Super-
Hydride®) was added dropwise and the reaction mixture continued to stir for 3 h at room
temperature. The resulting yellow solution was concentrated en vacuo and washed with pentane
(x 3). After washing, the residual pale yellow solid was brought up in toluene, filtered, and
concentrated en vacuo.
3.4.1.2 Method B: NaH Reduction

In a glovebox, an oven-dried 20 mL scintillation vial equipped with a stir bar was charged
with Ru-MACHO®, NaH, and THF. The suspension was allowed to stir at 45°C for 18 h. The
resulting yellow solution was cooled to room temperature and filtered through celite. The filtrate

was concentrated en vacuo and washed with pentane (x 3), producing a pale yellow powder.
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3.4.1.3 Method C: Stoichiometric CO2 Reduction

In a glovebox, a J-Young NMR tube was charged with 0.75 mL of a solution of 3.4 (3 mg,
5 pmol) in THF-ds. The J-Young NMR tube was attached to a Schlenk line connected to a CO>
gas cylinder, and was freeze-pump-thawed with CO, (x 3) to ensure proper incorporation of COo.
The J-Young tube was sonicated for 60 s and NMR spectra were obtained immediately.
3.4.1.4 Method D: Stoichiometric Carbamate Reduction

In a glovebox, a J-Young NMR tube was charged with 0.75 mL of a solution of 3.4 (3 mg,
5 pmol) in THF-dg. Dimethylammonium dimethyl carbamate (0.03 mL, 2 mmol) was added to the
solution. The J-Young tube was agitated for 1 h and NMR spectra were obtained immediately
after.

3.4.2 Characterization Data for Ru-MACHO Dihydride

co CO
PPh, | PPh, H, | PPhy

H( <T>>H = H,/Flu:pﬁhz

H H

CogH31NOP,RuU
Carbonyldihydrido bis[2-(diphenylphosphinomethyl)ethyllaminoethyl]amino ruthenium
(1) (3.4) Characterization data reported herein is from product isolated via Method B. The
following amounts of reagents were used: Ru-MACHO® (45 mg, 0.07 mmol, 1.0 equiv), NaH (4
mg, 0.17 mmol, 2.4 equiv), THF (10 mL). Yield = 100% (based on complete conversion observed
via crude NMR); *H NMR (600 MHz, THF-dg) 6 7.79 (dd, J = 11.4 Hz, 6.1 Hz, 2H), 7.86 (m,
4H), 7.72 (m, 8H), 7.07 (m, 2H), 7.02 (m, 2H), 6.88 (atd, J = 7.9 Hz, 1.4 Hz, 2H), 6.14 (br s, 1H),
5.51 (brt, J = 10.7 Hz, 1H), 3.23 (br t, J = 21.0 Hz, 1H), 2.81 (ad, J = 11.1 Hz, 1H), 2.34 (m, 4H),
2.15 (d, J = 5.2 Hz, 1H), 1.87 (m, 1H), —6.00 (m, 1H) —6.69 (dd, J = 92.0 Hz, 22.6 Hz, 1H); 13C

NMR (125.8 MHz, THF-ds) & 188.9 (s), 135.6 (s), 134.1 (s), 131.1 (s), 129.6 (d, J = 56.1 Hz),
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62.6 (s), 30.1 (s); 3P NMR (242.9 MHz, THF-dg) 5 67.72 (br s, 1P), 57.70 (d, J = 90.2 Hz, 1P);
31p {1H} NMR (242.9 MHz, THF-dg) & 67.72 (br s, 1P), 57.49 (br s, 1P); IR (neat) 2849, 1894,
1856, 1829, 1541, 1481, 1453, 1432, 1403, 1352, 1096 cm™*; HRMS (TOF MS ES+) m/z calcd
for C29H30NOP2Ru (M — H)" 566.0879, found 566.087; X-ray Crystallography (generated from

crystals isolated following Method A):

Identification code

Jyy267 (Alissa Matus)

Empirical formula

ng H31 N O Pz Ru ‘2(C4H80)

Formula weight

716.76

Temperature 93(2) K
Wavelength 1.54178 A
Crystal system Triclinic
Space group P1

Unit cell dimensions

a=10.3555(6) A o =75.125(2)°.

b=12.7396(7) A B =73.399(2)°.

c=13.9772(8) A y=86.148(2)°.

