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Abstract. We study arrangements of slightly skewed tropical hyperplanes, called blades
by A. Ocneanu, on the vertices of a hypersimplex ∆k,n, and we investigate the resulting
induced polytopal subdivisions. We show that placing a blade on a vertex eJ induces an `-
split matroid subdivision of ∆k,n, where ` is the number of cyclic intervals in the k-element
subset J . We prove that a given collection of k-element subsets is weakly separated, in
the sense of the work of Leclerc and Zelevinsky on quasicommuting families of quantum
minors, if and only if the arrangement of the blade ((1, 2, . . . , n)) on the corresponding
vertices of ∆k,n induces a matroid (in fact, a positroid) subdivision. In this way we obtain
a compatibility criterion for (planar) multi-splits of a hypersimplex, generalizing the rule
known for 2-splits. We study in an extended example a matroidal arrangement of six blades
on the vertices ∆3,7.
Keywords. Combinatorial geometry, matroid subdivisions, weakly separated collections
Mathematics Subject Classifications. 52B40, 05B45, 52B99, 05E99, 14T15

1. Introduction

In this paper, we introduce a refinement of the notion of a tropical hyperplane arrangement: the
matroidal blade arrangement. The prototypical example of a blade, denoted ((1, 2, . . . , n)), is
the polyhedral complex which is obtained by gluing together the

(
n
2

)
simplicial codimension 1

cones with generating edges a cyclic system of roots ei − ei+1, which partition Rn−1 into n
maximal cells. More compactly, it is the union of the facets of the normal fan to the fundamental
Weyl alcove. A precise definition is given in Section 3; see also Figure 2.1. In this paper, by
a blade arrangement we mean a superposition of a number of copies of ((1, 2, . . . , n)) on the
vertices of a given hypersimplex ∆k,n, where 2 6 k 6 n− 2.

We will see that any blade arrangement induces an (in general not matroidal, possibly triv-
ial) subdivision. Sometimes this subdivision is matroidal; in fact, we establish an equivalence

https://www.combinatorial-theory.org
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between weakly separated collections and a particularly well-behaved subclass of blade arrange-
ments, where the maximal cells are, borrowing terminology from physics, planar in nature:
they are always positroid polytopes with respect to the given cyclic order. In this work, our use
of blades and their arrangements has motivation coming from several areas, including trop-
ical geometry, moduli spaces and matroid subdivisions [AB07, BD92, DS04, LF19, Hor16,
Laf03, OPS19, Sch18, Spe08, Spe09] and convex geometry and combinatorics (specifically
plabic graphs and alcoved polytopes) [GP17, GPW19, KK21, LP07, LP].

It is also motivated by recent work [CEGM19b] of Cachazo, Guevara and Mizera and the au-
thor, to generalize the Cachazo–He–Yuan (CHY) formulation [CHY14a, CHY14b] of Quantum
Field Theory from CP1 to CPk−1, establishing close contact with the tropical Grassmannian,
and in particular the positive tropical Grassmannian. See also [CR20, DFGK20, SG19]. An
expanded discussion is included in Section 1.1.

Blades were first defined by Ocneanu in [Ocn17]; see Definition 2.1 and Proposition 2.3 for
precise statements, and our previous work [Ear18], where their study was initiated. In particular,
there it was shown that blades satisfy a Minkowski sum decomposition akin to that of polyhedral
cones; additionally a filtered basis was introduced which has some intriguing enumerative prop-
erties involving a conjecturally symmetric unimodal generating function. The maximal cells of
the subdivision induced by a blade coincide with the tangent cones to faces of the permutohedron
[Pos09]; and they are closely related to the family of polytopes studied by Pitman-Stanley [SP02].

For any n-cycle (σ1, . . . , σn), the blade ((σ1, . . . , σn)) is isomorphic to the tropical hyper-
plane defined by min{x1, . . . , xn} (see Proposition 2.11), lifted to some affine hyperplane sec-
tion where x1 + · · ·xn = r, over the tropical torus Rn/(1, 1, . . . , 1)R, such that all of its edges
are “twisted” in the direction of roots ei − ej , rather than in the coordinate directions ei. This
twist will turn out to be exactly what is necessary to guarantee compatibility with constructions
involving matroid subdivisions and matroids more generally. In this paper we study certain re-
stricted arrangements of the blade ((1, 2, . . . , n)) on the vertices eI1 , . . . , eIm of hypersimplices

∆k,n =

{
x ∈ [0, 1]n :

n∑
i=1

xi = k

}
,

for k = 2, . . . , n− 2.
Any such an arrangement induces a (possibly trivial) subdivision of the hypersimplex ∆k,n

into polytopes Π1, . . . ,Πt whose facet inequalities are of the form xi+1 + · · ·+ xj = rij; such a
polytope is isomorphic to an alcoved polytope, in the sense of [LP07].

We shall require all polytopes Πi to be matroid (in particular positroid) polytopes; in this case
we call the arrangement of blades matroidal. In fact, in Theorem 4.11 we prove that this condi-
tion is equivalent to asking that the vertices eI1 , . . . , eIm define a weakly separated collection of
k-element subsets {I1, . . . , Im}.

The basic example of a blade arrangement that is not matroidal is given in Example 2.10,
where the octahedron ∆2,4 is fully triangulated by inducing a subdivision from an arrangement
of two blades that induce two incompatible 2-splits; these two blades are arranged on the vertices
respectively e1 + e3 and e2 + e4, of ∆2,4. The key feature which we point out is that, as a pair,
the vertices fail to be weakly separated. In the usual geometric interpretation for k-element
subsets, c.f. [OPS15], two k element subsets I and J are weakly separated if there exists a chord
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separating the sets I \J and J \I when drawn on a circle. In Section 2 we recall basic properties
of blades from [Ear18], and show that they are isomorphic to tropical hyperplanes; their explicit
presentation as tropical hypersurfaces is given. Then we introduce planar matroid subdivisions
and show that they are refined by the alcove triangulation from [LP07]. Section 3 contains the
first main result, Theorem 3.5.

This paper originated as an outgrowth of efforts to develop a systematic understanding of
the CPk−1 generalization [CEGM19b] of the scattering equations [CHY14a] building on the
existing explicit results for k = 3 and n = 6, 7, 8, see [CR20, DFGK20, SG19].

To that end, we point out that Lemma 4.2 could be used to compute, for each maximal weakly
separated collection of vertices in ∆3,n, a tree arrangement in the sense of [HJJS09]. We illustrate
how this could work in Section 5.

1.1. Physical Motivation

Let us explain more carefully how this work came about, as motivated by recent developments in
theoretical particle physics. In this context, the starting point is the Cachazo–He–Yuan (CHY)
formalism [CHY14a], which has at its heart the scattering equations,∑

b6=a

sa,b
σa − σb

= 0,

for each a = 1, . . . , n, having fixed values of the kinematic data, with Mandelstam invariants
(sa,b), satisfying sa,a = 0 and

∑n
a=1 sa,b = 0. These form a system of equations on the con-

figuration space of n punctures σ1, . . . , σn ∈ CP1 modulo projective equivalence, that is, on
the moduli space of n-pointed stable curves M0,n. The scattering equations lead to compact
formulas for the calculation of scattering amplitudes for a large number of quantum field theo-
ries, including the biadjoint scalar, the nonlinear sigma model, special Galileon, and Yang–Mills
[CHY15]. In [CEGM19b], Cachazo, Guevara, Mizera and the author (CEGM) completed the
CHY formalism, with a generalization of the scattering equations, replacing CP1 with CPk−1
for all k > 2. Additionally, CEGM introduced the so-called generalized biadjoint scalar partial
amplitudes, certain

(
n
k

)
−n parameter rational functions, denotedm(k)

n (α, β) for all (k, n) satis-
fying 2 6 k 6 n− 2, for pairs of cyclic orders α, β on {1, . . . , n}. The first cases of m(k)

n (α, α)

(or for short m(k)
n ) with α = (12 · · ·n) had been evaluated in within the span of about eight

months, including for

(k, n) ∈ {(3, 6), (3, 7), (3, 8), (3, 9), (4, 8), (4, 9)},

using a second formulation of m(k)
n in terms of certain Generalized Feynman Diagrams [BC20,

CGUZ19], as implemented using arrays of metric trees. See [HRZ20] for a different approach,
and more data. Here m(k)

n is a rational function of homogeneous degree−(k− 1)(n− k− 1) in
a certain collection of

(
n
k

)
−nMandelstam invariants sJ , for k-element subsets J of {1, . . . , n}.

The systematic evaluation of m(k)
n in general for any k > 3 is a seemingly fantastically difficult

problem due to the inherent complexity of the locus of singularities, which are known to be
intimately connected to the rays of the positive tropical Grassmannian Trop+G(k, n). There is
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a pressing need to develop a systematic approach to calculate m(k)
n for k > 3 and n large, but it

is quite a formidable problem using existing techniques.
The aim of this work is to introduce some combinatorial techniques that will help investigate

the properties of m(k)
n . Let us sketch a brief outline of what such a systematic approach might

look like.
By translating the height functions h((1,2,...,n)) introduced in Section 2.1 around the vertex set

of ∆k,n, one constructs the planar basis [Ear19]

{ηJ(s) : J = {j1, . . . , jk} is nonfrozen}

of linear functions ηJ(s) on the kinematic space (herem(k)
n is a homogeneous rational function on

the kinematic space). The kinematic space is a codimension n subspace of isomorphic to R(n
k);

it carries information about the scattering process and that m(k)
n is a function on this space. The

functions ηJ help to organize the poles ofm(k)
n more systematically; in fact, on any hyperplane of

the form ηJ(s) = 0 one encounters a pole. Now ηJ is generically dual to the height function over
the vertices of ∆k,n which is linear except on the blade ((1, 2, . . . , n)), translated to the vertex
ej1 + · · ·+ ejk of ∆k,n. For example, one of the coarsest positroidal subdivisions of ∆3,6, having
exactly three maximal cells, is induced by the translation of the height function h((1,2,3,4,5,6)) to
the vertex e2 + e4 + e6 of ∆3,6, so that the height of a given vertex ei + ej + ek maps onto the
coefficient of sijk in

η246(s) =
1

6
(6s123 + 5s124 + 4s125 + · · ·+ s245 + 5s256 + 6s345 + 5s346 + 4s356 + 3s456) ,

and one can check that modulo the relations induced by lineality (known in physics as generalized
momentum conservation), ∑

{i,j,k}3a

sijk = 0

for each a = 1, . . . , n, then one has the more familiar expression discovered in [CEGM19b],

η246 = s156 + s256 + s345 + s346 + s356 + s456.

