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Abstract

Semiclassics, Large Operators, and Holography

by

Adolfo Holguin

The planar expansion of large N gauge theories has been a remarkably fruitful idea,

inspiring many developments in theoretical physics. Perhaps the most important real-

ization of this idea is the duality between critical string theories in anti de-Sitter spaces

and large N conformal field theories, giving a window into otherwise intractable phenom-

ena in quantum field theories. One of the most promising aspects of this duality is the

possibility of studying truly quantum aspects of gravitational systems with conventional

tools from quantum mechanics. A major obstacle to this endeavor lies in the fact that

the most interesting questions about quantum gravity in anti de-Sitter space are related

to issues that are beyond current techniques in conformal field theory. This thesis deals

with various semiclassical aspects of large operators in holographic conformal field theo-

ries, focusing on the study of very large (near-)BPS operators in N = 4 super Yang-Mills

theory and their corresponding gravitational avatars.
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Chapter 1

Introduction

Over the past 26 years, the AdS/CFT correspondence [1] has enjoyed a vast success in

elucidating aspects of strongly coupled gauge theories and quantum theories of gravity

in anti-de-Sitter space. One of the crowning successes has been the determinantion of

conformal dimensions of non-protected single trace operators in the planar limit of N = 4

super Yang-Mills [2] thanks to the discovery of integrable structures in the theory [3, 4],

which was in part influenced by the study of stringy states inN = 4 SYM [5]. This opened

up the possibility of precision tests of the correspondence beyond the supergravity regime.

More recently there has been a renewed interest in the study of black hole microstates

from holographic CFTs, fueled by recent computations of supersymmetric indices which

confirm that supersymmetric state counting on the dual CFT agrees with the entropy of

supersymmetric black holes [6, 7, 8].

This leads naturally to the study of large charge (BPS) operators, from which one can

hope to learn about the structure of supersymmetric black holes. One of the main set-

backs to this program has been the lack of efficient computational tools to address the

combinatorial complexity in the large N limit. Progress in this direction started with the

study of BPS operators in N = 4 SYM [9, 10, 11] with a collective coordinate approach.

1



Introduction Chapter 1

These results suggest that the large N limit of large charge operators might be tractable

via semi-classical techniques, leading to an alternative expansion to the t’ Hooft limit for

baryonic operators [12]. Signs of this expansion have also been observed in state counting

computations [13, 14], indicating a delicate cancellation of states at finite but large N .

In holographic models, large charge operators are known to describe extended objects on

the bulk AdS space [15], or back-reacted geometries [16]. Their excitations correspond

to open strings stretched between giant graviton branes, or closed strings on non-trivial

backgrounds. These two descriptions (in terms of open and closed strings) are valid

in different regimes of parameter space, depending on the energy of the state, and a

geometric description often appears even in the free limit gYM = 0. [17, 18, 19].

1.1 Effective Strings

One of the first phenomenologically inspired models for the strong nuclear force came

from the observations of dual resonance of scattering amplitudes of hadrons

M(s, t) = M(t, s). (1.1)

Additionally, particles generated at experiments all seem to fall into families of Regge

trajectories:

ℓ ∼ E2 (1.2)

This led Veneziano to propose a functional form for M(s, t)

M(s, t) =
Γ(α(s))Γ(α(t))

Γ(α(s) + α(t))
, (1.3)

2



Introduction Chapter 1

with α(s) being a linearly decreasing function. In order to explain this behavior, Nambu

and Susskind noted that such an amplitude could be reproduced not by point-particle

scattering, but the scattering of rotating string-like objects. By now it is well understood

that these qualitative observations are explained by the low energy dynamics of QCD;

the particles generated by high energy scattering experiments are color charge neutral

bound states of strongly interacting quarks and gluons. This is the phenomenon of color

confinement, which remains as one of the least understood features of QCD.

The most powerful conceptual developments towards understanding the low energy dy-

namics of non-abelian gauge theories come from analogy with models of superconduc-

tivity. A characteristic feature of a superconducting medium is its ability to expulse

magnetic field lines from itself. Some materials (type II superconductors) may addition-

ally have intermediate phases of superconductivity in which an external magnetic field

partially penetrates the medium, forming thin flux tubes known at Abrikosov-Nielsen-

Olensen vortices. This phenomenon of magnetic is believed to be qualitatively similar to

the color confinement of Yang-Mills theory.

These observations pose the following puzzle: how do the degrees of freedom of gauge

theories rearrange themselves to describe extended (string-like) objects? This is duality

in which a seemingly fundamental ’microscopic’ description of a system can be described

in terms of completely different ’macroscopic’ ingredients. In the sharpest instances of

duality, the distinction between macroscopic and microscopic variables is often meaning-

less, and neither description is more fundamental than the other. One of the goals of

current theoretical physics is to realize this duality between string-like variables and field

variables in QCD.

3



Introduction Chapter 1

1.1.1 The string action as an EFT: Long strings

Suppose we wanted to the describe an effective theory for a long string like excitation

in some Poincaré invariant UV theory. The most general effective action that describes

such a system can be thought of as a theory of Goldstone bosons for spontaneously broken

Poicaré symmetry [20]

ISO(1, D − 1) → SO(1, 1)× SO(D − 2). (1.4)

Restricting to bosonic string excitations, this is the theory of D − 2 Goldstone bosons

X i corresponding to the unbroken rotational symmetry of a long straight string

X i → Ri
jO

j, (1.5)

while the unbroken SO(1, 1) is the Lorentz group on the string worldsheet, acting on

coordinates along the string as usual:

σa → Λabσ
b. (1.6)

The remaining broken Poincaré symmetry generators are non-linearly realized and mix

the worldsheet Lorentz symmetry with the global SO(D − 2) symmetry. The EFT is

generically composed of an infinite sum of couplings weighted by theory dependent Wilson

coefficients. The symmetries force all the terms in the effective action to be geometric

invariants of the worldsheet:

Seff =

ˆ
d2σ

√
h×

(
1

ℓ2s
+R + . . .

)
, (1.7)

4



Introduction Chapter 1

where hab is the induced metric on the string worldsheet. The first term in the EFT

expansion defines the relevant length scale of the problem ℓs, which controls the effective

tension of the string. Higher curvature terms can be organized as an expansion in the

string tension, with order one coefficients that are theory dependent. In the infrared,

the dynamics of this family of models is universal and is governed by the Nambu-Goto

action.

SNG =
1

ℓ2s

ˆ
d2σ
√

det (∂aXµ ∂bXνηµν) (1.8)

This is the theory describing relativistic string moving in D Minkowsky space. One now

well appreciated fact is that this theory is not a well defined QFT unless the strings

propagate in D = 26 dimensions. Surprisingly, the effective description is able to capture

many quantitative aspects of the dynamic of flux tubes in lattice gauge theory simulations

for D ̸= 26.

1.2 Large N QCD and the ’t Hooft Limit

One of the first concrete theoretical clues that strongly coupled gauge theories are

described by theories of strings came from ’t Hooft’s study of large N QCD [21]. The

main insight of ’t Hooft was to realize that the correct expansion for large N QCD was

not in terms of the gauge coupling gYM but instead in terms two parameters

λ = g2YMN

gs ∼
1

N2

(1.9)

where gs is the parameter controlling corrections associated to non-planar Feynman dia-

grams. In the large N limit, the dominant contributions to amplitudes come from planar

diagrams, and non planar corrections organize themselves in a genus expansion suggestive

5



Introduction Chapter 1

of a string worldsheet description. In the ’t Hooft limit

N → ∞

g2YM → 0

λ = g2YMN fixed,

(1.10)

the expectation was that the dynamics of QCD reduced to a theory of free mesons,

since 1
N

is the only true parameter of the theory. In this limit only planar Feynman

diagrams contribute to observables, with λ serving as a vertex counting parameter. In

the weak coupling regime λ≪ 1, the theory is described by tiled Riemann surfaces with

no handles. Equivalently, the Feynman diagrams appear to form skeletons for some kind

of string worldsheet theory, with each vertex being associated to a hole on the surface.

The hope was that in the strong coupling regime λ≫ 1, the vertices would condense to

form a continuous Riemann surface. From the point of view of the putative string, the

vertices of the dual Feynman diagrams are associated to insertions of vertex operators,

which one can associate to a non-trivial background for the string. This background

would have some curvature scale L, and the geometric string picture would arise when

the characteristic size of the strings is much smaller that the curvature of the background

λ−1 ∼ ℓs/L≪ 1. (1.11)

The appeal of this idea is that one would then be able to compute correlation func-

tions involving mesons at strong coupling using a weakly coupled semi-classical string

description.

6
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1.3 A digression: how to solve every problem that

has been solved.

What makes a model solvable? Perhaps the most well-known exactly solvable model

is the XXX-Heisenberg magnet

HXXX = −J
∑
<ij>

σ⃗i · σ⃗j, (1.12)

famously solved by Hans Bethe. This model describes a system of L spin 1
2
particles on

a chain, interacting through spin-spin couplings with their nearest neighbor. One of the

peculiarities of this model is that the analogous model for spins on a square lattice has

evaded an analytic solution, despite their superficial similarities. This is now understood

to be a consequence of the quantum integrability of the model. A (quantum) integrable

system is usually characterized by having enhanced symmetries that highly constraint

the dynamics of the model. These constraint reduce the spectral problem for the system

into sets of algebraic equations that relate the conserved quantum numbers of the system.

The process of distilling these sets of equations for a particular integrable system is known

colloquially as the Bethe Ansatz. Some generic features of quantum integrable systems

are:

• They live in 1+1 spacetime dimensions

• Their S-matrices do not admit production of particles in scattering processes.

• Their S-matrices factorize into products of two-excitation S-matrices.

• Their S-matrices satisfy some form of the Yang-Baxter equation

S12S13S23 = S23S13S12. (1.13)

7



Introduction Chapter 1

All these properties are not mutually independent, but are consequences of the integra-

bility of the system. The power of these properties is that they allow for a full solution

of the model, given that one can solve a complicated set of algebraic equations. For

instance for a periodic chain of lenght L, the overall phase shift of an excitation as it

is taken around the chain is related to the factorized scattering matrices associated to

crossing other excitations by the Bethe ansatz equations

e−ipiL =
∏
j ̸=i

S(pi, pj). (1.14)

In particular he symmetries of the system allow for all other quantum numbers to be

determined in terms of the momenta pi through a dispersion relation that is determined

from the single excitation spectrum:

E(p1, . . . , pn) =
n∑
i=1

E(pi). (1.15)

1.4 Feynman’s Dream

Can we hope to solve QCD? At first glance, the answer to this question is a resounding

no, since

• QCD is a 3+1 dimensional interacting theory.

• There certainly is particle production in the S-matrix of QCD.

• There is not enough symmetry to factorize the S-matrix into simple products.

• Yang-Baxter equation cannot be made to hold without forcing the theory to be

free.

8
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Yet we believe that QCD is a well-defined model which should be able to predict the

spectra of for instance hadrons. The intuition of Feynman was to consider deep inelas-

tic scattering processes in QCD. By scattering a suffliciently high energy electron off a

hadron, the hadron can fragment and emit a high energy hadronized quark. The motion

of the quark can then be split into hard (high momentum) directions, and soft transverse

directions. The physics along the high momentum directions is simple since the gauge

coupling becomes small at high energies. Along the remaining two transverse directions

to the quark, maybe the soft physics could become integrable in some regime. These

ideas were then partially realized by work of Balitsky-Fadin-Kuraev-Lipatov. Since pro-

cesses in which hadrons split are further supressed by 1
N

in QCD with N colors, the large

N limit became a natural target to look for an integrable toy model for QCD.

1.5 Permissions and Attributions

1. The content of chapters 3 and 4 are the result of a collaboration with David Beren-

stein, and has previously appeared in the Journal of High Energy Physics [22, 23].

It is reproduced here with the permission of the International School of Advanced

Studies: https://jhep.sissa.it/jhep/help/JHEP/CR_OA.pdf. The content of

chapter 5 are partly based on work with David Berenstein. Chapter 6 is the result

of collaboration with Shannon Wang and has appeared in the Journal of High En-

ergy Physics [24, 25]. The results of chapter 7 are the result of collaboration with

Wayne W. Weng and appeared in the Journal of High Energy Physics [26]. The

results of chapter 8 appeared previously in [26].

9
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Chapter 2

Basics of AdS/CFT

2.1 Conformal Field Theory

Quantum field theory is perhaps the most successful tools of modern theoretical

physics, to the extend that it is often referred to as the the Calculus of the 20th and 21st

centuries. This analogy is more than a mnemonic: QFTs are believed to describe in a very

precise way the continuum limit of systems with many interacting degrees of freedom.

A particularly interesting set of quantum field theories are those which in addition to

Poincaré symmetry also enjoy conformal symmetry. Such theories usually arise in the

study of critical systems. Criticality is usually characterized by correlations of arbitrary

range. This is characteristic of the fact that the system does not have a preferred length

scale, so the system develops a scaling symmetry. In many cases this scale invariance

is further enhanced to invariance under conformal transformations, and the system is

said to be described by a conformal field theory. For example, the Euclidean conformal

transformations are the set of transformations which preserve the values of angles between

10



Basics of AdS/CFT Chapter 2

any pair of vectors in flat Euclidean space:

δij → Ω(x)2δij. (2.1)

The generators of the Euclidean conformal group SO(1, d+1) are associated to infinitesi-

mal diffeomorphisms which change the metric by an overall factor; equivalently solutions

to the conformal Killing equation.

Lξ g = Ω2(x) g. (2.2)

Similarly the Lorentzian conformal group is analogously defined as the set of transfo-

mations which change the spacetime metric by an overall positive function. In addition

to usual symmetry generators of the Poincaré group Pµ,Mµν , the Lorentzian conformal

group SO(2, d) contains the generators of dilatations D, and special conformal transfor-

mations Kµ:

[D,Pµ] = Pµ

[D,Kµ] = −Kµ

[Kµ, Pν ] = ηµνD − iMµν

(2.3)

The dilatation operator D generates scaling transformations xµ = λxµ, while the gener-

ator of special conformal transformations can be thought of as generating translations

which fix the origin, in the same sense that the momentum operator Pµ generates trans-

lations which fix the point at infinity.

2.1.1 Euclidean CFT and Radial Quantization

A CFT on the Lorentzian cylinder is usually understood as the analytic continuation

of Euclidean radial quantization of the same theory . In the Euclidean theory one is

11



Basics of AdS/CFT Chapter 2

interested in computing correlation functions of local operators O(x)

〈 k∏
i=1

Oi(xi)

〉
. (2.4)

Operators are then classified by their transformation under the Euclidean conformal

group. This can be done by looking at the representation theory of a maximally compact

SO(d) subgroup of SO(1, d + 1), and the remaining non-compact SO(1, 1) subgroup.

This means that operators can be classified by their quantum numbers λ under SO(d),

and their conformal dimension ∆

[D,O(0)] = ∆O(0). (2.5)

Since Pµ and Kµ satisfy the algebra of a set of raising and lowering operators, acting on

an operator with them has the effect of raising and lowering the conformal dimension and

spin of the operator. By acting successively on an operator with Kµ we will eventually

obtain an operator with negative conformal dimension. In unitary theories the spectrum

of conformal dimensions is non-negative ∆ ≥ 0, which means that eventually the operator

is annihilated by a sufficiently high power of Kµ. A primary operator is an operator that

has a fixed conformal dimension (2.5) and is annihilated by Kµ

[Kµ,O(0)] = 0. (2.6)

By performing a conformal transformation on the plane, we can identify the action of

the dilatation operator D as Euclidean time evolution in the radial variable r = eτ

ds2 = δijdx
idxj = dr2 + r2dΩ2

d = e2τ
(
dτ 2 + dΩ2

d

)
. (2.7)

12
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This means that by diagonalizing the dilation operator, we obtain a Hilbert space at

reach constant radius slice spanned by eigenstates of a Euclidean time evolution operator

generating shifts in τ . States of this Hilbert space live on Sd corresponding to a constant

Euclidean time slice. Formally we may compute correlation functions by performing a

path integral over the fields of the theory; we do this by folliating the plane by spherical

slices centered around the origin and performing Euclidean time evolution from τ = −∞

to τ = ∞. In the cylinder coordinates this can be understood as suming over state

preparations at equal time slices and time evolving.

An operator inserted at the origin of the plane is then naturally associated to a state

on the cylinder prepared in the infinite Euclidean past:

|O⟩ = lim
τ→−∞

O(τ,n) |0⟩ . (2.8)

In the path integral language this can be done by performing the path integral over a

ball centered at the origin with fixed boundary conditions

⟨ψ(n)|O⟩ =
ˆ
ϕ(r=1,n)=ψ(n)

r≤1

D[ϕ] e−S[ϕ]O(0). (2.9)

Similarly, any state |O⟩ on the cylinder can be used to construct a local operator on

the plane by cutting a small ball around a point x on the plane and performing the

path integral over this ball with the fields taking the appropriate boundary conditions.

Due to conformal symmetry we can shrink the radius of the ball to zero size giving a

local operator insertion at x. This is known as the operator-state correspondence. It

is also important to note that Euclidean correlators are always computed with radial

ordering, since out-of-order correlators involve divergences due to exponential factors

coming from Euclidean time evolution. In practice we are mostly interested in analytically
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continuing these quantities to Lorentzian signature, where out-of-time order correlators

are meaningful.

2.1.2 Correlation Functions and Conformal Symmetry

We can now turn to the main object of study for conformal field theories. The simplest

observable to consider is the two-point function of (scalar) primary operators

⟨O1(x1)O2(x2)⟩; (2.10)

Lorentz invariance fixes this to be a function of only |x1 − x2|. Acting with the dilation

operator forces us to consider operators with the same scaling dimension ∆1 = ∆2 = ∆

in order to get a non-zero answer. By dimensional analysis this leads to a generic for for

the tw-point function of scalar primaries in any conformal field theory:

⟨O1(x1)O2(x2)⟩ = δ∆1,∆2 ×
G12

|x1 − x2|2∆1
. (2.11)

The number G12 is often interpreted as a metric tensor in the space of primary operators,

and is called the Zamolodchikov metric. Since the overall scaling by a complex number

of the operator is irrelevant, we may chose linear combinations of operators of the same

dimension to bring the Zamolodchikov metric to a diagonal form. Some conformal field

theories can have a moduli space of exactly marginal deformations, in which case the

Zamoldchikov metric can take different forms at different points in the conformal mani-

fold. A deformation of the theory is formally understood as RG flow after deforming the

action of the theory by an operator Oλ

δS = λ

ˆ
dd+1x Oλ(x); (2.12)
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a deformation is exactly marginal if the β-function of the coupling parameter λ vanishes

β(λ) = 0. The process of determining the spectrum of a CFT after an infinitesimal

deformation by an exactly marginal operator is known as conformal perturbation theory.

Generically, primary operators of the the theory at a particular value of the coupling λ

will mix under RG flow with other operators, and the conformal dimensions of operators

might change. This change in conformal dimension is usually called the anomalous

dimension of the operator, relative to the undeformed theory. The first step in ”solving”

a conformal field theory is to fully determine the set of primary operators, or equivalently

a complete set of orthogonal states of the Hilbert space fof the theory on the cylinder,

and their conformal dimensions. The next simplest observable is a three-point function:

conformal symmetry fully fixes the form of any three point correlator of scalar operators

to be

⟨O1(x1)O2(x2)O3(x3)⟩ =
C123

|x1 − x2|∆1+∆2−∆3|x1 − x3|∆1+∆3−∆2|x2 − x3|∆2+∆3−∆1
.

(2.13)

Unlike the normalization of the two point function, the normalization of the three-point

functions contain dynamical information about the theory; the coefficients Cijk describe

how two operators fuse into a third operator. The multiplication rule for operators is

known as the operator product (OPE) expansion

Oi(x)Oj(y) ∼
∑
k

Cijk
|x− y|∆i+∆j−∆k

Ok(x). (2.14)

The statement of the operator expansion is asymptotic as x is taken close to y, and

encodes the multiplication of the algebra of operators of the theory. it is widely believed

that the spectral data {∆, Cijk} fully determines any correlation function in a given
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conformal field theory1. For generic (strongly coupled) CFTs, there very few analytical

tools for determining the spectral data of a particular model, which has led to a successful

revival of the conformal bootstrap program. In the recent years, this class of tools

have been succesfully implemented in the study of strongly coupled CFTs, such as the

universality of the 3d Ising model.

2.1.3 Lorentzian CFT

The symmetry group SO(2, d) naturally acts on the Lorentzian cylinder R× Sd−1,

ds2 = −dt2 + dΩ2
d−1, (2.15)

rather than Minkowski space. The reason for this is clear; global conformal transfor-

mations on the plane are allowed to move points out to infinity, which leads to obvious

violations of causality in correlation functions. For this reason it is more natural to study

real time dynamics of conformal field theory on the cylinder, where we have explicit co-

variance under global conformal transformations, as opposed to the plane R⊮, where we

only have invariance under infinitesimal conformal transformations. After analytic con-

tinuation from the Euclidean cylinder, the conformal dimensions of operators are mapped

into the spectrum of the Hamiltonian generating time translations on the cylinder. The

spin quantum numbers are then naturally identified with harmonic modes on Sd, and

hence this analytic continuation leads to a quantum mechanics of infinitely many fields

labeled by angular momentum modes. This is in contrast to ordinary quantum field theo-

ries, where one has uncountably many modes transforming as irreducible representations

of the Poincaré group.

1There are some subtleties with some theories. For example relative CFTs do not have a single well
defined torus partition function, and instead the partition function is a section of a vector bundle. An
example of such an object is the 6d (2, 0) theory.
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2.2 Anti-de-Sitter Space

There is yet another object with conformal symmetry; anti-de-Sitter space (AdS).

AdSd+1 is a homogeneous space-time of constant negative curvature. One particular

presentation of this space is as a certain cone2. Following [27], we can start with the

quadric

Q : uv − ηµνx
µxν = 0. (2.16)

with the following scaling identification Q/ (∼ R+), where we identify the all coordinates

by scaling by positive real numbers. For any fixed scale, this space is embedded in R⊭,

with metric

dsemb = −dudv + ηµνdx
µdxν . (2.17)

For generic values of v we can use the scaling identification to set v = 1 and dv = 0, from

which we see that the space on a chart with v ̸= 0 is simply Minkowski space. This space

however differs from Minkowski space near regions were u = 0 or v = 0; in effect this

construction compactifies Minkowski space by adding points at infinity. The topology

of this space is S1 × Sd−1; where S1 is a Lorentzian time circle. To avoid closed-time

like curves we should pass to the universal cover of this space R × Sd−1. This is the

Lorentzian cylinder which we will later identify with the conformal boundary of AdSd+1.

In this construction we have a manifest SO(2, d) invariance of the Lorentzian cylinder.

What we have described is a cone over a positive real line segment R+, where at every

radial slice we have a Lorentzian cylinder which degenerates as in the deep interior of the

geometry. This degeneration can be removed by deforming Q

Qdeformed : uv − ηµνx
µxν = L2

AdS. (2.18)

2This presentation of AdS is closer to how one describe a resolved conifold.
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After going to the covering space, this gives a non-compact space-time manifold whose

boundary at infinity is a Lorentzian cylinder, and whose isometries are manifestly SO(2, d).

One particularly useful parametrization of this space is in terms of global coordinates

L−2
AdS ds

2 = −(r2 + 1) dt2 +
dr2

r2 + 1
+ r2dΩ2

d−1, (2.19)

in this description it is clear that the conformal boundary of the space is a Lorentzian

cylinder.

L−2
AdS ds

2 ∼ r2
(
−dt2 + dΩd−1

)
+ . . . for large r (2.20)

2.3 The AdS/CFT Correspondence

The AdS/CFT correspondence asserts that any theory of quantum gravity with

asymptotically AdS boundary conditions is exactly equivalent to a conformal field the-

ory in one lower dimension living on a Lorentzian cylinder which is identified with the

conformal boundary of AdS. As such, the AdS/CFT correspondence is a holographic

duality. The dictionary between observables of both theories is schematically of the form

〈
e
´
JO O

〉
CFT

= ZQG[ϕ∂ = J ], (2.21)

meaning that sources on the CFT are identified with a particular boundary condition

for the theory on AdS. In practice this only allows us to identify operators identified

with extrapolated values of semi-classical bulk fields; the problem of determining gravi-

tational dual of a particular operator is the goal of bulk reconstruction. The extrapolate

dictionary gives a precise relation between the mass spectrum of states in AdS to the

scaling dimensions of operators on the CFT. For example, if the bulk effective theory

contains a scalar field ϕ of mass m, there will be an operator O which sources ϕ. In the
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semiclassical limit, the bulk path integral is dominated by configurations with solve the

classical equations of motion

(∇µ∇µ +m)ϕ(t, r,Ω) = 0 (2.22)

The relation for a scalar field of mass m in AdSd+1 is to the conformal dimension δ of O

∆(∆− d) = m2, (2.23)

which follows from the scaling at large r for the non-normalizable modes of ϕ; general-

ization to higher form tensor fields are obtained in a similar manner. In order to obtain

a valid semi-classical gravitational description in the bulk we require that there are no

light towers of higher spin fields in the spectrum; by generic EFT considerations this

equivalent to the statement of scale separation between the AdS scale LAdS and some

other scale controlling the masses of higher spin states ls. In the most well studied ex-

amples the scale ls corresponds to the string scale, and the statement of scale separation

is the statement that the typical size of a string is much smaller that the size of AdS.

No higher spin light towers ⇒ LAdS
ls

≫ 1. (2.24)

This scale is also associated with the strength of higher derivative corrections coming

stringy effects. In order for the theory in the bulk to be well approximated by semi-

classical Einstein gravity, we should also require that the AdS scale is much larger that

the Planck scale:

Semi-classical Einstein gravity ⇒ L2
AdS

GN

≫ 1. (2.25)

19



Basics of AdS/CFT Chapter 2

Usually one thinks of the Planck mass as the mass of the smallest black hole, so
L2
AdS

GN

roughly quantifies the size of the largest black hole one can fit in an AdS, which makes

this quantity a measure of the number of degrees of freedom of the theory c.

While we still do not have a complete characterization of all conformal field theories

with a holographic dual, insisting on a dual description based on semi-classical Einstein

gravity with small higher derivative corrections restricts us to studying CFTs with a

sparse low-lying spectrum of conformal dimensions, with a gap at ∆ ∼ c, where c is the

central charge of the theory. These types of theories are also expected to be strongly

coupled. These restriction are quite strong, and very few examples of theories satisfying

said conditions are known to exist; most of these are supersymmetric large N gauge

theories and their dual description always involve strings.

2.3.1 Examples of the duality

The most studied example of the AdS/CFT correspondence is the duality between

maximally supersymmetric Yang-Mills theory in 4d and Type IIB superstrings living in

AdS5 × S5. The first check of this duality one can perform is to match the symmetries

of both models; N = 4 SYM has a superconformal symmetry PSU(2, 2|4) ∼ SO(2, 4)×

SO(6)R which are realized as isometries of the AdS5 × S5 background. The AdS5 × S5

solution of type IIB supergravity preserves maximal supersymmetry in ten dimensions

and is known to be a solution of the Type IIB string to all orders in ls. This geometry can

be obtained as the near-horizon limit of a ten-dimensional black brane solution arising

from a stack of N D3 branes.

ds2D3 brane =

(
1 +

L4

r4

)−1/2 (
−dt2 + dx2∥

)
+

(
1 +

L4

r4

)1/2 (
dr2 + r2dΩ2

5

)
(2.26)
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In the near horizon region r → 0, this metric reduces to a Poincaré patch of AdS5 × S5

ds2AdS5×S5 =
r2

L2

(
−dt2 + L4dr2

r4
+ dx2∥

)
+ L2dΩ2

5

=
L2

z2
(
−dt2 + ηµνdx

µdxµ + dz2
)
+ L2dΩ2

5.

(2.27)

In the D3 brane solution, the parameter L is related to the number of branes N and

brane tension TD3 by

L4 =
N

2π2TD3

∼ N G10 ⇒
L4

G10

∼ N ≫ 1, (2.28)

where G10 is the ten dimensional Newton’s constant. The tension of a p-brane is related

to the string tension α′ and string coupling gs by the relation

TDp ∼
1

gs
(α′)

p+1
2 , (2.29)

so the parameter controlling higher derivative corrections in this case is

L4/l4s = L4α′2 ∼ gsN ∼ g2oN ≫ 1, (2.30)

where gs is the closed string coupling and go is the coupling of the open strings on the

brane. On the other hand, the low energy effective dynamics on a stack of D3 branes is

the described by the lowest lying modes of the open strings ending on the branes. This

theory is an N = 4 U(N) gauge theory with gauge coupling gs ∼ gYM . This allows us to

identify that U(N) N = 4 SYM is dual to Type IIB strings on AdS5 × S5 with N units

of RR five-form flux on S5, with the ’t Hooft coupling λ = g2YMN being identified with

the string tension in AdS units, and with closed string coupling gs ∼ 1
N
. In particular

this example of AdS/CFT provides us with a concrete realization of ’t Hoofts idea that
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large N gauge theories are described by theories of strings. Over the last two decades

there have been many remarkable precision checks of this duality which we will describe

in later sections. By extrapolating the duality to finite values of N and λ one can hope to

give a non-perturbative definition of Type IIB string theory on a non-trivial background.

2.3.2 N = 4 Super Yang-Mills Theory

One of the first pieces of evidences for the duality is the fact that the AdS5 × S5

background of type IIB has 32 superchanges, which is consistent with the content of

an N = 4 superconformal algebra. The isometries of the background assemble into a

PSU(2, 2|4) supergroup, which is precisely the superconformal algebra with maximal

supersymmetry in four dimension. The maximal bosonic subgroup of PSU(2, 2|4) is

SO(2, 4) × SO(6)R. One of the theories that realizes this symmetry is the maximally

supersymmetric Yang-Mills theory in four dimensions;

SN=4 =
2

g2YM

ˆ
R×S3

d4x Tr

[
− 1

4
FµνF

µν − 1

2
DµϕID

µϕI − 1

2
ϕI ϕ

I +
1

4
[ϕI , ϕJ ][ϕI , ϕJ ]

− i

2
λ̄ΓµDµλ− 1

2
λ̄ΓI [ϕI , λ]

]
.

(2.31)

The matter content of the theory is a vector gauge field Aµ, six real scalars ϕI trans-

forming in the 6 representation of SO(6)R, and four Weyl fermions λA in the spin rep-

resentation of SO(6) ∼ SU(4)R, which we write as the dimensional reduction of a ten

dimensional Majorana-Weyl spinor. The matrices ΓM are ten dimensional gamma ma-

trices All fields are in the adjoint representation of the gauge group G, which we usually

take to be U(N) or SU(N). In addition to the generators of conformal transformations,

and global SO(6)R rotations, there are a set of 16 spacetime supersymmetries Q and 16
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superconformal generators S satisfying the algebra

{Qa
α, Q̄b β̇} = 2δbaPαβ̇

{Sαa , S̄b β̇} = 2δbaKαβ̇

{Qa
α, Sb β} = 4

(
δabL

α
β + δβαR

a
b −

i

2
δab δ

β
αD

) (2.32)

In particular, Q and S act as raising and lowering operators for multiplets of the super-

conformal algebra. A particularly simple set of multiplets are short multiplets, which are

annihilated by some linear combination of supercharges. This is along with the unitarity

condition

{Q,S} ≥ 0, (2.33)

implies the saturation of a BPS bound:

∆ =
∑
i

aiJi +
∑
j

bjQi, (2.34)

where the explicit form of the bound depends on how many supercharges annihhilate the

short multiplet. The simplest family of short multiplets are the so-called 1
2
-BPS states

which satisfy

∆ = |JR|, (2.35)

where JR is the R-charge associated to one of the Cartan generators of SO(6)R. BPS

multiplets of PSU(2, 2|4) have conformal dimensions that are protected by supersym-

metry. Finding explicit representations of these multiplets in terms of the free N = 4

SYM fields is generically difficult due to operator mixing, although it is expected that

the spectrum of BPS operators of N = 4 SYM is not renormalized beyond one loop.

For example 1
2
-BPS primary operators of the theory correspond to scalars transforming
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in symmetric traceless tensor representations of SO(6)R. It is customary to represent

these in terms of complex scalar fields associated to a particular choice of maximal torus

U(1)3 ⊂ SO(6)R, for instance

X = ϕ1 + iϕ2

Y = ϕ3 + iϕ4

Z = ϕ5 + iϕ6.

(2.36)

So a generic 1
2
-BPS operator can be put in the form

Oli =
∏
li

Tr
[
Z li
]
; (2.37)

due to non-renormalization theorems correlation functions of these kind of operators

can be performed exactly at the free theory point which allows us to find their precise

form after diagonalizing the two point function. It is expected that a similar analysis

is possible for other short multiplets of the theory, although there is little evidence of

non-renomalization of two point functions of more generic short multiplets. Finding ex-

act expressions for representations of generic (long) multiplets remains beyond current

techniques beyond low-loop orders where the mixing problem can be tackled explicitly.

