
UCLA
UCLA Electronic Theses and Dissertations

Title
High Performance Heterogeneous Acceleration: Exploiting Data Parallelism and Beyond

Permalink
https://escholarship.org/uc/item/921805kz

Author
Grigorian, Beayna

Publication Date
2014

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/921805kz
https://escholarship.org
http://www.cdlib.org/

University of California

Los Angeles

High Performance

Heterogeneous Acceleration:

Exploiting Data Parallelism and Beyond

A dissertation submitted in partial satisfaction

of the requirements for the degree

Doctor of Philosophy in Computer Science

by

Beayna Grigorian

2014

c© Copyright by

Beayna Grigorian

2014

Abstract of the Dissertation

High Performance

Heterogeneous Acceleration:

Exploiting Data Parallelism and Beyond

by

Beayna Grigorian

Doctor of Philosophy in Computer Science

University of California, Los Angeles, 2014

Professor Glenn Reinman, Chair

Real-time, low-energy constraints as well as large amounts of data continue to challenge high per-

formance computing (HPC). As a result, it has become increasingly important to advance the

capabilities of high performance architectures. Single instruction multiple data (SIMD) designs are

ideal for targeting data- and compute-intensive HPC workloads. Accelerator-rich architectures, in

particular, implement application-specific functionality directly in hardware via on-chip accelera-

tors, providing many orders of magnitude improvement in power efficiency and performance. Unlike

instruction-based SIMD architectures, such as graphics processing units (GPUs), accelerator-rich

designs avoid the overhead for processing instructions while maintaining flexibility by way of ac-

celerator composition and virtualization.

This dissertation explores various aspects of hardware-based acceleration, including fine-grained

vs. coarse-grained designs, ASIC-based vs. FPGA-based implementations, and domain-specific vs.

domain-adaptive systems. While accelerator-rich designs are well-suited for exploiting data-level

parallelism, they are highly susceptible (as are all SIMD architectures) to performance degradation

ii

due to divergence in control flow. Since HPC workloads can contain various types and amounts of

control flow, this SIMD divergence issue must be addressed in order for accelerator-based designs

to yield more effective HPC platforms. As such, this work also investigates an approximation-

based approach for eliminating control flow. We exploit the intelligent learning capabilities of

neural networks to approximate and regularize the control flow regions of applications, thereby

trading off precision for performance gains. Furthermore, we develop light-weight checks to ensure

output reliability at runtime, allowing our neural-network-based approximations to be leveraged in

a dynamically adaptive fashion.

Our work culminates in the following hybrid approach: a heterogeneous SIMD platform with both

precise (conventional) and approximate (neural) accelerators, which are managed using online error

control mechanisms. For the implementation, ASIC components are incorporated into the plat-

form; also, approximation control methods, including NN training tools, static software interfaces,

and dynamic hardware components, are developed to maintain acceptable error rates. Taking

inspiration from the partial-observability and stochasticity of the world around us, this work com-

bines data-parallel acceleration with neural approximation in an effort to advance high performance

computation.

iii

The dissertation of Beayna Grigorian is approved.

Adnan Darwiche

William Kaiser

Todd Millstein

Glenn Reinman, Committee Chair

University of California, Los Angeles

2014

iv

“Out of clutter, find simplicity.

From discord, find harmony.

In the middle of difficulty lies opportunity.”

– Albert Einstein –

To my family. . .

who are my continued inspiration for

seeking out the opportunities within life’s difficulties.

v

Table of Contents

1 Introduction 1

1.1 Motivation Part 1: Hardware Acceleration . 6

1.2 Motivation Part 2: SIMD Divergence . 8

2 Accelerating Vision and Navigation Applications on a Customizable Platform 13

2.1 Application Domain . 14

2.2 Methodology . 16

2.3 Evaluation Approach . 24

2.4 Experimental Results . 25

3 ARC: Architecture Support for Accelerator-Rich CMPs 30

3.1 Overview of ARC . 31

3.2 Evaluation Approach . 42

3.3 Experimental Results . 49

4 CHARM: Composable Heterogeneous Accelerator-Rich Microprocessor 55

4.1 Overview of CHARM . 56

4.2 Evaluation Approach . 63

4.3 Experimental Results . 67

5 CAMEL: Composable Accelerator-Rich Microprocessor Enhanced for Longevity 73

5.1 Overview of CAMEL . 75

5.2 Evaluation Approach . 80

5.3 Experimental Results . 86

6 Neural Acceleration of Divergent Applications on SIMD Architectures 90

6.1 Kernel Characterization . 91

6.2 Methodology . 93

6.3 Evaluation Approach . 101

6.4 Experimental Results . 103

7 Dynamically Reliable Approximate Computing Using Light-Weight
Error Analysis 110

7.1 Methodology . 111

vi

7.2 Evaluation Approach . 117

7.3 Experimental Results . 118

7.4 Limitations . 124

8 BRAINIAC: Bringing Reliable Accuracy Into Neurally-Implemented
Approximate Computing 125

8.1 Overview of BRAINIAC . 126

8.2 Neural Accelerator Design . 129

8.3 Evaluation Approach . 133

8.4 Experimental Results . 137

9 Related Work 148

9.1 Accelerator-Rich Design . 148

9.2 SIMD Divergence . 150

9.3 Approximate Computing . 151

9.4 Neural Network Implementation . 153

10 Conclusion 155

Bibliography 158

vii

List of Figures

1.1 Example of warp divergence in a GPU . 8

1.2 Pseudocode and profiling results for triangle intersection algorithm (jmeint) 10

1.3 Impact of divergence on GPU performance of Newton-Raphson algorithm 11

1.4 Performance gains from approximating Newton-Raphson algorithm with NNs of dif-
ferent topologies . 11

2.1 3D CMP-FPGA platform . 14

2.2 Performance and energy improvements using accelerators 26

2.3 Functional, application, and domain speedups based on varying interconnect models 28

3.1 ARC microarchitecture . 31

3.2 Communication between CPU, GAM, memory, and accelerator 31

3.3 Light-weight interrupt support . 32

3.4 Accelerator creation methodology . 36

3.5 ARC development flow . 36

3.6 Regression models for medical imaging benchmarks 38

3.7 An example of accelerator composition . 41

3.8 Accelerator composition steps . 41

3.9 Process used to generate simulation structures and accelerated programs 43

3.10 Speedup over SW-only (medical imaging domain) . 44

3.11 Speedup over SW-only (computer vision and navigation domain) 45

3.12 Energy gain over SW-only (medical imaging domain) 46

3.13 Energy gain over SW-only (computer vision and navigation domain) 47

3.14 Speedup over OS+Acc (medical imaging domain) . 48

3.15 Speedup over OS+Acc (computer vision and navigation domain) 49

3.16 Energy gain over OS+Acc (medical imaging domain) 50

3.17 Energy gain over OS+Acc (computer vision and navigation domain) 51

3.18 Error in accelerator runtime and wait time estimations 51

3.19 FFT virtualization (2D and 3D) . 52

3.20 Benefit of using light-weight interrupts . 52

3.21 Benefit of using hardware GAM (HW-GAM) over software GAM (SW-GAM) 53

4.1 Data flow graph for Denoise LCA . 57

4.2 Microarchitecture of CHARM . 57

viii

4.3 LCA composition example: (A) a core sends a request for an LCA to the ABC; (B) an
LCA instance is allocated; (C) another LCA instance is allocated with consideration
for balancing DMA utilization; (D) the ABC signals completion to the core 61

4.4 Details of Poly ABB . 64

4.5 Performance improvements of medical imaging applications 67

4.6 Energy gains of medical imaging applications . 67

4.7 Effect of increasing accelerators . 68

4.8 Utilization of ABBs given a task-grain of 8 . 69

4.9 Utilization of ABBs given a task-grain of 128 . 70

4.10 Performance improvements of computer vision and navigation applications 71

5.1 CAMEL Microarchitecture . 75

5.2 Design of ABB island . 75

5.3 Design of programmable fabric (PF) . 76

5.4 Motivational example of applying rate-matching on PF 78

5.5 PF allocation algorithm . 79

5.6 Compiler framework . 79

5.7 Performance comparison between acceleration schemes 85

5.8 Energy usage comparison between acceleration schemes 85

5.9 Geometric mean of all speedups and energy savings as the percentage of PF increases 86

5.10 Geometric mean of speedup and energy savings for each domain as %-PF increases . 86

5.11 Domain longevity and graph partitioning impact for increasing percentages of PF . . 89

6.1 Overview of the Neuralizer software flow for automated neural acceleration of
divergent applications . 92

6.2 (A) Sample MLP and its mathematical representation based on labeled nodes and
edge weights; (B) Example of integrating MLP of (A) into sample code (shaded
regions represent the kernel-to-NN conversion) . 97

6.3 CDF plot of benchmark error; point (x,y) signifies that y percent of the outputs
see x percent of error or less . 104

6.4 Performance gains of the various schemes . 105

6.5 Energy savings of the various schemes . 105

6.6 Dynamic instruction counts to verify the source of the performance and energy gains 106

6.7 Performance gains and accuracy for jmeint benchmark as kernel scope varies 107

6.8 Performance gains and accuracy for invkin benchmark as NN topology varies 108

7.1 Integration of LWC into application code . 114

7.2 Performance comparison shown as speedup of ORIG n%, ACC+LWC, and ACC-
LWC over ORIG 1% . 119

7.3 Performance breakdown for the ACC+LWC scheme; execution time broken down
into time for (1) computation of neural accelerator (ACC), (2) evaluation of light-
weight check (LWC), and (3) recovery using exact computation (Recovery) 119

7.4 Reliability issues (shown as failure to satisfy QoS constraints) when approximating
without LWC support . 121

ix

7.5 Amount of coverage for out-of-range inputs . 122

7.6 Speedup from coverage for out-of-range inputs . 122

7.7 Amount of coverage with less accurate approximation 123

7.8 Speedup from coverage with less accurate approximation 123

8.1 Multi-stage acceleration consisting of N+1 stages (N approximate computation stages,
1 precise computation stage) . 126

8.2 Microarchitecture of the BRAINIAC platform . 127

8.3 Three main categories of architectural designs for NN hardware implementation: (A)
fixed connections, fixed weights/biases; (B) flexible connections, flexible weights/bi-
ases; (C) fixed connections, flexible weights/biases 130

8.4 (A) Internal architecture of reconfigurable neural accelerator (RNA); (B) Pseudocode
for functionality of computational pipeline within RNA 131

8.5 Performance results for invkin benchmark . 138

8.6 Performance results for nrpoly benchmark . 138

8.7 Performance results for physim benchmark . 139

8.8 Performance results for robloc benchmark . 139

8.9 Energy results for invkin benchmark . 140

8.10 Energy results for nrpoly benchmark . 140

8.11 Energy results for physim benchmark . 141

8.12 Energy results for robloc benchmark . 141

8.13 Performance results for hardware acceleration of invkin benchmark in comparison
to loop perforation implemented in software . 142

8.14 Energy results for hardware acceleration of invkin benchmark in comparison to loop
perforation implemented in software . 142

8.15 Performance breakdown in terms of cycles executed for RNA scheme running invkin

benchmark . 143

8.16 Performance breakdown in terms of cycles executed for RNA scheme running nrpoly

benchmark . 143

8.17 Performance breakdown in terms of batches executed for RNA scheme running
invkin benchmark . 144

8.18 Performance breakdown in terms of batches executed for RNA scheme running
nrpoly benchmark . 144

8.19 Performance overhead for configuring RNAs . 145

8.20 Varying coverage of NN2 in physim benchmark . 145

8.21 Visualization of physics-based simulation with various error tolerance thresholds . . 147

x

List of Tables

1.1 OS overhead (cycles) to access accelerators . 7

1.2 Accelerator building blocks (ABBs) used in medical imaging 7

2.1 Cycles, energy, and maximum benefits from accelerator candidates 18

2.2 Cycles, energy, and speedup statistics for implemented accelerator candidates 24

2.3 FPGA resource utilization for implemented accelerator candidates 24

2.4 Interconnect model parameters . 27

3.1 Instructions used to interact with accelerators . 33

3.2 Instructions to handle light-weight interrupts . 33

3.3 Accelerated medical imaging benchmarks . 42

3.4 Accelerated computer vision and navigation benchmarks 42

3.5 Simics+GEMS configuration . 43

3.6 Sample synthesis results . 44

4.1 Simulation parameters . 63

4.2 Area/Power results – ABBs . 64

4.3 Area/Power results – LCAs . 65

4.4 Area (mm2) for various chip components . 65

5.1 Simulation parameters . 81

5.2 Tools for timing and power models . 81

5.3 ABB types, PF synthesis, domain numbers, and functionality 83

5.4 Power and area values for components of the CAMEL base platform 84

5.5 Number of ABBs and PF slices in CAMEL-x% . 84

6.1 Summary of benchmark descriptions, domain categorizations, control flow charac-
teristics, and justifications for approximability . 100

6.2 NN characteristics, training results, and benchmark evaluation results for neural
approximations . 100

7.1 Examples of applications, algorithms, domains, and LWCs 114

8.1 RNA hardware parameters . 132

8.2 Simulation parameters . 134

xi

8.3 Tools for timing and power models . 134

8.4 Summary of benchmarks and LWCs . 134

8.5 Summary of trained neural network models . 134

8.6 Power and area values of PAs and CNAs (NN1 and NN2) 136

xii

Acknowledgments

First and foremost, I would like to express my deepest gratitude to my advisor, Professor Glenn

Reinman, for his continuous support and guidance throughout my education. I first met Professor

Reinman as an undergraduate, where his introductory course on computer systems architecture

initially sparked my desire to pursue research in this field. I am sincerely grateful for the count-

less hours and energy he spent as both my undergraduate and graduate research advisor, where

our meeting discussions ranged from computer design perspectives to pop culture references. As

someone I both respect and admire, Professor Reinman was truly the ideal advisor for me and my

greatest inspiration.

I would like to offer special thanks to my doctoral committee members for their invaluable feedback

on my dissertation. I also wish to acknowledge Narayan Srinivasa, my manager at HRL Labora-

tories, who provided me with the most rewarding internship of my career, introduced me to the

world of neuromorphic computing, and inspired me to incorporate neural networks in my research.

In addition, I would very much like to thank the National Science Foundation (Graduate Research

Fellowship Grant # DGE-0707424 and Expedition in Computing Award # CCF-0926127), the

UCLA Center for Domain-Specific Computing (CDSC), and the Center for Future Architectures

Research (C-FAR, which is one of six centers of STARnet, an SRC program sponsored by MARCO

and DARPA). Their financial support was vital to my graduate career as it allowed me to remain

focused on my research and education.

The following are my acknowledgments of co-authored work, broken down by chapter:

I Chapter 2 is based on “Accelerating Vision and Navigation Applications on a Customizable

Platform,” in the proceedings of the 22nd IEEE International Conference on Application-

specific Systems, Architectures, and Processors (ASAP), 2011, pages 25–32. This work was

a collaborative effort with Marco Vitanza, and was supervised by Professors Glenn Reinman

and Jason Cong.

I Chapter 3 is a version of “Architecture Support for Accelerator-Rich CMPs,” in the

proceedings of the 49th ACM/EDAC/IEEE Design Automation Conference (DAC), 2012,

xiii

pages 843–849, and Chapter 4 is a version of “CHARM: A Composable Heterogeneous

Accelerator-Rich Microprocessor,” in the proceedings of the ACM/IEEE International

Symposium on Low Power Electronics and Design (ISLPED), 2012, pages 379–384.

These projects were done collaboratively with Mohammad Ali Ghodrat, Michael Gill,

Professor Glenn Reinman, and Professor Jason Cong.

I Chapter 5 is based on “Composable Accelerator-rich Microprocessor Enhanced for Adaptivity

and Longevity,” in the proceedings of the ACM/IEEE International Symposium on Low

Power Electronics and Design (ISLPED), 2013, pages 305–310. This research was conducted

in collaboration with Michael Gill, Mohammad Ali Ghodrat, Hui Huang, Professor Glenn

Reinman, and Professor Jason Cong.

I Chapter 6 is a version of “Accelerating Divergent Applications on SIMD Architectures Using

Neural Networks,” which is to appear in the proceedings of the 32nd IEEE International

Conference on Computer Design (ICCD), 2014, and Chapter 7 is a version of “Dynamically

Adaptive and Reliable Approximate Computing Using Light-Weight Error Analysis,” in the

proceedings of the 9th NASA/ESA Conference on Adaptive Hardware and Systems (AHS),

2014, pages 248–255. The work for these papers was overseen by Professor Glenn Reinman.

I Chapter 8 is based on “BRAINIAC: Bringing Reliable Accuracy Into Neurally-Implemented

Approximate Computing”, submitted to the 21st IEEE International Symposium on High

Performance Computer Architecture (HPCA), 2015. This work was performed in collaboration

with Nazanin Farahpour and Professor Glenn Reinman.

I am truly grateful to my fellow PhD students and labmates, who in many ways provided help

and support over the years. This includes Michael Gill, Mohammad Ghodrat, Robert Chen,

Marco Vitanza, Nazanin Farahpour, Konstantine Tsotsos, Karthika Mohan, and Alessandra Sca-

furo. Whether it was staying up late working in lab, having long-winded intellectual discussions,

or taking all-too-necessary coffee breaks, these people were central figures in my graduate school

experience.

Last but certainly not least, I would like to express my deep appreciation for my family: my parents,

for always encouraging me to put education first and strive for goals beyond my grasp; my sisters,

xiv

with whom I have a bond that transcends familial ties; my brother-in-law, Harut(ik), for being the

brother I never had; and my aunts, uncles, and all 20 of my first cousins, for making my life feel

like an Armenian version of My Big Fat Greek Wedding [1]. I also sincerely appreciate having the

following special people in my life: my best friends since high school, Manda Paul and Meghedy

Shanazarian, and my trusty accomplice, Dianne Pulido. Finally, I would like to thank Alex. . . for

entering my life with impeccable timing.

xv

Vita

2007-2010 Undergraduate Researcher, Center for Embedded Networked Sensing,

University of California, Los Angeles

2008-2009 Software Engineering Intern, Jet Propulsion Laboratory, Pasadena, CA

2010 Shivakumar Scholarship for Undergraduate Research,

Computer Science Department, University of California, Los Angeles

2010 Engineering Achievement Award for Student Welfare,

University of California, Los Angeles

2010 Outstanding Bachelor of Science Award, Computer Science Department,

University of California, Los Angeles

2010 B.S. (Computer Science and Engineering),

University of California, Los Angeles

2010 Software Engineering Intern, Qualcomm Incorporated, San Diego, CA

2010-2014 Graduate Researcher, Computer Science Department,

University of California, Los Angeles

2011 Google Anita Borg Memorial Scholarship,

Google Incorporated, Mountain View, CA

2011 Graduate Technical Intern, Intel Corporation, Santa Clara, CA

2011-2014 Graduate Research Fellowship,

National Science Foundation, Arlington, VA

2012 M.S. (Computer Science), University of California, Los Angeles

2012 Computer Engineer, HRL Laboratories, Malibu, CA

2014 Registration Fee Grant for Distinguished Students, Graduate Division,

University of California, Los Angeles

2014 Contract Research and Development Achievement Award,

HRL Laboratories, Malibu, CA

xvi

Publications

Beayna Grigorian and Glenn Reinman, “Accelerating Divergent Applications on SIMD Archi-
tectures Using Neural Networks,” to appear in Proceedings of the 32nd IEEE International
Conference on Computer Design (ICCD), 2014.

Beayna Grigorian and Glenn Reinman, “Dynamically Adaptive and Reliable Approximate Com-
puting Using Light-Weight Error Analysis,” in Proceedings of the 9th NASA/ESA Conference
on Adaptive Hardware and Systems (AHS), 2014, pp. 248–255.

Jason Cong, Mohammad Ali Ghodrat, Michael Gill, Beayna Grigorian, Karthik Gururaj, and
Glenn Reinman, “Accelerator-Rich Architectures: Opportunities and Progresses,” in Proceed-
ings of the 51st ACM/EDAC/IEEE Design Automation Conference (DAC), 2014, pp. 1–6.

Jason Cong, Mohammad Ali Ghodrat, Michael Gill, Beayna Grigorian, and Glenn Reinman,
“Architecture Support for Domain-Specific Accelerator-Rich CMPs,” in ACM Transactions on
Embedded Computing Systems (TECS), 2014, vol. 13, no. 4s, pp. 131:1–131:26.

Narayan Srinivasa, Deying Zhang, and Beayna Grigorian, “A Robust and Scalable Neuromorphic
Communication System by Combining Synaptic Time-Multiplexing with MIMO-OFDM,” in
IEEE Transactions on Neural Networks and Learning Systems (TNNLS), 2014, vol. 25, no. 3,
pp. 585–608.

Jason Cong, Mohammad Ali Ghodrat, Michael Gill, Beayna Grigorian, Hui Huang, and
Glenn Reinman, “Composable Accelerator-rich Microprocessor Enhanced for Adaptivity
and Longevity,” in Proceedings of the ACM/IEEE International Symposium on Low Power
Electronics and Design (ISLPED), 2013, pp. 305–310.

Jason Cong, Mohammad Ali Ghodrat, Michael Gill, Beayna Grigorian, and Glenn Reinman,
“CHARM: A Composable Heterogeneous Accelerator-Rich Microprocessor,” in Proceedings of
the ACM/IEEE International Symposium on Low Power Electronics and Design (ISLPED),
2012, pp. 379–384.

Jason Cong, Mohammad Ali Ghodrat, Michael Gill, Beayna Grigorian, and Glenn Reinman, “Ar-
chitecture Support for Accelerator-Rich CMPs,” in Proceedings of the 49th ACM/EDAC/IEEE
Design Automation Conference (DAC), 2012, pp. 843–849.

Jason Cong, Beayna Grigorian, Glenn Reinman, and Marco Vitanza, “Accelerating Vision and
Navigation Applications on a Customizable Platform,” in Proceedings of the 22nd IEEE Inter-
national Conference on Application-specific Systems, Architectures, and Processors (ASAP),
2011, pp. 25–32.

xvii

Chapter 1

Introduction

Some of the most challenging applications facing computer scientists today feature real-time perfor-

mance constraints, ultra-low power requirements, and significant computational complexity. These

requirements are often at odds with one another, however. Applications trying to attain high lev-

els of situational awareness, for instance, would have a difficult time meeting both low-energy and

real-time constraints. An example of this could be found in autonomous robotics, where the system

must ensure that intelligent decisions are made to allow a robot to safely explore and interact with

its environment. While it is imperative that the robot responds in real-time to its dynamically-

changing surroundings, this type of mobile system is likely also limited by the total amount of

energy it can consume.

Real-time processing is also continuously challenged by ever-increasing amounts of data. A recent

statement from the Defense Advanced Research Projects Agency (DARPA) describes exponential

increases in volumes of sensor data and similar increases in complexity of analysis, which have led

to an outpacing of the processing capabilities of our computing systems [2]. Following this onset

of very large data sets, research has also found that problems can often be reformulated into more

data-intensive ones to achieve better results [3, 4]. Consequently, more and more algorithms are

being implemented with the assumption that large amounts of data are accessible at their disposal,

resulting in increasing amounts of data-intensive workloads.

1

Chapter 1. Introduction

Many of these challenging modern-day applications fall under the umbrella of what would be consid-

ered high performance computing (HPC). HPC, which refers to compute-intensive workloads that

operate on large data sets and are in general need of acceleration [5], includes such areas as com-

puter vision, interactive entertainment, medical imaging, and financial modeling. Such workloads

are often targeted by single instruction multiple data (SIMD) architectures [6–10] to exploit the

data parallelism that is often inherent in these applications. Accelerator-rich platforms [11–16], in

particular, are well-suited for targeting these workloads. By implementing application-specific func-

tionality directly in hardware, on-chip accelerators can provide many orders of magnitude improve-

ment in power efficiency and performance for a variety of tasks ranging from multiply-accumulate

operations to complex encoding/decoding algorithms. Furthermore, unlike instruction-based SIMD

architectures [9, 17], accelerator-rich designs avoid the overhead for processing instruction streams

(e.g. instruction fetch/decode, register value migration, etc.), while maintaining flexibility by way

of accelerator chaining and virtualization (refer to Chapters 2, 3, 4, and 5).

Despite these significant benefits, accelerator-rich platforms, much like other SIMD architectures,

suffer from performance degradation due to divergence in control flow (i.e. branch divergence).

The reason for this is because, by definition, SIMD architectures compute multiple data sets in

lock-step via wide datapaths under a single control flow [18, 19]. While this design choice allows

us to amortize the cost of instruction processing over multiple datapaths, it fundamentally makes

SIMD less effective at dealing with diverse control flow, particularly when control flow is data-

dependent. For HPC workloads, there can exist various types and amounts of control flow, often

having dependencies on input data [20]. In linear algebraic processing, for instance, robust stencil

operations are used for dense matrices while sparse matrices are solved using iterative methods.

It is therefore evident that in order for accelerator-rich architectures to be more effective at high

performance computation, the SIMD divergence issue must be addressed.

Applications that exhibit SIMD divergence problems, or “divergent applications”, have been dealt

with in a variety of ways in prior art. One approach is predication, in which all paths are executed

sequentially and masks are used to ensure data correctness [21, 22]. With this approach, branch

divergence may at best be avoided by conversion into a data dependency. However, this results in

2

Chapter 1. Introduction

inefficiency due to added overhead for data generation and processing, as well as reduced useful

utilization from uncommitted results. Similar to predication, accelerator-rich designs either defer

the handling of control flow to the core, or bloat the circuitry of the custom accelerators (i.e. the

results for all possible paths are computed and multiplexed to arrive at the final correct result).

While these methods ensure program correctness, they can be costly in terms of performance as well

as area and power consumption. Other prior art has focused on application-specific modification to

avoid divergence (e.g. data migration [23]), algorithmic modification to restructure control flow [24],

or compiler-based optimization [25], but these techniques do not work in all situations, such as with

applications containing data-dependent control flow.

Unlike prior art that handles divergence by tolerating the aftermath of control flow, we explore an

approach that views this problem from an entirely different angle: we exploit the intelligent learning

capabilities of neural networks (NNs) to approximate away the control flow, and as a result, the

divergence itself (see Chapter 6).

An artificial neural network (ANN) is a fundamental machine learning paradigm for performing

non-parametric multivariate regression [26]. It innately has the ability to subsume computation

in exchange for an approximate representation [27], making it an ideal computational tool for

nonlinear regression and function approximation. Developments in advanced learning techniques

for training ANNs [28] have also made them more flexible than various polynomial regression

models. The self-organizing, nonlinear learning capabilities of ANNs and their success as noise-

immune, general-purpose classifiers [29] suggest they are well suited for approximating general

regions of computation, including regions with diverse control flow.

From an architectural standpoint, general-purpose SIMD designs are performance-wise sensitive

to data dependencies, while NNs are custom trained to incorporate data dependencies directly

into their network configurations so as to successfully map input values to output values. The

structural parallelism of NNs also enables efficient implementation in hardware, including ultra

low-power neuromorphic implementations [30]. Furthermore, since the evaluation of NNs does not

include any control flow, divergent computation can be transformed into a regularized, approximate

3

Chapter 1. Introduction

form, thereby translating the challenges of data dependency from the performance domain to the

accuracy domain.

Although regularization of control flow could improve performance, we must account for the result-

ing loss in computational accuracy. First, we note that many high performance applications, such

as the “Recognition, Mining, and Synthesis (RMS)” workload from Intel [31], are based on heuris-

tics that can be approximated (e.g. with the use of neural networks [27]). Second, applications that

use exact computation often also include regions of computation that are tolerant to imprecision,

or “approximable”, even if these regions can only be circumstantially approximated (e.g. when the

application is used as part of a compute pipeline that yields a final approximate result). In either

case, the accuracy of the approximations can additionally be customized to fit the needs of specific

users. Based on these observations, we see a general need for approximation control mechanisms

in our approach.

Prior art has extensively studied computational resilience to imprecision in both hardware [32–36]

and software [37–41]. These existing approaches often couple the overall application quality with

the accuracy of the approximation unit. Though this allows for efficient quality analysis by way of

offline, static techniques [42], coverage and reliability are potentially compromised.

Coverage is lost when cases that are statically determined to lead to unacceptably inaccurate

solutions are exempted from approximation. This may occur, for instance, with inputs outside

the range of training data or with the use of otherwise inaccurate approximate accelerators. One

approach to combat this loss in coverage is to exploit algorithmic and cognitive resilience [35],

such as with high performance workloads from Recognition, Mining, and Synthesis (RMS) [31],

potentially uncovering larger slack in accuracy. Related work includes methodologies that employ

high-level, application-specific metrics for assessing output quality [34, 38, 43, 44]. These metrics,

however, often determine quality degradation of approximate solutions by measuring against exact

solutions, such as by finding the average difference between images produced by approximate and

exact versions of an image processing application.

4

Chapter 1. Introduction

Dynamic reliability entails providing absolute guarantees for satisfying quality of service (QoS) con-

straints. With static quality analysis, guarantees on worst-case accuracy cannot be provided unless

the space of possible inputs is exhaustively explored. As this is an inherent issue for approximation

techniques, instead of providing worst-case guarantees and ensuring dynamic reliability, measures

are often taken to statically mitigate low-quality results [45]. Despite its statistical unlikelihood,

however, a low-quality result may potentially render an application’s output meaningless. This

would be unacceptable for circumstances that involve strict QoS expectations. As such, we rec-

ognize a general need for mechanisms that allow dynamic analysis and control of approximation

errors (much like with circuit-level errors [33]). Moreover, since acceptable ranges of error could

vary across different uses of an application, user-based specification of QoS constraints must also

be featured. An example of a use case for this would be an inverse kinematics application for

robot control, which requires high precision for performing surgery, yet tolerates lower precision for

moving large blocks.

With coverage and reliability in mind, we have designed an approach based on light-weight checks

(LWCs) (refer to Chapter 7). These high-level, application-specific metrics allow us to decouple

error analysis of the approximate accelerator from quality analysis of the overall application. As a

result, rather than relying on statically-constructed models of error distribution [42, 45, 46], we can

dynamically guarantee the worst-case error for an application, as well as gain additional coverage

from leveraging slack that may not be evident at the level of the approximation unit.

Returning to our overarching goal of enhancing high performance computation, this work culmi-

nates in the following hybrid approach: a heterogeneous SIMD platform that combines conventional

acceleration techniques with neural-network-based approximate computing, while reliably enforcing

constraints on accuracy at runtime (detailed in Chapter 8). To gain maximum performance ben-

efits and energy efficiency from our neural approximations, we shy away from a platform-agnostic

approach and opt for hardware-based implementations that can be incorporated into our platform

as accelerators. We refer to conventional accelerators as precise accelerators to distinguish them

from our approximate accelerators.

5

Chapter 1. Introduction

The accelerators in our platform are leveraged in a multi-stage flow that begins with simple approx-

imations and resorts to more complex ones as needed. We employ LWCs to throttle this multi-stage

acceleration flow and dynamically maintain user-specified quality in outputted results. In terms of

implementation, ASIC-based hardware accelerators are incorporated into the platform. Addition-

ally, approximation control methods, including NN training tools, static software interfaces, and

dynamic hardware components, are developed to maintain acceptable error rates.

The remainder of this doctoral dissertation is organized as follows. Chapters 2, 3, 4, and 5 describe

preliminary work on accelerator platforms. These architectures vary in both characterization and

usage of accelerators, thereby providing a broad spectrum of design choices for high performance ac-

celeration. Next, Chapter 6 presents a software-based approach for neural acceleration of divergent

SIMD applications, and Chapter 7 describes an LWC-based technique for approximation control.

Combining the principles introduced in the previous chapters, Chapter 8 then presents a heteroge-

neous accelerator-rich platform that carefully leverages hardware-based precise (conventional) and

approximate (neural) accelerators to gain further performance benefits while dynamically ensuring

acceptable output quality using LWCs. Finally, we review related work in Chapter 9 and conclude

with Chapter 10.

1.1 Motivation Part 1: Hardware Acceleration

1.1.1 Accelerator Management

In a typical accelerator-based system, a core accesses an accelerator by way of a driver (OS

call) [47, 48]. Using the Simics+GEMS [49, 50] simulation platform to model a system consist-

ing of UltraSPARC-III-i processors running Solaris 10, we have measured the delay for different

system call operations. These results are shown in Table 1.1, where “ioctl” refers to the system

call for device-specific operations. We see that for an accelerator-rich platform, this software-based

approach to accelerator management can become very inefficient, in terms of performance as well

6

Chapter 1. Introduction

Table 1.1: OS overhead (cycles) to access accelerators

Operation 1 Core 2 Cores 4 Cores 8 Cores 16 Cores

Open Driver 214,413 256,401 266,133 308,434 316,161

ioctl (Average) 703 725 781 837 885

Interrupt Latency 16,383 20,361 24,022 26,572 28,572

Table 1.2: Accelerator building blocks (ABBs) used in medical imaging

ABBs Denoise Deblur Registration Segmentation

Float Reciprocal (FInv) X X X
Float Square-Root (FSqrt) X X X X
Float Polynomial-16 (Poly16) X X X X
Float Divide (FDiv) X X X X

as energy. Therefore, to minimize overhead, we investigate efficient hardware-based accelerator

management of loosely-coupled accelerators.

1.1.2 Accelerator Composition

Tasks performed by coarse-grained loosely-coupled accelerators (LCAs) tend to have a great deal of

data parallelism, which can be exploited by the use of multiple LCAs of the same type. However,

there is often a variety of LCAs (with possible overlap) required by different applications, result-

ing in sporadic usage of any particular LCA. In support of these observations, our experiments

demonstrate that while LCAs have dramatic potential to improve performance and reduce power

dissipation, their overall utilization is low. Due to variations in accelerator resource demand, LCAs

in the medical imaging domain, for instance, are idle over 90% of the time, revealing an opportunity

for accelerator sharing.

In addition to the under-utilization of coarse-grained LCAs, we have found that applications in a

single domain can have a large degree of similarity in the type of computation primitives being used.

This indicates that the applications can be accelerated using a limited number of smaller, more

general accelerator building blocks (ABBs). Table 1.2 depicts how the applications in the medical

7

Chapter 1. Introduction

Warp with 8 Threads

switch (data) {

 case 1: A(); break;

 case 2: B(); break;

 default: C(); break;

}

Unmasked

Thread

Masked

Thread

Unmasked

Thread

Masked

Thread

Figure 1.1: Example of warp divergence in a GPU

imaging domain [51] can be decomposed into 4 main types of ABBs, emphasizing the considerable

overlap in application functionality, which could be leveraged to improve accelerator utilization.

While sufficient diversity of LCAs allows acceleration of a variety of applications, sufficient quantity

of a particular LCA is needed to handle the parallelism within a particular kernel. Therefore, rather

that attempting to provide monolithic LCAs for all possible execution scenarios, we opt to provide

a set of ABBs. These fine-grained building blocks could then be dynamically linked in a variety of

ways to compose desired coarse-grained LCAs on-the-fly.

1.2 Motivation Part 2: SIMD Divergence

1.2.1 Branch Divergence in SIMD

Divergent control flow, also known as branch divergence, can have a significant impact on the

performance of a SIMD architecture. With GPUs, for instance, this problem is often referred to as

“warp divergence”. In this case, threads clustered in a given warp are all subjected to execution of

any path that even a single one of them follows. Since the system masks away the compute results

of threads that were not intended to execute that path (i.e. their compute values are invalidated

and remain uncommitted in order to maintain program correctness), this could result in a large

amount of excessive computation. In fact, recent performance studies on GPUs have shown that

8

Chapter 1. Introduction

as we increase the number of divergent threads in warps, the overhead of divergent control flow

increases linearly [52].

In Figure 1.1 we provide an example of warp divergence, where a warp of eight threads comes

across a data-dependent switch statement (shown at the left of the figure). The switch statement

has three possible outcomes (i.e. three cases), each of which invokes a particular function (A, B,

or C). In the right part of the figure, the green “unmasked thread” arrows indicate which of the

eight threads follow the various paths of the switch statement – i.e. three of the threads fall within

case 1 (which invokes function A), one thread falls within case 2 (which invokes function B), and

four threads fall within the third “default” case (which invokes function C). We can see there is a

large degree of divergence in this example because all three of the functions are computed by all

threads, while the majority of the results are masked away. For example, while all threads will

execute function B, only one thread will actually make use of the results of this execution. Note

further that if this one thread did not fall within case 2 of the switch statement, none of the threads

would need to execute function B, and there would be less divergence. We now briefly examine two

motivational case studies.

1.2.2 Case Study I: Triangle Intersection

The triangle intersection algorithm used in graphics applications is an example of practical code

that can be quite control-flow-heavy. It takes as input the vertices of two triangles and determines

if they intersect. The pseudocode for the algorithm (based on the jmeint benchmark described in

Section 6.3.1) is shown in Figure 1.2. Within this pseudocode, the number of floating point oper-

ations (FP Ops) and comparisons (Compares) is specified on the right-hand side of each compute

line. Also, the bottom of the figure lists the portions of execution time (% of Program Execution

Time) consumed by each of the four highlighted kernel scopes. The percentages of execution time

are shown as average ranges based on a series of randomized inputs, allowing us to see that the

breakdown of execution time can vary drastically depending on data. Overall, we observe that

a series of significant chunks of computation are segregated by non-predictable, data-dependent

9

Chapter 1. Introduction

intersection(Tri1Vertex1, Tri1Vertex2, Tri1Vertex3, Tri2Vertex1, Tri2Vertex2, Tri2Vertex3):

1 Compute distances between Tri2 vertices and Tri1 plane ► 40 FP Ops, 12 Compares

2 if (Tri2 does not intersect plane of Tri1)

3 return false

4 else

5 Compute distances between Tri1 vertices and Tri2 plane ► 40 FP Ops, 12 Compares

6 if (Tri1 does not intersect plane of Tri2)

7 return false

8 else

9 Compute values for coplanarity test ► 48 FP Ops, 15 Compares

10 if (Tri1 and Tri2 are coplanar)

11 Compute values for edge crossing test ► 126 FP Ops, 102 Compares

12 if (Any Tri1 edge crosses any Tri2 edge)

13 return true

14 else

15 Compute values for containment test ► 29 FP Ops, 2 Compares

16 if (Tri2 contains Tri1 || Tri1 contains Tri2)

17 return true

18 else

19 return false

20 else

21 Compute values for non-coplanar intersection test ► 17 FP Ops, 4 Compares

22 if (Non-coplanar intersection exists)

23 return true

24 else

25 return false

1st Level

Kernel Scope
(Level of Branch Nesting)

2nd Level

3rd Level

4th Level

10.85% – 38.51%

11.58% – 27.23%

13.42% – 26.90%

7.35% – 64.15%

% of Program
Execution Time

(Varies Based on Data)

intersection(Tri1Vertex1, Tri1Vertex2, Tri1Vertex3, Tri2Vertex1, Tri2Vertex2, Tri2Vertex3):

1 Compute distances between Tri2 vertices and Tri1 plane ► 40 FP Ops, 12 Compares

2 if (Tri2 does not intersect plane of Tri1)

3 return false

4 else

5 Compute distances between Tri1 vertices and Tri2 plane ► 40 FP Ops, 12 Compares

6 if (Tri1 does not intersect plane of Tri2)

7 return false

8 else

9 Compute values for coplanarity test ► 48 FP Ops, 15 Compares

10 if (Tri1 and Tri2 are coplanar)

11 Compute values for edge crossing test ► 126 FP Ops, 102 Compares

12 if (Any Tri1 edge crosses any Tri2 edge)

13 return true

14 else

15 Compute values for containment test ► 29 FP Ops, 2 Compares

16 if (Tri2 contains Tri1 || Tri1 contains Tri2)

17 return true

18 else

19 return false

20 else

21 Compute values for non-coplanar intersection test ► 17 FP Ops, 4 Compares

22 if (Non-coplanar intersection exists)

23 return true

24 else

25 return false

1st Level

Kernel Scope
(Level of Branch Nesting)

2nd Level

3rd Level

4th Level

10.85% – 38.51%

11.58% – 27.23%

13.42% – 26.90%

7.35% – 64.15%

% of Program Execution Time
(Varies Based on Data)

Figure 1.2: Pseudocode and profiling results for triangle intersection algorithm (jmeint)

control flow. As the divergence is data-dependent, there is no way to format or reorganize the

data a priori to avoid it. Static branch resolution and precomputation are therefore ineffective

options. Alternatively, if one were to break up the kernel into multiple sub-kernels based on points

of divergence, this would result in (1) overhead for binning intermediate values, (2) loss in data

locality, and (3) overhead for sorting output data of each sub-kernel and reinitializing computation

for subsequent sub-kernels. Hence, the inadequacies of these existing solutions call for a better

approach to overcoming branch divergence.