Here the sijk’s are parameters, called Mandelstam invariants, as {i, j, k} runs over all 3-element
subsets of {1, . . . , n}.

This work had an empirical origin, going back to numerical computations in [CEGM19b],
for m(3)

6 . First, when the kinematic data (s) approaches the hyperplanes ηijk(s) = 0 in the
kinematic space, then invoking the CEGM formula one finds that the generalized amplitude
m

(3)
6 develops a singularity. Among the first examples that one encounters is the residue

Res[(m
(3)
6 (I, I))]η246=0 =

(
1

η236
+

1

η124

)(
1

η256
+

1

η146

)(
1

η346
+

1

η245

)
. (1.1)

That the residue is a product of not two, but three terms, is a novel and intriguing behavior
from a physical point of view; moreover, a close examination of the eight terms in the expansion
of the product in Equation (1.1), leads to identification of eight weakly separated collections,
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each of size three, all of which form weakly separated collections with {2, 4, 6}. In particular,
one derives that if {2, 4, 6} and some triple {a, b, c} are not weakly separated, that the residue
Res[(m

(3)
6 (I, I))](η246,ηabc)=(0,0) is identically zero. Could this be explained? Is there a more

general statement? Such questions were the starting point for this work.
From a physical point of view, the motivation for the present work can be summarized in

the following prediction: if CEGM amplitudes m(k)
n have a physical meaning then weak separa-

tion becomes the correct generalization of the constraints that unitarity and locality impose on
standard QFT regarding compatible poles.

2. Blades and alcoved polytopes

LetHk,n be the affine hyperplane in Rn where
∑n

i=1 xi = k. For integers 1 6 k 6 n−1, denote
by ∆k,n =

{
x ∈ [0, 1]n :

∑n
j=1 xj = k

}
the kth hypersimplex of dimension n− 1. For a subset

J ⊆ {1, . . . , n}, denote xJ =
∑

j∈J xj , and similarly for basis vectors, eJ =
∑

j∈J ej .
In [Ocn17], A. Ocneanu introduced plates and blades, as follows.

Definition 2.1 ([Ocn17]). A decorated ordered set partition ((S1)s1 , . . . , (S`)s`) of
({1, . . . , n}, k) is an ordered set partition (S1, . . . , S`) of {1, . . . , n} together with an ordered
list of integers (s1, . . . , s`) with

∑`
j=1 sj = k. It is said to be of type ∆k,n if we have additionally

1 6 sj 6 |Sj|−1, for each j = 1, . . . , `. In this case we write ((S1)s1 , . . . , (S`)s`) ∈ OSP(∆k,n),
and we denote by [(S1)s1 , . . . , (S`)s` ] the convex polyhedral cone in Hk,n, that is cut out by the
facet inequalities

xS1 > s1

xS1∪S2 > s1 + s2
... (2.1)

xS1∪···∪S`−1
> s1 + · · ·+ s`−1.

These cones were studied as plates by Ocneanu. Finally, the blade (((S1)s1 , . . . , (S`)s`)) is the
union of the codimension one faces of the complete simplicial fan formed by the ` cyclic block
rotations of [(S1)s1 , . . . (S`)s` , ], that is

(((S1)s1 , . . . , (S`)s`)) =
⋃̀
j=1

∂
(
[(Sj)sj , (Sj+1)sj+1

, . . . , (Sj−1)sj−1
]
)
. (2.2)

Remark 2.2. When there is no risk of confusion, depending on the context we shall use the nota-
tion [(S1)s1 , . . . , (S`)s` ] for the cone inHk,n or for the matroid polytope obtained by intersecting
it with the hypersimplex ∆k,n.

For an interesting use of decorated ordered set partitions that links combinatorics and convex
geometry, see [Kim20], where a proof was given for a conjecture of the author [Ear17] for a com-
binatorial interpretation of the h?-vector of generalized hypersimplices, in terms of decorated
ordered set partitions.
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e1 -e2

e2 -e3

e3 -e1

Figure 2.1: Left: the tripod ((1, 2, 3)). Right: the blade ((1, 2, 3, 4)) as a Minkowski sum of the
two tripods ((1, 2, 3)) and ((1, 3, 4)). See [Ear18] for the proof that such a decomposition exists
in general.

Proposition 2.3 ([Ear18]). Removing one Minkowski summand at a time from each of the ` cyclic
block rotations of [S1, . . . , S`] leads to a rewriting of Equation (2.2) using Minkowski sums, as

((S1, . . . , S`)) =
⋃

16i<j6`

[S1, S2]� · · · [Ŝi, Si+1]� · · ·� ̂[Sj, Sj+1] � · · ·� [S`, S1],

where we use the notation

[Si, Sj] =
{
x ∈ H0,n : xSi

> 0, xSi∪Sj
= 0, x` = 0 whenever ` 6∈ Si ∪ Sj

}
for disjoint (nonempty) subsets Si, Sj of {1, . . . , n}.

Remark 2.4. In Proposition 2.3 we saw that the blade ((S1, . . . , S`)), where by convention we
put s1, . . . , s` = 0, can be conveniently expressed as a union of Minkowski sums. Related
expressions have appeared in the work [CEGM19a] of F. Cachazo, A. Guevara, S. Mizera and the
author in the context of k = 2 leading singularities, where each [i, j] is replaced by a Grassmann-
valued rational function

uij =
(θi − θj)(θi+n − θj+n)

xi − xj
.

Here θ1, . . . , θ2n are anticommuting Grassmann variables. Then the analog of the tripod
((a, b, c)) is the sum

∆abc = uab + ubc + uca.

The analog of a blade ((1, 2, . . . , n)) is the product

∆123∆134 · · ·∆1,n−1,n = ∆T1 · · ·∆Tn−2 =
1

(n− 2)!
(u12 + u23 + · · ·+ un1)

n−2
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=
∑

16i<j6n

u12 · · · ûi,i+1 · · · ûj,j+1 · · ·un1,

where {T1, . . . , Tn−2} is any (oriented) triangulation of a polygon with vertices cyclically la-
beled {1, . . . , n}. These identities are easy to check using basic properties of the ∆abc. See
[CEGM19a] for details; see also [ER19] for connections to representation theory and topology.

2.1. Blades are tropical hypersurfaces

Recall now that a tropical polynomial function p : Rn → R is the minimum of a finite set of
linear functions,

p(x) = min {f1(x), f2(x), . . . , fm(x)} ,

whose graph Z(p) is a piecewise-linear hypersurface in Rn+1. As such, the normal vector to
Z(p) changes direction only across a set of codimension 1 “cracks” inRn. The collection of such
cracks is called a tropical hypersurface V(p), consisting of points in Rn such that the minimum
value is achieved by at least two of the linear forms fi. For details and references of this and
related constructions in tropical geometry, see for instance [SS09].

In what follows we prove that any given blade ((S)) = ((S1, . . . , S`)) ⊂ H0,n, it is equal to
the tropical hypersurface defined by the tropical polynomial

h((S))(x) := min {L1(x), . . . , L`(x)} ,

where Li(x) = xSi+1
+ 2xSi+2

+ · · ·+ (`− 1)xSi−1
.

Proposition 2.5. The blade ((1, 2, . . . , n)) is isomorphic to the tropical hyperplane defined by
the bends of the function p : H0,n → R,

p(y) = min{y1, . . . , yn}.

Proof. Applying the change of variable

(x1, . . . , xn) = (y2 − y1, y3 − y2, y4 − y3, . . . , y1 − yn)/n

and taking y1 + · · ·+ yn = 0, we obtain telescopically

Li(y) = −(yi+1 + yi+2 + · · ·+ yi−1 − (n− 1)yi)/n = yi.

Proposition 2.6. For any ordered set partition S = (S1, . . . , S`), the blade

((S)) = ((S1, S2, . . . , S`))

is a tropical hypersurface inH0,n, defined by the tropical polynomial h((s))(x), that is we have

((S)) = V
(
h((s))

)
.
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Proof. Suppose we are given a point x ∈ H0,n that is simultaneously a minimum of some Li
and Lj , with value say cx. Taking without loss of generality 1 6 i < j 6 `, then

cx = xSi+1
+ 2xSi+2

+ · · ·+ (`− 1)xSi−1
= xSj+1

+ 2xSj+2
+ · · ·+ (`− 1)xSj−1

,

or equivalently
(`− (j − i))xSi∪···Sj−1

= (j − i)xSj∪···Si−1
.

But since inH0,n we have xSi∪···∪Sj−1
+ xSj∪···∪Si−1

=
∑n

i=1 xi = 0, it follows that

`xSi∪···∪Sj−1
= (j − i)xSi∪Si+1···∪Si−1

= 0.

Now, supposing that cx = Li(x) = Lj(x) is a minimum value, then for all p ∈ {1, . . . , n}\{i, j}
we have

xSp+1 + 2xSp+2 + · · ·+ (`− 1)xSp−1 > cx.

Consequently, taking any p ∈ {i, . . . , j − 1}, then

(xSi+1
+ 2xSi+2

+ · · ·+ (`− 1)xSi−1
)− (xSp + xSp∪Sp+1 · · ·+ xSp∪Sp+1∪···∪Sp−2) > 0

(`− (p− i))xS1∪···∪Sp−1 − (p− i)xSp∪···∪S`
> 0,

hence
`xS1∪···∪Sp−1 > (p− i)xS1∪···∪S`

= 0,

and so
xSi∪···∪Sp−1 > 0.