Despite this there has been an impressive progress in determining the spectrum of anoma-

lous dimensions of non-protected operators in the planar limit.

2.3.3 AdS/CFT Integrability: realizing Feynman’s dream

One of the first clues towards the solvability of large N N = 4 SYM theory came

from the analysis of Berenstein, Maldacena, and Nastase (BMN) [5]. Their insight was

to consider not generic operators in long multiplets, but rather operators that are close
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to 1
2
-BPS operators

OBMN ∼ . . . ZZλaZZϕZZZZZFµνZZZ . . . . (2.38)

These operators have large dimension ∆ and large R charge J

N ≫ ∆ ∼ J ≫ 1

∆− J ∼ O(1).

(2.39)

The biggest insight of their analysis is that the correct expansion parameter in this limit

is not the ’t Hooft coupling λ, but rather λ
J2 , which allowed them to interpolate into the

strong coupling regime at the cost of studying large charge operators. In this picture,

the operators describing low lying string excitations on AdS5 × S5 are made out of long

chains of Z’s making up a ferromagnetic vacua with small numbers of defects inserted

along the chain. This was made precise by the work of Minahan and Zarembo, who

solved the one-loop mixing problem in the planar limit by mapping into an integrable

SO(6) spin chain

D
SO(6)
one-loop = H

SO(6)
XXX =

λ

16π2

∑
i

(Ki,i+1 + 2− 2Pi,i+1) . (2.40)

Combined with the discovery of the classical integrability of the superstring sigma model

on AdS5 × S5 this led to a series of sophisticated works giving predictions for the finite

coupling spectrum of single trace operators of planar N = 4 SYM.
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2.4 Moving beyond integrability: Semiclassics and

Large Charge Operators

Despite the great progress towards a solution of N = 4 SYM, many important issues

remained to be fully explored. Indubitably one of the properties that makes large N

N = 4 SYM an interesting model, is not only that it is a interacting theory of gauge

fields that can be tackled analytically in certain regimes, but that it promises to be

fully-fledge theory of quantum gravity. Unfortunately many of the truly gravitational

questions one can ask the theory are out of reach from most of our current tools, such as

bootstrap, or the planar expansion. One of the main issues one faces is the breakdown

of the planar ’t Hooft limit for complex enough correlation functions. This occurs when

the number of non-planar diagrams becomes comparable to N . This suggests that in-

tegrability is generically broken, since string splitting processes contribute meaningfully.

One particularly important issue is to understand the spectrum of large operators (i.e.

∆ ∼ Nα) in holographic CFTS. These class of operators describe heavy probes and fully

backreacted geometries, such as black holes. By now it is well established that the de-

generacy of supersymmetric states in many holographic SCFTS accounts for the entropy

of supersymmetric black holes in AdS spaces, but the question of what these microstates

look like remains largely unexplored, mainly due to the sheer combinatorial complexity

associated with finding BPS states in large N SCFTs. Recent progress along these lines

has been fueled by revival of the idea that large charge states should have a simpler

semiclassical description in the large N limit. These ideas have been implemented suc-

cessfully in the study of large BPS operators, and have yielded very efficient techniques

for computing the large N limit of complicated correlation functions. One of the goals of

such a program is to develop techniques to deal with non-protected operators in a similar

manner as BMN, with the study of near-BPS operators being a natural target.
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Semi-Classical Open Strings and

Branes

One of the simplest large operators in N = 4 SYM is the determinant operator

det (Z) =
1

N !
ϵI1...IN ϵJ1...JNZ

J1
I1
. . . ZJN

IN
. (3.1)

Just like single trace operators are the analogs of mesons in N = 4 SYM, determinant op-

erators (and their generalizations) are baryon-like objects. However unlike QCD, where

the description of baryons a a simple bound-state of quarks is only valid at weak-coupling,

supersymmetry protects these kinds operators from mixing, making them genuine opera-

tors at all values of the coupling. Holographically, these operators describe a special kind

of compact D-brane known as a maximal giant graviton. This operator is half-BPS with

dimension ∆ = JR = N . The insertion of mutually 1
2
-BPS giant gravitons breaks the

symmetry of the theory to a psu(2|2) × psu(2|2) ⋊ R subalgebra. In practice there are

non-primary operators which are invariant under a larger symmetry algebra, for instance
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the generating function

det (Z − z) . (3.2)

This operator is invariant under a centrally-extended supersymmetry algebra, psu(2|2)×

psu(2|2) ⋊ R3, where the complex parameter z acts as a central charge. The symmetry

breaking pattern is analogous to the long string EFT :

SO(2, 4)× SO(6)R → (SO(4)L × SO(4)R)⋊ (R× C) , (3.3)

For a sphere giant graviton the first SO(4)L factor should be interpreted as the symme-

tries along the directions transverse to the brane, the second SO(4)R are the isometries

of the brane, and the semidirect product with R describe the helical motion of the brane.

Finally the additional C describes the position of the longitudinal position of the brane.

The remaining symmetry generators are non linearly realized, as with the long string.

From an EFT point of view, this constraints the effective metric seen by the branes to

be of the form

ds2 = −h1(dt+ V )2 + h2dΩ
2
3 + h3dΩ̃

2
3 + h4dzdz̄, (3.4)

and supersymmetry further constraint the forms of hi as to make the background a

slice of a half-BPS solution of type IIB supergravity. Then the most general effective

action for this sector of the theory should contain in addition to a supergravity action,

Dirac-Born-Infeld type terms describing the branes and Nambu-Goto terms describing

string between different branes. This centrally extended algebra fixes the kinematics of

excitations around large 1
2
-BPS states in the large charge limit. For single excitations,

the scaling dimensions takes the famous form

∆− JR =
√
Q2 + f(λ)|Z|2. (3.5)
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For N = 4 SYM the function f is expected to be f(λ) = λ
4π
, and Z is the central

charge carried by the state, and Q is the eigenvalue of one of the Cantan generators of

the residual symmetry. This dispersion relation has been interpreted as arising from a

relativistic mass formula for a W -boson, whose rest mass is given by the difference of

vacuum expectation values of the scalar field Z

m2
ij ∝ |Z|2 = |zi − zj|2. (3.6)

In practice, this dispersion relation allows us to determine the conformal dimension of the

lowest lying primary states above a half-BPS state, to leading order in the large charge

regime. In principle this result can be understood in terms of a simple semi-classical

argument: for large enough operators the state is well approximated by a non-trivial

solution to the equations of motion of N = 4 SYM, which is precisely a Coulomb branch

configuration for the scalar field Z. This analysis is unsatisfactory however, since it only

allows us to estimate the energy/conformal dimension of a special family of states, but

understanding further excitations around these states is a complicated task.

This naturally motivates the study of open string solutions on AdS5×S5, which we should

think as an effective description of near-BPS operators with large quantum numbers.

Since this leads to a well defined semiclassical problem, one can then hope to extract

information about the spectrum of heavy excited states.

In addition to the determinant operators describing sphere giant gravitons, there exists

an additional family of operators describing the so-called AdS giant gravitons;

SJ1...JkI1...Ik
ZJ1
I1
. . . ZJk

Ik
(3.7)
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where S is rank (k, k) fully symmetric tensor of U(N). These class of operators are

naturally packaged together into a generating function

˛
ds

ezs

det (Z − z)
. (3.8)

This operator generates all fully symmetric tensors, and it creates a coherent state con-

figuration where Z has a single non-zero eigenvalue z

: Z̄J
I

˛
ds

ezs

det (Z − z)
: ∼ z δJI

˛
ds

ezs

det (Z − z)
. (3.9)

3.1 Review of Giant Magnon Solutions

Let us recall the scaling limit of the giant magnons of Hoffman and Maldacena [28].

We are interested in the following scaling limit:

J , ∆ → ∞

λ , p <∞

∆− J = ϵ <∞

(3.10)

Where J is one of the SO(6) R-charges, p is the momentum of the excitation, and λ = g2N

is the t’ Hooft coupling. In order for the semi-classical string description to be valid we

should also consider the t’ Hooft coupling λ to be large. Then we seek for the solution

with the least energy ϵ for a fixed momentum p. The simplest of such configuration is

given by a string that sits at the origin of AdS5 while its endpoints rotate along the

equator of S5. The motion takes place on R× S2

ds2 = −dt2 + cos2 ψdθ2 + dψ2. (3.11)
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Note that the spatial metric is for a sphere of radius one with two coordinate singularities

at ψ = −π/2 and π/2, where we have used a cosine of the angle, rather the sine of the

angle. We have chosen a slightly different convention for the the metric of the sphere in

order to make the analytic continuation into AdS2 clear. We can choose a parametrization

for a rigidly rotating worldsheet coordinates for the Nambu-Goto string given by

τ = t

σ = θ − t

ψ̇ = 0

(3.12)

The condition θ̇ = 1 arises from the fact that the string becomes asymptotically a fer-

romagnet for the SU(2) chain. In the presence of giant gravitons, this is the correct

coordinate velocity for the motion of the giant gravitons themselves.

Upon substitution of the rigid ansatz, we get the action

S =

√
λ

2π

ˆ
dτdσ

√
sin2 ψψ′2 + cos2 ψ. (3.13)

Using the coordinate transformation r = cosψ, minimizing the action (3.13) takes the

form of a simple geodesic problem with an effective metric ds2 = dr2+ r2dθ2. This is not

the original metric of AdS5 × S5, but it is a flat auxiliary geometry. By virtue of r ≤ 1,

this is a flat metric on a disk. The conserved charges are given by

∆ =

√
λ

2π

ˆ
dσ

ψ′2 + cos2 ψ√
ψ′2 sin2 ψ + cos2 ψ

J =

√
λ

2π

ˆ
dσ

ψ′2 cos2 ψ√
ψ′2 sin2 ψ + cos2 ψ

(3.14)
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It is convenient to write them also in terms of the r variables:

∆ =

√
λ

2π

ˆ
dσ

(r′)2(1− r2)−1 + r2√
r′2 + r2

J =

√
λ

2π

ˆ
dσ

(r′)2r2(1− r2)−1

√
r′2 + r2

(3.15)

These develop a singularity whenever r → 1 in the solution. Notice that by contrast

ϵ = ∆− J =

√
λ

2π

ˆ
dσ

√
r′2 + r2 (3.16)

is non-singular and stays finite. More to the point, for these simple strings, extremizing

ϵ is the same as minimizing the geodesic problem we found above.

Note that |r| ≤ 1 in order for the solutions to make sense, as r = cosψ and the angle

ψ is a real coordinate of the sigma model. Near r = 1 both of these expressions scale with

(1− r2)−1. Substituting the explicit solution r = a secσ, the expression for ψ′2 diverges

whenever a secσ = 1:

ψ′2 =
a2 sec2 σ tan2 σ

1− a2 sec2 σ
(3.17)

so the density of the conserved charges becomes infinite near such points. This is how one

can have a smooth ending on an infinite spin chain that has not been closed. However

the effective energy of the configuration, ∆ − J remains finite and it is the same as the

on-shell action, which is clearly the length of a straight line segment connecting the two

points on the edge of the auxiliary disk geometry:

∆− J =

√
λ

π

∣∣∣ sin ∆θ

2

∣∣∣ (3.18)

The angle between the two end-points is identified with the momentum of the defect p,

as originally noticed in [29] by a matrix model ansatz. For closed string solutions we
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can sew together various of these straight line solutions on the disk such that in the end

∆θ = 0, forming a closed polygon. This is equivalent to the level matching condition of

a closed string ptotal = 0.

The case of open strings stretched between giant gravitons is entirely analogous except

that one must impose that the endpoints of the string lie inside disk. The end points

must be attached to the location of the giant gravitons. As the S3 on which the branes

are wrapped shrinks to zero size at r = 1, these do not exit the disk. The analysis has

been carried out in [30].

As a result of the end-points not reaching r = 1, both of the charges ∆, J remain

finite. The disk coordinates ds2 = dr2 + r2dψ2 can then be seen to be the coordinates

for the LLM plane of AdS5 × S5 [16]. This description of the physics in terms of a disk

also appears directly from the field theory dual [31].

3.2 Open Giant Magnons in AdS

3.2.1 AdS2 × S1

Now we proceed to study the analogous solutions for the case of open strings stretching

between two D3 branes that wrap an S3 inside AdS5 while rotating at angular velocity

ω = 1 along an S1 ⊂ S5. As in the previous section we may consider the Nambu-Goto

action for a string on an AdS2 × S1 geometry. The metric is given by

ds2 = − cosh2 ρdt2 + dρ2 + dϕ2. (3.19)

We will be interested in solutions of the equations of motion where the string rigidly

rotates with the dual giant gravitons. As such, ϕ will evolve in time in the same way
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that the coordinates of the dual giants do. These rotate at constant velocity in ϕ, have

a fixed value of ϕ at each time and are located at fixed values of ρ [32, 33]. That is,

ϕ̇ = 1. These are a different type of solution to the rigidly rotating GKP string [34], as

they have motion in one extra dimension.

We choose to parametrize the worldsheet coordinates by t = τ , ϕ = τ + σ and we

will be looking for solutions where ρ(σ) is independent of τ . The induced metric on the

string worldsheet for these solutions is given by

ds2ind =

− cosh2 ρ+ 1 1

1 1 + (ρ′)2.

 (3.20)

This way we find that

S = −
√
λ

2π

ˆ
dτdσ

√
−g = −

√
λ

2π

ˆ
dτdσ

√
sinh2(ρ)(ρ′)2 + cosh2(ρ) (3.21)

which can be seen to be an analytic continuation of the sigma model action of the solutions

of the giant magnons of Hoffman and Maldacena, ψ → iρ. The problem again simplifies

by introducing the change of variables r = cosh(ρ), so that

S ∝ τ

ˆ
dσ

√
r′2 + r2 (3.22)

The expression
´
dσ

√
r′2 + r2 can be easily seen to be the length of a curve on a flat

geometry in polar coordinates ds̃2 = dr2 + r2dσ2, in a parametrization r(σ). This is

minimized by a straight line, where

r =
a

cos(σ − σ0)
(3.23)
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where a is the distance of closest approach to the origin and σ0 is the angle in the plane

of closest approach. The energy computed this way is also proportional to the length of

the straight line in this auxiliary geometry from the starting point to the end point.

It is important to note that although superficially similar to the solutions of (3.13),

for the change of variables to make sense in this case we must also impose that |r| > 1

everywhere on the worldhseet, the reason being the S3 ⊂ AdS5 shrinks to zero size at

r = 1. In particular solutions to (3.21) which cross the unit circle are not physical, as

they would require the radial coordinate of AdS to become complex. Even though there

are in principle solutions of minimal length when one removes the inside of the disk, these

are not stable in that they should receive quantum corrections since they are no longer

BPS.

The coordinates of this auxiliary plane geometry span the region outside the disk in

the LLM plane, rather than the inside. Solutions with r = 1 somewhere have a similar

behavior to the Hofmann Maldacena solution, in that the density of the charges ∆, J

becomes infinite at r = 1, yet the energy ∆− J remains finite.

The introduction of the charge is straightforward. We will do that analysis in the

discussion of the following section. We mostly follow the discussion in [35], which starts

from the Nambu-Goto string, to make the analysis.

3.2.2 Rotating String in AdS3 × S1

Now we consider the sigma model of a rotating string on AdS3×S1 which corresponds

to a two-spin magnon solution. The metric is a simple generalization of (3.19)

ds2 = − cosh2 ρdt2 + dρ2 + sinh2 ρdθ2 + dϕ2 (3.24)
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Here again it is convenient to use the coordinate r = cosh ρ in the Nambu-Goto string

action. As noticed in the appendix, the coordinate r = cosh(ρ) is the radius of the LLM

plane coordinate.

The metric (3.24) can be analytically continued via ρ→ iρ̃ into R× S3 where the S3

is expressed in Hopf coordinates. We make an ansatz for the embedding coordinates of

the form :

t = ωtτ

r = r(σ)

θ = βτ + g(σ)

ϕ = ωϕτ + φ(σ)

(3.25)

Where we are interested in ωt = ωϕ = 1.

The action for the rigid string in these coordinates is given by:

S = −
√
λ

2π

ˆ
dτdσ

√
r′2 + φ′2 + 2βg′φ′(r2 − 1) + g′2(r2 − 1)2 − β2(r′2 + φ′2(r2 − 1)),

(3.26)

where we have set the angular frequencies to one for simplicity. The conserved quantities

can be easily evaluated via the formulas:

∆ = −
ˆ
dσ

∂L
∂ωt

∣∣∣
ωt=1

J1 =

ˆ
dσ

∂L
∂ωϕ

∣∣∣
ωϕ=1

J2 =

ˆ
dσ
∂L
∂β

(3.27)
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As we will see, one can eliminate the angular variable g by using its equation of motion:

∂σ

(
(r2 − 1)(βφ′ + (r2 − 1)g′)√

r′2 + φ′2 + 2βg′φ′(r2 − 1) + g′2(r2 − 1)2 − β2(r′2 + φ′2(r2 − 1))

)
= ∂σJ

σ = 0

(3.28)

We have chosen to write it in terms of an expression that is implied by current conser-

vation, which forces Jσ to be constant. At first solving for g might seem daunting as

(3.28) reduces to a complicated equation depending on an integrating constant, which

is the value of Jσ. A great simplification is possible since in the end we are interested

in describing strings ending on a pair of giant gravitons, so one must be careful about

imposing the correct boundary conditions at the string end points.

The boundary term that arises from taking the variation of the action (3.8) is of the

form:

Sbdy ∝
ˆ
dτ (δθ Jσ)

∣∣∣σf
σi

(3.29)

Where Jσ = ∂L
∂(∂σθ)

is precisely the quantity inside the parentheses of (3.10). The other

boundary terms are set to vanish by imposing the appropriate Dirichlet boundary con-

ditions δr = δϕ = 0 and by the choice of static gauge ∂σt = 0. Because the D-brane we

are considering is extended in the θ direction, the correct boundary conditions for θ are

Neumann boundary conditions. That means that δθ is free to vary.

We must then conclude that Jσ vanishes at the end-points of the string in order for

the variational principle to be well-defined. In addition to this, equation (3.28) implies

that this quantity vanishes everywhere along the string. This allows us to solve implicitly

for the function g in terms of the other coordinates:

∂σg = −β ∂σφ

r2 − 1
(3.30)

Solutions of this type have been previously considered for infinite strings in the S3 × R
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sigma model (see [35, 36]), but their physical interpretation was not made clear. Here

the meaning of the condition is clear: the giant magnon does not transport angular

momentum in the θ direction from one D-brane to the other. The giant magnon carries

that angular momentum, but it does not transfer it to the D-branes. Eliminating the

variable g in this case does not affect the variational principle for r, so one may substitute

that condition directly in order to express the conserved quantities in terms of the on-shell

action multiplied by some kinematic factors:

∆− J =

√
λ

2π

Z√
1− β2

J1 =

√
λ

2π

β Z√
1− β2

Z = −
ˆ φf

φi

dφ

√
r2 + (

dr

dφ
)2

(3.31)

To do the variation, we want to minimize the energy, ϵ = ∆ − J at fixed β, with the

endpoints on the dual giant gravitons. This is a straightforward minimization of Z that

results in a straight line. Clearly the variable Z corresponds (up to a factor) to the length

of the string on an auxiliary flat 2D geometry with a disk removed, and as such should

be identified with the central charge of the SL(2) sector of the spin chain. The complex

coordinate ξ = r exp(iφ) can be used to express the answer in terms similar to those of

(4.1). Here we see that |ξ1−ξ2| is the length of the segment in the LLM plane connecting

the two giant gravitons.

Eliminating β in terms of J2 and |Z| yields the dispersion relation

∆− J1 =

√
J2
2 +

λ

4π2
|Z|2 (3.32)

Which is precisely of the form expected from equation (4.1). Although the boundary

conditions considered here lead to solvable equations of motion for the ground state
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of the sigma model, it is not expected that these solutions (and their many magnon

counterparts) can be fully described by an integrable spin chain. The boundary effects

sourced by the branes are expected to destroy that property. This has been argued, at

least from the notion of a simple Bethe Ansatz point of view, for the open spin chains

attached to regular giant gravitons in [37]. It would be very interesting if a class of

solutions of the sigma model of this type do lead to integrable boundary conditions for

the dual spin chain description.

It is also instructive to give explicit expressions for the conserved quantities ∆, J1.

Since we are considering open strings of finite size, one would expect that these quantities

are finite. However, for similar reasoning to that of the previous section, one must be

careful that the radial coordinate doesn’t touch the unit circle given by r = 1. We can

see this from the expressions:

∆ =

√
λ

2π

ˆ
dϕ

r2( dr
dφ
)2 + β2 − 1 + r4

(r2 − 1)
√

(1− β2)(r2 + ( dr
dφ
)2)

J1 =

√
λ

2π

ˆ
dϕ

( dr
dφ
)2 + β2 − 1 + r2

(r2 − 1)
√

(1− β2)(r2 + ( dr
dφ
)2)

(3.33)

It’s clear that these quantities diverge whenever r = 1 (that is, if the string touches the

origin of AdS), even though the length of the string on the auxiliary plane geometry

is finite as in the Hoffman-Maldacena string. Solutions like these, where a physical

worldsheet quantity is becoming divergent should become unphysical and lead to non-

normalizable states, in a way similar to the discussion in [38]. More concretely, these

lead to operators that would inject an infinite amount of energy into the bulk and where

the radial coordinate becomes complex.
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3.3 Discussion

In this chapter we have provided evidence for the all-loop dispersion relation for

the excitations of the SL(2) sector of the N = 4 SYM spin chain with open boundary

conditions. The calculation is done in the sigma model and it gives rise to a series

expansion in the t’Hooft coupling λ. We find a nice description of the solutions in terms

of an analytic continuation of the SU(2) sigma model and the solution has a form that

suggests that these states arise from a BPS condition on the string worldsheet, as would

be expected from shortening conditions of the central extension of the N = 4 SYM spin

chain [39]. It would be nice to understand this better from the planar SL(2) sector of

the N = 4 SYM theory in more detail. This spin chain should precisely realize the open

string sigma model in a continuum limit. It would also be of interest to consider more

general solutions to the string sigma model corresponding to scattering and bound states

of giant magnons. After all, the open strings suspended between ordinary giant gravitons

have a relation to the Bethe ansatz of the SU(2) spin chain, as noted in [30].

The description in the SL(2) sector is expected to be somewhat qualitatively different

than the SU(2) magnons due to the nontrivial boundary condition imposed by |r| > 1.

This is already clear from the sigma model description, as constructing solutions from

inverse scattering methods for the SL(2) model seems to require different Bethe roots

than the SU(2) sigma model, even though their solutions should be related by an analytic

continuation of the solutions in the SU(2) sector [40]. It is unclear what the precise

structure of bound and scattering states is without further study of the field theory side.

We also found that the LLM coordinates arise naturally from studies of the string

sigma model in the SL(2) sector. This might allow us to understand better how certain

aspects of locality in the radial direction of AdS arise from the dual field theory directly.

One should also expect that given these solutions, that one could also compute the
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spectrum of quadratic fluctuations around these solutions and could in principle compare

to the N = 4 SYM spin chain. Similar simplifications as the ones found here should also

be possible on backgrounds of the form AdS5×X5 whereX5 is a Sasaki-Einstein manifold,

as they share the AdS part of the sigma model, an the Sasaki-Einstein geometries have

a U(1) fibration that should allow solutions of a similar kind. It is also interesting to

study the case of AdS4 × CP 3 with fluxes, related to the ABJM model [41]. The latter

should be quite interesting, as the exact characteristic of the allowed brane configurations

depend greatly on the details of the field theory set-up.

The work of D.B. is supported in part by the Department of Energy under grant

DE-SC 0011702.
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Chapter 4

Open Strings on LLM Geometries

4.1 Introduction

The AdS/CFT correspondence has established an equivalence between some theories

of quantum gravity in asymptotically AdS spacetimes and certain gauge theories. The

most celebrated example is the equivalence between IIB string theory on AdS5 × S5 and

N = 4 SYM theory [1].

The free strings propagating on the AdS5×S5 background are believed to be integrable

for all values of the t’Hooft coupling. A review of the main results in this direction can

be found in [2]. On the field theory side, the integrability takes the form of a spin chain

Hamiltonian [3, 42]. The spin chain acts on the list of gauge invariant local operators,

the states being generated by traces of words of local fields of N = 4 SYM and their

derivatives. The main computation of the energy on the spin chain side corresponds to

the anomalous dimension of the operators.

Integrability, combined with supersymmetry is very powerful. A particularly impor-

tant result that combines the two is the dispersion relation for magnons on the gauge

theory spin chain [39]. It follows from a central extension in the symmetry algebra of the
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spin chain and from the fact that magnons are in short representations of the centrally

extended symmetry algebra. This shortness condition fixes the kinematics.

When the magnons carry a lot of momentum on the spin chain, they become geo-

metrically large string solutions in the AdS dual. These are called giant magnons [28].

These also carry central charge on the spin chain. The total central charge of a closed

string state vanishes because of the level-matching constraint. In the spin chain side this

arises from the cyclic property of the trace [5].

The central charge on the gauge theory spin chain can also be sourced by open

boundary conditions. These can be realized by supersymmetric D-branes in the AdS

side, with open strings attached to them. These D-brane states provide a very tractable

connection between the gauge theory dynamics and the AdS geometry. This connection

to the central charge extension on the spin chain and gravity dual side has been analyzed

in the works [43, 44, 30, 38, 45, 46, 22]. Particularly, it has been suggested in [38] that the

central charge extension on the spin chain side is very closely related to the central charge

extension of the Coulomb branch of N = 4 SYM. Our recent work [22] showed how this

works on the sigma model side for open string states suspended between D-brane states

made of AdS giant gravitons. A complete picture in the analysis of the spin chain side

is still missing.

As a reminder, giant gravitons are D-brane states that preserve half the supersym-

metry of the N = 4 SYM theory. They can grow into the sphere [47], or into the AdS

directions [33, 32]. The ones that grow in the AdS directions are related to (classical)

spontaneous symmetry breaking from U(N) → U(N − 1) × U(1) via the Higgs mecha-

nism, which generates expectation values for the scalars [32] (see also [31]). All of these

D-brane states can be understood in terms of the classification of half-BPS states in

N = 4 SYM in terms of Young tableaux [48]. Sphere giant gravitons are represented by

long single columns [49], while AdS giant gravitons are long single rows.
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Very importantly, the AdS giant gravitons explore the radial direction of the AdS5 ge-

ometry. This has always been the most mysterious emergent dimension in the AdS/CFT

correspondence. It has been related to a UV-IR relation [50], where the position in AdS

is related to the UV scale of physics on the boundary. The radial direction has also

been related to the Renormalization group flow [51] and via the AdS D-branes, it is also

related to the Higgs mechanism.

The radial direction on the spin chain side is much less well understood. Some states

that explore the radial direction appear when rotating strings in AdS are studied [34], see

also [52, 53]. They are characterized by logarithmic contributions in the spin quantum

number to their anomalous dimension. An argument for their logarithmic scaling of

anomalous dimension is given in [54]. The open strings strecthing between AdS giants

that have been studied previously by us [22] do not have such logarithmic contributions

to their anomalous dimension. Instead, their anomalous dimensions are governed by

supersymmetry, and in particular, by the amount of central charge they carry. Their

dispersion relation is

∆− J =

√
Q2 +

λ

4π2
|Z|2, (4.1)

where Q is the angular momentum on S3 ⊂ AdS5 and Z is the central charge of the open

string, in geometric units. At very large angular momentum on the sphere (Q → ∞),

for the giant magnons suspended between D-branes, their anomalous dimension can be

arbitrarily close to zero, even at strong coupling. This follows because the square root

can be expanded in powers of Z/Q. This is a power series in the t’Hooft coupling λ, and

therefore one can in principle match coefficients order by order in perturbation theory

on the CFT side.

Other sets of works suggest that the giant magnon dispersion relation also plays a

role in more general geometries. In particular, it has been argued that the central charge
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extension controls magnon dispersion relations in concentric LLM geometries [55, 56].

The LLM geometries are solutions of type IIB supergravity on AdS5 × S5 that preserve

exactly half of the supersymmetries [16]. They can be thought of as condensates of sphere

giant gravitons and/or AdS giant gravitons. These geometries depend on a two coloring

of a degeneration plane (the LLM plane). If the coloring is made of concentric circles, the

background geometry has a well defined additional circular R symmetry J . This is the

same J as the one appearing in (4.1). For general LLM background, only ∆− J is well

defined. The backgrounds break the J,∆ symmetries independently, leaving ∆− J = 0

for the background configuration.

It is the purpose of the current work to address this idea on the sigma model side.

In particular, we want to understand exact solutions of the sigma model for open strings

stretching between sphere giant gravitons or AdS giant gravitons in general LLM ge-

ometries. These are more complicated geometries than AdS5 × S5. To get a simple

finite answer, there must be interesting cancellations taking place in the gravity calcula-

tion. One of our goals to see how this analytic behavior arises in the string sigma model

computation.

In particular, we will find exact expansions in the t’Hooft coupling for ∆−J as above,

that can in principle be matched to perturbative computations in field theory. It turns

out, that even though the sigma model in these geometries is not expected to be integrable

(for example, a naive Bethe ansatz is expected to have inelastic boundary conditions [57]),

it is under enough analytic control so that these BPS strings are analytically solvable

and the dispersion relations for the open strings will look identical to equation (4.1).

We pay extra attention to geometries that correspond to concentric circles, because they

allow us to explore the amount of charge J that the string carries. It will turn out that

the quantity J contains additional information that is not carried by either the angular

momentum Q or the central charge. It depends on more details of the precise position of
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the string in the background geometry. Nevertheless, after some manipulations, we will

show that it also gives rise to an expansion in the t’Hooft coupling that can be matched

between the spin chain and the geometry, at least to leading order. These seem to be

non-protected quantities associated to the symmetries that are spontaneously broken by

the D-brane background for these states. These determine in the end if a putative string

state belongs to the Hilbert space or if it does not. If the J charge diverges, the string

state is not allowed. Such phenomena already arise in the spin chain computations [38],

so it is important to understand their behavior in the gravity dual setup as well.

Another interesting aspect of the open strings between sphere giant gravitons is that

there is a relation of the geometric sigma model solution and the Bethe ansatz on the spin

chain [30]. When one studies open strings attached to these giant gravitons, sites can

“jump in” and “jump out” of the spin chain [58]. To have a more standard description,

one realizes the spin chain in a bosonized language. One writes the states in terms of the

number of sites between defects on the spin chain, rather than in terms of spin up and

spin down state. Now, the number of sites in the spin chain is fixed, and the boundary

conditions allow number non-conservation for the bosonic excitations instead. If one

writes coherent states for these generalized bosons, one finds that the equations that

lead to the ground state of the spin chain can be understood as a bound state condition

on the S-matrix of the magnons, subject to corresponding boundary conditions. Similar

results are not known in the dual SL(2) sector. An approximation for the SL(2) sector at

very large vevs of the central charge for strings stretching between a dual giant graviton

and itself can be found in [59], where the “jumping in” and “jumping out” of letters is

self-consistently ignored in the limit of large spin/central charge. A similar connection

to the Bethe ansatz is not known.

We provide evidence in this chapter that the open strings stretching between dual

giant gravitons also have an interpretation in terms of zeros of an S-matrix for the SL(2)
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sector. In particular, we get a better understanding of the analytic continuation of the

SU(2) spin chain to the SL(2) sector. We will also show that our interpretation of the

analytic continuation is compatible with the sigma model calculations.

The chapter is organized as follows. In section 2 we review the form of all half BPS

solutions to type IIB supergravity, and we re-express them in form that makes certain

cancellations clearer. In section 3 we provide an explicit example of the open string

solutions in question by considering the case of AdS5×S5. In section 4 we solve for open

strings stretching between both sphere and AdS giants in a general half BPS geometry,

finding very similar expressions to those in the case of AdS5 × S5. In section 5 we

concentrate on concentric half-BPS geometries, for which we study the form of the R-

charge J and its relation to the metric of the half-BPS geometry. In the case of AdS5×S5,

we study various limits for which this expression simplifies, and match the leading sigma

model answer on R × S3 to a computation on the dual one-loop su(2) spin chain. We

are able to interpret the sigma model solution as a continuum limit of a zero/pole of the

magnon S-matrix for the su(2) and sl(2). The answers on both sectors are related to

each other by an analytic continuation of the radial parameter of the LLM plane.