10

Chapter 1. Introduction

0

1000

2000

3000

4000

5000

0 1 5 10 15 20 25 30 35 40 45 50

G
P

U
 E

xe
cu

ti
o

n
 T

im
e

 (
m

s)

% Input Data Causing Algorithmic Divergence

Effect of Divergence on Performance

Figure 1.3: Impact of divergence on GPU performance of Newton-Raphson algorithm

0

10

20

30

40

50

60

70

0 1 5 10 15 20 25 30 35 40 45 50

Sp
e

e
d

u
p

 o
ve

r
G

P
U

 (
X

)

% Input Data Causing Algorithmic Divergence

Potential Speedup of NN Approx.

NN_2x2

NN_4x4

NN_8x8

NN_16x16

NN_32x32

Figure 1.4: Performance gains from approximating Newton-Raphson algorithm
with NNs of different topologies

1.2.3 Case Study II: Newton-Raphson Method

The Newton-Raphson method [53] is an iterative approach for finding roots of an equation. The

algorithm starts from an initial guess provided by the user, and iteratively refines the solution

until either it finds an exact root of the given equation, or is able to provide an approximation of

the root within tolerable error bounds. While it is a powerful approximation-based approach, this

algorithm is not guaranteed to converge and return an acceptable result. In other words, when

there is algorithmic divergence, the program continues processing for some number of iterations

before determining it cannot converge to an acceptable result, and consequently returns a failure

indicator. The four main cases of algorithmic divergence for the Newton-Raphson method are:

11

Chapter 1. Introduction

(1) divergence at inflection points, (2) zero-valued derivatives (leading to division by zero), (3)

oscillations near local maxima or minima, and (4) root jumping (e.g. for oscillating functions with

many roots). These cases result from both the characteristics of the equations themselves as well

as the initial guess fed into the algorithm. To demonstrate the impact of divergence on GPU

performance, we have taken the Newton-Raphson method and generated synthetic input data,

where we intentionally include values that will disallow the algorithm to converge to an acceptable

result (i.e. will lead to algorithmic divergence). Figure 1.3 displays the impact on GPU performance

when a given percentage of the data causes algorithmic divergence. Notably, the performance of

the GPU degrades by 11× going from 0% to even 1% divergence.

To overcome this performance degradation, we introduce the use of NNs that approximate the

divergent code. Since this algorithm is essentially one large while loop, we approximate the entire

benchmark with a single NN and evaluate the mathematical representation of that NN (i.e. com-

pute a series of multiplication, summation, and sigmoid operations – please refer to Section 6.2.3

for more information on integrating an NN into code) instead of the original control-flow-heavy

Newton-Raphson algorithm. We first see the potential performance benefits of neural approxi-

mation, temporarily holding off on evaluating loss of accuracy, which is addressed in Section 6.4.

Figure 1.4 demonstrates the performance gains achieved as we alter the topology of the NN. Here,

an NN MxN topology represents an NN with two hidden layers, the first with M number of neu-

rons and the second with N – Section 6.2.2 provides a detailed description of the NN model. As

expected, the smaller NN topologies achieve higher speedups as they require less computation to

evaluate their outputs. Yet we note that even the largest topology, which has two hidden layers

of 32 neurons each, achieves a 6× performance gain when as little as 1% of the data leads to al-

gorithmic divergence. Moreover, all the other topologies see performance gains even when there is

0% divergence, which highlights the added benefit of including non-divergent computation in the

code region being approximated. All in all, while this case study could be considered an extreme

example of branch divergence, it shows how severely a SIMD architecture can be bogged down and

how impactful it can be to have a solution that converts divergent control flow into non-divergent

computation.

12

Chapter 2

Accelerating Vision and Navigation

Applications on a Customizable

Platform

For high performance applications in the vision and navigation domain, we investigate acceleration

with a customizable, FPGA-based design [54]. Our overall goal is to achieve low-energy real-time

performance, demonstrated through reductions in energy-delay product (EDP), for a set of key

algorithms within this domain – specifically, feature tracking along with localization and mapping.

To avoid degradation in the quality of results, our approach uses hardware accelerators to speed

up existing full-featured application code.

Our system model is a 3D integration of a field-programmable gate array (FPGA) atop a standard

chip multiprocessor (CMP), with through-silicon vias (TSVs) as the communication medium be-

tween the two layers (Figure 2.1) – a more detailed description of the architecture can be found

in [55]. With the use of TSVs, our design provides efficient and direct CMP-FPGA communica-

tion; however, we also make comparisons with other potential interconnects to ensure that our

acceleration techniques are not limited to the assumed model.

13

Chapter 2. Accelerating Vision and Navigation Applications on a Customizable Platform

TSV

CMP Layer

FPGA Layer

Figure 2.1: 3D CMP-FPGA platform

In this scheme, applications run normally on the CMP, except for key portions that are executed by

hardware accelerators implemented on the FPGA. FPGAs are an attractive option because their

customizability can lead to large reductions in both computation time and energy consumption

when compared to software running on a CPU, yet they have a relatively low development cost

compared to ASIC designs. Furthermore, with the use of a C-to-RTL high-level synthesis tool

(AutoPilot [56]), we are able to quickly create and analyze a wide range of potential accelerators

in a semi-automated fashion. With this approach, we model an accelerator platform that can be

readily customized to the needs of specific workloads.

2.1 Application Domain

Pattern detection, object recognition, and feature tracking are among the most notable areas in

computer vision [57]. Feature tracking uses various methods for initially detecting features (i.e.

points of interest) within a given data set, followed by extracting descriptions of those features [58–

60]. The detected features are subsets of the data, for instance edges or corners in an image, and are

described using additional computations, such as surrounding gradients or local histograms. There

also exist several methods [61–64] to solve the simultaneous localization and mapping problem

(SLAM) [65]; these entail dynamically collecting data from the environment in order to create a

local map that identifies free space and obstacles while simultaneously self-localizing within this

map.

14

Chapter 2. Accelerating Vision and Navigation Applications on a Customizable Platform

In this study, we focus on four specific algorithms to represent the vision and navigation domain:

SLAM based on the extended Kalman filter (EKF) [66, 67]; feature detection and description using

the scale-invariant feature transform (SIFT) algorithm [68]; feature detection and description using

the speeded-up robust features (SURF) algorithm [69]; and feature detection using the Kanade-

Lucas-Tomasi corner-detection algorithm (KLT) [70] with feature description using the intensity-

domain spin image (IDSI) algorithm [71].

We define the domain using this set of applications for several reasons. First, EKF is a widely-

accepted, standard method for nonlinear state estimation and navigation [67, 72–74]. Second,

feature tracking is a large area of research within computer vision, and includes many widely-used

algorithms. Although typically only one would be used by a particular application, by surveying

multiple algorithms we intend to identify which ones are more amenable to our method of acceler-

ation. In doing so, we are able to identify algorithmic characteristics that should be sought after

in other applications to allow for successful acceleration.

As benchmarks, we use the sample applications kf-slam and features-matching from the Mobile

Robot Programming Toolkit (MRPT) [75], which uses the Open Source Computer Vision (OpenCV)

library [76] for the implementations of the SURF and KLT algorithms.

The kf-slam application runs an EKF-based SLAM iteration for each action-observation pair in a

sample data set. An action-observation pair represents a state change by way of a pose transition

and an observation of the new state. A complete iteration of EKF-based SLAM involves the

following steps: (1) acquire the action data and linearize the dynamics of the transition based

on the previous filtered state estimate; (2) predict the next state estimate, compute transition

Jacobians, and predict the covariance of the next state estimate; (3) acquire the observation data

and linearize the dynamics of the observation based on the predicted next state estimate; (4)

compute observation Jacobians and predict observation covariances; (5) finally, using the near-

optimal Kalman gain, update the next state estimate and its covariance.

The features-matching application has three main stages. First, it runs a feature detection algo-

rithm (SIFT/SURF/KLT) on a sample image to find feature points. Next, it computes descriptors

15

Chapter 2. Accelerating Vision and Navigation Applications on a Customizable Platform

(SIFT/SURF/IDSI) for each feature. Finally, it matches the features to those in a previously-

analyzed image by computing the minimum descriptor distance between each newly-found feature

and every feature in the previous image. By matching features between successive images, the

movement of each feature can be tracked.

With these benchmarks serving as baseline implementations, we aim to create custom accelerators

that will allow them to perform in real-time with reduced energy consumption. In an effort to

match data collection frequencies of current autonomous systems [77, 78], we have assumed input

rates of 30 Hz for image data and 1 Hz for range-and-bearing sensor data. Our measurements

indicate that speedups of at least 30× for SIFT-based features-matching, 9× for SURF-based

features-matching, 3.6× for KLT-IDSI-based features-matching, and 12.4× for kf-slam are

needed in order to meet real-time constraints.

2.2 Methodology

Given the area constraints of the FPGA and the limited bandwidth of the off-chip interconnect, our

design goal is to find valid accelerators that achieve enough speedup to push application execution

within the thresholds set by real-time data-collection frequencies. While our primary focus is on

reducing execution time, saving energy also remains a significant goal; as such, we may choose to

include accelerators that achieve little speedup so long as they reduce energy consumption.

The creation of effective accelerators begins with thorough application profiling to determine the

sets of operations that consume the largest amounts of time (and energy). We measure program

runtime statistics for our benchmarks using hardware counters accessed with the PAPI library [79].

Energy consumption is estimated using the McPAT framework [80]. Based on profiling results, we

identify accelerator candidates (Section 2.2.1) and synthesize RTL designs using the AutoPilot tool-

chain to determine latency and resource consumption (Section 2.2.2), allowing us to systematically

select the optimal subset of candidates for our domain (Section 2.2.3). Finally, we implement the

selected RTL designs for the target FPGA device using Xilinx ISE [81] map, place, and route tools,

16

Chapter 2. Accelerating Vision and Navigation Applications on a Customizable Platform

followed by analysis of latency and energy consumption of the completed accelerators using Xilinx

XPower Analyzer [82].

2.2.1 Accelerator Candidate Identification

In order to characterize accelerator candidates based on the profiling results, we introduce the terms

functional speedup (FS), application speedup (AS), and domain speedup (DS). We define FS as

the speedup of a particular function using an FPGA-based accelerator, AS as the speedup of the

entire application due to one or more accelerators, and DS as the speedup of the entire domain

of applications due to a selected set of accelerators. Hence, for an accelerator that transforms a

function from T cycles to T ′ cycles, the functional speedup is simply expressed as:

FS =
T

T ′

Consider an application that takes a total of TA cycles and has a set of m accelerators that achieve

speedups of FS1, . . . , FSm for functions that originally take T1, . . . , Tm cycles and are run R1, . . . ,

Rm times, respectively; we then express the speedup of that application due to all the accelerators

as follows:

AS =
TA

(TA −R1T1 − . . .−RmTm) +R1
T1
FS1

+ . . .+Rm
Tm
FSm

For a domain of n applications having TA1 , . . . , TAn total cycles and AS1, . . . , ASn application

speedups, respectively, the overall domain speedup becomes:

DS =
TA1 + . . .+ TAn
TA1
AS1

+ . . .+
TAn
ASn

Unlike FS, AS and DS are sensitive to the run-counts of the code being replaced by the accelerator.

Note that these speedup metrics also take into account CMP-FPGA communication overhead

with respect to the proposed interconnect model (i.e. the T ′ values include cycles dedicated to

communication).

17

Chapter 2. Accelerating Vision and Navigation Applications on a Customizable Platform

Table 2.1: Cycles, energy, and maximum benefits from accelerator candidates

Cycles (at 2 GHz) Energy (J) ASmax AERmax DSmax DERmax
kf-slam (EKF-SLAM) 69,943,334,047 342.43 – – – –
jacobiansPoseComposition 43,768,831,168 211.89 2.64 2.62 2.44 2.42
sphericalCoordinates 21,911,609,872 106.73 1.46 1.45 1.42 1.42

features-matching (SIFT) 2,399,480,515 12.12 – – – –
SIFTextremum 253,435,933 1.26 1.12 1.12 1.00 1.00
SIFTdesc 828,914,977 4.15 1.53 1.52 1.01 1.01

features-matching (SURF) 782,557,518 4.09 – – – –
findMaximaInLayer 9,352,586 0.05 1.01 1.01 1.00 1.00
SURFdesc 378,550,056 1.99 1.94 1.95 1.01 1.01

features-matching (KLT-IDSI) 478,421,485 2.44 – – – –
cornerMinEigenvals 26,038,388 0.14 1.06 1.06 1.00 1.00
computeIDSI 393,453,604 2.00 5.63 5.54 1.01 1.01

In accordance with Amdahl’s Law, a single accelerator α can achieve up to the following amount

of application speedup (i.e. assuming FS →∞):

ASmax =
TA

TA −Rα · Tα
=

1

1− Rα·Tα
TA

=
1

1− P

where P is the proportion of the application (0 ≤ P ≤ 1) affected by that particular accelerator.

Assuming that the n−1 other applications within the domain execute in TA2 , . . . , TAn total numbers

of cycles and in the worst case they cannot be accelerated by α, the maximum amount of domain

speedup this accelerator can achieve is:

DSmax =
TA + TA2 + . . .+ TAn

TA · (1− P) + TA2 + . . .+ TAn

The maximum application and domain energy reductions (i.e. AERmax and DERmax) are defined

similarly.

Table 2.1 shows ASmax, AERmax, DSmax, and DERmax for each of the accelerator candidates

in our benchmark suite. Note that as there is strong correlation between speedup and reduction

in energy usage (e.g. ASmax is roughly equal to AERmax), energy is not explicitly considered

for accelerator identification/selection. Descriptions of the accelerator candidates can be found in

Section 2.2.2.

18

Chapter 2. Accelerating Vision and Navigation Applications on a Customizable Platform

As Amdahl’s Law dictates, a candidate must make up a significant portion of an application in order

to have a non-negligible impact on overall performance. However, large code regions, or kernels,

lead to bloated accelerators that require excessive amounts of FPGA resources. The process of

identifying viable candidates therefore involves balancing the tradeoff between ASmax and size of

the code kernel.

We characterize an effective accelerator candidate as one with a relatively high ratio of ASmax

to kernel size (i.e. resource consumption). At one extreme, the entire application is accelerated,

meaning ASmax = ∞, which could lead to very high FPGA resource consumption (possibly over

100%). At the other extreme, multiple small portions of an application are accelerated, in which

case overall FPGA resource consumption is lower and better controlled. However, ASmax is also

considerably reduced.

Ideal candidates, we find, likely exist in the compute-intensive inner sections of large loops within

a given application. In this case, not only is resource consumption low (i.e. the same accelerator

is reused during each iteration), but overall acceleration due to functional speedup is found to

far outweigh the overhead of repeated FPGA communication. This can be seen by the large

speedups achieved with EKF-SLAM (refer to Figure 2.2), which uses accelerators of this ideal type.

Consistent with our characterization of effective candidates, this methodology leads to accelerators

with high ASmax values and small kernel sizes, resulting in high ratios of the two.

2.2.2 Accelerator Candidate Synthesis

We synthesize our accelerator candidates by manually extracting and translating portions of our

applications’ C++ code into AutoPilot-friendly C. The AutoPilot tool then generates a register-

transfer level (RTL) description of an algorithm from a C-based functional description. Automatic

loop pipelining, unrolling, and/or merging can be applied if desired. AutoPilot supports most C

constructs such as functions, arrays, and structures. Pointers are supported, but all pointer values

must be statically determinable; this means all dynamic memory allocations must be removed.

Moreover, we reimplement necessary mathematical functions, such as exponent and square-root

19

Chapter 2. Accelerating Vision and Navigation Applications on a Customizable Platform

operations, in C as hardware implementations are not automatically generated. Aside from making

these modifications, the functionality of the code is kept intact so as to maintain the fidelity of the

original applications. We now detail the functionalities of the accelerator candidates.

2.2.2.1 jacobiansPoseComposition

A pose is defined as a 3D point representing location combined with a quaternion representing

orientation. Given two poses x and u, where x is the robot’s pose and u is the pose of a sensor

on the robot, this EKF-SLAM accelerator computes the pose composition f(x, u) = x+ u. It then

computes the two Jacobians df
dx and df

du .

Since this accelerator contains no loops and consists primarily of floating-point arithmetic, it is

easily parallelized by our C-to-RTL tools. In addition to being compute-intensive, this set of

operations is repeated for each action-observation data-pair, making this an ideal accelerator.

2.2.2.2 sphericalCoordinates

Given a sensor pose and the absolute position of a landmark, this second EKF-SLAM accelerator

computes the landmark’s position in spherical coordinates with respect to the sensor. Also com-

puted are the derivatives of the spherical coordinates with respect to the landmark point and the

sensor pose.

Like jacobiansPoseComposition, this code is purely computational with no loops and few con-

ditional expressions. As these computations are also repeated for each data-pair throughout the

application, this function has been identified as an ideal accelerator candidate.

2.2.2.3 SIFTextremum

To accelerate SIFT-based feature matching, this accelerator consists of the core feature-detection

algorithm. Given a point in the difference of Gaussians (DoG) pyramid, we check whether it is

20

Chapter 2. Accelerating Vision and Navigation Applications on a Customizable Platform

the maximum or minimum of its 26 scale-space neighbors. If so, it is a feature candidate, and we

iteratively interpolate it through scale-space to make the feature location more precise.

The extremum check is well-suited for a hardware implementation because all 26 neighbors can

be checked in parallel. However, numerous memory accesses are required to continuously obtain

the different sets of 26 neighbor values. Furthermore, the interpolation process is still roughly

sequential since it is implemented as a loop with several input-dependent stopping conditions.

2.2.2.4 SIFTdesc

This accelerator computes the SIFT descriptor for a given feature point by constructing a histogram

of gradients in an oriented patch around the feature location. As the computation is similar to that

of SURFdesc and we did not ultimately use this accelerator, we do not describe it in further detail

here. However, it is important to note that this candidate is the most complex in nature. Not only

are patch sizes dependent on feature-scales, thereby requiring larger data sets to be read, but each

point in the patch is linearly interpolated into the histogram, contributing to multiple bins and

resulting in added computation.

2.2.2.5 findMaximaInLayer

To accelerate SURF feature detection, this accelerator consists of a critical part of the algorithm.

It identifies potential features by finding maxima in a 2D array of determinants. Like SIFT, it

also interpolates feature-points through scale-space to increase the accuracy of the feature location.

Moreover, the process of finding maxima is also memory-intensive and the interpolation similarly

exhibits sequential behavior.

2.2.2.6 SURFdesc

With this accelerator, the SURF descriptor is computed for a given feature point. First, it de-

termines feature orientation by sliding a radial window around the feature point and computing

21

Chapter 2. Accelerating Vision and Navigation Applications on a Customizable Platform

the distance-weighted sum of gradient angles in the window. The window orientation with the

largest gradient response is saved as the feature orientation. Next, the image gradient is sampled

in an oriented rectangular patch around the feature point. Finally, the descriptor is assembled as

a histogram of gradients in 16 sub-rectangles within the patch.

This accelerator is the most complex of our selections. We use BRAM to store pre-computed sample

points and weights for determining feature orientation. We also pipeline the many loops with our

C-to-RTL tools.

2.2.2.7 cornerMinEigenvals

The main part of the KLT algorithm is contained in this accelerator. It first computes the gradient

of pixel intensities throughout the source image. Using this gradient, it computes at each point

the minimum eigenvalue of the structure tensor, which is a symmetric matrix of partial-derivatives

of image intensity. Similar to SIFT and SURF feature detection, this algorithm applies relatively

simple operations across a large image data set, resulting in memory-intensive rather than compute-

intensive behavior.

2.2.2.8 computeIDSI

Given a feature location, this accelerator computes the intensity-domain spin image (IDSI) around

the feature. An IDSI is a 2D histogram with the axes being intensity difference and distance from

the feature point. Histogram values are exponentially weighted so that values close in intensity

or distance are more prominent. The histogram is normalized to the range [0, 1] to provide some

invariance to illumination.

This accelerator is much more deterministic than SURFdesc since the patch size is statically known

and there is no concept of feature orientation. Using AutoPilot, most loops in this implementation

are pipelined, while a few simpler ones are unrolled.

22

Chapter 2. Accelerating Vision and Navigation Applications on a Customizable Platform

2.2.3 Accelerator Selection

Once we synthesize the hardware for our accelerator candidates, we select the most suitable accel-

erators to bundle together on a single FPGA. Being constrained by the size of the FPGA, we are

faced with limitations on the number of flip-flops (FFs) and lookup tables (LUTs), which are en-

closed into fixed-size logic slices. There are also a limited number of digital signal processing slices

(DSPs) and block RAM modules (BRAMs). In order to use these resources optimally, we analyze

the domain speedup (DS) of each accelerator and compare this to its overall resource consumption.

We approach this problem of optimal candidate-set selection from a dynamic-programming per-

spective. Specifically, we reduce this to a multi-dimensional knapsack problem where we maximize

cumulative DS while being restricted by the available FPGA resources. This method differs from

the traditional knapsack problem in that three sets of weights must be tracked simultaneously –

logic slices, DSPs, and BRAMs. In addition, a direct summation of DS values does not provide

a correct representation of the combined speedup. Instead, the following formula must be used to

represent the effective speedup of a group of n accelerators with DS values DS1, . . . , DSn:

DSeffective =
1∑n

i=1

(
1

DSi

)
− (n− 1)

Despite this added complexity, approximate solutions are achievable in polynomial time [83]. Specif-

ically, for n accelerators and 3 constraints, the time complexity of a solution with maximum error

ε is roughly O(nk), where k = min(n, d3× (1− ε)/εe).

We note that for the small set of candidates we present here, a brute-force selection algorithm

would suffice. However, our dynamic-programming approach will scale well to larger sets of can-

didates. Using these methods, we select the following accelerators: jacobiansPoseComposition,

sphericalCoordinates, SIFTextremum, SURFdesc, and computeIDSI.

23

Chapter 2. Accelerating Vision and Navigation Applications on a Customizable Platform

Table 2.2: Cycles, energy, and speedup statistics for implemented accelerator candidates

Lines of FPGA # Reads # Runs Total Total FS AS DS
C Code Cycles & Writes CPU Cycles Energy (J)

jacobiansPoseComposition* 186 77 70 13,994 21,550,760 0.02 2017.42 2.64 2.44
sphericalCoordinates* 203 104 40 12,750 26,520,000 0.03 826.23 1.46 1.42

SIFTextremum* 196 10.6 † 42 1,183,935 251,040,500 0.27 1.01 1.00 1.00
SIFTdesc 255 121,323 60,788 1,095 2,656,973,700 2.88 0.31 0.57 0.98

findMaximaInLayer 222 6,061,448 8,182,740 8 969,831,680 1.05 0.01 0.45 0.99
SURFdesc* 304 13,716 5,452 682 187,086,240 0.20 2.02 1.32 1.00

cornerMinEigenvals 153 11,275,054 14,209,497 1 112,750,540 0.12 0.23 0.85 1.00
computeIDSI* 119 4,442 1,484 254 22,565,360 0.02 17.44 4.45 1.01

Note: All accelerators run at 100 MHz, except for cornerMinEigenvals which runs at 200 MHz.
* Selected accelerator. † Weighted average for two nested conditions; the outer condition

executes every time the accelerator is called, but is true only about 0.2% of the time.

Table 2.3: FPGA resource utilization for implemented accelerator candidates

BRAM DSP FF LUT SLICE

jacobiansPoseComposition* 0 128 9282 20781 6983
sphericalCoordinates* 0 304 20721 37140 11275
SIFTextremum* 0 36 6513 13386 4142
SIFTdesc 0 38 10097 18274 5594
findMaximaInLayer 0 50 14191 25148 7318
SURFdesc* 35 139 19887 39783 11825
cornerMinEigenvals 0 36 11300 13528 3870
computeIDSI* 0 17 3580 6706 2087

Total Available Resources 832 768 301440 150720 37680
FPGA Utilization (* only) 4.21% 81.25% 19.90% 78.16% 96.37%

* Selected accelerator.

2.3 Evaluation Approach

Our system is evaluated using Red Hat 4.1.2 (x86-64) on a 2.0 GHz Intel Xeon processor with

8 GB of main memory. We implement our accelerators for the Xilinx Virtex 6 FPGA (resources

summarized in Table 2.3). The benchmark applications are built from MRPT 0.9.3 and OpenCV

2.2, and the sample images used by features-matching are 640× 480 pixels.

To model our system’s interconnect, we assume a single 128-bit time-multiplexed TSV bus. Since

the FPGA clock is 20 times slower than the CMP, this effectively results in 20 individual TSV

buses, where 4 are allocated to each of our 5 accelerators. For each effective TSV bus, we assume

1 FPGA cycle and 1
2CV

2 Joules per access, where C = 0.8 femtofarads and V = 1.2 volts. Note

that the energy consumed by the TSVs is found to be negligible. Additionally, we treat every load

24

Chapter 2. Accelerating Vision and Navigation Applications on a Customizable Platform

and store on the FPGA (to external data) as a separate, single-cycle access. As we do not attempt

any data packing over the buses, our results are conservative and we would expect to see further

performance improvement with more efficient use of buses.

2.4 Experimental Results

Table 2.2 lists the cycles, energy, and speedup statistics for all the implemented accelerator can-

didates. We note that the number of lines of code roughly correlates with the complexity of an

accelerator, but not necessarily its runtime. From these results, we see that the accelerators which

were not selected (i.e. SIFTdesc, findMaximaInLayer, and cornerMinEigenvals) require the high-

est numbers of bus accesses. Although some of these accesses can occur in parallel (i.e. multiple

buses could be in use simultaneously for a single accelerator), the resulting overhead remains large

and significantly limits functional speedup. In comparison, for the accelerator with the highest FS

(i.e. jacobiansPoseComposition with FS = 2017), the number of bus accesses (70) is very low.

Since this is close to the total number of FPGA cycles (77), this verifies that the accelerator is

made up of highly parallel computations which are almost fully hidden by the external load and

store operations.

Table 2.3 presents the FPGA resource utilization corresponding to each implemented accelerator

candidate. Although our selected accelerators consume almost the entire FPGA (96% slices), only

SURFdesc uses BRAM. For the memory-intensive feature-detection algorithms, it will likely be

useful to modify the original code to stream large portions of the input images to FPGA-local

BRAM modules. In this way, the FPGA resources will be better utilized, while memory-access

latency will also decrease.

Finally, Figure 2.2 summarizes performance improvements, including speedup, energy savings, and

reduction in the energy-delay product (EDP) for each application as well as the overall domain.

Notably, we achieve a 15× speedup for EKF-SLAM and a 4.4× speedup for KLT-IDSI, resulting

in enough performance improvement to meet our previously established real-time goals. We see

25

Chapter 2. Accelerating Vision and Navigation Applications on a Customizable Platform

0

2

4

6

8

10

12

14

16

EKF-SLAM SIFT SURF KLT-IDSI Domain

Sp
e

e
d

u
p

0

2

4

6

8

10

12

14

16

EKF-SLAM SIFT SURF KLT-IDSI Domain

E
n

e
rg

y
Sa

vi
n

gs

0.1

1

10

100

1000

EKF-SLAM SIFT SURF KLT-IDSI Domain

ED
P

 R
e

d
u

ct
io

n

Figure 2.2: Performance and energy improvements using accelerators

similar improvements in terms of energy savings, ultimately resulting in a 94× EDP reduction

for the entire domain. We further point out that despite seeing virtually no speedup, the SIFT

accelerator nevertheless provides enough energy savings to justify occupying the otherwise unused

FPGA resources.

In a single application, one would not likely use more than one type of feature detection. However,

with our results we are able to identify which algorithms for feature detection are more amenable

to this type of acceleration, and hence should be preferred for the assumed architecture. We find

that as feature detection is primarily a search algorithm over a large data set, implementations

for the SIFT, SURF, and KLT detectors become highly memory-intensive computations that bear

much interconnect communication overhead for marginal functional speedups. Consequently, our

approach of partial acceleration using C-to-RTL tools turns out to be less effective than, for instance,

a full custom FPGA implementation. EKF-SLAM and IDSI, on the other hand, are compute-

intensive, making our approach more successful.

26

Chapter 2. Accelerating Vision and Navigation Applications on a Customizable Platform

As ideal accelerators are likely found in inner sections of critical loops and are run many times

during an application’s execution, their relative performance may be highly dependent on commu-

nication overhead. For this reason, we evaluate the performance of our accelerators using additional

interconnect models. This can also be viewed as a sensitivity study of varying communication band-

widths and latencies.

We model the total execution time of an accelerator with interconnect i using the latency of a mem-

ory access Li and the interconnect’s raw 1-way bandwidth BWi. Since our original measurements

account for the latency and bandwidth of accesses over the TSV bus, we define latency penalty LPi

and bandwidth penalty BPi to characterize the additional time taken over slower interconnects:

LPi = Li − LTSV ; BPi =
BWTSV

BWi
− 1

Given an accelerator that originally runs in N cycles of length Tclk and has M external memory

accesses, our simplified model for the total execution time Ti using interconnect i is then:

Ti = LPi + Tclk · (N +M ·BPi)

Note that when i is TSV, Ti = Tclk ·N .

Table 2.4: Interconnect model parameters

Li (ns) BWi (Gbps) Description

TSV 0.5 256 128 bits · 2 GHz
QPI 1.25 102.4 20 bits · 64/80 ovhd. · 2 · 3.2 GHz
FSB 105 102.4 64 bits · 4 · 400 MHz
PCIe3 63 64 8 lanes · 1 bit · 8 GHz
PCIe2 126 32 8 lanes · 1 bit · 5 GHz · 4/5 ovhd.

We calculate values for FS, AS, and DS for the following interconnects: TSV bus, QuickPath

Interconnect (QPI), front-side bus (FSB), PCI-Express 3.0 (PCIe3), and PCI-Express 2.0 (PCIe2).

Table 2.4 lists the interconnect model parameters, while Figure 2.3 displays the corresponding

speedup metrics. The latency over QPI is estimated as 2 flits × 2 cycles/flit × 3.2 GHz = 1.25

27

Chapter 2. Accelerating Vision and Navigation Applications on a Customizable Platform

0.01

0.1

1

10

100

1000

10000

jacobiansPoseComposition sphericalCoordinates SIFTextremum SURFdesc computeIDSI

Fu
n

ct
io

n
al

 S
p

e
ed

u
p

0.1

1

10

100

EKF-SLAM SIFT SURF KLT-IDSI Domain

A
p

p
lic

at
io

n
 S

p
e

ed
u

p

TSV

QPI

FSB

PCIe3

PCIe2

Figure 2.3: Functional, application, and domain speedups based on varying interconnect models

ns [84], the latency over FSB is estimated using manufacturer data [85], and the latency over PCIe

is estimated by extrapolating results from [86].

As seen in Figure 2.3, because the FS values for the EKF-SLAM accelerators are high, the slower

interconnects only slightly reduce AS (2% average loss). In contrast, AS for SIFT is drastically

reduced (52% average loss) because its large number of initial simultaneous memory accesses make

28

Chapter 2. Accelerating Vision and Navigation Applications on a Customizable Platform

it highly bandwidth-dependent. These impacts on accelerator speedups support the previous eval-

uations based on bus accesses for accelerators of compute-intensive versus memory-intensive appli-

cations. To mitigate increased communication overhead due to decreased interconnect bandwidth,

overlap of computation and communication is needed, as done in [87]. However, the functional-

speedup reductions seen for our compute-intensive accelerators are not significant enough to affect

our accelerator choices.

29

Chapter 3

ARC: Architecture Support for

Accelerator-Rich CMPs

In an accelerator-rich platform, major issues exist involving the low utilization and challenging

usability of accelerators. To increase the utilization of accelerators and allow application developers

to benefit from their potential performance efficiency, it is necessary to reduce the overhead involved

in their usage, namely the overhead of operating system (OS) interaction for resource management.

Another key issue in such accelerator-rich architectures is achieving efficient management when

sharing accelerators among different cores and across different applications. Furthermore, it is

important for the generation of unique accelerators to be automated so that an application author

can produce code that is reusable across other accelerator-rich platforms as well.

We therefore provide support for accelerator-rich CMPs (ARC) [14] in the form of an efficient

architectural framework and an associated set of algorithms that minimize the overhead of stati-

cally integrating and dynamically managing loosely-coupled accelerators (LCAs). This approach

focuses on minimally invading the core, incurring low overhead by avoiding OS interaction for

resource management, enabling flexibility in accelerator sharing and virtualization, and allowing

user-friendly development for application programmers. Our work features the following: (1) an

30

Chapter 3. ARC

!"#$%"&'$(

)*+)*

,$%#-+

.((/#

!"#$%&'"()*

!"#$%"&'$(

!"!

#$%&'"

())*&

!"#$%"&'$(

!"!

#$%&'"

())*&

!"#$%"&'$(

!"!

#$%&'"

())*&

!"#$%"&'$(

!"!

#$%&'"

())*&

!""#$#%&'(% !""#$#%&'(%

)"%&'"*+&,)"%&'"*+&,

-.!/

0(1'%($$#%

-.!/

0(1'%($$#%

B1

DMA
L2

Cache
Accelerator

SPM

B2 B1

O1

DMA
L2

Cache
Accelerator

SPM

a

b

B2 B3

O2 O1

DMA
L2

Cache
Accelerator

SPM

c

B4 B3

O2 O3

DMA
L2

Cache
Accelerator

SPM

d

Step

1:

Step

2:

Step

3:

Step

4:

B1 B2 B3 B4

O1 O2 O3 O4

Input:

Output

:

Global

Accelerator

Manager (GAM)

Core

Shared L2 CacheAccelerator

Request/Reserve

Ack

DMA

Cache Access

Output Data

Input Data

StartDone

Address /

TLB entry

Done / TLB

Request

TLB
LPB

LPB

LPB: Loosely-coupled accelerator Parameter Block

M B B C C B B M

B B B C C B B B

C C C C C C C C

A A A A A A A A

A A A GAM A A A A

C C C C C C C C

B B B C C B B B

M B B C C B B M

RouterCoreC

B L2 Banks A

Accelerator +

DMA + SPM

M

Memory

Cotroller

Figure 3.1: ARC microarchitecture

CPU

Memory
Task

Description

GAM

Accelerator
44

3

4

5

Figure 3.2: Communication between CPU,
GAM, memory, and accelerator

accelerator allocation protocol to avoid OS overhead in scheduling tasks to shared LCAs, (2) an

approach to accelerator composability that allows multiple LCAs to work collaboratively as a sin-

gle complex virtual accelerator while maintaining transparency to program authors, and (3) a fully

automated simulation tool-chain to support accelerator generation and management.

3.1 Overview of ARC

Figure 3.1 presents the microarchitecture of ARC , which is composed of cores, accelerators, the

global accelerator manager (GAM), shared L2 cache banks, and memory controllers. All of the

mentioned components are connected through the network on chip (NoC) using routers. Accelerator

nodes include a dedicated DMA controller (DMAC), scratchpad memory (SPM) for local storage,

and a small translation look-aside buffer (TLB) for virtual to physical address translation. The

GAM is introduced to handle accelerator sharing and arbitration.

31

Chapter 3. ARC

T
h

r
e
a

d

I
D

Acc ID

Table

Arguments

Addresses

ISR

Addresses

CORE LW-Int interface

Light-weight interrupt table

N
e
t
w

o
r
k

I
n

t
e
r
f
a
c
e

lwi-ready

lw-interrupt

L
W

I
n

t
e

r
r
u

p
t

p
a
c

k
e
t
s

LW-Int msg.

queue

Acc ID SW thread ID Arguments

(a)

(b)

Light-weight Interrupt packet

(A)

(B)

Figure 3.3: Light-weight interrupt support

3.1.1 Instruction Set Extension

In order to interact with accelerators more efficiently, we have introduced an extension to the

instruction set, which consists of four new instructions used specifically for interacting with accel-

erators. These instructions are briefly described in Table 3.1. A processor uses lcacc-req to request

information about accelerator availability; the returned information consists of pairs of accelera-

tor identifiers and predicted wait times for each available accelerator. A processor will then use

lcacc-rsv to request the accelerator corresponding to a specific identifier. Once an accelerator is

reserved, lcacc-cmd is then used for directly interacting with it. When a job is completed, lcacc-free

is used to release the accelerator so that it can be used by another processor. These instructions

are accessible directly from user code, and do not require OS interaction. Communication with

accelerators is carried out with the use of virtual addresses, maintaining accessibility of resources

from user code. Execution of one of these instructions results in a message being sent to a device

on the network (either the GAM or an accelerator). Attached to each message is the thread ID

of the executing thread, which can be used to track requesting threads in an environment where

context switches are possible.

32

Chapter 3. ARC

Table 3.1: Instructions used to interact with accelerators

lcacc-req x Request information from GAM about availability of
accelerators implementing functionality x.

lcacc-rsv x y Reserve the accelerator with ID x for a predicted duration y.

lcacc-cmd accl cmd Send a command (cmd) to an accelerator (accl) with parameters
addr x y z x, y, and z ; perform an address translation on addr,

sending both logical and physical addresses.

lcacc-free accl Send a message to GAM to release accelerator accl.

Table 3.2: Instructions to handle light-weight interrupts

lwi-reg x y z Register service routine y to service interrupts arriving
from accelerator x. LWI message packet will be written to z

lwi-ret Return from an interrupt service routine.

Figure 3.2 shows the communication between a core, the GAM, an accelerator, and the shared

memory. The numbers on the arrows indicate the steps taken when a core uses a single accelerator.

These steps are described as follows:

1. The core requests from the GAM an enumeration of all accelerators it may potentially need

(lcacc-req). The GAM responds with a list of accelerator IDs and estimated wait times for

the corresponding accelerators.

2. The core sends to the GAM a sequence of reservations for specific accelerators (lcacc-rsv).

The core then waits for the GAM to give it permission to use these accelerators.

3. The GAM configures the reserved accelerators for use by the requesting core.

4. The core writes to the shared memory a task description detailing the computation to be

performed. Next, the core sends to the accelerator a command identifying the memory

address of the task description (lcacc-cmd). The accelerator loads this task description, and

begins working.

5. When the accelerator finishes working, it notifies the core. The core then sends a message to

the GAM freeing the accelerator (lcacc-free).

33

Chapter 3. ARC

3.1.2 Light-Weight Interrupt Support

A platform that features accelerators requires a mechanism for a processor to be notified of the

progress of an accelerator. In the ARC platform, we handle this issue with the use of light-weight

interrupts. ARC light-weight interrupts are interrupts handled entirely as user code, and do not

involve OS interaction, as this interaction can be a major source of inefficiency. Refer back to

Table 1.1 in Section 1.1.1 for a more detailed analysis of the overhead incurred when interacting

with accelerators through device drivers and OS interrupts.

There are three main sources of interrupts associated with accelerator interaction: (1) GAM re-

sponses, (2) TLB misses, and (3) notifications that the accelerators have finished working. GAM

responses come either because a core sent a request message or a reserve message. TLB misses

occur when an accelerator fails to perform address translation with the use of its own private TLB,

and requires a core’s assistance in performing the lookup. Interrupts notifying the completion of

work arrive when an accelerator has completed all work given to it.

Figure 3.3 shows the microarchitectural components added to the cores in ARC in order to sup-

port the light-weight interrupt. An interrupt is sent via an interrupt packet (shown in Figure 3.3A)

through the NoC to the core. Each interrupt packet includes the thread ID identifying the thread

to which this interrupt belongs, and a set of interrupt-specific information. The main microarchi-

tectural components added to support the light-weight interrupt are listed below:

1. Interrupt controller located at the core’s network interface, which receives the interrupt pack-

ets and queues them until they can be serviced by the core.

2. Light-weight interrupt interface in the core, which is responsible for receiving the interrupts

from the interrupt controller, and providing a software interface to setup the information

needed for servicing the interrupts.

The interrupt controller has a queue for buffering the received interrupt packets, ensuring they do

not get lost if the core is busy handling other interrupts. Without loss of generality, we assume that

34

Chapter 3. ARC

for each thread we can only have a single-level nest for interrupts; this means multiple light-weight

interrupts cannot be simultaneously serviced. If an interrupt arrives for a thread that is currently

scheduled, it is executed immediately. If the thread is not scheduled, a normal OS-based interrupt

occurs.

In order to support light-weight user-level interrupts, we introduce a set of instructions to enable

user code to handle interrupts. These instructions are described in Table 3.2. The lwi-reg instruction

registers the interrupt handlers, while the lwi-ret instruction returns from an interrupt-handler

routine. Using these instructions, a program segment that utilizes accelerators is then designed as

a series of interrupt service routines.