Similarly we find xSj∪···∪Sq−1 > 0 for each q = j, j + 1, . . . , i − 1. Repeating for each
1 6 i < j 6 n and putting everything together, we recover the blade ((S1, . . . , Sk)), as⋃

16i<j6k

{
x : xSi

> 0, xSi∪Si+1
> 0, . . . , xSj

> 0, xSj∪Sj+1
> 0, . . . ; xSi∪···∪Sj−1

= 0
}

=
⋃

16i<j6k

[Si, Si+1, . . . , Sj−1]� [Sj, Sj+1, . . . , Si−1]

=
k⋃
i=1

∂ ([Si, Si+1 . . . , Si−1]) .

Here the last line is in agreement with Definition 2.1.

In what follows, we shall use the notation ((1, 2, . . . , n))p for the translation of the blade
((1, 2, . . . , n)) by p ∈ Rn.

The matroids which encode the vertices of the matroid polytopes [(S1)s1 , . . . , (S`)s` ]∩∆k,n

have appeared under various names, such as for instance nested matroids and Schubert matroids.
For a comprehensive discussion see for instance the recent work [Sch18] and references therein.
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It is not hard to check (or see [Ear18]) that the ` cyclic rotations

[(S1)s1 , (S2)s2 , . . . , (S`)s` ], [(S2)s2 , (S3)s3 . . . , (S1)s1 ], . . . , [(S`)s` , (S`+1)s`+1
. . . , (S`−1)s`−1

],

where s1 + · · · + s` = k, form a complete (simplicial) fan in Hk,n. Moreover, in the case that
the Si are all singletons, then ` = n and (((S1)s1 , . . . , (Sn)sn)) is the set of facets of (a translation
of) the normal fan to a Weyl alcove, namely the simplex inH0,n where

yj1 6 yj2 6 · · · 6 yjn 6 yj1 + 1,

for some permutation (j1, . . . , jn) of (1, . . . , n). Consequently, we shall say in particular that
the blade ((1, 2, . . . , n)) induces the normal fan to the fundamental Weyl alcove which is char-
acterized by

y1 6 y2 6 · · · 6 xn 6 y1 + 1.

2.2. Relations to alcoved polytopes

Recall that we have fixed the cyclic order (1, 2, . . . , n).

Definition 2.7 ([LP07]). A polytope in Rn−1 is said to be alcoved if its facet inequalities are of
the form bij 6 yi − yj 6 cij for some collection of integer parameters bij and cij .

As noted in [LP07], any alcoved polytope comes with a natural triangulation into Weyl al-
coves.

Definition 2.8. A polytopal subdivision Π1 ∪ · · · ∪ Πt = ∆k,n of a hypersimplex ∆k,n is
said to be a matroid polytope if every maximal cell is a matroid polytope; it is moreover pla-
nar if every maximal cell Πi is a positroid polytope, that is, its facets are given by equations
xi+xi+1+· · ·+xi+m = ri,i+m for some integers ri,i+m, where i ∈ {1, . . . , n} and 1 6 m 6 n−2,
where the indices are assumed to be cyclic.

In light of the change of variables y1 = x1, y2 = x1+x2, . . . , yn−1 = x1+· · ·+xn−1 onRn−1,
we shall abuse terminology and call the maximal cells of a planar polytopal subdivision alcoved
polytopes.

In this paper, unless otherwise stated, we consider exclusively arrangements of the blade de-
fined by a single cyclic order, ((1, 2, . . . , n)), not its reflection ((1, n, n−1, . . . , 2)). Nonetheless
we make one basic observation.

Proposition 2.9. Any arrangement of the blades ((1, 2, . . . , n)) and ((1, n, n−1, . . . , 2)) on the
vertices of ∆k,n induces a polytopal subdivision where the maximal cells are alcoved polytopes.
The subdivision is refined by the alcove triangulation.

Example 2.10. The basic example of a non-matroidal blade arrangement is

{((1, 2, 3, 4))e13 , ((1, 2, 3, 4))e24}.
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:

Figure 2.2: Alcove triangulation of the octahedron ∆2,4.

Looking forward to Definition 4.1, note that the sets {13, 24} do not form a weakly separated
collection. See our second main result, Theorem 4.11, for the general criterion for matroidal
blade arrangements in terms of weakly separated collections.

Upon restriction to the second hypersimplex ∆2,4 we obtain the intersections

((1, 2, 3, 4))e13 ∩∆2,4 = ((141231)) ∩∆2,4

((1, 2, 3, 4))e24 ∩∆2,4 = ((121341)) ∩∆2,4,

which together induce the alcove triangulation of the octahedron into A(1, 3) = 4 simplices,
where the A(k − 1, n− 1) is the Eulerian number which counts the number of permutations of
{1, . . . , n− 1} with k − 1 descents. As these each tetrahedron has an edge which is not a root,
the subdivision is not a matroid subdivision. See Figure 2.2.

From Proposition 2.11, it will follow that the maximal cells found in an arbitrary blade ar-
rangement are in general not matroid polytopes as they may have edges which are not roots
ei− ej , but rather contain sums of orthogonal roots, for instance ei− ej + ek− e`. In the “worst
case scenario” the maximal cells may be (n−1)-dimensional simplices, the Weyl alcoves, whose
vertices are among the vertices of the hypersimplex. In particular, in the case when copies of
((1, 2, . . . , n)) are placed on enough vertices of ∆k,n, then the induced subdivision of ∆k,n is
the alcove triangulation [LP07].

We shall need the map on affine hyperplanesHr,n ⊂ Rn induced by

(x1, . . . , xn) 7→ (y1, y2, . . . , yn) = (x1, x12, . . . , x12···n).

Proposition 2.11. The common refinement of all planar matroid subdivisions coincides with the
alcove triangulation of the hypersimplex, see [LP07].

Proof. We first check that the alcove triangulation is a common refinement of the planar matroid
subdivisions, and then we show that it is the unique common refinement.

For a fixed cyclic order, all maximal cells can be pulled back to the tessellation of Rn/
(1, 1, . . . , 1)R with Weyl alcoves, since any planar affine hyperplane cutting through the hyper-
simplex ∆k,n has the form

yj − yi = xi+1 + xi+1 + · · ·+ xj = rij
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for some i 6= j, and for some integer 1 6 rij 6 (j − i)− 1.
To conclude the proof, simply observe that the set of two-block planar matroid polytopes,

that is the planar matroid 2-splits, already have common refinement the alcove triangulation.

Example 2.12. We compute the facet inequalities which define the 11 simplices in the alcove
triangulation of ∆2,5, and recover the adjacency graph for the alcove triangulation in Figure 2.3
from [LP07].

1. Five simplices having two facets in the interior of ∆2,5:

[1213451] ∩ [2314511], [2314511] ∩ [3415121], . . . , [5112341] ∩ [1213451],

that is, respectively,

{x ∈ ∆2,5 : x12 > 1, x23 > 1} , {x ∈ ∆2,5 : x23 > 1, x34 > 1} , . . . ,
{x ∈ ∆2,5 : x51 > 1, x12 > 1} .

2. Five simplices with three facets in the interior of ∆2,5:

[4511231] ∩ [1213451] ∩ [3415121], [5121341] ∩ [2314511] ∩ [4511231], . . .

[3451121] ∩ [5112341] ∩ [2314511],

that is, respectively,

{x ∈ ∆2,5 : x451, x12, x234 > 1} , {x ∈ ∆2,5 : x512, x23, x345 > 1} , . . .
{x ∈ ∆2,5 : x345, x51, x123 > 1} .

3. There is one simplex in ∆2,5 with all five facets in the interior of ∆2,5:

{x ∈ ∆2,5 : x123 > 1, x234 > 1, x345 > 1, x451 > 1, x512 > 1} .

Then, translating the blade ((1, 2, 3, 4, 5)) to the five vertices

e35, e41, e52, e13, e24 ∈ ∆2,5

one induces the full alcove triangulation of ∆2,5.
For instance, looking ahead towards Theorem 3.5,

((1, 2, 3, 4, 5))e35 ∩∆2,5 = ((1020314051)) ∩∆2,5 = ((1231451)) ∩∆2,5,

where ((1231451)) is the affine plane where x123 = 1, which cuts through the interior of the
hypersimplex ∆2,5.
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0 0 1 0 1
0 1 0 0 1
0 1 0 1 0
1 0 0 1 0
1 0 1 0 0

0 1 0 0 1
0 1 0 1 0
1 0 0 1 0
1 0 1 0 0
1 1 0 0 0

1 0 0 1 0
1 0 1 0 0
0 0 1 0 1
0 1 0 0 1
1 0 0 0 1

0 0 1 0 1
0 1 0 0 1
0 1 0 1 0
1 0 0 1 0
0 0 0 1 1

0 1 0 1 0
1 0 0 1 0
1 0 1 0 0
0 0 1 0 1
0 0 1 1 0

1 0 1 0 0
0 0 1 0 1
0 1 0 0 1
0 1 0 1 0
0 1 1 0 0

0 1 0 0 1
0 1 0 1 0
0 1 1 0 0
1 0 1 0 0
1 1 0 0 0

1 0 0 1 0
1 0 1 0 0
1 1 0 0 0
0 1 0 0 1
1 0 0 0 1

0 0 1 0 1
0 1 0 0 1
1 0 0 0 1
1 0 0 1 0
0 0 0 1 1

0 1 0 1 0
1 0 0 1 0
0 0 0 1 1
0 0 1 0 1
0 0 1 1 0

1 0 1 0 0
0 0 1 0 1
0 0 1 1 0
0 1 0 1 0
0 1 1 0 0

Figure 2.3: Dual graph to the alcove triangulation of ∆2,5. Each node represents a simplex in the
alcove triangulation of ∆2,5 and is labeled by its vertices in ∆2,5, listed as rows. Two simplices
are joined by an edge when they share a facet. Thus we have recovered the construction using
circuits in [LP07], Figure 2.

3. Matroid subdivisions and matroidal blade arrangements

Definition 3.1. Let d > 1. A d-split of an m-dimensional polytope P is a coarsest subdivision
P = P1 ∪ · · · ∪ Pd into m-dimensional polytopes Pi, such that the polytopes Pi intersect only
on their common facets, and such that

codim(P1 ∩ · · · ∩ Pd) = d− 1.