Volume 1707.83(17) A3

z 2

Density (calculated) 1.394 Mg/m3

Absorption coefficient 4.884 mm-!

F(000) 748

Crystal color colorless

Crystal size 0.195 x 0.151 x 0.137 mm3
Theta range for data collection 3.406 to 68.824°

Index ranges

-12<h<12,-15<k<15,-16<1<16

Reflections collected

47693

Independent reflections

6263 [R(int) = 0.0375]

Completeness to theta = 67.679°

99.8 %

Absorption correction

Semi-empirical from equivalents

Max. and min. transmission

0.5213 and 0.4143

Refinement method

Full-matrix least-squares on F2

Data / restraints / parameters

6263 /0 /454
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Goodness-of-fit on F2 1.058

Final R indices [I>2sigma(l) = 6122 data] R1 =0.0213, wR2 = 0.0526
R indices (all data, 0.83 A) R1=0.0218, wR2 = 0.0528
Largest diff. peak and hole 0.478 and -0.366 e.A-3
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APPENDIX A: Electrochemical Activity of Ru-

MACHO® for CO, Reduction
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A.1 Introduction

Metal hydride complexes with known reactivity for CO, hydrogenation make excellent
candidates for use as CO- reduction electrocatalysts. Recently, the Yang group demonstrated the
use of a Co hydrogenation catalyst as a selective CO-to-formate electrocatalyst in water.> Not
only is this activity exciting, as there are many hydrogenation catalysts that may be utilized in the
same way, but this also demonstrates the potential for mild electrochemical methods to replace
harsh hydrogenation conditions. One hydrogenation catalyst of particular interest is Ru-MACHO®
(Figure A.1A). This catalyst converts amine-captured CO, to formate and methanol via
hydrogenation, but has never been explored using electrochemistry.>® The combination of the
known reactivity of Ru-MACHO® to reduce carbamates and amides with the electrochemical
reactions explored by the Yang group would lead to an ideal reactive carbon capture (RCC)
strategy.” 8 Unlike other known electrocatalysts, the active reductant version of Ru-MACHO® is
a dihydride, which may make electrocatalysis more challenging as the dihydride complex will
need to be regenerated using electrochemistry. To this end, this appendix presents cyclic
voltammetry (CV) experiments using Ru-MACHO® and the H2Ru-MACHO dihydride isolated

and discussed in Chapter 3.

Ru-MACHO Ru-MACHO-BH RuHCIPNPP"(CO)
PETIRN PETIRN 7 N
HN,,FI* \PPh, HN,,*I* \PPh, HN,,*,| PiPr,
Ru_ [ Ru_ Ru’
. 7
PP’ d Yo PPl Yeo PP’ | Yo
H,B Cl
TONMEOH: 1050 1040 320

Figure A.1. Ru-MACHO®-type hydrogenation catalysts with turnover numbers for MeOH production.

A.2 Results and Discussion
A.2.1 Cyclic Voltammetry of Ru-MACHO® upon addition of Water as an Acid Source and

1 atm of CO»
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Adventitious water is used frequently as an acid source in electrochemical reactions, so it
could be useful to rely on water to facilitate electrocatalysis with H.Ru-MACHO.% 1 nitially, an
excess of water was added to determine if a catalytic current for CO2 reduction with Ru-MACHO®
could be observed. The CVs of Ru-MACHO® with an excess of water and 1 atm of CO; are
presented in Figure A.2. No significant changes were observed by CV, but 2 irreversible reduction
events were observed at —2.43V and —2.20V. However, significant current enhancement resulting
from direct proton reduction was also not observed, indicating that water is not acidic enough to
generate hydrogen with Ru-MACHO®. After the traces pass —3.0 V some crossover was observed

at 10 mV/s, which may indicate deposition of reduces products onto the electrode.