3.1.3 Accelerator Creation Methodology

Figure 3.4 is a block diagram highlighting the process of generating accelerators for a given applica-

tion. Using a combination of static analysis and dynamic profiling, code kernels of the application

are first assessed and a list of accelerator candidates are extracted. These candidates are then

weighted using a series of selection criteria, such as area, performance, energy, criticality, and phys-

ical design constraints; this selection step generates an accelerator database. A virtualizer module

then outputs a DLL that is used to link to executable files, as shown in Figure 3.5. By introducing

a series of transformation rules, accelerator composition can also be carried out to create larger or

smaller accelerators from the available accelerators on the platform.

3.1.4 Programming Interface to ARC

The ARC development flow, including the application programming interface (API) involved in

using accelerators, is presented in Figure 3.5. For each type of accelerator, one dynamic linked

library (DLL) is provided. This DLL is specific to a target platform, and provides a mapping

from accelerator calls to actual invocations of physical accelerators. Calls to accelerators have their

implementations dynamically linked to application code.

35

Chapter 3. ARC

Applications

Accelerator

extraction

Accelerator

candidates

Accelerator

selection

Selection

criteria*

Accelerator

DB

Virtualizer module

Transformation

rules**

Accelerator runtime DLL

(platform dependent)

* Selection criteria: area,

performance, energy, criticality,

physical design constraints

** Transformation rules: A

series of algebraic rules that

shows how to compose/

decompose smaller/larger

accelerators

Figure 3.4: Accelerator creation methodology

Applications

source code

Compiler
Accelerator

header file

Dynamic link

library targeting

specific platform

Components provided by

accelerator developer

Static

application

binary

Runtime linker

Executable

application

Figure 3.5: ARC
development flow

3.1.5 Invoking Accelerators

The initial overhead associated with acquiring permissions to use an accelerator is significant enough

that it should be amortized over a large amount of work. We therefore assume an accelerator will be

used to process a relatively large amount of data. To that end, we introduce two accelerator features

to deal with this efficiently: (1) task descriptions to limit communication between accelerators and

the controlling core, and (2) methods to handle TLB misses.

To communicate with an accelerator, a program would first write to a region of shared memory a

description of the work to be performed. This description includes the location of arguments, data

layout, which accelerators are involved in the computation, the computation to be performed, and

36

Chapter 3. ARC

the order in which to perform necessary operations. This detail is included to allow accelerators to

be general as well as allow coordination of accelerators in groups that perform more complex tasks

(described in Section 3.1.7). Evaluating the task description yields a series of steps to be performed

in order, with each step consisting of a set of memory transfers and computations that can be

executed concurrently. This allows accelerators to overlap computation with memory transfer

within a given step. When all computations and memory transfers in that step are completed, the

accelerator moves onto the next step. We refer to these individual steps as tasks, and the structure

detailing a sequence of tasks as a task description.

To further decouple the accelerator from the controlling core, each accelerator contains a small local

TLB. This is required because the accelerator operates within the same virtual address space as the

software thread that is using the accelerator. The accelerator relies on the controlling core to service

any detected TLB misses. When a TLB miss occurs, the accelerator sends to the core a light-weight

interrupt containing the address that caused the miss. The core then executes the same TLB miss

handler that is executed when the core normally encounters a miss in its own TLB. Because this is

an OS action and involves trapping to an OS handler, it is not necessary for the original software

thread that is using the accelerator to be scheduled. If it is scheduled, the lightweight interrupt

interface can be used to limit overhead associated with interrupt handling. Otherwise, the OS

can be notified directly (e.g. by invoking a software interrupt or real hardware interrupt) without

having to force a context switch to reschedule the controlling thread. The resolved address is then

sent back to the accelerator that had encountered the TLB miss, where it is then stored in the local

TLB.

3.1.6 Sharing Accelerators

When accelerators are shared among all the on-chip cores, it is possible for there to be several cores

competing for the same accelerator. Even in architectures with large numbers of accelerators, there

may be a limited number of a particular type of accelerator that is suddenly in high demand. In this

situation, some of these cores may choose to eschew the use of the accelerator and simply execute

37

Chapter 3. ARC

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

8 16 24 32

C
yc

le
s

M
ill

io
n

s

Data Size

Deblur - no reuse
Deblur - reuse
Denoise - no reuse
Denoise - reuse
Segmentation
Registration - no reuse
Registration - reuse

Regression Models

541.48x^2 - 3898.5x + 348402
617.24x^2 - 10099x + 66270
602.7x^2 - 7197.6x + 36769
287.21x^2 - 3199.4x + 17105
848.39x^2 - 10207x + 58414
1029.7x^2 - 18538x + 459774
412.36x^2 - 7486.7x + 100468

Figure 3.6: Regression models for medical imaging benchmarks

the task using their own core resources. While the core is certainly less power efficient in executing

this task, it may make sense for it to do so in situations where the wait time for an accelerator

will eliminate any potential gains. As such, we propose a sharing and management scheme that

can use an estimated wait time to dynamically determine whether the core should wait to use an

accelerator or instead choose a software path. This sharing and management strategy is performed

by the GAM, which tracks the following: (1) the types of available accelerators; (2) the number of

accelerators of each type; (3) the jobs currently running or waiting to run on accelerators, including

their starting times and estimated execution times (Section 3.1.6.1); (4) the waiting list for each

accelerator and the estimated runtime for each job in the waiting list (Section 3.1.6.2).

38

Chapter 3. ARC

3.1.6.1 Accelerator Runtime Estimation (by the Core)

The execution time of a given job on an accelerator is data-dependent. When an accelerator is

reserved, the requesting thread submits an estimation of the duration for which the accelerator will

be used. This estimate is determined with the use of a data-size-parameterized regression model,

which has been constructed based on profiled executions. We have empirically found that a simple

second-order polynomial is sufficient to estimate execution time on average within 1%–2% of the

actual execution time (at most 6%). Once a model is generated for an accelerator, it is provided

to the rest of the development flow via the accelerator DLL (see Figure 3.5). Figure 3.6 presents

some of the models we use in this work.

3.1.6.2 Wait Time Estimation (by the GAM)

After receiving a reservation message from the core, the GAM adds the requesting core’s ID to the

tail of the waiting list for that accelerator. Note that the tasks being tracked in this waiting list

are issued on a first-come-first-served (FCFS) basis. Hence, the estimated wait time for the task

being added to the end of the list can be derived by summing up the expected execution times of

all jobs that already exist in the waiting list for that accelerator. This estimation algorithm is both

simple and practical for hardware implementation.

3.1.7 Accelerator Composition

A key contribution of our work is the increased utilization of the available resources by either

chaining accelerators in a pipelined fashion or composing them in a more complex formation to

virtualize larger accelerators. The next two subsections discuss these techniques.

39

Chapter 3. ARC

3.1.7.1 Accelerator Chaining

In an accelerator-rich platform, it is common for the output of one accelerator to feed the input

of another accelerator (e.g. when running streaming applications). For a traditional system, these

two accelerators would communicate through system memory, meaning the controlling core would

read the output of the first accelerator from its SPM, store that output in shared memory, and

subsequently write the output to the second accelerator’s SPM. To remove this inefficiency, we

employ the DMACs of the two accelerator nodes; as these two controllers communicate, the source

DMAC sends the content of its SPM to the destination DMAC to be written into its own SPM.

3.1.7.2 Accelerator Virtualization

For many types of problems, it is not practical to provide a monolithic accelerator to directly solve

each instance of that problem. Additionally, it is not practical to demand an application author to

target a single architecture. To decouple hardware design and software development, we provide a

set of virtual accelerators. A virtual accelerator is an accelerator that is implemented as a series of

calls to other physical accelerators, which are available in hardware (Figure 3.7A). A large library

of virtual accelerators can be provided to the application author as if they were implemented in

hardware. These accelerators would actually be implemented as a series of decomposition rules that

break down a large problem into a number of smaller problems (Figure 3.7B), similar in style to

the approach presented in [88]. The smaller problems would then be solved directly by hardware.

Decomposition rules must describe two things: (1) computation that is performed by accelerators

capable of solving sub-problem instances, and (2) communication of data to, from, and between

the various smaller accelerators. Rules would be applied recursively to express an implementation

of a virtual accelerator in terms of calls to physical accelerators.

These statically determined decomposition rules can be applied at runtime. Figure 3.8 describes the

process of invoking a virtual accelerator from within the application binary. When an accelerator

is called, an lcacc-req message is sent to the GAM for wait times for all functional units that

40

Chapter 3. ARC

M-point
2D FFT

M-point
2D FFT

M-point
2D FFT

M-point
2D FFT

3D FFT

N-point
2D FFT

2D to 2D rules
N: size of virtual FFT
M: size of physical FFT accelerators
 available on platform
P: number of available M-point FFTs

Step 1 – For (N/P) steps, do the following in parallel:
 1.1 Distribute rows between P M-point FFTs (N < M2)
 1.2 Compute 1D FFT size of N on 2D FFTs
 (compose mode)
 1.3 Read back result of 1D N-point FFT
Step 2 – For (N/P) steps, do the following in parallel:
 2.1 Distribute columns between P M-point FFTs (N < M2)
 2.2 Compute 1D FFT size of N on 2D FFTs
 (compose mode)
 2.3 Read back result of 1D N-point FFT

Virtualization

(A) (B)

Figure 3.7: An example of accelerator composition

! !

!""#$#%&'(%)*+,("&'-(+

!..$-"&'-(+)"&$$/)&+)&""#$#%&'(%

0#"(1.(/#)2
3&$"4$&'#)0#$&5

6#74#/')8&-')9-1#/):%(1);!<

!"#=-/')(:)!"">/)2)8&-')9-1#/

0#"-?#)@A&')!"">/)'()4/#

6#/#%,#)!"">/)2)BC#"4'#)D6)'&E#)/(:'@&%#).&'A

Figure 3.8: Accelerator composition steps

may be required by the decomposition result. While waiting on this request, the requesting core

either begins calculating the decomposition or begins fetching the data structures associated with

the statically computed solution. Once the GAM responds and the requesting core has a fully

decomposed problem available, the core calculates the wait time for the entire computation. It does

so by adding the runtime delay of the virtual accelerator (calculated with the use of a regression

model) to the largest of the delays provided by GAM. The core then executes a series of lcacc-

rsv instructions (one for each required accelerator), specifying the estimated duration of use of

41

Chapter 3. ARC

Table 3.3: Accelerated medical imaging benchmarks

Application Algorithmic Functionality # LCAs

Deblur [89] Total variation minimization 4
and deconvolution

Denoise [90] Total variation minimization 3

Registration [91] Linear algebra 7
and optimizations

Segmentation [92] Dense linear algebra, spectral 1
methods, MapReduce

Table 3.4: Accelerated computer vision and navigation benchmarks

Application Algorithmic Functionality # LCAs

EKF-SLAM [66] Partial derivative, covariance, and 2
spherical coordinate computations

IDSI [71] Computation of histograms based on 1
intensities and distances of pixels

LPCIP [93] Log-polar forward transformation of 1
image patch surrounding each feature

SURF [69] Feature orientation and computation 1
of gradient histograms

each reserved accelerator as the wait time for the entire operation. GAM will not assign any

accelerators until it can assign all accelerators requested. The core releases accelerators in the same

way as it normally would. With these mechanisms, an application author can use a simple API to

invoke virtual accelerators, and a hardware developer can implement accelerators based on need

and availability of resources.

3.2 Evaluation Approach

3.2.1 Benchmarks

To illustrate the effectiveness of our ARC platform, we evaluate a number of compute-intensive

benchmarks from both the medical imaging domain as well as the computer vision and naviga-

tion domain. Using shared LCAs, we accelerate four algorithms from each of these two domains.

42

Chapter 3. ARC

Figure 3.9: Process used to generate simulation structures and accelerated programs

Table 3.5: Simics+GEMS configuration

Processor UltraSPARC-III-i @ 2.0 GHz

Operating system Solaris 10

Number of cores 1, 2, 4, 8, 16

Coherence protocol MSI MOSI CMP directory

L1 cache 32 KB, 4-way set-associative; latency: 1 cycle

L2 cache 8 MB, 8-way set-associative; latency: 10 cycles

Main memory Latency: 1000 cycles; directory: 6 cycles

Network topology 4x8 mesh

Tables 3.3 and 3.4 provide brief descriptions of each application’s computational characteristics

and include the number of accelerators used. Also, we note that the data of the medical imaging

benchmarks is in a cubic form (e.g. a cube of 32× 32× 32 data elements), whereas the data of the

computer vision and navigation benchmarks is linear (e.g. 1024 data elements).

43

Chapter 3. ARC

Table 3.6: Sample synthesis results

DMAC GAM Deblur Denoise Registration Segmentation

Clock (ns) 2 2 4 4 4 4

Area (µm2) 10071 12270 4419917 1935539 12253775 2890354

Power (mW) 0.59 2.64 98.28 57.69 256.3 80.93

0

50

100

150

200

250

300

350

400

1 2 4 8 16

Sp
e

e
d

u
p

 (
X

)

Configuration (N cores, N threads, N accelerators)

Performance Improvement Over SW-only

Registration Deblur Denoise Segmentation

Figure 3.10: Speedup over SW-only (medical imaging domain)

The Fast Fourier Transform (FFT) is a computation common to a wide range of scientific com-

puting and signal processing algorithms, including use in a number of our chosen medical imaging

benchmarks. We use FFT to demonstrate our virtualization results. As a point of comparison, we

use FFTW [94] v3.3 for our software implementations.

When analyzing contention between multiple threads executing the same benchmark, we insert a

barrier immediately before entering the benchmark kernel being targeted for acceleration. This

maximizes the observable effects of contention and models a worst-case scenario. All threads

executing a benchmark can then be expected to enter the given kernel at approximately the same

time.

44

Chapter 3. ARC

0

10

20

30

40

50

60

1 2 4 8

Sp
e

e
d

u
p

 (
X

)

Configuration (N cores, N threads, N accelerators)

Performance Improvement Over SW-only

EKF-SLAM IDSI LPCIP SURF

Figure 3.11: Speedup over SW-only (computer vision and navigation domain)

3.2.2 Tool-Chain

In order to make the exploration of this topic practical, a number of supporting tools have been

created. These tools simplify the authoring of programs that use accelerators, and automate the

process of implementing our chosen accelerators in our simulator framework. These tools are used

in place of hand-written implementations and hand-adapted benchmarks to allow us to simulate

systems that would have been prohibitively complex to manually author, such as those that utilize

many accelerators or feature complicated inter-accelerator communication. Additionally, we believe

our tool-chain is representative of what will be needed for the development of future accelerator-

exploiting libraries, simplifying the job of programmers who would use these libraries without

compromising any of the capabilities of these accelerators.

With this tool-chain, generation of accelerators is only a matter of identifying a function in an

application’s source code to accelerate. We have automated the process of extracting the function,

compiling it as a VHDL-based hardware module, and synthesizing the module to extract timing

and energy information. This process yields a module that plugs into our cycle-accurate simulation

45

Chapter 3. ARC

0

100

200

300

400

500

600

700

1 2 4 8 16

En
e

rg
y

G
ai

n
 (

X
)

Configuration (N cores, N threads, N accelerators)

Energy Gain Over SW-only

Registration Deblur Denoise Segmentation

Figure 3.12: Energy gain over SW-only (medical imaging domain)

infrastructure to model the hardware unit, and coordinates the execution of the selected function

in a pipelined fashion.

Once we select the functions we want to accelerate, typically encompassing the compute-intensive

kernels of the benchmark, we procedurally generate a program segment to use these accelerators.

We describe communication between accelerators in a simple data-flow language that we use to

generate C source code. These program segments together make up the platform-specific DLL

mentioned previously. This code is responsible for coordinating interactions between accelerators,

registering/handling interrupts, managing task descriptions and accelerator resources, and dealing

with accelerator-CPU synchronization. Figure 3.9 illustrates the work flow described here.

3.2.3 Simulation Platform

Our experiments are conducted using a heavily modified version of the Simics [49] and GEMS [50]

simulation platform. The machine we model is based on a multicore system consisting of a mix

of UltraSPARC-III-i processors and accelerators. In order to create a fair comparison between

machines of different configurations, we maintain a fixed cache and network configuration. Our

46

Chapter 3. ARC

0

20

40

60

80

100

120

140

160

180

200

1 2 4 8

En
e

rg
y

G
ai

n
 (

X
)

Configuration (N cores, N threads, N accelerators)

Energy Gain Over SW-only

EKF-SLAM IDSI LPCIP SURF

Figure 3.13: Energy gain over SW-only (computer vision and navigation domain)

network topology is a mesh modeled on a system normally used to support 32 processors. These

nodes are then configured to either be processors, accelerators, or empty sockets. We feature a per-

processor split L1 cache, and a distributed L2 spread across all nodes that rely on a directory-based

coherence protocol. Table 3.5 shows the machine configurations we model in our simulations.

3.2.4 Area/Timing/Power Measurements

The AutoPilot behavioral synthesis tool [56] in combination with the Synopsys design compiler [95]

are used to synthesize the C modules into ASIC. The timing information produced by the syn-

thesis process is back-annotated to our accelerator modules to model cycle-accurate accelerators.

For computing energy we use power reports from Synopsys for accelerators and ARC hardware

components, and McPAT [80] for CPU power. As an example, Table 3.6 shows the synthesis results

for a DMAC, the GAM, and accelerators for the medical imaging benchmarks.

47

Chapter 3. ARC

0

50

100

150

200

250

300

350

1 2 4 8 16

Sp
e

e
d

u
p

 (
X

)

Configuration (N cores, N threads, N accelerators)

Performance Improvement Over OS+Acc

Registration Deblur Denoise Segmentation

Figure 3.14: Speedup over OS+Acc (medical imaging domain)

3.2.5 Evaluation Schemes

The following schemes are used to evaluate our ARC platform:

• Original benchmark (SW-only): The baseline for the experiments is the execution of

these multi-threaded benchmarks on a multiprocessor (one thread per processor).

• Accelerators + OS management (OS+Acc): This is a system which has accelerators

managed by device drivers and OS interrupts.

• Accelerators + HW management (ARC): This system features all the enhancements

discussed thus far, including resource arbitration managed by the hardware-based GAM.

We specify each simulation configuration using the Cc-Tt-Aa pattern, where “C” is the number

of cores, “T” is the number of threads, and “A” is the number of replications of the accelerators

needed by a benchmark. For example, a benchmark featuring 4 cores, 2 threads, and 1 instance of

each accelerator would be described as 4c-2t-1a.

48

Chapter 3. ARC

0

2

4

6

8

10

12

14

16

18

1 2 4 8

Sp
e

e
d

u
p

 (
X

)

Configuration (N cores, N threads, N accelerators)

Performance Improvement Over OS+Acc

EKF-SLAM IDSI LPCIP SURF

Figure 3.15: Speedup over OS+Acc (computer vision and navigation domain)

3.3 Experimental Results

3.3.1 Speedups and Energy Gains

Figures 3.10, 3.11, 3.12, and 3.13 show the speedup and energy gain results for the ARC base

configuration (Nc-Nt-Na) compared to running the software-only version of the benchmark with

the same number of processors and threads, and the same data size. The highest speedup is for

Registration (485× for the 1c-1t-1a case) and the lowest is for EKF-SLAM (13× for 16c-16t-16a

case). The best energy gain is 641× improvement with Registration. On average, we achieve

241× energy improvement over all the benchmarks and configurations. The computer vision and

navigation benchmarks are shown to benefit relatively less from acceleration than the medical

imaging benchmarks, yet this is mostly due to their smaller data sizes. As the data sizes increase,

more computation can be streamed through the accelerators, resulting in more utilization and

efficient execution.

We observe a reduction in speedup as we increase the number of cores and threads. This reduc-

tion is attributed to several sources. First, we measure the time from the start of all threads to

49

Chapter 3. ARC

0

10

20

30

40

50

60

70

1 2 4 8 16

En
e

rg
y

G
ai

n
 (

X
)

Configuration (N cores, N threads, N accelerators)

Energy Gain Over OS+Acc

Registration Deblur Denoise Segmentation

Figure 3.16: Energy gain over OS+Acc (medical imaging domain)

the end of the last thread, which means each result shown is the time measured for the longest

running thread. Adding more threads increases the likelihood of observing normal fluctuations in

runtime. Moreover, while we increase the number of cores and accelerators, we do not correspond-

ingly increase network resources, memory bandwidth, or cache capacity. As a result, increasing

the number of cores and threads results in additional contention for communication and memory

resources. This impacts accelerated cases more significantly than software-only cases because, while

the same amount of data is accessed, the accelerated cases access the data over a much shorter

period of time.

Figures 3.14 and 3.15 show the performance gain ARC achieves compared to the OS+Acc scheme.

Here we see increases in speedup for larger base configurations of ARC compared to the OS-

managed system. The reasons for this are two-fold: (1) by increasing the number of threads and

processors, the OS management overhead (thread context switching, TLB services, etc.) increases;

(2) for larger configurations, the number of interrupts also increase, which makes our ARC system

perform better due to the use of the light-weight interrupt in place of OS interrupts.

Similar to the performance results, Figures 3.16 and 3.17 show energy improvement of ARC over

50

Chapter 3. ARC

0

2

4

6

8

10

12

14

16

18

20

1 2 4 8

En
e

rg
y

G
ai

n
 (

X
)

Configuration (N cores, N threads, N accelerators)

Energy Gain Over OS+Acc

EKF-SLAM IDSI LPCIP SURF

Figure 3.17: Energy gain over OS+Acc (computer vision and navigation domain)

��

��

��

��

��

��

	�

�

����������� �������� �������� �����������

��
��
���
��
��
��
�
��
�
!�

"����������

���������������

���#�������������������

$���#�������������������

7

6

5

4

3

2

1

0

Figure 3.18: Error in accelerator runtime and wait time estimations

the OS+Acc configurations. As we enlarge the configurations, we see increased energy gains over

the OS+Acc system. The Registration benchmark once again performs best with 63× reduction

in energy consumption. On average, the benchmarks run on the ARC scheme achieve 17× energy

gain over the OS+Acc scheme.

51

Chapter 3. ARC

0

2

4

6

8

10

12

14

16

1 x 2-DFFT 2 x 2-DFFT 8 x 2-D FFT

Normalized Speedup to FFTW3

3D FFT Virtualization

2D FFT Virtualization

Figure 3.19: FFT virtualization (2D and 3D)

��

����

��

����

��

����

��

�� 	� �
� ��� ��� ��� �	� �
�
�� ���

�
��
���

��

����������

������������� ����

!� �����"#��

��$%���

���#����

&� '����"#��

Figure 3.20: Benefit of using light-weight interrupts

3.3.2 Accelerator Sharing Results

Figure 3.18 shows the observed error for both the runtime and wait time estimations of the medical

imaging benchmarks. We see that our estimated errors range from less than 1% to a maximum of

52

Chapter 3. ARC

��

��

��

��

��

��

	�

�
��
��
��
��
��
��

�
��
��
��
��
��
��

�
��
��
��
��
��
��

�
��
��
��
��
��
��

�
��
��
��
��
��
�	
�

��
���
���
�

��
���
���
�

��
���
���
�

��
���
���
�

��
���
���
	�

��
��
��
��
�

��
��
��
��
�

��
��
��
��
�

��
��
��
��
�

��
��
��
��
	�

��
��
��
��
��
��
��

��
��
��
��
��
��
��

��
��
��
��
��
��
��

��
��
��
��
��
��
��

��
��
��
��
��
��
	�

�
��
��
�

��
�
�
��

!""�������#�$#������%�#��&���'�%�#�������������(�

)��'*����+! �,�-���.*����+! �

)/�+! �

��.�+! �

HW-GAM

SW-GAM

Figure 3.21: Benefit of using hardware GAM (HW-GAM) over software GAM (SW-GAM)

6%. As such, the execution times on our accelerators are sufficiently predictable for this to be a

practical approach.

3.3.3 Accelerator Virtualization Results

Figure 3.19 shows the result of virtualizing a 512× 512 2D FFT and a 128× 128× 8 3D FFT using

multiple 128× 128 2D FFTs. We compare the SW-only case to an ARC system with 1, 2, and 8

copies of the 128× 128 2D FFT accelerator. For the ARC configuration, we assign a maximum of

5% of the chip area to FFT accelerators, while the SW-only case uses the general-purpose cores to

run FFTW3 [94]. In the best case, we obtain 14.4× speedup for the 3D FFT and 8.4× speedup for

the 2D FFT.

53

Chapter 3. ARC

3.3.4 Benefits of Light-Weight Interrupt

To measure the benefits of the light-weight interrupts, we examine the performance of the medical

imaging benchmarks and compare it to the performance on a system that relies instead on OS-

based handling of interrupts. This comparison is shown in Figure 3.20, where ARC achieves up

to 2.5× speedup over an otherwise identical system that lacks light-weight interrupts. As the data

size grows, more interrupts are generated, thereby increasing the benefits of employing light-weight

interrupts.

3.3.5 Benefits of Hardware-Based GAM

Lastly, we examine the possibility of using an OS process, called the SW-GAM, to handle the

responsibilities normally associated with the GAM. This approach differs from the previous OS+Acc

scheme in that it avoids relying on accelerator drivers for communication; with SW-GAM, the

interface for light-weight interrupts and the newly added instructions for accelerator communication

are still included. To provide a fair opportunity for the SW-GAM to compete with the GAM

implemented in dedicated hardware (HW-GAM), we allocate an extra processor exclusively for the

SW-GAM. Figure 3.21 displays the comparison results for running the medical imaging benchmarks

on configurations with N cores, N threads, and N accelerators, where N equals 1, 2, 4, 8, and 16.

The most benefit is seen for Registration, with almost 2× performance gain; since this benchmark

utilizes more accelerators, the GAM is responsible for allocating more resources, allowing it make a

larger impact on performance. On the other hand, Segmentation has only one accelerator, which

diminishes the benefits of HW-GAM to as little as 10% speedup. As the configuration size increases,

there is more interaction with the GAM, which translates into more benefits for the hardware-based

GAM.

54

Chapter 4

CHARM: Composable Heterogeneous

Accelerator-Rich Microprocessor

To address concerns regarding the low utilization of monolithic LCAs (refer back to Section 1.1.2),

we explore more fine-grained accelerator composition. The composable heterogeneous accelerator-

rich microprocessor (CHARM) [15] is a multicore design where loosely-coupled accelerator build-

ing blocks (ABBs) are distributed in islands around the chip and may be dynamically composed

to virtualize a monolithic loosely-coupled accelerator (LCA). Thus, the ABBs are effectively the

building blocks of our application-specific accelerators. Instead of having discrete LCAs for every

desired accelerator function, the use of ABBs gives us tremendous flexibility in composing different

accelerators on-the-fly, thereby dynamically matching application demand. In addition, we may

better share resources at this fine granularity and improve ABB utilization. From a design perspec-

tive, the use of ABBs creates more regularity and static homogeneity in a design that still provides

virtual heterogeneity through dynamic composition.

We first analyze LCA demands for the application domain of medical imaging. We then validate

the system flexibility by targeting two independent application domains, namely navigation and

55

Chapter 4. CHARM

computer vision. For all our benchmarks, we examine the potential for composability and acceler-

ator sharing. In terms of resource arbitration, we propose a hardware mechanism to control and

compose ABBs that may be distributed anywhere in our system. This hardware provides virtual-

ization of LCAs and allows software to interact with shared accelerators without being burdened

by arbitration or contention management. Finally, we demonstrate how our approach provides

load-balancing to better distribute work among ABBs, and improves utilization for either a single

application with multiple accelerator tasks or across multiple applications.

4.1 Overview of CHARM

In this section, we address our design goals by way of an architecture that provides flexibility,

scalability, and design reuse.

4.1.1 Software Infrastructure

The software component of CHARM is responsible for: (1) LCA candidate selection – identifying

program hotspots that would benefit from LCA implementation [96]; (2) ABB selection – creating

a set of ABBs to cover a set of LCAs under physical design constraints (area, timing, power) [97];

and (3) data flow graph creation – generating a mapping used to compose LCAs from ABBs. While

the LCA candidate selection is done manually with the help of profiling tools, the processes of ABB

selection and data flow graph creation are fully automated.

The structure of the data flow graph of ABBs is the same as that of a task flow graph [98] (see

Figure 4.1). Each node is a task that is represented by a desired ABB invocation, with edges rep-

resenting memory transfers between ABBs. In memory, this graph consists of a list of ABBs that

would be used to compose the LCA, followed by an enumeration of memory transfers. Each ABB

node consists of a type, an enumeration of starting addresses for locating argument streams in a

virtually addressed private scratchpad memory (SPM) region, and settings for any local configu-

ration registers. Each memory transfer consists of an identifier for a source and destination device

56

Chapter 4. CHARM

ABB1, Type = Poly

Input: Mem, Output:ABB2

Function:(x0-x1),(x2-x3), …

Memory

ABB2, Type = Poly

Input: ABB1, Output: ABB3

Function: x0*x1+x2*x3+….

ABB3, Type = FSqrt

Input: ABB2, Output: ABB4

Function: sqrt(x0)

ABB4, Type = FInv

Input: ABB3, Output: Mem

Function: 1/x0

Memory

D
e

c
o

m
p

o
s

e
d

 D
e

n
o

is
e

 L
C

A
 (

E
q

u
a

ti
o

n
 1

)

Figure 4.1: Data flow
graph for Denoise LCA

B I

B B B B

BB I

B B BB

M B B C C B B M

B B B

C C C C C C C C

I

I

I

I I I

I I

ABC

I

M B B C C B B M CoreC

B
L2

Bank
I ABB Island

M
Memory

Controller

I

B B

C C C C C C C C

III

DMA

SPM

A
B

B

A
B

B

A
B

B

A
B

B

A
B

B

A
B

B

ABC
Accelerator

Block Composer

N
o

C

Figure 4.2: Microarchitecture of CHARM

(either memory or an ABB node). It also includes a starting address and a series of size-stride pairs

describing a polyhedral (regular, high-dimensional) space for both the source and the destination.

This graph is easy to parse, and consists mostly of values that are directly usable by various control

registers on the ABBs and associated DMAs. We further note that when a data flow graph is

created, it is not tied to any physical instance of the ABBs. The graph simply connects virtual

ABBs together as a template of an LCA. Figure 4.1 illustrates this for one of the LCAs used in

Denoise, whose functionality is formulated by the following equation:

1/

√√√√ 6∑
i=0

(xc − xi)2 (4.1)

Once this LCA template is generated, the hardware would be responsible for mapping to it physical

instances of ABBs to instantiate a virtual LCA on-the-fly.

57

Chapter 4. CHARM

4.1.2 Hardware Infrastructure

While the software is responsible for specifying candidates for acceleration and detailing how ABBs

may construct particular LCAs, it is the hardware’s responsibility to allocate ABB resources to

particular threads to satisfy software demand. For this work, we will restrict each ABB to be

allocated to at most one LCA at a time. Our hardware will arbitrate usage of the ABBs among

multiple competing threads/cores, and allocate available resources in a way that maximizes their

utilization (i.e. load-balances requests from one or more cores among multiple accelerators). Note

that additional complications exist due to varying contention for the use of any given ABB along

with variation in latency when data is streamed to accelerators (e.g. caused by TLB/cache misses

and congestion on the NoC). A dynamic solution is preferable in order to adapt to nondeterminism

in memory latency and to the varying accelerator demand across different cores.

Figure 4.2 presents an implementation of the CHARM microarchitecture. It consists of cores, L2

cache banks, memory controllers, ABB islands, and an accelerator block composer (ABC), which

is the means of control for composing ABBs and the mechanism by which we provide dynamic

adaptation. We describe the ABC in more detail in Section 4.1.2.1.

Each ABB island has a small dedicated SPM, a dedicated DMA engine, and an NoC interface. The

SPM allows ABBs, when composed into an LCA, to have a fixed data access latency. By using

memory streaming and task partitioning, and by overlapping communication with computation,

the SPM size can be kept small. The allocation of SPM regions to each ABB is handled by the

ABC.

The dedicated DMA engine in each ABB island is responsible for transferring data between the

SPM and the L2 cache, and also between SPMs in different ABB islands (i.e. accelerator chaining

or remote DMA [99]). In addition, each DMA has a small internal TLB, allowing accelerators to

work with virtual addresses. In the event of a TLB miss, the DMA will forward its request to the

ABC.

58

Chapter 4. CHARM

4.1.2.1 ABC Design

In our scheme, the ABC is contacted by cores that need access to a virtual LCA. It then allocates

ABBs to satisfy this request. A virtual LCA can consist of any number of ABBs, provided that

number is less than the number of ABBs that is available in the system. The ABC uses five

components to manage its collection of ABBs: a resource table, a composed LCA table, a collection

of task lists, a TLB, and a data flow graph interpreter.

Resource Table: The ABC has a resource table that it uses to track the allocation of different

ABBs to LCAs. When a core requests the use of an ABB, the resource table is queried to determine

which ABBs are available. If enough ABB resources are available, multiple instances of a partic-

ular type of LCA may be instantiated, assuming the computation to be done is large enough for

these multiple instances to each perform non-trivial amounts of work. The ABC uses a two-tiered

allocation policy to decide which ABBs to compose into a given LCA. First, the ABC will attempt

to balance the concentration of memory-accessing ABBs across the entire system. The purpose of

this is to limit contention in the DMA associated with each node. Second, the ABC will employ a

simple greedy approach to select ABBs that are local to other ABBs they communicate with. This

is done in order to minimize the cost of communication between ABBs. To further reduce latency,

ABBs within the same island may use a common SPM for communication (rather than each using

their own SPM in their respective islands) and eliminate the need to communicate through the

NoC. When ABB resources are scarce, the above metrics degrade to greedily constructing LCAs

out of any available ABBs, rather than waiting for more optimal choices to become available.

Composed LCA Table: To eliminate the need to repeatedly compose the same LCA out of

the same ABBs when tasks are completed, a composed LCA table is introduced. This table tracks

ABB allocation, and is used to remove the overhead of remapping patterns when an LCA is already

composed.

Task Lists: When the ABC receives a request for an LCA, the requested computation is split

into a number of fixed-size chunks of data to enable efficient parallelism. Each of these chunks is

59

Chapter 4. CHARM

referred to as a task and the ABC maintains these in a task list. Each entry in the task list consists

of a marker identifying which LCA the task belongs to, which task of the whole computation the

entry belongs to (for that specific LCA invocation), and a bit flag marking it as runnable or not

runnable. As tasks are added to the task list, the ABC iterates over the memory addressed by the

task, and checks its local TLB. If all addresses in a task are resolvable by the internal TLB, the

task is marked as runnable. Otherwise, it is marked as not runnable, and the ABC issues a TLB

miss to the requesting core. The ABC uses a round-robin scheduling policy to iterate through all

LCAs that have at least one task marked as runnable. So long as there are runnable tasks for which

enough ABBs are available, the ABC continues attempting to compose more LCAs, and continues

issuing tasks.

TLB: The ABC maintains a shared TLB that caches address translations among all tasks in its

task list. This allows the ABC to prescreen tasks for TLB misses prior to composition. If multiple

ABBs under control of the ABC would have encountered the same TLB miss, the ABC can avoid

sending duplicate requests to the corresponding core and simply satisfy these misses locally with

its own TLB.

Data Flow Graph Interpreter: Our software framework provides composition instructions in

the form of a data flow graph. These graphs are fed as resource instantiation templates from the

cores to the ABC. Each node in the data flow graph needs to be allocated to a particular ABB; at

any given time, each ABB is only assigned to a single graph node and a single LCA. When an ABB

finishes with the work for a single task, it notifies the ABC that it is free for reassignment. If there

are more tasks marked as runnable associated with the LCA to which the ABB was allocated, it

is given another task from that set. If there are no runnable tasks associated with that LCA, the

ABB becomes eligible for composition into a different LCA. We considered keeping LCAs composed

for a longer duration to exploit potential locality of use of a particular LCA, but found that the

overhead involved in mapping a set of ABBs to an LCA template is small enough such that releasing

resources immediately is preferable due to the improved utilization of ABBs across multiple LCAs.

This means that ABB utilization varies over the course of execution of a particular task, and it may

be possible for there to be multiple constructed copies of a particular LCA at a given time, even if

60

Chapter 4. CHARM

ABB
Island
1

ABB
Island
2

ABB
Island
3

ABB
Island
4

ABC ABB
Island
1

ABB
Island
2

ABB
Island
3

ABB
Island
4

ABC

ABB
Island
1

ABB
Island
2

ABB
Island
3

ABB
Island
4

ABCABB
Island
1

ABB
Island
2

ABB
Island
3

ABB
Island
4

ABC

(A) (B)

(C) (D)

Core Core

Core Core

Figure 4.3: LCA composition example: (A) a core sends a request for an LCA to the ABC; (B) an
LCA instance is allocated; (C) another LCA instance is allocated with consideration for balancing

DMA utilization; (D) the ABC signals completion to the core

this is not possible when a given core initially requests an LCA. Therefore, as long as the ABC has

runnable tasks in the task lists for a particular LCA, we allow it to attempt to compose additional

copies of that LCA. In this way, the ABC can eventually make use of all available resources. Note

that we do not allow ABB preemption, except in the event of an error, such as an access violation

in the requesting core.

4.1.2.2 Example of Composition

Figure 4.3 shows an example of LCA composition for an architecture with 4 ABB islands. This

sample architecture has eight ABBs (shown as hexagons), with two of them in each ABB island.

For simplicity, we assume that all ABBs in this example are of the same type. The ABC and a

requesting core are shown in the upper-left corner of each quadrant of the figure. In this example,

61

Chapter 4. CHARM

the core requests the composition of an LCA consisting of three ABBs in sequence, with the first

ABB reading from memory and the last ABB writing to memory. The core first sends a data flow

graph of the desired LCA to the ABC (Figure 4.3A). The ABC then interprets the data flow graph,

splits the request into tasks, and begins cycling over the addresses each computation will access. It

puts each of these chunks in the task list. For this example, we assume there is more than one task

associated with this LCA invocation, and that the ABC’s local TLB has the required pages to make

all tasks immediately runnable. The ABC then examines the availability of ABBs, discovering that

they are all free, and begins allocating.

Since at least one task is made runnable, the ABC proceeds to execute the allocation algorithm

described in Section 4.1.2.1. After finding a match, consisting of two ABBs in Island 1 and a single

ABB in Island 2 (Figure 4.3B), the ABC makes an entry in its composed LCA table, marking

these ABBs as belonging to this specific LCA. At this point, it chooses a runnable task from the

task list belonging to this LCA type, and dispatches a task. The ABC then begins attempting

to map another instance of the requested LCA to the remaining available ABBs, and finds two

ABBs in Island 4 and one in either Island 2 or Island 3. The allocation algorithm chooses to use

Island 3 instead of Island 2 for obtaining the last ABB in order to distribute memory-access load

across more DMAs (Figure 4.3C). The LCA instantiation process is then stopped since there are

not enough ABBs to construct any additional LCAs. As ABBs complete their assigned work, they

signal to the ABC that they are finished. Each time the first ABB in an LCA signals the ABC

of completion, the ABC checks its task list for runnable tasks. If it finds a task, it begins sending

a new task to each ABB in that composed LCA. If it does not find a task, it marks this LCA as

retiring, and marks the associated ABBs as free. Each time an ABB that was part of a retiring

LCA is marked as free, it is made available to be recomposed into a new LCA. When all ABBs

of all clones of a retired LCA are freed in this manner, an interrupt is sent to the requesting core

marking the completion of the requested computation (Figure 4.3D).

62

Chapter 4. CHARM

Table 4.1: Simulation parameters

Parameter Value

Processor UltraSPARC-III-i @ 2.0 GHz

Operating system Solaris 10

L1 32 KB, 4-way set-associative; latency: 1 cycle

L2 8 MB, 8-way set-associative; latency: 10 cycles

Coherence protocol Shared banked L2 cache; L2: MOSI; L1:MSI

Main memory Latency: 1000 cycles; directory: 6 cycles

Network topology 4x8 mesh; link latency: 1 cycle; router latency: 5 cycles

4.2 Evaluation Approach

4.2.1 Simulation Platform

In order to conduct our experiments, we have modified Simics [49] and GEMS [50] to model

accelerator-rich many-core architectures. Table 4.1 shows the parameters we use in our simulations.

We have also implemented a series of supporting tools to automatically generate accelerators, as

well as application code that makes use of these accelerators. When calculating energy, we use

the power results outputted from the Synopsys Design Compiler (32nm SAED library) [95] for the

LCAs and ABBs; for cores and caches, we generate power values using McPat [80] and CACTI

5.3 [100]. Tables 4.2 and 4.3 provide the area and power overhead for the selected ABBs and LCAs

corresponding to each benchmark. We have also included the synthesis results for the ABC that

implements the ABB allocation algorithm mentioned in Section 4.1.

For studying the overhead of ABBs, we have synthesized the Poly ABB with 16 inputs/outputs (i.e.

Poly16), the results of which are shown in Table 4.2. To provide more detail on the functionality

of a Poly ABB, Figure 4.4 displays the internal structure of one with 8 inputs/outputs (i.e. Poly8).