4.2 Review of LLM Geometries

The most general 1
2
-BPS solution to IIB 10d supergravity is given by the ansatz [16]:

ds2 = − y√
1
4
− z2

(dt+ V )2 +

√
1
4
− z2

y
(dy2 + dx21 + dx22) + y

√
1
2
− z√

1
2
+ z

dΩ2
3 + y

√
1
2
+ z√

1
2
− z

dΩ̃2
3

(4.2)

The only free parameter of this metric is an auxiliary function z of the coordinates

y, x1, x2, which satisfies a six dimensional Laplace equation with rotational symmetry
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along four directions:

d

(
⋆3
dz

y

)
= 0

ydV = ⋆3dz

(4.3)

Where ⋆3 is the Hodge star operation on the coordinates x1, x2, y. In order to ensure

the regularity of (4.2), we must have that the quantity H−2 = y√
1
4
−z2

remains finite as

y approaches zero. This means that z = ±1
2
on the y = 0 plane which we will call the

LLM plane. Because of this, the metric is completely determined by a coloring of the

LLM plane into regions where z = ±1
2
. It will also be convenient to rewrite the metric

in a more compact form:

ds2 = H−2

(
−(dt+ V )2 +

(
1

2
− z

)
dΩ2

3 +

(
1

2
+ z

)
dΩ̃2

3

)
+H2

(
dy2 + δijdx

idxj
)
(4.4)

This is convenient since the parametrization (4.4) makes the metric explicitly regular at

y = 0 inside the colored regions. Generically, at the boundary of a droplet the one form V

becomes singular, but such singularities can be eliminated via coordinate transformations.

An explicit form of V is:

Vi(x1, x2, y) =
ϵij
2π

˛
∂D

dx′j
(x− x′)2 + y2

(4.5)

Here the integration is taken along the boundaries of the droplets. This guarantees that

Vi → 0 as |x|, |y| → ∞. Finally, the regions z = ±1
2
are the degeneration loci of the

either one of the two three-spheres, which is clear from equation (4.4).
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4.3 Open Strings on AdS3 × S1

Now we wish to review the solutions of the Nambu-Goto sigma model corresponding

to rigidly rotating strings on a AdS3 × S1 subspace of AdS5 × S5 that appeared in [22],

but studying the solution directly in the LLM cordinates instead. The corresponding

metric in the coordinates (4.2) is described by a single droplet configuration on the LLM

plane of radius r0:

z(r, y; r0) =
r2 − r20 + y2

2
√
(r2 + r20 + y2)2 − 4r2r20

Vϕ = −1

2

(
r2 + r20 + y2√

(r2 + r20 + y2)2 − 4r2r20
− 1

) (4.6)

We will be interested in solutions that reside at the y = 0 locus, with a D3 brane

wrapping the non-vanishing three-sphere with the strings rotating along a circle of the

non-vanishing sphere. The effective metric for the space on which the strings move can

be written in the form:

ds2 =− s

(
1− r2

r20

)
(dt+ Vϕdϕ)

2 + s
(dr2 + r2dϕ2)(

1− r2

r20

)
+ s

(
1− r2

r20

)(
1

2
(1− s)dψ2 +

1

2
(1 + s)dθ̃2

) (4.7)

with s = sign(r0− r). The effective geometry for r > r0 corresponds to AdS5×S1, while

r < r0 corresponds to Rt × S5. One should also note that the behavior of Vϕ at y = 0 is

non-trivial as r crosses r0:

Vϕ(r < r0, y = 0) =
r2

r20 − r2

Vϕ(r > r0, y = 0) =
r20

r2 − r20

(4.8)

49



Open Strings on LLM Geometries Chapter 4

For r > r0, the metric is

ds2

r0
= −

(
r2 − 1

)
dt2 + 2dtdϕ+

dr2

(r2 − 1)
+ dϕ2 + (r2 − 1)dψ2 (4.9)

Where the variable r has been re-scaled to be unitless. Now we can consider the string

sigma model on this geometry, concentrating on rigid open string solutions that end on

two static dual giant gravitons. The boundary conditions allow for the endpoints of the

string to move freely along the ψ direction, so we restrict to configurations where the

string endpoints co-rotate at the same angular velocity β. A convenient ansatz for the

embedding coordinates is of the form:

t = τ

r = r(σ)

ϕ = ϕ(σ)

ψ = βτ + g(σ)

(4.10)

Then, the string action in these coordinates is given by:

S = −
√
λ

2π

ˆ
dτdσ

√
(r2 − 1)2g′2 + 2β(r2 − 1)ϕ′g′ + ϕ′2(β2(1− r2) + r2) + (1− β2)r′2)

(4.11)

For the coordinate g one has to impose Neumann boundary conditions, which is equivalent

to saying that the worldsheet current density ∂L
∂g′

vanishes at the end points of the string.

In addition to this, since the action is independent of g this current must vanish identically

along the string. This leads to the condition:

g′ = − βϕ′

r2 − 1
(4.12)
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which can be used to eliminate g in the action. This reduces the problem to a geodesic

equation on a flat plane, as long as r ̸= 1 where equation (4.12) degenerates:

S = −
√
λ

2π

√
(1− β2)

ˆ
dτdσ

√
r2ϕ′2 + r′2 (4.13)

Due to the rotational symmetry of the droplet, a general solution can always be trans-

formed to one determined by a pair of angles ϕ1, ϕ2 from the x1 axis and the closest

approach to the origin a. These are the same solutions studied in [22] in slightly different

coordinates. In particular, the conserved charge associated to time translations of the

coordinates (4.9) follows a relativistic dispersion relation

ϵ =

√
Q2 +

λ

4π2
Z2

Q =

√
λ

2π

βZ√
1− β2

Z =

ˆ ϕf

ϕi

dϕ

√
r2 +

(
dr

dϕ

)2

(4.14)

where Q is the angular momentum associated to rotations along ψ and Z is the central

charge associated to the separation of the branes. It is also important to notice that the

density of central charge and angular momentum per unit length are constant along the

string. One can also check that the angular momentum density J associated to rotations

along the LLM plane diverges if the string solution touches boundary of the droplet. We

will make this more explicit in section 5.

4.4 Open Strings on LLM Geometries

We can now discuss more general solutions corresponding to open strings on general

1
2
-BPS geometries. As we will see these share many similarities to the solutions discussed
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in the previous section.

4.4.1 Strings outside a droplet

First we consider the case for a string inside a connected region with z = −1
2
. Within

each of these regions we have a non-vanishing three-sphere on which we can wrap D3

branes. In the end, we will be interested in rotating string solutions, so we will also single

out a circle within this three-sphere with coordinate ψ on which the string endpoints

rotate. The branes will sit at y = 0, but it is convenient to keep the value of y unfixed

along the string as this makes the various cancellations clear. The appropriate ansatz for

the embedding coordinates is the similar to the one before,

t = ωτ

xi = xi(σ)

y = y(σ)

ψ = βτ + g(σ)

(4.15)

except that the effective metric is now of the general form:

ds2 = H−2

(
−(dt+ V )2 +

(
1

2
− z

)
dψ2

)
+H2

(
dy2 + δijdx

idxj
)

(4.16)

The Nambu-Goto action in these coordinates is:

S =

√
λ

2π

ˆ
dτdσ

√
G

G = H−4

(
(
1

2
− z)g′2 + 2(z − 1

2
)g′Vix

′
i

+ β2(z − 1

2
)(Vix

′
i)
2

)
+ (1− β2(

1

2
− z))(x′21 + x′22 + y′2)

(4.17)
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Where we have set ω = 1 for simplicity. The coordinate g′ can be eliminated by a

combination of its equation of motion and boundary conditions as before. This leads to

the simple relation which generalizes (4.12):

g′ = βVix
′
i (4.18)

Once again, the relation (4.18) shows that the variable g′ becomes ill-defined whenever

the string touches the boundary of a droplet (4.5) at y = 0. One can also express this

relation in a way that is independent of the parametrization,

dg = βV (4.19)

so that dg is well defined in regions where z is locally constant. Substituting this relation

into the action (4.17) will cancel the terms in G which are multiplied by the warp factor

H, which simplifies the action to the form:

S = −
√
λ

2π

ˆ
dτdσ

√
(1− β2(

1

2
− z))(x′21 + x′22 + y′2) (4.20)

One can also find a similar expression for the energy of the string by varying with respect

to ω:

ϵ =

√
λ

2π

ˆ
dτdσ

√
1

(1− β2(1
2
− z))

(x′21 + x′22 + y′2) (4.21)

In general, having the string extend in the y direction makes the equations non-linear,

but such configurations happen to not have minimal energies. The minimal energy con-

figurations are those for which y = 0 along the string, for which the action reduces to a

geodesic problem on the LLM plane.

S = −
√
λ

2π

ˆ
dτ
√
(1− β2)(dx21 + dx22) (4.22)
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This is the same result as for open strings between D-branes in AdS5 × S5, so the

kinematic features are the same. As a result, this class of solutions also admit a giant

magnon dispersion relation:

ϵ =

√
Q2 +

λ

4π2
Z2

Z =

ˆ √
dx21 + dx22

(4.23)

Generically, an LLM geometry will not have rotational invariance along the the LLM

plane due to the placement of sources for z. This means the charge J associated to this

rotation is no longer a good quantum number in the dual description. However, there

is always an approximate translational symmetry in the limit that one zooms into the

boundary of a droplet. The effective geometry in this limit is always a plane-wave, and

the density of the momentum associated to the approximate translational symmetry will

generically diverge. This is because such quantities are always proportional to the gauge

potential V which is not well defined at the interfaces between the different values of z.

4.4.2 Inside a droplet

The analysis for connected regions with z = 1
2
is completely analogous to the one in

the previous section. In this case there is a different non-vanishing three-sphere S̃3, from

which we single out a circle θ̃. The effective metric is a simple variation of (4.16)

ds2 = H−2

(
−(dt+ V )2 +

(
1

2
+ z

)
dθ̃2
)
+H2

(
dy2 + δijdx

idxj
)

(4.24)

The appropriate ansatz in this case is the same as before (4.10), but we replace the

variable ψ by:

θ̃ = β̃τ + h(σ) (4.25)
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The computation of the action is entirely analogous as to the discussion in the previous

section. The analogous condition (4.18) that arises from the boundary conditions for h

is:

h′ = β̃Vix
′
i (4.26)

which tells us that h′ is the pullback of V on the worldsheet inside the droplet regions.

This means that h′ has the same singularities along interfaces as g′ did, so that continuing

the variable g to regions inside a droplet becomes problematic. After eliminating h, the

action takes the same form as before with the appropriate change in kinematic factors:

S = −
√
λ

2π

ˆ
dτ

√
(1− β̃2)(dx21 + dx22) (4.27)

Similarly, the energy can be easily shown to satisfy a similar relativistic dispersion relation

ϵ =

√
Q̃2 +

λ

4π2
Z2 (4.28)

Where Q̃ is the angular momentum along the circle θ̃.

4.5 On-Shell Charges

For this section we will concentrate on 1
2
-BPS geometries that correspond to concentric

droplets and rings on the LLM plane. This is useful since we will want to study the

behavior of the charge J associated to rotations around the origin of the LLM plane. One

important point that should be noted is that the coordinates (4.2) are implicitly rotating

with respect to an observer that is far away from the sources to whom the geometry looks

like AdS5×S5. So solutions that are static in these coordinates correspond to strings that

rotate along a cycle that asymptotically looks like the equator of S5. As such the charge
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ϵ associated to time translation symmetry in the LLM coordinates actually corresponds

to ∆− J in the global AdS coordinates. One can find the expression for J for a general

concentric concentric geometry by modifying the ansatz for the coordinate ϕ (4.10) to

include time dependence,

ϕ = φ(σ) + γτ (4.29)

and in the end substituting the on-shell value γ = 0. Unlike the charges ϵ,Z, Q(Q̃)

the angular momentum J turns out to be sensitive to the details of the geometry. This

is because the general form of ϵ is fixed by supersymmetry [39], and the other charges

assemble into a relativistic dispersion relation. As discussed in [38], the shortening con-

dition is essential to get the right multiplicities for light open strings between nearby

giants. This is what guarantees that the local physics looks like N = 4 SYM on the

Coulomb branch. For concreteness we first concentrate on the case where the strings live

in a region outside a single circular droplet on the LLM plane, and then we show that

the analysis extends to solutions sitting inside the droplet. The resulting expression for

J and its density along the string are:

J =

√
λ

2π

ˆ
dσJ

J =

Vϕ

(
(ϕ′)2

(
r2
(
(H2+1)(1−β2)

2H2 + 1

)
+

( 1
H4+

1
H2+2)V 2

ϕ (β2−1)
2H2

)
+ (r′)2

)
√

(1− β2)
(
r2 (ϕ′)2 + (r′)2

)
(4.30)

From this we can see that the density J is proportional to Vϕ, so that it becomes

infinite at the boundaries of the droplets as claimed. Since the central charge density is

constant on-shell we can also express this as:
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J = ϵ

ˆ
dσVϕ +

(
λ

4π2

)
1

ϵ

ˆ
dσϕ′2

(
r2(1 +H−2)− V 2

ϕ

(
H−2 +

H−6 +H−4

2

))
ϵ =

√
Q2 +

λ

4π2
Z2

(4.31)

One can also express the density J in terms of the quantum numbers Q, Z, the t’Hooft

coupling λ and r. For completeness we will carry this out for the simplest droplet

configuration studied in section 3, in the regime that the strings are far away from the

droplet.

4.5.1 Strings near the boundary

We would like to evaluate (4.30) for a string solution that sits very far away from a

single droplet, while the size of the string remains finite but large. These correspond to

strings that sit near the boundary of AdS5. As it turns out, the expression (4.30) is not

the same as the angular momentum measured by an asymptotic observer in global AdS,

since the coordinates (4.9) describe a rotating frame ϕ̃ = ϕ− t, so that the expression for

J is actually a linear combination of the scaling dimension ∆ and the spin J̃ seen by a

static observer near the boundary. The two quantities J, J̃ are related by a simple change

of coordinates, but it is more convenient to work with the expressions in [22] which have

a clearer physical interpretation. More concretely, this is the choice of coordinates for

which the scaling dimension ∆ grows with the distance from the origin, while the spin J̃

becomes smaller:

J̃ =

√
λ

2π

ˆ
dϕ̃

( dr
dϕ̃
)2 + β2 − 1 + r2

(r2 − 1)
√
(1− β2)(r2 + ( dr

dϕ̃
)2)

(4.32)
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Here ϕ̃ = ϕ − t corresponds to the coordinate for the equator of the S5. We should

also note that this expression for J̃ is not gauge invariant, as it will turn out that this

expression is related to the one form V that appears in the metric. On the one hand these

gauge transformations can be always absorbed into a redefinition of the string coordinates

g and h (4.18). However, one should also keep in mind that gauge transformations that

vanish at infinity do not change the asymptotics of J̃ , so that the coordinate choices for

which J̃ vanishes at infinity are well-defined. In order to fix the residual gauge symmetry

one has to choose coordinates that look asymptotically like static global AdS rather than

the rotating LLM coordinates. It will also be convenient to make the choice Vr = 0 in

order to keep the rotational symmetry explicit.

We wish to find an expression for (4.32) in terms of the angular momentum Q, the

string end points ξ1, ξ2, and the t’Hooft coupling λ. For this, it is best to re-express

the integral using an affine parametrization for the the complex coordinate on the LLM

plane z = ξ1(1−s)+ ξ2s. In order to eliminate the angular velocity β, we have to impose

a double scaling limit based on (5.13). The particular double scaling limit we will be

interested in comes from fixing the angular momentum Q and the positions of the end

points of the string:

Q

Z
=

√
λ

2π

β√
1− β2

<∞ (4.33)

This is a physical choice of scaling, since the strings become tensionless in the relativitic

limit β → 1. This leaves us with two independent parameters to tune which we can

choose to be the ratio Q
Z and the t’Hooft coupling, since changing the value of β has to

be compensated by a change of λ in order to keep Q and Z fixed. The angular velocity

and the t’Hooft coupling can’t be changed independently from each other. The full

expression for J̃ in terms of these parameters can be expressed as a sum of two terms:
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J̃ =

√
Q2 +

λ

4π2
|ξ1 − ξ2|2

ˆ 1

0

ds

zz̄ − 1
+

(
λ

4π2

)
1√

Q2 + λ
4π2 |ξ1 − ξ2|2

Im

ˆ 1

0

ds
z dz̄
ds

zz̄(zz̄ − 1)

(4.34)

This expression is interesting as it is a series expansion in λ around zero, while also

showing a scale separation given at small and large energies ϵ.

In particular, one can expect that this quantity can be recovered via a perturbative

calculation in the dual field theory since we have a series expansion in the t’Hooft cou-

pling. This is different from in the other giant magnon solutions studied in the literature

which always have infinite spin J̃ and correspond to closed strings [28, 35]. Alternatively,

one can expand in κ = λ/Q2, which can be done even at strong coupling. This is simi-

lar to how in the plane wave limit the effective perturbation parameter depends on the

quantum numbers of an excitation [5].

We will reproduce the leading term of the expansion in the su(2) sector by an ex-

plicit computation from the one-loop spin chain Hamiltonian with boundary conditions.

Motivated by an analytic continuation of the Bethe ansatz, we will obtain an expression

for the sl(2) spin chain with open boundary conditions, even when we do not know the

form of the precise computation on the dual field theory for this sector. In general, these

boundary conditions are expected to break integrability, but the existence of a Bethe-like

ansatz for the su(2) in terms of Cuntz oscillator coherent states suggests that a similar

story exists for the sl(2) spin chain. One should also note that even though the lead-

ing term is independent of λ, the computation requires knowing the one-loop mixing

Hamiltonian for the su(2) sector, and higher order corrections arise from higher loop

contributions to the mixing of operators.
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4.5.2 Rapidly Rotating Strings

An interesting limit to consider is when the strings rotate with a large angular velocity

β → 1 with fixed angular momentum Q. This is the limit where the t’Hooft coupling

becomes small, so that the second term in (4.34) can be ignored.

J̃ = |Q|
ˆ 1

0

ds

|ξ1(1− s) + ξ2s|2 − 1
+ . . . (4.35)

The integral in (4.35) is somewhat reminiscent of a Feynman parametrization, and

can be evaluated explicitly:

J̃ = |Q|
arctan

(
|ξ2|2−|ξ1|2+|ξ1−ξ2|2

2
√

|ξ1×ξ2|2−|ξ1−ξ2|2

)
− arctan

(
|ξ2|2−|ξ1|2−|ξ1−ξ2|2

2
√

|ξ1×ξ2|2−|ξ1−ξ2|2

)
√

|ξ1 × ξ2|2 − |ξ1 − ξ2|2
+ . . .

ξ1 × ξ2 = Im
(
ξ1ξ̄2

)
= |ξ1||ξ2| sin θ12

(4.36)

In the limit that the string end points are very far away from the origin we can ignore

the 1 in the denominator of (4.35):

J̃ =
θ12|Q|

|ξ1||ξ2| sin θ12
+ . . . (4.37)

Although the expression (4.37) is regular at θ12 = 0 where the string end points are

colinear, there is a divergence at θ12 = π coming from the fact that the string has to

cross the droplet. In the strict ξ → ∞ limit, the leading order contribution for J̃ vanishes.

Generically, in the strict β → 1 limit the divergent contributions to the LLM angular

momentum will decouple so that the expressions for J̃ and J match. More explicitly, the

expression (4.30) becomes much simpler in this limit.
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J =

√
λZ√

1− β2

ˆ 1

0

dsVϕ (r(s), y = 0) + . . . (4.38)

Where r(s) is an affine parametrization for the string in the LLM plane. It also turns

out that the expression (4.38) is valid inside and outside the droplet regions as long as

one chooses the correct branch for Vϕ(y = 0). Another thing to note is that value of Vϕ

inside of the droplet is related to its value outside the droplet by a change of sign and

a transformation r → r20
r
, where r0 is related to the AdS radius r2AdS = r0. By restoring

the dependance on r0, the expression (4.37) should be understood as the leading order

expansion in r0/m
2, where m2 is a large mass parameter compared to r0. This can be

done by either sending the string end points to infinity, or by considering a small droplet.

This is also the regime where the contribution to masses of the conformally coupled

scalars coming from the curvature of R × S3 is negligible in the field theory, which is a

decompactification limit of the S3. This suggests that the leading non-vanishing term

in J at large β should be reproducible from a Coulomb branch computation, while the

higher order terms in powers r0 should come from taking into account correctly the mixing

between the higgsinos and gauginos, since a priori the massive vectors do not couple to

the curvature RS3 ∼ RAdS. A calculation with background fields properly included would

look similar to [60], where the localization in the geometry is provided directly by the

D-brane background fields, rather than a saddle point.

For more general concentric droplet geometries the expression for Vϕ outside the

largest droplet is given by a linear combination of droplets [16]:

Vϕ(r, y = 0) =
k∑
i=0

(−1)ir2i
r2 − r2i

(4.39)

The leading expression for J̃ in this case can be easily seen to come from adding the

contributions coming from all the droplets and holes:
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J̃ = |Q|
k∑
i=0

(−1)iJ̃i

J̃i = r2i

arctan

(
|ξ2|2−|ξ1|2+|ξ1−ξ2|2

2
√

|ξ1×ξ2|2−r2i |ξ1−ξ2|2

)
− arctan

(
|ξ2|2−|ξ1|2−|ξ1−ξ2|2

2
√

|ξ1×ξ2|2−r2i |ξ1−ξ2|2

)
√

|ξ1 × ξ2|2 − r2i |ξ1 − ξ2|2

+ . . .

(4.40)

This suggests that the leading order computation on the dual field theory side also comes

from summing simple contributions and at leading order the droplets don’t affect each

other.

4.5.3 Strings Inside a Droplet

We can also do the analogous computation for string solutions sitting inside a circular

droplet region. In this case the motion of the string is restricted to an S3 × R subspace

of AdS5×S5. It is well known that the giant magnons on S3×R have a dual description

in terms of a su(2) integrable spin chain whose Hamiltonian computes the mixing of

operators.

Dual Spin Chain Picture

The one loop Hamiltonian for the su(2) sector with open boundary conditions is of

the form [58, 38]:

H1 = λ
k∑
i=0

(a†i − a†i+1)(ai − ai+1) (4.41)
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Here a0 and ak+1 are complex numbers describing the collective coordinates of the giant

gravitons, and the ai are Cuntz oscillators satisfying the algebra:

aia
†
j = δij

a†iai = 1− |0⟩i ⟨0|i
(4.42)

The integer k + 1 is associated to the angular momentum Q̃ which counts the number

of sites of the oscillator chain, which has a length corresponding to the central charge

Z. In the gauge theory variables k counts the number of Y insertions between Z in the

operator:

O ∼ . . . ZZZY L1Z . . . ZY Ln . . .∑
i

Li = k + 1
(4.43)

A complete combinatoric picture of how the strings are attached to the giants and

how the boundary conditions emerge is found in the works [61, 62, 63, 64]. To fix the

angular position of the brane one needs to add a coherent state description of the D-

branes [43]. These discussions usually only pertain to the SU(2) sector. For he SL(2)

sector, an incomplete description in the Cuntz oscillator language is found in [59], which

was derived from [4]. This description of the SL(2) sector is not that of a spin chain

with local nearest neighbor terms only. This makes a direct analysis very cumbersome.

When we discuss such calculations, we will sidestep this direct route of computation by

utilizing ideas from the Bethe ansatz.

We can then consider an unnormalized coherent state for each oscillator:

|zi⟩ =
∞∑
n=0

zni |n⟩ (4.44)

Substituting this into the Hamiltonian and minizing the energy one obtains the condition
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zi − zi+1 = δZ for every adjacent pair of sites, where δZ is a constant which acts as a

lattice spacing for the string. The quantity δZ is generically complex, but we can always

align the coordinates so that it is real.

This means that the central charge density along the chain Z
Q̃
is a fixed constant. It

can also be checked that this is in fact an eigenstate of the one-loop Hamiltonian with

minimal energy.

One can easily check that,

⟨z̄| z∂z |z⟩ =
∞∑
n=0

nzn |n⟩ = zz̄

(1− zz̄)2

⟨z̄|z⟩ = 1

1− zz̄

(4.45)

So that the average occupation number for each site is given by:

⟨z̄| z∂z |z⟩
⟨z̄|z⟩

=
zz̄

1− zz̄
(4.46)

This occupation number also computes the R-charge J for each oscillator, so that in total

we have:

J =
k∑
i=1

ziz̄i
1− ziz̄i

(4.47)

Since the central charge density along the string is constant, we can multiply each term

by the central charge density |δZ| = |zi − zi−1| = Z
k

J =
|Q̃− 1|

Z

k∑
i=1

ziz̄i
1− ziz̄i

δZ −→δZ→0 |Q̃|
ˆ 1

0

ds
zz̄

1− zz̄
(4.48)

The sum can then be approximated by an integral as we take the effective lattice spacing

δZ to zero, by which one expects to recover the continuum string description.
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Sigma Model Computation

The computation of the spin J for the sigma model is straightforward. In this case we

should take the metric with r < 1 where the string motion occurs on S3 ×R as opposed

to AdS3×S1. As before we will be interested in the double scaling limit that arises from

taking β̃ → 1 while holding the angular momentum Q̃ and central charge constant. The

charge Q̃ and angular frequency β̃ should not be confused with Q and β although their

roles are very similar. The leading order expression is simply:

J = |Q̃|
ˆ 1

0

dsVϕ (r(s), y = 0) (4.49)

Again, we can introduce an affine parametrization for the complex variable on the LLM

plane z = η1(1− s) + η2s and re-express (4.8) in complex coordinates r2 = zz̄:

J = |Q̃|
ˆ 1

0

ds
zz̄

1− zz̄
(4.50)

Which matches the spin chain computation precisely. We can evaluate the integral ex-

plicitly by noting that there is a simple relation between the angular momentum density

inside and outside the droplet,

zz̄

1− zz̄
=

1

1− zz̄
− 1 (4.51)

Which reduces to the same integral (4.36) as before:

J + |Q| = −|Q|
arctan

(
|η2|2−|η1|2+|η1−η2|2

2
√

|η1×η2|2−|η1−η2|2

)
− arctan

(
|η2|2−|η1|2−|η1−η2|2

2
√

|η1×η2|2−|η1−η2|2

)
√

|η1 × η2|2 − |η1 − η2|2
+ . . . (4.52)

65



Open Strings on LLM Geometries Chapter 4

4.5.4 Magnon S-matrix and Bethe Ansatz

An interesting property of the coherent state ansatz for the one-loop Hamiltonian

is that it leads to solutions to the Bethe equations. To see this more explicitly, substi-

tuting the coherent state ansatz into the Hamiltonian and minimizing over the complex

parameters zi one finds that their second difference vanishes:

zi+1 − 2zi + zi−1 = 0 (4.53)

We can always choose to parametrize the complex variables zi = eρi , which leads to the

relation:

eρi+1−ρi−1 − 2eρi−ρi−1 + 1 = 0 (4.54)

To make the connection to the Bethe ansatz more explicit it is convenient to make a

change of variables:

ipl+1 + ipl = ρl+1 − ρl−1

ipl = ρl − ρl−1

(4.55)

Solving these relations leads to an expression purely in terms of p1,2,

eip2+ip1 − 2eip1 + 1 = 0 (4.56)

which can be recognized as a pole for the 2-magnon S-matrix for the su(2) sector:

S
su(2)
12 = −e

ip2+ip1 − 2eip2 + 1

eip2+ip1 − 2eip1 + 1
=
u1 − u2 − i

u1 − u2 + i

eipl =
ul − i/2

ul + i/2

(4.57)
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The interpretation of this pole is that we have formed a bound state of the magnons.

Such magnon bound states have the same dispersion relation of (5.13), as they are also

in short representations of the centrally extended spin chain [65]. In this sense, the Bethe

ansatz computation and the sigma model are fully consistent with each other.

Analytic Continuation to sl(2)

Another important fact is that the 2-magnon S-matrix for the the sl(2) sector is

related up to a phase factor to the inverse of the su(2) S-matrix (we follow [66]):

S
sl(2)
12 ∝ −e

ip2+ip1 − 2eip1 + 1

eip2+ip1 − 2eip2 + 1
=
u1 − u2 + i

u1 − u2 − i

eipl =
ul + i/2

ul − i/2

(4.58)

In the formula above, the right hand side of the S-matrix looks the same, but the iden-

tification of momentum with the u variable differs, and is clearly the inverse of the one

of su(2) above.

In particular, the role of poles and zeros is exchanged with respect to the su(2)

sector. Naively one would expect that the Cuntz oscillator representation of the su(2)

Hamiltonian can be analytically continued by allowing the complex parameters zi to lie

outside the unit disk, but this is not the case because then the ground state is no longer

normalizable and the S-matrix would not have the correct pole structure. In particular

the relation (4.53) would lead to a zero of the 2 magnon S-matrix rather than a pole. If

instead one exchanges zi ↔ 1
zi
= z̃i, one finds that the zeros of (4.57) are exchanged with

poles, while having |z̃i| > 1. Substituting this directly in (4.47) leads to the expression:

J =
k∑
i=1

1

ziz̄i − 1
(4.59)

where k now counts the number of derivatives between the Z operators as opposed to
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counting the number of Y insertions between Z’s. When we take the continuum limit of

this expression one obtains the same integral that appears in the the string sigma model

computation for AdS3 × S1. This analytic continuation also appears naturally in the

LLM coordinates as the transformation that maps the inside and outside of a droplet to

each other. It now also appears as a consistency condition for the analytically continued

S-matrix. The fact that the string solutions are straight lines on the LLM plane would

translate to having a pole on the magnon S-matrix for the SL(2) sector.

4.6 Discussion

In this work we studied a class of 1
2
-BPS open string solutions ending on (dual)

giant gravitons and showed that important simplifications happen when one takes into

consideration the appropriate boundary conditions for the end points of the string. The

solutions found have a relativistic dispersion relation, so that they generalize the giant

magnon solutions to open strings. One difference between the solutions we studied is

that the strings are allowed to extend into the non-compact dimensions of the spacetime,

and they have well-defined finite charges inside droplet regions in the LLM plane. We

also found that the solutions cannot be extended between regions of different colors in

the LLM plane without having divergences in the approximate charges that generate

translations parallel to the droplets, or in the case of concentric geometries the angular

momentum J associated to rotations in the LLM plane. Additionally, the coordinates of

the string along the non-vanishing three-sphere fiber directions are related to the pull-

back of one form V , so that the string density on the fiber diverges at the boundaries

of the droplets. As a consequence, one can expect that the operators corresponding

to such crossing string solutions can only be constructed in a formal limit of infinite

conformal dimension as in the Hoffman-Maldacena solutions. These divergences are also
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suggestive of possible instabilities for the states corresponding to the solutions where the

strings grace a droplet. Our analysis also applies to a certain isolated class of 6d 1
2
-BPS

bubbling geometries [67, 68], which can be described by a torus being fibered over a

2d flat base, much like in the ansatz (??). The isolated class of solutions are those for

which the torus is replaced by a product of circles. The analysis for general 6d 1
2
-BPS

bubbling geometries is complicated by the appearance of an axion corresponding to the

off-diagonal component of the metric for the torus fiber, which introduces additional

singularities where non-trivial sectional circles of the torus vanishes. This means in

particular, the dependence on the coordinate y drops out in the analog of (4.20), so

that the string solutions are no longer restricted to y = 0, and the droplet picture is

modified by the additional singularities. Similarly, solutions of the form (??) with less

supersymmetry have been studied. In those cases, the flat LLM plane is replaced by a

four or six dimensional Kähler base with three or five dimensional droplets [69] . One

complication that arises in the case of 1
4
and 1

8
BPS bubbling geometries is that solutions

do not reduce to solving linear equations, so that constructing the explicit metrics is

non-trivial. Also, the cancellations that occur when imposing the boundary conditions

on (4.17) do not simplify the action. It would be interesting to understand how the

1
2
BPS gets corrected down by considering a linearized analysis for the general 1

4
BPS

ansatz for instance, as this would also allow us to see how these corrections appear as a

function of the t’Hooft coupling λ. Finally, although one can explictly match the sigma

model answer for J to a simple computation in the su(2) sector of the dual spin chain

description, the analogous computation for the sl(2) is not known. The fact that the

sigma model predicts that the central charge is a constant per unit string length appears

in the dual su(2) spin chain description as a condition on the coherent state ansatz for

the excited states. These condition on the parameters zl = rle
iθl is a manifestation of the

conditions arising from the Bethe ansatz solution to the Heisenberg spin chain, where the
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zl behave like Bethe roots. It would be natural to expect that a similar condition should

arise in the sl(2) sector, as the sigma model descriptions of both sectors are analytic

continuations of each other. However, we should note that the presumed Bethe ansatz

might be different from the sl(2) Bethe ansatz [3] arising from twist-2 operators and other

operators with simple derivative insertions, since more interesting mixing of operators

should occur whenever the massive W-bosons (and their superpartners) corresponding

to open strings are introduced. Also the sigma model computation of the R-charge J̃

suggests that a simple background field computation where the fluctuations of the scalar

fields describing the giant gravitons are frozen is not enough to compute the correct R-

charge, but that one should rather carefully integrate out the heavy fields off-diagonal

fluctuations. At finite volume, the curvature coupling to the scalars lifts the Coulomb

branch, but it is well known that introducing an R-charge gives rise to an effective

potential whose minima describe (dual) giants [32]. As the become very large one expects

that the moduli space is approximately restored, so that the R-charge is no longer needed

to stabilize the solutions, however this is only true infinitely far away from the origin in

field space, where the corresponding operators become infinitely heavy. So somehow the

naive approximation to these operators reassembling neutral Coulomb branch operators

should be destabilized by interactions with charged operators. Also a careful analysis of

finite volume effects coming from the curvature of S3 in the gauge theory could elucidate

how corrections depending on the size of AdS appear.