If d is not specified, then we shall use the term multi-split.
Note that for a subset I ⊂ {1, . . . , n} with |I| = k, the element eI :=

∑
i∈I ei is a vertex

of ∆k,n.
For any given cyclic order σ = (σ1, σ2, · · · , σn), each k-element subset I = {i1, . . . , ik} ⊂

{1, . . . , n} gives rise to a translation

((σ1, σ2, . . . , σn))eI .
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of the blade ((σ1, σ2, . . . , σn)) by the vector eI . When no cyclic order or translation is specified
we put simply ((1, 2, . . . , n)).

Evidently a polyhedral subdivision P = P1 ∪ · · · ∪Pm into convex polyhedra Pi is uniquely
determined by the union of the convex spans of its internal facets; indeed, in the case
when P = ∆k,n, then P1, . . . , Pm are the m cyclic block rotations of the (nested) matroid poly-
tope [(S1)s1 , . . . , (Sm)sm ] if and only if P is induced by the blade (((S1)s1 , . . . , (Sm)sm)).

Proposition 3.2. The maximal cells in the matroid subdivision induced by a blade

(((S1)s1 , . . . , (S`)s`))

are the ` matroid polytopes

[(S1)s1 , (S2)s2 , . . . , (S`)s` ], [(S2)s2 , (S3)s3 , . . . , (S1)s1 ], . . . , [(S`)s` , (S1)s1 , . . . , (S`−1)s`−1
].

Moreover, a maximal cell [(Si)si , . . . , (Si−1)si−1
] intersects the facet xj = 1 of ∆k,n if and only

if j is not in the last block Si−1.

It is well known [Hir06] see also [HJ09] that the splits of the second hypersimplex ∆2,n are
in bijection with 2-block set partitions {S, Sc} of {1, . . . , n} such that 1 < |S| < n− 1; a direct
translation to our terminology and notation, splits of ∆2,n are induced by blades ((S, T )), where
{S, T} is a set partition of {1, . . . , n} with |S|, |T | > 2.

For the second hypersimplices ∆2,n, there is a compatibility condition for splits to induce
matroid subdivisions, see [Hir06], and [HJ09, Proposition 5.4], by specializing to k = 2. Via
the correspondence between the split (S, Sc) and the blade ((S, Sc)) which induces it we have the
following characterization of matroid subdivisions of ∆k,n which arise by refining collections
of compatible 2-splits.

Corollary 3.3. A pair of blades (((S)1, (S
c)1)) and (((T )1, (T

c)1)) induces a matroid subdivi-
sion of ∆2,n if and only if at least one of the following four intersections is empty:

S ∩ T, S ∩ T c, Sc ∩ T, Sc ∩ T c.

In the case when both blades are planar (i.e. S and T are both intervals on the circle),
then split compatibility of a collection of subsets is equivalent to asking that the corresponding
collection of 2-element subsets be weakly separated. See Theorem 4.11.

Definition 3.4. An arrangement of blades {((1, 2, . . . , n))eI1 , . . . , {((1, 2, . . . , n))eIm} on the
vertices eI1 , . . . , eIm of the hypersimplex ∆k,n is matroidal if every chamber in the induced
subdivision is a matroid polytope.

In Theorem 3.5, our first main result, with respect to the natural order ((1, 2, . . . , n)), given a
vertex eJ we give the explicit formula for the decorated ordered set partition
((S1)s1 , . . . , (S`)s`) ∈ OSP(∆k,n) such that on the hypersimplex the translated blade and the
hypersimplicial blade (((S1)s1 , . . . , (S`)s`)) coincide, that is

((1, 2, . . . , n))eJ ∩∆k,n = (((S1)s1 , . . . , (S`)s`)) ∩∆k,n.

This phenomenon is illustrated in Figure 3.2.
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Theorem 3.5. Let eI be a vertex of ∆k,n and fix an n-cycle, say without loss of generality
σ = (1, 2, . . . , n). Then, the translated blade ((1, 2, . . . , n))eI induces a multi-split matroid
subdivision of ∆k,n, with ` maximal cells, that is trivial precisely when the subset I coincides
with a cyclic interval in {1, . . . , n}:

(((1, 2, . . . , n))eI ) ∩∆k,n = (((S1)s1 , (S2)s2 , . . . , (S`)s`)) ∩∆k,n,

where ((S1)s1 , . . . , (S`)s`) ∈ OSP(∆k,n), constructed explicitly in the proof, satisfies the prop-
erty that ` equals the number of cyclic intervals in I . In particular, the blade induces the trivial
matroid subdivision, if and only if I is a cyclic interval.

Proof. Suppose first that we are given one of the n cyclically contiguous subsets I , which, with-
out loss of generality, we take to be I = {1, 2, . . . , k}. We need to determine the intersection
of

((1, 2, . . . , n))e12···k = ((11, 21, . . . , k1, (k + 1)0, . . . , n0))

with the hypersimplex ∆k,n.
Note that the

(
n
2

)
cones of ((1, 2, . . . , n)) are Cartesian products of pointed cones which are

in hyperplanes in bijection with partitions J ∪ J c = {1, . . . , n}, where J ( {1, . . . , n} is a
cyclically contiguous (nonempty) subset. We have therefore two cases for each decomposition
J ∪ J c = {1, 2, . . . , n}. Without loss of generality, let us assume that J ∩ {1, . . . , k} 6= ∅. The
cases are as follows.

1. J is cyclically contiguous with J ⊆ {1, . . . , k}. Then, from the definition of
((1, 2, . . . , n))eI , we have xJ = |J |, and since we are in a hypersimplex where xj ∈ [0, 1],
the affine hyperplane

H|J |,n = {x ∈ Rn : xJ = |J |, xJc = k − |J |}

does not cut through the interior of ∆k,n, hence neither does the sheet of the blade and so
the induced subdivision is trivial.

2. J is cyclically contiguous with J ∩ {1, . . . , k} and J ∩ {1, . . . , k}c both nonempty. We
have xJ∩{1,...,k} > |J ∩ {1, . . . , k}|, and again the cone does not cut through the interior
of ∆k,n, and the induced subdivision is trivial.

Assuming now that I is not cyclically contiguous, then let

I = {i1, i1+1, . . . , i1+(λ1−1)}∪{i2, i2+1, . . . , i2+(λ2−1)}∪· · ·∪{i`, i`+1, . . . , i`+(λ`−1)},

be its decomposition into cyclic intervals, so that we have λ1 + · · · + λ` = k. Denote Ij =
{ij, ij + 1, . . . , ij + (λj − 1)} where without loss of generality we assume that 1 ∈ I1. Let
(C1, . . . , C`) be the interlaced complement to the intervals I , so that we have the concatenation

(1, 2, . . . , n) = (C1, I1, C2, I2, . . . , C`, I`).

In other words, the Ij are the positions of consecutive one’s, and the Cj are the positions of
consecutive zero’s.
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We claim that

(((1, 2, . . . , n))eI ) ∩∆k,n = (((S1)s1 , (S2)s2 , . . . , (S`)s`)) ∩∆k,n,

where (Ss) = ((S1)s1 , . . . , (S`)s`) ∈ OSP(∆k,n) is the decorated ordered set partition defined
by (Sj, sj) = (Ij ∪ Cj, |Ij|).

To see this, again take a nontrivial set partition {J, J c} of {1, . . . , n} into cyclically con-
secutive sets J and J c, where J = {j1, . . . , jt}, say, with t > 1. We study the intersection
of ((1, 2, . . . , n))eI with the hyperplane UI = {x ∈ Hk,n : xJ = |J ∩ I|}. Here we note that
UI ∩∆k,n ' ∆|J∩I|,|J | ×∆k−|J∩I|,n−|J |.

The intersection of the blade with UI is a (translated) Minkowski sum of (orthogonal) sim-
plicial cones:

((1, 2, . . . , n))eI ∩ UI = [j1, . . . , jt]eJ∩I � [jt + 1, jt + 2 . . . , j1 − 1]eJc∩I .

The first factor [j1, . . . , jt]eJ∩I is characterized by the facet inequalities

xj1 > r1

xj1j2 > r1 + r2
...

xj1···jt−1 > r1 + r2 + · · ·+ rt−1

xj1···jt = r1 + r2 + · · ·+ rt−1 + rt

= |J ∩ I|,

where r` = 1 if j` ∈ J ∩ I , and otherwise if j` ∈ J ∩ Ic = J ∩ (C1 ∪ · · · ∪ C`) then r` = 0.
Now whenever r` = 0, the corresponding inequality

xj1 + · · ·+ xj` > r1 + · · ·+ r`

is implied by the line above it and is redundant; thus, in the decorated ordered set partition j` joins
the (possibly singleton) block containing j`−1. Repeating this argument for all j` such that r` = 0
gives an ordered set partition (S1, . . . , Su) of J , where Sj = Ij ∪ Cj consists of a consecutive
interval of labels Ij corresponding to the positions of 1 in the vector eI , and a consecutive interval
Cj consisting of the positions of 0 in the vector eI , and we have 1 6 u 6 ` − 1. Moreover, the
block Sj is accompanied by sj = |Sj ∩ I| = |Ij|. Repeating the argument for J c and all other
set partitions {J, J c} of {1, . . . , n} into cyclically consecutive intervals, then in the decorated
ordered set partition notation we find the expression ((S1)s1 , . . . , (S)s`).

Consequently, restricting further to the hypersimplex ∆|J∩I|,J ⊂ UI gives

[j1, . . . , jt]eJ∩I ∩∆|J∩I|,J = [(S1)s1 , . . . , (Su)su ] ∩∆|J∩I|,J ,

where we denote by

∆a,J =

{∑
j∈J

tjej ∈ [0, 1]n :
∑
j∈J

tj = a

}
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the hypersimplex, isomorphic to ∆a,|J |, that is supported in the affine subspace indexed by J .
Finally, translating from Theorem 3.14 of [Sch19], any (nontrivial) multi-split of the hyper-

simplex ∆k,n has for its maximal cells the ` > 2 cyclic block rotations of some nested matroid
[(S1)s1 , . . . , (S`)s` ], where ((S1)s1 , . . . , (S`)s`) ∈ OSP(∆k,n). This is precisely the condition
that characterizes the (`-split) matroid subdivision induced by the blade

(((S1)s1 , . . . , (S`)s`)).