It consists of adder/subtractor/multiplier (ASM) modules, an SPM bank, and logic for controlling

access to the SPM. The SPM bank has 3 sub-banks (for simultaneous read/compute/write), each

with one read/write port. One sub-bank is connected to the ASMs and two are ported to the DMA

controller (DMAC).

63

Chapter 4. CHARM

2-bit

counter

2to4

Decoder

Ctrl Reg

Ctrl[13:0]

ld[3:0]

From Core (NoC

interface)

+/-

*

ctrl0

ctrl1

X[31:0]

Y[31:0]

O[31:0]

ADD/SUB/MUL

(ASM)

ASM ASM ASM ASM

ASM ASM

ASM

SPM Bank

REG REG REG REGld0 ld1 ld2 ld3

DMA-C

NoC interfaceNoC Interface

DMAC

ld0 ld1 ld2 ld3

ctrl0

ctrl1

X[31:0]
Y[31:0]

O
[31:0]

From Core
(NoC Interface)

Ctrl[13:0]

Ctrl Reg

2-Bit
Counter

2-to-4
Decoder

Figure 4.4: Details of Poly ABB

Table 4.2: Area/Power results – ABBs

Name Area (um2) Power (mW) # of Units

FDiv 4949 0.264 12

Poly16 38276 1.608 96

FInv 3503 0.141 12

FSqrt 58683 1.83 8

ABC 8383 0.066 1

SPM - 4 KB, 1 read/write port 13591 17.6 288

SPM - 768 B, 1 read/write port 2545 7 72

In our experiments, we investigate systems consisting of 1 to 8 processors, and a set of either physical

LCAs or ABBs. When modeling a system consisting of physical LCAs, the baseline (i.e. 1× LCA

area) includes all the accelerators required to run a single instance of each benchmark without

contention. When modeling a system featuring ABBs, the number of ABBs in the baseline (i.e.

1× ABB area) corresponds to the total amount of area that would have otherwise been devoted

to LCAs. As such, the baseline CHARM platform is designed with a total of 128 ABBs that

are organized into 8 ABB islands. Each island contains 16 ABBs (3 FInv/FDiv, 1 FSqrt, and 12

64

Chapter 4. CHARM

Table 4.3: Area/Power results – LCAs

Name Area (um2) Power (mW) # of SPM Banks

Deblur 2013228 110.9 9

Denoise 496908 16.5 6

Registration 3853098 183.9 18

Segmentation 688298 27.3 6

EKF-SLAM 1188252 42.0 24

LPCIP 239159 6.11 6

SPM - 2 KB, 2 read ports, 37043 17.5 –
1 read/write port

Table 4.4: Area (mm2) for various chip components

Core NoC Cache & Dir CHARM HW CHARM Total LCA HW

10.8 [101] 0.3 39.8 [100] 8.3 (14% of chip) 59.2 8.5 (14.3% of chip)
(scaled to 32nm) [102] (see Table 4.2) (see Table 4.3)

Poly16) along with 16 SPM banks to provide concurrent access to all the ABBs. Table 4.4 shows

the area for the main components of the chip (note that “CHARM HW” accounts for the area of

the ABB islands and the ABC, while “CHARM Total” also includes the core, NoC, and memory).

To illustrate the load-balancing capacity of our ABC, we also include additional experiments where

the LCA- and ABB-based systems have some multiple of the number of accelerators used in the

baseline platforms. For the LCA-based systems, all LCA numbers are multiples of the base amount;

similarly, the ABB-based systems are configured to correctly scale the number of ABBs present on

each island. We also scale the amount of SPM space on each ABB island proportionally.

4.2.2 Evaluation Schemes

We evaluate CHARM by comparing the following architectures.

Physical LCA sharing with Global Accelerator Manager (LCA+GAM): In this archi-

tecture, physical LCAs can be shared between multiple cores. Each benchmark in our domain is

accelerated with special-purpose accelerators. A global accelerator manager (GAM) is implemented

in hardware to dynamically allocate physical LCAs to cores. We examine cases where there are

between 1 and 8 replications of each required accelerator. This allows for the concurrent execution

65

Chapter 4. CHARM

of multiple instances of any specific benchmark, one for each accelerator in the system. Also, LCAs

are powered off when not in use. This approach is similar to the architecture in [14].

Physical LCA sharing with ABC (LCA+ABC): In this architecture, a core may share

physical LCAs using a centralized hardware-based ABC. In addition, the ABC can load-balance the

available physical LCAs. We examine cases where there are between 1 and 8 replications of each

required LCA. Since the ABC can split tasks among multiple LCAs, we are able to take advantage

of all LCAs of a given type, even when only a single instance of that benchmark is executing. In

the cases where there are more LCAs than can be allocated to available tasks, extra LCAs remain

powered off.

ABB composition and sharing with ABC (ABB+ABC): In this architecture, a centralized

hardware-based ABC is responsible for composing and managing available ABBs, load-balancing

the tasks, and managing TLB requests from ABBs. We examine multiple ABB quantities. For

the purposes of making a comparison, we will refer to a quantity of ABBs with area equal to a

single replication of each LCA in the domain to be comparable to the case where we have one of

each physical LCA in the domain. Typically these ABBs can be used to make multiple virtual

LCAs, but this gives us a metric by which to make a fair comparison to the LCA+GAM and the

LCA+ABC cases. In the cases where there are more ABBs than can be constructed into LCAs,

the extra ABBs are left powered off.

For all cases, unless otherwise stated, we run four benchmarks from the medical imaging domain (i.e.

Deblur, Denoise, Registration, and Segmentation). The benchmarks are run with volumetric

images of 32-pixel cubes in multiple iterations.

66

Chapter 4. CHARM

��

����

����

����

����

	�

	���

	
� �
� �
� �
� 	
� �
� �
� �
� 	
� �
� �
� �
� 	
� �
� �
� �
�

��� ���� ��� ����

�����������������������

�� !" #�

�� ! $��

 $$! $��

Segmentation Deblur Registration Denoise

Figure 4.5: Performance improvements of medical imaging applications

��

����

����

����

����

	�

	���

	
� �
� �
� �
� 	
� �
� �
� �
� 	
� �
� �
� �
� 	
� �
� �
� �
�

��� ���� ��� ����

�����������������

��� !�"�

��� �#��

�## �#��

Segmentation Deblur Registration Denoise

Figure 4.6: Energy gains of medical imaging applications

4.3 Experimental Results

4.3.1 Improvement over LCA-Based Systems

Figures 4.5 and 4.6 show the performance (i.e. execution time) and energy consumption of the

ABB+ABC, LCA+ABC, and LCA+GAM evaluation schemes. All numbers shown here are nor-

malized to the corresponding LCA+GAM result. In each case, we have the same number of

processors, threads, and accelerators (e.g. the 4p case has 4 processors, 4 threads, and 4× accel-

erators). On average, the ABB+ABC scheme achieves more than 2.4× energy improvement over

67

Chapter 4. CHARM

��
����

��
����

��
����

��
����

	�
	���

����
� ���
� ����
� �
� �
� �
� 	
� �
� �
� �
�
�

��
�

��
��

���
��

��
��

��
��

��������������������� �!�"�����#��$��$�

%&�'(�!�

%&�'�)&�

�))'�)&�

Accelerator Base Multiplier

Figure 4.7: Effect of increasing accelerators

LCA+GAM (maximum 4.7×) and 1.6× energy improvement over LCA+ABC (maximum 3×),

while achieving even larger improvements in terms of performance. In general, as the number of

independent tasks increases, ABB+ABC shows better performance because the ABC starts assem-

bling ABBs to virtualize new LCAs (so long as ABBs are available in the system). This creates

more parallel tasks, thereby achieving better performance and consuming less energy. We note

that ABB+ABC running Segmentation with two processors (i.e. the 2p case) shows higher energy

consumption compared to the other schemes. Since the performance for Segmentation improves

only slightly, the overhead for constructing LCAs and coordinating communication between ABBs

consumes more energy than the amount conserved by the slight reduction in execution time.

4.3.2 Effect of Increasing Accelerators

Figure 4.7 shows the effect of increased accelerators on the performance of the various schemes we

study. For this experiment, we fix the number of processors and threads at four. To evaluate the

LCA-based schemes (LCA+GAM and LCA+ABC), we vary the number of LCAs from 1 to 8 times

the amount of LCAs in the base platform (i.e. the accelerator base multiplier ranges from 1×–8×).

For the ABC+ABB scheme, the quantity of ABBs ranges from 0.25×–2× of the base amount.

68

Chapter 4. CHARM

0 2 4 6 8 10 12
x 105

0

10

20

30

40

50

60

70

80

90

100

Time(cycle)

#A
BB

s
U

se
d

Thread1
Thread2
Thread3
Thread4
All

Figure 4.8: Utilization of ABBs given a task-grain of 8

There are several significant observations for these results. First, we see that adding more ac-

celerator resources in general improves speedup, and we observe very similar results for energy

improvement as well. Second, as accelerator resources are increased, performance improvements

can be seen much earlier in the ABB+ABC scheme than in the LCA-based schemes (e.g. notice

the base multiplier range of 1.5×–2× in ABB+ABC vs. the 6×–8× range in LCA+GAM and

LCA+ABC). The reason for this is because a benchmark using physical LCAs only uses those of

a specific type, and consequently only a small number of the total LCAs. With an ABB-based

scheme, on the other hand, even 1× area allocation can reconstruct many copies of a virtual LCA

to run concurrently. The ABB+ABC is therefore free to replicate virtual LCAs out of the entire

sum of accelerator resources, rather than leaving resources unutilized. An implication of this is

that the ABB+ABC case saturates much more quickly in the acceleration that it can offer, either

69

Chapter 4. CHARM

0 5 10 15
x 105

0

10

20

30

40

50

60
#A

BB
s

U
se

d

Time(cycle)

Thread1
Thread2
Thread3
Thread4
All

Figure 4.9: Utilization of ABBs given a task-grain of 128

exhausting potential parallelism or becoming memory-bound. Third, after reaching a base multi-

plier of 4×, the LCA+ABC scheme continues improving performance, while the performance of

the LCA+GAM scheme flattens. We explain this by noting that the ABC splits each individual

LCA invocation into multiple tasks and dynamically load-balances these tasks among accelerator

resources. Hence, it benefits from having more than one LCA available per accelerator invocation.

The GAM, however, allocates accelerators directly to the calling thread and is incapable of assigning

tasks to more of them without the software having explicitly requested multiple accelerators.

70

Chapter 4. CHARM

0

0.2

0.4

0.6

0.8

1

1.2

LPCIP EKF-SLAM LPCIP EKF-SLAM LPCIP EKF-SLAM

1x Data Size 2x Data Size 4x Data Size

Normalized Performance

LCA+GAM LCA+ABC ABB+ABC

Figure 4.10: Performance improvements of computer vision and navigation applications

4.3.3 Effect of Modifying Task-Grain

Task-grain is the maximum number of individual computations in each task that is assigned to

a set of composed ABBs. The smaller the task-grain, the more parallelism there can be in cases

where computations can be performed independently of one another. In order to gauge the impact

of task-grain on the ABB usage of each thread, we measure the number of ABBs allocated to LCA

invocations by each thread for every moment of execution. For brevity, we only show the results

for Registration, but the other benchmarks exhibit these same characteristics. We show this

utilization for two cases: a task-grain of 8 (Figure 4.8) and a task-grain of 128 (Figure 4.9). Each

figure shows the ABB usage by each thread and the total number of ABBs used (the upper-most

curve). When the task-grain is 8, there is more parallelism and so more ABBs can be quickly

allocated to a given thread (e.g. the initial spike seen in Figure 4.8). When the task-grain is 128,

only one set of ABBs is used by each thread. The values shown in Figure 4.9 describe the ABBs

allocated for a single LCA instance per thread. Also shown in Figure 4.8 is the impact of our

round-robin scheduling, which ensures a measure of fairness when allocating ABBs. The jagged

71

Chapter 4. CHARM

nature of the curve representing the total ABB usage is the result of freeing ABBs prior to their

reassignment.

4.3.4 Platform Flexibility

An original argument we put forth as a justification for fine-grained acceleration was reusability

of the system in terms of both block design and retargetability. To substantiate this argument,

we examine two applications from two domains that are completely unrelated to medical imaging:

computer vision and navigation. Computer vision and navigation require compute-intensive data

processing, heavily consisting of linear algebra and floating point computation, to attain high

levels of situational awareness. We examine feature extraction based on log-polar coordinate image

patches (LPCIP) [93] from computer vision and simultaneous localization and mapping based on

the extended Kalman filter (EKF-SLAM) [66, 67] from navigation. A more detailed description of

these two applications and existing acceleration strategies can be found in [54]. Figure 4.10 shows

results comparing the use of our ABB-based CHARM platform originally designed for medical

imaging (unmodified) against custom physical LCAs that specifically target these new domains.

The consistent performance gains illustrate that our ABB-based platform is flexible, and is much

more broadly targetable than a typical platform featuring custom LCAs.

72

Chapter 5

CAMEL: Composable

Accelerator-Rich Microprocessor

Enhanced for Longevity

In the face of new algorithmic innovations or migrations to other application domains, adaptivity

becomes a key characteristic for domain-specific platforms. While there is nearly unlimited poten-

tial for longevity and flexibility, an approach entirely based on programmable fabric (PF) results

in accelerators that are considerably larger and slower than ASIC accelerators. Specifically, an

FPGA implementation is on average 40× larger and 3.2× slower, with 12× higher dynamic power

consumption than its ASIC counterpart [103].

For this reason we introduce the composable accelerator-rich microprocessor enhanced for longevity

(CAMEL), a hybrid approach that combines the performance of composable ASIC accelerators

with the flexibility and longevity of PF-based accelerators. The PF will enable the instantiation of

new accelerator building blocks, while the performance impact of the fabric will be mitigated by

the fact that we still maintain a rich set of domain-specific building blocks implemented in ASIC.

73

Chapter 5. CAMEL

We will therefore support composition of accelerators that are a mixture of both ASIC and PF

components.

This approach provides a number of benefits. First, the PF serves as a design catch-all: we need

not implement in ASIC the infrequently used accelerator building blocks of a given domain, as

these blocks can be covered by the PF. This frees up silicon resources for more critical building

blocks. Second, the PF can help adapt to variations in a domain or algorithm: we can more

efficiently employ our design for domains/algorithms that differ from those for which the design

was originally intended by instantiating new building blocks in the PF, while still employing useful

building blocks that were already implemented in ASIC. The main aspects of this work include the

following:

• Compiler and Runtime Framework to Support ASIC and PF Allocation – Our

compilation framework generates a data flow graph of interconnected building blocks for

a given kernel; it can also perform platform-aware partitioning of the data flow graph into

subgraphs that can be accommodated by on-chip resources; at runtime, our resource manager

uses these graphs to compose accelerators by allocating either ASIC- or PF-based building

blocks.

• Slack Analysis and Rate Matching – Our compiler statically identifies imbalance in the

data flow graph, and compensates for the slack in shorter computational paths by allocating

extra buffer space; our hardware reduces PF performance overhead through rate-matching,

where it instantiates multiple PF-based building blocks to collectively match the ASIC design

throughput.

• Design Space Exploration – We demonstrate the enhanced flexibility of our approach

through analysis on four distinct application domains, where we examine the benefits our

approach provides to both design extensibility and longevity; while we evaluate our results

on a single candidate architecture that supports accelerator composition, our techniques are

generally applicable to other composable architectures as well.

74

Chapter 5. CAMEL

Core
C

I

ABB Island
L2

L2 Bank
ABC

Accelerator
Block Composer

PF

Programmable
Fabric Block

M

Mem Controller

C

I I

L2 L2

PF A
B
C

II

I I

II

C

C C

C

C

C

C L2 L2

L2L2

L2L2

L2L2

L2 L2

M

M M

M

Figure 5.1: CAMEL Microarchitecture

Partial Crossbar

Network
Interface

A
B

B

A
B

B

A
B

B

A
B

B

A
B

B

A
B

B

A
B

B

A
B

B

SPM

SPM

SPM

SPM

SPM

SPM

SPM

SPM

DMA Controller

Figure 5.2: Design of ABB island

5.1 Overview of CAMEL

The CAMEL architecture uses a combination of software and hardware components to improve

flexibility and longevity. The hardware components are responsible for accelerator composition,

where the virtual accelerators, or loosely-coupled accelerators (LCAs), are dynamically constructed

using either the available ASIC-based accelerator building blocks (ABBs), or ABBs that have been

instantiated in PF. While our contributions in the CAMEL architecture are generally applicable

to composable architectures, in this work we implement our techniques and analyze results on the

CHARM architecture [15]. An overview of the CAMEL microarchitecture is presented (not to

scale) in Figure 5.1. This figure consists of a set of cores with private L1 caches, shared L2 cache

banks, and the following specialized CAMEL components: (1) ABBs grouped into a series of is-

lands (shown as “I”); (2) accelerator block composer (ABC) responsible for accelerator composition,

PF assignment, and resource arbitration; and (3) PF for instantiating additional ABBs.

75

Chapter 5. CAMEL

DMAC

DMA
Controller

SPM
Scratchpad

Memory

PF Slice

NI

Network
Interface

Partial Crossbar

NI

SPM
SPM
SPM
SPM
SPM
SPM
SPM
SPM
SPM
SPM
SPM
SPM
SPM
SPM

SPM
SPM

DMAC

Partial Crossbar

NI NI NI

DMAC DMAC DMAC

Figure 5.3: Design of programmable fabric (PF)

5.1.1 ABB Islands

Figure 5.2 shows the internal structure of an ABB island; in this sample figure there are 8 ABBs,

8 scratchpad memory (SPM) banks, and 1 multi-channel DMA controller (DMAC). Each ABB

has access to only 4 of the SPM banks using a partial 8x8 crossbar [104]. These SPMs are in

turn connected to the multi-channel DMAC. The numbers and types of the ABBs are determined

using software-driven design space exploration, and the ABBs of a given type are distributed evenly

across the islands in a round-robin fashion.

5.1.2 Programmable Fabric

The PF is used for hosting the ABBs required by new applications (in existing or even entirely

new domains). The internal design of the PF in CAMEL is shown in Figure 5.3. It consists of

PF slices, 16 SPM banks, 4 DMACs, 4 network interfaces (NIs), and 2 crossbars: one to connect a

76

Chapter 5. CAMEL

selected set of PF slices to SPMs and one to connect SPMs to DMACs. Although a monolithic PF

presents challenges in its shared usage (i.e. ports, NoC congestion, etc.), it accommodates ABBs of

any size and avoids performance hits due to static partitioning of resources. The main advantage

of using a PF is its reusability and runtime reconfigurability. However, ABBs implemented on the

PF are less area- and power-efficient, and have lower performance compared to ABBs implemented

in ASIC technology. While the area and power issues are largely technology-dependent, we address

energy consumption and performance using hardware techniques that compensate for the mismatch

in computational speed.

When a virtual LCA is invoked, software sends to the ABC an encoded data flow graph representing

the LCA’s functionality. Nodes in this graph represent functionalities of individual ABBs, while

edges represent data transfers. This functionality is executed in a pipelined fashion, with each

ABB in the graph communicating with others by means of bulk transfers from its local SPM to

remote SPMs or memory, and vice versa. If a PF-implemented (presumably less efficient) ABB

is on the critical path, it can negatively impact the performance of the entire LCA. Figure 5.4

exemplifies this scenario and demonstrates how rate-matching can help. In this figure, the same

data flow graph is instantiated for three different hardware allocation scenarios, and we see how

four independent data sets (illustrated by four different shading patterns) would flow through the

connected ABBs. As Figure 5.4A shows, when all ABBs are operating at the same frequency (e.g. f

= 1), the LCA they compose will have that same throughput. However, as shown in Figure 5.4B, if

one of the ABBs is slower than the others (e.g. ABB3 has f = 1/2), this ABB becomes a bottleneck

and the other ABBs are forced to stall. This results in the LCA as a whole progressing at the rate

of this single slow component. Since the ABBs allocated in the PF typically have less throughput

than ASIC ones, the inclusion of a PF-based ABB could often result in such a bottleneck.

To address this, CAMEL allocates multiple copies of the slower ABB to bring the aggregate

throughput of the collection of slow ABBs up to match that of the faster ABBs. This is referred to

as rate-matching, and is shown in Figure 5.4C. Provided there are sufficient PF resources for mul-

tiple ABB instantiations, this technique interleaves independent data sets between the duplicated

PF-based ABBs and allows for the LCA to make more efficient use of the ASIC-based ABBs. As

77

Chapter 5. CAMEL

ABB1: f = 1

ABB2: f = 1 ABB3: f = 1

ABB4: f = 1

(A)

LCA Latency: 3 cycles

ABB1: f = 1

ABB2: f = 1 ABB3: f = 1/2

ABB4: f = 1

ABB1: f = 1

ABB2: f = 1 ABB3.1: f = 1/2

ABB4: f = 1

ABB3.2: f = 1/2

LCA Throughput: 1 per cycle

(B)

LCA Latency: 4 cycles

LCA Throughput: 1/2 per cycle

(C)

LCA Latency: 4 cycles

LCA Throughput: 1 per cycle

Data Set 1 Data Set 2 Data Set 3

Cycles
ABBs

101 2 3 4 5 6 7 8

ABB1

ABB2

ABB3

ABB4

9101 2 3 4 5 6 7 8

ABB1

ABB2

ABB3

ABB4

Cycles 9ABBs

101 2 3 4 5 6 7 8

ABB1

ABB2

ABB3.1

ABB3.2

9

ABB4

Cycles
ABBs

Data Set 4

Data Set 1

Data Set 2

Data Set 3

Data Set 4

Figure 5.4: Motivational example of applying rate-matching on PF

throughput is increased, the other ABBs and overall system components are left idle for a shorter

period of time, thereby reducing static energy consumption. Although dynamic power is slightly

increased, dynamic energy remains relatively constant and so overall energy consumption is re-

duced. Thus, rate matching simultaneously improves performance, resource utilization, and energy

efficiency. The implementation of this technique is described in Section 5.1.3.

78

Chapter 5. CAMEL

FPGA-allocation by ABC – Block Diagram

• Greedy approach
– Single application service

• Interval-based approach
– Wait for some fixed

interval

– Use a greedy-approach
to find the best to satisfy
multiple request

LCA Data
Flow Graph

Min Area
Feasible?

Return
FALSE

Fit on PF?

Return
TRUE

Yes

No

No

Program
Fabric

Increase
Rate

Yes

Max Rate Reached

Available
ABBs

Find Needed
ABBs on PF

Available
PF Area

Figure 5.5: PF allocation algorithm

LLVM compiler optimization
(DCE, CSE, etc)

ABB template mapping

Data flow graph partitioning

C/C++ kernel code

ABB candidate identification

ABB templates

LLVM IR

ABB candidates

Data flow graphABB area
constraints

Data flow
subgraphs

Legal ABB implementation

Figure 5.6: Compiler framework

5.1.3 Runtime PF Allocation

The ABC performs PF-based ABB allocation using the algorithm shown in Figure 5.5. It receives

information on the available space on the PF, along with the list of available ASIC ABBs and

the LCA data flow graph. Using these it determines what ABBs to allocate in PF. To achieve

the best allocation, it starts with the minimum configuration as a feasibility test; if the minimum

temporarily cannot fit, it keeps track of the current task until enough space is available on the PF.

If the minimum cannot be implemented at all, the ABC informs the requesting core of the failure

to implement. After passing the feasibility check, the ABC attempts rate-matching: it iteratively

increases the PF-based allocation of critical ABBs (i.e. those on the critical path of the data flow

graph) until either no space is left on the PF or the best rate-match is achieved.

79

Chapter 5. CAMEL

5.1.4 Compiler Support

An overview of the CAMEL compiler framework is shown in Figure 5.6. Given information on

ABB types to potentially use, the compiler is responsible for mapping a given program kernel to a

set of those ABB types, producing a data flow graph whose nodes are ABBs and whose edges are

data transfers. The algorithm used is similar to that described in [105]. Provided supplemental

information on the available ASIC ABBs and PF for a given platform, the compiler can also

determine if a kernel being mapped is too large for the total number of ASIC ABBs combined with

the total PF. In these cases, the kernel’s data flow graph is partitioned into the fewest number

of regions such that allocation is possible. Partitioning is done along specific regions of the graph

so as to minimize data transfers between partitions; temporary storage is also allocated to store

intermediate data. The partitioned regions become subgraphs that can then be run sequentially.

An example of this is shown in Section 5.3.4. After a mapping solution exists, addressing for the

local SPM of each ABB is calculated. Part of this calculation is an optimization for graphs that

feature multiple paths of different lengths (i.e. slack) between a pair of nodes. Once this slack

is identified, computational correctness is ensured by allocating extra buffer space along shorter

paths. By avoiding stalls, this method allows for higher ABB utilization and overall throughput

along all paths.

5.2 Evaluation Approach

5.2.1 Simulation Platform

In order to evaluate our approaches, we have extended Simics [49] and GEMS [50] with the cycle-

accurate models needed by CAMEL. Table 5.1 describes the simulation parameters used. We also

implemented a complete tool-chain for generating simulator models starting from C-based kernel

code. Table 5.2 provides information on the additional tools used for acquiring accurate timing

and power values for these models. In addition, our compiler framework has been implemented in

LLVM, and has an average compilation time of 6.1 seconds per kernel for our benchmarks.

80

Chapter 5. CAMEL

Table 5.1: Simulation parameters

Parameter Value

L2 cache 8 MB, 8-way set-associative, 32 banks; latency: 10 cycles

Coherence protocol Shared banked L2 cache; L2: MOSI; L1: MSI

Main memory Latency: 280 cycles; bandwidth: 10 B/cycle per controller

Network topology 4x8 mesh; link latency: 1 cycle; router latency: 5 cycles;
bandwidth: 72 B/cycle per link

ABB islands (base) 16 islands; 14 ABBs and 14 SPMs (4 KB each) per island

Table 5.2: Tools for timing and power models

Tool Purpose

Xilinx Vivado Design Suite [106] Accelerator high-level synthesis

Synopsys Design Compiler (32nm) [95] ASIC synthesis (power, performance)

Xilinx ISE [106] PF synthesis (performance)

Xilinx Virtex 6 XPower Estimator [106] PF power analysis

CACTI [100] Cache and scratchpad modeling

Orion [102] NoC power and area

McPat [80] Core and cache power analysis

5.2.2 Domains

In this work, we target four application domains: medical imaging, commercial, computer vision,

and navigation. These four domains not only provide coverage of real-world applications with inter-

esting computational demands, they also represent classes of applications that are algorithmically

diverse in nature. Table 5.3 shows the numbers and types of ABBs used for accelerating each

domain using one set of accelerators. Note that by one set of accelerators we mean as many ABBs

as it would take to instantiate one of each virtual LCA in the domain. In our experiments, we have

used four sets of accelerators.

5.2.2.1 Medical Imaging (Med)

Medical imaging is an important tool for diagnosis and treatment. Because of the high volumes

of data and high computational demands, the algorithms cannot be easily used in real-time clin-

ical diagnosis, making them excellent candidates for acceleration. The medical imaging pipeline

includes denoising (Denoise), deblurring (Deblur), fluid registration (Registration), and image

81

Chapter 5. CAMEL

segmentation (Segmentation). These algorithms and their acceleration strategies are described

further in [107].

5.2.2.2 Commercial (Com)

To represent the commercial domain, we have selected three applications from the PARSEC [108]

benchmark suite: Blackscholes, Streamcluster, and Swaptions. These applications solve partial

differential equations, online clustering problems, and probability distribution estimations.

5.2.2.3 Computer Vision (Vis)

Computer vision is a compute-intensive domain with inherent parallelism that makes it ideal for

the streaming-data style of acceleration. Two main categories of applications in this domain are

feature extraction, for which we include implementations of SURF from OpenCV [76] and LPCIP from

MRPT [75], and image processing, for which we include the Texture Synthesis application from

SD-VBS [109]. These applications provide a variety of computation including complex matrix-

based, trigonometric, log-polar, and gradient-histogram computations, with fluctuating memory

usage.

5.2.2.4 Navigation (Nav)

Navigation is a compute-intensive, AI-related domain that aims to achieve high levels of situa-

tional awareness. We include EKF-SLAM from MRPT [75], along with Robot Localization and

Disparity Map from SD-VBS [109]. These applications provide diverse computation in the form

of partial derivatives, covariance, spherical coordinates, probabilistic models, particle filters, and

search for minimal sum of absolute differences.

82

Chapter 5. CAMEL

Table 5.3: ABB types, PF synthesis, domain numbers, and functionality

!""#$%&$'!()*+(,-$!./0
!11/2/.034.#$567 89 :89 ;89 <89 =89 >89

: >? =@ =; <A <; ;A
; ::; B? @= A= ?= >=
< :?@ :== :;? ::: B? @:
= ;;= :B; :?@ :=@ :;@ :8@

-,C!DE*F')D!G)!$5HIJ;7 ;B>>
-,C!$E2%1/#$%&$'!()*+(,-$!./0

!11/2/.034.#$567 89 :89 ;89 <89 =89 >89
: 8 ?:> :;<; :@>8 ;=?? <8@=
; 8 :;<; ;=?? <A8: =B<> ?:?B
< 8 :@>8 <A8: >>>< A=8= B;>A
= 8 ;=?? =B<> A=8= B@A< :;<=;

!"#$ %&'&%()*+,- !".-
/0122)0&304(% =A ? ; :
1567012201+(8 <?;>A8 :>::A <?@@:B <?@@:B

9:3;,&"38#&,$
4(% 7"< =&) >8' ?();+&!,&"3

K42L <><? >A: :M= =A B> :=< :?A :?FMN,42L&4I%02$5O2403%&P$K3Q7
#R.3O ?A; :A? :M< ; : : < ERH0./$.443$5O2403%&P$K3Q7
S%TO ;>> @= :M< ? > ? A U%T%S/$5O2403%&P$K3Q7
K4VO ?A; :A? :M< : < : 8 ,4V/.$OH&13%4&$5O2403%&P$K3Q7
24PO ?A; :A? :M< 8 < 8 8 *4P$W0#/$/$5O2403%&P$K3Q7
..:U ;> ; :M; 8 ; 8 8 G0&S4I$./0S$%&$:$S%I/&#%4&
..;U B8 A8 :M; 8 8 ; 8 G0&S4I$./0S$%&$;$S%I/&#%4&
..<U :=> B: :M; 8 8 A< 8 G0&S4I$./0S$%&$<$S%I/&#%4&
.V:U ;> ; :M; 8 : 8 8 G0&S4I$V.%3/$%&$:$S%I/&#%4&
#/2OO >@ >= :M; 8 = >8 8 (X6$5O2403$%&KH3#Y$O2403$#/2/137
#/2O% >A >= :M; 8 < = 8 (X6$5O2403$%&KH3#Y$%&3$#/2/137
#/2%O ;A @= : 8 = @ 8 (X6$5%&3$%&KH3#Y$O2403$#/2/137
#/2%% <8 @> : 8 : 8 8 (X6$5%&3$%&KH3#Y$%&3$#/2/137
#HI :<= AA :M; 8 : @ : !11HIH203/0T/134.
10#3O% B= <; :M= 8 8 =< 8 '0#3$O2403$34$%&3/P/.
10#3%O :8@ <> :M= 8 8 : 8 '0#3$%&3/P/.$34$O2403
I4S ;>> @= :M< 8 8 ; 8 (4SH24$
I%& ?> >= :M; 8 8 < 8 -%&S$I%&%IHI$T02H/$%&$T/134.

9@A10
5#&;()

9+(*0
BACDE

122)0!(+0?"<8&31220
F$!(

@".(+0
B<GE

5.2.3 ABB Characterization

The ASIC ABBs for our system have all been synthesized with a frequency of 1.0 GHz and an

initiation interval (II) of 1. Although the PF ABBs also have II’s of 1, they have different operating

frequencies depending on their type. Table 5.3 details the results of synthesizing the various ABB

types for a Xilinx Virtex6 FPGA; this table also includes the numbers of ABBs needed by the four

domains and the functionalities of the ABBs. Note that the ABB granularities and functionalities

have been determined according to a domain-space optimization done primarily for Med (which is

the base domain of CAMEL in our evaluation schemes – see Section 5.2.4), with additional ABB

types added as needed.

83

Chapter 5. CAMEL

Table 5.4: Power and area values for components of the CAMEL base platform

!"# $ %%&'' ()() ()()
*+,-.!"" $((%&%/)%0/1' %($%)00)
23456.!"" (7&87)%(($7 07/'//8
9:;6.!"" 08 '&/0 $/$$1)%0($/
*+<6.!"" 8 7&87)%(($7 $81/011
=>? 08' $1&%' 8'11) 71(//0'
@?!# 0' '&/7 $''1$ 0'$80'
A0."BCD.E)0 $8(&71 (($77' 0(00)%('
#+4F.E $ %(%&8% 7(%(8'' 7(%(8''
G+#.E $ 870)&/0 //171(//171(

!"#$%&'$%&
()*+&,-./

0%$1&'$%&()*+&
,2-34/

5"+16&0%$1&
,2-34/

72-8&
()*+9

()*+&&&
5:'$

* Power varies with execution; average power values are shown.

Table 5.5: Number of ABBs and PF slices in CAMEL-x%

CAMEL-0% CAMEL-10% CAMEL-20% CAMEL-30% CAMEL-40% CAMEL-50%

ABBs 224 192 168 148 128 108

PF Slices 0 2466 4935 7404 9873 12342

5.2.4 Evaluation Schemes

For the purposes of this work, we consider the case where single benchmarks are run and accelerator

needs are known. As such, PF reconfiguration is done statically and reconfiguration time is excluded

from all results. In our experiments, we have considered the following schemes, each representing

a different class of accelerator-based architectures:

• GPU – Tesla M2075; performance measures only consider computation (not data transfer).

• LCA-ASIC – accelerator-rich platform where all LCAs are monolithic and ASIC-based [14].

• LCA-FPGA – accelerator-rich platform where all LCAs are monolithic and FPGA-based [14].

• CHARM – composable accelerator-rich platform with Med base domain and no PF [15].

• CAMEL-x% – CAMEL architecture with Med base domain and “x” percent of the total

ABB area substituted (by removing “x” percent of ABBs of each type, maintaining even ABB

distribution across islands) for equivalent area of PF; x ranges from 0%–50%.

84

Chapter 5. CAMEL

!"#$%&

!"#$%'

!"#$%(

!"#$%)

*+,-./ *+0123+ 4+56+0787210 9+5237/87210

:2
6
+;
<3
=;

>?@$ABC@ >?@$@4D? CBE ?F@9G

Figure 5.7: Performance comparison between acceleration schemes

!"#$%%

!"#$%&

!"#$%'

!"#$%(

)*+,-.)*/012* 3*45*/67610/ 8*4126.7610/

#/
*.
49
:;-

<=:

>?@ABCD@ >?@A@3E? DCF ?G@8H

Figure 5.8: Energy usage comparison between acceleration schemes

The power and area values modeled for the CAMEL-0% base platform can be found in Table 5.4,

where the total area of the chip is 122 mm2. To determine the number of PF slices that can fit

in CAMEL-x%, we have used the die area size of Virtex6 (measured by taking X-ray photos)

and have estimated 2955 um2 for each slice in 32nm. Table 5.5 shows numbers of PF slices and

remaining ASIC-based ABBs for each CAMEL-x% case. Note that ABB types vary in both

area and quantity – the distribution shown corresponds specifically to our platform. As PF slices

are linearly increased for the CAMEL-x% cases, different numbers of various types of ABBs are

removed to make room for the PF area, so the total number of remaining ABBs does not necessarily

decrease linearly.

5.3 Experimental Results

In this section, we present and discuss our simulated results. Although our Simics+GEMS frame-

work simulates an UltraSPARC-III-i 1.0 GHz processor (running Solaris 10), we conservatively

measure our performance gains in terms of a wall-time-based comparison to fully parallelized runs

85

Chapter 5. CAMEL

!

"

#!

#"

$!

!% #!% $!% &!% '!% "!%

()**+,) -.*/012(345.06

78829:;35.62<2()**+,)62=2-.*/012(345.062>?*:;*3.@2

Figure 5.9: Geometric mean of all speedups and energy savings as the percentage of PF increases

�

��

��

��

��

��

�� ��� ��� ��� ��� ���

	
���
 �������	������

����

������	
���
�����������	�����������������

(A)

�
�
��
��
��
��
��

�� ��� ��� ��� ��� ���

	
���
 �������	������

����

������	
���
�����������	�������� ��������

(B)

�
�
�
�
�
��
��

�� ��� ��� ��� ��� ���

	
���
 �������	������

����

������	
���
�� ��������	��������!�"#�����

(C)

�
�
�
�
�
�

!

�� ��� ��� ��� ��� ���

	
���
 �������	������

����

"�����	
���
�����������	�����������������

(D)

Figure 5.10: Geometric mean of speedup and energy savings for each domain as %-PF increases

on a 4-core 2.0 GHz Intel Xeon E5405 processor. When there are insufficient accelerator resources

to run a benchmark, we fall back to running on the CPU, and thus exhibit no benefit.

5.3.1 Comparison Between Acceleration Schemes

Figures 5.7 and 5.8 compare four accelerator-based architectures running benchmarks from the Med

domain. As it features domain-specific acceleration, CHARM (i.e. CAMEL-0%) outperforms by

86

Chapter 5. CAMEL

2.1× and saves energy by 93× compared to the power-hungry GPU. Furthermore, with its ability

to load-balance and dynamically virtualize LCAs, CHARM on average outperforms LCA-FPGA

by 3.5× and LCA-ASIC by 1.8×, resulting in energy savings of 14.5× and 5.1×, respectively. For

an optimal design, we desire the performance and energy usage of CHARM with the adaptivity

of GPUs and FPGAs. We show next how CHARM is made adaptive for greater performance and

energy savings across domains.

5.3.2 Effect on Domain-Span

To evaluate CAMEL support of domain-span, we use Med as a base domain (for ASIC ABBs)

and choose three other target domains: Com, Vis, and Nav (as mentioned in Section 5.2). In all of

these experiments, we keep the overall area constant by removing 0%–50% of the ASIC ABB area

in increments of 10% (maintaining even distributions of ABB types across islands) and adding PF

slices equivalent to the removed area.

In comparison to software-only versions of the benchmark executions, Figure 5.9 shows the aggre-

gate speedup and energy savings for all four domains, while Figure 5.10 shows the average speedup

and energy savings of each domain. Since most of the new applications from the target domains

are unable to run on the base platform without the PF (i.e. exhibit 1× performance gain as they

fall back to running on the CPU), the aggregate speedup of CAMEL-0% (i.e. CHARM) across

all benchmarks is relatively low. As seen in Figure 5.10A, the Med applications, for which this

base was originally optimized, see performance improvement with the addition of a small amount

of PF, followed by a decrease in performance as more PF is added. This is intuitively correct,

because the platform being considered was originally provisioned with the ASIC-based ABBs de-

signed specifically for accelerating Med applications. A small amount of PF (10%–20%) provides

adaptivity to improve load-balancing and resource utilization for each individual benchmark, while

larger amounts of PF begin to starve the system of the improved performance efficiency of the

ASIC ABBs. However, even the small performance improvement initially seen with the addition of

PF is not enough to counterbalance the reduction in power-efficiency as ASIC ABBs are replaced

87

Chapter 5. CAMEL

by PF. As a result, we see an initially small reduction in energy savings for CAMEL-10% and

CAMEL-20%, followed by larger reductions for CAMEL-30% and onward.

For Com (Figure 5.10B), no applications can be implemented without PF because they all require

a variety of new ABB types that do not appear on the base platform (refer to Table 5.3). As PF is

added, these ABBs can be instantiated and rate-matched, resulting in large performance gains and

energy savings. With Vis (Figure 5.10C), we see behavior similar to that of the Com applications.

For Nav (Figure 5.10D), we observe an initial speedup even without the PF because this domain

shares a lot of the same ABBs as Med, allowing some benchmarks to be minimally implemented

on the base platform. As we initially increase PF, we are able to instantiate the missing ABBs and

run all benchmarks, resulting in increased average gains in both performance and energy. However,

similar to the trends we see with CAMEL-10% and CAMEL-20% for Med, as more ASIC is

replaced by PF, the performance of the Nav domain continues improving slightly while its energy

savings begin dropping (e.g. CAMEL-30% and onward).

In summary, as ASIC ABBs are removed and replaced by PF, more useful ABBs become available

and rate-matching takes effect. This translates into better adaptivity, and often times higher

performance and energy savings for new domains. While these trends depend on the specific

workload being considered, as intuitively suspected, the less similar a workload is to the base

domain of the platform, the more useful the PF. As with the law of diminishing returns, however,

increasing the PF past a certain point starts reducing the improvements because the system begins

removing too many of the useful ASIC ABBs and replacing them with equivalent PF-based ones.