——-
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Chapter 5

Open Spin Chains and Giant

Gravitons

5.1 1
4-BPS Boundaries:Classical Open strings on S5

We are interested in studying classical open strings solutions to the Nambu-Goto

string on AdS5 × S5 that correspond to BPS states of the centrally extended version of

the N = 4 superconformal algebra SU(2, 2|4) [70]. The central extension comes from

demanding that the strings end on giant gravitons that preserve 1
4
of the supersymmetries.

A natural set of coordinates for this problem are the generalization of the 1
2
- BPS LLM

coordinates of Type IIB supergravity to generic 1
4
(1
8
)-BPS bubbling geometries [69].

These coordinates are the less-supersymmetric analog of the LLM coordinates for 1
2
-BPS

geometries [16]. For simplicity, we will consider the case where the motion of the string

is restricted to the S5 factor of the space while it sits at the origin of AdS5:

ds2 = −dt2 + dΩ2
5 (5.1)
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Instead of the usual spherical coordinates, it is better to express metric for the five-sphere

in Hopf coordinates which correspond to an S1 fibered over a complex 2-disk, with the

circle degenerating at the boundary of the disk:

Z =
√
1− r2eiψ

X = r cos θeiϕ1

Y = r sin θeiϕ2

(5.2)

In terms of these coordinates we have the following relations,

|dZ|2 = r2dr2

1− r2
+ (1− r2)dψ2

|X̄dX + Ȳ dY |2 = r2dr2 + (1− r2)2A2

(5.3)

where we have introduced the following auxiliary quantities:

r2 = |X|2 + |Y |2

A =
Im
(
X̄dX + Ȳ dY

)
1− |X|2 − |Y |2

(5.4)

Finally, to obtain 1
4
-BPS coordinates we do a coordinate transformation into a rotating

frame given by X → eitX, Y → eitY . Since Z is unchanged by this transformation, only

the combination |dX|2 + |dY |2 has a non-trivial transformation law. In total, the metric

for R× S5 in these coordinates is:

ds2 = −
(
1− |X|2 − |Y |2

) (
(dt+A)2 − dψ2

)
+

1

(1− |X|2 − |Y |2)
ds24

ds24 =
(
1− |X|2 − |Y |2

) (
|dX|2 + |dY |2

)
+ |X̄dX + Ȳ dY |2

(5.5)

Another way of writing these coordinates is as a conformal rescaling of the complex

hyperbolic disk model:
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ds2 = e−2K

[
−
(
(dt+A)2 − dψ2

)
+

|dX|2 + |dY |2

1− |X|2 − |Y |2
+

|X̄dX + Ȳ dY |2

(1− |X|2 − |Y |2)2

]
K = −1

2
log
(
1− |X|2 − |Y |2

)
A = Im (dK)

(5.6)

These kinds of coordinates are particularly well suited to study open strings since the

equations of motion of Nambu-Goto action for an open string rigidly rotating along ψ

can be expressed as a geodesic problem for the metric ds24 much like in[23]).

For the boundary conditions, we will consider a class of open strings ending on a simple

class of BPS giant gravitons which wrap holomorphic cycles inside the disk: [71]:

F (X, Y )|σ=0 = 0

G(X, Y )|σ=1 = 0

(5.7)

More concretely, the giant gravitons are localized along the loci F = G = 0 inside the

droplet |X|2 + |Y |2 < 1 while they fill the fiber circle coordinate ψ. These Dirichlet

boundary conditions must be supplemented with Neumann boundary conditions along

the normal direction in order for the strings to remain attached to the giants:

[
∂σX⃗ ·

(
∂F (X, Y )

∂n̂

)∗]
|σ=0 = 0[

∂σX⃗ ·
(
∂G(X, Y )

∂n̂

)∗]
|σ=1 = 0

(5.8)

One last important point about the boundary conditions is the role of the worldsheet

coordinate ψ(τ, σ) for which we will make the ansantz:

ψ(τ, σ) = βτ + g(σ) (5.9)
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Substituting this ansatz into the Nambu-Goto action in temporal gauge t(τ, σ) = τ for

the metric (5.5), the Neumann boundary conditions for ψ imply the following condition

dg = βA (5.10)

After imposing this condition the Nambu-Goto action for the string takes the form :

S =

√
λ

2π

√
1− β2

ˆ
dτ

ˆ 1

0

dσ
√
G

G =
(
1− |X|2 − |Y |2

)(∣∣∣∣dXdσ
∣∣∣∣2 + ∣∣∣∣dYdσ

∣∣∣∣2
)

+

∣∣∣∣X̄ dX

dσ
+ Ȳ

dY

dσ

∣∣∣∣2 (5.11)

One important aspect of the boundary conditions (5.7), is that generically the classes

of solutions satisfying the boundary conditions are much richer than the case where the

giant gravitons are only separated along a single complex coordinate [23]. For instance,

whenever the loci F = G = 0 have mutual solution, the strings can become point-like

objects localized at such loci.

For the sake of completeness we will reproduce the equations of motion corresponding to

the action (5.11), but will leave the study of the general solutions for future work. As

it will turn out, the holomorphic nature of the boundary conditions (5.7) is constraining

enough to simplify the analysis to the point where we will not need to solve the general

equations of motion. The geodesic equation for the induced metric are:

d2X

dσ2
= −

2 (XY ′ − Y X ′)
(
XȲ X̄ ′ + (1− |X|2)Ȳ ′)

1− |X|2 − |Y |2

d2Y

dσ2
=

2 (XY ′ − Y X ′)
(
(1− |Y |2)X̄ ′ + X̄Y Ȳ ′)

1− |X|2 − |Y |2

(5.12)

The main complication in these equations arises due to the second (non-holomorphic)

factor in both numerators.
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5.1.1 On-Shell Charges

All open string solutions with the specified boundary conditions can be partially char-

acterized by three conserved quantities: the angular momentum in the Z direction Q, the

angular momentum along the X, Y directions J and the central charge |Z| corresponding

to the length of the string.

|Z| =
ˆ 1

0

dσ
√
G =

ˆ |Z|

0

ds

Q =

√
λ

2π

β√
1− β2

|Z|

J = E
ˆ |Z|

0

ds

(
|X|2 + |Y |2

1− |X|2 − |Y |2

)
+ E−1

(
λ

4π2

) ˆ |Z|

0

dsJ1

J1 =

([
Im
(
X̄ dX

ds
+ Ȳ dY

ds

)]2
(|X|2 + |Y |2 − 2)

1− |X|2 − |Y |2

)
(5.13)

Notice that the integrals are taken with respect to a affine parameter s, which corresponds

to a gauge choice in which the central charge density is constant along the string. This

choice is convenient since it will appear in the spin chain description of the string. The

energy of the strings has the form of the usual dispersion relation of the centrally extended

BPS states:

E = ∆− J =

√
Q2 +

λ

4π2
|Z|2 (5.14)

Here ∆ is the generator of time translations in the non-rotating coordinates for Rt×S5.

The expression for the spin J is of interest, since it corresponds to an symmetry that is

spontaneously broken by the boundary conditions. In particular, when expressed purely

in terms of of the other charges E ,Z, Q, it’s expansion in the t’Hooft coupling terminates

at first order, which suggests that the quantum R-charge is one-loop exact at strong

coupling. We will later reproduce the first term in the expansion of J in the large spin

limit Q → ∞ and Q/|Z| fixed with a spin chain computation in the SU(3) sector of

75



Open Spin Chains and Giant Gravitons Chapter 5

N = 4 SYM.

5.1.2 Some Simple Solutions

We will now study a few simple solutions that will serve as reference for the later

sections on open spin chains. The simplest class of boundary conditions to consider are

those for which only one linear combination of X and Y appears at both boundaries,

for example F (X, Y ) = X − ξ and G(X, Y ) = X − η. Since the Neumann conditions

imply that the derivatives of Y (σ) vanish at the boundaries, one obvious ansatz is to try

Y (σ) = Y = constant. Plugging this into the action simplifies the metric to that of a

flat disk:

S =

√
λ

2π

√
(1− β2)(1− |Y |2)

ˆ
dτ

ˆ 1

0

dσ
√

|dX|2 (5.15)

The solution to the equations of motion is simply a linear interpolation between ξ and

η, X(σ) = σξ + (1 − σ)η. This is virtually identical to 1
2
-BPS (open) magnon solution,

except that the value of |Y | is important. Extremizing with respect to |Y | gives two

possible values for the lowest energy configurations, |Y | = 0, or |Y | = 1. This is due

to the rotation along the Y axis pushing the strings towards the edge of the droplet if

Y ̸= 0. The solution with |Y | = 1 is just a string moving along the equator of S5, which

has infinite spin J but finite energy [28], while the solution with Y = 0 is a massive string

with finite spin J .

Another important example is the choice F (X, Y ) = X−ξ and G(X, Y ) = Y −η. In this

case, the lowest energy configuration is a point-like string localized at the locus X = ξ,

Y = η. This means any choice of boundary conditions which is purely linear in X, Y will

lead to point-like solutions localized at the intersection of the lines.

Finally, another important example is the generalization of the simple linear intersecting

branes to intersections with multiplicities, such as double points. For concreteness, we
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consider the simple choice F = X − ξ and G = Y 2 +X − η. As in the first example, a

natural guess is to look for solutions within the level sets Y (σ) = constant. For Y ̸= 0,

the curves intersect at two different points Y = ±
√
ξ − η. Since these intersections are

holomorphic, the local analysis near each intersection is exactly the same as when the

branes are supported at intersecting lines. However at the level set where Y = 0 the

behavior is different; if we were to have that ξ = η, then we would have that the previous

pairs of intersections combine into a single double point intersection, so that when we de-

form away from ξ = η there will be points along both curves where the normal direction

to the curves are parallel. In this case, since Y = 0 the normal to both F (X, Y = 0) = 0

and G(X, Y = 0) = 0 point along the Y direction. In particular, this means that there is

a straight line connecting ξ and η that satisfies the Neumann boundary conditions (5.8).

With these examples in mind, it becomes clear that whenever we have boundary condi-

tions that intersect holomorphically, or we have a complex deformation thereof, which

is always the case for boundary conditions of the form (5.7), there will always be solu-

tions to the Nambu-Goto string equations that are either point-like (in the case where

there is an intersection), or are a straight line in D2 (when we have a deformation of

a singular point). This can be explained as follows: if the intersection is non-singular,

the intersection loci is a circle and the string is a point inside this circle, but when we

have a singular intersection, or it’s deformation, there is always an SU(2) that aligns the

coordinate axes of D2 with the normal and tangent vectors to the intersection which we

may call X̃N , ỸT . The Neumann boundary conditions are satisfied automatically when

the string’s coordinate along the tangent direction is constant ỸN(σ) = constant, which

simplifies the induced metric in D2 to a flat D1. Generically these solutions are isolated,

since trying to deform the constant value of ỸN(σ) will break the boundary conditions,

because the normal derivatives along the two D-branes will be in general not aligned.
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5.2 Boundary Conditions for Open Spin Chains

5.2.1 Warm-Up: An SU(2) Bosonic Chain

In this section we expand on the ideas of [72] to introduce open boundary conditions

for spin chains, with the goal of describing open strings in holography. Before discussing

the case of the N = 4 SYM spin chain, we turn our attention to a simpler toy model

that captures a lot of the desired physics. In general grounds, the equations of motion of

a string are schematically of the form:

(
∂2τ −∆

)
X = 0 (5.16)

Where ∆ is the appropriate induced Laplacian on the worldsheet, and X denotes the

wordlsheet (bosonic) fields.In suitable coordinates, this is can always be written as an

expansion around the flat metric on the string in powers of the curvature of the target

space and derivatives, so to zeroth order in the curvature of the space, the equations of

motion for a string are simply a wave equation. Those equations can always be discretized

and viewed as coming from an effective Hamiltonian for the ”string-bits” making up the

string:

Hbulk = λ
L−1∑
i=1

[(
a†i − a†i+1

)(
ai − ai+1

)
+
(
b†i − b†i+1

)(
bi − bi+1

)]
(5.17)

Where ai, bi are commuting bosonic raising and lowering operators acting on sites of the

form |na⟩ ⊗ |nb⟩. This can be thought of as an effective discrete light-cone Hamiltonian

for a relativistic string with angular momentum Q ∼ L + 1. We will use this as a toy

model for the bulk Hamiltonian of a discretized string living on a 2d complex plane. To

see this, consider a variational wavefunction ansatz for the ground state:
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|Ψ({xl, yl})⟩ =
L⊗
i=1

|xi⟩ ⊗ |yi⟩ (5.18)

Where |x⟩ is a bosonic coherent state. The variational energy in the bulk of the would

be discretized string is simply:

E({xi, yi}) = λ
L−1∑
i=1

(
|xi − xi+1|2 + |yi − yi+1|2

)
(5.19)

This is clearly minimized whenever the parameters xi, yi satisfy a discrete second differ-

ence equation which can be interpreted as a discretized version of (5.16):

xi1 − 2xi + xi+1 = 0

yi1 − 2yi + yi+1 = 0

(5.20)

As they stand, this set of linear equations is under-determined; we need to impose bound-

ary conditions. To describe an open string, one would expect that the Hamiltonian must

include new terms that give rise to the appropriate discretizations of (5.7) and (5.8). One

choice for such modification is to include boundary terms such as:

VDL = λF (a1, b1)
†F (a1, b1)

VDR = λG(aL, bL)
†G(aL, bL)

(5.21)

Where these should be interpreted as polynomial expressions on the raising and lowering

operators. When applied on the coherent state ansatz introduced before, the condition

needed such that the parameters xi, yi are at an extremum of the energy is:

x1 − x2 + [∂x1F (x1, y1)]
∗ F (x1, y1) = 0

y1 − y2 + [∂y1F (x1, y1)]
∗ F (x1, y1) = 0

(5.22)
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Multiplying the first equation by (∂y1F (x1, y1))
∗ and the second by (∂x1F (x1, y1))

∗ F (x1, y1)

and subtracting both of them gives:

(x1 − x2) (∂y1F (x1, y1))
∗ − (y1 − y2) (∂x1F (x1, y1))

∗ = 0 (5.23)

The form of this equation can be immediately recognized as a discretization of the con-

tinuum limit boundary conditions. In the large L continuum limit, these equations

would reproduce something reassembling the light-cone spectrum of an open string in

Rt × S1 ×C2 stretched between D3-branes wrapping S1 and a holomorphic cycle inside

C2. To see that the space is really C2, as opposed to R2 (or something else), we can look

at the Kähler form which arises from the Berry connection of the coherent states:

ˆ
dt (⟨x| ⊗ ⟨y|) i∂t (|x⟩ ⊗ |y⟩) =

ˆ
dt (x̄ẋ+ ȳẏ − c.c.) (5.24)

This should be interpreted as an integral of the canonical form
´
pdq, so that x̄ and

x are canonically conjugate. This reproduces the standard Kähler form on C2 with a

flat metric. Since the symplectic structure is canonical, this reaffirms the fact that the

commutation relations of a, a† were the usual relations of a harmonic oscillator in the

first place. With all this in mind, we can now discuss a more complex example.

5.2.2 N = 4 SYM SU(2) open spin chain at one-loop

A more complex realization of the idea that strings arise from spin chains is realized

by the N = 4 SYM integrable spin chain. The simplest closed sector consists of operators

made out only of complex scalars X,Z:

O ∼ . . . ZXk1ZXk2 . . . ZXkLZ . . . (5.25)
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Since we are interested in operators describing open strings, we will take the end points of

the word ZXk1ZXk2 . . . ZXkLZ in (5.25) to be sewn together to an operator of dimension

∆ ∼ O(N), as opposed to taking a simple trace. Operators belonging to this SU(2) sector

which correspond to open strings between giant gravitons were studied in [73], and further

in [58, 44, 43, 62]. One important aspect of such spin chains is that the number of sites

is indefinite in the usual SU(2) spin variables. One way to deal with this is to chose

to fix the number of Z’s appearing in the operator, while letting the total number of

letters fluctuate. This would correspond to a Heisenberg magnet where the number of

spin up sites is constant, but the number of spin down defects is allowed to change. The

Hamiltonian for this system is more naturally expressed in terms of bosonic oscillators

that satisfy the following Cuntz algebra instead of the usual harmonic oscillator relation:

A†A = 1− |0⟩ ⟨0|

AA† = 1

(5.26)

In these variables the one loop Hamiltonian is:

HSU(2) =
λ

8π2

L∑
i=0

(
A†
i − A†

i+1

)
(Ai − Ai+1)

A0 = ξ, AL+1 = ξ̃

(5.27)

Despite the simple form of this Hamiltonian, the fact that the raising and lowering oper-

ators satisfy a Cuntz algebra makes the spectrum of the system very complex. However,

the ground state of the system can obtained by a coherent state ansatz [74]:

A |z⟩ = z |z⟩

|z⟩ =
√

1− |z|2
∞∑
n=0

zn
(
A†)n |0⟩ (5.28)
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With the energy function being given by:

E = λ
L∑
i=0

(
z∗i − z∗i+1

)
(zi − zi+1)

z0 = ξ, zL+1 = ξ̃

(5.29)

As in the toy example, the energy is minimized whenever the zi satisfy a second difference

equation. Another way of stating this is that the ground state can be associated with

a straight line inside a flat unit disk, and the central charge density of the string is

associated to the quantity:

δZ = zi+1 − zi (5.30)

This Hamiltonian can also be thought of as a first term in a the curvature expansion of

a light-cone Hamiltonian of the string on R × S5, with discrete light-cone momentum

Q = L+1. The zeroth order correction to the energy is simply the light-cone momentum

Q = L+ 1. The ground state energy to leading order is given by:

E = E0 + E1 + · · · = (L+ 1) +
1

2

(
λ

4π2

)
|ξ − ξ̃|2

L+ 1
+ . . . (5.31)

Higher order corrections to the ground-state energy have been computed in [45], and in

agreement with the dispersion relation (5.14).

5.2.3 SU(3) open spin chain at one-loop

We will now consider operators belonging to a holomorphic SU(3) sector. As with

the SU(2) case, it will be convenient to fix the number of Z’s appearing in the operator,

so that the most general operator is of the schematic form:

O ∼ . . . ZW1ZW2 . . . ZWLZ . . . (5.32)
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Where Wi are arbitrary words made out of the fields X, Y . Clearly, the usual spin

variables of SU(3) are not well suited for analysing the Hamiltonian of the corresponding

spin chain, because as before the number of spin sites is not a well defined quantity.

One also has to take into account the order in which the X and Y fields appear in each

word Wi, so the operators in the Hamiltonian have to be sensitive to this ordering. One

solution to both of these issues is to map this SU(3) spin chain into a Cuntz oscillator

chain with two Free variables at each site:

AA† = BB† = 1

AB† = BA† = 0

A†A+B†B = 1− |0⟩ ⟨0|

A |0⟩ = B |0⟩ = 0

(5.33)

The use of such operators for us is that the letters A,B have no relation between one

another, so they can easily encode the words Wi by the identification:

X → A†

Y → B†

∂

∂X
→ A

∂

∂Y
→ B

(5.34)

Then, each word Wi separated by the Z’s can be viewed as a site for a spin chain of

these Cuntz oscillators. In particular, these are ”bosonic” in the sense that the operators

commute at different sites. Now, we will translate the integrable SU(3) ⊂ SO(6) spin

chain Hamiltonian arising at one loop from N = 4 SYM from spin variables in these

bosonic operators by treating the insertions of the field Z as a vacuum [70, 58].
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SU(3) Cuntz Hamiltonian

The bulk Hamiltonian for the integrable SU(3) chain coming from N = 4 SYM

consists only of interactions of the form

Hi,i+1 ∼ 1i,i+1 −Pi,i+1 (5.35)

where Pi,i+1 is the permutation operator acting on the tensor product of fundamental

representations of SU(3), Vi⊗Vi+1, and 1i,i+1 is the identity operator. We need to express

the action of these in terms of the free variables A,B. In the spin variable representation,

there are basically three possible actions that the operator Pi,i+1 can do: if this operator

acts on a section of a word such as

. . .P(ZX) . . . (5.36)

, the resulting word will be . . . XZ . . . ; this deletes the leftmost X in one of the words

Wl for some l, and moves attached it to the rightmost spot in the word Wl−1. In other

words, this is a hopping term in the Free variable language. The identity operator 1i,i+1

clearly counts the number of adjacent letters of the same kind. This is also the case for

sections of words that look like:

. . . ZY . . . (5.37)

and

. . . XZ . . . (5.38)
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. These are the same interactions as in the SU(2) spin chain, except that one needs to

keep track of the order in which the letters X, Y are attached to the words Wl:

H ∼ λ
k−1∑
i=i

(
A†
i,R − A†

i+1,L

) (
Ai,R − Ai+1,L

)
+
(
B†
i,R −B†

i+1,L

) (
Bi,R −Bi+1,L

)
(5.39)

Where Ai,L/R acts on the left/right end of the wordWi corresponding to the stateWi |0⟩i.

Ai,L (Wi) |0⟩ = (AiWi) |0⟩

Ai,R (Wi) |0⟩ =
(
AiW

T
i

)T |0⟩ (5.40)

Naively one might think that this alone is the correct noncommutative version of the toy

model introduced in the beginning of this section and the correct SU(3) Hamiltonian,

however there is another allowed interaction; the operator Pi,i+1 can also permute XY →

Y X, for any adjacent X and Y . This seems hard to do in the free variable language,

since this would amount to permuting every pair of different letters inside each word

Wl. This means that this is an on-site interaction term; the same is true for the identity

operator. The end result is that the integrable Hamiltonian 1i,i+1−Pi,i+1 acting on such

combinations of letters is encoded in the action of the following operator:

VAB =
∑
W

W† (B†A†AB + A†B†BA−B†A†BA− A†B†AB
)
W

= − :
[B†, A†][A,B]

1− A† ⊗ A−B† ⊗B
:

(5.41)

Since this is a somewhat formal expression, we should clarify what such an operator

does. First, the sum over W should be understood as a sum over all Free words in

A,B of any length; this has the effect of annihilating all layers of a word, implementing

either an identity operation, or a swap, and then rebuilding the previously annihilated

layers. The way the normal ordering should be understood is as follows: the expression
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[B†,A†][A,B]
1−A†⊗A−B†⊗B is a formal power series in A,B and A†, B† made out of all possible ways

of multiplying A,B (A†, B† ). The ordering ambiguity is removed by requiring that the

lowering operators act to the right first, without commuting any A past a B, and then

multiplying to the right with the raising operators in the transposed order. Finally, the

bulk Hamiltonian for the integrable SU(3) spin chain with a variable number of sites can

be written as:

HSU(3) =λ
L−1∑
i=i

[(
A†
i,R − A†

i+1,L

)
(Ai,R − Ai+1,L) +

(
B†
i,R −B†

i+1,L

)
(Bi,R −Bi+1,L)

− :
[B†

i , A
†
i ][Ai, Bi]

1− A†
i ⊗ Ai −B†

i ⊗Bi

:

]
(5.42)

This Hamiltonian can be easily generalized from SU(3) to SU(N) by introducing N − 3

additional oscillators at each site and replacing the relations between them with:

AIA
†
J = δIJ

N−1∑
I=1

A†
IAI = 1− |0⟩ ⟨0|

AI |0⟩ = 0

(5.43)

This is very similar to the representations of SU(N) in terms of constrained bosons [75].

One should be able to also include fermionic operators with slightly different relations

to describe the SU(3|2) sector of the theory without too much difficulty as in [70], but

we leave this analysis for a later time. At first this change of variables might seem a

bit convoluted, since the on-site interactions look very complicated, but it turns out the

the coherent state analysis becomes very simple. This would not be the case with the

usual SU(N) spin coherent states found in the literature, since the number of spins in
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the chain is a dynamical quantity.

SU(3) Cuntz Coherent states

The fact that the lowering operators A,B always act first suggest that we should

look for a coherent state ansatz for the ground state; to do this we should build coherent

states for these kinds of operators. There is a natural ansatz for these:

|x, y⟩ =
∞∑
n=0

(
xA† + yB†)n |0⟩ (5.44)

To check that this indeed works, we notice that if one applies the A lowering operator

on xA† + yB†, it will annihilate the B†’s and combine with the A†:

A(xA† + yB†) = xAA† + yAB† = x (5.45)

In other words we have:

A |x, y⟩ = x |x, y⟩

B |x, y⟩ = y |x, y⟩
(5.46)

So the seemingly formal objects |x, y⟩ are indeed coherent states. One last thing to check

is whether these states have finite norm. This norm can be easily evaluated using the

relations (5.33),

⟨x, y|x, y⟩ =
∞∑
n=0

(
|x|2 + |y|2

)n
=

1

1− |x|2 − |y|2
(5.47)

which means that these states are only well defined for |x|2 + |y|2 < 1.

As mentioned previously, we wish to consider variational wavefunctions of the form:

|Ψ(xi, yi)⟩ =
L⊗
i=1

|xi, yi⟩ (5.48)
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When we evaluate the expectation value of the Hamiltonian (5.17) on this set of states

we recover the same variational energy function that that we encountered before:

E({xi, yi}) = λ

L−1∑
i=1

(
|xi − xi+1|2 + |yi − yi+1|2

)
(5.49)

One important simplification is the vanishing of the expectation value of the on-site in-

teration term; this happens because the coherent states have the effect of replacing A

and B with commuting numbers x, y. As before, this energy function is minimized when-

ever the coordinates xi, yi satisfy separate second difference equations. Since the set of

linear equations resulting from this are underdetermined, we have to impose boundary

conditions in this case too. Before that, we will first give a brief discussion of the quan-

tum numbers of these ground states, and show their agreement with the classical open

string picture (5.13). Lastly, the form of the energy functional makes it seem as if the

coordinates x, y are independent of each other. This is not the case, since the normal-

ization constraint couples them. More explicitly, their (quantum) commutation relations

inherited from the Kähler form are nontrivial, as we will discuss later.

Quantum Numbers: Q and J

In analogy to the classical open strings on S5, the ground state of this spin chain is

determined by three quantum numbers, the central charge Z and a pair of spins Q, J .

The spin Q in the spin chain corresponds to the total number of Z’s in the word, and is

related to the total number of sites L of the spin chain:

Q = L+ 1 (5.50)
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This makes sense, since the angular momentum along the circle ψ is quantized. This is

not the case with the spin J ; the rotational symmetry associated to J is spontaneously

broken by the end points of the string, so the corresponding quantum number is no longer

quantized. This is reflected on the fact that the number of X’s and Y ’s in the chain is not

constant. The spin J is also associated to the R-charge in the BPS shortening condition

∆ − J = 0 that the giant gravitons to which the strings are attached must satisfy. In

the spin chain, this is given to leading order by the expectation number of the number

operator:

J =
∑
i

⟨Ψ(xi, yi)| N̂i |Ψ(xi, yi)⟩ =
L∑
i=1

|xi|2 + |yi|2

1− |xi|2 − |yi|2

N̂ =
L∑
i=1

N̂i =
L∑
i=1

:
A†
iAi +B†

iBi

1− A†
iAi −B†

iBi

:

(5.51)

For large Q = L + 1, this is in precise agreement with the expression coming from the

classical string solution, to leading order in the t’Hooft coupling.

Berry Curvature and Symplectic form

To find the symplectic form associated to the parameters x, y we need to evaluate the

Berry curvature:

At = ⟨x(t), y(t)| i∂t |x(t), y(t)⟩ (5.52)

This can be evaluated by first computing:

⟨w, z| i∂t |x(t), y(t)⟩ = i∂t

(
w∗x(t) + z∗y(t)

1− w∗x(t)− z∗y(t)

)
(5.53)

And substituting w = x(t) and z = y(t):

At = ⟨x(t), y(t)| i∂t |x(t), y(t)⟩ = i

(
x∗ẋ− xẋ∗ + y∗ẏ − yẏ∗

1− |x|2 + |y|2

)
(5.54)
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This is precisely the same form as the one-form A appearing in the metric on which the

classical string moves (5.4). To find the Kähler form one needs to take the derivative of

this quantity in the correct (holomorphic) way. Doing this carefully gives the symplectic

form on the unit complex hyperbolic disk:

Ω =
dx ∧ dx̄+ dy ∧ dȳ
1− |x|2 − |y|2

+
(x̄dx+ ȳdy) ∧ (xdx̄+ ydȳ)

(1− |x|2 − |y|2)2
(5.55)

This shows that even in the semi-classical limit, that is when one takes the coherent

state expectation value of the quantum Hamiltonian as a classical Hamiltonian for the

system of string-bits, the coordinates x and y are still interacting, despite the fact that

the quantum interaction term vanishes. One thing to note about this form, is that

if one restricts to surfaces where y = dy = 0, the Kähler form reduces to the usual

canonical form dx ∧ dx̄. This is true in all orthonormal bases; if one sets one of the

independent coordinates to zero the Kähler form reduces to the canonical form in the

left over coordinate.

5.2.4 Open Boundary Conditions for SU(3) open Cuntz Chain

One subtle point that was ignored in the previous section, is what happens to the

operator O at the end points. In principle, the operator is attached to a coherent com-

bination of quarter BPS operators corresponding to the giant gravitons. In practice,

constructing such operators is combinatorially diffucult, and the non renormalizability

properties of quarter BPS operators are less restricting than that of half BPS operators

[76].

These issues can be bypassed by finding boundary terms for the Hamiltonian (5.17)

that implement the correct boundary conditions on the ground state (5.7) (5.8), and only

dealing with long spin chains so that the curvature corrections to this prescription are
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well under control. From this it becomes clear that the generalization for the boundary

terms of the SU(3) Cuntz chain should be:

VDL ∼ F (A1, B1)
†F (A1, B1)

VDR ∼ G(AL, BL)
†G(AL, BL)

(5.56)

We should note that there is an ordering ambiguity in defining these boundary terms,

since the operators Ai, Bi do not commute. One possible choice is to consider a completely

symmetrized polynomial in the lowering operators. For example for a polynomial F (x, y),

one can build an operator F(A,B) as follows:

F (x, y) =
∑
n,m

Fn,mx
nym

F(A,B) =
∑
n,m

Fn,m

(
n+m

n

)−1 ∑
permutations of A,B

AnBm

(5.57)

Since this operator differs from other orderings by commutators, the difference from this

choice is a higher curvature correction, which is subleading in the limit of long chains

L >> 1.

This means that the most general (and Free-est) boundary terms that implement Dirichlet

conditions are of the form

VDL = λ F(A1, B1)
†F(A1, B1)

VDR = λ G(AL, BL)
†G(AL, BL)

(5.58)

When applied on the Cuntz coherent states, these will lead to the extremization condi-

tions:

x1 − x2 + [∂x1F (x1, y1)]
∗ F (x1, y1) = 0

y1 − y2 + [∂y1F (x1, y1)]
∗ F (x1, y1) = 0

(5.59)
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At this point, it should become clear that the analysis is identical to our simple toy

boson Hamiltonian, since the noncommutativity of A and B is erased when one replaces

them with c-numbers. In the next section we will compute the ground states for a some

simple examples of boundary conditions, and we will show qualitative agreement with the

fact that introducing such boundary terms does indeed describe open strings stretching

between various D-brane set-ups. Then we will outline a general method for finding such

ground states for generic holomorphic boundary conditions via a level-set analysis.