Noting that ` is the number of cyclic intervals of 1’s completes the proof.

Example 3.6. For (k, n) = (4, 8),

((1, 2, 3, 4, 5, 6, 7, 8))e1247 ∩∆4,8 = ((1121304150607180)) ∩∆4,8 = ((12823415671)) ∩∆4,8.

Example 3.7. The four chambers of the matroid subdivision induced in ∆4,8 by the blade
((121341561781)), where

((1, 2, . . . , 8))e2468 ∩∆4,8 = ((121341561781)) ∩∆4,8,

are cut out by the facet inequalities respectively

x12 > 1, x1234 > 1 + 1, x123456 > 1 + 1 + 1

x34 > 1, x3456 > 1 + 1, x345678 > 1 + 1 + 1

x56 > 1, x5678 > 1 + 1, x567812 > 1 + 1 + 1

x78 > 1, x7812 > 1 + 1, x781234 > 1 + 1 + 1.

These chambers project under the map (x1, . . . , x8) 7→ (x12, x34, x56, x78) onto the four cham-
bers in the subdivision ((11213141)) of the second dilation of the octahedron{
y ∈ [0, 2]4 :

∑4
i=1 yi = 4

}
in Figure 3.1, with facet inequalities respectively

y1 > 1, y12 > 1 + 1, y123 > 1 + 1 + 1

y2 > 1, y23 > 1 + 1, y234 > 1 + 1 + 1

y3 > 1, y34 > 1 + 1, y341 > 1 + 1 + 1

y4 > 1, y41 > 1 + 1, y412 > 1 + 1 + 1.

Here we have used different variables to emphasize that one set of polytopes is in ∆4,8, while
the other set is in the second dilation of the octahedron ∆2,4.
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(1,1,1,1)

e1-e2

e2-e3

e3-e4

e4-e1

Figure 3.1: The blade ((11213141)) induces a 4-split. From Example 3.7: the blade
((1, 2, 3, 4, 5, 6, 7, 8))e2468 induces the same 4-split of ∆4,8 as the blade ((121341561781)). Here
∆4,8 is viewed via its projection onto the second dilation of the octahedron ∆2,4 (right).

Figure 3.2: Two arrangements of the blade ((1, 2, 3)) on the vertices of a hexagon; vertices
are permutations of (0, 1, 2). Blade arrangement on left (induces the trivial subdivision):
{((122031)), ((102132)), ((112230))}. Blade arrangement on right (induces a 6-chamber sub-
division): {((122130)), ((112032)), ((102231))}. See Example 3.8 for details.

Example 3.8. Figure 3.2 presents the projections of the two arrangements of blades on the
vertices of ∆3,6 onto the vertices of a hexagon in the affine hyperplane in R3 where y123 = 3, via

x 7→ (x1 + x2, x3 + x4, x5 + x6) =: (y1, y2, y3),

where y1, y2, y3 are the coordinate functions on R3.
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Then via this projection we have respectively

{((112130405061)), ((102030415161)), ((102131415060))}
7→ {((122031)), ((102132)), ((112230))}

and

{((112130415060)), ((102130405161)), ((102031415061))}
7→ {((122130)), ((112032)), ((102231))} .

Example 3.9. Consider the tessellation in Figures 3.3, 3.4 and 4.1. Around each of the following
vertices in Figure 3.4 we have tripods oriented with respect to the 3-cycle (1, 2, 3),

{((1, 2, 3))3e1+e2+2e3 , ((1, 2, 3))6e3 , ((1, 2, 3))4e1−3e2+5e3},

while the other three are oriented with respect to the 3-cycle (1, 3, 2):

{((1, 3, 2))3e1+3e2 , ((1, 3, 2))4e1+2e3 , ((1, 3, 2))e2+5e3}.

Figure 3.3: One choice of a (hexagonal) period;
opposite edges of the red hexagon are identi-
fied. Red (medium thickness) edges are seg-
ments of affine hyperplanes, placed at x1−x2 ∈
3 + 6Z, x2 − x3 ∈ 1 + 6Z, x3 − x1 ∈ 2 + 6Z.
Black edges (thickest) in the tiling are segments
parallel to the three root directions ei− ej . Near
the vertices of the (three) weight permutohedra
(with black edges of lengths respectively 1,2,3)
the black shell coincides with a blade.

Figure 3.4: Tessellating with three
generalized (weight) permutohedra.
Here rather than taking rational-
valued coordinates for the point
y, we have dilated the Weyl al-
coves by a factor 6; then the point
y = (3, 1, 2) is reflected across
the (red, medium thickness) affine
reflection hyperplanes placed at
x1 − x2 ∈ 3 + 6Z, x2 − x3 ∈
1 + 6Z, x3 − x1 ∈ 2 + 6Z.
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Corollary 3.10. For any multi-split matroid subdivision S of the hypersimplex ∆k,n, then there
exists a vertex eJ ∈ ∆k,n and a cyclic order (σ1, . . . , σn) on the set {1, . . . , n}, such that

(((σ1, . . . , σn))eJ ) ∩∆k,n

induces S.

Proof. We claim first that S is induced by a unique blade (((S1)s1 , . . . , (S`)s`)), where

((S1)s1 , . . . , (S`)s`) ∈ OSP(∆k,n).

Indeed, as in Theorem 3.5, translating from Theorem 3.14 of [Sch19], any (nontrivial) multi-
split of the hypersimplex ∆k,n has for its maximal cells the ` > 2 cyclic block rotations of some
nested matroid [(S1)s1 , . . . , (S`)s` ], where ((S1)s1 , . . . , (S`)s`) ∈ OSP(∆k,n).

Choose a cyclic order that is compatible with the ordered set partition (S1, . . . , S`) (for in-
stance, put each block in increasing order and concatenate); then the formula from Theorem 3.5
(keeping track of the reordering of σ) we obtain the integers s1, . . . , s` for the decorated permu-
tation ((S1)s1 , . . . , (S`)s`), from which we can read off the vertex eJ of the hypersimplex, and
we find

(((S1)s1 , . . . , (S`)s`)) ∩∆k,n = ((σ1, . . . , σn))eJ ∩∆k,n.

4. Weakly separated arrangements induce matroid subdivisions

We are interested in subsets of the set
(
[n]
k

)
of k-element subsets of {1, . . . , n} which are weakly

separated with respect to the natural cyclic order (12 · · ·n), in the sense of [LZ98].

Definition 4.1 ([LZ98]). Let I, J ∈
(
[n]
k

)
be given.

The subsets I, J are weakly separated if they satisfy the property that no four elements
i1, i2, j1, j2 with i1, i2 ∈ (I \ J) and j1, j2 ∈ (J \ I) have

i1 < j1 < i2 < j2

or one of its cyclic rotations.
If subsets J1, . . . , Jm ∈

(
[n]
k

)
are pairwise weakly separated, then C = {J1, . . . , Jm} is called

a weakly separated collection.

In the usual geometric interpretation for k-element subsets, c.f. [OPS15], I and J are weakly
separated if there exists a chord separating the sets I \ J and J \ I when drawn on a circle.
Identifying each k-element subset J of {1, . . . , n} with the vertex eJ gives rise to a notion of
weak separation for arrangements of vertices of the form {eI1 , . . . , eIm} ⊂ ∆k,n.

For any m-element subset J of {1, . . . , n} where 1 6 m 6 k and any matroid polytope
Π ⊆ ∆k,n, denote by ∂(J,1)(Π) the face of Π where xj = 1 for all j ∈ J . Similarly, if I is an
m-element subset with 1 6 m 6 n− k, then denote by ∂(I,0)(Π) the face of Π where xi = 0 for
all i ∈ I .

Note that in Lemma 4.2, the intersection may be completely uninteresting: it might not even
induce a nontrivial subdivision! Indeed, such degeneration is necessarily present, by the simple
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Figure 4.1: Same as in Figures 3.3 and 3.4, but shifted into the fundamental parallelepiped. The
lengths of the arms extending from the point (3, 1, 2) add to the edge length (= 6) of the ambient
simplex (outlined in green on bottom left). Such subdivisions have appeared in other contexts,
including for instance [Pos09] and [Ocn17].

fact that a weakly separated collection of k-element subsets can have more elements than is
possible for a weakly separated collection of (k − 1)-element subsets.

For our present purposes, we may always discard such intersections when they appear – see
Example 4.3 where such behavior is illustrated.

Lemma 4.2. We have

∂({j},1) (((1, 2, . . . , n))eI ∩∆k,n) = ((1, 2, . . . , ĵ, . . . , n))eI′ ∩ ∂({j},1)(∆k,n),

where if ia < j 6 ia+1 then I ′ = I \{ia+1}, and where the indices are cyclic as usual. Moreover,
if Π ⊆ ∆k,n is any matroid polytope, then for any (nonempty) subset J = {j1, . . . , jt} ∈

(
n
t

)
with t 6 k, then the boundary

∂(J,1)(Π) := ∂({j1},1)(· · · (∂({jt},1)(Π)) · · · )

is independent of the order of composition.

Proof. The independence of the composition order is obvious geometrically. We prove the for-
mula for I ′ when J is a singleton.

Let ((S1)s1 , . . . , (S`)s`) ∈ OSP(∆k,n) be the decorated ordered set partition determined by
the intersection with the hypersimplex,

((1, 2, . . . , n))eI ∩∆k,n = (((S1)s1 , . . . , (S`)s`)) ∩∆k,n.