We see this turning point with ∼30% PF for domains similar to the base (e.g. Nav) and ∼50% PF

for other domains (e.g. Com and Vis).

5.3.3 Effect on Domain Longevity

In order to evaluate the longevity of the base domain, we have added a new application to Med:

compressive sensing magnetic resonance (CS MR) [110]. This application requires one additional

ABB, namely the “sum” ABB, which is not found on the Med base domain of CAMEL. This

88

Chapter 5. CAMEL

!

"!

#!

$!

%!

"!& #!& $!& %!& '!&

()**+,)-./-0(123-45+-6478989.5*+-:*;8,7*-(<58=*>9>-

0(123 :*;16478989.5*+

Figure 5.11: Domain longevity and graph partitioning impact for increasing percentages of PF

“sum” ABB is one that accumulates the values of a given vector, and is used to implement the

internal FFT engine of CS MR. The speedup result for CS MR is shown in Figure 5.11. Since CS MR

does not use many of the ASIC-based ABBs on CAMEL, the increasing amounts of PF being

provided are used to implement more “sum” ABBs, allowing more virtual LCAs to be instantiated

and more speedup to gained.

5.3.4 Graph Partitioning for Lower-Capacity Hardware

As described in Section 5.1.4, it is sometimes the case that a benchmark demands a massive LCA

for a large kernel and requires more resources than are available on CAMEL, even with PF.

Benchmarks like Texture Synthesis, Swaptions, Streamcluster, and SURF contain kernels that

can never be implemented in their original form. To overcome this, our compiler partitions the data

flow graph of each of these kernels into a number of subgraphs that can each fit on CAMEL-x% (e.g.

Texture Synthesis requires 6 partitions for CAMEL-50%). As an example, Figure 5.11 shows

the result of accelerating Texture Synthesis after applying this graph partitioning technique,

where we are able to achieve up to 11.96× speedup.

89

Chapter 6

Neural Acceleration of Divergent

Applications on SIMD Architectures

In this chapter, we present neural approximation as a solution to the problem of branch-divergence-

induced performance degradation in single instruction multiple data (SIMD) architectures. Ap-

plying a neural network (NN) to branch divergence is a complex and non-trivial process, as the

effectiveness of an NN relies on how well it adapts to fit a specific problem. The NN training,

therefore, is critical for ensuring acceptable error rates for applications. For this reason, we present

a complete methodology, including a software flow and supplementary optimization techniques.

We initially characterize the types of control flow seen with SIMD architectures and analyze perfor-

mance degradation resulting from branch divergence. As we identify a potentially-divergent code

region (or “kernel”), we train an artificial neural network (ANN) offline to approximate that kernel,

and inject the ANN computation directly into the code in place of the extracted kernel. By convert-

ing control flow regions into non-divergent, approximate computation, we remove the divergence

problem entirely as a trade-off for introducing imprecision into the results. Note that as

our technique directly manipulates code without the need for costly hardware modifications, this is

a platform-agnostic approach and can be readily adopted by data-parallel architectures that suffer

90

Chapter 6. Neural Acceleration of Divergent Applications on SIMD Architectures

from branch divergence. To demonstrate the effectiveness of our neural-network-based solution, we

evaluate our approach on a graphics processing unit (GPU) across a range of divergent applications

from various domains.

6.1 Kernel Characterization

In order for kernels to be properly targeted for approximation, the following criteria must be

satisfied:

I Pure function – no side effects (e.g. cannot modify external state)

I Fixed-size inputs/outputs (I/O) – no dynamic, variable-length inputs or outputs

I “Approximable” region of code – imprecision does not result in program failure

The function purity and I/O constraints are similar to the kernel constraints imposed by other

hardware acceleration schemes [12, 14, 27]. Additionally, since the NNs will be approximating

application kernels, the “approximability” constraint means the application itself must also be able

to tolerate imprecision. For example, one cannot use an NN to approximate a kernel that computes

the exact value of a memory address used to access data. However, if subsequent computation

on that data is approximated (e.g. a heuristic-based feature detection algorithm from computer

vision), approximation of the final result of that algorithm would be tolerable.

There is a large body of prior work [34–36, 40, 111] that has performed in-depth examination

of the topic of approximability. The majority of these works have deemed it the responsibility

of the programmer to determine which code regions are suitable for approximation. We operate

under these same assumptions. To aid programmers, prior art also includes programming language

support for controlling precision [38] and verifying quantitative reliability [45] in applications.

Aside from the criteria listed above, there are also several characteristics to consider when identi-

fying appropriate kernels. First, it is important for the kernel to have a relatively small number of

inputs and outputs. Kernels with large numbers of inputs/outputs will not only lead to larger NN

91

Chapter 6. Neural Acceleration of Divergent Applications on SIMD Architectures

Static
Compilation

Original
Application
Source Code

Dynamic
Profiling

NN
Training

NN
Integration

Neuralized
Application
Source Code

Refactored
Application

Identify
Kernels

Track I/O for Kernels;
Estimate Divergence

Training Data;
Kernel Rankings

Trained NN ModelsExecutable

C
o

d
e

Application Input Data

Approximate
Kernels using NNs

Substitute Kernels
with NN Models

Static
Compilation

Original
Application
Source Code

Dynamic
Profiling

NN
Training

Neuralized
Application
Source Code

Refactored
Application

Identify
Kernels

Track I/O for Kernels;
Estimate Divergence

Training Data;
Kernel Rankings

Trained NN
Models

Executable

C
o

d
e

Application Input Data

Approximate
Kernels using NNs

NN
Integration

Substitute
Kernels with
NN Models

Static
Compilation

Original
Application
Source Code

Dynamic
Profiling

NN
Training

Refactored
Application

Identify
Kernels

Track I/O for Kernels;
Estimate Divergence

Training Data;
Kernel Rankings

Trained NN
Models

Executable

C
o

d
e

Application Input Data

Approximate
Kernels using NNs

NN
Integration

Neuralized
Application
Source Code

Substitute Kernels
with NN Models

Figure 6.1: Overview of the Neuralizer software flow for
automated neural acceleration of divergent applications

computations (and less of a performance improvement), but will also require more time for the NN

training. An example of a non-ideal kernel, for instance, would be one that iterates over a large

array and executes one trivial computation for each element. In this case, the overhead of passing

the inputs through the NN would likely outweigh the benefits of the approximation. Similarly, an-

other important characteristic to consider is the complexity of the relation between the inputs and

outputs of the kernel. If this relation is high-dimensional, one would require an NN large enough to

handle the approximation of that complex functionality, and consequently, the large NN would be

much more difficult to train with an acceptable error rate. The reason for this is that more hidden

layers are required for learning higher-dimensional functionality, yet the iterative, locally-optimal

algorithms commonly used for NN training, such as the backpropagation algorithm [28], break

down as the number of hidden layers increases. While these characteristic-based considerations we

have mentioned are not hard-set rules, they serve as valuable guidelines (e.g. when refining a large

search space of kernels) for finding ideal regions to target with neural approximation.

92

Chapter 6. Neural Acceleration of Divergent Applications on SIMD Architectures

6.2 Methodology

In existing acceleration schemes [14, 15, 27], the process of choosing which kernels to target is

often conducted in an ad-hoc manner, and is difficult to optimize as the space of targetable kernels

grows exponentially. By specifically targeting potentially divergent regions, we maintain the ability

to achieve significant gains by addressing the most critical issue for SIMD architectures, yet we

narrow the scope enough to allow for automation beginning with kernel identification. Various

aspects of our software flow, the Neuralizer , are detailed in the following sections. To aid the

process of creating effective neural approximations, we also discuss novel optimization techniques

for improving ANN performance and accuracy. As previously mentioned, this overall approach is

platform-agnostic; however, for the purposes of this work, we examine branch divergence within

the scope of a GPU. As such, our software flow leverages the CUDA-enabled ROSE [112] compiler

infrastructure.

6.2.1 Neuralizer

The Neuralizer is a software flow that operates offline; this tool-chain automates kernel identifica-

tion, divergence estimation, training data collection, NN training, and NN integration, ultimately

generating a set of neuralized versions of a given application. For this process, the programmer

is only responsible for determining the approximability of the code. Figure 6.1 is a high-level

illustration of this flow.

Static Compilation. The neuralization process begins by accepting an application’s source code

and performing static, compiler-based analysis to identify eligible, potentially-divergent kernels. At

first, the compiler marks all regions of control flow as kernel candidates. It then eliminates kernel

candidates based on the criteria described in Section 6.1. Specifically, the compiler checks for purity

and fixed-size I/O using internally-generated data flow graphs, and uses programmer annotations

to ensure approximability. After identifying eligible kernels, the compiler refactors the application’s

source code, converting each kernel into a function with well-defined I/O (similar to the processing

93

Chapter 6. Neural Acceleration of Divergent Applications on SIMD Architectures

of OpenMP pragmas). The compiler also instruments the source code to enable profiler-driven

probing of I/O values of the kernels. Once refactoring and instrumentation are complete, the code

is compiled for the given SIMD platform.

Dynamic Profiling. The next step of the Neuralizer involves dynamic profiling. The profiler

receives the compiled executable corresponding to the refactored, instrumented source code, and

runs it using real input data of the application. Leveraging the statically instrumented I/O probes,

the profiler collects the I/O values of each kernel. These I/O values form each kernel’s respective

data set, and are later used for training NN approximations of the given kernels. Also, this tool

gauges the amount of divergence in each kernel (represented by the percentage of thread instructions

that were not executed by all threads in the warp), and ranks the kernels based on decreasing

amounts of divergence.

NN Training. Using the data sets collected by the dynamic profiler (one data set per kernel),

our software flow proceeds by training NNs to approximate the kernels, and outputs the single

“best” NN for each kernel. Details regarding the modeling of NNs are provided in Section 6.2.2.

If an excessive number of kernels have been identified, the length of the training process can be

shortened by trimming the list of kernels based on the rankings provided by the dynamic profiler.

For instance, in our scheme we include the top ten most divergent kernels.

NN Integration. The final stage of the Neuralizer integrates the mathematical representations

of the trained NNs directly into the refactored source code, replacing the potentially-divergent

kernels they approximate. For details regarding the integration of NNs into applications, please refer

to Section 6.2.3. An example of kernel-to-NN conversion is shown for sample code in Figure 6.2B

using the MLP model shown in Figure 6.2A.

In order to properly examine application-level quality-vs-performance tradeoffs, our software flow

does not simply replace all the kernel candidates of a given application; rather, it considers replacing

various subsets of kernels with their corresponding NNs. Given a set of K kernels, there are 2K

possible kernel replacement combinations. Note that some kernels are nested within others, which

invalidates a subset of the combinations. In addition, if there is an overabundance of combinations,

94

Chapter 6. Neural Acceleration of Divergent Applications on SIMD Architectures

ones with low cumulative kernel rankings can be eliminated. Ultimately, this software flow outputs a

set of neuralized versions of a given application, each version having a unique combination of kernel

replacements. The versions are compiled using a standard compiler for the given SIMD architecture,

and performance gains and quality loss are evaluated for each. Performance gain depends on the

size of the code regions being replaced by NNs, the total amount of neurons and neuron-connections

for all NNs being used, and the amount of divergence being removed. This essentially means making

a worthwhile trade as time and energy spent on divergence are substituted for time and energy

spent evaluating the NNs. We determine the best neuralized version of a given application using

the following speedup-to-error ratio:

Speedup

(Error/Error Threshold)
(6.1)

Here, the speedup and error values correspond to the entire neuralized application, not individual

kernels. Since error is not the same across different applications, this ratio also takes into account

a user-defined error threshold set specifically for each application. This allows a user to define an

acceptable range for the quality of results of the overall application, and to have this range control

the kernel approximations being integrated into the application. To further augment this process,

a static analysis approach, such as Rely [45], can be integrated with our tool-chain, allowing it to

statically enforce acceptable error rates by restricting the search space of kernels and NN topologies.

Aside from requiring the programmer, who has knowledge of the code, to determine approximable

regions (e.g. using code annotations or type qualifiers [38]), this software flow is entirely automated.

Kernel identification and NN integration run on the order of seconds, incurring negligible overhead.

Also, training-data collection and divergence estimation generally only require a few minutes. NN

training, however, incurs relatively more overhead. Training time depends on both the number of

input/output neurons and the size of the training data set. However, since the individual code

kernels are independent, as are the NN topologies being explored, the training process can be

effectively parallelized. Furthermore, while automatically selecting optimal combinations of kernel

replacements is a non-trivial problem, exploring the various combinations is trivially parallelizable,

95

Chapter 6. Neural Acceleration of Divergent Applications on SIMD Architectures

transforming this from a time-consuming process to a resource-intensive one.

On average, training a kernel for the given NN search space using fully parallelized execution on

our 2.0 GHz Intel Quad-Core-i7 CPU has a duration of approximately 15 minutes. Additionally,

since this training is an offline process, users may take advantage of libraries of pre-trained approx-

imations for commonly used kernels. In terms of longevity, NN retraining is required only when

the distribution of the original training data no longer represents that of user data, resulting in

unacceptable quality of results. However, this does not mean the entire software flow would have

to be rerun, particularly because the kernels of interest are likely to not change. As such, we would

need to only rerun the dynamic profiler for the given kernels using the non-represented evaluation

data, and retrain our NN with the newly consolidated training set.

6.2.2 Details of NN Modeling and Training

We employ supervised learning via the conventional backpropagation algorithm [28] to train mul-

tilayer perceptrons (MLPs) [113]. Backpropagation is a gradient-descent-based function that iter-

atively adjusts edge weights of an NN, incrementally optimizing its solution. The MLP model is a

feedforward network structured as an input layer, followed by one or more hidden layers, and finally

an output layer. Functionally, the NN is evaluated using a series of weighted-sum and sigmoid oper-

ations without requiring any control flow. An example of a single-hidden-layer MLP (with labeled

nodes and edge weights), along with the mathematical representation of its functionality, is shown

in Figure 6.2A. We choose the MLP as our NN model not only because it is a simple network to

manage, but also because of its flexible approximation capabilities, as described by the Universal

Approximation Theorem [113].

Although a given kernel requires a fixed number of neurons in the input/output layers, we can search

for optimal NN topologies by modifying the numbers of neurons in the hidden layers. Empirically,

we have found that including three or more hidden layers generally results in excessive overhead

without much gain in accuracy. Therefore, we limit our search to NNs with 1–2 hidden layers, and

explore 1–32 neurons per layer (increasing by powers of two), resulting in an exploration space of 42

96

Chapter 6. Neural Acceleration of Divergent Applications on SIMD Architectures

I1

I2

H1

H2

H3

O1

Input Layer Hidden Layer Output Layer

Wi1h1

Wi2h
3

Wi1h
2W

i1 h
3

W
i 2

h 1

Wi2h2

W
h 3

o 1

W
h
1 o

1

Wh2o1

𝐻𝑖 = 𝑓 𝐼𝑗 ×𝑊𝑖𝑗ℎ𝑖

𝑛𝑢𝑚 _𝐼

𝑗=1

𝑂𝑖 = 𝑓 𝐻𝑗 ×𝑊ℎ𝑗𝑜𝑖

𝑛𝑢𝑚 _𝐻

𝑗=1

where f is some sigmoid
function (e.g. tanh)

 func A (x, y) {

 float x = rand();

 float y = rand();

 float z = 0;

while (z < 50 && z > -50) {

 if (x > 0 && y < 0)

 z *= x + y;

 else

 z -= x * y;

}

return z;

 }

Pre Kernel-to-NN Conversion

(A)

 func A (x, y) {

 float x = rand();

 float y = rand();

 float z = 0;

 float H1 = tanh(x*Wi1h1 + y*Wi2h1);

 float H2 = tanh(x*Wi1h2 + y*Wi2h2);

 float H3 = tanh(x*Wi1h3 + y*Wi2h3);

 z = tanh(H1*Wh1o1 + H2*Wh2o1 +

 H3*Wh3o1);

 return z;

 }

Post Kernel-to-NN Conversion

(B)

I1

I2

H1

H2

H3

O1

Input Layer Hidden Layer Output Layer

Wi1h1

Wi2h3

Wi1h2

W
i
1h

3

W
i 2
h 1

Wi2h2

W
h3o1

W
h

1o
1

Wh2o1

𝐻𝑗 = 𝑓 𝐼𝑘 ×𝑊𝑖𝑘ℎ𝑗

𝑛𝑢𝑚 _𝐼

𝑘=1

𝑂𝑗 = 𝑓 𝐻𝑘 ×𝑊ℎ𝑘𝑜𝑗

𝑛𝑢𝑚 _𝐻

𝑘=1

where f is some sigmoid
function (e.g. tanh)

 func A (x, y) {

 float x = rand();

 float y = rand();

 float z = 0;

while (z < 50 && z > -50) {

 if (x > 0 && y < 0)

 z *= x + y;

 else

 z -= x * y;

}

return z;

 }

Pre Kernel-to-NN Conversion

(A)

 func A (x, y) {

 float x = rand();

 float y = rand();

 float z = 0;

 float H1 = tanh(x*Wi1h1 + y*Wi2h1);

 float H2 = tanh(x*Wi1h2 + y*Wi2h2);

 float H3 = tanh(x*Wi1h3 + y*Wi2h3);

 z = tanh(H1*Wh1o1 + H2*Wh2o1 +

 H3*Wh3o1);

 return z;

 }

Post Kernel-to-NN Conversion

(B)
Figure 6.2: (A) Sample MLP and its mathematical representation based on labeled nodes and
edge weights; (B) Example of integrating MLP of (A) into sample code (shaded regions represent

the kernel-to-NN conversion)

topologies. We begin with the smallest NN topology, train it, and compute the cross-validated mean

squared error (MSE) value (i.e. the MSE corresponding to a “test” subset of the kernel’s training

data). We then incrementally explore larger topologies, saving those that minimize MSE. The best

topology for a given kernel is determined as the smallest topology that achieves the minimal MSE,

prioritizing accuracy over topology size.

For NN training to be successful, the distribution of the training data must be representative of

the evaluation data; otherwise, no guarantees can be provided for the quality of the results [26].

97

Chapter 6. Neural Acceleration of Divergent Applications on SIMD Architectures

The accuracy of an NN approximation also relies on the ability for the training process to find an

acceptable mapping from inputs to outputs. However, if a mapping with sufficient accuracy requires

too complex of an NN, this would not break our methodology – due to performance reasons, the

required NN topology would merely fall outside the given search space. Though this would render

the given kernel ineligible for approximation, other kernels within the same application would

continue to be approximated by our software flow.

6.2.3 Details of NN Integration

We consider several important implementation decisions for integrating an NN into existing code.

First, the sigmoid operation (the hyperbolic tangent function in our case) could be computed in

one of two ways: (1) using a lookup table (LUT) with precomputed values [114], in which case

only the address for the lookup would need to be computed instead of the entire sigmoid operation,

or (2) computing the actual function (e.g. using a math library). In our scheme, we found that

the tanh function from the CUDA math library [115] performed very efficiently on the GPU and

even matched the performance of the LUT regardless of where we stored the LUT in memory. The

reason for this is because memory accesses are very costly on a GPU, not to mention the need to

still compute addresses for each table lookup.

The second important implementation decision is regarding the storage of weight and bias values of

the NN. In our implementation, we statically integrate these values into the code, thereby having

them stored as “immediate” values held in program memory. Other options include storage into

shared or cached constant memory. While program memory may not be the best storage option

for all hardware platforms, we found it to be the most efficient implementation for the GPU.

6.2.4 Optimization Techniques

The creation of an NN-based approximation that is both accurate and performance-wise effective is

a nontrivial task. It is especially difficult when a generalized methodology is used to create NNs for a

98

Chapter 6. Neural Acceleration of Divergent Applications on SIMD Architectures

variety of applications. For this purpose, we provide supplementary optimization techniques to help

improve the accuracy of the NNs, as well as the performance and energy gains of the applications. As

previously discussed, targeting divergent kernels is not a limitation of our approach – it is a way to

intelligently guide kernel identification by focusing on the ultimate weakness of SIMD architectures.

Once these main benefits have been reaped, further optimization can include subsumption of non-

divergent code as well.

Our first optimization technique enlarges kernel scope, potentially allowing more divergent as well

as non-divergent code to be encompassed by a single NN. This is done by modifying the kernel

ranking criteria of the Neuralizer such that kernels are first prioritized by decreasing levels of

scope before being prioritized by decreasing amounts of divergence. For example, a kernel with

non-divergent control flow (e.g. deterministic “for” loop) encompassing a series of divergent control

flow regions (e.g. data-dependent “if-else” statements) would be given priority over those individual

divergent kernels. Allowing larger kernels to be subsumed by a given NN, we reduce the number of

NNs needed, thereby increasing maximum potential gains. Also, we note that functional complexity

is not directly related to kernel size, meaning larger scopes may even allow for more accurate NNs.

An example of results from optimizing across different kernel scopes for the triangle intersection

algorithm can be found in Section 6.4.3.

The second optimization technique we employ enables generation of better data sets for NN training.

If the kernel is from an approximate algorithm (e.g. an iterative solver), we reverse engineer a data

set with exact solutions to properly train the NN, potentially achieving a lower error rate than

the original application. For instance, with our inverse kinematics benchmark (invkin, described

in Section 6.3.1), we use forward kinematics to generate a “correct” data set to train the NN,

providing a better representation of the input-output relation. With this optimization we see an

average of 24% improvement in our training results and are even able to achieve lower error rates

than the original applications (e.g. reducing error from 7.1% to 1.8% for inverse kinematics).

Our final optimization technique is for any kernel that can be described as a classifier (e.g. one that

returns a boolean true/false value). For these kernels, the NN approximation can be augmented

99

Chapter 6. Neural Acceleration of Divergent Applications on SIMD Architectures

Table 6.1: Summary of benchmark descriptions, domain categorizations,
control flow characteristics, and justifications for approximability

Benchmark Algorithm Description App. Domain(s) Control Flow Approximability

invkin Solves 3-joint inverse
kinematics problem
based on Cyclic
Coordinate Descent (CCD)

Robotics,
Graphics

Data-dependent
multiple compute iterations

Heuristic-based algorithm:
Iterative solver with no closed-
form solution; not guaranteed to
compute globally optimal result

nrpoly3 Uses Newton-Raphson
method to find roots of a
cubic polynomial

Nonlinear
Algebra,
Fluid Mechanics

Data-dependent
multiple compute iterations

Heuristic-based algorithm:
Iterative solver; not guaranteed to
algorithmically converge

julfrac Solves equations for
points in a complex plane
to generate Julia set
fractals

Complex
Dynamics

Data-dependent
multiple compute iterations

Heuristic-based algorithm:
Iterative solver; approximation of
infinite fractals over discrete
values

jmeint Determines whether or
not 2 given triangles
intersect in 3D space

Graphics,
Gaming,
Computer Vision

Data-dependent
single compute iteration
(highly divergent)

Circumstantially approximable:
E.g. output of jmeint could be used
in approximate physics-based
simulation

swaptions Computes pricing for
various stock options
using Heath-Jarrow-
Morton (HJM) framework

Finance Data-dependent single
compute iteration
encompassed by
non-data-dependent
multiple compute iterations

Heuristic-based algorithm:
Monte Carlo (MC) simulation used
to generate inexact solution;
region following MC output is
approximated

Table 6.2: NN characteristics, training results, and benchmark
evaluation results for neural approximations

Benchmark NN Topology Input Data Set * NN MSE Eval. Metric Eval. Error

invkin 2 x 32 x 32 x 3 10000 sets of 2D coordinate values 0.0106% Distance 1.75%
nrpoly3 5 x 2 x 0 x 1 16384 sets of cubic polynomial

parameters and initial guess value
0.0139% Avg. Relative

Error
0.91%

julfrac 2 x 4 x 2 x 1 100x100 matrix of values 5.1071% Miss Rate 6.56%
jmeint 18 x 1 x 0 x 1 102400 pairs of 3D triangle vertex

coordinate values
7.4798% Miss Rate 0.02%

swaptions 33 x 16 x 0 x 33 16384 sets of 33-element array values 0.7942% RMS 8.79%

* Note: All inputs are represented as floating point values.

by filtering its outputs with a threshold-based classifier. For instance, the NN used for triangle

intersection detection (i.e. jmeint benchmark described in Section 6.3.1) is supplemented with a

stump classifier rooted at zero, improving the average error rate from 7% to 0.02%.

100

Chapter 6. Neural Acceleration of Divergent Applications on SIMD Architectures

6.3 Evaluation Approach

6.3.1 Benchmarks and Evaluation Metrics

For evaluation purposes, we have selected divergent applications from a variety of domains. The

benchmarks are selected because they (1) suffer from branch divergence, (2) potentially tolerate

imprecision, and (3) could be beneficial for general applications. We purposely do not select from

GPGPU benchmark suites because they primarily include compute-intensive workloads specifically

optimized for GPUs (e.g. minimal control flow). We instead aim to enlarge the space of SIMD-

targetable benchmarks. A summary of our benchmarks, which includes algorithm descriptions,

control flow characterizations, and justifications for approximability, can be found in Table 6.1.

These benchmarks originate from various sources [38, 53, 108, 116, 117] and have been converted to

CUDA for execution on the GPU. Leveraging maximum data parallelism and memory coalescence,

the CUDA-based GPU versions of these benchmarks run on average 20× faster (minimum 6×,

maximum 46×) than their C++-based, multi-threaded versions running on a 2.0 GHz Intel Quad-

Core-i7 machine.

Since the type of final output varies across applications, evaluation metrics must be application-

specific. The inverse kinematics benchmark (invkin) receives coordinate values for a target location

and computes angle values for the three joints; to evaluate the error, we use forward kinematics

to find the location of the end effector based on the computed angle values, and calculate its

distance from the target location. With the Newton-Raphson method for finding roots of an

equation (nrpoly3), we compare the outputted root value to the correct root value as an average

relative error. Since the benchmarks for finding Julia set fractals (julfrac) and detecting triangle

intersection (jmeint) each return a boolean value, error is evaluated as a miss rate. The final

benchmark, swaptions, outputs arrays of values; as such, its evaluation metric is based on the

root mean square (RMS) of array difference (much like how RMS of image difference is used for

evaluating image processing). These evaluation metrics are reiterated in Table 6.2.

101

Chapter 6. Neural Acceleration of Divergent Applications on SIMD Architectures

6.3.2 Experimental Setup

With respect to the generation, training, and testing of our NN models, we use the open-source,

C-based Fast Artificial Neural Network (FANN) library [118] with support for floating point values.

To allow for steady convergence of the backpropagation algorithm, we use a learning rate of 0.01

along with a maximum number of epochs of 5000. Also, while 75% of the benchmark’s real input

data is used for collecting the NN training data sets for the kernels, the other 25% is used for post-

neuralization evaluation of benchmark error. For performance and energy evaluations, our CUDA

benchmarks are compiled with version 5.5 of the Nvidia CUDA compiler [119]; we then execute the

benchmarks on an Nvidia GeForce GTX 480 GPU [120], which features 448 cores running at 607

MHz with 16 warps per block and 32 threads per warp.

Our performance metric is execution time, measured using the standard CUDA-based event tim-

ing constructs. For gauging power, we employ an electricity load monitoring device [121], which

measures from a system’s main power source. We first measure power when the system is idle.

Then, we run the GPU benchmark long enough for it to reach steady-state, remeasure the power,

and take the difference between the two measurements. Energy is then computed as the product of

this power result and the execution time from the performance result. Though our measurements

could include dynamic power consumption of non-GPU components, these are negligible compared

to the tens-to-hundreds of Watts consumed by the GPU. This form of direct power measurement

also allows us to obtain more realistic results than possible with a simulator.

In our results, we compare the following schemes:

◦ GPU : Original GPU benchmarks

◦ GPU Ideal : Non-divergent version of benchmarks (i.e. still include control flow,

but have all threads process the same data values)

◦ NN : Benchmarks integrated with trained NN approximations

◦ NN Ideal : Benchmarks integrated with zero-hidden-layer NN approximations

102

Chapter 6. Neural Acceleration of Divergent Applications on SIMD Architectures

GPU Ideal represents the best possible scenario for the GPU, where all threads not only fall within

the same path of control flow (thereby eliminating divergence), they fall within the path that

would result in the highest performance possible for the GPU; as such, GPU Ideal represents a

performance-wise optimal version of an approximation-based technique known as “branch herd-

ing” [122]. Also, the GPU Ideal version of a benchmark is considered “ideal” because in reality, a

user does not have control over data-divergence. Similarly, the zero-hidden-layer NN implementa-

tion presented with NN Ideal is considered “ideal” because an MLP with no hidden layers does not

have the capability to approximate any functionality and cannot realistically be used. Using these

schemes, we are able to see the impact of divergence (GPU Ideal vs. GPU), the benefit of using

neural approximation to remove divergence while potentially subsuming non-divergent code (NN

vs. GPU Ideal), and the upper-bound on performance and energy gains for neural approximations

(NN Ideal vs. NN).

6.4 Experimental Results

6.4.1 NN Approximation

The characteristics of our NN-based approximations, along with application-specific evaluation

metrics and error values, are summarized in Table 6.2. Note that “NN MSE” represents the

cross-validated mean squared error of the NN, while the “Eval. Error” represents the application-

level error assessment (i.e. based on the 25% of the benchmark inputs used for post-neuralization

evaluation). For each of our benchmarks, optimal gains were achieved with the use of a single NN

to subsume all of the divergent control flow. Our results, therefore, correspond to these single-

NN configurations. In terms of the average evaluation error rates, all five of the benchmarks

are well within 10%. To examine quality degradation in more detail, related work in approximate

computing [27] uses a plot of the cumulative distribution function (CDF) of error in an application’s

output. We adopt this same approach for analysis and provide a CDF plot of benchmark evaluation

103

Chapter 6. Neural Acceleration of Divergent Applications on SIMD Architectures

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

0.00% 5.00% 10.00% 15.00%

P
e

rc
e

n
ta

ge
 o

f
O

u
tp

u
t

Error

invkin

nrpoly3

julfrac

jmeint

swaptions

Figure 6.3: CDF plot of benchmark error; point (x,y) signifies that
y percent of the outputs see x percent of error or less

error in Figure 6.3. This distribution reveals that 80%–100% of the outputs for all five benchmarks

have less than 10% error.

While we do not claim the error rates demonstrated for our benchmarks are acceptable by all

standards, we observe them to be on par with the range of quality loss seen in other approximation

schemes [27, 34–36, 38, 40]. As with all approximate computing, statistically improbable errors

could still render an application’s output meaningless. Different users may also have different

notions of acceptable ranges of error for even the same application (e.g. invkin used for controlling

robot-assisted surgery versus robot-assisted movement of large blocks); the user would therefore

need to deem these approximations acceptable. For these reasons, we see an opportunity to combine

our approach with existing mechanisms for online error validation and user-based error-threshold

specification [123].

6.4.2 Performance and Energy Gains

Figures 6.4 and 6.5, which are normalized to the original GPU benchmarks, display our performance

and energy results, respectively. We see that the three iterative, constraint-based solvers, namely

104

Chapter 6. Neural Acceleration of Divergent Applications on SIMD Architectures

19.81 20.92

8.61

3.12

1.39

25.32 26.26

10.09

4.81

1.46

43.39
30.18

39.95

4.82

1.49

1

10

100

invkin nrpoly3 julfrac jmeint swaptions

Sp
e

e
d

u
p

 o
ve

r
G

P
U

 (
X

)
GPU_Ideal

NN

NN_Ideal

Figure 6.4: Performance gains of the various schemes

20.50
27.13

5.85

3.89

1.43

27.49
31.75

8.30

5.09

1.58

49.50
40.02

33.06

5.36

1.63

1

10

100

invkin nrpoly3 julfrac jmeint swaptions

En
e

rg
y

Sa
vi

n
gs

 o
ve

r
G

P
U

 (
X

) GPU_Ideal

NN

NN_Ideal

Figure 6.5: Energy savings of the various schemes

invkin, nrpoly3, and julfrac, have the highest speedups because of the extent of the divergence

being converted to non-divergent computation. If divergence is removed (i.e. GPU Ideal results),

9×–21× speedup can be achieved. As a result of further reducing the number of instructions

executed, the trained neural approximations (i.e. NN) achieve speedups of up to 26×. Although the

jmeint benchmark lacks data-dependent loops, it still contains a significant amount of divergence

105

Chapter 6. Neural Acceleration of Divergent Applications on SIMD Architectures

1.E+00

1.E+01

1.E+02

1.E+03

1.E+04

1.E+05

1.E+06

1.E+07

1.E+08

1.E+09

invkin nrpoly3 julfrac jmeint swaptions

D
yn

am
ic

 In
st

r.
 C

o
u

n
t

GPU GPU_Ideal NN NN_Ideal

Figure 6.6: Dynamic instruction counts to verify the source of the performance and energy gains

due to data-dependent branches. As a result, performance improves by 3.1× when the divergence

is ideally removed, and neural approximation gains 4.8× speedup, which is achievable because a

very small NN topology (single hidden layer with one neuron) is able to satisfy this benchmark’s

approximation requirements. Compared to the other benchmarks, swaptions has less divergence

and requires a large NN with many input/output neurons; it therefore exhibits relatively modest

improvements using neural approximation. In Figure 6.5, we see similar trends in energy savings,

with 8×–32× savings for the iterative solvers, 5× for the highly-divergent triangle intersection

detection, and 1.6× for the many-input-output swaptions benchmark.

These performance and energy benefits are achieved with a combination of divergence elimination

and reduction of dynamic instructions. For our benchmarks, we gauge the impact of divergence

elimination using the “warp execution efficiency” profiling metric supported by CUDA; this metric

measures the average percentage of active threads (i.e. threads performing useful work) in each

executed warp. As expected, branch divergence leads to inefficient resource utilization and lowers

warp execution efficiency. Our benchmarks originally have an average warp execution efficiency

of 55%; after neuralization, however, the warp execution efficiency is transformed to 100% for

all benchmarks. To further verify the source of our performance and energy gains, we include

106

Chapter 6. Neural Acceleration of Divergent Applications on SIMD Architectures

0

20

40

60

80

100

0

1

2

3

4

5

6

1st Level 2nd Level 3rd Level 4th Level

A
cc

u
ra

cy
 (

%
)

Sp
e

e
d

u
p

 o
ve

r
G

P
U

 (
X

)

Level of Branch Nesting

Varying Kernel Scope (jmeint)

Speedup Accuracy (%) 95% Accuracy

Figure 6.7: Performance gains and accuracy for jmeint benchmark as kernel scope varies

dynamic instruction counts in Figure 6.6. These results reveal a greater disparity between GPU

and GPU Ideal than between GPU Ideal and NN for all the benchmarks, and in some cases (e.g.

nrpoly3), GPU Ideal may even execute fewer instructions than NN. In other words, while the

amount of work in these applications certainly changes as instructions are subsumed by NN ap-

proximations, divergence elimination is the key source of these gains as it reduces the

execution of unnecessary instructions and improves the efficiency of threads. This demonstrates

the significance of changing the nature (and not just the amount) of the workload in these di-

vergent applications. Furthermore, the gains of the NN implementations match closely with the

upper bounds set by the idealized NNs for most benchmarks, thereby providing support for the

effectiveness and low overhead of our technique.

6.4.3 Varying Kernel Scope

We now present results corresponding to the technique for exploring various levels of kernel scope.

Figure 6.7 shows the results of using the same NN topology (one hidden layer with one neuron)

to approximate the four different levels of scope for the jmeint benchmark (for an overview of the

kernel scopes, please refer back to the pseudocode in Figure 1.2). The purpose of these results

107

Chapter 6. Neural Acceleration of Divergent Applications on SIMD Architectures

0

20

40

60

80

100

0

10

20

30

40

50

2x2 4x4 8x8 16x16 32x32

A
cc

u
ra

cy
 (

%
)

Sp
e

e
d

u
p

 o
ve

r
G

P
U

 (
X

)

NN Topology

Varying NN Topology (invkin)

Speedup Accuracy (%) 95% Accuracy

Figure 6.8: Performance gains and accuracy for invkin benchmark as NN topology varies

is to demonstrate how increasing/decreasing scope can impact the functional dimensionality of a

kernel in application-specific ways. In other words, increasing scope does not necessarily increase

dimensionality and decreasing scope does not necessarily have the opposite effect. For instance, we

see from these results that the first level of branch nesting in fact has the highest accuracy when

the same NN topology is used, thereby suggesting that its functionality is the easiest for the NN

to learn. Furthermore, since it subsumes the largest portion of the benchmark, it has the highest

potential for speedup. The second level of scope, conversely, diminishes in accuracy as its large

number of inputs and high-dimensional functionality are too complex for the single neuron in the

hidden layer to approximate accurately. The third and fourth levels of scope, however, reduce the

functional dimensionality once again and achieve acceptable accuracy, though their speedups are

limited as they subsume smaller portions of the benchmark.

6.4.4 Varying NN Topology

To demonstrate the need to explore the space of NN topologies for a given kernel, we present the

results of varying the NN topology when approximating the invkin benchmark (Figure 6.8). Much

like with the nrpoly3 results presented earlier as motivation (Figure 1.4), we see the performance

108

Chapter 6. Neural Acceleration of Divergent Applications on SIMD Architectures

gains reduce as the size of the NN increases. This figure also displays the benchmark evaluation

accuracy corresponding to each NN topology used, and we see how (though it is not guaranteed

to always be the case) a larger NN topology could likely result in higher approximation accuracy.

For instance, in this case an accuracy within 95% could be achieved with a 4x4 or larger topology.

Balancing these trade-offs, we find that a topology within the range of 4x4 and 8x8 (e.g. the 4x8

used for our final performance and energy results) would be ideal for this benchmark. As the

performance of a given NN topology can vary drastically from one kernel to the next, we find that

exploration of NN topologies is key in optimizing the gains achieved by neural approximations.

109

Chapter 7

Dynamically Reliable Approximate

Computing Using Light-Weight

Error Analysis

As a response to increasingly important concerns of power and energy consumption, along with

lofty performance goals, computer architecture research has gravitated towards methodologies that

provide inexact, yet acceptable solutions. Taking inspiration from techniques in fault tolerance,

approximate computing [124] has evolved into a means for not only tolerating imprecision, but

leveraging it as a trade-off for performance and energy gains. An “approximate accelerator”, or

compute unit based on approximate hardware (e.g. low-precision functional unit) or software (e.g.

algorithmic shortcuts), leverages imprecision tolerance (i.e. “slack” in computational accuracy) to

improve performance and reduce energy consumption.

Prior art in approximate computing has extensively studied computational resilience to imprecision.

However, existing approaches often rely on static techniques, which potentially compromise coverage

and reliability. For achieving dynamic error analysis, it is unreasonable to compare an application’s

exact output to the approximate output, as the generation of the exact output would merely add

110

Chapter 7. Dynamically Reliable Approximate Computing Using Light-Weight Error Analysis

overhead, defeating the purpose of the approximation. As a more high-level approach to quality

analysis, we employ light-weight checks (LWCs).

The key inspiration behind this approach is that while finding a solution may be complex, checking

the quality of that solution could be simple. By definition, an LWC is a metric that is application-

specific, yet algorithm-independent, meaning it is not necessarily bound by a specific imple-

mentation. Although LWCs are unique to each application, they may be fairly easy to determine

for certain categories of applications (e.g. problems that could be solved using iterative refine-

ment). These metrics are also light-weight relative to the application, allowing them to be utilized

dynamically instead of solely for the purpose of offline error analysis. The resulting methodology

adapts to output quality at runtime, providing guarantees on worst-case application-level error.

With this approach, we also decouple error analysis of the approximate accelerator from quality

analysis of the overall application, allowing us to gain coverage by exploiting imprecision tolerance

at the application level. To ensure platform agnosticism, these light-weight metrics are integrated

directly into the application, enabling compatibility with any approximate acceleration technique.

This chapter presents a case study of dynamic error control for inverse kinematics. Using software-

based neural acceleration with LWC support, we demonstrate improvements in coverage, reliability,

and overall performance.

7.1 Methodology

7.1.1 Light-Weight Checking

Static error analysis, such as establishing confidence intervals [46] or finding average error across a

range of training values [27], is commonly employed to control the usage of approximate accelerators.

In our approach, we advocate dynamic quality analysis and approximation control by way of LWCs.

The key characteristics of LWCs are (1) application-specific quality assessment, and (2) light-weight

evaluation relative to the application.

111

Chapter 7. Dynamically Reliable Approximate Computing Using Light-Weight Error Analysis

LWCs are not specific to any particular algorithm or implementation. They are only specific to

the application itself. For instance, the application for physics-based simulation could involve

many variations on algorithms for collision detection and constraint solving. However, an LWC for

analyzing simulated scenes would remain relevant across the different implementations.