5.3 Some simple examples of boundary conditions

5.3.1 Branes at angles

Let us consider a simple class of boundary conditions for the SU(3) spin chain which

reproduce the boundary conditions associated to giant gravitons wrapping S3’s at angles

inside S5. To clarify what we mean by having these branes at angles, we should clarify

the geometry of the S5 in quarter BPS coordinates. In these coordinates, the geometry

of the S5 is better described as an S1 bundle over a disk D2 (5.5). For simplicity, we will

take the giant gravitons that wrap the S1 fiber throughout, while they lie in a line inside

D2. A (complex) line inside D2 is determined by a two component vector (x, y). The

angles between any two lines can be determined by a PSU(2) = SU(2)/Z2 matrix g:

g =

 α β

−β∗ α∗

 (5.60)

More explicitly, we can align the first giant to lie along the Y axis of D2. This means

that the D3 brane is point like in the X direction, and we may denote its position to

be ξ. The position of the string end point along Y is undetermined since the boundary
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condition along the D3 brane allows it to me freely along it. This would corresponds to

a boundary term in the spin chain like:

VL = λ
(
A†

1 − ξ∗
)
(A1 − ξ) (5.61)

For the second giant graviton, let us take a line insideD2 of the form L : βX+αY −η = 0.

Then, there is a complex codimension one surface with coordinates αX − βY normal to

this line. This surface would be the analog of the LLM disk [16] after a change of

coordinates. We can choose to place the giant graviton at position αX + βY = η as a

Dirichlet boundary condition. Again we are not allowed to fix the position of the string

end point along L. The boundary term in this case would look like:

VR = λ
(
α∗A†

L + β∗B†
L − η∗

)
(αAL + βBL − η) (5.62)

Making use of the coherent state ansatz introduced in the previous section, we obtain a

simple variational function for the ground state energy. The bulk equations on the spin

chain imply that the difference xi+1 − xi and yi+1 − yi are independent of the site i. The

only non- trivial step is to solve the boundary equations of motion. Let us first solve the

equations for y1:

1

λ

∂E

∂y∗1
= y1 − y2 = 0 (5.63)

This in particular sets all bulk equations for y to zero. On the other end of the spin chain

we get the condition:

1

λ

∂E

∂y∗L
= β∗(αxL + βyL − η) + yL − yL−1 = β∗(αxL + βyL − η) = 0 (5.64)
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Where we used the fact that y2 − y1 = yL − yL−1 = 0. Turning to the xL equation we

find that for nonzero β, the bulk equations for the x variables must also vanish

1

λ

∂E

∂x∗L
= α∗(αxL + βyL − η) + xL − xL−1 = xL − xL−1 = 0 (5.65)

Finally, the equation for x1 can only be satisfied if the string remains at xi = ξ:

1

λ

∂E

∂x∗1
= x1 − ξ + (x1 − x2) = x1 − ξ + (xL−1 − xL) = x1 − ξ = 0 (5.66)

This means that the energy is minimized when the string localizes at the intersection of

the two branes as expected:

xi = ξ

αxi + βyi = η

(5.67)

Notice that solutions to these equations only give normalizable states whenever these

solutions lie inside the unit disk |x|2 + |y|2 < 1. In that case, the corresponding state

is a zero mode of the Hamiltonian, as one would expect of the lowest energy modes of

a string localized at the intersection of two D-branes. If the intersection of the lines

lies outside the unit disk, the gradient flow of the Hamiltonian will push any variational

wavefunction towards this would be intersection, so that eventually the strings hit the

boundary of the unit disk and become non-normalizable states.

One important point is that one should be able to see the eigenvalues e±iθ of the SU(2)

in the string spectrum. In the double scaling limit where the tension λ and spin L + 1

are very large with λ
(L+1)2

< 1, the commutator terms in the Hamiltonian should be

highly suppressed, and the energy can be approximated by the continuum limit. Since

the commutators [Ai, Bi] are small, the leading contributions come from fully symmetric

tensors representations of the SU(2) symmetry that rotates A and B into each other.
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The continuum action can be obtained by using the symplectric form obtained from the

coherent states:

H = λ

ˆ
dσ
(
|∂x|2 + |∂y|2

)
(5.68)

Although this looks simple, the commutation relations of the coordinates are non-trivial

due to the curvature of the Kähler form Ω = i
2
∂̄∂ log (1− |x|2 − |y|2):

[x(σ), x̄(σ′)] = 2δ(σ − σ′) : (1− |x(σ)|2)(1− |x(σ)|2 − |y(σ)|2) :

[x(σ), ȳ(σ′)] = 2δ(σ − σ′) : x(σ)ȳ(σ)(1− |x(σ)|2 − |y(σ)|2) :
(5.69)

Then one would proceed by doing a mode expansion along the coordinate σ. In the

semiclassical regime, the boundary conditions can be implemented on these modes be-

fore quantization, Since the D-branes are related by an SU(2) rotation, we ca usen the

eigenbasis of this rotation for the worldsheet coordinates; one can always chose to place

the first D-brane along Re x and Re y, and the second at a rotation (and a shift) of these

axes with eigenvalues e±iθ. In these coordinates the boundary conditions have a nice

form [77]:
∂

∂σ
Rex(0) =

∂

∂σ
Re y(0) = 0

Imx(0) = Im y(0) = 0

∂

∂σ
Re eiθx(1) =

∂

∂σ
Re e−iθy(1) = 0

Im eiθx(1) = ξ

Im eiθy(1) = 0

(5.70)

The constant term at σ = 1 can be taken care of by explicitly solving for the zero more

x0 = ξ sin θ. The fluctuations around the zero mode get a phase shift of θ/π in their
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mode number:

x(σ) = x0 +
∑
n̸=0

ei(πn−θ)σαn−θ/π

y(σ) =
∑
n ̸=0

ei(πn−θ)σβn−θ/π

(5.71)

In the limit of small fluctuations |x| << 1, the mode operators reproduce the flat space

spectrum of open strings on a pair of D-branes intersecting at angles, but in general the

commutation relation between the modes are nontrivial even at this order. This is not

surprising, since even the discrete Hamiltonian function coming from the coherent states

is not the Hamiltonian for a free particle; in polar coordinate representation xi =
√
ρie

iφi

and yi =
√
ηie

iθi , the Hamiltonian is an SU(2) generalization of a class of Calogero

integrable systems [78]:

H =
L∑
i=1

(ρi + ζi) +
L∑

i,j=1

(√
ρiρj cos(φi − φk) +

√
ηiηj cos(θi − θk)

)
+ Vboundary (5.72)

We won’t dwell too much into the exact form of the boundary terms, but we will comment

that since they come in the form of a polynomial in x, y, in polar coordinates these will

look generically like a complicated sum of spherical harmonics for S5. As before, the

subtlety arises in that the Kähler form is non-trivial, so that the pairs {ρi, ηi}, {φj, θj}

are not canonical conjugates to each other.

5.3.2 Massive 1
2-BPS states

One thing to note about the class of ground states in the previous section is that they

all are either massless, or have non-normalizable wavefunctions. This is expected from

D-brane intersections; at a holomorphic/supersymmetric intersection, the states localized

to this loci preserve both the supersymmetries associated to each of the branes. Naively

one would think that this might be lifted to a massive BPS state if the branes are moved
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apart in a transverse direction, but this is not the case since a massive BPS multiplet

has twice as many degrees of freedom as a massless BPS multiplet. To obtain massive

states we should first look for boundary conditions for which the ground state is doubly

degenerate and massless, meaning that the D-branes intersect twice or at a double point,

and then separate the branes transversally. One simple choice of boundary term is to

replace the linear relation in (5.62) with a conic:

VR = λ

(
A†
L +

(
B†
L

)2
− η∗

)(
AL +B2

L − η
)

(5.73)

We can repeat the analysis of the previous section to find that the variational energy is

only dependent on the first and last coordinates x1,L, y1,L, the only difference being that

the solutions to the minimization problem need to be split into two cases. The equations

in question are:

x1 − ξ −
(
η − xL − y2L

)
= 0

y∗L
(
η − xL − y2L

)
= 0

(5.74)

These must me supplemented with the constraints:

xi+1 − xi = xi+2 − xi+1

yi+1 − yi = yi+2 − yi+1 = 0

(5.75)

Clearly the solutions depend on the relationship between ξ and η. More explicitly, we

can look for solutions for which yL ̸= 0, which sets x1 = xL = ξ, y1 = y2 = · · · = yL and

xL + y2L = η. Solving for yL gives two solutions :

ξ = x1 = · · · = xL

y1 = · · · = yL = ±
√
ξ − η

(5.76)
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Since the equations at the boundaries x1 = ξ and xL + y2L = η are satisfied, the energy

of these two states vanishes..

The other case occurs when we look for solutions with yL = 0. The only zero energy

solutions in this case are those with ξ = η, which are a limiting case of the previous

solutions. For ξ ̸= η, the second equation in (5.74) is automatically satisfies, and the first

equation gives that x1 − ξ = η − xL. The constraint equations also tell us that this is a

constant along the spin chain, so that:

xi+1 − xi = (L+ 1) (η − ξ) (5.77)

Finally, the energy can be evaluated to be:

E =
1

2

(
λ

4π2

)
|η − ξ|2

L+ 1
(5.78)

5.3.3 Branes Wrapping Holomorphic Cycles

It is not hard to see that the for generic intersecting and holomorphic curves, the

ground state wavefunction will be localized at the intersection as in the previous case. So

without loss of generality let us consider two giant gravitons specified by the equations:

F (x0, y0) = 0

G(xL+1, yL+1) = 0

(5.79)

Where we introduced additional ”end-point” coordinates for the string. The boundary

terms for a string with such a configuration are given by

VDL = λ F(a1, b1)
†F(a1, b1)

VDR = λ G(aL, bL)†G(aL, bL)
(5.80)
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Repeating the analysis of the previous section, it’s not hard to see that the bulk variables

xi, yi for i = 2, . . . L− 1 serve purely as lagrange multipliers which set the equations:

(
∂F

∂x1

)∗

F (x1, y1) = −
(
∂G

∂xL

)∗

G(xL, yL) = xi − xi−1(
∂F

∂y1

)∗

F (x1, y1) = −
(
∂G

∂yL

)∗

G(xL, yL) = yi − yi−1

(5.81)

This means that the energy function expressed purely in terms of the variables x1,L, y1,L

is:

E =
λ(L− 1)

4

∣∣∣∣( ∂F∂x1
)∗

F −
(
∂G

∂xL

)∗

G

∣∣∣∣2 + λ(L− 1)

4

∣∣∣∣(∂F∂y1
)∗

F −
(
∂G

∂yL

)∗

G

∣∣∣∣2
+ λ|F (x1, y1)|2 + λ|GxL, yL|2

(5.82)

The first think to note is that the quantities |F (x1, y1| and |G(xL, yL| are the geometric

distance from the D-branes to the points (x1,L, y1,L) along a straight line. Also, since

the expression xi − xi+1 is holomorphic, the corresponding left hand side of (5.83) must

also be holomorphic. This means that either xi − xi+1 vanishes whenever F ∗ depends

explicitly on x∗1, y
∗
1, or if

(
∂F
∂x1

)∗
is a constant , then this would allow us to have a non-

trivial central charge density in the x direction xi+1−xi, and similarly in the y direction.

By arranging that the magnitudes of the functions at the first and last sites are equal

|F | = |G|, meaning that the distance from the first and last string bits to the D-branes

is the same, it becomes clear that the energy is simply the length of the line connecting

two points in the two D-branes where the normal vectors are parallel. To make this more
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precise we can introduce the quantities:

δZx =

(
∂F

∂x1

)∗

F (x1, y1) = −
(
∂G

∂xL

)∗

G(xL, yL) = xi − xi−1

δZy =

(
∂F

∂y1

)∗

F (x1, y1) = −
(
∂G

∂yL

)∗

G(xL, yL) = yi − yi−1

|δZx|2 + |δZy|2 = |δZ|2 = |F |2 = |G|2

(5.83)

This extremization procedure is somewhat reminiscent of a toric decomposition, where

the moment map (or D-terms) are given by:

µxi+1
= |xi+1 − xi|2 = |δZx|2

µyi+1
= |yi+1 − yi|2 = |δZy|2

(5.84)

After doing this reduction of (D2)
L
, the only thing left to do is to minimize the boundary

contributions (or F-terms):

∂W =
(dx1 + dxL)δZ∗

x + (dy1 + dyL)δZ∗
y

δZ∗ = ε

∂ =
∑
i=1,2

[
dxi

∂

∂xi
+ dyi

∂

∂yi

]
W = F (x1, y1)−G(xL, yL)

(5.85)

This means that the space of variational ground states has a nice decomposition in terms

of the levels sets of the moment maps: (5.84):

{ground states} =
⋃
δZ

{∂W = ε} // µ−1
(
|δZ|2

)
(5.86)

The case with δZ = 0 should be treated with care; this is precisely when the boundary

curves intersect and ε should be taken to vanish, since this is exactly the deformation
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parameter that resolves the intersection for massive states.

In general, this space is not connected, and has isolated points whenever the there

exist massive ground states. An important point to make about this decomposition is

that it shows that there is an additional set of conserved charges in the ground state

of the system, the central charge densities xi+1 − xi. This should be seen as a further

indication that the coherent state ansatz for the ground state of these spin chains is some

sort of Bethe wavefunction with complex Bethe roots zi as was noted in [44, 23].
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Chapter 6

Generating Functions for BPS

Operators

6.1 Introduction

Recently, there has been a renewed interest in determinant operators in large N

holographic gauge theories and their string dual description as giant gravitons [9, 10, 19,

13, 8]; the dimension of these operators is order N , which makes them ideal to probe

sub-AdS physics. A natural basis for gauge invariant operators is the Schur functions,

which are characters of the unitary and symmetric groups. Combinatorial methods for

computing correlation functions in free N = 4 SYM were developed in [48, 79]. More

recent works have emphasized the utility of an effective action approach obtained by

recasting the determinant operators as fermionic integrals and integrating out the super

Yang-Mills fields. In this description, the non-perturbative physics of the problem can

be obtained from a saddle point approximation for an effective action in terms of a set

of collective fields [9, 19].

A similar prescription for AdS giant gravitons was proposed in [11], where it was re-
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alized that the norms of BPS states are encoded in the expansion of the Harish-Chandra-

Itzykson-Zuber (HCIZ) integral, which appears in the evaluation of the norms of a certain

class of gauge invariant coherent states:

OΛ(0) =

ˆ
SU(N)

dU exp
(
Tr
[
ΛUa†ZU

†
])
. (6.1)

This sheds light on why the group characters evaluated on the Yang-Mills fields may

serve as an orthogonal basis, even though they are only orthogonal with respect to the

Haar measure, and gives a different interpretation of the norms of BPS states as the

coefficients in the expansion of the HCIZ integral. This technique has the advantage

of repackaging the combinatorics of the Schur functions into integrals over the unitary

group.

The Harish-Chandra integrals have natural generalizations to the B, C, D series,

Sp(2N) and SO(M). For a choice of simple Lie group G, the HCIZ integral has an exact

formula in terms of a sum over the saddle points:

H(x, y) =

ˆ
e⟨Adg(x),y⟩dg = cg

∑
w∈W

ϵ(w)e⟨w(x),y⟩

∆g(x)∆g(y)
. (6.2)

Each saddle point of the integral corresponds to a Weyl reflection, and the denom-

inators are given by the discriminant of the Lie algebra. These integrals have received

less attention than the unitary HCIZ integral, which serves as a single plaquette model

in lattice gauge theory.

The bulk of the work on probing finite N physics is limited to field theories with U(N)

and SU(N) gauge groups (see [80, 81, 82, 83]), but more recently, there has been some

interest in extending these studies to field theories with Sp(2N), SO(2N+1), or SO(2N)

gauge groups [84, 85, 86]. There is good reason for this surge of interest: maximally
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supersymmetric Yang-Mills theory with symplectic and orthogonal groups are dual to

type IIB strings on AdS5×RP5 [12]. Depending on the choice of the orientifold projection,

the gauge group of the theory is either Sp(2N), SO(2N+1), or SO(2N); S-duality relates

the spectrum of the Sp(2N) and the SO(2N+1) theories, while the SO(2N) theories are

self-dual. The exact matching of the spectrum for the symplectic and orthogonal theories

is poorly understood, due to the combinatorial difficulty associated with constructing

states of these theories.

In this chapter, we study BPS coherent states of N = 4 SYM for special orthogonal

and symplectic groups. The norms of such states are given precisely by a Harish-Chandra

integral over the corresponding group. By explicitly expanding the integral, we find

that these coherent states serve as generating functions for gauge invariant states in

the gauge theory, and the corresponding coefficients in the expansion give their norms.

In principle, this gives a way of constructing an orthogonal basis of states for these

theories from group theoretic data for the corresponding gauge group. We argue that

these generating functions are only able to capture information about the ”unitary” part

of the gauge symmetry, which is to say that operators we find in the expansion match

in form to operators in the unitary theory. In section 2, we review the construction

of gauge invariant coherent states for the SU(N) theory. In section 3, we generalize

this to the symplectic case and argue that the odd special orthogonal case is related to

the symplectic case by a rank-level duality that exchanges a Young diagram with its

conjugate diagram. We repeat the calculations for the even orthogonal case. In section

4, we discuss other attempts at finding an orthogonal basis for Sp(2N), SO(2N + 1),

or SO(2N) and how our results can be interpreted in a relevant context. Finally, we

conclude with a discussion of a few open questions and future directions of work.
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6.2 Review of the U(N) case

We begin with a brief review of BPS coherent states in U(N). The same analysis

may be applied to any free gauge theory with an adjoint scalar field Z. We know from

[11] that given a näıve coherent state F [Λ] of the form:

exp
(
Tr(Λ · a†Z)

)
|0⟩ , (6.3)

where Λ is taken to be a diagonal matrix-valued set of parameters and a†z is the raising

operator for the s-wave of the field Z on S3 in [17], we may introduce an auxiliary U(N)

group action and average over the group, which allows us to rewrite a gauge invariant

coherent state as:

F [Λ] =
1

V ol(U(N))

ˆ
dU exp

(
Tr(UΛU−1a†Z)

)
|0⟩ , (6.4)

where dU is the Haar measure. Our normalization factor V ol(U(N)) =
´
dU ; we can set

it equal to one for the sake of brevity. We may compute the overlap of F [Λ] as defined

in Eq. (6.4) with its adjoint F̄ [Λ̄] by evaluating the HCIZ integral:

F̄ [Λ̄] ∗ F [Λ] =
ˆ
dŨ exp

(
Tr
(
Ũ−1ΛŨ Λ̄′

))
. (6.5)

We see that we have sidestepped most of the Wick contractions of the matrix operators(
a†
)i
j
, which would make F [Λ] difficult to compute in the form it takes in Eq. (6.4). F [Λ]

can be evaluated through a character expansion, as described in [87]:

F [Λ] =
∑
R

1

fR
χR(Λ)χR(a

†
Z) |0⟩ (6.6)

We may also rewrite Eq. (6.5) through a character expansion:
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F̄ [Λ̄] ∗ F [Λ] =
∑
R

1

fR
χR
(
Λ̄
)
χR (Λ) (6.7)

We can then compare the coefficients of the characters from the equation above to

what we would obtain from multiplying Eq. (6.6) by its adjoint and find:

⟨0|χR(a)χR(a†) |0⟩ = fR (6.8)

It becomes obvious that we must compute fR to evaluate the overlap of χR(a) and

χR(a
†). The thing to keep in mind is that the representations R in the coherent state

F [Λ] correspond to Young diagrams for U(N), which are characterized by the indices

j1 ≥ j2 ≥ . . . jN , where each index ji iterates over row i. Because these are characters of

the unitary group, they may be rewritten with the Weyl character formula:

χji(Λ) =
det
(
λji+N−i
k

)
∆(Λ)

, (6.9)

where λk are the eigenvalues of Λ and ∆(Λ) is the Vandermonde determinant of Λ. Then

we may rewrite the HCIZ integral as a product of these expanded characters:

I(Λ, Λ̄) =

ˆ
dŨ exp

(
Tr
(
Ũ−1ΛŨ Λ̄′

))
= Ω

det
(
exp
(
λiλ̄

′
j

))
∆(Λ)∆(Λ̄′)

(6.10)

where Ω is a normalization constant. We rewrite the numerator to reintroduce fR:

Ω det
(
exp
(
λiλ̄

′
j

))
=
∑
j⃗

1

fj⃗
det
(
λji+N−i
k

)
det
(
λ̄′ji+N−i
k

)
(6.11)

We have relabeled R with the indices j⃗, and have rewritten the equation above ac-

cordingly. The expressions inside the determinants are monomials and correspond to the

term
∏

i λ
ji+N−i
i + . . . in det

(
λji+N−i
k

)
. Thus we may expand the exponential in Eq.
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(6.11) as:

det
(
exp
(
λiλ̄

′
j

))
=
∑
[n]

1

[n]!
det
(
(λiλ̄

′
j)
ni
)
=
∑
[n]

1

[n]!
det
(
λ̄′ni
j

)∏
i

λni
i + . . . , (6.12)

where we have made use of the multilinearity of the determinant. The factor [n]

encapsulates n1, . . . , nN ; then [n]! =
∏

j nj!. We see that we are limited to n1 > n2 . . .

when we restrict ourselves to the monomials with the correct descending order; when

we set ni = ji + N − i, we arrive at an explicit sum over the characters. Thus our

denominator fj⃗ may be computed as:

fj⃗ = Ω−1
∏
i

(ji +N − i)!, (6.13)

We may set f0⃗ = 1, as ⟨0|0|0|0⟩ = 1. Then we arrive at:

Ω =
N∏
i=1

(N − i)! (6.14)

From this we can easily read off the norms of the states χR(a
†):

⟨χR′(a)χR(a
†)⟩ = δR,R′

∏
i(ji +N − i)!∏N
i=1(N − i)!

, (6.15)

which agrees with the well-known result of [48].

6.3 Symplectic and orthogonal cases

Before repeating the analysis for the other simple lie groups, we should comment

on the interpretation of the Sp(2N) and SO(N) theories as orientifold projections of a
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unitary theory. To do this, we first consider a simple toy model correponding to a single

harmonic oscillator. As it turns out, this simple model captures a lot of the qualitative

behaviour of the answer for symplectic and orthogonal groups.

6.3.1 A toy model for the orientifold projection

As a warm-up, we consider a single quantum harmonic oscillator:

[a, a†] = 1. (6.16)

A natural basis of states for this system is the eigenstates of the occupation number

operator n̂ |n⟩ = n |n⟩. One thing that we may do with this system is to define a par-

ity operator Ω = (−1)n̂ and further divide the set of states into those that are mutual

eigenvectors of n̂ and Ω. This gives an orthogonal decomposition of the Hilbert space of

the harmonic oscillator into sectors of positive and negative parity H ∼= H+

⊕
H−, and

divides all the states into even and odd states under the orientation reversal transforma-

tion

P : x→ −x

P : p→ −p,
(6.17)

where x and p are the position and momentum operators. Because the raising operators

are monomials in x and p, the odd parity states are created with odd numbers of rais-

ing operators and vice versa. The operators 1
2
(1± Ω) respectively serve as orthogonal

projection operators into H+ and H−.

What we would like to do is build coherent states in each of these two sectors of the

theory. For instance, we can project a coherent state into the sector of positive parity by

applying the operator 1
2
(1 + Ω):
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1

2
(1 + Ω) |α⟩ = 1

2

(
1 + eπin̂

)
eαa

† |0⟩ = 1

2

(
eαa

†
+ e−αa

†
)
|0⟩ = cosh

(
αa†
)
|0⟩ . (6.18)

We call this state |α,+⟩. One nice property of this state is that it is annihilated by a2k+1

for any non-negative integer k. It is also an eigenstate of a2 with eigenvalue α2. In this

sense, we can call this a coherent state for the positive chirality sector of the model. By

a similar computation, the overlap between any two of these coherent states is given by:

⟨β∗,+ |α,+⟩ = cosh (αβ) . (6.19)

The case for negative parity requires more care, and will be the case that is relevant

to the analysis of the Sp(2N) and SO(2N + 1) theories. If we project a coherent state

into the sector of negative chirality, we obtain the state:

1

2
(1− Ω) |α⟩ = sinh

(
αa†
)
|0⟩ . (6.20)

The issue is that this state is not a coherent state in the usual sense; when we act on

the state with a lowering operator, the state won’t return to the original state since the

minimum ocupation number that appears in the series is |1⟩. Rather, this state is also

an eigenvector of a2 with eigenvalue α2. Since the original vacuum state is annihilated

by the projector 1
2
(1− Ω), the true vacuum in this sector is the state occupation number

one |1⟩. By a relabeling of the states for the odd sector, the coherent state can be written

as

|α,−⟩ = −i sinc
(
iαa†

) ∣∣0̃〉 , (6.21)

where sinc(x) = sinx
x
, and the new vacuum is

∣∣0̃〉 = |1⟩. A simple computation yields the

109



Generating Functions for BPS Operators Chapter 6

norm of this coherent state:

⟨β∗,− |α,−⟩ = sinhαβ

αβ
. (6.22)

6.3.2 The symplectic HCIZ integral

We now seek to expand our definition for a well-defined BPS operator averaged over

the unitary group to the symplectic group:

FSp(2N)[Λ] =
1

Vol(Sp(2N))

ˆ
Sp(2N)

dg exp
(
Tr(gΛg−1a†Z)

)
|0⟩ , (6.23)

where dg is the Haar measure for the symplectic group and Vol(Sp(2N)) =
´
Sp(2N)

dg

is a normalization factor, which we can always rescale to one. The group elements of

Sp(2N) can be represented by 2N × 2N matrices that are both unitary and symplectic:

g†g = 12N

gTΩg = Ω,

(6.24)

where Ω is a choice of anti-symmetric symplectic matrix:

Ω =

 0 1N

−1N 0

 . (6.25)

The symplectic condition (6.24) translates into the orientifold projection of the Chan-

Paton indices for the open strings ending on a stack of 2N D3 branes [12]. This forces the

raising and lowering operators of the Sp(2N) theory to satisfy the orientifold projection

condition:

Ω a†Z Ω = (a†Z)
T = −a†Z , (6.26)
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where the transpose is taken on the group indices, which we omit for clarity. This means

that any operator made from traces of odd numbers of fields will automatically vanish.

We choose to normalize the commutation relations for the raising and lowering operators

by a factor of 1
2
, which will make the computation of the norm of the coherent state more

transparent:

[(aZ)
i
j, (a

†
Z)

l
k] =

1

2

(
δljδ

i
k − ΩjkΩ

lj
)
. (6.27)

As with the unitary case, we wish to compute the overlap between two coherent states.

This is done by applying the Campbell-Hausdorff formula; since the raising and lowering

operators have different relations from the unitary case, we must check that commuting

the exponentials really simplifies the norm into the form where it can be evaluated by

a Harish-Chandra integral. After some algebra, we see that in the symplectic case, the

exponentials can be commuted as follows:

[
Tr
(
gazg

†Λ
)
,Tr

(
ha†zh

†Λ̄′)] = 1

2
Tr
(
ghΛ(gh)†Λ̄′)+ 1

2
Tr
(
gΛg†ΩhT Λ̄′T (hT )−1Ω

)
= Tr

(
ghΛ(gh)†Λ̄′) . (6.28)

The second term in (6.28) is equivalent to the first term after using the group relations

(6.24). This means that once again, we can compute the operator’s overlap with its

adjoint with the symplectic Harish-Chandra integral:

F̄Sp(2N)[Λ̄] ∗ FSp(2N)[Λ] =

ˆ
dg̃ exp

(
Tr
(
g̃−1Λg̃Λ̄′)) = HSp(2N)(Λ, Λ̄

′), (6.29)

where HSp(2N)(Λ, Λ̄
′) is given in [88]:

HSp(2N)(Λ, Λ̄
′) =

(
2N−1∏
p=1

(2p+ 1)!

)
det
[
sinh

(
2ΛjΛ̄

′
k

)]2N
j,k=1

∆(Λ(2))∆
(
Λ̄(2)

)∏2N
i=1 λiλ̄

′
i

. (6.30)
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The denominator in this formula is computed using the Weyl denominator formula

for the corresponding discriminant, as demonstrated in [89, 90]:

∆sp(2N)(λ) =
N∏
j

λj
∏

1≤j<k≤N

(
λ2j − λ2k

)
= det(Λ) ∆

(
Λ2
)

(6.31)

Thus we may rewrite Eq. (6.30) as:

∆sp(2N)(λ)∆sp(2N)(λ̄
′)HSp(2N)(Λ, Λ̄

′) =

(
N−1∏
p=1

(2p+ 1)!

)
det
[
sinh

(
2ΛjΛ̄

′
k

)]
. (6.32)

The numerator can be simplified by using the identity that sinh
(
2ΛjΛ̄

′
k

)
is a modified

Bessel function of the first kind of order ν = 1
2
, and expanding the determinant. We

know that:

sinh
(
2ΛΛ̄′) =√πΛΛ̄′ I 1

2

(
2ΛΛ̄′) = ∞∑

m=0

2m+1

m! (2m+ 1)!!

(
ΛΛ̄′)2m+1

(6.33)

Then we can use the Cauchy-Binet formula to expand the determinant:

det
[
sinh

(
2ΛiΛ̄′

j

)]
=
∑
mi

N∏
i

2mi+1

mi! (2mi + 1)!!
det
[
Λ2mi+1
j

]
det
[
Λ̄′2mi+1
j

]
(6.34)

Thus Eq. (6.30) becomes:

HSp(2N)(Λ, Λ̄′) =
∑
mi

N∏
i

2mi+1 (2i− 1)!

mi! (2mi + 1)!!

det
[
Λ2mi
j

]
det
[
Λ̄′2mi

j

]
∏

i<j(λ
2
i − λ2j)(λ̄

′2
i − λ̄′

2
j)

(6.35)

Once again, if we set mi = µi +N − i, we may rewrite Eq. (6.23) as an explicit sum
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over the Schur polynomials:

HSp(2N)(Λ, Λ̄
′) =

∑
µ

1

fµ
χµ(Λ

2)χµ(Λ̄
′2), (6.36)

where the coefficient in the expansion is given by

fµ =
N∏
i

(µi +N − i)! (2µi + 2N − 2i+ 1)!!

2µi+N−i+1 (2i− 1)!
, (6.37)

and the sum is taken over all integer partitions µ.

This form of the expansion is natural from the point of view of the orientifold projec-

tion, since we projected out all the states with an odd number of raising operators acting

on the vacuum state. Similarly, the operator that creates the coherent state must have

a formal expansion of a similar form:

OΛ =

ˆ
Sp(2N)

dg exp
(
Tr
(
gΛg−1a†Z

))
=
∑
µ

1

fµ
χµ(Λ

2)χµ(
(
a†Z

)2
) (6.38)

This indicates that just as in the unitary case, the norms of states are given by the inverse

of the coefficients that appear in the expansion of the Harish-Chandra integral.

6.3.3 Special orthogonal groups

Odd special orthogonal group

It is known that the Harish-Chandra integral for the odd orthogonal group is the same

as that for the symplectic group. This can be thought of as a result of the S-duality of

N = 4 super Yang-Mills theory; S-duality exchanges the Sp(2N) and SO(2N +1), while

SO(2N) is S-duality invariant [12]. This means that the spectrum of the Sp(2N) and

the SO(2N +1) theories are related by a change of basis. We will argue that this change
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of basis is simply the transpose operation on the Young diagram µ associated to a given

representation.

One reason to suspect that this is the case comes from the Schur-Weyl duality for

odd orthogonal and symplectic groups. It is well-known that the centralizer algebra

associated to the k-fold tensor product of fundamental representations of SU(N) is the

group algebra of the symmetric group CSk. This means that the k-fold tensor product

of fundamental representations of SU(N) decomposes into tensor products of irreducible

representations of Sk and SU(N):

V ⊗k
SU(N)

∼=
⊕
λ

πλ ⊗ Uλ. (6.39)

This is more complicated for the symplectic and orthogonal groups, since the corre-

sponding centralizer algebra is no longer a group algebra, but rather the algebra asso-

ciated to the Brauer monoid. One way to understand this is that the symplectic and

orthogonal lie algebras have additional invariant tensors compared to the unitary case.

For tensor products of fundamental representations of unitary groups, the only invariant

tensors allowed are the identity and permutation operators:

I(Va ⊗ Vb) → Va ⊗ Vb

P(Va ⊗ Vb) → Vb ⊗ Va.

(6.40)

Clearly these operations are invertible and generate the symmetric group Sk. For

orthogonal groups, there is an additional invariant tensor, called the trace operation:

K(Va ⊗ Vb) → C. (6.41)

These tensors are well known in the integrable spin chain literature, and are the same
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kind of tensors that appear in the SO(6) integrable spin chain [2]. Unlike the identity

and permutation operators, the trace operation is not invertible, and together with the

identity, it generates the Temperley-Lieb algebra TLk(2N) [91, 92]; the linear span of

these three operations generates the Brauer algebra Bk(2N). The importance of Brauer

centralizer algebras has been emphasized in [93, 94], where they were used to diagonalize

two-point functions in the space of gauge theory operators and their adjoints. These

operators correspond to bound states of non-holomorphic giants. Brauer centralizer

algebras have also been used to construct coherent states in [95].