Let us first suppose that j is in some block Sg, with sg > 2. According to the construction of
Theorem 3.5, the condition sg > 2 means that the cyclic interval containing j in the set I has
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length at least two. From Definition 2.1 it follows immediately that we have, correspondingly,

∂({j},1)
(
(((S1)s1 , . . . , (Sg)sg , . . . , (S`)s`)) ∩∆k,n

)
= (((S1)s1 , . . . , (Sg \ {j})sg−1, . . . , (S`)s`)) ∩ ∂({j},1)(∆k,n)

= ((1, 2, . . . , ĵ, . . . , n))eI\{p} ∩ ∂({j},1)(∆k,n),

where p = j if j ∈ I and otherwise p is the (cyclically) next element after j in I .
For clarity we shall justify the last line by working the two possible cases, respectively j ∈ I

and j 6∈ I , for a particular blade arrangement. With n = 8 and I = {1, 3, 4, 5, 7}, we find

((1, 2, . . . , 8))eI ∩∆5,8 = ((18123453671)) ∩∆5,8,

so that

∂({4},1) (((1, 2, . . . , 8))eI ∩∆5,8) = ∂({4},1) (((18123453671)) ∩∆5,8)

= ((1812352671)) ∩ ∂({4},1)(∆5,8)

= ((1, 2, 3, 5, 6, 7, 8))e1357 ∩ ∂({4},1)(∆5,8).

Here j = 4 ∈ I and we replace I with I ′ = I \ {4}.
Similarly,

∂({2},1) (((1, 2, . . . , 8))eI ∩∆5,8) = ∂({2},1) (((18123453671)) ∩∆5,8)

= ((1813452671)) ∩ ∂({2},1)(∆5,8)

= ((1, 3, 4, 5, 6, 7, 8))e1457 ∩ ∂({2},1)(∆5,8).

Here j = 2 6∈ I and we replace I with I ′ = I \ {3}.
Supposing now that j ∈ Sg with sg = 1, then setting xj = 1 gives for the inequalities

defining the blade,
xSg > sg = 1⇔ x(Sg\{j}) > 0,

which is a trivial consequence that we are in x ∈ ∆k,n (in particular all coordinates of x are
already nonnegative). This means that Sg becomes Sg \ {j} and joins the cyclically next block:

((S1)s1 , . . . , (Sg)sg=1, . . . , (S`)s`) 7→ ((S1)s1 , . . . , ((Sg \ {j}) ∪ Sg+1)sg+1 , . . . , (S`)s`)

= ((1, 2, . . . , ĵ, . . . , n))eI\{p} ,

where if j ∈ I then I ′ = I \ {j}, and otherwise I ′ = I \ {p} where p ∈ I comes cyclically
after j.

Example 4.3. Consider the blade ((1, 2, 3, 4, 5, 6)) arranged on the collection of vertices

{e124, e246, e256, e346}

of ∆3,6. These coincide on ∆3,6 with the blades respectively

((12562341)), ((121341561)), ((12134562)), ((12342561)).
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On the boundary where x3 = 1, say, we find

((12562)), ((1214561)), ((1214561)), ((1241561)).

Discarding the trivial subdivision and deleting duplicates we obtain a pair of compatible splits

((1214561)) ∩ ∂({3},1)(∆3,6) = ((1, 2, 4, 5, 6))e26 ∩ ∂({3},1)(∆3,6)

and
((1241561)) ∩ ∂({3},1)(∆3,6) = ((1, 2, 4, 5, 6))e46 ∩ ∂({3},1)(∆3,6).

In this case this corresponds to the maximal weakly separated collection of 2-element subsets
of {1, 2, 4, 5, 6},

{{2, 6}, {4, 6}}.
Using the rule from Lemma 4.2, setting x3 → 1, the vertex arrangement changes as follows:

e124 7→ e12, e246 7→ e26, e256 7→ e26, e346 7→ e46,

and after removing frozen vertices and removing duplicates we recover the pair {e26, e46} as
above.

In Corollary 4.4 we first review the construction of the decorated ordered set partition from
a vertex eI ∈ ∆k,n from Theorem 3.5, and then state the matroid subdivision on each boundary
component of ∆k,n where xj = 1.

Corollary 4.4. Choose any vertex eI ∈ ∆k,n with cyclic invervals, say,

I = {i1, i1+1, . . . , i1+(λ1−1)}∪{i2, i2+1, . . . , i2+(λ2−1)}∪· · ·∪{i`, i`+1, . . . , i`+(λ`−1)},

so that we have λ1 + · · ·+ λ` = k. Set Ij = {ij, ij + 1, . . . , ij + (λj − 1)}. Let (C1, . . . , C`) be
the interlaced complement to the intervals I , so that we have the concatenation

(1, 2, . . . , n) = (C1, I1, C2, I2, . . . , C`, I`).

By Theorem 3.5 we have

(((1, 2, . . . , n))eI ) ∩∆k,n = (((S1)s1 , (S2)s2 , . . . , (S`)s`)) ∩∆k,n,

where (Ss) = ((S1)s1 , . . . , (S`)s`) ∈ OSP(∆k,n) is the decorated ordered set partition defined
by (Sj, sj) = (Ij ∪ Cj, |Ij|).

By Lemma 4.2, for each j = 1, . . . , n, we have

∂({j},1) (((1, 2, . . . , n))eI ∩∆k,n) = ((1, 2, . . . , ĵ, . . . , n))eI′ ∩ ∂({j},1)(∆k,n),

where I ′ is given by Lemma 4.2.
Then, on the boundary ∂({j},1)(∆k,n) we have the matroid subdivision with maximal cells

the `′ cyclic block rotations of

[(T1)t1 , (T2)t2 , . . . , (T`′)t`′ ]

where ((T1)t1 , (T2)t2 , . . . , (T`′)t`′ ) ∈ OSP
(
∂({j},1)(∆)

)
is defined as follows.
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1. If j ∈ Sa, say, and sa = 1 then replace ((Sa)1, (Sa+1)sa+1) with ((Sa \{j})∪ (Sa+1))sa+1 .
In this case `′ = `− 1.

2. If j ∈ Sa and sa > 2 then replace (Sa)sa with ((Sa \ {j})sa−1). In this case `′ = `.

Now we concatenate the resulting decorated blocks and obtain [(T1)t1 , (T2)t2 , . . . , (T`′)t`′ ].

Remark 4.5. As of this writing, we have not yet considered the natural general question, in
which cases (or if always) one obtains, by restricting to a facet xj = 1 a blade arrangement
which corresponds to a maximal weakly separated arrangement of k-element subsets of an n-
element set, a blade arrangement which corresponds to a maximal weakly separated collection
of (k − 1)-element subsets of an (n − 1) element set. Here we have adopt the convention that
we do not count the “frozen” sets {i, i + 1, . . . , j} as possible elements in a weakly separated
collection. Based in part on experiment we expect the answer to be that a maximal weakly
separated collection of k-element subsets maps to a maximal weakly separated collection of
(k − 1)-element subsets, but the proof was beyond the scope of this paper and is left to future
work.

However we have checked explicitly in Mathematica that maximal weakly separated collec-
tions for ∆3,6 and ∆3,7 map via Lemma 4.2 to respectively maximal weakly separated collections
for ∆2,5 and ∆2,6, where as usual we have to disregard frozen sets and eliminate redundancy.
For instance, for ∆3,7, the 259 maximal weakly separated collections of six 3-element subsets
of {1, . . . , 7} map (with varying multiplicity) to the 14 maximal weakly separated collections
of three 2-element subsets of {1, . . . , ĵ, . . . , 7} for each j = 1, . . . , 7.
Remark 4.6. It is easy to see that if {I, J} ⊂

(
[n]
k

)
is a weakly separated pair, and we have

{I ′, J ′} ⊂
(

[n]
k−1

)
with I ′ ⊂ I and J ′ ⊂ J , then {I ′, J ′} is a weakly separated pair.

Basic considerations in matroid theory imply Proposition 4.7; nonetheless we sketch a proof.

Proposition 4.7. A polytope Π ⊂ ∆k,n with k > 3 is a matroid polytope if and only if every
(nonempty) face ∂({j},1)(Π) ⊆ ∂({j},1)(∆k,n) ' ∆k−1,n−1 is a matroid polytope, for all facets
xj = 1, as j = 1, . . . , n.

Sketch of proof. Translating from [Mau73], the basis exchange relations may be checked on each
octahedral face of the candidate matroid polytope Π ⊆ ∆k,n. In particular, for k > 3, then every
octahedral face of Π is also in some facet ∂({j},1)(Π). The result follows.

Combinatorially speaking, our second main result, Theorem 4.11, shows that blades provide
the vehicle to formulate weak separation for k-element subsets in terms of matroid subdivisions.
Theorem 4.11 also generalizes the notion of compatibility for splits to multi-split matroid sub-
divisions of any hypersimplex.

Once we prove the equivalence for weakly separated pairs in Lemma 4.8 the equivalence for
m-element collections is fairly straightforward to deduce.

Lemma 4.8. Given a pair of vertices eI1 , eI2 ∈ ∆k,n, the blade arrangement

{((1, 2, . . . , n))eI1 , ((1, 2, . . . , n))eI2}

induces a matroid subdivision of ∆k,n if and only if {I1, I2} is weakly separated.
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Proof. Our plan is to induct on k > 2.
So let k = 2 and n > 4. Here the equivalence between weak separation and compatibility

of 2-splits of ∆2,n is obvious, particularly so if the intervals are drawn on a circle. Nonetheless,
for concreteness we include the proof.

Each pair C = {{i1, i2}, {j1, j2}} determines four cyclic intervals,

U = (i1 + 1, . . . , i2), U
c = (i2 + 1, . . . , i1)

V = (j1 + 1, . . . , j2), U
c = (j2 + 1, . . . , j1).

If the pair C is not weakly separated, then we have the cyclic order i1 < j1 < i2 < j2, so
i2 ∈ U ∩ V , j1 ∈ U ∩ V c, i2 ∈ U c ∩ V and j2 ∈ U c ∩ V c, so all four intersections

U ∩ V, U ∩ V c

U c ∩ V, U c ∩ V c

are nonempty. Conversely, if all four intersections are nonempty, we can recover the pairs
{i1, i2}, {j1, j2} by taking the cyclically last elements in each interval U,U c, V, V c. Conse-
quently, we have shown that C is weakly separated if and only if at least one of the four intersec-
tions of Equation (4.1) is empty; by Corollary 3.3 this is exactly the compatibility condition for
2-splits of ∆2,n from [Hir06]. This, together with Theorem 3.5, shows that

((1, 2, . . . , n))ei1,i2 , ((1, 2, . . . , n))ej1,j2

is matroidal if and only if {{i1, i2}, {j1, j2}} is weakly separated. This completes the base step
of the induction.