By nature, these LWCs could be based on values accessed from within the application (i.e. inputs,

approximated outputs, and intermediate values), or via external values (e.g. additional sensor-based

data). In a mobile robot application, for instance, an approximate accelerator used for augmenting

the navigation program may be provided with supplemental sensory feedback, such as rangefinder

data. This feedback may or may not be directly used for planning high-level navigation solutions,

but it could be helpful in warning the robot about possible nearby collisions, rendering it an ideal

LWC.

7.1.2 Deriving LWCs

We organize LWCs into three general categories based on the types of values being processed:

(1) Approximate Output

(2) Approximate Output + Input

(3) Approximate Output + External Value

Though the exact output is never required, all LWCs must take into account the approximate output

that has been produced. The first type of LWC, therefore, is one that relies only on the output.

With applications based on iterative refinement, for instance, the quality of the computed output

is continuously assessed in each iteration without the need for considering inputs or externally

supplied values. However, another type of LWC may consider the output with respect to the

input. For example, an LWC for physics-based simulation may gauge the quality of a simulation by

comparing the input scene (i.e. the state of the simulation before a series of actions is taken) with

the output scene. Finally, a third type of LWC is one that assesses output quality using external

values (e.g. feedback provided by a supplementary sensor). We also note that intermediate values

112

Chapter 7. Dynamically Reliable Approximate Computing Using Light-Weight Error Analysis

of an application (i.e. non-input and non-output values) may be used in LWCs that fall in any of

these categories, and do not give rise to a distinct category of their own.

Similar to existing methods for error control in approximate computing [34, 37], it is the responsi-

bility of the user to define these light-weight quality metrics. However, while LWCs are application-

specific, they may be found fairly easily for certain categories of applications. For instance, problems

that could be solved using iterative refinement, such as inverse kinematics [116], may use the re-

finement criteria as an LWC. Likewise, an LWC for image quality assessment could be reused for

various image processing applications, such as image enhancement, restoration, manipulation, etc.

With our organization of LWCs into categories, a user is able to more clearly identify the nature of

the LWC they wish to derive, allowing for better visibility of overlap with similar LWCs. Further-

more, this categorization of LWCs may be used to establish a more rigid and detailed structure for

users to follow when specifying an application. This structured specification could in turn be used

by a compiler tool-chain for automatically extracting candidate LWCs.

7.1.3 Integrating LWCs

Once an LWC has been established for a given application, the LWC is integrated directly into the

application code, providing a platform-agnostic mechanism for gauging output quality. Assuming

the original code already contains an approximate computation, the modified code would need to

subsequently evaluate the LWC, determine the QoS level achieved, and initiate recovery as needed.

The overall structure of the LWC-integrated code is provided in Figure 7.1.

The application flow shown in Figure 7.1 is a fixed structure. However, the adaptive nature of

our approach arises from the LWC and QoS constraint: the adjustable LWC allows the computa-

tional flow to accommodate user-specific definitions of quality, and the QoS constraint allows for

adaptation to variations in data as well as variations in user preferences. Based on the structure

of the LWC integration, we see that for each input the LWC is checked only once (not multiple

times, as in incremental refinement [39]). Additionally, overall quality of the application is assessed

113

Chapter 7. Dynamically Reliable Approximate Computing Using Light-Weight Error Analysis

Structure of LWC-Integrated Application

(1) Call approximate accelerator

(2) Evaluate LWC and determine QoS achieved

(3) If QoS constraint is met

 Continue to next input

(4) Else

 Recover by reprocessing current input with exact

 (non-approximated) version of computation

(1) Call approximate accelerator

(2) Evaluate LWC and determine QoS

(3) If QoS constraint is met

 Continue to next input

(4) Else

 Recover by reprocessing current

 input with exact computation

Figure 7.1: Integration of LWC into application code

Table 7.1: Examples of applications, algorithms, domains, and LWCs

Application Sample Algorithm Application Domains Light-Weight Check (LWC)

Inverse Kinematics Cyclic Coordinate Descent
Optimization

Robotics, Graphics,
Gaming, Virtual Reality

Forward Kinematics

State Estimation Kalman Filter Navigation, Finance,
Signal Processing

Measurement Comparison

Physics-Based Simulation Gilbert-Johnson-Keerthi
Distance

Gaming, Fluid Dynamics,
Control Systems

Energy Conservation

Image Denoising Total Variation Minimization Computer Vision, Graphics,
Medical Imaging

Universal Image Quality Index

Cluster Analysis K-Means Clustering Data Mining,
Computer Vision

Distance Function

SAT Solver Davis-Putnam-Logemann-
Loveland Search

Design Automation, AI
Planning, Bioinformatics

Satisfiability Check

Application Sample Algorithm Application Domains Light-Weight Check (LWC)

Inverse Kinematics Cyclic Coordinate Descent
Optimization

Robotics, Graphics,
Gaming, Virtual Reality

Forward Kinematics

State Estimation Kalman Filter Navigation, Finance,
Signal Processing

Measurement Comparison

Physics-Based Simulation Gilbert-Johnson-Keerthi
Distance

Gaming, Fluid Dynamics,
Control Systems

Energy Conservation

Image Denoising Total Variation Minimization Computer Vision, Graphics,
Medical Imaging

Universal Image Quality Index

SAT Solver Davis-Putnam-Logemann-
Loveland Search

Design Automation, AI
Planning, Bioinformatics

Satisfiability Check

independently of the approximate accelerator, and recovery is dynamically initiated as necessary.

While overall performance is undoubtedly affected by the performance and accuracy of the chosen

approximate accelerator, it is also largely impacted by the specified QoS constraint and the nature

of the inputs being processed.

7.1.4 Application Examples

Table 7.1 contains examples of applications and their corresponding LWCs. The following subsec-

tions describe these applications and LWCs in more detail.

114

Chapter 7. Dynamically Reliable Approximate Computing Using Light-Weight Error Analysis

7.1.4.1 Inverse Kinematics

Inverse kinematics based on cyclic coordinate descent optimization [116] is a well-known iterative

algorithm for computing joint angles given a target location. This iterative technique is commonly

applied in robotics (e.g. robotic arm motion) and graphics (e.g. character animation), especially

for complex kinematic problems where analytical solutions are not always possible. By adjusting

joints in a series of steps, this method continuously refines a solution until the end effector reaches

the target within a given tolerance bound. At each iteration, the error in the solution is gauged

using a quick forward kinematics computation. This forward kinematics check is inherently part

of the iterative algorithm and is computationally simpler than inverse kinematics. It is therefore

application-specific and light-weight, and serves as a valid LWC. Note that if the application entails

hardware sensors for robotic motion, for example, sensory feedback would also serve as an LWC.

7.1.4.2 State Estimation

Another application that could benefit from LWC support is state estimation using the Kalman

filter [67]. The Kalman filter is a recursive technique for state estimation of linear systems with

applications in object tracking, localization, multimodal data fusion, exchange rate modeling, volt-

age estimation, and much more. Algorithmically, it includes a “prediction” step followed by an

“update” step for comparing the prediction to actual measurements (e.g. from sensory feedback)

and using a gain matrix to adjust the state accordingly. The primary purpose of the gain matrix

is to optimally correct the state in order to minimize the difference between measurements and

predictions. Though the computation of the gain is expensive, the measurement comparison is

light-weight and may be leveraged as an LWC.

115

Chapter 7. Dynamically Reliable Approximate Computing Using Light-Weight Error Analysis

7.1.4.3 Physics-Based Simulation

With physics-based simulation, numerous algorithms could be used for object motion evaluation,

collision detection, collision response, and constraint solving. However, regardless of those algo-

rithms, the LWC metric would entail analysis of the simulated scene itself. Prior work in accel-

erating physics engines [32] has found energy conservation across scenes to be a useful metric for

analyzing approximation error. Since solving for energy is considerably more light-weight than the

entire simulation process, this metric could serve as an LWC.

7.1.4.4 Image Denoising

The image denoising application may have many different implementations, such as an imple-

mentation based on total variation minimization [90]. Quality assessment for the outputs of this

application could rely on an overarching image analysis metric, such as the Universal Image Quality

Index (UIQI) [125]. Similar to the Peak Signal-to-Noise Ratio (PSNR), which is commonly used for

application-specific quality analysis, UIQI is generally applicable to images. UIQI is also easy to

compute dynamically because it may serve as a comparison metric based on input-output images

without the need for an exact output. In addition, unlike traditional error summation methods,

UIQI models image distortion as a combination of loss of correlation, luminance distortion, and

contrast distortion, allowing it to provide more meaningful comparisons across different images.

UIQI could therefore be leveraged as a general-purpose LWC for image processing applications.

7.1.4.5 SAT Solver

Boolean satisfiability (SAT) is the problem of determining whether there exists a set of variable

assignments that can satisfy a given propositional logic formula [126]. As a modeling framework for

solving combinatorial problems, SAT has been widely used within many domains, including elec-

tronic design automation, artificial intelligence, and bioinformatics. Since SAT is an NP-complete

problem, there is no known efficient solution for all of its possible instances. However, there are

116

Chapter 7. Dynamically Reliable Approximate Computing Using Light-Weight Error Analysis

numerous heuristic-based algorithms for solving SAT, many of which are implemented based on

the seminal Davis-Putnam-Logemann-Loveland (DPLL) search algorithm [127]. Though solutions

to the SAT problem are difficult to find, they are computationally cheap to verify with a simple

“satisfiability check”, which entails plugging-in the solution and evaluating whether or not the logic

formula is satisfied. As such, this satisfiability check is an ideal LWC.

7.2 Evaluation Approach

To demonstrate the benefits of dynamic quality analysis using LWCs, we examine inverse kinematics

for a 3-joint arm. In this case study, the application continuously receives target x-y coordinates as

input (e.g. for continuous robotic motion or character animation). Though the application operates

on a non-data-parallel input stream, the computation for each input could be accelerated using

approximate computing techniques. Also, the error tolerance threshold represents the maximum

percentage of error the user is willing to accept for any given input, where error is measured as the

distance (relative to the total length of the arm) from the end effector to the target location.

Though our approach is compatible with other approximation techniques, for the purposes of

this work we exemplify benefits through software-based neural acceleration [128] (i.e. integrating a

trained neural network directly into application code). To approximate inverse kinematics, a neural

network (NN) is trained using 7500 input-output sets. Each set contains 2 inputs for the target x-y

coordinates and 3 outputs for the joint angles; all values are expressed as floating point numbers.

The NN has a total of 4 layers: 1 input layer with 2 neurons, 2 hidden layers with 8 neurons each,

and 1 output layer with 3 neurons. For our performance evaluations, we use 1024 input-output

sets, where the average error of our trained 8x8 NN is 4.1% with a standard deviation of 3.6%

(i.e. variance of 0.13%). Note that it is important for the training and evaluation data sets to be

completely distinct in order to ensure we are assessing the neural network’s ability to generalize

rather than its ability to learn the training data.

117

Chapter 7. Dynamically Reliable Approximate Computing Using Light-Weight Error Analysis

Our experiments are run on a 2.0 GHz quad-core Intel Xeon E5405 processor. In our results, we

compare the following evaluation schemes:

◦ ORIG 1% : Original benchmark with 1% set threshold

◦ ORIG n% : Original benchmark with user-specified adjustable threshold “n”, which

represents QoS as the maximum error being tolerated

◦ ACC+LWC : Benchmark integrated with NN and LWC, where the LWC is used to

determine when to make use of exact computation (i.e. revert to ORIG n% computation)

◦ ACC-LWC : Benchmark integrated with NN, but no LWC is used; recovery is therefore

never initiated and the approximate solution is always employed, regardless of error

Note that, as iterative inverse kinematics repeatedly refines its solution to match a given error

threshold, the original benchmark could either be statically set to an “acceptable” threshold (i.e.

ORIG 1%), or could have the threshold be adjustable based on user specification (i.e. ORIG n%),

which resembles a software-based implementation of the incremental refinement technique [39].

7.3 Experimental Results

7.3.1 Performance

Performance corresponding to each of the schemes described in Section 7.2 is presented in Figure 7.2.

On average, compared to the original benchmark with a set threshold of 1% (ORIG 1%), we see

speedups (i.e. reductions in execution time) of 3.4× for software-based incremental refinement

(ORIG n%), 28.6× for neural acceleration with LWC support (ACC+LWC), and 44× for neural

acceleration without LWC support (ACC-LWC).

Approximation via software-based incremental refinement (ORIG n%) and approximation with

LWC support (ACC+LWC) are comparable techniques because they are both platform-agnostic

approaches for dynamically ensuring QoS. Our results for inverse kinematics demonstrate an average

118

Chapter 7. Dynamically Reliable Approximate Computing Using Light-Weight Error Analysis

0

5

10

15

20

25

30

35

40

45

50

5% 10% 15% 20% 25% 30%

Sp
e

e
d

u
p

 o
ve

r
O

R
IG

_
1

%

Error Tolerance Threshold

ORIG_n%

ACC+LWC

ACC-LWC

Figure 7.2: Performance comparison shown as speedup of ORIG n%,
ACC+LWC, and ACC-LWC over ORIG 1%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

5% 10% 15% 20% 25% 30%

P
e

rc
e

n
ta

ge
 o

f
A

C
C

+L
W

C
 E

xe
c.

 T
im

e

Error Tolerance Threshold

ACC

LWC

Recovery

Figure 7.3: Performance breakdown for the ACC+LWC scheme; execution time broken down into
time for (1) computation of neural accelerator (ACC), (2) evaluation of light-weight check (LWC),

and (3) recovery using exact computation (Recovery)

speedup of 8.5× for ACC+LWC relative to ORIG n%. Although the main source of the perfor-

mance improvement for ACC+LWC is the neural approximation, the efficiency of its dynamic error

analysis is due to LWC support, which involves a single quick check for each approximation. The

incremental refinement in ORIG n%, on the other hand, loses efficiency as it satisfies QoS con-

straints by continuously checking potential solutions at each iteration, incurring unnecessary costs

that render the light-weight nature of its checks ineffective.

In Figure 7.2, ACC-LWC provides a notion of maximum speedups that can be achieved by the

approximation-based acceleration if worst-case accuracy is not guaranteed (i.e. LWC is excluded

119

Chapter 7. Dynamically Reliable Approximate Computing Using Light-Weight Error Analysis

and recovery is never initiated). From the given trends, we see the performance of ACC+LWC

rapidly approaching that of ACC-LWC for tolerance thresholds ranging from 5%–30%, thereby

emphasizing the light-weight nature of our dynamic error management approach. For a more

detailed understanding of the performance of ACC+LWC, Figure 7.3 illustrates the percentages

of execution time spent on (1) computation of the neural accelerator (ACC), (2) evaluation of the

light-weight check (LWC), and (3) recovery using exact computation (Recovery). This performance

breakdown reveals that the majority of the overhead preventing ACC+LWC from achieving ACC-

LWC performance is caused by recovery stages. Though the need for recovery could be reduced

by using more accurate approximation techniques, the higher accuracy would likely increase the

execution time of the accelerator.

Excluding the overhead for recovery, the remaining overhead, which is for evaluating the LWC,

is negligible (i.e. 6% on average). We note that as the error tolerance threshold increases, the

amount of time spent on accelerator computation and LWC evaluation remains constant. However,

their proportions of execution time increase because the total execution time decreases as the

need for recovery is reduced. Moreover, though the overhead of an LWC will vary across different

benchmarks due to its application-specific nature, it will remain beneficial for dynamic error analysis

so long as it is light-weight relative to the overall application.

7.3.2 Reliability

As previously described, ACC-LWC lacks LWC support and an ability to initiate dynamic recovery,

thereby demonstrating maximal speedups achievable by the given approximate accelerator. In this

case, since dynamic analysis is not an option, static analysis would need to be used for understand-

ing the output quality degradation resulting from the approximations. When the output quality

of an approximate accelerator is statically analyzed, the assumption is that for the majority of

executions, the approximation unit will have errors near its average error value (i.e. within a stan-

dard deviation given a normal distribution). Based on this assumption, it would be acceptable to

use an approximate accelerator for an application if its average error falls within a given tolerance

120

Chapter 7. Dynamically Reliable Approximate Computing Using Light-Weight Error Analysis

0%

2%

4%

6%

8%

10%

12%

14%

16%

18%

20%

5.0% 5.5% 6.0% 6.5% 7.0% 7.5% 8.0% 8.5% 9.0% 9.5% 10.0%

Q
o

S
Fa

ilu
re

s
(%

 o
f

O
u

tp
u

ts
)

Error Tolerance Threshold

Lack of Reliability with ACC-LWC

Figure 7.4: Reliability issues (shown as failure to satisfy QoS constraints)
when approximating without LWC support

threshold, assuming the inputs also fall within an acceptable range (e.g. the range of the training

data). However, though statistically less likely, there would still be cases where the error exceeds

the threshold, resulting in a QoS failure. In Figure 7.4, we present the QoS failures that occur

when an NN with an average error of 4.1% and a standard deviation of 3.6% is used for acceler-

ating inverse kinematics with tolerance thresholds of 5%–10%. On average, we see QoS failures in

13% of the outputs. Notably, for thresholds of 8%–10%, which are past a standard deviation of

the average error, there are QoS failures in 10% of the outputs, highlighting the unreliability of

approximation without LWC support.

In addition, while the NN used in this example approximates the entire application, there may be

cases where only a portion of the application is approximated. For instance, if the floating point

operations are computed using an approximate floating point unit in hardware, this would result

in approximation of various code regions throughout the application. For cases such as this, QoS

guarantees are even less reliable if based on the approximation error of the accelerator (e.g. the

accuracy of the approximate floating point unit), as even small errors may accumulate and result

in unacceptably large quality loss in the overall application. We therefore advocate analyzing and

guaranteeing QoS based on application-level quality metrics.

121

Chapter 7. Dynamically Reliable Approximate Computing Using Light-Weight Error Analysis

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

50%

5% 10% 15% 20% 25% 30%

P
er

ce
n

ta
ge

 o
f

D
at

a
A

cc
e

le
ra

te
d

Error Tolerance Threshold

ACC+LWC Coverage for Out-of-Range Inputs

Figure 7.5: Amount of coverage for out-of-range inputs

0.0

0.5

1.0

1.5

2.0

0

2

4

6

8

10

12

5% 10% 15% 20% 25% 30%
■

Sp
e

e
d

u
p

 o
ve

r
O

R
IG

_
n

%

■
Sp

e
ed

u
p

 o
ve

r
O

R
IG

_1
%

Error Tolerance Threshold

ACC+LWC Coverage for Out-of-Range Inputs

Figure 7.6: Speedup from coverage for out-of-range inputs

7.3.3 Coverage

Approximate accelerators are often unused when input data lies outside an acceptable range, such

as the range of the training data for a neural accelerator [27]. This decision is based on the

assumption that out-of-range inputs result in poor approximations. To demonstrate how this may

be a costly oversight, we feed 1024 out-of-range inputs to our 8x8 NN, and reveal how 9%–47%

122

Chapter 7. Dynamically Reliable Approximate Computing Using Light-Weight Error Analysis

0%

10%

20%

30%

40%

50%

60%

70%

3% 4% 5% 6% 7% 8%

P
e

rc
e

n
ta

ge
 o

f
D

at
a

A
cc

e
le

ra
te

d

Error Tolerance Threshold

ACC+LWC Coverage with Less Accurate NN

Figure 7.7: Amount of coverage with less accurate approximation

0.0

0.5

1.0

1.5

2.0

2.5

3.0

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

3% 4% 5% 6% 7% 8%
■

Sp
e

ed
u

p
 o

ve
r

O
R

IG
_n

%

■
Sp

e
ed

u
p

 o
ve

r
O

R
IG

_1
%

Error Tolerance Threshold

ACC+LWC Coverage with Less Accurate NN

Figure 7.8: Speedup from coverage with less accurate approximation

of the data could be approximated acceptably for tolerance thresholds of 5%–30% (Figure 7.5),

leading to average speedups of 5.6× over ORIG 1% and 1.6× over ORIG n% (Figure 7.6).

Similarly, static techniques for error analysis (e.g. statistical models) disallow the use of an ac-

celerator when its average error is above the tolerance threshold. Relying on the assumption that

there would be too many cases of unacceptable quality loss, these static techniques lose coverage

with portions of the data for which the low-accuracy accelerator could produce acceptable results.

123

Chapter 7. Dynamically Reliable Approximate Computing Using Light-Weight Error Analysis

For instance, we train a smaller NN (same as the previous NN, only the 2 hidden layers each have

4 neurons instead of 8) and find it has an average error of 8.9% (with a standard deviation of

11.7% and variance of 1.4%) for the evaluation data. Although this error exceeds tolerance thresh-

olds of 3%–8%, significant portions of the data (i.e. 22%–58%) may still be reliably accelerated

(Figure 7.7), resulting in average speedups of 2.5× over ORIG 1% and 1.9× over ORIG n% (Fig-

ure 7.8). Furthermore, while these gains are with respect to an entirely software-based accelerator,

efficient hardware-based approximate accelerators may be coupled with LWC support to yield even

greater performance improvements.

7.4 Limitations

Our LWC-based scheme is generally applicable to the domain of approximate computing. However,

this approach is fundamentally limited in two ways: (1) for a given application, a user must be able

to define an LWC that is both expressive (i.e. in terms of adequately gauging output quality) and

computationally efficient; (2) when integrated into a system based on approximate computing, the

overhead of initiating recovery via exact computation must not outweigh the benefits of acceleration

via approximation.

Though LWCs must be defined carefully, ideal ones can be readily extracted for many categories

of applications. For instance, applications that can be implemented using iterative refinement

inherently contain an LWC as the refinement criteria. Also, for NP-hard problems (e.g. boolean

satisfiability, traveling salesman, bin-packing, etc.) in general, it is much more computationally

difficult to find solutions than to check potential solutions. As such, implementations are often

already embedded with light-weight checks that either guide the heuristic-based solvers or check

the quality of given solutions. Nevertheless, it must be ensured that the overhead of computing the

LWC does not dramatically diminish the gains achieved by approximation.

124

Chapter 8

BRAINIAC: Bringing Reliable

Accuracy Into Neurally-Implemented

Approximate Computing

Combining the previously discussed topics of this dissertation, we now introduce BRAINIAC :

a heterogeneous accelerator-rich platform that combines conventional acceleration techniques with

neural-network-based approximate computing. To gain maximum performance benefits and energy

efficiency from our neural approximations, we shy away from a platform-agnostic approach. In-

stead, we opt for hardware-based implementations of the neural (approximate) accelerators, and

we incorporate them into our platform alongside the conventional (precise) accelerators. Also, in

order to reliably ensure acceptable quality of results, we implement dynamic error control based on

light-weight checks (LWCs).

125

Chapter 8. BRAINIAC

...

LWC

COMMIT

LWC

Precise Accelerator

Neural Accelerator N

Neural Accelerator 1

LWC

Neural Accelerator 2

Figure 8.1: Multi-stage acceleration consisting of N+1 stages
(N approximate computation stages, 1 precise computation stage)

8.1 Overview of BRAINIAC

The focus of our design is to gain performance benefits via approximation, while maintaining relia-

bility via recovery. Our multi-stage acceleration technique, shown in Figure 8.1, aims to achieve this

by combining light-weight checking with computations of varying accuracy. The flow of execution

begins with weak approximations (which are simpler to compute) and continues onto stronger (more

computationally complex) approximations as needed, ultimately ending with a precise computa-

tion. In order to ensure dynamic error control, we employ high-level, application-specific checks,

similar to other runtime error detection schemes [123, 129]. The light-weight check, or LWC, com-

puted between each stage is used to evaluate output quality. If the output produced for a given

task is acceptable, the results are committed; otherwise, the task is recomputed by the next stage

in the flow. Note that the LWC need not be evaluated for outputs of the final stage, which is

the non-approximated version of the computation. This multi-stage flow is designed such that

the approximations in the earlier stages would have enough coverage to produce significant perfor-

mance gains and render the overhead of recovery negligible for the overall application execution.

126

Chapter 8. BRAINIAC

L2

L2

L2

L2

L2

L2

L2

NA

PA

NA

PA

NA

PA

NA

L2C

A

B A

B B B B

BB N

B B BB

M B B C C B B M

B B B

C C C C C C C C

A

N

A

N N N

N

A

B

C N

M B B C C B B M

Core
L2

Bank

Conventional

Accelerator

Island

M
Memory

Controller
A

B B

C C C C C C C C

AAA

DMA

SPM

A
B

B

A
B

B

A
B

B

A
B

B

A
B

B

A
B

B

Accelerator

Block

Composer

N
o

C
 In

te
rfa

c
e

A

B

C

DMA

SPM

N
B

B

N
B

B

N
B

B

N
B

B

N
B

B

N
B

B

N
o

C
 In

te
rfa

c
e

C B

N
Neural

Accelerator

Island

A
B

B

Conventional

Accelerator

Building

Block

N
B

B

Neural

Accelerator

Building

Block

L2

L2

L2

L2

L2

L2

L2

NA

NA

NA

NA

NA

NA

M

L2M

M

L2

C

NA

PA

TD

Memory

Controller

L2 Cache

Bank

Core

Network-on-Chip Router

Neural

Accelerator

Precise

Accelerator

Task

Distributor

L2

L2

L2

L2

L2

L2

L2

NA

PA

TD

PA

NA

PA

NA

L2C

L2

L2

L2

L2

L2

L2

L2

NA

NA

NA

NA

NA

NA

M

L2M

L2

L2

L2

L2

L2

L2

L2

NA

PA

NA

PA

NA

PA

NA

L2C

L2

L2

L2

L2

L2

L2

L2

NA

NA

NA

NA

NA

NA

M

L2M

M L2C

NA PA

TD
Memory

Controller

L2 Cache

Bank
Core

Network-on-Chip

Router

Neural

Accelerator

Precise

Accelerator

Task

Distributor

L2

L2

L2

L2

L2

L2

L2

NA

PA

TD

PA

NA

PA

NA

L2C

L2

L2

L2

L2

L2

L2

L2

NA

NA

NA

NA

NA

NA

M

L2M

Figure 8.2: Microarchitecture of the BRAINIAC platform

In our system, the approximations are based on neural networks, and the precise computation is a

monolithic accelerator that functionally emulates the original non-approximated code.

8.1.1 Hardware Infrastructure

The microarchitecture of our hybrid accelerator-rich platform is shown in Figure 8.2. It includes

multiple cores and a task distributor (TD) surrounded by a sea of loosely-coupled accelerators and

L2 cache banks. In our design, we advocate dynamic hardware-based accelerator management,

which limits a core’s interaction with accelerators and removes it as a performance bottleneck. The

design of our TD is based on the task distribution mechanism used in the CHARM architec-

ture [15], and is not discussed in detail here. To enable our multi-stage acceleration flow, our TD

and hardware drivers include new functionality to enable running batches of tasks asynchronously.

The new functionality entails the following: (1) enabling multi-thread interrupts to be sent from

a single software thread (i.e. provide one sub-thread per batch of tasks); (2) preparing the TD

for asynchronous calls from software; (3) firing off batches of tasks; (4) queuing up batches in the

TD in-order based on invocation time-stamps; (5) waiting on batches to be completed by check-

ing necessary status flags. To avoid the complexity of integrating analog components or hardware

with sub-critical voltage, we implement all our accelerators in digital ASIC technology. Section 8.2

provides more detail on the design of the neural accelerators.

127

Chapter 8. BRAINIAC

8.1.2 Software Infrastructure

We implement our multi-stage acceleration scheme in software using hardware-supported asyn-

chronous accelerator calls. However, we do not run each task with an independent accelerator call.

Since loosely-coupled accelerators are optimized for streaming-data type of computation, running

groups of tasks is much more efficient than running individual tasks. Furthermore, running tasks

in groups avoids unnecessary reconfiguration of the neural accelerators and reduces overhead for

handling interrupts. We therefore divide the tasks into a fixed number of groups (or “batches”)

and employ batch-based execution.

At each approximation stage, once a given batch completes execution on the hardware accelerators,

the results of each task in that batch are evaluated by an application-specific, software-based LWC.

Tasks with acceptable quality of outputs are retired and their results are committed. Tasks with

unacceptable results, on the other hand, are bundled into new batches and forwarded to the next

acceleration stage to attempt recovery. Note that as the number of batches is fixed, the tasks are

consolidated into as few batches as possible; once a batch has been filled with tasks that need to be

run, the batch is fired off asynchronously. The number of batches is a design parameter that should

be adjusted to balance trade-offs of excessive overhead (i.e. too many batches) vs. low accelerator

utilization (i.e. too few batches). We have found a batch count of 32 to be an optimal design point

for our system.

Each batch includes buffers that hold information on the type of accelerator needed for the tasks,

as well as data for configuring the accelerator itself. Using this information, the accelerators are

reconfigured at a granularity of a given number of tasks (e.g. we use a task granularity of 16). For

more information on configuring the neural accelerators, refer to Section 8.2.2.

Our software infrastructure also includes tools for extracting code regions (or “kernels”), training

neural accelerators, implementing accelerators (both precise and neural), synthesizing the accel-

erators in hardware, and simulating them for our platform. The tool-chain for generating neural

network approximations profiles the original code kernels to extract input/output sets and uses this

128

Chapter 8. BRAINIAC

data to train multilayer perceptrons, similar to the Parrot Transformation [27] and Neuralizer [128]

processes. The other tools responsible for synthesis, implementation, and simulation are described

in Section 8.3.

8.2 Neural Accelerator Design

The functionality of a given neural network (NN) is determined by its topology and the values

associated with its network connections. As such, an NN can be “programmed” by simply updating

the memory used for keeping track of connections, weights, and biases without needing to modify the

functionality of compute engines. In other words, new functionality can be trained and instantiated

without modifying hardware topology. This inherently adaptive nature of NN models enables us

to use efficient ASIC technology and maintain design flexibility without resorting to programmable

hardware fabrics (e.g. FPGAs).

Technology aside, however, several important issues remain when implementing our neural accel-

erators in hardware. Questions regarding composition, communication, and granularity present

tradeoffs that must be explored and optimized, resulting in a variety of design choices for NN

architectures. These design choices can be organized into three categories:

(1) Monolithic network structure with fixed connections and fixed weights/biases

(2) Composable network structure with flexible connections and flexible weights/biases

(3) Monolithic network structure with fixed connections and flexible weights/biases

The first category (Figure 8.3A) is essentially the monolithic ASIC implementation of a code ker-

nel’s NN approximation, which translates into a series of hardware-implemented weighted-sum and

sigmoid operations. This option offers high efficiency in performance, yet virtually no flexibility.

On the opposite end of the spectrum lies the second category (Figure 8.3B), which allows any

set of fine-grained neural nodes to be connected in an arbitrary network formation with variable

weights and biases associated with the connections. When realized in hardware, this entirely fluid

structure closely resembles a sea of accelerator building blocks that are dynamically composed into

129

Chapter 8. BRAINIAC

1 2 3

9 10 11 12

4

13 14 15 16

5 6 7 8

1 2 3

9 10 11 12

4

13 14 15 16

5 6 7 8

W1-5 0.186

W1-6 -1.127

W1-7 -3.511
...

Weights

(A) (B) (C)

...

B5 -0.038

B6 -2.229

B7 0.854
...

Biases

...

W7-15 0.186

W7-4 -1.127

W7-10 -3.511
...

Weights

...

B15 -0.038

B4 -2.229

B10 0.854
...

Biases

...

Figure 8.3: Three main categories of architectural designs for NN hardware implementation:
(A) fixed connections, fixed weights/biases; (B) flexible connections, flexible weights/biases;

(C) fixed connections, flexible weights/biases

virtual monolithic accelerators (i.e. the building blocks are neurons and the monolithic accelera-

tor is a complete neural network). This architecture would allow for optimal load-balancing and

resource utilization. However, it would incur maximum overhead for dynamic composition and

packet-switched communication. The third category (Figure 8.3C) presents a compromise between

the two aforementioned designs. The fixed network connections allow for direct circuit-switched

communication between neurons, while the flexible weights/biases still achieve moderate adaptivity

in composition. To leverage these benefits, we have designed our NAs based on this category.

8.2.1 Reconfigurable Neural Accelerator

In order to support NNs of varying topology at runtime, we design our NAs to be dynamically

reconfigurable. As such, though our system features a homogeneous set of NAs, the reconfigurability

allows them to be heterogeneous by nature. Unlike the tightly-coupled neural processors used in

related work on neural acceleration [27], our NAs are loosely-coupled. This allows for computational

tasks to be offloaded from the core to be processed on the NAs, much like with the PAs.

130

Chapter 8. BRAINIAC

(A)

Input FIFO

Output FIFO

Input Scaling Unit

Output Scaling Unit

ALU ...

Sigmoid

Registers

... Sigmoid

...

Sigmoid

Registers

... Sigmoid

..
.

ALU ALU

ALU ALU ALU

Configuration Data

Scaling Parameters

Topology Parameters

Weights Biases

Reset prevNodeVals

Set currNodeVals to values of input neurons

biasIndex ◄▬ 0

weightIndex ◄▬ 0

layerIndex ◄▬ 1

while (layerIndex < MAX_LAYERS && nodesPerLayer[layerIndex] > 0) do

 Set prevNodeVals to currNodeVals

 Reset currNodeVals

 prevNodeCount ◄▬ nodesPerLayer[layerIndex - 1]

 currNodeCount ◄▬ nodesPerLayer[layerIndex]

 for (nodeIndex ◄▬ 0 to currNodeCount) do

 currNodeVals[nodeIndex] ◄▬ biases[biasIndex]

 biasIndex ◄▬ biasIndex + 1

 for (srcIndex ◄▬ 0 to prevNodeCount) do

 v ◄▬ prevNodeVals[srcIndex] * weights[weightIndex]

 currNodeVals[nodeIndex] ◄▬ currNodeVals[nodeIndex] + v

 weightIndex ◄▬ weightIndex + 1

 end for

 currNodeVals[nodeIndex] ◄▬ sigmoid(currNodeVals[nodeIndex])

 end for

end while

return currNodeVals

(B)

(A)

Input FIFO

Output FIFO

Input Scaling Unit

Output Scaling Unit

ALU ...

Sigmoid

Registers

... Sigmoid

...

Sigmoid

Registers

... Sigmoid

..
.

ALU ALU

ALU ALU ALU

Configuration Data

Scaling Parameters

Topology Parameters

Weights Biases

(B)

Reset prevNodeVals

Set currNodeVals to values of input neurons

biasIndex ◄▬ 0

weightIndex ◄▬ 0

layerIndex ◄▬ 1

while (layerIndex < MAX_LAYERS && nodesPerLayer[layerIndex] > 0) do

 Set prevNodeVals to currNodeVals

 Reset currNodeVals

 prevNodeCount ◄▬ nodesPerLayer[layerIndex - 1]

 currNodeCount ◄▬ nodesPerLayer[layerIndex]

 for (nodeIndex ◄▬ 0 to currNodeCount) do

 currNodeVals[nodeIndex] ◄▬ biases[biasIndex]

 biasIndex ◄▬ biasIndex + 1

 for (srcIndex ◄▬ 0 to prevNodeCount) do

 v ◄▬ prevNodeVals[srcIndex] * weights[weightIndex]

 currNodeVals[nodeIndex] ◄▬ currNodeVals[nodeIndex] + v

 weightIndex ◄▬ weightIndex + 1

 end for

 currNodeVals[nodeIndex] ◄▬ sigmoid(currNodeVals[nodeIndex])

 end for

end while

return currNodeVals

Figure 8.4: (A) Internal architecture of reconfigurable neural accelerator (RNA);
(B) Pseudocode for functionality of computational pipeline within RNA

131

Chapter 8. BRAINIAC

Table 8.1: RNA hardware parameters

Max Max Max Nodes Max Pipe Cycle Min Power Area
Weights Biases Per Layer Layers Depth Time (ns) II (uW) (um2)

4096 128 32 4 926 1 8 18100 994270

The design of the reconfigurable neural accelerator (RNA) is illustrated in Figure 8.4A. This RNA

design features a first-in-first-out buffer (FIFO) for receiving inputs, as well as a FIFO for sending

outputs. The use of FIFOs allows for compatibility with varying numbers of inputs and outputs.

The RNA also includes updatable look-up tables (LUTs) for storing weights and biases associated

with the configured NN. The sigmoid operation, which is based on the hyperbolic tangent function,

is also implemented using LUTs, yet these LUTs are configured statically. For evaluating outputs

of a given NN, the required weighted-sum and sigmoid operations are carried out by the pipeline

of combinational and sequential components. The functionality of this pipeline is summarized by

the pseudocode provided in Figure 8.4B. Our RNA is designed to support 1 input layer, 1 output

layer, and either 1 or 2 hidden layers; as such, the MAX LAYERS parameter shown in the pseudocode

would be equal to 4 in our case. As shown, the pipeline incrementally steps through each layer

of the configured NN. For each neuron in the current layer, it collects the weighted-sum of the

values from the neurons in the previous layer (i.e. prevNodeVals), applies the sigmoid function,

and stores the value (i.e. in currNodeVals) to be used for processing the next layer. The final

output is the set of values computed for the last layer of neurons (i.e. the final set of values stored

into currNodeVals).

The corresponding hardware parameters for the RNA implementation are provided in Table 8.1.

While the module runs at a constant 1.0 GHz frequency, the initiation interval (II) for each usage

at runtime is determined by the amount of input and output data. For the given pipeline, the

minimum II supported is equal to 8 cycles, which is for a range of 1–8 inputs and 1–8 outputs.

Larger numbers of inputs and outputs result in longer initiation intervals at runtime.

132

Chapter 8. BRAINIAC

8.2.2 RNA Configuration

As described in the previous section, the RNA structure can be adapted to evaluate any NN

topology within the physical bounds of the hardware structure (e.g. without overflowing weight

and bias buffers). In order to configure the correct functionality, the software infrastructure that

makes use of these neural accelerators must correctly initialize the configuration data (shown in

Figure 8.4A). This includes the following: (1) scaling parameters – values for scaling inputs down

and scaling outputs back up; (2) topology parameters – specification of the number of layers and

the number of neurons per layer (i.e. nodesPerLayer in Figure 8.4B) to allow the finite state

machine controlling the computational pipeline to ensure correct evaluation of outputs; (3) weights

and biases – values necessary for emulating the particular functionality of a given trained NN. Note

that when configuring the weight and bias LUTs, the software passes in the values in a specific

order; by knowing the topology of the NN, the hardware can then easily consume the weight and

bias values in the same predefined order.

8.3 Evaluation Approach

8.3.1 Simulation Platform

In our experiments, we use the Simics [49] and GEMS [50] simulation frameworks, and extend

them with the cycle-accurate models needed for our hybrid acceleration platform. The simulation

parameters we use can be found in Table 8.2. We have also developed a complete tool-chain for

generating simulator models starting from C-based code. The NN models, which need to also be

trained and tested, are implemented using the open-source, C-based Fast Artificial Neural Network

(FANN) library [118] (which includes support for floating point values). Table 8.3 lists the tools

used for acquiring accurate timing and power values for all the hardware components we simulate.

133

Chapter 8. BRAINIAC

Table 8.2: Simulation parameters

Parameter Value

L2 cache 8 MB, 8-way set-associative, 32 banks; latency: 10 cycles

Coherence protocol Shared banked L2 cache; L2: MOSI; L1: MSI

Main memory Latency: 280 cycles; bandwidth: 10 B/cycle per controller

Network topology 4x8 mesh; link latency: 1 cycle; router latency: 5 cycles;
bandwidth: 72 B/cycle per link

Table 8.3: Tools for timing and power models

Tool Purpose

Xilinx Vivado Design Suite [106] Accelerator high-level synthesis

Synopsys Design Compiler (32nm) [95] ASIC synthesis (power, performance)

CACTI [100] Cache memory modeling

Orion [102] NoC power and area

McPat [80] Core and cache power analysis

Table 8.4: Summary of benchmarks and LWCs

Benchmark Algorithm Light-Weight Check (LWC)

invkin Solves 3-joint inverse kinematics problem based on
Cyclic Coordinate Descent (CCD) algorithm

Forward Kinematics

nrpoly Uses Newton-Raphson method to find roots of a
cubic polynomial

Convergence Check

physim Generates physics-based simulation of objects
moving in 2D space

Energy Conservation

robloc Performs robot localization using probabilistic
model and particle filter

Sensor Measurement

Table 8.5: Summary of trained neural network models

Benchmark Input Data Evaluation Metric NN Topology Eval. Error

invkin
10000 sets of 2D coordinate values Distance from end effector

relative to arm length

NN1: 2 x 4 x 4 x 3 5.8%
NN2: 2 x 8 x 8 x 3 3.4%

nrpoly
16384 sets of cubic polynomial
parameters and initial guess values

Convergence test for
iterative refinement

NN1: 5 x 4 x 0 x 1 5.9%
NN2: 5 x 16 x 0 x 1 3.9%

physim
30000 sets of velocities, positions,
and contact values for collisions

Average error
(relative to maximum)

NN1: 11 x 8 x 0 x 4 5.4%
NN2: 11 x 16 x 0 x 4 2.8%

robloc
1024 sets of quaternion and 3D
acceleration values

Average error
(relative to maximum)

NN1: 7 x 2 x 0 x 6 6.6%
NN2: 7 x 16 x 0 x 6 3.3%

8.3.2 Benchmarks

The benchmarks used for our experimentation are applications for inverse kinematics (invkin) [116],

the Newton-Raphson method (nrpoly) [53], physics-based simulation (physim) [130], and robot lo-

calization (robloc) [109]. Descriptions of these, along with their associated LWCs, can be found

134

Chapter 8. BRAINIAC

in Table 8.4.