Returning to the tensor decomposition of the k-fold tensor product of fundamentals

of SO(2N + 1), the corresponding decompostition is [92]:

V ⊗k
SO(2N+1)

∼=
⌊f/2⌋⊕
k=0

⊕
λ⊢f−2k

Dλ ⊗ Vλ, (6.42)

withDλ and Vλ respectively denoting the irreducible representations of the Brauer algebra

and SO(2N + 1). The analogous statement for the symplectic group Sp(2N) exchanges

N with −N and Vλ with WλT , where WλT is the irreducible representation of Sp(2N)

associated to the diagram conjugate to λ:

V ⊗k
Sp(2N)

∼=
⌊f/2⌋⊕
k=0

⊕
λ⊢f−2k

Dλ ⊗WλT . (6.43)

Since the Harish-Chandra integral involves group averages of powers of traces of the

form Tr (gΛg−1Λ′), it is natural to expect that every term in expansion for the odd

orthogonal groups should match to a term with the corresponding transposed Young

diagram in the expansion for the symplectic integral. This might appear surprising,

since the number of boxes that can appear in a column is bounded from above by N ,

while the number of boxes in a row can be arbitrary. One way of understanding this
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apperent mismatch is that the fundamental degrees of freedom in one description might

be mapped to a bound state by S-duality. In reality, representations with arbitrary

numbers of boxes in a column are possible, but will not be irreducible.

Special even orthogonal group

Extending our definition for a well-defined BPS operator to the even special orthog-

onal group requires a little more work. We modify the definition of F [Λ] to reflect

averaging over the even special orthogonal group:

FSO(2N)[Λ] =

ˆ
dO exp

(
Tr(OΛO−1a†Z)

)
|0⟩ . (6.44)

As before, the overlap of F [Λ] and its adjoint is the corresponding Harish-Chandra

integral:

F̄SO(2N)[Λ̄] ∗ FSO(2N)[Λ] =

ˆ
dÕ exp

(
Tr
(
Õ−1ΛÕΛ̄′

))
= HSO(2N)(Λ, Λ̄

′), (6.45)

where HSO(2N)(Λ, Λ̄
′) is given by [88]:

HSO(2N)(Λ, Λ̄
′) =

(
N−1∏
p=1

(2p)!

)
det
[
cosh

(
2ΛjΛ̄

′
k

)]N
j,k=1

+ det
[
sinh

(
2ΛjΛ̄

′
k

)]N
j,k=1

∆(Λ(2))∆
(
Λ̄′(2)

) . (6.46)

We note that Eq. (6.44) is invariant under an additional symmetry:

O → ĨO, (6.47)

where Ĩ is a diagonal matrix with determinant equal to ±1. To get rid of this redundancy,
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we could integrate over the entire orthogonal group O(N). For SU(N), Sp(2N) and

SO(2N + 1), this process does not change the value of the integral. This is similar to

what happens in the Kazakov-Migdal model in [96], where the additional abelian part

of the gauge field decouples from the collective field effective action. We also note that

even though the whole integral is invariant under the parity transformation

P̃ : Λ → −Λ

P̃ : Λ′ → −Λ′,

(6.48)

the overlap is not invariant under the individual reflections of each of the eigenvalue

matrices. This is because the second term is odd under transformation by individual

reflections of the matrices Λ and Λ′. Since each state must be individually invariant

under this reflection, we choose to use the Harish-Chandra integral for O(2N):

HO(2N) =

(
N−1∏
p=1

(2p)!

)
det
[
cosh

(
2ΛjΛ̄

′
k

)]N
j,k=1

∆(Λ(2))∆
(
Λ̄′(2)

) . (6.49)

This is precisely the matrix analogue of the norm of the coherent state for the positive

parity states of a harmonic oscillator. The main difference between each of the orientifold

projections is that the vacuum of each theory is charged differently under parity; the

symplectic case formally begins at occupation number one of the parent theory, while

the even orthogonal case begins at occupation number zero.

We can now repeat the analysis of the previous sections with det
[
cosh

(
2ΛjΛ̄

′
k

)]N
j,k=1

. We know that:

cosh
(
2ΛΛ̄′) =√πΛΛ̄′I− 1

2

(
2ΛΛ̄′0

)
=

∞∑
m=0

2m

m! (2m− 1)!!

(
ΛΛ̄′)2m (6.50)

Applying the Cauchy-Binet formula yields:
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det
[
cosh

(
2ΛiΛ̄

′
j

)]
=
∑
mi

N∏
i

2mi

mi! (2mi − 1)!!
det
[
Λ2mi
j

]
det
[
Λ̄′2mi
j

]
(6.51)

Then the Harish-Chandra integral for O(2N) becomes:

HO(2N)(Λ,Λ
′) =

∑
mi

N∏
i

2mi(2i− 2)!

mi! (2mi − 1)!!

det
[
Λ2mi
j

]
det
[
Λ̄′2mi

j

]
∏

i<j(λ
2
i − λ2j)(λ̄

′2
i − λ̄′

2
j)

(6.52)

By setting mi = µi + N − i, the expression once again becomes a sum over Schur

polynomials:

HO(2N)(Λ,Λ
′) =

∑
µ

1

hµ
χµ(Λ

2)χµ((Λ
′)2), (6.53)

where the coefficient is now given by:

hµ =
(µi +N − i)! (2µi + 2N − 2i− 1)!!

2µi+N−i(2i− 2)!
. (6.54)

Once again, we can expand the operator itself as a formal sum:

ˆ
O(N)

dO exp
(
OΛOTa†Z

)
=
∑
µ

1

hµ
χµ(Λ

2)χµ((a
†
Z)

2), (6.55)

which implies that the norm of the states are given by hµ.

We chose to get rid of the redundancy by integrating over O(2N) rather than SO(2N);

in doing so, we have chosen a specific partition function. The drawback to choosing

O(2N) as our gauge group is that we eliminate the Pfaffian operator, which is defined

as:

Pf(Λ)2 = det(Λ), (6.56)

where Λ is a 2n × 2n skew-symmetric matrix. If we make another choice and integrate
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over SO(2N) instead, our Harish-Chandra integral becomes:

HSO(2N)(Λ,Λ
′) =

∑
mi

N∏
i

2mi(2i− 2)!

mi! (2mi − 1)!!

det [Λ2mi ] det
[
Λ̄′2mi

]
∏

i<j(λ
2
i − λ2j)(λ̄

′2
i − λ̄′

2
j))

+
∑
ni

N∏
i

2ni+1 (2i)!

ni! (2ni + 1)!!

det [Λ2ni+1] det
[
Λ̄′2ni+1

]
∏

i<j(λ
2
i − λ2j)(λ̄

′2
i − λ̄′

2
j))

(6.57)

We see that the Pfaffian of SO(2N), which changes sign under a single reflection,

makes an appearance in the term we previously discarded. If we write Λ = Xj + iXk,

where Xj and Xk are two of the six scalar fields Xi in the adjoint representation of

SO(2N)N = 4 SYM, then Pf(Λ) corresponds to a single BPSD3 brane wrapped around

the non-trivial three-cycle of RP5 [12, 97]. It can be considered half of a maximal giant

graviton, which is identified as det(Λ), since the maximal giant graviton wraps around

the non-trivial cycle twice.

6.4 Multi-matrix Generating Functions

We are interested in studying operators in gauge theories that are made out of more

than one matrix-valued scalar field. In particular, we will work with 1
4
-BPS operators in

U(N) N = 4 SYM on the cylinder R × S3. At weak coupling, these operators can be

built out of symmetrized products of two of the three complex scalar fields of the theory

X, Y . Generalizing to more than two matrices is straightforward. This class of operators

transforms in the [p, q, p] representations of the SU(4)R symmetry, and the operators are

generically of multi-trace form. We will concentrate on scalar primary states at an equal

time slice for simplicity. Unlike 1
2
-BPS operators, which can be built explicitly in the

free theory, 1
4
-BPS operators of the interacting theory are different from those of the free

theory. The lifting of states due to non zero gauge coupling can be treated pertubatively
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and the loop corrections to dilatation operators annihilate operators that are made out of

symmetric products of X and Y . This problem was studied in detail for small operators

in [76], but for generic large operators, explicit constructions in terms multi-traces are

cumbersome. An alternative expansion in terms of characters was introduced in [62],

which the authors call the restricted Schur polynomial basis. This basis is convenient for

dealing with the mixing between the different trace structures since it diagonalizes the

matrix of two point functions for all values of N .

6.4.1 Generating 1
4 BPS States

Yet another way of generating 1
4
-BPS states can be found by studying operators of

the form:

|ΛX ,ΛY ⟩ =
1

Vol [U(N)]

ˆ
dU exp

(
Tr
[
UXU †ΛX + UY U †ΛY

])
|0⟩ . (6.58)

If we insist that the coherent state parameters ΛX and ΛY commute, |ΛX ,ΛY ⟩ is

annihilated by the one-loop dilatation operator; it was shown in [98] that this persists to

two-loop order. In [99], it was conjectured that the space of BPS states in N = 4 SYM

is given by the kernel of the one-loop dilatation operator at all values of the coupling;

we will take this as a working assumption and work with the set of states annihilated by

the Beisert one-loop dilatation operator:

D̂
SU(2)
2 = g2Tr [[X, Y ][∂X , ∂Y ]] . (6.59)

Because the states (6.58) are coherent states of X̄, Ȳ [11], they form an overcomplete

basis of states for any value of N . This has many computational advantages, mostly due

to the fact that taking the large N limit is very straightforward, but translating back
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into a complete orthogonal basis of operators can be complicated. This may be solved

by computing the norm of the coherent states. By exploiting the Campbell-Hausdorff

formula, we arrive at an integral of the form:

〈
Λ̄X , Λ̄Y

∣∣ΛX ,ΛY 〉 = 1

Vol [U(N)]

ˆ
dU exp

(
Tr
[
U Λ̄XU

†ΛX + U Λ̄YU
†ΛY

])
. (6.60)

Since we can in principle expand (6.58) in terms of an orthonormal basis, we may use

this overlap to determine the coefficients relating the multi-trace basis of operators to an

orthogonal basis by expanding in a series and matching the coefficients as done in [11].

The precise tool relating the multi-trace basis operators and the character expansion in

this case is the Weingarten calculus [100]; an example illustrating this technique can be

found in [101]. The main obstacle we face is evaluating the integral (6.60) for generic

coherent state parameters. To our knowledge, these types of integrals have not been

studied before, and a closed form expression for them is needed. Our main goal will be

to evaluate this class of integrals for any value of N . Although we only explicitly study

the case of U(N) integrals, the methods should apply generally and should generalize

to SO(N) and Sp(N) groups as well as to quivers. These types of integrals are also a

natural object to study in the context of matrix models, since they arise in the study of

multi-matrix models of commuting matrices.

6.4.2 The Four-Matrix Model in SU(2)

Before proceeding to the case of general N , we will study the following integral

I2 =

ˆ
SU(2)

dU eTr[UAU
†Ā+UBU†B̄] (6.61)
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for commuting matrices A,B, Ā, B̄. We will first approximate I2 by a saddle point

approximation; the critical points of the function in the exponential are given by the

solutions to the equations

[A,U †ĀU ] + [B,U †B̄U ] = 0. (6.62)

For generic enough matrices, this is only satisfied if each of the two terms vanishes

individually

[A,U †ĀU ] = [B,U †B̄U ] = 0. (6.63)

The only problematic cases occur when a subset of the eigenvalues of B is a permu-

tation of a subset of eigenvalues of −A. From here on, we assume that the eigenvalues

are generic enough that this does not happen. This means that, generically, the saddle

points are labelled by permutation matrices Uπ. We are then left with a Gaussian in-

tegral around each of the saddle points, which can be evaluated easily; this results in a

”one-loop determinant” factor given by:

D2(a, ā, b, b̄) = (a1 − a2) (ā1 − ā2) + (b1 − b2)
(
b̄1 − b̄2

)
(6.64)

This gives an approximate value for the integral (up to a convention dependent nor-

malization factor):

I2 ≃
ea1ā1+a2ā2+b1b̄1+b2b̄2 − ea1ā2+a2ā1+b1b̄2+b2b̄1

(a1 − a2) (ā1 − ā2) + (b1 − b2)
(
b̄1 − b̄2

) . (6.65)

At first sight, it is not clear that this approximation is reliable, since there is no large

parameter in the exponential. To gain more intuition, we evaluate I2 through an explicit

computation.
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First, we must parameterize our unitary matrix U ; then, we need to compute the

Haar measure. We start with the following matrices:

A =

a1 0

0 a2

 , B =

b1 0

0 b2


Ā =

ā1 0

0 ā2

 , B̄ =

b̄1 0

0 b̄2


(6.66)

We then seek to parametrize our unitary matrix. We know that any arbitrary SU(2)

matrix must meet the following conditions:

SU(2) =


 a b

−b∗ a∗

 ∈ C2×2
∣∣∣ |a|2 + |b|2 = 1

 (6.67)

For ease of computation, we choose to parameterize U with Euler angles:

U =

e−i γ+α
2 cos θ

2
−ei γ−α

2 sin θ
2

e−i
γ−α
2 sin θ

2
ei

γ+α
2 cos θ

2

 (6.68)

We seek to rewrite the Haar measure dU in terms of J(θ, γ, α)dθdγdα, where J(θ, γ, α)

is the Jacobian. We may do so by computing the inverse of the unitary matrix and

multiplying it by its partial derivatives with respect to the Euler angles. We start by

finding the inverse of U :

U−1 =

 ei
γ+α
2 cos θ

2
ei

γ−α
2 sin θ

2

−e−i γ−α
2 sin θ

2
e−i

γ+α
2 cos θ

2

 (6.69)

Then we calculate the partial derivatives with respect to γ, α, and θ and multiply by
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the inverse. We obtain:

U−1∂U

∂γ
=

− i
2

0

0 i
2


U−1∂U

∂α
=

 − i
2
cos θ i

2
eiγ sin θ

i
2
e−iγ sin θ i

2
cos θ


U−1∂U

∂θ
=

 0 −1
2
eiγ

1
2
e−iγ 0


(6.70)

We calculate the Jacobian matrix using the following basis ϵ1 =

i 0

0 −i

, ϵ2 =

 0 ieiγ

ie−iγ 0

, and ϵ3 =

 0 −eiγ

e−iγ 0

:

J =


−1

2
−1

2
cos θ 0

0 1
2
sin θ 0

0 0 1
2

 (6.71)

The Jacobian J(θ, γ, α) we seek is the determinant of J :

det(J) =
1

8
| sin θ| (6.72)

We see that it is only dependent on θ. Our integral becomes:

I2 =
1

8

ˆ π

0

dθ

ˆ 4π

0

dγ

4π

ˆ 2π

0

dα

2π
| sin θ|eTr[ĀUAU†+B̄UBU†]

=
1

8

ˆ π

0

dθ| sin θ|e
1
2((a1+a2)(ā1+ā2)+(b1+b2)(b̄1+b̄2)+((a1−a2)(ā1−ā2)+(b1−b2)(b̄1−b̄2)) cos θ)

(6.73)
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Our critical points are θ = 0 and θ = π, so we can remove the absolute value bars.

Then we evaluate our integral:

I2 =
1

8

ˆ π

0

dθ sin θe
1
2((a1+a2)(ā1+ā2)+(b1+b2)(b̄1+b̄2)+((a1−a2)(ā1−ā2)+(b1−b2)(b̄1−b̄2)) cos θ)

=
ea1ā1+a2ā2+b1b̄1+b2b̄2 − eā1a2+a1ā2+b̄1b2+b1b̄2

4
(
(a1 − a2) (ā1 − ā2) + (b1 − b2)

(
b̄1 − b̄2

)) (6.74)

This is precisely the same result that the saddle point approximation yields. From

the intermediate steps, it is clear that there are never any terms that mix the eigenvalues

of A and B; if we set either A = 0 or B = 0, we immediately recover the HCIZ formula

for U(2).

6.4.3 Proof of General Formula

Generically, we expect that the following formula holds:

IN =

ˆ
U(N)

dU eTr[UAU
†Ā+UBU†B̄]

= CN
∑
π∈SN

detπ ×
∏

i e
aiāπ(i)+bib̄π(i)∏

i ̸=j
[
(ai − aj)(āi − āj) + (bi − bj)(b̄i − b̄j)

]
= CN

det
(
eaiāj+bib̄j

)
∆(ΛA)∆(ΛĀ) + ∆(ΛB)∆(ΛB̄)

,

(6.75)

where CN is a constant that depends on the normalization for the volume of U(N); aj, āj,

bj, and b̄j are respectively the eigenvalues of the matrices A, Ā, B, and B̄; the matrices

ΛA, ΛĀ, ΛB, ΛB̄ are respectively the diagonal matrices of the eigenvalues of A, Ā, B,

and B̄; and ∆(ΛM) is the Vandermonde determinant of matrix ΛM . The main idea is as

follows. The function

ϕ(U) = Tr[UΛAU
†ΛĀ] (6.76)
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can be thought of as a Hamiltonian function generating a U(1)N action on U(N); the

HCIZ integral localizes on the fixed points of this action. The integration is done over

a coadjoint orbit OΛA
which has a natural symplectic structure. Alternatively, the in-

tegration domain can be reduced to U(N)/U(1)N , where U(1)N is the maximal torus

commuting with ΛA. For a generic pair of commuting matrices, the analogous funtion

ψ(U) = Tr[UΛAU
†ΛĀ] + Tr[UΛBU

†ΛB̄] (6.77)

still generates an action of the maximal torus on U(N), although the integration domain

does not have a natural interpretation as a coadjoint orbit. Despite of this, one can

still formally reduce the integration to the symplectic space U(N)/U(1)N , with ΛA,B

being treated as elements of the Cartan subalgebra of u(N). Up to the assumption of

non-degeneracy of fixed points, these are the necessary conditions for the Duistermaat-

Heckman theorem.

6.5 Connection with Restricted Schur Polynomials

A natural question to ask is: What sort of basis of operators do the coherent states

(6.58) actually generate? This is quite non-trivial, since there are in principle many

different ways of orthogonalizing the two point function of 1
4
-BPS operators at finite N .

Recalling the definition of the restricted Schur polynomials

χR,(r,s)αβ(X, Y ) = Tr[PR,(r,s)αβX
n ⊗ Y m], (6.78)

where R is a Young diagram associated to a representation R of Sn+m, r is a Young

diagram for the representation r of Sn and s is another Young diagram for a representation

s of Sm, the object PR,(r,s)αβ can be understood as follows. Starting with Sm×Sn ⊂ Sm+n,
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we can find representations r × s sitting within R. Generically, the representation r × s

can appear more than once inside of R, so one needs to keep track of how one embeds

r × s into R. The matrix indices α, β keep track of this information. More formally, we

can label each of the embeddings of r× s by an index γ, and consider the space Rγ ⊂ R.

The restricted Schur polynomial is then given by

χR,Rγ (X, Y ) =
1

m!n!

∑
σ∈Sn+m

TrRγ [ΓR(σ)]Tr[σX
n ⊗ Y m], (6.79)

where ΓR(σ) is the matrix represetating σ [62]. The most complicated part of the re-

stricted Schur polynomials is the evaluation of TrRγ [ΓR(σ)], which involves building Rγ

explicitly.

By expanding the exponential and evaluating the unitary integrals, we obtain

1

Vol [U(N)]

ˆ
dU exp

(
UXU †ΛX + UY U †ΛY

)
=∑

n,m

1

m!n!

∑
σ,τ∈Sn+m

Tr[σΛnX ⊗ ΛmY ]Tr[τX
n ⊗ Y m]Wg(στ−1, N),

(6.80)

where Wg(σ,N) is the Weingarten function. Explicit combinatorial formulas for Wein-

garten functions are well known from the work of Collins (see [100] for an elementary

introduction), but before delving into specific details, we should contrast this with the

situation where one of ΛX,Y is zero. In that case, the resulting sum can be recast as a

diagonal sum of products of unitary characters; right now, we have a complicated sum

of traces. For a moment, let us consider the situation for a single matrix. The resulting
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sum is:
1

Vol [U(N)]

ˆ
dU exp

(
UXU †ΛX

)
=

∞∑
n=0

1

n!

∑
σ,τ∈Sn

Tr[σΛnX ]Tr[τ
−1Xn]Wg(στ−1, N)

=
∞∑
n=0

1

n!

∑
σ,τ∈Sn

Tr[σΛnX ]Tr[τ
−1Xn]

∑
λ⊢n

1

n! fλ
χλ(τ−1σ)χλ(1)

=
∞∑
n=0

∑
λ⊢n

1

fλ
sλ(X)sλ(ΛX).

(6.81)

The last line is obtained from the character expansion of the integral, which was

computed in [11]. Then for two matrices, we have:

1

Vol [U(N)]

ˆ
dU exp

(
UXU †ΛX + UY U †ΛY

)
=
∑
n,m

1

m!n!(n+m)!

∑
λ⊢n+m

1

fλ

∑
σ,τ∈Sn+m

χλ(σ)χλ(τ)Tr[σΛnX ⊗ ΛmY ]Tr[τX
n ⊗ Y m].

(6.82)

Clearly this has a similar structure to the definition of the restricted Schur polynomials

(6.79), but the restricted characters have been replaced with ordinary symmetric group

characters instead. This discrepancy can be traced back to the fact that the sum over

Sn+m has many redundancies owing to the fact that we can conjugate by an element

of Sn × Sm while leaving the traces fixed. This is the statement that we can permute

the n X’s and m Y ’s among themselves while simultaneously permuting the ΛX,Y ’s. As

explained in [102], there is an equivalence relation between elements of Sn+m in such a

way that

σ ∼ τ ⇔ Tr[σAn ⊗Bm] = Tr[τAn ⊗Bm], (6.83)

which happens exactly when σ can be conjugated into τ by an element of Sn × Sm. In

other words, the construction of restricted Schur polynomials is equivalent to constructing

generalized class functions on restricted conjugacy classes. Unfortunately this means
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that the coherent state generating function (6.58) cannot differentiate between different

restricted Schur polynomials by itself for the simple reason that the Weingarten function

is a class function. This means that if we want to replace the characters in (6.58) with

restricted characters, we must change the domain of integration. In any case, the coherent

states still form an overcomplete basis of operators that can be used for computations,

even if we do not currently know how to project into a particular primary state. One

way of achieving this projection would be by integrating against pairs of Schur functions

of ΛX,Y as was done for 1
2
-BPS operators in [26]; this would give a description of the

restricted Schur polynomials in terms of half-BPS partons as advocated by [102], but it

is still unclear how one would be able to deal with possible multiplicities of the subduced

representations (r, s).

6.6 Discussion

In this chapter, we extended the method of computing the norms of half BPS coherent

states through localization [11] to theories with the gauge groups Sp(2N), SO(2N + 1),

and SO(2N). We did this by constructing coherent states averaged over a group orbit

from each group and computing the norm of these states through the symplectic and

special orthogonal Harish-Chandra integrals. The integration over the group may be

viewed as a sort of path integral over the emergent world-volume gauge symmetry of a

stack of N giant gravitons inside AdS5 × RP5; the norm of the state gives the effective

action of this theory. Curiously enough, these types of integrals first appeared in models of

induced QCD. By expanding the Harish-Chandra integrals, we found that each integral

admits an expression as a sum of unitary characters. This matches what one would

expect of an orientifold projection of a U(2N) gauge theory; all the states that are

spanned by the coherent states are ”doubled” versions of those in the original theory.
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In particular, the coherent states considered here do not span the complete spectrum

of the free Sp(2N) and SO(2N) theories. This is because the Harish-Chandra integral

is only able to capture information from tensor contractions of the invariant tensors of

the unitary group (meaning all products of traces). It is likely that some of the data

corresponding to worldsheets with cross-caps is missing.

As in the unitary case, the coefficient associated with the characters in this series

expansion computes the overlap of the corresponding Schur polynomials of the operators

(a)ij and (a†)ij. Our method should be contrasted to other constructions of basis of

operators for the Sp(2N) and SO(2N) theories [85, 86], since our construction uses

group theoretic objects more closely associated to each group.

We also studied multi-matrix coherent states for bosonic matrices that generate 1
4

and 1
8
BPS states in N = 4 SYM. We showed that the norm of these coherent states

admits a fixed point formula generalizing the Harish-Chandra-Itzykson-Zuber formula.

This gives in principle a way of generating expressions for BPS states for any value N

in N = 4 SYM. One technical obstacle we face is that our construction does not give an

alternative construction of the so-called restricted Schur polynomial operators [62]. This

is related to the expectation that there is a hidden symmetry under which different op-

erators are charged. One idea is that determining the Casimir charges should be enough

to differentiate between different operators, but this problem is quite non-trivial even in

the 1
2
BPS sector [103]. It is also unclear how to implement this idea efficiently at large

N since the number of Casimirs needed to distinguish between different operators grows

with the complexity of the operators. Despite this obstacle, our results are important for

computing correlators of 1
4
and 1

8
BPS operators dual to bound states of giant gravitons

[71] and generic bubbling geometries [69]. Understanding the precise map between the

overcomplete ’eigenvalue basis’ of coherent states and specific orthogonal bases of opera-

tors remains an important problem. We conclude with a few more immediate directions
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for future work.

1
16 BPS States and Black Hole Microstate Operators

One of the more interesting generalizations would be to the case of 1
16

BPS operators.

By now, there is ample evidence that there exists a class of 1
16

BPS operators describing

the microstates of supersymmetric black holes in AdS5 × S5 [7, 6, 104, 105]. Recently,

there have been some studies of these types of states for small values of N [106, 107];

see [108] for a more general discussion. It would be nice to develop more systematic

techniques to build these types of operators. In principle, there are no obstructions to

generalizing our techniques to this setup, with the working assumption that finding states

with vanishing one-loop anomalous dimension is enough [99]. The idea would essentially

be to build a superfield coherent state [109]:

ˆ
dU exp

{ˆ
d3θ

ˆ
dzTr

[
UΨU †Φ

]}
|0⟩ , (6.84)

where Ψ(z, θ) is the C2|3 superfield discussed in [109, 104], and Φ is an auxiliary superfield

of coherent state parameters. The combined effect of the exponentiation and integration

over the unitary matrices is to generate all possible gauge invariant tensor contractions.

One should expect that the operators generated by this generating function are general-

izations of the SU(2|3) restricted Schur polynomials constructed in [110]. Generically the

terms in the expansion of (6.84) will not be of multi-graviton form, so they are natural

candidates for microstates of supersymmetric black holes. In practice, the main disad-

vantage of an expression like (6.84) is that it might not be practically useful, in the sense

that the expansion necesarily involves an infinite number of matrix fields associated to

covariant derivatives acting on the fields. One way of avoiding this difficulty is to use

generating functions such as the ones studied in [98]. Alternatively, one can view the
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auxiliary superfield Φ as a full-fledged dynamical collective coordinate. One would then

hope that integrating out the SYM fields leads to an effective matrix quantum mechanics

describing (near)-BPS black hole microstates, with the lightcone coordinate z acting as

a time variable.

Three Point Correlators, Bubbling Geometries, and Twisted Holog-

raphy

Although eventually we would like to study black holes, it is important to build intu-

ition from simpler examples. One class of such examples is the BPS bubbling geometries

[69] generalizing LLM geometries [16]. Although the droplet description of such states

in supergravity is compelling, a precise mapping between the weak coupling BPS states

is not fully developed1. The coherent states (6.80) have a more natural connection to

such geometries[26]. A worthwhile exercise would be to study correlators of single trace

chiral primaries in the background of heavy coherent states corresponding to both giant

gravitons or bubbling geometries; see [111] for some finite N results. The holographic

renomalization techniques of [112] are also applicable in these cases, but it would be

interesting to develop more efficient computational techniques in supergravity along the

lines of [113]. A good toy model for this would be to study these types of questions in

Twisted Holography [114].

We would like to thank D. Berenstein for helpful discussions. SW’s research was

supported in part by the Department of Energy under grant DE-SC0019139.

1For instance, it is unclear whether the solutions found in [69] exhaust the set of all 1
4 and 1

8 BPS
states.
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Chapter 7

Holographic Three Point Functions

7.1 Introduction

The AdS/CFT correspondence provides in principle a way of addressing interesting

questions in simple theories of quantum gravity [1]. However the usual lore states that

this is a weak/strong duality; objects that behave classically in gravity are described by

complicated states in a strongly coupled conformal field theory. Fortunately this is not

the case, as protected operators with large dimensions can and do behave semiclassically

on both sides of the duality.

One of the simplest example of such an object is a half-BPS determinant operator in

N = 4 SYM

D(x, ξ) = det (1ξ − Z(x)) =

ˆ
dχ̄dχ exp (−χ̄ [ξ − Z(x)]χ) , (7.1)

whose dual description is a wrapped D3-brane inside of S5, sitting at the origin of

AdS [48]. The fact that these operators describe localized probes of AdS5 × S5 makes

them ideal probes for bulk locality. The main obstacle to dealing with such objects on
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the gauge theory lies in the sheer combinatorial complexity of summing large numbers

of planar graphs. Recently, this problem was revisited by using saddle-point meth-

ods to systematically resum these non-planar contributions [9, 10]. This allows for

an efficient computation of simple correlators involving determinant operators in the

large N limit. As an application, the authors of [115] studied the three-point func-

tion of a BPS single trace operator and two determinants and found a remarkable

agreement with the orbit average of the holographic computation of [116]. Holographic

three-point functions of giant gravitons have been studied extensively in the literature

[117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 116, 127, 128, 129, 130, 131], with

some discrepancies and ambiguities appearing between the holographic and gauge the-

oretic computations in the case of off-diagonal extremal correlators and for AdS giant

gravitons.

In [10, 115], similar techniques were introduced for studying fully-symmetric Schur

polynomial operators:

S(x, ξ) =
ˆ
CN

dφ̄dφ exp (−φ̄ [ξ − Z(x)]φ) =
1

det (1 ξ − Z(x))
. (7.2)

Formally, this object is a generating function for BPS operators transforming in fully-

symmetric representations of U(N), which describe giant gravitons extended along the

AdS5 directions. Despite the similarities between the techniques developed for determi-

nant operators, these generating functions have an important distinction in that they do

not correspond to simple semiclassical states. In fact, these generating function create a

non-physical state of infinite norm in N = 4 SYM. The symmetry between sphere and

AdS giants can be restored by considering BPS coherent states in the gauge theory [11].

These are given by a group averages of the exponential of one of the complex scalar fields.

The goal of this chapter is to extend the analysis in [115] to the case of AdS giant
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gravitons and to further clarify some technical aspects of their computation. Our analysis

essentially mirrors [116] but the set-up and results are different. After performing an

orbit average of the semiclassical one-point functions of a BPS supergravity mode, we

find precise agreement with the gauge theory computation of a BPS three-point function

involving two heavy symmetric Schur polynomials and a single trace operator. Despite

the fact that the intermediate steps in the computation are rather different from the case

of sphere giants we find that the final results are related by a simple analytic continuation.

Our derivation of the structure constant in N = 4 SYM is new, and also involves a sort

of orbit average, although its relation to the one in holography is unclear. As we will

explain, our methods have straightforward generalizations to the case of correlators of

more general Schur polynomials, although we leave the details of this analysis for future

work.

The chapter is structured as follows. In section 7.2 we review the orbit average

method and how it applies to holographic correlation functions. Then, we review the

coherent state techniques necessary for the large N analysis in the field theory in section

7.3. In section 7.4 we turn to computation of the structure constant of two BPS fully-

symmetric Schur polynomials and a single trace BPS operator. We provide an exact

integral formula for the generating function for these structure constants, which we then

evaluate via the saddle-point approximation. In section 7.5 we compute diagonal and

off-diagonal structure constants in the dual supergravity following [115], finding an exact

matching with the gauge theory result. Finally we comment on possible future directions.

7.2 Review of Orbit Average

We begin by giving a brief review of the semiclassical techniques found in [132, 133]

and [115], known as the orbit average method.
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The idea is as follows: consider a quantum mechanical system whose action S [X] is

invariant under some global symmetry G. In general, the eigenstates of the Hamiltonian

will not be invariant under this global symmetry, but will rather transform in some rep-

resentation of G labelled by a set of charges {Ji}. One is usually interested in computing

correlation functions of operators in backgrounds with non-zero charges

CJJ ′OL
= ⟨J ′|OL(t = 0)|J⟩, (7.3)

where we can think of the states |J⟩ , |J ′⟩ as being created by the insertion of operators

with large charges, J, J ′ ≫ 1. In the WKB approximation, this quantity can be computed

by a path integral with the corresponding classical action evaluated on solutions to the

equations of motion:

⟨J ′|OL(t = 0)|J⟩ ∼ eiS[X
∗]O[X∗], (7.4)

where OL[X] ≡ ⟨X|OL|X⟩.