0 —
10 =
20 —
g -30 -
€
2
3 40 - — 10 mV/s
w50 mV/s
w100 mV/s
-50 — w150 mV/s
w200 mV/s
300 mVis
60x10° -I
| | | | 1 1 1
-3.4 -3.2 -3.0 -2.8 -2.6 -2.4 2.2

Potential (V vs. Fe(CsHg), )

Figure A.2. Ru-MACHO® (1mM), CoCp* (3mM, not pictured), TBAPFs (100mM), H,O (1.7 mM) under 1 atm CO,
THF. Before scanning, iR compensation was performed.
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Figure A.3. Ru-MACHO® (1mM), TBAPFs (100mM), in PhCN. Not iR compensated.

Although the parent complex Ru-MACHO® is only sparingly soluble in MeCN, excitingly
the RuMACHO® was easily solubilized in benzonitrile (PhCN), prompting a CV study to identify
relevant reductive features (Figure A.3). Two irreversible reductive features were observed at —
1.51V and —1.62V. This experiment was performed without internal reference CoCp* to avoid any

side reactivity.

A.2.2 Cyclic Voltammetry of H2Ru-MACHO

Upon isolation of the dihydride H_RRUMACHO, a series of CV experiments were utilized
to examine its reactivity with CO.. In Chapter 3, the ability of H.Ru-MACHO to
stoichiometrically convert CO> to formate was discussed. Given this reactivity, upon exposure to
CO- the complex should be consumed entirely. Catalytic current enhancement indicative of CO2
reduction was not observed by CV, but some degree of current enhancement did occur past -3.1V

(Figure A.4).
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w100 mV/s
= 100 mV/s + 1 atm CO,
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Current (pA)
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Figure A.4. CV of 3mM H;RUMACHO, 100 mM TBAPFs, 3 mM CoCp* in THF, under 1 atm of N, (red trace), and
under and 1 atm CO; in THF (blue trace). Not iR compensated.

After the complete consumption of HRu-MACHO from reaction of COg, | anticipated
observing reduction peaks similar to those of the parent Ru-MACHO®, which was not the case
(Figure A.4). Increasing the scan rate also did not reveal any significant reductive peaks (Figure
A.5). Some possible current enhancement began after —3.1 V, but no other significant reductive
features were observed. These data indicate that the HoRu-MACHO complex reacts completely
with CO.. Addition of water, or a suitable acid, may regenerate the dihydride for further reduction

of COy, although the very negative window may facilitate the hydrogen evolution reaction (HER).

0 —
10—
<
= -20 - — 50 mV/s
5 = 100 mV/s
£ — 200 MV/s
o 30 e 300 MV/s
400 mV/s
-40 500 mV/s
50x10°
wooX I T T T 1
3.5 -3.0 25 2.0 1.5

Potential (V vs Fe(CsHs)zOH)

Figure A.5. H>-Ru-MACHO, TBAPFs, CoCp* and CO; in THF. Not iR compensated.
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A.3 Conclusion

Much is still unknown about how Ru-MACHO® will participate in an electrochemical
cycle, however a plausible route towards a Ru-MACHO®-based electrochemical system might
involve the following: a 2-electron reduction of the parent complex followed by loss of the chloride
ligand (Ru'"), then protonation of the reduced-Ru-MACHO to generate the dihydride (Ru®"). If
from here, the dihydride would react with a substrate to form Ru'V, it may then require 4 electrons
to reduce it back to the RuC. While continued efforts to gauge Ru-MACHO®’s ability to act as an
electrocatalyst are required, this preliminary work has identified potential conditions for future
electrochemical studies.
A.4 Experimental Details

All reactions were carried out under a N2> or Ar atmosphere, unless otherwise noted. All
glassware was oven- or flame-dried prior to use. Solvents were degassed by sparging with argon
gas and dried by passage through columns of activated alumina or molecular sieves.
Electrochemical experiments were performed using a Pine Wavedriver 10 potentiostat.
Electrochemical experiments were carried out in MeCN or PhCN. The working electrode was a
glassy carbon disc with a 2mm diameter, the counter electrode was a glassy carbon rod, and a
Ag/AgCI pseudoreference electrode was used. Phosphine ligands were purchased from Fisher or
STREM Chemicals, and metal complex precursors were purchased from STREM Chemicals.
Reagents were purchased from commercial vendors and used without further purification unless

otherwise noted.
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B.1 Introduction