Now take k > 3 with n > k + 2. Suppose first that {I1, I2} ⊂
(
[n]
k

)
is weakly separated.

Let (S)s = ((S1)s1 , . . . , (S`)s`), (U)u = ((U1)u1 , . . . , (U`)u`′ ) ∈ OSP(∆k,n), as con-
structed in the proof of Theorem 3.5, satisfying

((1, 2, . . . , n))eI1 ∩∆k,n = (((S1)s1 , . . . , (S`)s`)) ∩∆k,n

and
((1, 2, . . . , n))eI2 ∩∆k,n = (((U1)u1 , . . . , (U`′)u`′ )) ∩∆k,n.

Let L = {1, . . . , `} and L′ = {1, . . . , `′} and let

K = {(i, j) ∈ L× L′ : dim
(
[(Si)si , . . . , (Si−1)si−1

] ∩ [((Uj)uj , . . . , (Uj−1)uj−1
)]
)

= n− 1}

be the indexing set for the maximal cells of the subdivision induced by refining the matroid
subdivisions induced by respectively

(((S1)s1 , . . . , (S`)s`)) and (((U1)u1 , . . . , (U`′)u`′ )).

We claim that for each facet ∂({j},1)(∆k,n), the polytopes

{[((Sa)sa , . . . , (Sa−1)sa−1)] ∩ [((Ub)ub , . . . , (Ub−1)ub−1
)] : (a, b) ∈ K}
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are the maximal cells of the subdivisions of ∆k,n induced by ((1, 2, . . . , n))eI1 , ((1, 2, . . . , n))eI2
and that, in particular, these intersections are matroid polytopes.

Now each blade induces separately a matroid subdivision of ∂({j},1)(∆k,n), and by Lemma
4.2 we have

∂({j},1)
(
((1, 2, . . . , n))eI1 ∩∆k,n

)
= ((1, 2, . . . , ĵ, . . . , n))eI′1

∩ ∂({j},1)(∆k,n) (4.1)

and

∂({j},1)
(
((1, 2, . . . , n))eI2 ∩∆k,n

)
= ((1, 2, . . . , ĵ, . . . , n))eI′2

∩ ∂({j},1)(∆k,n). (4.2)

Replacing ((T1)t1 , (T2)t2 , . . . , (T`′)t`′ ) in Corollary 4.4 with respectively

[(Sa)sa , . . . , (Sa−1)sa−1 ] and [(Ub)ub , . . . , (Ub−1)ub−1
]

it follows that the maximal cells induced by the arrangements

((1, 2, . . . , ĵ, . . . , n))eI′1
and ((1, 2, . . . , ĵ, . . . , n))eI′2

.

are respectively

∂({j},1)
(
[(Sa)sa , . . . , (Sa−1)sa−1 ]

)
and ∂({j},1)

(
[(Ub)ub , . . . , (Ub−1)ub−1

]
)
.

But recalling that we have assumed {I1, I2} to be weakly separated, then {I ′1, I ′2} is weakly
separated and it follows inductively that the blade arrangement

{((1, 2, . . . , ĵ, . . . , n))eI′1
, ((1, 2, . . . , ĵ, . . . , n))eI′2

}

is matroidal, and that its maximal (matroid) cells are exactly the intersections

∂({j},1)
(
[((Sa)sa , . . . , (Sa−1)sa−1)]

)
∩ ∂({j},1)

(
[((Ub)ub , . . . , (Ub−1)ub−1

)]
)
.

In view of the identity

∂({j},1)
(
[((Sa)sa , . . . , (Sa−1)sa−1)]

)
∩ ∂({j},1)

(
[((Ub)ub , . . . , (Ub−1)ub−1

)]
)

= ∂({j},1)
(
[((Sa)sa , . . . , (Sa−1)sa−1)] ∩ [((Ub)ub , . . . , (Ub−1)ub−1

)]
)
,

repeating the argument for each j = 1, . . . , n, i.e. for all facets, using Proposition 4.7, it now
follows that the elements in the set

{[((Sa)sa , . . . , (Sa−1)sa−1)] ∩ [((Ub)ub , . . . , (Ub−1)ub−1
)] : (a, b) ∈ K}

are matroid polytopes.
Conversely, if Π1, . . . ,Πt are the maximal cells of the matroid subdivision of ∆k,n that is

induced by a given matroidal arrangement of the blade ((1, 2, . . . , n)) on vertices eI1 , eI2 , it
follows (recall, we are assuming that k > 3) that every facet where xj = 1 for j = 1, . . . , n of
every Πi must also be a matroid polytope.
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Let us now assume to the contrary that {I1, I2} is not weakly separated, i.e. we have

g1, g2 ∈ I1 and h1, h2 ∈ I2

with, cyclically, g1 < h1 < g2 < h2.
Now up to cyclic rotation, I1 and I2 have the form

I1 = {i1, . . . , g1, . . . , g2, . . . , ik}, I2 = {j1, . . . , h1, . . . , h2, . . . , jk}.

Choosing j ∈ {1, . . . , n} such that its cyclic successors in I1 and I2 are not, respectively, in
{g1, g2} and {h1, h2}, then applying the formula from Lemma 4.2, we find that the pair {I ′1, I ′2}
is still not weakly separated, so by induction the blade arrangement

{((1, 2, . . . , ĵ, . . . , n))eI′1 , ((1, 2, . . . , ĵ, . . . , n))eI′2}

on ∂({j},1)(∆k,n) ' ∆k−1,n−1 is not matroidal, hence one of its maximal cells is not a matroid
polytope. But this is a contradiction, since the maximal cells in its induced subdivision are
among the matroid polytopes

{∂({j},1)(Π1), . . . , ∂({j},1)(Πt)}.

Recall that the maximal cells of an arbitrary `-split matroid subdivision of ∆k,n are ` nested
matroid polytopes

[(S1)s1 , (S2)s2 , . . . , (S`)s`)], [(S2)s2 , (S3)s3 . . . , (S1)s1)], . . . , [(S`)s` , (S1)s1 . . . , (S`−1)s`−1
)]

for a decorated ordered set partition ((S1)s1 , (S2)s2 , . . . , (S`)s`)) ∈ OSP(∆k,n) that is uniquely
determined up to cyclic block rotation.

Corollary 4.9. Consider an arbitrary pair Π1,Π2 of multi-splits of ∆k,n with maximal cells the
cyclic block rotations of the nested matroid polytopes

[(Si)si , (Si+1)si+1
, . . . , (Si−1)si−1

], [(Tj)tj , (Tj+1)tj+1
, . . . , (Tj−1)tj−1

]

respectively, where

((S1)s1 , . . . , (S`)s`), ((S1)s1 , . . . , (Sm)sm) ∈ OSP(∆k,n)

are decorated ordered set partitions of hypersimplicial type ∆k,n.
Suppose that there exists a cyclic order σ = (σ1, . . . , σn), together with vertices

eJ1 , eJ2 ∈ ∆k,n such that

(((S1)s1 , . . . , (S`)s`)) ∩∆k,n = ((σ1, . . . , σn))eJ1 ∩∆k,n

and
(((T1)t1 , . . . , (Tm)tm)) ∩∆k,n = ((σ1, . . . , σn))eJ2 ∩∆k,n.

Then, the common refinement of Π1 and Π2 is matroidal if and only if the pair of vertices
eJ1 , eJ2 ∈ ∆k,n is weakly separated with respect to the cyclic order (σ1, . . . , σn).



combinatorial theory 2 (2) (2022), #2 27

Proof. This follows immediately from a translation of Lemma 4.8.
Indeed, suppose that Π1,Π2 are multi-split matroid subdivisions induced by the blades

((1, 2, . . . , n))eJ1 and ((1, 2, . . . , n))eJ2 ,

respectively, where without loss of generality we assume that the cyclic order is the standard one
σ = (1, 2, . . . , n), with eJ1 , eJ2 ∈ ∆k,n.

If the pair {eJ1 , eJ2} is weakly separated, then Lemma 4.8 implies that the arrangement{
((1, 2, . . . , n))eJ1 , ((1, 2, . . . , n))eJ2

}
is matroidal, hence the common refinement of the two multi-splits Π1,Π2 is matroidal. Con-
versely, if the blade arrangement is matroidal then it induces a subdivision that is matroidal; but
this subdivision is the common refinement of Π1,Π2.

Remark 4.10. One can check that the arrangement of blades {((121341561)), ((121561341))} on
∆3,6 is matroidal, that is, together they induce a subdivision of ∆3,6 that is positroidal; however
this affirmative result would not follow from Corollary 4.9 because there is no single cyclic order
compatible with both decorated ordered set partitions (121341561) and (121561341). However,
the analogous property does not hold in general for k > 4: the superposition of the blades

{((121341561781)), ((121781561341))}

on ∆4,8 does not induce a matroid subdivision.

Theorem 4.11. Given a collection of vertices eI1 , eI2 , . . . , eIm ∈ ∆k,n, the blade arrangement

{((1, 2, . . . , n))eI1 , ((1, 2, . . . , n))eI2 , . . . , ((1, 2, . . . , n))eIm}

induces a matroid subdivision of ∆k,n if and only if {I1, . . . , Im} is weakly separated.

Proof. Let {I1, . . . , Im} ⊂
(
[n]
k

)
be arbitrary. The only remaining part of the proof here is to

show that if each arrangement

{((1, 2, . . . , n))eIp , ((1, 2, . . . , n))eIq}

is matroidal for each (distinct) p, q, then the whole arrangement on the vertices eI1 , . . . , eIm is
matroidal.