Generically, these classical solutions may spontaneously break (some part of) the

global symmetry and are therefore parametrized by a set of moduli {ci} describing the

action of (a subgroup of) G on the solutions. Beginning from a given solution X∗
0 , one can

generate a moduli space of solutions under an orbit of the G-action X∗
0 → X∗

{ci}. Since

these solutions contribute equal exponential factors, one must integrate over this moduli

space in order to reproduce the correct saddle-point approximation to the correlator.

Additionally, in the case where J and J ′ are not equal, and J − J ′ ≪ 1, one needs to

take into account the contributions coming from the WKB wavefunction of the initial

and final states

⟨J ′|X∗
c ⟩ ≈ e−iJ

′c, ⟨X∗
c |J⟩ ≈ eiJc. (7.5)

The condition J − J ′ ≪ 1 is necessary for the WKB approximation to hold. Putting
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it all together, the semiclassical correlator is given by the orbit average

⟨J ′|OL(t = 0)|J⟩ ≈ eiS[X
∗]

ˆ ∏
i

dci OL[X
∗
{ci}] e

i(Ji−J ′
i)ci , (7.6)

where OL[X
∗] should be understood as the classical analog of the operator OL.

7.3 BPS Coherent States

In this section we review the coherent state methods introduced in [11], and their

application to BPS correlators of fully-symmetric Schur polynomials. Firstly, half-BPS

operators in N = 4 SYM are described by polynomials in the traces of a complex scalar

field Z. For our purposes we will want to consider the theory on the cylinder R× S3, so

that our initial and final states are inserted at t = ±∞. Then, the main idea is that the

following expression serves as a generating series for all half-BPS operators

|Λ⟩ = 1

Vol (U(N))

ˆ
U(N)

dUeTr(UΛU†Z) |0⟩ , (7.7)

where Λ is a diagonal matrix with complex eigenvalues λi. A simple calculation shows

that this is in fact a coherent state, in the sense that the action of Z̄ on this state can be

replaced by multiplication by UΛU †. This state also has a simple expression as a sum

over the Schur basis

|Λ⟩ =
∑
R

1

dR
χR (Λ)χR(Z) |0⟩ , (7.8)

where dR is the norm of the state created by χR(Z). One important property of this

formalism is that correlation functions involving these coherent states can be recast in

terms of a unitary matrix integral. For example, the overlap between two coherent states

137



Holographic Three Point Functions Chapter 7

has an explicit formula as a sum over saddle points

〈
Λ̄
∣∣Λ〉 = ˆ

U(N)

dUeTr(UΛU†Λ̄) = CN
∑
σ∈SN

(−1)sign(σ)
e
∑

i λiλ̄σ(i)

∆(Λ)∆(Λ̄)
; (7.9)

the overall normalization constant CN that depends on conventions. More generally,

commuting the exponential in |Λ⟩ with insertions of Z̄ will have the effect of replacing

Z̄ with Z̄ + UΛU †, and similarly for Z. Although this formulation is quite explicit, it

is unclear that the term with the largest exponential actually dominates the sum, since

there are N ! − 1 other saddle point contributions that could in principle lead to an

exponentially large correction. This is not always the case, since the leading contribution

always corresponds to the identity permutation, while the remaining saddle points are

weighted by a sign; whenever some of the eigenvalues {λi} are exponentially close to one

another different saddles become comparable to the identity saddle and their contribution

will become important.

For our purposes, we will restrict to the case where a single eigenvalue λ1 = λ is

taken to be non-zero, which restricts the sum over representations to those associated

with single row Young diagrams. In this case, the formula in terms of unitary integrals

is difficult to perform calculations with simply because the numerator and denominator

in (7.9) become degenerate. To remedy this, one should realize that the integral is really

being performed over an orbit parametrized by:

Oλ = {λUP1U
† | U ∈ U(N)} ∼= CPN−1, (7.10)

where P1 denotes the projector into the eigenspace of λ1. Geometrically this is straight-

forward to understand; the projector operator P1 is naturally associated to a unit vector
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in CN by

P1 = φφ†, (7.11)

so a choice of projector P1 is in one-to-one correspondence to a line in CN . The action of

the unitary group moves this line inside of CN , so the resulting integral should be taken

over the GrassmannianGr(1, N) ∼= CPN−1. This suggests that the natural generalization

of (2.6) is actually

|λ⟩ = 1

Vol(CPN−1)

ˆ
CPN−1

dφ†dφ e
√
Nλφ†Zφ |0⟩ . (7.12)

Formally this generating functions looks similar to the generating function introduced in

[10], but there are many important differences that make |λ⟩ much better behaved.

The first important difference is that |λ⟩ is a coherent state of finite norm:

Tr
[
Z̄L
]
|λ⟩ = λL |λ⟩ (7.13)

To find the norm of this state, we can exploit the fact that the integration measure on

CPN−1 is left-invariant under the action of U(N). More precisely, once we use the Baker-

Hausdorff-Campbell formula to commute the exponentials coming from ⟨λ| and |λ⟩ we

are left with a pair of integrals as in [9, 10]:

⟨λ|λ⟩ =
(

1

Vol(CPN−1)

)2 ˆ
(CPN−1)

2
dφ†dφ dψ†dψ eNλ̄λφ

†ψψ†φ. (7.14)

At this point our analysis differs from that of [9, 10, 115], in that we can proceed without

performing a Hubbard-Stratonovich transformation. To see why this is the case, we

should remember that we may parametrize ψ as a rank-one projector conjugated by a

unitary matrix ψ = UP1U
†. Since the measure for ϕ is invariant, this reduces the integral
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over ψ into a volume integral over U(N)/ (U(N − 1)× U(1)) ∼= CPN−1:

⟨λ|λ⟩ = 1

Vol
(
CPN−1

) ˆ
CPN−1

dφ†dφ eNλ̄λφ
∗
1φ1

=
Vol

(
S2N−3

)
Vol

(
CPN−1

) ˆ 1

0

dr(1− r)N−2eNλ̄λr

=
(N − 1)!

(N)N−1

∞∑
L=N−2

(
Nλ̄λ

)L
L!

≃
√
NeNλ̄λ,

(7.15)

where we have chosen the projective space to have radius
√
N , and used the Stirling

approximation in the last line. In comparison, the norm of the state created by a deter-

minant operator has a norm given by [10]

⟨det
(
Z̄ − λ̄

)
det (Z − λ)⟩ =

ˆ ∞

0

dr e−Nr(λ̄λ+ r)N

=
N !

NN

N∑
k=0

(N |λ|2)k

(N − k)!
≃

√
NeN |λ|2 .

(7.16)

Hence, the second important difference between the approach using an inverse deter-

minant operator and |λ⟩ is that we do not need to introduce an additional set of auxiliary

variables to obtain an integral which we can evaluate via the saddle-point approximation,

and the resulting saddle-point equations are equivalent in both approaches. The most

important difference between our approach is the fact that we can easily generalize our

construction to write down generating functions of characters associated to Young dia-

grams with more than one row in a very compact way, with very explicit formulas. For

instance, the product of determinant operators has a character expansion coming from

one of the Cauchy identities of Schur functions:

k∏
i=1

det(Z − λi) = det(Z ⊗ 1k − 1N ⊗ Λk) = det(Λk)
N
∑
R

χR(Z)χRT (−Λ−1
k ), (7.17)

140



Holographic Three Point Functions Chapter 7

and there is a similar expansion for inverse determinants

k∏
i=1

det(Z − λi)
−1 = det(Z ⊗ 1k − 1N ⊗ Λk)

−1 = det(Λk)
N
∑
R

χR(Z)χR(−Λ−1
k ). (7.18)

One difficulty with dealing with the latter expression is that once one performs the

Hubbard-Stratonovich transformation the resulting saddle-point equations are compli-

cated matrix equations, and extracting the contribution from each character seems dif-

ficult. Also, the state created by such an operator does not have a finite norm, so the

expressions have to be treated as formal generating functions. In our approach, one can

generate the same class of states by letting Λ in (2.6) have k non-zero eigenvalues and

integrating over the appropriate homogeous space. More precisely, one needs to replace

the integral over φ by an integral over an isometry

V V † = Pk

V †V = 1n,

(7.19)

where Pk is a rank k projector. The integration is then performed over the space of

k-dimensional subspaces of CN , which is the Grassmannian Gr(k,N). Similar types of

integrals have been studied previously in the literature [134], and they are known to have

exact formulas in terms of iterated residues [135].

7.4 Gauge Theory Computation

7.4.1 Generating function for BPS Three-Point Functions

We are interested in computing the overlap of two AdS giant graviton states with a

light BPS single trace operator. This correlator is related to the three-point structure
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constant by

CSJ′SJOL
=

⟨SJ ′ |Tr
[
Z̃L
]
|SJ⟩√

L ⟨SJ ′ |SJ ′⟩ ⟨SJ |SJ⟩
, (7.20)

where Z̃ is the twisted translated frame operator Z̃ = Z+Z̄+(Y−Ȳ )
2

. The boundary states

|SJ⟩ are to be understood as the insertion of a fully-symmetric Schur polynomial operator1

at t = ±∞

|SJ⟩ = χ(J)(Z) |0⟩ . (7.21)

Because half-BPS correlators are protected, we can perform the calculations in the free

field theory. The boundary states can be generated using the following operators:

|λ⟩ =
ˆ
CPN−1

dφe
√
N−2λφ†Zφ |0⟩

⟨Λ| = ⟨0|
ˆ
U(N)

dUe
√
N−2Tr(Z̄U†Λ̄U),

(7.22)

where we can set Λ̄ = λ̄P1 during the later parts of the computation. The advantage of

this setup is that the measure dϕ is invariant under unitary transformations, so when we

commute the exponentials using the Campbell-Hausdorff formula the integral over the

unitary group will drop out of the correlator. The overlap that we will want to compute

is given by:

F(λ,Λ, t) = ⟨Λ|Tr
[

1

1− 2tZ̃

]
|λ⟩ . (7.23)

When we commute all raising and lowering operators past each other, the net effect

is to replace the fields by their saddle-point value

Z → U †Λ̄U + λφφ†

2
= U †

(
Λ̄ + λUφφ†U †

2

)
U. (7.24)

1We differentiate between the notation used in [9, 115], |DJ⟩, since the operators we are considering
are not determinants.
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Since the expression inside the exponential only depends on Uφ after applying the

Campbell-Hausdroff formula, all unitaries can be reabsorbed by a change of variables.

So in the end the generating function F is expressed as:

F(λ,Λ, t) =

ˆ
CPN−1

dφ e(N−2)λφ†Λ̄φTr

[
1

1− t
(
Λ̄ + λφφ†

)] . (7.25)

This integral can be computed exactly via equivariant localization. A simple way of

seeing this is that the integral may be turned into a Gaussian integral subject to the

constraint |φ|2 = 1.

δ(|φ|2 − 1) =

ˆ
ds eλs(|φ|

2−1). (7.26)

After this substitution, we can perform the Gaussian integral over φ on the whole complex

plane by contour integration. By choosing a set of contours such that the phase of the

exponential is stationary, the resulting integrals are Gaussian integrals peaked at the

eigenvalues of Λ̄, so in the end we only need to sum overN saddle points. After performing

the Gaussian integral, each saddle point will correspond to a pole on the complex s plane,

and every insertion of φiφ
†
j in the integral can be replaced by its moment taken from the

Gaussian distributions;

: φiφ
†
j : ∼

(
1

λ(s− Λ̄)

)
ij

. (7.27)

After this we are left to compute a contour integral over the complex S plane over a

infinitely large circle. The particular choice of orientation for the contours that we need

guarantees that the sum in homology of the N contours is equivalent to the trivial contour

encircling a pole at infinity.

In practice we will need consider cases where Λ̄ has rank one, which makes the torus

action on CPN−1 degenerate. However, we can still compute the integral exactly as a

sum over residues of poles of higher order. When Λ̄ has one non-zero eigenvalue, the
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integral is exponentially dominated by a single saddle point.

In order to compute the integral with the resolvent, we will need to invert the matrix

inside of the trace. A simple way of doing this is by writing this matrix as

1− t
(
Λ̄ + λφφ†) = 1− ΦiΣijΦ

†
j, (7.28)

where Σ is a 2× 2 diagonal matrix with components (tλ̄, tλ), and Φi is an N × 2 matrix

consisting of (v1, φ), where v1 is a unit vector. The inverse of this matrix is given by

(
1− t

(
Λ̄ + λφφ†))−1

= 1 + Φ
(
Σ−1 + Φ†Φ

)−1
Φ†. (7.29)

In some respects, the matrix Σij plays a similar role as the Hubbard-Stratonovich field ρ

needed to simplify correlation functions involving determinants. When we take the trace

the first term will be independent of t, so it will not contribute to the three-point and

the second term becomes a trace over the 2× 2 auxiliary indices

Tr
(
1− t

(
Λ̄ + λφφ†))−1

= N + tr
(
Φ†Φ

(
Σ−1 + Φ†Φ

)−1
)

= N − 2

(
1− t

2

(
λ+ λ̄

)
t2λλ̄(φ∗

1φ1 − 1) + t
(
λ+ λ̄

)
− 1

+ 1

)
.

(7.30)

So the exact expression for the form factor is obtained by performing the integral over φ

and since the first and third terms are analytic in t we can simply ignore them:

F(λ, λ̄, t) ≃ −
ˆ
CPN−1

dφ e(N−2)λλ̄φ∗
1φ1

(
1− t

2

(
λ+ λ̄

)
t2λλ̄(φ∗

1φ1 − 1) + t
(
λ+ λ̄

)
− 1

)
. (7.31)

This integral can be evaluated easily by using spherical coordinates and expanding in

powers of φ∗
1φ1, but it will turn out to be better to approximate this quantity via the

saddle-point approximation.
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7.4.2 Large N Limit

The first thing to note about the integral expression for F is that the integrand breaks

the U(N) symmetry of the measure to U(1) × U(N − 1), so it is convenient to perform

the angular integration over the N − 1 directions perpendicular to φ1 first. For a fixed

value of φ1, this is given by half of the volume of a sphere of radius (1 − φ∗
1φ1)

1/2. The

exact value of the angular integrals is not very important since the overall factor in front

of the generating function will cancel when we normalize the structure constants, but

what is important is that the integral over φ1 is done with the correct measure

F(λ,Λ, t) ≃ − πN−2

(N − 2)!

ˆ
drdϑ(1− r)N−2e(N−2)λλ̄r

(
1− t

2

(
λ+ λ̄

)
t2λλ̄(r − 1) + t

(
λ+ λ̄

)
− 1

)
.

(7.32)

Finally, we can evaluate this integral using the saddle-point approximation. Since the

terms coming from the resolvent do not scale with N , they will not lead to large expo-

nents, so only need to consider the critical points of the following effective action

Seff = λλ̄r + log (1− r) . (7.33)

The saddle points of this action precisely fix r in such a way as to simplify the denominator

of the expression in parentheses:

λλ̄ =
1

(1− r)
, (7.34)

which yields

Fsaddle(λ, λ̄, t) =

(
1− t

2

(
λ+ λ̄

)
t2 − t

(
λ+ λ̄

)
+ 1

)
eSsaddle . (7.35)

Since the exponential factor computes the saddle point value of the overlap of the AdS

giant states it will cancel when we compute the structure constants so we will omit its

explicit form.
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7.4.3 Diagonal Structure Constants

We now have an approximate expression for the form factor F(λ, λ̄, t) which is a

generating function for three point functions involving two BPS AdS giant gravitons and a

BPS singe trace operator. One feature of this calculation is that the form factor describes

a semiclassical giant graviton localized along some null geodesic on the hemisphere of S5.

To obtain a correlator with fixed R charge we need to average over the position of the

giant to project into a fixed charge state. In our case, the moduli of the solution is the

phase of the eigenvalue λ. So it is natural that we perform an average over the orbit

generated by the phase of λ

λ = y cosh ρ0

λ̄ =
1

y
cosh ρ0,

(7.36)

which gives

G(t) = − 1

2πi

˛
dy

y

 1− t
2

(
y + 1

y

)
cosh ρ0

t2 − t
(
y + 1

y

)
cosh ρ0 − 1

 = − 1− t2√
t4 − 2t2 cosh 2ρ+ 1

. (7.37)

To obtain the one-point function of a BPS single trace operator we simply expand this

function in t, and extract the L’th coefficient with a contour integral:

CS∆S∆OL
=

1

2πi
√
L

˛
dt

tL+1
G(t) = −

∞∑
J=0

1

2πi
√
L

˛
dt

tL+1
PJ (cosh 2ρ0) t

2J(1− t2)

= −1L + (−1)L

2
√
L

(
PL

2
(cosh 2ρ0)− PL

2
−1 (cosh 2ρ0)

)
.

(7.38)

This is exactly the answer obtained in [115], with a minor difference. In their analysis

one needs to perform an integral over |λ| with a measure that effectively replaces it with

the discrete dimension of the operator dual to the AdS giant. In our case we are still

left with cosh 2ρ0 as a continuous parameter corresponding to the radial position of the
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brane inside AdS. This will match exactly the answer obtained from the semiclassical

computation.

7.4.4 Off-Diagonal Structure Constants

Since our integral formula is identical to the one found in [115], we can borrow their

results to find the off-diagonal structure constants. The idea is to replace the integral

over the phase in (7.36) by ˛
dy

iy
−→
˛

dy

iyk+1
. (7.39)

This is the contribution from the wavefunctions of the boundary states whenever the

difference of the R-charges of the in and out states is k. If k ≪ N , the saddle point

is not modified, and the integrand remains the same. The structure constant for AdS

giant gravitons can also be obtained by analytically continuing the structure constant for

sphere giant gravitons

θ0 → iρ0 + π/2. (7.40)

Here we will prove the formula given in [115] for all values of k. After performing the

residue integral over y we arrive at the following expression for the generating function

of off-diagonal structure constants at large N

Gk(t) = −1

2

(
tk(t2 − 1) coshk ρ0

)
2k√

t4 − 2t2 cosh 2ρ+ 1
(
1 + t2 +

√
t4 − 2t2 cosh 2ρ+ 1

)k
=

1

2
tk(1− t2)

∞∑
J=0

P
(0,k)
J (cosh 2ρ0) t

2J ,

(7.41)
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where we used the generating function for Jacobi polynomials2 P
(α,β)
J (x) to expand the

function in powers of t2. Finally, we perform the contour integral over t to obtain the

off-diagonal structure constant.

CS∆+kS∆OL
=

1

2πi
√
L

˛
dt

tL+1
Gk(t)

= −1L−k + (−1)L−k

2
√
L

× coshk ρ0

(
P

(0,k)
L−k
2

(cosh 2ρ0)− P
(0,k)
L−k
2

−1
(cosh 2ρ0)

)
.

(7.42)

Similarly, the formula for the off-diagonal structure constants for sub-determinant oper-

ators can be written as

CD∆+kD∆OL
= −i

L−k + (−i)L−k

2
√
L

× sink θ0

(
P

(0,k)
L−k
2

(cos 2θ0) + P
(0,k)
L−k
2

−1
(cos 2θ0)

)
. (7.43)

We have checked that our formula agrees with the formula given in [115] for many

values of L and k, and the two formulas can be turned into one another by using the

recurrence relations of the hypergeometric function. In the extremal limit L = k, the

second term in both structure constants vanish and the Jacobi polynomials reduce to

a factor of unity, so the formula is well-defined for all k ≤ L. For k > L, the contour

integral has no poles, and so the structure constants vanish identically as expected from

R-charge conservation.

7.5 Holographic Computation

We now move on to the holographic computation of the structure constant (7.20).

To do so, we simply replace each part of the formula by its holographic counterpart.

2The Jacobi polynomials P
(a,b)
n (x) span a large family of orthogonal polynomials; they reduce to

Legendre polynomials for a = b = 0. For a = 0 and b = k they correspond to the radial parts of Zernike
polynomials.
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The dual of the Schur polynomial operators |SJ⟩ are BPS AdS giant gravitons with

angular momentum ∆ = J , whose quantum state we denote by |Ŝ∆⟩. The single trace

operator Tr
[
Z̃L
]
is replaced by an operator ÔL which describes the backreaction on the

worldvolume of the giant graviton. Altogether the holographic structure constant is given

by

CŜ∆′ Ŝ∆ÔL
=

〈
Ŝ∆′

∣∣∣ ÔL

∣∣∣Ŝ∆

〉
√
L
〈
Ŝ∆′

∣∣∣Ŝ∆′

〉〈
Ŝ∆

∣∣∣Ŝ∆

〉 . (7.44)

The three-point function can be computed from a path integral on the worldvolume of

the giant graviton, which is amenable to a saddle-point analysis. As we will see, a proper

treatment via the orbit average method will yield a result which matches the gauge theory

exactly.

7.5.1 AdS Giant Graviton Solution

We will be interested in solutions to the DBI action describing a giant graviton wrap-

ping an S3 ⊂ AdS5, which rotates along the equator of the S5 at the speed of light. For

our set up it will be convenient use global coordinates to parametrize AdS5 × S5:

ds2 = − cosh2 ρdt2 + dρ2 + sinh2 ρdΩ̃2
3 + dΩ2

5, (7.45)

where the metric of the five-sphere is

dΩ2
5 = dθ2 + sin2 θdϕ2 + cos2 θ

(
dχ2

1 + sin2 χ1dχ
2
2 + cos2 χ1dχ

2
3

)
. (7.46)

We can then gauge fix the worldvolume coordinates σµ of the D-brane to agree with the
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coordinates of Rt × S3 ⊂ AdS5

ρ = ρ0, σ0 = t = ϕ, σi = χ̃i (7.47)

where the tilded coordinates χ̃i are the coordinates of the three-sphere inside AdS5. The

size of a BPS giant graviton is equal to its R-charge (angular momentum along S5), which

is related to its radial position in the AdS direction by

cosh ρ0 =
J

N
, J ≥ N. (7.48)

To compute the three-point function we will need to compute the corrections to the

D3-brane action coming from a light supergravity perturbation as in [117, 118].

7.5.2 Fluctuations of the D3-brane action

The action for an AdS giant graviton is given by the sum of the DBI and Wess-Zumino

(WZ) actions

S = − N

2π2

ˆ
d4σ

(√
−h+ P [C4]

)
, (7.49)

where h is the induced worldvolume metric and P [C4] is the pull-back of the Ramond-

Ramond four-form potential of the background. For our purposes we will want to con-

centrate on the RR flux through the AdS factor

C4 = − sinh4 ρdt ∧ Vol(Ω̃3). (7.50)

The light operator insertion can then be identified by the perturbations to the D3-

brane action [125]

ÔL = δSDBI + δSWZ. (7.51)
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For this we will need the fluctuations of the spacetime metric g as well as for the

four-form potential [136]:

δgµν =

[
−6

5
Lgµν +

4

L+ 1
∇(µ∇ν)

]
sL(X)YL(Ω5)

δgαβ = 2Lgαβs
L(X)YL(Ω5)

δCµ1µ2µ3µ4 = −4ϵµ1µ2µ3µ4µ5∇µ5sL(X)YL(Ω5),

(7.52)

where µ, ν, . . . denote coordinates on the AdS5, α, β, . . . denote coordinates on the S5,

YL(Ω5) denotes a spherical harmonic on the S5, and sL(X) is the bulk-to-boundary

propagator. The kinds of fluctuations that are dual to the operator Tr
[
Z̃L
]
are given by

choosing a spherical harmonic corresponding to the homogeneous polynomial (Z + Z̄ +

Y − Ȳ )L, where X, Y , Z are the coordinates on S5 ⊂ C3,

YL(Z̃) = (sin θ cosϕ+ i cos θ cosχ1 sinχ3)
L . (7.53)

The bulk-to-boundary propagator is given by

sL(X) =
N

(−2P ·X)L
, (7.54)

where P represents the coordinates of the operator insertion on the boundary coordinates

P I and X are the embedding coordinates of AdS5:

X−1 = cosh ρ cosh tE, X0 = cosh ρ sinh tE X i = sinh ρ ni

P−1 = cosh t̄E, P 0 = sinh t̄E, P i = n̄i,

(7.55)

where tE is the Euclidean time coordinate tE = it and |n|2 = |n̄|2 = 1. The unit vectors

ni and n̄i represent the position of the operator insertion on the S3 inside AdS5 in the
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bulk and the boundary, respectively. In our case the bulk-to-boundary propagator is

given by

sL(tE, n
i, n̄i) =

N
2L

1

(cosh ρ0 cosh tE − n · n̄ sinh ρ0)L
, (7.56)

where n · n̄ = cos χ̃1 sin χ̃3 and the normalization N is chosen such that the two-point

function is unit-normalized.

DBI Action Fluctuations The fluctuation of the induced metric on the D3-brane

has the form

δ
√
h =

1

2

√
hhab

(
∂aX

µ∂bX
νδgµν + ∂aX

α∂bX
βδgαβ

)
. (7.57)

Substituting the worldvolume coordinates into the variation of the induced metric gives

δ
√
h =

1

2

√
h

(
4

L+ 1
hab ∇a∇b −

2L(L− 1)

L+ 1
habgab + 2Lhtt

)
sLYL. (7.58)

To simply this expression, it is useful to exploit the fact that sL(X) is a scalar field of

mass-squared L(L− 4) in AdS units. To use this fact we may rewrite the induced metric

on the brane in terms of the metric of AdS5

hab = gab + δtaδ
t
b

hab = gab −
(
sinh2 ρ cosh2 ρ

)−1
δat δ

b
t ,

(7.59)

and then we can add and subtract the second covariant derivative in the ρ direction to

complete the Laplacian in (7.58) which gives:

δSDBI =
N

2π2

ˆ
d3σ δ

√
h|t=0

=
N

4π2
sinh2 ρ0

ˆ
d3σ FDBI|t=0

(7.60)
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where

FDBI = − 1

N

4

L+ 1
sinχ1 cosχ1×(

∂2t
cosh2 ρ0

+ sinh2 ρ0∂
2
ρ − tanh ρ0∂ρ + L2 cosh2 ρ0 + 2L sinh2 ρ0

)
sLYL

(7.61)

The differential operator in parenthesis basically raises the spin of the propagator SL by

two units L+ 2 and multiplies it by a simple polynomial in sinh ρ0 and n · n̄.

WZ Action Fluctuations The fluctuations of the WZ term are straightforward to

compute. The four-form potential only has indices in the AdS5 directions, so the only

possible term is

δCtχ̃1χ̃2χ̃3 = −4∂ρs
L(X)YL(Ω5). (7.62)

The contribution from the WZ action is thus

δSWZ =
N

2π2

ˆ
d3σP [δC4] =

N

2π2

ˆ
d3σ

√
gAdS5δCtχ̃1χ̃2χ̃3

= − N

4π2
sinh2 ρ0

ˆ
d3σ FWZ|t=0

(7.63)

where

FWZ =
8

N
sin χ̃1 cos χ̃1 sinh ρ0 cosh ρ0 ∂ρs

LYL. (7.64)

Operator insertion Putting everything together, we obtain an expression for the in-

sertion of the light operator ÔL in the semiclassical limit. In practice it is useful to

rewrite the resulting expression in terms of sL+2 so that the DBI and WZ terms combine

nicely. As in [116], the combination of DBI and WZ terms simplifies significantly:

ÔL [X
∗
0 ] = δSDBI + δSWZ =

N

4π2
sinh2 ρ0

ˆ
d3σ (FDBI − FWZ) |t=0 (7.65)
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where

FDBI − FWZ = −
√
L(L+ 1)

N

sin χ̃1 cos χ̃1 cos
L ϕ

(cosh ρ0 cos t− cos χ̃1 sin χ̃3 sinh ρ0)
L+2

. (7.66)

So our analysis closely mirrors that of [116], with some minor differences in the simplifi-

cation of the fluctuation analysis.

At this point our analysis will differ importantly; in their set-up, they proceed by

substituting the worldvolume solution ϕ = t and integrating over the insertion time

t. Our calculation instead follows the prescription used by [115], which means that

the coordinates appearing in ÔL [X
∗
0 ] are not the worldvolume coordinates of the giant

graviton, and instead they should be thought of as the coordinates of the insertion of the

operator on the sphere wrapped by the giant. This means that we should not set ϕ = t,

but instead we should treat ϕ = ϕ0 as a moduli of the solution. The second moduli of

the solution is associated to the action of the dilatation operator t → t + iτ0, which is

different from the Lorentzian time evolution of the fluctuation.

Concretely, one should replace the unshifted solutionX∗
0 by the shifted solutionX∗

ϕ0,τ0
,

which can be obtained by ϕ→ ϕ+ ϕ0 and t→ t+ iτ0 in (7.65)

ÔL

[
X∗
ϕ0,τ0

]
=

N

4π2
sinh2 ρ0

ˆ
d3σ [FDBI (ϕ0, τ0)− FWZ (ϕ0, τ0)] |t=0 (7.67)

where

FDBI (ϕ0, τ0)− FWZ (ϕ0, τ0) = −
√
L(L+ 1)

N

sin χ̃1 cos χ̃1 cos
L ϕ0

(cosh ρ0 cosh τ0 − cos χ̃1 sin χ̃3 sinh ρ0)
L+2

.

(7.68)

Since these solutions spontaneously break the rotation and dilatation symmetry of the

background, the orbit average method tells us to integrate over the moduli space. As
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we will see this is the correct prescription for computing the three-point function, and

this will also fix the apparent discrepancy found in [116]. It will also allow us to com-

pute the off-diagonal three-point functions by including contributions from the boundary

wavefunctions, which was inaccessible from their analysis.

7.5.3 Diagonal Structure Constants

We can now obtain the diagonal structure constant by performing the orbit average

of (7.65)

CŜ∆Ŝ∆ÔL
=

ˆ ∞

−∞
dτ0

ˆ 2π

0

dϕ0

2π
ÔL

[
X∗
ϕ0,τ0

]
. (7.69)

The details are presented in appendix ?? and the final answer can be written in terms of

a hypergeometric function

CŜ∆Ŝ∆ÔL
= −1

2

(
1L + (−1)L

)√
L× tanh2 ρ0

coshL ρ0
2F1

(
1 +

L

2
, 1 +

L

2
, 2, tanh2 ρ0

)
. (7.70)

This answer is of the same form as the result found in [115] for sphere giant gravitons. To

see the matching with the gauge theory computation one needs to apply the recurrence

formulas of the hypergeometric function to write the expression above as a sum of two

Legendre polynomials

CŜ∆Ŝ∆ÔL
= −1L + (−1)L

2
√
L

(
PL

2
(cosh 2ρ0)− PL

2
−1 (cosh 2ρ0)

)
. (7.71)

Clearly this matches exactly with the gauge theory computaion, and is also a simple

analytic continuation of the stucture constant involving two sub-determinant operators

and a light single trace.
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7.5.4 Off-Diagonal Structure Constants

For the off-diagonal structure constants with ∆ + k ∼ ∆, the only change to the

computation is the contribution from the phases of the boundary wavefunctions:

CŜ∆+kŜ∆ÔL
=

ˆ 2π

0

dϕ0

2π

ˆ ∞

−∞
dτ0 ÔL

[
X∗
ϕ0,τ0

]
eikϕ0e−kτ0 . (7.72)

The final expression is a simple generalization of the diagonal case, and involves a

similar type of hypergeometric function:

CŜ∆+kŜ∆ÔL
= −1

2

(
1L−k + (−1)L−k

)√
L

× tanh2 ρ0

(cosh ρ0)
L 2F1

(
1 +

L− k

2
, 1 +

L+ k

2
, 2, tanh2 ρ0

) (7.73)

for k ≤ L, and zero for k > L. An analogous computation as in the diagonal case shows

that this is equivalent to

CŜ∆+kŜ∆ÔL
= −1L−k + (−1)L−k

2
√
L

× coshk ρ0

(
P

(0,k)
L−k
2

(cosh 2ρ0)− P
(0,k)
L−k
2

−1
(cosh 2ρ0)

)
(7.74)

which matches the gauge theory computation.

7.5.5 No ambiguities for Sphere Giants

We note that unlike the case of the sphere giant graviton in [115], our expression is

unambiguous for the extremal case L = k. Here we will argue that the extremal case for

sphere giant gravitons is also unambiguous if one performs the integrals in the correct

order.

Naively, if one computes the extremal case as a limit k → L one obtains a spurious

divergence coming from an integral over ϕ0, yet when one evaluates the integral explicitly
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the answer is manifestly finite. The seemingly problematic integral in our case is

ˆ 2π

0

dϕ0

2π
eiLϕ0 cosL ϕ0 =

1

2L
. (7.75)

Clearly the integral is finite and well-defined. However, this integral has an alternate

expression in terms of sums of hypergeometric functions with a spurious singularity at

k = L. If the integral is split into this form, the answer appears to be ambiguous in

the sense that it is a sum of two infinite quantities, even though the integral has a well-

behaved limit. In contrast, the off-diagonal structure constants for sphere giant gravitons

appear to have a real divergence in the extremal limit coming from the average over τ0,

which is multiplied by a prefactor that vanishes in the extremal limit. In [115] it was

argued that the analytic continuation of the non-extremal case to k = L is ambiguous

due to the fact that one can always multiply the result by an analytic function that only

modifies the function the behavior of the three-point function at k = L. Since there

no clear constraints on the analytic properties of the three-point function as a function

of k, there is no unique analytic continuation of the three-point function. However, in

their analysis they separated the expressions in the integrals into a finite piece and an

infinite piece multiplied by a zero prefactor. Strictly speaking this is not correct, since

the integral is not convergent and depending on how one separates the terms one can

obtain different answers for the regularized integral.