For the invkin, nrpoly, and physim benchmarks, the LWCs we employ are derived from the

applications themselves. The LWC for inverse kinematics, for instance, is an implementation of

forward kinematics to determine the location of the end effector of the 3-joint arm; the error would

then be the distance from the end effector to the target location, relative to the length of the arm.

Similarly, for physics-based simulation, we use energy conservation across simulated scenes as a

metric for determining approximation error. Also, for the Newton-Raphson benchmark, the LWC

is the refinement criteria (i.e. convergence check) of the iterative cyclic coordinate descent (CCD)

algorithm used by the application. Unlike these other three benchmarks, with robot localization

we emulate a hypothetical light-weight sensor, such as a proximity monitor or pressure sensor, that

acts as a caution flag to force the system to execute more precise computation when navigating

in the current environment. We configure this LWC as a module that, with a probability P , will

generate a signal; this signal is a random number between 0 and 1, which is scaled by some value

S and checked to see if it exceeds the error tolerance threshold. Within our benchmark, we use a

value of 0.5 for both P and S.

For each benchmark, we have accelerated a single region that spans the majority of the application.

Our implemented system employs a three-stage acceleration flow consisting of a weak neural ap-

proximation (NN1), a strong neural approximation (NN2), and a precise computation. The strong

neural approximations have benchmark evaluation errors in the range of 0%–5%, while the weak

neural approximations have errors in the range of 5%–10%. Depending on user-specified error tol-

erance, the use of a given NN may cause an average benchmark evaluation error to exceed the error

threshold. Using that NN may nevertheless be beneficial, however, because the NN may still have

significant coverage and be computationally simpler than the precise version of the computation;

this performance benefit can be seen in our results (Section 8.4.1). The topologies and benchmark

evaluation errors of our trained NNs are shown in Table 8.5.

135

Chapter 8. BRAINIAC

Table 8.6: Power and area values of PAs and CNAs (NN1 and NN2)

Power (uW) Area (um2)
Benchmark PA NN1 NN2 PA NN1 NN2

invkin 224000 216000 438000 15264739 12496073 25468980
nrpoly 10700 123000 404000 480396 6432129 23583138
physim 6610 422000 724000 267455 24273726 43125017
robloc 21300 185000 700000 962203 10690125 40512637

8.3.3 Evaluation Schemes

We evaluate power and performance benefits of our platform by comparing the following schemes:

◦ SW : Original benchmarks run entirely in software

◦ PA: Accelerated benchmarks that make use of precise accelerators, but not neural accelerators

◦ CNA: Accelerated benchmarks that make use of both precise and neural accelerators;

NAs are implemented as custom neural accelerators (CNAs) with fixed connections and fixed

weights (i.e. based on design shown in Figure 8.3A)

◦ RNA: Accelerated benchmarks that make use of both precise and neural accelerators;

NAs are implemented as reconfigurable neural accelerators (RNAs) (i.e. based on design

described in Section 8.2.1)

The software-only benchmarks are multi-threaded applications run on a 4-core 2.0 GHz Intel Xeon

E5405 processor, while the hardware-based schemes are run on our simulation platform. We design

our accelerator-rich platform such that it includes 4 of each precise accelerator (i.e. 16 in total)

for the PA evaluation scheme. For the CNA scheme, we add 4 of each NA as well (i.e. 16 NN1

and 16 NN2). Note that the CNA scheme is meant to represent a performance-wise optimal yet

unrealistic design that is not limited by power and area constraints. The RNA scheme, on the

other hand, will be compared against CNA while being constrained to the total area utilized by

the PA scheme. In designing the RNA scheme, we start with the PA platform, remove half of the

PAs (i.e. we are left with 2 of each type, for a total of 8 PAs), and add enough RNAs such that the

total area of the RNAs does not exceed the area of the PAs. The power and area values of each

hardware-implemented PA and CNA can be found in Table 8.6. Given these area values, and an

136

Chapter 8. BRAINIAC

RNA area of 994270 um2 (refer to Section 8.2.1), we see that the RNA-based scheme includes 34

RNAs. We now compare performance and energy results across these different evaluation schemes.

8.4 Experimental Results

8.4.1 Performance and Energy

The performance improvements achieved by the 3 accelerator-based schemes (PA, CNA, and RNA)

over the software-based scheme (SW) are shown in Figures 8.5, 8.6, 8.7, and 8.8. While the

PA scheme achieves moderate performance benefits, the other two schemes are able to achieve

even larger speedups by leveraging neural approximations whenever possible. Also, we see the

gains achieved by CNA and RNA increase as the error tolerance threshold for each benchmark is

increased, while the gains of PA remain static.

As previously noted, the CNA scheme includes custom neural accelerators that are computation-

ally more efficient, yet require significantly more power and area. Though this system would be

performance-wise ideal, it would be impractical to implement. In comparison to an RNA, a CNA

can compute its designated NN eight times faster on average. However, CNAs are limited in their

usage while the reconfigurability of RNAs allows all of them to be accessible to any of the applica-

tions. The RNA-based system therefore achieves higher resource utilization and increased parallel

processing, as well as more evenly distributed workloads with fewer bottlenecks in the on-chip

network. As a result, we see comparable performance between the RNA and CNA platforms.

On average, for error tolerance thresholds of 5%–25%, PA achieves performance gains of 9×, CNA

achieves 22×–40×, and RNA achieves 15×–35×. The energy results (provided in Figures 8.9, 8.10,

8.11, and 8.12) follow trends similar to those of the performance results.

137

Chapter 8. BRAINIAC

0

5

10

15

20

25

30

35

40

5% 10% 15% 20% 25%

Sp
e

ed
u

p
 O

ve
r

SW
 (

X
)

Error Tolerance Threshold

Performance: invkin

PA CNA RNA

Figure 8.5: Performance results for invkin benchmark

0

10

20

30

40

50

5% 10% 15% 20% 25%

Sp
e

ed
u

p
 O

ve
r

SW
 (

X
)

Error Tolerance Threshold

Performance: nrpoly

PA CNA RNA

Figure 8.6: Performance results for nrpoly benchmark

8.4.2 Comparison to Loop Perforation

Loop perforation [40] is a common method of approximate computing used in applications with

iterative computation. This technique uses a high-level convergence check (which is the same as

our LWC for invkin) to break out from loops early, essentially cutting down on computation while

adding minor overhead for the check. We compare our accelerator-based schemes to a software-

based implementation of loop perforation for the invkin benchmark. As shown by the results

138

Chapter 8. BRAINIAC

0

1

2

3

4

5

6

7

5% 10% 15% 20% 25%

Sp
e

ed
u

p
 O

ve
r

SW
 (

X
)

Error Tolerance Threshold

Performance: physim

PA CNA RNA

Figure 8.7: Performance results for physim benchmark

0

10

20

30

40

50

60

70

80

5% 10% 15% 20% 25%

Sp
e

ed
u

p
 O

ve
r

SW
 (

X
)

Error Tolerance Threshold

Performance: robloc

PA CNA RNA

Figure 8.8: Performance results for robloc benchmark

in Figures 8.13 and 8.14, the CNA and RNA schemes maintain speedups of over 6× and energy

savings of over 5×. The performance and energy gains of PA, however, diminish exponentially.

8.4.3 Performance Breakdown of RNA Scheme

We now discuss the breakdown of performance in terms of cycles and batches executed by the

various stages of the multi-stage acceleration flow. All four benchmarks follow very similar trends;

139

Chapter 8. BRAINIAC

0

5

10

15

20

25

30

35

40

5% 10% 15% 20% 25%

En
e

rg
y

G
ai

n
 O

ve
r

SW
 (

X
)

Error Tolerance Threshold

Energy: invkin

PA CNA RNA

Figure 8.9: Energy results for invkin benchmark

0

5

10

15

20

25

30

35

40

5% 10% 15% 20% 25%

En
e

rg
y

G
ai

n
 O

ve
r

SW
 (

X
)

Error Tolerance Threshold

Energy: nrpoly

PA CNA RNA

Figure 8.10: Energy results for nrpoly benchmark

to avoid redundancy, we provide the performance breakdown for two of them: invkin and nrpoly.

From the cycle execution results (Figures 8.15 and 8.16) we see that as error tolerance increases, PA

and NN2 contribute to smaller portions of the total cycles executed while NN1 and LWC contribute

to larger portions. Observing the batch execution results (Figures 8.17 and 8.18), we see similar

trends for PA, NN2, and NN1. We also note that although NN1 contributes to less than 20% of

the executed cycles, it is responsible for the majority of the computational work (i.e. over 55% of

the batches that are executed).

140

Chapter 8. BRAINIAC

0

1

2

3

4

5

6

5% 10% 15% 20% 25%

En
e

rg
y

G
ai

n
 O

ve
r

SW
 (

X
)

Error Tolerance Threshold

Energy: physim

PA CNA RNA

Figure 8.11: Energy results for physim benchmark

0

10

20

30

40

50

60

70

80

5% 10% 15% 20% 25%

En
er

gy
 G

ai
n

 O
ve

r
SW

 (
X

)

Error Tolerance Threshold

Energy: robloc

PA CNA RNA

Figure 8.12: Energy results for robloc benchmark

8.4.4 RNA Configuration Overhead

The reconfigurability of RNAs is a key characteristic that allows them to achieve significant perfor-

mance and energy gains while maintaining an implementation limited by practical power and area

constraints. This reconfigurability, however, comes at a cost. We quantify the overall configuration

overhead for the RNA scheme in Figure 8.19. This configuration overhead is largest for an error

tolerance threshold of 5% because this is the scenario that requires the most batches to transition

141

Chapter 8. BRAINIAC

0

2

4

6

8

10

12

14

5% 10% 15% 20% 25%

Sp
e

ed
u

p
 O

ve
r

SW
 (

X
)

Error Tolerance Threshold

Improvement Over Loop Perforation: invkin

PA CNA RNA

Figure 8.13: Performance results for hardware acceleration of invkin benchmark
in comparison to loop perforation implemented in software

0

2

4

6

8

10

12

5% 10% 15% 20% 25%

En
e

rg
y

G
ai

n
 O

ve
r

SW
 (

X
)

Error Tolerance Threshold

Improvement Over Loop Perforation: invkin

PA CNA RNA

Figure 8.14: Energy results for hardware acceleration of invkin benchmark
in comparison to loop perforation implemented in software

down the multi-stage acceleration flow, which translates into more RNA reconfigurations. Also, as

the error threshold increases and the total execution time of a benchmark decreases, the configura-

tion overhead may appear to contribute to larger portions of the execution time (though the actual

amount of overhead may be decreasing), resulting in a slight trend upwards. For an error tolerance

of 10% and higher, however, the average configuration overhead remains less than 5%.

142

Chapter 8. BRAINIAC

0%

20%

40%

60%

80%

100%

5% 10% 15% 20% 25%

P
e

rc
e

n
ta

ge
 o

f
C

yc
le

s
Ex

e
cu

te
d

Error Tolerance Threshold

Performance Breakdown of RNA Scheme: invkin

PA

NN2

NN1

LWC

Figure 8.15: Performance breakdown in terms of cycles executed for
RNA scheme running invkin benchmark

0%

20%

40%

60%

80%

100%

5% 10% 15% 20% 25%

P
er

ce
n

ta
ge

 o
f

C
yc

le
s

Ex
ec

u
te

d

Error Tolerance Threshold

Performance Breakdown of RNA Scheme: nrpoly

PA

NN2

NN1

LWC

Figure 8.16: Performance breakdown in terms of cycles executed for
RNA scheme running nrpoly benchmark

8.4.5 RNA Design Space Exploration

As previously mentioned, our RNA design has a single input FIFO, a single output FIFO, and

a minimum II of 8. To test the optimality of our RNAs, we perform design space exploration

by varying the number of input/output FIFOs, which in turn impacts the minimum II. More

specifically, for a given design point, the use of M FIFOs reduces the minimum II by a factor of M .

143

Chapter 8. BRAINIAC

0%

20%

40%

60%

80%

100%

5% 10% 15% 20% 25%

P
er

ce
n

ta
ge

 o
f

B
at

ch
e

s
Ex

ec
u

te
d

Error Tolerance Threshold

Performance Breakdown of RNA Scheme: invkin

PA

NN2

NN1

Figure 8.17: Performance breakdown in terms of batches executed for
RNA scheme running invkin benchmark

0%

20%

40%

60%

80%

100%

5% 10% 15% 20% 25%

P
e

rc
e

n
ta

ge
 o

f
B

at
ch

e
s

Ex
e

cu
te

d

Error Tolerance Threshold

Performance Breakdown of RNA Scheme: nrpoly

PA

NN2

NN1

Figure 8.18: Performance breakdown in terms of batches executed for
RNA scheme running nrpoly benchmark

In order to support this II reduction, however, the RNA hardware must widen its computational

pipeline and increase the number of logic elements by a factor of approximately M . For example,

implementing an RNA with 2 FIFOs means integrating almost twice as many components into

one RNA and allowing it to accept inputs twice as fast. As a result, we found there is negligible

reduction in area when compared to the total area consumed by M individual 1-FIFO RNAs.

Also, since the network is not the primary bottleneck in our system, the M -FIFO RNA achieves

144

Chapter 8. BRAINIAC

0.00%

1.00%

2.00%

3.00%

4.00%

5.00%

6.00%

7.00%

8.00%

5% 10% 15% 20% 25%

P
er

ce
n

ta
ge

 o
f

Ex
ec

u
ti

o
n

 T
im

e

Error Tolerance Threshold

RNA Configuration Overhead

invkin nrpoly robloc physim37%

24%

18%

17%

Figure 8.19: Performance overhead for configuring RNAs

0

20

40

60

80

100

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

N
N

2
 C

o
ve

ra
ge

 (
%

)

Time Steps

Dynamic Behavior: physim

5% 10% 15% 20% 25%

Error Tolerance Threshold

Figure 8.20: Varying coverage of NN2 in physim benchmark

virtually no gain in overall throughput relative to M separate 1-FIFO RNAs running in parallel.

Furthermore, clumping the components into larger RNAs and allowing fewer of them to exist on

the same platform (i.e. due to area constraints) restricts the number of independent tasks that can

be run simultaneously. For these reasons, we find the 1-FIFO RNA to be the optimal design point

in our system.

145

Chapter 8. BRAINIAC

8.4.6 Dynamically Adaptive Acceleration Flow

With our methodology, the goal is to combine approximation with recovery in a way that achieves

higher performance than the non-approximated version of the computation. Carefully trading-off

the accuracy versus performance of the accelerators is critical, yet finding an optimal design point

is non-trivial in practice. In addition, the impact of recovery cannot always be minimized. Un-

predictable trends in input data, for example, may result in unanticipated loss of accuracy in the

approximate accelerators, thereby inducing a surge of recovery attempts. Figure 8.20 demonstrates

how NN2 of the physim benchmark has varying coverage for a series of time-steps in the simu-

lation; for instance, with an error tolerance threshold of 15%, NN2 coverage ranges from 12% to

28%. Depending on the performance overhead of the precise computation, it may or may not be

worthwhile to attempt the NN2 approximation. Moreover, data locality potentially exists across

the time-steps, and can be leveraged to more easily predict and avoid periods of inaccurate approx-

imation. We therefore see a potential for adding dynamic flexibility to multi-stage acceleration.

In our heterogeneous platform, feedback from LWCs could be used to continuously gauge quality

versus performance. By tracking such trends, this system would be able to dynamically adapt its

multi-stage flow and accelerator usage in order to maximize performance gains and energy savings.

8.4.7 Visualization of Physics-Based Simulation

To demonstrate our system’s capacity for error control, we provide a visualization of the physim

benchmark for a sample scene containing four spheres moving at different velocities and colliding

within a rigid box (Figure 8.21). Each column presents a simulation of the same scene, only with a

different error tolerance threshold; each row shows the same frame across the different simulations.

The yellow arrow protruding from each sphere represents the magnitude and direction of that

sphere’s velocity. Using the first column (i.e. 0% error) as a reference, we see that the other

simulations diverge further and further away from the “correct” simulation as the error tolerance

threshold increases. However, since our design ensures that energy is conserved across the frames,

there are no sudden variations that would dramatically impact or spoil the simulation quality.

146

Chapter 8. BRAINIAC

0% Error 5% Error 15% Error 25% Error

Fr
am

e
 1

Fr

am
e

 2

Fr
am

e
 3

Fr

am
e

 4

Fr
am

e
 5

Figure 8.21: Visualization of physics-based simulation with various error tolerance thresholds

147

Chapter 9

Related Work

9.1 Accelerator-Rich Design

There is a large amount of prior work that implements an application-specific coprocessor or accel-

erator through either ASIC or FPGA [131–133] technology. These works mostly consider a single

accelerator dedicated to a single application. Convey [134] and Nallatech [85], on the other hand,

target reconfigurable computing through diverse sets of accelerators; these customized accelerators

are off-chip from the processors, much like our customizable acceleration platform [54]. Prior art

in both academia and industry has also evaluated integrating accelerators and processing cores

on a single chip, which falls more in line with our research objectives. Garp [135], UltraSPARC

T2 [136], and Intel’s Larrabee [6], feature designs where accelerators are tightly coupled with pro-

cessing cores, or groups of cores. IBM’s WSP processor [13] is designed with looser coupling, both in

terms of programmability and usability. Our work [14–16] has similarly focused on loosely-coupled

accelerators that are shared among multiple cores and could be composed to form larger virtual

accelerators.

Heterogeneous architectures have also been widely examined in prior art. Examples of these works

include EXOCHI [137], HiPPAI [138], SARC [99], and QsCores [12], among many others. EXOCHI

148

Chapter 9. Related Work

presents an architecture and associated programming environment for a multicore system. HiPPAI,

like our work, eliminates operating system overhead, instead using a light-weight software layer.

SARC similarly relies on software management of accelerators. QsCores features specialized cores

to provide energy efficiency and high performance for frequently seen code patterns. We distin-

guish ourselves from these works by advocating the implementation of special-purpose hardware

with dynamic accelerator-management and load-balancing capabilities [15], which limits the core’s

interaction with accelerators and eliminates it as a performance bottleneck.

Prior work has also investigated the composition of large and complex computational elements out

of simpler structures. Examples of this are core fusion [139], core spilling [140], and TRIPS [141].

In these works, the goal of composition is to construct a mostly general-purpose processing ele-

ment, while our work has focused on composing highly specialized structures that are capable of

performance and efficiency beyond the capabilities of general-purpose cores.

Accelerator virtualization has likewise been studied by works such as VEAL [142], PPA [143], and

DySER [144]. VEAL proposes an architecture template for loop accelerators, along with a hybrid

static-dynamic approach to mapping a loop to that structure. PPA features an array of processing

elements which are configured to collaborate together. DySER proposes integrating a configurable

accelerator into a core’s execution engine to allow programs to dynamically encode kernels into

custom instructions. These designs all lack support for virtualizing accelerators outside the scope of

their available building blocks. The PF-based techniques [16] we have contributed could essentially

be integrated into any of these composable accelerator architectures to enhance their adaptivity

and longevity. Furthermore, while our composable acceleration scheme could be implemented on a

programmable SoC, such as the Zynq [145] device from Xilinx, integrating PF into an ASIC-based

accelerator architecture allows for added performance benefits from using the customized ASIC

accelerators.

149

Chapter 9. Related Work

9.2 SIMD Divergence

Prior work has proposed various techniques to address branch divergence issues in SIMD architec-

tures. Most of these approaches require complex hardware modifications that consume area, power,

and energy, and nevertheless experience lowered utilization when processing diverse control flow.

SIMD instruction set extensions [8, 146, 147] rely on the core they are tied to for implicit handling

of control flow. Some GPUs [9, 17] use “priority scheduling” of warps to hide latency of divergence,

but this thread scheduling procedure incurs overhead while only resolving the latency of stalled

threads instead of the latency of the divergent threads themselves. Other techniques [18, 21, 148–

151] dynamically modify (regroup, divide, or compact) the thread warps so as to reduce latency and

memory divergence, yet this involves costly hardware modifications with limited impact on overall

system utilization. Even static techniques [24, 25] and prediction-based thread compaction [152]

lose efficiency when faced with complex data-dependent control flow.

Similar to the active masks on GPUs, VPU architectures [153–155] use “vector bit masks” to con-

trol the outputs of processing elements. Likewise, scalar processing uses guarded instructions [156].

These techniques ensure correctness and potentially reduce execution time, but still result in low

useful utilization. Furthermore, note that branch predictors or speculative compute engines are

rendered ineffective on SIMD architectures, particularly when dealing with data-dependent diver-

gence, because even one misprediction can cause a significant stall. For instance, on a GPU if a

single thread is mispredicted and diverges, it stalls the progress of all other threads in the same

warp.

Compared to computation on a general-purpose core, accelerator-rich designs [12, 14, 15, 144] can

often reduce a great deal of the overhead associated with data movement and control flow [157].

However, these designs must deal with branch divergence in the following ways: they either (1) are

forced to subsume all of the control flow into a single monolithic accelerator, (2) decompose the

different cases of the control flow into separate accelerators, compute all the cases, and multiplex

the correct result at the end, or (3) avoid the control flow entirely by offloading it to the core.

150

Chapter 9. Related Work

Though they ensure program correctness, each of these alternatives can be costly in terms of area,

power, resource utilization, and performance.

While much of the prior art on SIMD branch divergence focuses on reducing the amount of compu-

tation, we explore the efficiency to be gained if the nature of the computation is regularized. The

approximation-based technique known as “branch herding” [122] similarly aims to transform com-

putation into a non-divergent form. This technique reduces branch divergence by “herding” threads

of GPU warps down the same path for various control flow regions, and uses static analysis and

profiling to minimize output degradation. In comparison, our NN implementations consistently

outperform the performance-wise optimal implementations of branch herding (i.e. GPU Ideal)

while maintaining reasonable accuracy. The reason for this is because we approximate control flow

regions by exploiting the intelligent learning capabilities of neural networks, allowing us to emulate

the functionality of the different branch paths using the same non-divergent computation. As a

result, our trained NNs achieve higher accuracy while subsuming more computation.

9.3 Approximate Computing

Approximate computing has been studied extensively for the purposes of improving performance,

energy consumption, and resource utilization. There exist numerous hardware-based approaches,

including stochastic or probabilistic technology [158–160], approximate circuitry for arithmetic [32,

42, 161] as well as general logic [162–164], architectures based on voltage scaling [33, 36, 165],

and processing units for computing neural-network-based approximations [27]. In relation to these

approaches, LWCs are software-based and platform-agnostic, allowing them to be interchangeably

coupled with different approximate accelerators. With our approach, we also make the distinction

to decouple error analysis of the approximation unit from quality analysis of the overall application,

demonstrating benefits in terms of coverage and reliability.

Prior art has also explored purely software-based approximate computing. Incremental refine-

ment [39] and loop perforation [40], for instance, approximate iteratively-constructed solutions by

151

Chapter 9. Related Work

reducing compute iterations. Likewise, SAGE [166] explores static compilation of kernels with vary-

ing levels of approximation. Other dynamic approaches include selective bit-width adaptation [41]

and transformation of static configuration parameters into adjustable knobs [37]. Though LWCs are

similarly software-based, we employ high-level quality metrics and avoid unnecessary error check-

ing. Also, with the use of recovery methods, we provide absolute guarantees on worst-case error

and obviate the need for statically-constructed models of error distribution.

In addition to pure hardware- or software-based solutions, approximate computing experts have

also looked to hardware-software codesign. These systems [34–36, 44] typically include software

support (e.g. new programming language and compiler) along with a series of architectural inno-

vations (e.g. ISA extensions). Similar to these techniques, the BRAINIAC platform combines

our software-based LWC methodology with hardware-based approximate accelerators to form a

synergistic hardware-software design. Unlike these existing approximate computing systems, how-

ever, we endorse a methodology based on dynamic error analysis at the application level, gaining

additional coverage from leveraging slack that may not be evident at the level of the approximation

unit.

9.3.1 Error Control

Language features, static analysis, and program logic may be used to control the impact of errors

and ensure reliability during program execution [45, 167]. With EnerJ [38], for example, language

support enables protection of specific values and compute regions, allowing hardware to readily

perform approximate computation without being burdened by online error detection. Novelty

detection [168], which enables recognition of out-of-range inputs using statistical estimations, may

also be used to avoid potentially poor approximations. Likewise, correction mechanisms, such as

those based on algorithmic noise tolerance [165, 169], allow for detection of errors during the course

of the algorithm, albeit at an additional hardware cost. Error acceptance [170] also relates to our

research, as it allows erroneous results to proceed so long as overall application output quality is not

compromised. However, though the growth of error rates is controlled during program execution,

152

Chapter 9. Related Work

there is no mechanism for dynamically leveraging the error information to initiate recovery for cases

with unacceptable quality loss.

9.3.2 Error Analysis

Common metrics for error analysis include error rate (ER), error significance (ES), mean squared

error (MSE), root mean squared error (RMSE), mean error distance (MED), and peak signal-

to-noise ratio (PSNR) [124, 171]. Error could also be predicted using estimations of confidence

intervals [46, 172] and error bounds [173]. Error prediction is an orthogonal topic relative to

our methodology, and could be readily combined with error analysis and recovery mechanisms to

provide a more holistic approach to imprecision tolerance.

Application-specific error analysis [43] is arguably most relevant to our work. Approaches such

as ERSA [35] and EnerJ [38] conduct high-level error analysis using application-specific quality

metrics. However, output quality degradation of approximate executions is most often measured

with respect to precise executions (e.g. deviations in classification results), deeming the QoS metrics

unsuitable for conducting light-weight error analysis at runtime. Low-cost error detectors [129], on

the other hand, are application-specific and can dynamically detect various forms of data corruption,

yet they are not as high-level as LWCs and do not actually gauge the quality of the program’s

output. All of these works nevertheless present thorough studies pertaining to application-level

correctness, such as its impact on fault tolerance [43], thereby providing further support for our

LWC-based methodology.

9.4 Neural Network Implementation

Neural networks have been widely studied for both general-purpose [29, 174, 175] and application-

specific [176–180] pattern recognition, classification, and machine learning. In an effort to broaden

the applicability of NNs, Chen et al. [181] have developed software NN implementations of high

performance applications from the PARSEC [108] benchmark suite. While it promotes the potential

153

Chapter 9. Related Work

for general-purpose hardware-based neural accelerators, the methodology calls for complete manual

reimplementations of entire benchmarks as opposed to a guided kernel extraction and conversion

process.

Hardware implementations for NNs have been developed using various forms of technology [182].

These include ASIC (both digital and analog) [183–187], FPGA [188], and neuromorphic hard-

ware [30, 189], along with specialized fault-tolerant designs [190–192]. Also related to our work

are NN implementations based on GPUs [193, 194]. As they focus on accelerating the evaluation

of NNs on GPUs, these implementations can be combined with our platform-agnostic Neuralizer

approach for accelerating divergent applications on SIMD architectures. Similarly, although abso-

lute worst-case error rates cannot be guaranteed when NN training is done using non-exhaustive

data sets, research on estimating NN error bounds, such as [173], can be used in conjunction with

our NN-based techniques to strengthen the confidence in our outputted results.

Among the related work on NN implementations, our work finds significant common ground with

the general-purpose neural acceleration [27] developed by Esmaeilzadeh et al. Similar to our ap-

proach, they select code kernels from compute-intensive, approximable applications, train NNs to

mimic the functionality of those kernels, and compute that approximate functionality at runtime.

However, they require ad-hoc kernel identification, whereas our divergence-guided Neuralizer

approach strategically automates kernel identification while addressing major microarchitectural

inefficiencies of SIMD designs. In addition, while their neural accelerators are tightly-coupled to

the core, the accelerators on our BRAINIAC platform are loosely-coupled, allowing our system to

avoid instruction processing overhead when using the accelerators. Our loosely-coupled accelerators

would also be easier to load-balance among and share in a multi-core design (e.g. eschew difficulties

of context-switching). Furthermore, their system does not employ mechanisms for dynamic error

control, thereby having no need for a heterogeneous design that accommodates recovery via precise

accelerators.

154

Chapter 10

Conclusion

Accelerators, meaning customized series of operations, inherently compromise generality in execu-

tion in order to gain efficiency. Chapters 2, 3, 4, and 5 discuss various architectural designs of

accelerator-rich platforms. The approaches we investigate include FPGA-based vs. ASIC-based

implementations, OS-based vs. hardware-based resource management, and global arbitration vs.

task-based workload distribution. We also explore several other aspects of accelerator-rich designs,

including accelerator chaining, virtualization, programmability, scalability, and longevity. This

work is motivated by our belief that future high performance computers, especially green supercom-

puters, will improve their performance and power efficiency through extensive use of accelerators.

Moreover, these efforts work to bridge the gap between inefficient general-purpose execution and

high-performance custom computation.

SIMD branch divergence, a well-known problem that affects accelerator-rich designs, is then exam-

ined in Chapter 6. We present our approach based on neural networks, where we approximate con-

trol flow regions in order to trade-off precision for gains in performance and energy. Our approach

includes a complete methodology with an automated software flow and supplemental optimiza-

tion techniques. This research also highlights the importance of exploring different neural network

topologies and kernel scopes in order to find optimal neural approximations. While we evaluate

155

Chapter 10. Conclusion

our approach on a GPU, the platform-agnostic techniques we introduce are generally applicable for

approximation-based acceleration of divergent applications on SIMD architectures.

In order to address the reliability concerns associated with approximate computing, Chapter 7

presents a methodology for performing adaptive error analysis and recovery based on light-weight

checks (LWCs). These high-level metrics leverage application-specific imprecision tolerance to dy-

namically harness benefits in terms of coverage and reliability. Unlike existing online approaches,

such as incremental refinement, our approach effectively employs LWCs to minimize the overhead

for error analysis and initiate recovery as needed. Platform-agnostic in nature, LWCs allow for an

elegant solution to dynamic error control.

Ultimately, Chapter 8 presents BRAINIAC , a heterogeneous platform that combines custom

accelerators, approximate computing, and online error control. The design of our reconfigurable

neural accelerators allows for a wide range of neural networks to be configured and employed for

approximating compute-intensive workloads. We use LWCs to dynamically throttle our multi-

stage acceleration flow and carefully trade-off precision for performance gain. Evaluation of our

platform shows significant speedup and energy gains compared to a system that performs software-

based execution or one that employs only precise accelerators. With heterogeneous systems like

BRAINIAC , high performance applications that tolerate imprecision can be targeted more effec-

tively than with conventional acceleration techniques.

Future work in the area of accelerator-based computing may explore ways to create more viable

accelerators for memory-intensive applications, such as techniques for more efficient data packing

over buses and interconnects. In order to increase accelerator usage in modern-day machines, the

usability of accelerators must also be addressed, meaning we must improve on methods for seamless

kernel identification, extraction, implementation, and integration. This may also be achieved, for

example, by creating libraries of optimized domain-specific accelerators (e.g. for image process-

ing) that are reusable across different applications within a given domain. To further improve on

robustness and reliability, static error control methods (e.g. programming language support or

156

Chapter 10. Conclusion

compiler-based verification of quantitative reliability) could be used in combination with our dy-

namic LWC-based approach. Learning techniques, such as retraining of neural networks based on

detection of out-of-range inputs, could also be incorporated into this methodology. Additionally,

while the neural approximations in this work are based on multilayer perceptrons, other models,

such as recurrent or convolutional neural networks as well as ensemble learning models, could be

explored. In terms of neural network implementation in hardware, future work may incorporate

neuromorphic hardware components, allowing for ultra low-power designs.

In their textbook on the fundamentals of modern-day artificial intelligence [4], Russell and Norvig

state, “Partial observability and stochasticity are ubiquitous in the real world, and so, therefore,

is decision making under uncertainty.” Partially observable and stochastic environments, such as

those perceived by an autonomous robot performing simultaneous localization and mapping, can

be made more observable by increasing sensing capabilities. The resulting increase in input data,

however, calls for more advanced and adaptive techniques for processing, filtering, and learning

information. We face this challenge by designing power-efficient systems that exploit data-level

parallelism via loosely-coupled accelerators. Furthermore, we demonstrate the benefits of a hetero-

geneous system that intelligently leverages approximate computing, thereby embracing the inherent

partial observability and stochasticity in our world in order to improve the capabilities of high per-

formance computing architectures.

157

Bibliography

[1] Joel Zwick, Rita Wilson, Tom Hanks, Gary Goetzman, Nia Vardalos, John Corbett, Lainie
Kazan, Michael Constantine, Gia Carides, Louis Mandylor, Bess Meisler, Andrea Martin,
Joey Fatone, Jeffrey Jur, Mia Goldman, Chris Wilson, and Alexander Janko. My Big Fat
Greek Wedding, 2003.

[2] Microsystems Technology Office. Unconventional Processing of Signals for Intelligent Data
Exploitation (UPSIDE), DARPA-BAA-12-53. Broad Agency Announcement, Defense Ad-
vanced Research Projects Agency (DARPA), Aug 2012.

[3] Michele Banko and Eric Brill. Scaling to Very Very Large Corpora for Natural Language
Disambiguation. In Proceedings of the 39th Annual Meeting on Association for Computational
Linguistics, pages 26–33, 2001.

[4] Stuart Russell and Peter Norvig. Artificial Intelligence: A Modern Approach. Prentice Hall
PTR, 3rd edition, 2010.

[5] Altera. High Performance Computing Applications. http://www.altera.com/end-markets/
computer-storage/computer/hpc/applications/cmp-applications.html.

[6] Larry Seiler, Doug Carmean, Eric Sprangle, Tom Forsyth, Michael Abrash, Pradeep Dubey,
Stephen Junkins, Adam Lake, Jeremy Sugerman, Robert Cavin, Roger Espasa, Ed Gro-
chowski, Toni Juan, and Pat Hanrahan. Larrabee: A Many-Core x86 Architecture for Visual
Computing. ACM Transactions on Graphics, 27(3):18:1–18:15, Aug 2008.

[7] Michael Gschwind. Chip Multiprocessing and the Cell Broadband Engine. In Proceedings of
the 3rd Conference on Computing Frontiers, pages 1–8, 2006.

[8] Chris Lomont. Introduction to Intel Advanced Vector Extensions. In Proceedings of the 2nd
Annual ASCI Conference, pages 132–137, 2011.

[9] Erik Lindholm, John Nickolls, Stuart Oberman, and John Montrym. NVIDIA Tesla: A
Unified Graphics and Computing Architecture. IEEE Micro, 28(2):39–55, 2008.

[10] Yunsup Lee, Rimas Avizienis, Alex Bishara, Richard Xia, Derek Lockhart, Christopher Bat-
ten, and Krste Asanović. Exploring the Tradeoffs Between Programmability and Efficiency
in Data-Parallel Accelerators. In Proceedings of the 38th Annual International Symposium
on Computer Architecture, pages 129–140, 2011.

158

http://www.altera.com/end-markets/computer-storage/computer/hpc/applications/cmp-applications.html
http://www.altera.com/end-markets/computer-storage/computer/hpc/applications/cmp-applications.html

Bibliography

[11] Michael J. Lyons, Mark Hempstead, Gu-Yeon Wei, and David Brooks. The Accelerator
Store: A Shared Memory Framework for Accelerator-Based Systems. ACM Transactions on
Architecture and Code Optimization, 8(4):48:1–48:22, 2012.

[12] Ganesh Venkatesh, Jack Sampson, Nathan Goulding-Hotta, Sravanthi Kota Venkata,
Michael Bedford Taylor, and Steven Swanson. QsCores: Trading Dark Silicon for Scalable
Energy Efficiency with Quasi-Specific Cores. In Proceedings of the 44th Annual IEEE/ACM
International Symposium on Microarchitecture, pages 163–174, 2011.

[13] Hubertus Franke, Jimi Xenidis, Claude Basso, Brian M. Bass, Sandra S. Woodward, Jeffrey D.
Brown, and Charles L. Johnson. Introduction to the Wire-Speed Processor and Architecture.
IBM Journal of Research and Development, 54(1):3:1–3:11, 2010.

[14] Jason Cong, Mohammad Ali Ghodrat, Michael Gill, Beayna Grigorian, and Glenn Reinman.
Architecture Support for Accelerator-Rich CMPs. In Proceedings of the 49th Annual Design
Automation Conference, pages 843–849, 2012.

[15] Jason Cong, Mohammad Ali Ghodrat, Michael Gill, Beayna Grigorian, and Glenn Reinman.
CHARM: A Composable Heterogeneous Accelerator-Rich Microprocessor. In Proceedings
of the IEEE/ACM International Symposium on Low Power Electronics and Design, pages
379–384, 2012.

[16] Jason Cong, Mohammad Ali Ghodrat, Michael Gill, Beayna Grigorian, Hui Huang, and
Glenn Reinman. Composable Accelerator-rich Microprocessor Enhanced for Adaptivity and
Longevity. In Proceedings of the IEEE/ACM International Symposium on Low Power Elec-
tronics and Design, pages 305–310, 2013.

[17] AMD. AMD FireStream GPU Compute Accelerators. http://www.amd.com/us/products/
workstation/graphics/legacy/Pages/firestream.aspx.

[18] Jiayuan Meng, David Tarjan, and Kevin Skadron. Dynamic Warp Subdivision for Integrated
Branch and Memory Divergence Tolerance. In Proceedings of the 37th Annual International
Symposium on Computer Architecture, pages 235–246, 2010.

[19] Ujval J. Kapasi. Conditional Techniques for Stream Processing Kernels. PhD thesis, Stanford
University, 2004.

[20] Razvan Cheveresan, Matt Ramsay, Chris Feucht, and Ilya Sharapov. Characteristics of Work-
loads Used in High Performance and Technical Computing. In Proceedings of the 21st Annual
International Conference on Supercomputing, pages 73–82, 2007.

[21] Wilson W. L. Fung, Ivan Sham, George Yuan, and Tor M. Aamodt. Dynamic Warp For-
mation and Scheduling for Efficient GPU Control Flow. In Proceedings of the 40th Annual
IEEE/ACM International Symposium on Microarchitecture, pages 407–420, 2007.

[22] Ujval J. Kapasi, William J. Dally, Scott Rixner, Peter R. Mattson, John D. Owens, and
Brucek Khailany. Efficient Conditional Operations for Data-Parallel Architectures. In Pro-
ceedings of the 33rd Annual IEEE/ACM International Symposium on Microarchitecture,
pages 159–170, 2000.

159

http://www.amd.com/us/products/workstation/graphics/legacy/Pages/firestream.aspx
http://www.amd.com/us/products/workstation/graphics/legacy/Pages/firestream.aspx

Bibliography

[23] Ingo Wald. Active Thread Compaction for GPU Path Tracing. In Proceedings of the ACM
SIGGRAPH Symposium on High Performance Graphics, pages 51–58, 2011.

[24] Haicheng Wu, Gregory Diamos, Jin Wang, Si Li, and Sudhakar Yalamanchili. Characteri-
zation and Transformation of Unstructured Control Flow in Bulk Synchronous GPU Appli-
cations. International Journal of High Performance Computing Applications, 26(2):170–185,
2012.

[25] Gregory Diamos, Benjamin Ashbaugh, Subramaniam Maiyuran, Andrew Kerr, Haicheng Wu,
and Sudhakar Yalamanchili. SIMD Re-Convergence at Thread Frontiers. In Proceedings of
the 44th Annual IEEE/ACM International Symposium on Microarchitecture, pages 477–488,
2011.

[26] Simon Haykin. Neural Networks: A Comprehensive Foundation. Prentice Hall PTR, 2nd
edition, 1998.

[27] Hadi Esmaeilzadeh, Adrian Sampson, Luis Ceze, and Doug Burger. Neural Acceleration for
General-Purpose Approximate Programs. In Proceedings of the 45th Annual IEEE/ACM
International Symposium on Microarchitecture, pages 449–460, 2012.

[28] David E. Rumelhart, Geoffrey E. Hinton, and Ronald J. Williams. Learning Representations
by Back-Propagating Errors. Nature, 323(6088):533–536, 1986.