Reactive carbon capture (RCC) describes the combined capture and conversion of CO>
utilizing capture agents that are capable of being regenerated for repeated use.! To accomplish this,
suitable homogenous catalysts must be identified. The best candidates for RCC are complexes
with known CO> reduction abilities, and hydrogenation catalysts that are used to generate methanol
from captured CO.. Hydrogenation conditions exploit high temperature and pressure to afford the
desired transformation, but the catalysts used may be capable of performing the same
transformations under more mild, electrochemical conditions.>*

Previous Yang group work demonstrated the selective reduction of CO; to formate using
metal hydrides, and the successful repurposing of a hydrogenation catalyst for electrochemical
CO; reduction.>8 This exciting work opens the door to other hydrogenation catalysts such as Ru-
MACHO® (Figure B.1A) that may serve as suitable electrocatalysts, as discussed in Chapter 3.
Combined capture-and-conversion (CCC) of CO: in hydrogenation literature can be accomplished
using amines, which react with CO, to form carbamates.? * ®14 These carbamates may perform
well in RCC, however, the reactivity of these carbamates is expected to be lower that CO; in
solution.! As such, powerful metal hydrides will have to be utilized to achieve electrochemical

conversion of carbamates in RCC systems.? > 1
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Figure B.1. Metal hydride complexes of interest in RCC with amine capture agents. A: Metal hydrides known to
generate formate and methanol using amine-captured CO2. B: Metal hydrides with known CO2 reduction activity.

Metal hydrides capable of converting CO2 should generate stoichiometric amounts of
formate when exposed to CO; in solution.!” By extension, potential electrocatalysts for conversion
of amine-captured CO2 should generate formate when mixed 1:1 with captured CO2 (Scheme B.1).
To identify ideal catalysts for RCC, two known CO.-reduction catalysts (Figure B.1B) were
selected for proof-of-concept reductions of ammonium carbamate, a commercially available

carbamate salt.

Scheme B.1: Reduction of Ammonium Carbamate with a Metal Hydride.

SO S
— _+ N H3
HoN™ "0 NH, H™ "0

ammonium carbamate formate and ammonia

B.2 Results and Discussion
Ammonium carbamate was determined to have poor solubility in several organic solvents,
including MeCN, benzene, pentane, heptane, THF, diethyl ether, and DCM. DMSO is the only

solvent examined that fully solubilized ammonium carbamate. These solvents were examined for
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their ability to solubilize ammonium carbamate, but ultimately MeCN was selected for initial
stoichiometric reduction because it would be the ideal solvent for any electrochemical experiments
planned in the future.
B.2.1 [HPt(DMPE)2] and Ammonium Carbamate

The complex [HPt(DMPE):][PFs] (B.1) was synthesized according to reported
procedures.’® 1° A 1:1 amount of B.1 and ammonium carbamate was brought up in MeCN-ds in
an NMR tube. Immediately following the preparation of this solution, formate was detected by *H
NMR (Figure B.2A). 3'P NMR also showed the conversion of the hydride to [Pt(DMPE) 2][PFe]2
(Figure B.2B), however, after 24 h no additional formate had been produced while the hydride had
been consumed completely. It is unclear what the hydride reacted to form, as there was no H»
detected by NMR. However, NMR cannot completely rule out HER as H> quantification using

NMR is not reliable at room temperature.?

A. B.

| UJ A J\ | \~ N

WU - S

formate [Pt(DMPE) ] hBW I
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Figure B.2. NMR spectra of B.1 and ammonium carbamate. A: *H NMR spectrum taken in MeCN-ds. B: 3P NMR
spectrum taken in MeCN-ds. C: 1H NMR spectrum taken in DMSO-ds.

Further investigation with ammonium carbamate was performed in DMSO-dg, with the
purpose of increasing solubility of the substrate. A 1:1 mixture of B.1 and ammonium carbamate
in DMSO- ds was prepared in an NMR tube, and *H NMR showed formate production with some
detected H2 (Figure B.2B). While Hz was detected for the first time, the reaction was monitored

over the course of 27 hours to quantify the amount of formate  Table B.1: Formate
Quantification in DMSO-de

produced over time. The initial yield of formate was less than : :
Time (h) Yield (%)

1 percent, and only increased to 7.2% after 27 hours (Table 0.17 0.1
B.1). At this timepoint, *P NMR showed the hydride had 1 4.4
24 6.1

completely been consumed. As opposed to the trial in MeCN-

27 7.2

aYield determined by 'H NMR
using benzene as an internal
standard.

ds, thistime it is likely that the additional hydride consumption

resulted from HER.