Let us now suppose that {I1, . . . , Im} is weakly separated.
Choose any octahedral face

F(A,B),n = ∂(A,1)
(
∂(B,0)(∆k,n)

)
= {x ∈ ∆k,n : xa = 1 and xb = 0 for all a ∈ A, b ∈ B}

of the hypersimplex ∆k,n, where A ∈
(

[n]
k−2

)
and B ∈

(
[n]

n−4−(k−2)

)
are disjoint. Now it follows

from Lemma 4.8 that for each (distinct) p, q ∈ {1, . . . ,m}, the blade arrangement

{((1, 2, . . . , n))eIp , ((1, 2, . . . , n))eIq}
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is matroidal, so it induces either the trivial subdivision, or a (planar) 2-split matroid subdivision
Σ(A,B) on F(A,B),n. Consequently each blade ((1, 2, . . . , n))eIp for p = 1, . . . ,m induces on
F(A,B),n either the trivial subdivision or Σ(A,B).

Supposing to the contrary that the whole blade arrangement

{((1, 2, . . . , n))eI1 , ((1, 2, . . . , n))eI2 , . . . , ((1, 2, . . . , n))eIm}

were not matroidal, then some octahedral face would have to be subdivided into the full alcove
triangulation; that is it would be split in two different (nontrivial) ways by some pair

{((1, 2, . . . , n))eIp′
, ((1, 2, . . . , n))eIq′

},

which is a contradiction.

Example 4.12. Consider the non-weakly separated pair of vertices e124, e135 of ∆3,6. Then we
may choose either j = 1 or j = 6 for the boundary, in the proof of Theorem 4.11, and end up
with the same non-weakly separated pair of vertices {e35, e24} of ∆2,5.

Remark 4.13. In light of Theorem 4.11, for matroidal blade arrangements, then “frozen” vertices
which have cyclically adjacent indices, do not change the subdivision of ∆k,n. It follows from
Theorem 4.11 together with the purity conjecture (for k-element subsets), proven independently
in [DKK10, DKK17, OPS15] that all maximal by inclusion weakly separated collections of
vertices of ∆k,n have the same cardinality (k− 1)(n− k− 1) +n, so that for general ∆k,n, each
maximal (by refinement, and by size) matroidal blade arrangement consists of (k−1)(n−k−1)
copies of the blade ((1, 2, . . . , n)) arranged on a weakly separated collection of vertices of ∆k,n.

In the final two examples we aim to illustrate the nontriviality of our criterion in Corollary
4.9 even for 2-splits; more examples follow in Section 5.

Example 4.14. For n = 7, from the (non-)weakly separated pair

W = {e124, e135}

we obtain the blade arrangement

{((125672341)), ((1671231451))}.

It is not matroidal, since one of the maximal cells, the alcoved subpolytope of ∆3,7

Π = {x ∈ ∆3,7 : x12567 > 2, x167 > 1, x16723 > 2}

is not a matroid polytope. This could be seen by explicit computation of the convex hull using a
software package: the edge connecting the vertices e124, e135 is an edge of Π and it is in the non
root direction

e124 − e135 = e24 − e35.
Equivalently, more practically, one can check explicitly that the matroid basis exchange relations
fail (for instance) for the pair of bases {1, 2, 4}, {1, 3, 5} of the (candidate) matroid correspond-
ing to Π.



combinatorial theory 2 (2) (2022), #2 29

Example 4.15. The weakly separated pair {e125, e134} induces a matroidal blade arrangement:

((12623451)), ((15612342)).

These induce compatible splits. On the other hand, a blade arranged on the non-weakly separated
arrangement of vertices {e124, e235}, induces a subdivision which is not matroidal:

{((12562341)), ((12362451))}

The difference between these two pairs of splits is not obvious from their equations alone, though
the criterion is known for 2-splits of any hypersimplex [HJ09], but here the criterion (for planar
matroid subdivisions), that the vertices of a matroidal blade arrangement define a weakly sepa-
rated collection, is purely combinatorial and as we have seen in Corollary 4.9 extends naturally
to multisplits.

5. From matroid subdivisions to their boundaries: tree arrangements

In this section we present an extended example, in which we work out in detail how Lemma
4.2 may be used to pass from (1) a maximal weakly separated collection of 3-element subsets of
vertices of ∆3,7 through (2) a maximal matroidal blade arrangement, to obtain (3) an arrangement
of 7 trees which are dual to the respective matroid subdivisions induced on the n boundary copies
of ∆2,6.

However, we remark that using Lemma 4.2 one can pass directly from a weakly separated
collection of vertices on ∆k,n to a weakly separated collection of vertices on ∆k−1,n−1.

With respect to the given cyclic order σ = ((1, 2, 3, 4, 5, 6, 7)), the weakly separated collec-
tion C = {e124, e247, e267, e347, e457, e467} of vertices of ∆3,7 (see Figure 5.1) determines a col-
lection of decorated ordered set partitions; we shall compute the matroid subdivisions induced
by the corresponding blades on the seven boundary copies of ∆2,6 ' ∂({j},1)(∆3,7) ⊂ ∆3,7 and
then dualize to get a collection of planar trees.

Denote βJ = ((1, 2, . . . , n))eJ for J ∈
(
[n]
k

)
.

The matroid subdivision corresponding to C is induced by the superposition of the following
blades:

β124 ∩∆3,7 = ((125672341)) ∩∆3,7

β247 ∩∆3,7 = ((1213415671)) ∩∆3,7

β267 ∩∆3,7 = ((121345672)) ∩∆3,7 (5.1)
β347 ∩∆3,7 = ((123425671)) ∩∆3,7

β457 ∩∆3,7 = ((123452671)) ∩∆3,7

β467 ∩∆3,7 = ((123415672)) ∩∆3,7.
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{1, 2, 4}
{2, 4, 7} {1, 2, 3}

{1, 2, 7}

{2, 3, 4}

{2, 6, 7}

{3, 4, 7}

{4, 5, 7}

{4, 6, 7}

{1, 6, 7}

{5, 6, 7}

{3, 4, 5}

{4, 5, 6}

Figure 5.1: Locations of blades in the arrangement C ∪ {e123, e234, . . . , e712} =
{e124, e247, e267, e347, e457, e467, e123, e234, . . . , e712} in the hypersimplex ∆3,7. Thus, in the
graph, which is shown embedded in the 1-skeleton of ∆k,n, two vertices are connected by an
edge if and only if they differ by a root ei − ej . See also [GPW19].

We obtain via Lemma 4.2 the seven blade arrangements:

∂1(C) = {e24, e47, e57} 7→ {((25671341)), ((23415671)), ((23451671))}
∂2(C) = {e14, e47, e57} 7→ {((15671341)), ((13415671)), ((13451671))}
∂3(C) = {e27, e47, e57} 7→ {((12145671)), ((12415671)), ((12451671))}
∂4(C) = {e27, e37, e57} 7→ {((12135671)), ((12315671)), ((12351671))}
∂5(C) = {e24, e27, e47} 7→ {((12671341)), ((12134671)), ((12341671))}
∂6(C) = {e24, e27, e47} 7→ {((12571341)), ((12134571)), ((12341571))}
∂7(C) = {e24, e26, e46} 7→ {((12561341)), ((12134561)), ((12341561))}.

Note again that one may use Lemma 4.2 to pass directly from the weakly separated collection

C = {e124, e247, e267, e347, e457, e467}

of vertices of ∆3,7 to seven weakly separated collections of vertices of ∆2,6, after deleting frozen
and redundant vertices.
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These can in turn be represented by the arrangement of seven trees in Figure 5.2. The three 2-
block set partitions in each line above are determined by the internal edges of the corresponding
tree below, as can be seen directly by inspection.

1

2

3

5

6

4

1

2

3

5

4

1

2

3

4

7

6

7

3

4

1

5 6

7
2

3

4 5 6

7 1

2 4 5 6

7
1

2 3 5 6

7

∂1(C) ∂2(C) ∂3(C) ∂4(C)

∂5(C) ∂6(C) ∂7(C)

Figure 5.2: Matroid subdivision induced by the blade arrangement of Equation (5.1), represented
as an arrangement of trees dual to the matroid subdivisions induced on the seven boundary copies
of ∆2,6.

In Examples 5.1 and 5.3 we summarize some preliminary findings for ∆4,8, derived by enu-
merating weakly separated collections of vertices.

Example 5.1. Note that for ∆4,8, where there are
(
8
4

)
− 8 = 62 nonfrozen vertices, maximal

weakly separated collections of vertices have (4− 1)(8− 4− 1) = 9 elements.
We find 1048 weakly separated pairs. The new feature at k = 4 is the 4-split induced by the

blade βe2468 .
One interesting feature is that exactly 24 such pairs contain the vertex e2468, while analo-

gously for (3, 6) there are 6 weakly separated pairs containing the vertex e246.
Below we give one of the more complex matroidal blade arrangements, derived from the

maximal weakly separated collection of vertices

{e1248, e1268, e1468, e2348, e2468, e3458, e3468, e4568, e4678} .

From this we obtain the maximal matroidal blade arrangement (here “≡” means that the two
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sides agree when intersected with the hypersimplex ∆4,8):

β1248 ≡ ((1256783341))

β1268 ≡ ((1278334561))

β1468 ≡ ((17812341561))

β2348 ≡ ((1234356781))

β2468 ≡ ((121341561781))

β3458 ≡ ((1234536781))

β3468 ≡ ((12342561781))

β4568 ≡ ((1234563781))

β4678 ≡ ((1234156783)).

Remark 5.2. Another new feature of k = 4: while for ∆3,6 the superposition of the blades
((121341561)) and ((121561341)) induce a matroid subdivision, for ∆4,8 the analogous property
does not hold: by directly checking the basis exchange relations on the maximal cells, one can
verify that the blades ((1213415612781) and ((121781561341)) induce a subdivision that is not
matroidal.

We conclude with one of the simplest maximal matroidal blade arrangements: here each
blade ((1, 2, . . . , n))eJ induces a 2-split of ∆4,8.

Example 5.3. Let

C = {e2678, e3678, e2378, e4678, e3478, e2348, e4578, e3458, e4568} .

This corresponds to the collection of blades

((1213456783)), ((1231456783)), ((1232456782)), ((1234156783)), ((1234256782)),

((1234356781)), ((1234526782)), ((1234536781)), ((1234563781)).
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