[29] Guoqiang P. Zhang. Neural Networks for Classification: A Survey. IEEE Transactions on
Systems, Man, and Cybernetics, Part C: Applications and Reviews, 30(4):451–462, 2000.

[30] N. Srinivasa and J. M. Cruz-Albrecht. Neuromorphic Adaptive Plastic Scalable Electronics:
Analog Learning Systems. IEEE Pulse, 3(1):51–56, 2012.

[31] Pradeep Dubey. A Platform 2015 Workload Model: Recognition, Mining and Synthesis Moves
Computers to the Era of Tera. White Paper, Intel Corporation, 2007.

[32] Thomas Yeh, Petros Faloutsos, Milos Ercegovac, Sanjay Patel, and Glenn Reinman. The
Art of Deception: Adaptive Precision Reduction for Area Efficient Physics Acceleration. In
Proceedings of the 40th Annual IEEE/ACM International Symposium on Microarchitecture,
pages 394–406, 2007.

[33] Dan Ernst, Nam Sung Kim, Shidhartha Das, Sanjay Pant, Rajeev Rao, Toan Pham, Conrad
Ziesler, David Blaauw, Todd Austin, Krisztian Flautner, and Trevor Mudge. Razor: A Low-
Power Pipeline Based on Circuit-Level Timing Speculation. In Proceedings of the 36th Annual
IEEE/ACM International Symposium on Microarchitecture, pages 7–18, 2003.

[34] Woongki Baek and Trishul M. Chilimbi. Green: A Framework for Supporting Energy-
Conscious Programming using Controlled Approximation. In Proceedings of the ACM SIG-
PLAN Conference on Programming Language Design and Implementation, pages 198–209,
2010.

[35] H. Cho, L. Leem, and S. Mitra. ERSA: Error Resilient System Architecture for Probabilis-
tic Applications. IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems, 31(4):546–558, 2012.

160

Bibliography

[36] Hadi Esmaeilzadeh, Adrian Sampson, Luis Ceze, and Doug Burger. Architecture Support for
Disciplined Approximate Programming. In Proceedings of the 17th International Conference
on Architectural Support for Programming Languages and Operating Systems, pages 301–312,
2012.

[37] Henry Hoffmann, Stelios Sidiroglou, Michael Carbin, Sasa Misailovic, Anant Agarwal, and
Martin Rinard. Dynamic Knobs for Responsive Power-Aware Computing. In Proceedings of
the 16th International Conference on Architectural Support for Programming Languages and
Operating Systems, pages 199–212, 2011.

[38] Adrian Sampson, Werner Dietl, Emily Fortuna, Danushen Gnanapragasam, Luis Ceze, and
Dan Grossman. EnerJ: Approximate Data Types for Safe and General Low-Power Compu-
tation. In Proceedings of the 32nd ACM SIGPLAN Conference on Programming Language
Design and Implementation, pages 164–174, 2011.

[39] S. H. Nawab, A. V. Oppenheim, A. P. Chandrakasan, J. M. Winograd, and J. T. Ludwig.
Approximate Signal Processing. Journal of VLSI Signal Processing Systems for Signal, Image
and Video Technology, 15(1–2):177–200, 1997.

[40] Stelios Sidiroglou-Douskos, Sasa Misailovic, Henry Hoffmann, and Martin Rinard. Managing
Performance vs. Accuracy Trade-Offs with Loop Perforation. In Proceedings of the 19th
ACM SIGSOFT Symposium and the 13th European Conference on Foundations of Software
Engineering, pages 124–134, 2011.

[41] J. Park, J. H. Choi, and K. Roy. Dynamic Bit-Width Adaptation in DCT: An Approach to
Trade Off Image Quality and Computation Energy. IEEE Transactions on Very Large Scale
Integration Systems, 18(5):787–793, 2010.

[42] Jiawei Huang, John Lach, and Gabriel Robins. A Methodology for Energy-Quality Tradeoff
Using Imprecise Hardware. In Proceedings of the 49th Annual Design Automation Conference,
pages 504–509, 2012.

[43] X. Li and D. Yeung. Application-Level Correctness and its Impact on Fault Tolerance. In Pro-
ceedings of the 13th International Symposium on High Performance Computer Architecture,
pages 181–192, 2007.

[44] Marc de Kruijf, Shuou Nomura, and Karthikeyan Sankaralingam. Relax: An Architectural
Framework for Software Recovery of Hardware Faults. In Proceedings of the 37th Annual
International Symposium on Computer Architecture, pages 497–508, 2010.

[45] Michael Carbin, Sasa Misailovic, and Martin C. Rinard. Verifying Quantitative Reliability
for Programs That Execute on Unreliable Hardware. In Proceedings of the ACM SIGPLAN
International Conference on Object-Oriented Programming, Systems, Languages, and Appli-
cations, pages 33–52, 2013.

[46] G. Chryssolouris, M. Lee, and A. Ramsey. Confidence Interval Prediction for Neural Network
Models. IEEE Transactions on Neural Networks, 7(1):229–232, 1996.

[47] P. Garcia and K. Compton. Kernel Sharing on Reconfigurable Multiprocessor Systems. In
International Conference on Field Programmable Technology, pages 225–232, 2008.

161

Bibliography

[48] Ning Sun and Chi-Chang Lin. Using the Cryptographic Accelerators in the the UltraSPARC
T1 and T2 Processors. Oracle, Sun BluePrints Online, Nov 2007.

[49] P. S. Magnusson, M. Christensson, J. Eskilson, D. Forsgren, G. Hallberg, J. Hogberg, F. Lars-
son, A. Moestedt, and B. Werner. Simics: A Full System Simulation Platform. Computer,
35(2):50–58, 2002.

[50] Milo M. K. Martin, Daniel J. Sorin, Bradford M. Beckmann, Michael R. Marty, Min Xu,
Alaa R. Alameldeen, Kevin E. Moore, Mark D. Hill, and David A. Wood. Multifacet’s General
Execution-Driven Multiprocessor Simulator Toolset. ACM SIGARCH Computer Architecture
News, 33(4):92–99, 2005.

[51] Alex Bui, Kwang-Ting Cheng, Jason Cong, Luminita Vese, Yi-Chu Wang, Bo Yuan, and
Yi Zou. Platform Characterization for Domain-Specific Computing. In Proceedings of the
17th Asia and South Pacific Design Automation Conference, pages 94–99, 2012.

[52] Shuai Che, Michael Boyer, Jiayuan Meng, David Tarjan, Jeremy W. Sheaffer, and Kevin
Skadron. A Performance Study of General-Purpose Applications on Graphics Processors
Using CUDA. Journal of Parallel and Distributed Computing, 68(10):1370–1380, 2008.

[53] J. M. Ortega and W. C. Rheinboldt. Iterative Solution of Nonlinear Equations in Several
Variables. Academic Press, 1970.

[54] Jason Cong, Beayna Grigorian, Glenn Reinman, and Marco Vitanza. Accelerating Vision
and Navigation Applications on a Customizable Platform. In Proceedings of the 22nd IEEE
International Conference on Application-specific Systems, Architectures and Processors, pages
25–32, 2011.

[55] Jason Cong, Karthik Gururaj, Muhuan Huang, Sen Li, Bingjun Xiao, and Yi Zou. Domain-
Specific Processor with 3D Integration for Medical Image Processing. In Proceedings of the
22nd IEEE International Conference on Application-specific Systems, Architectures and Pro-
cessors, pages 247–250, 2011.

[56] Z. Zhang, Y. Fan, W. Jiang, G. Han, C. Yang, and J. Cong. High-Level Synthesis: From
Algorithm to Digital Circuit. Springer Publishers, 2008.

[57] C. H. Chen. Handbook of Pattern Recognition and Computer Vision. World Scientific, 2009.

[58] Huiyu Zhou, Yuan Yuan, and Chunmei Shi. Object Tracking Using SIFT Features and Mean
Shift. Computer Vision and Image Understanding, 113(3):345–352, 2009.

[59] S. T. Birchfield and S. J. Pundlik. Joint Tracking of Features and Edges. In Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition, pages 1–6, 2008.

[60] David A. Forsyth and Jean Ponce. Computer Vision: A Modern Approach. Prentice Hall
PTR, 1st edition, 2002.

[61] Lu-Fang Gao, Yu-Xian Gai, and Sheng Fu. Simultaneous Localization and Mapping for
Autonomous Mobile Robots Using Binocular Stereo Vision System. In Proceedings of the
International Conference on Mechatronics and Automation, pages 326–330, 2007.

162

Bibliography

[62] Francisco Bonin-Font, Alberto Ortiz, and Gabriel Oliver. Visual Navigation for Mobile
Robots: A Survey. Journal of Intelligent and Robotic Systems, 53(3):263–296, 2008.

[63] Kok Seng Chong and L. Kleeman. Sonar Based Map Building for a Mobile Robot. In
Proceedings of the IEEE International Conference on Robotics and Automation, pages 1700–
1705, 1997.

[64] Xuefeng Dai, Hongmin Zhang, and Yan Shi. Autonomous Navigation for Wheeled Mobile
Robots - A Survey. In Proceedings of the 2nd International Conference on Innovative Com-
puting, Information and Control, pages 551–551, 2007.

[65] Sebastian Thrun. Simultaneous Localization and Mapping. In Robotics and Cognitive Ap-
proaches to Spatial Mapping, volume 38, pages 13–41. Springer Berlin Heidelberg, 2008.

[66] Jose-Luis Blanco. Derivation and Implementation of a Full 6D EKF-based Solution to
Bearing-Range SLAM. Technical Report, University of Malaga, Spain, Mar 2008.

[67] R. E. Kalman. A New Approach to Linear Filtering and Prediction Problems. Journal of
Basic Engineering, 82:35–45, 1960.

[68] D. G. Lowe. Object Recognition from Local Scale-Invariant Features. In Proceedings of the
IEEE International Conference on Computer Vision, pages 1150–1157, 1999.

[69] H. Bay, A. Ess, T. Tuytelaars, and L. Van Gool. SURF: Speeded Up Robust Features.
Computer Vision and Image Understanding, 110(3):346–359, 2008.

[70] J. Shi and C. Tomasi. Good Features to Track. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pages 593–600, 1994.

[71] S. Lazebnik, C. Schmid, and J. Ponce. A Sparse Texture Representation Using Local Affine
Regions. IEEE Transactions on Pattern Analysis and Machine Intelligence, 27:1265–1278,
2005.

[72] M. W. M. G. Dissanayake, P. Newman, S. Clark, H. F. Durrant-White, and M. Csorba.
A Solution to the Simultaneous Localization and Map Building (SLAM) Problem. IEEE
Transactions on Robotics and Automation, 17(3):229–241, 2001.

[73] Udo Frese. A Discussion of Simultaneous Localization and Mapping. Autonomous Robots, 20
(1):25–42, 2006.

[74] H. Durrant-Whyte and T. Bailey. Simultaneous Localization and Mapping: Part I. IEEE
Robotics Automation Magazine, 13(2):99–110, 2006.

[75] Jose-Luis Blanco. The Mobile Robot Programming Toolkit. http://mrpt.org.

[76] Itseez. Open Source Computer Vision. http://opencv.willowgarage.com.

[77] Anastasios I. Mourikis, Nikolas Trawny, Stergios I. Roumeliotis, Andrew E. Johnson, Adnan
Ansar, and Larry Matthies. Vision-Aided Inertial Navigation for Spacecraft Entry, Descent,
and Landing. IEEE Transactions on Robotics, 25(2):264–280, 2009.

163

http://mrpt.org
http://opencv.willowgarage.com

Bibliography

[78] Jose-Luis Blanco, Francisco-Angel Moreno, and Javier Gonzalez. A Collection of Outdoor
Robotic Datasets with Centimeter-Accuracy Ground Truth. Autonomous Robots, 27(4):327–
351, 2009.

[79] PAPI. Performance API. http://icl.cs.utk.edu/papi.

[80] Sheng Li, Jung Ho Ahn, Richard D. Strong, Jay B. Brockman, Dean M. Tullsen, and Nor-
man P. Jouppi. McPAT: An Integrated Power, Area, and Timing Modeling Framework for
Multicore and Manycore Architectures. In Proceedings of the 42nd Annual IEEE/ACM In-
ternational Symposium on Microarchitecture, pages 469–480, 2009.

[81] Xilinx ISE Design Suite. http://www.xilinx.com/tools/designtools.htm.

[82] Xilinx XPower Analyzer. http://www.xilinx.com/products/design_tools/logic_

design/verification/xpower_an.htm.

[83] A. M. Frieze and M. R. B. Clarke. Approximation Algorithms for the M-Dimensional 0-1
Knapsack Problem: Worst-Case and Probabilistic Analyses. European Journal of Operational
Research, 15(1):100–109, 1984.

[84] Intel. Intel QuickPath Interconnect. http://www.intel.com/technology/quickpath.

[85] Nallatech. Nallatech: Intel Xeon FSB-FPGA Accelerator Module. http://www.nallatech.
com/Intel-Xeon-FSB-Socket-Fillers/fsb-development-systems.html.

[86] David J. Miller, Philip M. Watts, and Andrew W. Moore. Motivating Future Interconnects:
A Differential Measurement Analysis of PCI Latency. In Proceedings of the 5th IEEE/ACM
Symposium on Architectures for Networking and Communications Systems, pages 94–103,
2009.

[87] Jason Cong and Yi Zou. FPGA-Based Hardware Acceleration of Lithographic Aerial Image
Simulation. ACM Transactions on Reconfigurable Technology and Systems, 2(3):17:1–17:29,
Sep 2009.

[88] Markus Püschel, José M. F. Moura, Jeremy Johnson, David Padua, Manuela Veloso,
Bryan Singer, Jianxin Xiong, Franz Franchetti, Aca Gacic, Yevgen Voronenko, Kang Chen,
Robert W. Johnson, and Nicholas Rizzolo. SPIRAL: Code Generation for DSP Transforms.
Proceedings of the IEEE, 93(2):232–275, 2005.

[89] Eitan Tadmor, Suzanne Nezzar, and Luminita Vese. Multiscale Hierarchical Decomposition
of Images with Applications to Deblurring, Denoising and Segmentation. Communications
in Mathematical Sciences, 6(2):281–307, 2008.

[90] Luminita A. Vese and Stanley J. Osher. Image Denoising and Decomposition with Total
Variation Minimization and Oscillatory Functions. Journal of Mathematical Imaging and
Vision, 20(1–2):7–18, Jan 2004.

[91] Igor Yanovsky, Carole Le Guyader, Alex Leow, Paul Thompson, and Luminita Vese. Nonlin-
ear Elastic Registration with Unbiased Regularization in Three Dimensions. In Computational
Biomechanics for Medicine III, MICCAI 2008 Workshop, pages 56–67, 2008.

164

http://icl.cs.utk.edu/papi
http://www.xilinx.com/tools/designtools.htm
http://www.xilinx.com/products/design_tools/logic_design/verification/xpower_an.htm
http://www.xilinx.com/products/design_tools/logic_design/verification/xpower_an.htm
http://www.intel.com/technology/quickpath
http://www.nallatech.com/Intel-Xeon-FSB-Socket-Fillers/fsb-development-systems.html
http://www.nallatech.com/Intel-Xeon-FSB-Socket-Fillers/fsb-development-systems.html

Bibliography

[92] Tony F. Chan and Luminita A. Vese. Active Contours without Edges. IEEE Transactions
on Image Processing, 10(2):266–277, 2001.

[93] Frédéric Jurie. A New Log-Polar Mapping for Space Variant Imaging: Application to Face
Detection and Tracking. Pattern Recognition, 32(5):865–875, May 1999.

[94] Matteo Frigo and Steven G. Johnson. The Design and Implementation of FFTW3. Proceedings
of the IEEE, 93(2):216–231, 2005.

[95] Synopsys. Synopsys Design Compiler. http://www.synopsys.com/Tools/Pages/default.

aspx.

[96] Jason Cong, Mohammad Ali Ghodrat, Michael Gill, Chunyue Liu, Glenn Reinman, and
Yi Zou. AXR-CMP: Architecture Support in Accelerator-Rich CMPs. In Proceedings of the
2nd Workshop on SoC Architecture, Accelerators and Workloads, pages 19–26, 2011.

[97] Jason Cong, Hui Huang, and Wei Jiang. A Generalized Control-Flow-Aware Pattern Recog-
nition Algorithm for Behavioral Synthesis. In Proceedings of the Conference on Design,
Automation and Test in Europe, pages 1255–1260, 2010.

[98] Kayvon Fatahalian, Daniel Reiter Horn, Timothy J. Knight, Larkhoon Leem, Mike Houston,
Ji Young Park, Mattan Erez, Manman Ren, Alex Aiken, William J. Dally, and Pat Hanrahan.
Sequoia: Programming the Memory Hierarchy. In Proceedings of the IEEE/ACM Conference
on Supercomputing, pages 83:1–83:13, 2006.

[99] A. Ramirez, F. Cabarcas, B. Juurlink, M. Alvarez Mesa, F. Sanchez, A. Azevedo, C. Meen-
derinck, C. Ciobanu, S. Isaza, and G. Gaydadjiev. The SARC Architecture. IEEE Micro,
pages 16–29, 2010.

[100] HP Labs. CACTI 5.3. http://quid.hpl.hp.com:9081/cacti.

[101] Sun Microsystems. UltraSPARC III. http://en.wikipedia.org/wiki/UltraSPARC_III.

[102] A. B. Kahng, B. Li, L. Peh, and K. Samadi. ORION 2.0: A Fast and Accurate NoC Power
and Area Model for Early-Stage Design Space Exploration. In Proceedings of the Conference
on Design, Automation and Test in Europe, pages 423–428, 2009.

[103] Ian Kuon and Jonathan Rose. Measuring the Gap between FPGAs and ASICs. IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems, 26(2):203–215,
2007.

[104] Jason Cong and Bingjun Xiao. Optimization of Interconnects Between Accelerators and
Shared Memories in Dark Silicon. In Proceedings of the IEEE/ACM International Conference
on Computer-Aided Design, pages 630–637, 2013.

[105] Amir Hormati, Nathan Clark, and Scott Mahlke. Exploiting Narrow Accelerators with Data-
Centric Subgraph Mapping. In Proceedings of the International Symposium on Code Gener-
ation and Optimization, pages 341–353, 2007.

[106] Xilinx. http://www.xilinx.com.

165

http://www.synopsys.com/Tools/Pages/default.aspx
http://www.synopsys.com/Tools/Pages/default.aspx
http://quid.hpl.hp.com:9081/cacti
http://en.wikipedia.org/wiki/UltraSPARC_III
http://www.xilinx.com

Bibliography

[107] Jason Cong, Glenn Reinman, Alex Bui, and Vivek Sarkar. Customizable Domain-Specific
Computing. IEEE Design and Test of Computers, 28(2):6–15, 2011.

[108] Christian Bienia, Sanjeev Kumar, Jaswinder Pal Singh, and Kai Li. The PARSEC Benchmark
Suite: Characterization and Architectural Implications. In Proceedings of the 17th Interna-
tional Conference on Parallel Architectures and Compilation Techniques, pages 72–81, 2008.

[109] Sravanthi Kota Venkata, Ikkjin Ahn, Donghwan Jeon, Anshuman Gupta, Christopher Louie,
Saturnino Garcia, Serge Belongie, and Michael Bedford Taylor. SD-VBS: The San Diego
Vision Benchmark Suite. In Proceedings of the IEEE International Symposium on Workload
Characterization, pages 55–64, 2009.

[110] Michael Lustig, David Donoho, and John M. Pauly. Sparse MRI: The Application of Com-
pressed Sensing for Rapid MR Imaging. Magnetic Resonance in Medicine, 58(6):1182–1195,
2007.

[111] Swarat Chaudhuri, Sumit Gulwani, Roberto Lublinerman, and Sara Navidpour. Proving
Programs Robust. In Proceedings of the 19th ACM SIGSOFT Symposium and the 13th
European Conference on Foundations of Software Engineering, pages 102–112, 2011.

[112] Dan Quinlan. ROSE: Compiler Support for Object-Oriented Frameworks. Parallel Processing
Letters, 10:215–226, 2000.

[113] Kurt Hornik. Approximation Capabilities of Multilayer Feedforward Networks. Neural Net-
works, 4(2):251–257, Mar 1991.

[114] P. K. Meher. An Optimized Lookup-Table for the Evaluation of Sigmoid Function for Artificial
Neural Networks. In Proceedings of the 18th IEEE/IFIP VLSI System on Chip Conference,
pages 91–95, 2010.

[115] Nvidia CUDA Math Library. http://developer.nvidia.com/cuda-math-library.

[116] Li-Chun Tommy Wang and Chih Cheng Chen. A Combined Optimization Method for Solving
the Inverse Kinematics Problem of Mechanical Manipulators. IEEE Transactions on Robotics
and Automation, 7(4):489–499, Aug 1991.

[117] Jason Sanders and Edward Kandrot. CUDA by Example: An Introduction to General-Purpose
GPU Programming. Addison-Wesley Pro., 2010.

[118] Steffen Nissen. Implementation of a Fast Artificial Neural Network Library (FANN). Technical
Report, Department of Computer Science University of Copenhagen (DIKU), 2003.

[119] Nvidia CUDA 5.5 Production Release. http://developer.nvidia.com/cuda-downloads.

[120] Nvidia GeForce GTX 480. http://www.geforce.com/hardware/desktop-gpus/

geforce-gtx-480.

[121] P3 International. Kill A Watt. http://www.p3international.com/products/p4400.html.

[122] J. Sartori and R. Kumar. Branch and Data Herding: Reducing Control and Memory Di-
vergence for Error-Tolerant GPU Applications. IEEE Transactions on Multimedia, 15(2):
279–290, Feb 2013.

166

http://developer.nvidia.com/cuda-math-library
http://developer.nvidia.com/cuda-downloads
http://www.geforce.com/hardware/desktop-gpus/geforce-gtx-480
http://www.geforce.com/hardware/desktop-gpus/geforce-gtx-480
http://www.p3international.com/products/p4400.html

Bibliography

[123] Beayna Grigorian and Glenn Reinman. Dynamically Adaptive and Reliable Approximate
Computing Using Light-Weight Error Analysis. In NASA/ESA Conference on Adaptive Hard-
ware and Systems, pages 248–255, 2014.

[124] J. Han and M. Orshansky. Approximate Computing: An Emerging Paradigm for Energy-
Efficient Design. In Proceedings of the 18th IEEE European Test Symposium, pages 1–6,
2013.

[125] Z. Wang and A. C. Bovik. A Universal Image Quality Index. IEEE Signal Processing Letters,
9(3):81–84, 2002.

[126] T. J. Schaefer. The Complexity of Satisfiability Problems. In Proceedings of the 10th Sym-
posium on Theory of Computing, pages 216–226, 1978.

[127] Martin Davis, George Logemann, and Donald Loveland. A Machine Program for Theorem-
Proving. Communications of the ACM, 5(7):394–397, Jul 1962.

[128] Beayna Grigorian and Glenn Reinman. Accelerating Divergent Applications on SIMD Archi-
tectures Using Neural Networks. In Proceedings of the 32nd IEEE International Conference
on Computer Design, page To Appear, 2014.

[129] S. K. S. Hari, S. V. Adve, and H. Naeimi. Low-Cost Program-Level Detectors for Reduc-
ing Silent Data Corruptions. In Proceedings of the 42nd Annual IEEE/IFIP International
Conference on Dependable Systems and Networks, pages 1–12, 2012.

[130] Erin Catto. Box2D: A 2D Physics Engine for Games. http://box2d.org.

[131] Pan Min and Sun Yihe. ASIC Design of Gabor Transform for Speech Processing. In Proceed-
ings of the 4th International Conference on ASIC, pages 401–404, 2001.

[132] D. Bouris, A. Nikitakis, and I. Papaefstathiou. Fast and Efficient FPGA-Based Feature Detec-
tion Employing the SURF Algorithm. In Proceedings of the 18th IEEE Annual International
Symposium on Field-Programmable Custom Computing Machines, pages 3–10, 2010.

[133] Jason Cong and Yi Zou. FPGA-Based Hardware Acceleration of Lithographic Aerial Image
Simulation. ACM Transactions on Reconfigurable Technology and Systems, 2(3):17:1–17:29,
Sep 2009.

[134] Convey Computer. The Hybrid-Core Series. http://www.conveycomputer.com/products/

hcseries.

[135] J. R. Hauser and J. Wawrzynek. Garp: A MIPS Processor with a Reconfigurable Copro-
cessor. In Proceedings of the 5th Annual IEEE Symposium on Field-Programmable Custom
Computing Machines, pages 12–21, 1997.

[136] Tim Johnson and Umesh Nawathe. An 8-core, 64-thread, 64-bit Power Efficient SPARC SoC
(Niagara2). In Proceedings of the 2007 International Symposium on Physical Design, pages
2–2, 2007.

167

http://box2d.org
http://www.conveycomputer.com/products/hcseries
http://www.conveycomputer.com/products/hcseries

Bibliography

[137] Perry H. Wang, Jamison D. Collins, Gautham N. Chinya, Hong Jiang, Xinmin Tian, Milind
Girkar, Nick Y. Yang, Guei-Yuan Lueh, and Hong Wang. EXOCHI: Architecture and Pro-
gramming Environment for a Heterogeneous Multi-core Multithreaded System. In Proceedings
of the ACM SIGPLAN Conference on Programming Language Design and Implementation,
pages 156–166, 2007.

[138] P.M. Stillwell, V. Chadha, O. Tickoo, S. Zhang, R. Illikkal, R. Iyer, and D. Newell. HiPPAI:
High Performance Portable Accelerator Interface for SoCs. In Proceedings of the International
Conference on High Performance Computing, pages 109–118, 2009.

[139] Engin Ipek, Meyrem Kirman, Nevin Kirman, and Jose F. Martinez. Core Fusion: Accom-
modating Software Diversity in Chip Multiprocessors. In Proceedings of the 34th Annual
International Symposium on Computer Architecture, pages 186–197, 2007.

[140] J. Cong, H. Guoling, A. Jagannathan, G. Reinman, and K. Rutkowski. Accelerating Se-
quential Applications on CMPs Using Core Spilling. IEEE Transactions on Parallel and
Distributed Systems, 18(8):1094–1107, 2007.

[141] Mark Gebhart, Bertrand A. Maher, Katherine E. Coons, Jeff Diamond, Paul Gratz, Mario
Marino, Nitya Ranganathan, Behnam Robatmili, Aaron Smith, James Burrill, Stephen W.
Keckler, Doug Burger, and Kathryn S. McKinley. An Evaluation of the TRIPS Computer
System. In Proceedings of the 14th International Conference on Architectural Support for
Programming Languages and Operating Systems, pages 1–12, 2009.

[142] N. Clark, A. Hormati, and S. Mahlke. VEAL: Virtualized Execution Accelerator for Loops.
In Proceedings of the 35th Annual International Symposium on Computer Architecture, pages
389–400, 2008.

[143] Hyunchul Park, Yongjun Park, and Scott Mahlke. Polymorphic Pipeline Array: A Flexible
Multicore Accelerator with Virtualized Execution for Mobile Multimedia Application. In
Proceedings of the 42nd Annual IEEE/ACM International Symposium on Microarchitecture,
pages 370–380, 2009.

[144] V. Govindaraju, C. Ho, and K. Sankaralingam. Dynamically Specialized Datapaths for Energy
Efficient Computing. In Proceedings of the 17th IEEE International Symposium on High
Performance Computer Architecture, pages 503–514, 2011.

[145] Xilinx Zynq-7000 All Programmable SoC. http://www.xilinx.com/products/

silicon-devices/soc/zynq-7000.

[146] Linley Gwennap. AltiVec Vectorizes PowerPC. Microprocessor Report, 12(6):1–6, 1998.

[147] L. Kohn, G. Maturana, M. Tremblay, A. Prabhu, and G. Zyner. The Visual Instruction
Set (VIS) in UltraSPARC. In COMPCON: Technologies for the Information Superhighway,
Digest of Papers, pages 462–469, 1995.

[148] Aniruddha S. Vaidya, Anahita Shayesteh, Dong Hyuk Woo, Roy Saharoy, and Mani Azimi.
SIMD Divergence Optimization through Intra-Warp Compaction. In Proceedings of the 40th
Annual International Symposium on Computer Architecture, pages 368–379, 2013.

168

http://www.xilinx.com/products/silicon-devices/soc/zynq-7000
http://www.xilinx.com/products/silicon-devices/soc/zynq-7000

Bibliography

[149] Nicolas Brunie, Sylvain Collange, and Gregory Diamos. Simultaneous Branch and Warp In-
terweaving for Sustained GPU Performance. In Proceedings of the 39th Annual International
Symposium on Computer Architecture, pages 49–60, 2012.

[150] W. W. L. Fung and T. M. Aamodt. Thread Block Compaction for Efficient SIMT Con-
trol Flow. In Proceedings of the 17th IEEE International Symposium on High Performance
Computer Architecture, pages 25–36, 2011.

[151] Veynu Narasiman, Michael Shebanow, Chang Joo Lee, Rustam Miftakhutdinov, Onur Mutlu,
and Yale N. Patt. Improving GPU Performance via Large Warps and Two-Level Warp
Scheduling. In Proceedings of the 44th Annual IEEE/ACM International Symposium on
Microarchitecture, pages 308–317, 2011.

[152] Minsoo Rhu and Mattan Erez. CAPRI: Prediction of Compaction-Adequacy for Handling
Control-Divergence in GPGPU Architectures. In Proceedings of the 39th Annual International
Symposium on Computer Architecture, pages 61–71, 2012.

[153] W. J. Bouknight, S. A. Denenberg, D. E. McIntyre, J. M. Randall, A. H. Sameh, and D. L.
Slotnick. The Illiac IV System. Proceedings of the IEEE, 60(4):369–388, 1972.

[154] Richard M. Russell. The CRAY-1 Computer System. Communications of the ACM, 21(1):
63–72, Jan 1978.

[155] J. E. Smith, G. Faanes, and R. Sugumar. Vector Instruction Set Support for Conditional
Operations. In Proceedings of the 27th Annual International Symposium on Computer Ar-
chitecture, pages 260–269, 2000.

[156] P. Y. T. Hsu and E. S. Davidson. Highly Concurrent Scalar Processing. In Proceedings of
the 13th Annual International Symposium on Computer Architecture, pages 386–395, 1986.

[157] Brandon Reagen, Yakun Sophia Shao, Gu-Yeon Wei, and David Brooks. Quantifying Accel-
eration: Power/Performance Trade-Offs of Application Kernels in Hardware. In Proceedings
of the IEEE International Symposium on Low Power Electronics and Design, pages 395–400,
2013.

[158] L. N. Chakrapani, B. E. S. Akgul, S. Cheemalavagu, P. Korkmaz, K. V. Palem, and B. Se-
shasayee. Ultra-Efficient (Embedded) SOC Architectures Based on Probabilistic CMOS (PC-
MOS) Technology. In Proceedings of the Conference on Design, Automation and Test in
Europe, pages 1–6, 2006.

[159] S. Narayanan, J. Sartori, R. Kumar, and D. L. Jones. Scalable Stochastic Processors. In
Proceedings of the Conference on Design, Automation and Test in Europe, pages 335–338,
2010.

[160] W. Qian, X. Li, M. D. Riedel, K. Bazargan, and D. J. Lilja. An Architecture for Fault-Tolerant
Computation with Stochastic Logic. IEEE Transactions on Computers, 60(1):93–105, 2011.

[161] V. Gupta, D. Mohapatra, A. Raghunathan, and K. Roy. Low-Power Digital Signal Processing
Using Approximate Adders. IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, 32(1):124–137, 2013.

169

Bibliography

[162] Shih-Lien Lu. Speeding Up Processing with Approximation Circuits. Computer, 37(3):67–73,
2004.

[163] M. R. Choudhury and K. Mohanram. Approximate Logic Circuits for Low Overhead, Non-
Intrusive Concurrent Error Detection. In Proceedings of the Conference on Design, Automa-
tion and Test in Europe, pages 903–908, 2008.

[164] S. Venkataramani, A. Sabne, V. Kozhikkottu, K. Roy, and A. Raghunathan. SALSA: Sys-
tematic Logic Synthesis of Approximate Circuits. In Proceedings of the 49th Annual Design
Automation Conference, pages 796–801, 2012.

[165] R. Hegde and N. R. Shanbhag. Soft Digital Signal Processing. IEEE Transactions on Very
Large Scale Integration Systems, 9(6):813–823, 2001.

[166] Mehrzad Samadi, Janghaeng Lee, Davoud Anoushe Jamshidi, Amir Hormati, and Scott
Mahlke. SAGE: Self-tuning Approximation for Graphics Engines. In Proceedings of the
46th Annual IEEE/ACM International Symposium on Microarchitecture, pages 13–24, 2013.

[167] Shuguang Feng, Shantanu Gupta, Amin Ansari, and Scott Mahlke. Shoestring: Probabilistic
Soft Error Reliability on the Cheap. In Proceedings of the 15th International Conference on
Architectural Support for Programming Languages and Operating Systems, pages 385–396,
2010.

[168] C. M. Bishop. Novelty Detection and Neural Network Validation. Vision, Image and Signal
Processing, 141(4):217–222, 1994.

[169] G. V. Varatkar and N. R. Shanbhag. Energy-Efficient Motion Estimation Using Error-
Tolerance. In Proceedings of the International Symposium on Low Power Electronics and
Design, pages 113–118, 2006.

[170] K. He, A. Gerstlauer, and M. Orshansky. Controlled Timing-Error Acceptance for Low
Energy IDCT Design. In Proceedings of the Conference on Design, Automation and Test in
Europe, pages 1–6, 2011.

[171] R. Venkatesan, A. Agarwal, K. Roy, and A. Raghunathan. MACACO: Modeling and Analysis
of Circuits for Approximate Computing. In Proceedings of the IEEE/ACM International
Conference on Computer-Aided Design, pages 667–673, 2011.

[172] B. Efron and R. Tibshirani. Bootstrap Methods for Standard Errors, Confidence Intervals,
and Other Measures of Statistical Accuracy. Statistical Science, 1(1):54–75, 1986.

[173] N. W. Townsend and L. Tarassenko. Estimations of Error Bounds for Neural-Network Func-
tion Approximators. IEEE Transactions on Neural Networks, 10(2):217–230, 1999.

[174] K. Fukushima. A Neural Network for Visual Pattern Recognition. Computer, 21(3):65–75,
1988.

[175] Kunihiko Fukushima. Neocognitron: A Self-Organizing Neural Network Model for a Mech-
anism of Pattern Recognition Unaffected by Shift in Position. Biological Cybernetics, 36(4):
193–202, 1980.

170

Bibliography

[176] S. Lawrence, C. L. Giles, A. C. Tsoi, and A. D. Back. Face Recognition: A Convolutional
Neural-Network Approach. IEEE Transactions on Neural Networks, 8(1):98–113, 1997.

[177] M. W. Roth. Survey of Neural Network Technology for Automatic Target Recognition. IEEE
Transactions on Neural Networks, 1(1):28–43, 1990.

[178] R. Parisi, E. D. Di Claudio, G. Lucarelli, and G. Orlandi. Car Plate Recognition by Neural
Networks and Image Processing. In Proceedings of the IEEE International Symposium on
Circuits and Systems, volume 3, pages 195–198, 1998.

[179] K. Kamijo and T. Tanigawa. Stock Price Pattern Recognition - A Recurrent Neural Network
Approach. In Proceedings of the IEEE International Joint Conference on Neural Networks,
pages 215–221, 1990.

[180] P. D. Gader, M. Mohamed, and J. Chiang. Handwritten Word Recognition with Character
and Inter-Character Neural Networks. IEEE Transactions on Systems, Man, and Cybernetics,
Part B: Cybernetics, 27(1):158–164, 1997.

[181] T. Chen, Y. Chen, M. Duranton, Q. Guo, A. Hashmi, M. Lipasti, A. Nere, S. Qiu, M. Sebag,
and O. Temam. BenchNN: On the Broad Potential Application Scope of Hardware Neural
Network Accelerators. In IEEE International Symposium on Workload Characterization,
pages 36–45, 2012.

[182] Janardan Misra and Indranil Saha. Artificial Neural Networks in Hardware: A Survey of
Two Decades of Progress. Neurocomputing, 74(1):239–255, 2010.

[183] K. W. Przytula and V. K. Prasanna. Parallel Digital Implementations of Neural Networks.
Prentice Hall, 1st edition, 1993.

[184] Giovanni Danese, Francesco Leporati, and Stefano Ramat. A Parallel Neural Processor for
Real-Time Applications. IEEE Micro, 22(3):20–31, 2002.

[185] M. Holler, S. Tam, H. Castro, and R. Benson. An Electrically Trainable Artificial Neu-
ral Network (ETANN) with 10240 ‘Floating Gate’ Synapses. In Proceedings of the IEEE
International Joint Conference on Neural Networks, pages 191–196, 1989.

[186] J. Schemmel, J. Fieres, and K. Meier. Wafer-Scale Integration of Analog Neural Networks. In
Proceedings of the IEEE International Joint Conference on Neural Networks, pages 431–438,
2008.

[187] Renée St. Amant, Amir Yazdanbakhsh, Jongse Park, Bradley Thwaites, Hadi Esmaeilzadeh,
Arjang Hassibi, Luis Ceze, and Doug Burger. General-Purpose Code Acceleration with
Limited-Precision Analog Computation. In Proceedings of the 41st Annual International
Symposium on Computer Architecture, pages 505–516, 2014.

[188] Jihan Zhu and Peter Sutton. FPGA Implementations of Neural Networks – A Survey of a
Decade of Progress. In Field Programmable Logic and Application, pages 1062–1066. 2003.

[189] Atif Hashmi, Andrew Nere, James Jamal Thomas, and Mikko Lipasti. A Case for Neuromor-
phic ISAs. In Proceedings of the 16th International Conference on Architectural Support for
Programming Languages and Operating Systems, pages 145–158, 2011.

171

Bibliography

[190] Bilel Belhadj, Antoine Joubert, Zheng Li, Rodolphe Héliot, and Olivier Temam. Continuous
Real-World Inputs Can Open Up Alternative Accelerator Designs. In Proceedings of the 40th
Annual International Symposium on Computer Architecture, pages 1–12, 2013.

[191] Olivier Temam. A Defect-Tolerant Accelerator for Emerging High-Performance Applications.
In Proceeding of the 39th Annual International Symposium on Computer Architecture, pages
356–367, 2012.

[192] Atif Hashmi, Hugues Berry, Olivier Temam, and Mikko Lipasti. Automatic Abstraction and
Fault Tolerance in Cortical Microachitectures. In Proceedings of the 38th Annual International
Symposium on Computer Architecture, pages 1–10, 2011.

[193] Honghoon Jang, Anjin Park, and Keechul Jung. Neural Network Implementation Using
CUDA and OpenMP. In Digital Image Computing: Techniques and Applications, pages 155–
161, 2008.

[194] Kyoung-Su Oh and Keechul Jung. GPU Implementation of Neural Networks. Pattern Recog-
nition, 37(6):1311–1314, 2004.

172

	1 Introduction
	1.1 Motivation Part 1: Hardware Acceleration
	1.2 Motivation Part 2: SIMD Divergence

	2 Accelerating Vision and Navigation Applications on a Customizable Platform
	2.1 Application Domain
	2.2 Methodology
	2.3 Evaluation Approach
	2.4 Experimental Results

	3 ARC: Architecture Support for Accelerator-Rich CMPs
	3.1 Overview of ARC
	3.2 Evaluation Approach
	3.3 Experimental Results

	4 CHARM: Composable Heterogeneous Accelerator-Rich Microprocessor
	4.1 Overview of CHARM
	4.2 Evaluation Approach
	4.3 Experimental Results

	5 CAMEL: Composable Accelerator-Rich Microprocessor Enhanced for Longevity
	5.1 Overview of CAMEL
	5.2 Evaluation Approach
	5.3 Experimental Results

	6 Neural Acceleration of Divergent Applications on SIMD Architectures
	6.1 Kernel Characterization
	6.2 Methodology
	6.3 Evaluation Approach
	6.4 Experimental Results

	7 Dynamically Reliable Approximate Computing Using Light-Weight Error Analysis
	7.1 Methodology
	7.2 Evaluation Approach
	7.3 Experimental Results
	7.4 Limitations

	8 BRAINIAC: Bringing Reliable Accuracy Into Neurally-Implemented Approximate Computing
	8.1 Overview of BRAINIAC
	8.2 Neural Accelerator Design
	8.3 Evaluation Approach
	8.4 Experimental Results

	9 Related Work
	9.1 Accelerator-Rich Design
	9.2 SIMD Divergence
	9.3 Approximate Computing
	9.4 Neural Network Implementation

	10 Conclusion
	Bibliography