B.2.2 HRh(DPPBz)2. and Ammonium Carbamate
The complex B.1 demonstrated the ability of a CO, conversion catalyst to convert a

carbamate to formate, but the reaction appeared to be slow and low-yielding. The stronger hydride

donor, HRh(DPPBZz), (B.2), could produce formate more quickly, although HER is more likely
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with stronger metal hydrides.?* 22 DMSO-ds was selected for initial use with ammonium carbamate
and B.2 for solubility purposes. The complex B.2 was synthesized following published
procedures.?’ However, the decomposition of B.2 in DMSO-ds was observed, generating
significant amounts of water after only 15 minutes at room temperature (Figure B.3A). The
decomposition of DMSO to water is known, and likely began after hydride transfer from B.2.23:24
The disappearance of strong doublet peaks in the 3P NMR was also rapid, and may indicate further
reactivity with DMSO (Figure B.3B). No color change of the NMR sample solution was observed.
To avoid decomposition of the hydride, MeCN-ds was used for carbamate reduction with B.2

despite the limited solubility of ammonium carbamate.

70 68 66 64 62 60 58 56 54 52 50 48 46

Figure B.3. NMR Spectra of B.2 in DMSO-ds. A: *H NMR spectra at 5 minutes (red) and 15 minutes (blue). B: 3'P
NMR spectra at 5 minutes (red) and 15 minutes (blue).
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Upon addition of ammonium carbamate to an NMR sample of B.2 in MeCN-ds, formate
could quickly be detected without H> detected (Figure B.4A). While the amount of formate
generated was trace, 3P NMR quickly revealed that the hydride reacted to completion, generating

the charged Rh(l11) complex (Figure B.4B). No further formate was generated in this sample.

X .
formate u\‘ “ \\”H

8.9 8.7 8.5 83 8.1 7.9 7.7 7.5 73 7.1 6.9 6.7 5 640 63.5 63.0 62.5 620 61.5 61.0 60.5 60.0 59.5 59.0 58.5
1 (ppm) f1 (ppm)

Figure B.4. NMR Spectra of B.2 and ammonium carbamate in MeCN-ds. A: 'H NMR spectrum. B: 3P NMR
spectrum.
B.3 Conclusion

Ammonium carbamate, while stable in solution and commercially available, does not
appear to be a suitable substrate to model the conversion of amine-captured CO. to formate. While
to some extent, it is encouraging to see the formation of formate from stoichiometric reactions of
carbamate and B.1 or B.2, the consistent solubility issues caused by the carbamate make this data
limited for interpretation. An alternative carbamate could be dimethylammonium
dimethylcarbamate, which has good solubility in some organic solvents, but will likely also lead
to some observable HER and the ammonium ion is very acidic. However, these stoichiometric
reductions will act as a foundation for the design of other attempts to quantify formate production

from carbamates using CO> reduction catalysts.
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B.4 Experimental Details

All reactions were carried out under a N2 atmosphere, unless otherwise noted. All
glassware was oven- or flame-dried prior to use. Solvents were degassed by sparging with argon
gas and dried by passage through columns of activated alumina or molecular sieves. *H NMR
spectra were recorded on Bruker DRX-400 (400 MHz *H), GN-500 (500 MHz 'H, 125.4 MHz
13C), CRY0-500 (500 MHz 'H, 125.8 MHz 3C), or AVANCE-600 (600 MHz *H, 150.9 MHz 3C,
564.7 MHz °F) spectrometers. NMR data were collected at 25 °C unless otherwise noted.
Deuterated solvents were purchased from Cambridge Isotopes Laboratories, Inc. and were
degassed and stored over activated 3 A molecular sieves prior to use. NMR spectra were analyzed
and exported as figures using MestReNova software. Phosphine ligands were purchased from
Fisher or STREM Chemicals, and metal complex precursors were purchased from STREM
Chemicals. Reagents were purchased from commercial vendors and used without further
purification unless otherwise noted.
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