Upon closer inspection, the source of the divergence can be traced back to the imag-

inary part of a factor in the sum of the DBI and WZ terms

FWZ − FDBI =

√
L(L+ 1)

2N
Y L−1 × (i cos θ cosχ1 sinχ3 cosh 2τ0 − cosϕ0 sin θ0)

coshL+2 τ0
. (7.76)

Note that the first term in the parentheses will also lead to a divergent quantity when we
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average over τ0, but this way of splitting the integrals into divergent and finite parts is

different from the one used in [115]. Our expression comes from adding and simplifying

both contributions to the fluctuations of the action. Now, if we evaluate the average of

the second (finite) term we obtain

C finite

D̂∆+LD̂∆ÔL
= −sinL θ0√

L
, (7.77)

which is exactly the extremal structure constant evaluated in the Schur basis. The re-

maining term is ambiguous, since its contribution is regularization dependent. A natural

choice of regularization is to perform the integral over ϕ0 before the τ0 integral, or equiv-

alently to perform the τ0 integral with a finite upper and lower bound ±T and then take

the limit T → ∞. With this choice the problematic term vanishes and the holographic

computation agrees with the field theory computation. Physically this makes sense, since

the integral over ϕ0 of the first term vanishes due to R-charge conservation. Hence if one

treats the integrals carefully, there is no ambiguity in defining the three-point functions

for sphere giants. In fact similar ambiguities happen for the case where k > L in both

computations; if one computes the τ0 integral first the answer has divergent terms, even

though the integral vanishes since the integral over ϕ0 is zero.

7.6 Discussion

We computed diagonal and off-diagonal structure constants of two AdS giant gravi-

tons and a light supergravity mode in the large N limit, both in (free) N = 4 SYM theory

and holographically in AdS5 × S5. Our analysis shows a precise matching between both

descriptions as expected, even in the cases where ambiguities were believed to appear.

A crucial step in our calculations was the orbit average over the moduli space of solu-
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tions which spontaneously break the rotation and dilatation symmetry of the AdS5 × S5

background, and the order in which these integrals are performed is crucial for agree-

ment in the computations of extremal correlators. It would be interesting to apply these

methods to the class of open strings solutions [126] found in [23], where there appear

to be discrepancies between the boundary conditions for the semiclassical string and the

spin chain descriptions [63]. Since the positions of the open string endpoints along the

worldvolume of the giant appear as extra moduli, one should in principle integrate over

them in order to compare with the gauge theory computations. This would explain why

certain angular momentum modes are allowed on the spin chain description, even though

semiclassically they are forbidden by the boundary conditions.

Our calculation in the gauge theory demonstrate the power of the methods intro-

duced in [11, 24, 98] for computing correlators of fully-symmetric Schur polynomials.

Our methods are in many respects more streamlined when compared to the approach

introduced in [10] for dealing with symmetric Schur functions. In principle our compu-

tation gives an exact integral representation for half-BPS correlators, without having to

deal with a divergent generating series. Since we can express this generating function

as a sum of residues with only one residue providing an exponentially large contribu-

tion, it is natural to expect that the saddle-point approximation gives the exact answer

up to a simple one-loop determinant coming from the remaining residues. In fact the

holographic computations of non-extremal correlators seem to agree with the exact com-

putations obtained from explicit computations with the Schur basis [127]. It would be

nice to check whether this expectation holds by embedding the correlator into a super-

symmetric observable where supersymmetric localization techniques can be used [137].

For example, the connection between the coadjoint orbit integrals and Wilson loops via

geometric quantization is well-known [138].

From our saddle-point analysis, it seems that similar computation involving more
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generic mostly-symmetric Schur operators should proceed in the same way. More pre-

cisely, the HCIZ formula (2.6) gives in principle a sum over all possible pairings of the

initial and final configurations of eigenvalues. These can describe systems of more than

one AdS giant graviton at different positions. Whenever the giants are well-separated

we expect that the identity saddle dominates in a way that the computation reduces

to a sum over the individual contributions of each giant. It would be more interesting

to study set-ups where the positions of the branes coincide, in which case saddle points

corresponding to permutations of equal eigenvalues are all relevant. It would be useful to

understand the details in those cases before studying configurations of order N2 stacked

branes.

One surprising feature of these calculations is that the result is given by simple com-

binations of orthogonal polynomials in cosh ρ0 or cos θ0 for AdS and sphere giants, re-

spectively. This suggests that one might be able to compute these quantities by solving

a wave equation with a non-trivial radial potential given by the presence of the branes.

Understanding this connection would elucidate many of the physical aspects that are

obscured in the present computations. One might expect that three-point functions with

a spinning non-BPS single trace might be expressible as a spherical harmonic multiplied

by a radial wavefunction. Also, since Legendre and Jacobi polynomials satisfy various re-

cursive formulas, it might be possible to find non-trivial relations between BPS structure

constants involving operators of different conformal dimensions in the large N limit.

Another issue that needs attention is whether AdS giant gravitons can lead to inte-

grable boundary states for the N = 4 SYM spin chain. Since many quantities associated

with AdS giants can be obtained by analytic continuations from the sphere giant quan-

tities, we expect that the answer to this question is negative, since non-maximal sphere

giants do not appear to lead to integrable boundary states [10]. However, there is new

evidence that non-maximal giants do lead to integrable boundaries in the ABJM theory
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[139]. Since there is no obvious reason for this qualitative difference, it would be useful

to revisit some of these computations with new techniques.
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Chapter 8

1
2-BPS Structure Constants and

Random Matrices

8.1 Introduction

The study of baryonic operators in large N gauge theories is an old subject [140] that

has received renewed attention in the context of holographic field theories [9, 10, 11].

Such operators are extremely interesting from the point of view of the large N expansion,

since they correspond to heavy non-perturbative objects that are not very well captured

by the conventional t’ Hooft expansion. On physical grounds one expects that such

heavy objects modify the physics at the semi-classical level, and that one should attempt

to approach the problem from a point of view where one treats the dynamics of the

many constituents of the object in terms of a simpler collective coordinates [141, 142].

This is well understood in string theories; heavy objects can lead to non-trivial boundary

conditions for strings, or in some cases deform the target space geometry which the string

probes. For this reason such an approach is essential for understanding how gravitational

physics arises from large N models. In examples of the AdS/CFT correspondence [1]
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these ideas have sharp realizations in terms of giant gravitons, and in suitable limits,

non-trivial supergravity backgrounds like bubbling geometries and black holes. Given

that maximally supersymmetric Yang-Mills theory is expected to be fully-fledged theory

of quantum gravity, a particularly interesting question to address is how N = 4 SYM

resolves the many puzzles of gravitational theories, in particular the physics of black holes.

At the moment such questions are out of reach and they lie in regions of parameter

space where current non-perturbative techniques such as integrability are expected to

fail. One particular fruitful approach has been to concentrate on observables which are

protected by supersymmetry in order to test and develop tools, and the half-BPS sector

of asymptotically AdS type IIB supergravity and N = 4 SYM is perhaps the simplest

non-trivial toy model.

The spectral problem in this sector of the U(N) theory was solved by the work of

Corley, Jevicki, and Ramgoolam [48]; half-BPS operators are Schur functions and their

structure constants are given by multiplicities of representations of the unitary group

〈
OR3(Z̄)OR2(Z̄)OR1(Z)

〉
= CR1R2R3fR1 , (1.1)

where CR1R2R3 are Richardson-Littlewood coefficients and fR is the norm of the operator

OR. Although this solves the problem in principle and combinatorial algorithms exist

which generate these coefficients for a fixed value of N it is unclear how the asymptotics

of these coefficients are reflected in the corresponding supergravity solutions. Since these

numbers appear naturally in the study of the intersection theory of Grassmannians,

a natural expectation is that there is an alternative description for such calculations

involving only geometric data coming from the gauge group of the theory. Another

issue is that most results in the existing literature on structure constants of half-BPS

operators either focus on single trace operators, or in operators preserving the same
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supersymmetries, or rely heavily on the free fermion description of model. Holographic

computations of one point-functions in half-BPS backgrounds have also been studied in

generality, but explicit calculations are limited to maximally charged operators which are

charged under the same symmetry as the background and to operators of low dimensions.

So an important step towards understanding very heavy operators in N = 4 SYM is to

develop tools that can tackle problems of this kind for generic BPS operators in the large

N limit. Such tools have been developed recently for operators of dimension ∆ ∼ N

[9, 10, 115, 143, 144, 145] and in this chapter we extend this to operators of dimensions

that scale as N2. We show that the computation of very generic three-point functions of

half-BPS operators can be packaged in a large family complex matrix model of matrices

valued on a Grassmannian. Although we mostly focus on the U(N) theory, our results

generalize readily to orthogonal and symplectic gauge groups. For simple observables,

such as set-ups involving a single stack of AdS giant gravitons, the corresponding matrix

ensemble is a unitary Jacobi ensemble, while for more generic observables the matrix

model cannot be easily reduced to integrals over eigenvalues. At large N , we find that

the saddle point equations simplify the calculation significantly allowing us to either

reduce the integrals to sums over integrals over eigenvalues, where each term in the sum

is labelled by a permutation. The average density of eigenvalues is universal and is

given by the well-known Marchenko-Pastur distribution, which appears as the Poisson

distribution of noncommutative probability theory [146]

ρ(z) =

√
(z+ − z)(z − z−)

2πz
. (1.2)

Gaussian matrix integrals have been used extensively in the study of the combinatorics

of half-BPS correlators in the past [17, 147] and in other contexts [148, 137]; the matrix

models we study on the other hand describe large deviations from the vacuum state.
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for a similar story for Wilson loops see [149, 150, 151]. In simple terms they describe

wavefunctions of semi-classical BPS states in N = 4 SYM and as such they provide a

quantum mechanical description of half-BPS Coulomb branch configurations. This makes

them ideal candidates for computing quantities that one can match to the dual geometric

description. In fact, we argue that despite the fact that one expects an exact match for

half-BPS observables on both sides of the duality due to a lack of g2N corrections to

the free-field theory answer, the corresponding supergravity will not in general compute

a precise quantity from the point of view of the conformal field theory but rather a

(micro-canonical) average. This is purely an effect of the large N limit and the full

stringy description should be able to resolve the details of the boundary observable.

These observations have been made in this context before, for instance in [112], but we

clarify how this happens on the field theory side of the computation. Our main result

is a large N formula for all heavy-heavy-light structure constants of half-BPS operators,

for instance

CRRL/2 =
1√
L

ˆ
dzdz̄ ρR(z, z̄) (z + z̄)L, (1.3)

where the density ρR is determined entirely from Young diagram data in a well-known way

[152]. This is essentially the formula motivated in [112] from holographic renormalization

of low lying operators and Coulomb branch limits. Our computation provides a check

of this one-point function formula for all single trace primaries and in principle for all

LLM geometries without relying on free-fermion methods. We also compute off-diagonal

structure constants between sufficiently close heavy states suggesting that semi-classical

supergravity calculations should be able to probe the precise microstructure of bubbling

geometries.

This chapter is structured as follows. In section 2, we review the BPS coherent state

construction and and discuss the computation of the form factor of a single trace operator
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in the background of a giant graviton. In section 3 we generalize the computation to the

case where the number of giant gravitons scales with N . To do this we explain how to

reduce the corresponding integral over a Grassmannian to a more conventional matrix

model involving square matrices and then solve the model at large N . The resulting

distribution essentially reproduces the distributions studied in [69], up to a change of

variables. We then study the general problem of multiple stacks of giant gravitons using

steepest decent methods. In section 4 we return to the problem of computing correlators

in the character basis and provide a more explicit connection from the eigenvalue picture

presented by the coherent state generating functions and the character basis. In section

5 we conclude by discussing some general lessons and future directions.

8.2 Coherent States and Form Factors

Most of our discussion will concentrate on the simplest correlation functions in the

N = 4 SYM theory, which are three point functions of half-BPS operators. We will also

work mostly with the theory on the cylinder R × S3, but translating the results to the

plane is straightforward. A convenient parametrization for half-BPS operators is given

in terms of a six dimensional null complex vector n · n = 0:

Z(x, n) = nIϕ
I(x), (2.1)

and any half-BPS operator is obtained by taking gauge invariant combinations of Z(x, n).

One common choice of operators are single and multi-trace operators

O{Li}(x) =
∏
k

TrN

[(
n⃗ · ϕ⃗(x)

)Lk

]
. (2.2)
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In the large N limit with ∆ =
∑

k Lk ≪
√
N these provide an approximately orthogonal

basis of operators; this is the usual statement that in the large N limit planar graphs

contribute the most in correlation functions. This class of operators is naturally asso-

ciated to the supergravity modes of AdS5 × S5 and their bound states. However, for

operators with large enough conformal dimension ∆, various non-planar effects can con-

tribute meaningfully or eventually dominate over planar graphs. Even more strikingly,

certain extremal correlators of single traces operators have enhanced contributions from

non-planar diagrams even for small charges [153]. For these reasons it is useful to first

perform the computation at finite N with a proper orthogonal basis of states, and then

take the large N limit.

By restricting to primary operators, we will often drop the space coordinates x1,2,3

since we will mostly work with constant modes on the S3. Due to non-renormalization

properties of half-BPS operators, the two and three point functions of such operators

can be computed in the free field theory limit gYM = 0, so that our task reduces to

a combinatorial problem of performing Wick contractions of free fields. This problem

was first addressed in [48] for extremal correlators n1 = n2 = n∗
3. The main idea is to

construct an orthogonal basis of states for one matrix quantum mechanics with U(N)

gauge symmetry, or equivalently a set of operators that diagonalize two point functions.

The resulting basis is build from characters of the unitary group and is often referred to

as the Schur basis:

OR (Z(x, n)) =
1

k!

∑
π∈Sk

χR(π)TrN⊗k

[
πZ(x, n)⊗k

]
= sR (Z(x, n)) , (2.3)

where k denotes the number of boxes of the Young diagram associated to the represen-

tation R of U(N) and χR(π) is the character of the corresponding representation of Sk.

A different proof that this set of operators provides a diagonal basis was given in [11].
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These operators have a dual description in terms of giant gravitons, or their bound states,

in asymptotically AdS5 × S5 spaces [48, 17, 32].

Instead of performing the explicit contractions for a particular operator, it was realized

that one could instead work with a coherent state for the free field Z(x, n)

|Λ⟩ = 1

Vol [U(N)]

ˆ
dU eTrN [UΛU†Z(x,n)] |0⟩ . (2.4)

A straightforward computation gives an alternate formula for |Λ⟩ as a expansion in

characters of the unitary group sR,

|Λ⟩ =
∑
R

1

fR
OR (Z(x, n)) sR(Λ), (2.5)

and sR(Λ) is a Schur polynomial. The point of this analysis is that by exploiting the

Campbell-Hausdorff formula the free field contractions of the operators OR (Z(x, n)) can

all be replaced by an integral over the unitary group. For the two point functions the

resulting integral is a Harish-Chandra-Itzykson-Zuber integral which has an exact fixed

point formula:

〈
Λ̄
∣∣Λ〉 = 1

Vol [U(N)]

ˆ
dU eTr[UΛU†Λ̄] = CN

∑
π∈SN

det(π)
eλiλ̄π(i)

∆(Λ)∆(Λ̄)
. (2.6)

Following the ideas of [9, 10, 19], one can reduce the computation of any correlator in

the free theory to a matrix integral by commuting various generating functions past each

other using the Campbell-Hausdorff formula. In the language of [9], this is equivalent to

replacing the fields inside small operators (such as traces) by their vevs after integrating

out the SYM fields and then performing a saddle point approximation over the auxiliary

parameters (in this case U).
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More concretely we will be interested in computing form factors such as:

〈
Λ̄, n3

∣∣Tr[Z(t = 0, n2)
L] |Λ, n1⟩ ≃

∑
R,R′

CR,R′(Λ, Λ̄) ⟨R′, n3|Tr[Z(t = 0, n2)
L] |R, n1⟩ ,

(2.7)

where the initial and final states are created by heavy operators ∆ ∼ N2 in the large N

limit. For relatively simple choices of operators, such as determinants and traces of fully

symmetric tensors [9, 10, 115, 144], the saddle point analysis can be performed rather

explicitly and the correlators can be matched precisely to their holographic counterparts.

For more complicated operators, such as insertions of many determinant operators, or

operators associated to generic Young diagrams, the saddle point analysis appears to

be less straightforward and the structure of the solutions to the saddle point equations

is not fully understood. The main difficulty lies in the fact that the resulting matrix

models cannot be easily reduced to integrals over eigenvalues, so that the saddle point

equations appear to be truly matrix equations. We will discuss in the later sections how

to overcome these complications in the regimes relevant to states with nice supergravity

descriptions (i.e. states corresponding to non-trivial geometries with small curvatures).

8.2.1 Example: AdS giant graviton

Before proceeding to the case of interest, it is convenient to review the results pre-

sented in [9, 144] since many of the parts of the calculations presented there extend

naturally. In the simplest of cases, the heavy operators can be taken to be of rank

one, meaning that they correspond to Schur polynomials of fully symmetric or fully anti-

symmetric representations. In the case of fully anti-symmetric representations the correct

generating function is the determinant operator [43], for instance :

det(ϕ5 + iϕ6 − λ) = det(Z − λ), (2.8)
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which describes a sphere giant graviton sitting at the origin of global AdS at a position

inside S5 given by eiϕ0 cos θ0 = λ. This operator is a semi-coherent superposition of

all subdeterminant operators, each describing the R-charge eigenfunctions of a sphere

giant graviton. The method for semi-classical computation with this class of operators

was presented in [9] and also [19] so we refer the reader there for details. Instead we

will describe how the analogous computation is done for an operator describing a semi-

classical AdS giant graviton. The reason for this is that in the end both calculations lead

to very similar integrals for the correlators, but their form is much easier to understand

for the computation involving symmetric tensors.

First we consider the following coherent state:

|λ⟩ = 1

Vol
[
CPN−1

] ˆ
CPN−1

dφdφ† eλφ
†Zφ |0⟩ . (2.9)

As discussed in [11, 144] this is the same state that one obtains from setting Λ to be a

rank one projector in (2.6). This state has a natural U(1) gauge symmetry

φ ∼ eiαφ, (2.10)

which can be identified with the gauge symmetry on the worldvolume of the giant gravi-

ton, as well as invariance under U(N) gauge transformations of Z. This state is also

a coherent superposition of AdS giant graviton wavefunctions with fixed R-charge. A

simple calculation yields:

〈
λ̄
∣∣λ〉 = 1

Vol
[
CPN−1

] ˆ
CPN−1

dφdφ† eλλ̄φ
†P1φ. (2.11)

To evaluate this integral we need to do a series of simple coordinate transformations.

Without loss of generality, we can let P1 be a rank one projector into the first component
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of φ. Then we can split the coordinates of CPN−1 into φ1 and φn with n > 1. The reason

we emphasize this will become clear when we generalize this more complicated coherent

states. Then, we can parametrize the coordinates φn in terms of an 2N − 2 dimensional

spherical slices of radii R =
√
1− |φ1|2 =

√
1− r2. Finally we can rewrite the radial

part of the integral as

ˆ
d
(
r2
)
d
(
R2
)
R2N−4 δ(R2 + r2 − 1) eλλ̄r

2

=

ˆ 1

0

dx (1− x)N−2 eλλ̄x. (2.12)

This last integral is simply the moment generating function of a particular unitary Jacobi

distribution. To make contact with the calculation involving determinants, we can rewrite

(
λλ̄
)N−2

(1− x)N−2 = det

 λ λ̄φ1

λφ∗
1 λ̄


N−2

= det

ρ11 ρ12

ρ21 ρ22


N−2

. (2.13)

Although this step is not necessary and the previous integral expression is simple enough

to evaluate explicitly, doing this change of variables makes it clear that the final answer

the large N approximation for AdS giants is the same as that of sphere giants (up to

analytic continuation). After a final simple re-scaling, λ →
√
N − 2 λ we finally arrive

at the expression

〈
λ̄
∣∣λ〉 = CN

ˆ
det ρ ≥λλ̄−2

dρ det ρN−2 e(N−2)tr2[ρρ†], (2.14)

which apart from the contour on integration is identical to the integral obtained from

the Hubbard-Stratonovich trick used in [115] for determinant operators 1. This will be

true generically, once we solve the saddle point equations for a configuration of AdS giant

gravitons, we automatically have the solution for a configuration of sphere giant gravitons

1Our trace convention is so that trm1 = 1 as opposed to trm1 = m
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after a simple analytic continuation. In this case the saddle point equations are simply:

ρ† = ρ−1 ⇒ ρ12ρ21 = λλ̄− 1

λλ̄ > 1.

(2.15)

The second equation comes from the fact that the exponential needs to be positive

for the saddle point to be a maximum; this implies that the semiclassical approximation

is valid whenever |λ| = cosh ρ0 is greater than one which simply says that the brane is at

a position ρ0 > 0 in global AdS, and this is true for all half-BPS giant graviton solution.

Form Factors

The next step is compute the following form factor;

〈
λ̄
∣∣TrN [(n⃗ · ϕ⃗

)L]
|λ⟩ =

〈
λ̄
∣∣TrN [(Z + Z̄ + Y − Ȳ

2

)L]
|λ⟩ . (2.16)

Our choice of n⃗ is taken from [115] for clarity of presentation and is arbitrary. To evaluate

this quantity, we use the fact that the initial and final states are coherent states which

lets us replace Z and Z̄ by constant matrices. The resulting trace is

TrN

[(
Z + Z̄ + Y − Ȳ

2

)L]
= TrN

[(
λ̄φφ† + λφ̃φ̃†

2

)L]
. (2.17)

To proceed we use the fact that the integrals over dφ and dφ̃ are invariant under the

action of U(N), so we can gauge fix φ̃ to be a unit vector v with a one in the first

component. Finally one uses the trick introduced in [9] to exchange the trace over color
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indices into a trace over “flavor” indices associated to the in and out states of the brane:

TrN

[(
Z + Z̄ + Y − Ȳ

2

)L]
= 2−Ltr2


 λ λ̄φ1

λφ∗
1 λ̄


L ≃ tr2ρ

L. (2.18)

Now instead of evaluating every power the matrix ρ, it is better to work with the resolvent

R(t) = tr2
[
(1− tρ)−1] = 1− ttr2[ρ]

t2 det ρ− 2ttr2[ρ] + 1
. (2.19)

When we evaluate this expression at the saddle point value for ρ, we can immediately

recognize that the resolvent R(t) is a generating function for Chebyshev polynomials of

the first kind.

⟨R(t)⟩N=∞ =
∞∑
n=0

Tn(cosϕ0 cosh ρ0) t
n, (2.20)

where we parametrized the eigenvalue in terms of LLM coordinates λ = eiϕ0 cosh ρ0.

Extracting Structure Constants

Naively one might expect that the saddle point approximation of the resolvent com-

putes a generating function of some half BPS structure constants. This is not quite

correct for the following reason. First we would need to extract the contribution to the

form factor from a particular set of primary operators. In this case this is somewhat easy

to do, given that the coherent state has a simple expansion in terms of Schur polynomials

for rank one representations

|λ⟩ = nλ

∞∑
k=0

λN+k−1

(N + k − 1)!
O(k)(Z) |0⟩ . (2.21)

We should then think of the coefficients in the expansion as the distribution of lengths

for a Young diagram with a single row. The distribution is similar to a Poisson random
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variable, so that the average length is of the Young diagram is of order |λ|. Another way

of seeing this is by using the Stirling formula for the denominator and extremizing with

respect to l = N + k− 1; the maximum occurs when |λ| = N + k− 1. This is the reason

why the coherent state calculation in [144] gives the correct answer for structure constants

without the need to project into a particular character. However, the dependence on the

phase of λ when we insert an operator will not be correct due to unwanted contributions

coming from off-diagonal terms. To fix this one should project the intermediate operator

into a an R-charge singlet operator. This is done by performing a group average over the

phase of λ. Since the wavefunction
〈
λ̄
∣∣λ〉 is already invariant under shifts in the phase

of λ whenever λ̄ = λ∗, the only effect of averaging is to project out off-diagonal terms

from the resolvent.

Strictly speaking this averaging should be performed prior to doing the saddle anal-

ysis, since averages do not generally commute. One way of performing this average is to

rescale t→
√
det ρ t, and then perform the integration over the phase of λ by a contour

integral. The result is

R(t) =
√

det ρ

[
t2 − 1

2
√

(1 + t2)2 det ρ− 4t2λλ̄

]
. (2.22)

In the large N limit, we can set det ρ = 1, and the averaged resolvent will take the form

of a generating function of Legendre polynomials. Since the saddle point analysis for this

case basically involves setting ρ to a particular value, the averaging procedures commute

so the large N limit was taken first in [115, 144] without any trouble. This is not the case

for operators made out Schur polynomials for large Young diagrams, since the large N

limit leads to a continuous distributions of eigenvalues. Once the eigenvalues condense,

the result of the computation will be highly sensitive to the analytic properties of the

moment generating function, and performing the averaging and large N limit can lead
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to contradicting results. The most natural prescription to remedy this is to perform the

projection into a particular primary operator first by an appropriate averaging, and then

take the large N limit of this quantity.

8.3 Matrix models for general coherent states

8.3.1 Two Droplets

The next simplest calculation that we can perform is the case where the matrix Λ in

(2.6) is taken to be a rank p projector. In this case, the analogous coherent state is an

integral over the Grassmannian Gr(p,N). The expression for the coherent state is simple

to write down, but some of the steps needed to evaluate the resulting matrix integrals

require some care; the main task will be to evaluate the following norm:

|λ, p⟩ = 1

Vol [Gr(p,N)]

ˆ
Gr(p,N)

dV dV † eλTrNV V
†Z |0⟩ . (3.1)

We will argue that this state described the wavefunction of a stack of p giant gravitons

sitting at position λ in the LLM plane. The first thing to note is that this coherent

state has an explicit U(p) gauge symmetry V ∼ V g which we can identify as the gauge

symmetry on a stack of D-branes. The expectation value of ∆0 on this state is given by

p|λ|2 so that whenever |λ| ∼
√
N and p ∼ N , the average dimension of this state is of

order N2. By inspection, we can also deduce that this state is a coherent superposition

of Schur operators of at most p rows. by acting with Tr[Z̄] on this state, we can see that

this state breaks the gauge symmetry spontaneously from U(N) to U(N−p)×U(p), and

that the center of mass of the stack of p branes is at the position z = λ on a complex

plane.

Before proceeding we need to comment on the choice of coordinates for Grassmannian,
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since the details on how to perform these types of integrals are known but not readily

available. We will mostly follow the notation of [154, 155]; for a pedagogical presentation

we refer the reader to [146]. First, we can choose to split any given group element U in

terms of block matrices

U =

A11 A12

A21 A22

 , (3.2)

where A11 and A22 are p×p and (N−p)×(N−p) square matrices, and A12 is a p×(N−p)

matrix (similarly for A21). Then we make an arbitrary choice of frame distinguished by

a rectangular matrix

vT =

(
Ip 0(N−p)×p;

)
(3.3)

this matrix can then be used to build projectors into arbitrary p-dimensional subspaces of

CN by acting on v with unitaries. This set of projectors precisely gives a parametrization

of the affine Grassmannian Gr(p,N). By an affine Grassmanian we will simply mean the

space spanned by the unitary transformations of v:

Gr(p,N) := {V = U · v | U ∈ G}. (3.4)

Clearly any V in this space is rank deficient, so all of the information about its singular

value decomposition is captured a square matrix:

V V † = U †PpU =

A†
11A11 0

0 0

 . (3.5)

In analogy to the rank one calculation, we can write down the integration measure for
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this space as

dV dV † = dA11dA
†
11dA12dA

†
12 × δ

(
A†

11A11 + A†
12A12 − Ip

)
(3.6)

By a similar calculation we can see that the norm of this state is given by

〈
λ̄, p

∣∣ λ, p〉 = 1

Vol [Gr(p,N)]

ˆ
Gr(p,N)

dV dV † eλλ̄TrpV
†PpV . (3.7)

One last fact that we need before continuing is the Jacobian for the coordinate transfor-

mation M = A†A for any n ×m rectangular matrix A. This change of variables is well

known in the context of Wishart distributions;

dAdA† ∝ det(M)n−mdM, (3.8)

where the constant of proportionality is an integral over angular variables that will not

be important for our analysis. So in the end we find

〈
λ̄, p

∣∣ λ, p〉 = nλ,p

ˆ
A†

11A11⪯ Ip
dA†

11dA11 det
(
Ip − A†

11A11

)N−2p

exp
(
λλ̄Trp

[
A†

11A11

])
.

(3.9)

Since the only combination of A11 and A
†
11 that appears in the integral is A†

11A11, we can

reduce the computation to an integral over the eigenvalues of A†
11A11.

〈
λ̄, p

∣∣ λ, p〉 = Cλ,p
ˆ
[0,1]p

p∏
i=1

dxi ∆(xi)
2 (1− xi)

N−2p exp

(
λλ̄

p∑
j=1

xj

)
. (3.10)

8.3.2 Large N Limit: Steepest Descent

We will now sketch the evaluation of (3.10) in the large N limit. As before, |λ|2 will

scale with N so that the exponential term is large. The integral can evaluated explicitly
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using the Andreief identity [146]:

C−1
λ,p = p! det

j,k

(ˆ 1

0

dx (1− x)N−2pxj+k−2eλλ̄x
)

(3.11)

The function inside the determinant is an incomplete Gamma function. Another way

interpreting it is at the moment generating function for the GUE Jacobi ensemble. Even

though we can evaluate simple moments in this distribution exactly, the final form will

always be a large determinant of a Hankel matrix which we cannot deal with easily.

Instead we can perform a saddle point analysis of (3.10) for large N and large p. After

rescaling a similar rescaling λ →
√
N − 2p λ the saddle point equations of this integral

are of the form

λλ̄− 1

1− xi
− 2

N − 2p

∑
j ̸=i

1

xj − xi
= 0. (3.12)

The behavior of the saddle point configurations are easy to understand; the first two

terms are the same as in the single eigenvalue problem so that all the eigenvalues have a

tendency to condense around λλ̄ = 1
1−xi while second term the usual eigenvalue repulsion

term. We should also note that for distribution to be stable we have to require that

p ≤ N/2. This makes sense, since condition forces the second droplet to be smaller than

the first. In the case that p ≫ N/2, this configuration is no longer a small deformation

of the original vacuum configuration and the remaining N − 2p eigenvalues become the

relevant degrees of freedom. The case with p ∼ N/2 has to be treated with particular

care as we will see. To solve these equations at large N with p/N fixed we simply recast

the saddle point equations as a Ricatti equation for the resolvent matrix Rp(z):

[
λλ̄− 1

1− z

]
Rp(z)−

K

1− z
− p

N − 2p
Rp(z)

2 +
1

N − 2p
R′
p(z) = 0, (3.13)

where K = 1
p

∑p
i=1

1
1−xi =

´ ρ(z)
1−z is a constant that is determined from Rp(z) by imposing
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self-consistency conditions of the distribution. From this we can identify 1
N−2p

as the

relevant ℏ parameter in the problem; this is the reason why p ∼ N/2 should be treated

with care, since the 1/N fluctuations of the resolvent are no longer under control and

one must solve the differential equation exactly. This can be seen from a simple scaling

argument; if N−2p is of order one, the exponential and determinant terms in (3.9) are of

order ep, while the Vandermonde term is of order ep
2
. This says that the dominant effect

in this case is the eigenvalue repulsion, so that the separation of each of the individual

eigenvalues is large when compared to the size of the system. In particular we should

expect the corresponding geometry to have a region with string scale curvature where

the supergravity approximation breaks down. This is expected, since wavefunction |λ, p⟩

no longer has a good semiclassical approximation in the large N limit. If instead we

decide to keep N − 2p of order one but this time scaling λ as
√
p ∼

√
N , then the

Vandermonde contribution is off-set by the exponential term and the determinant term

is still sub-leading, so the distribution of eigenvalues xi is approximately semi-circular.

What this is saying is that now the two droplets are too close together to be treated as

separate (meaning that their size is of the same order as their separation), and instead the

deviation from vacuum is described by a collection of order one giant gravitons probing

the vacuum. In other words, depending on how we decide to scale N − 2p we will obtain

qualitatively different saddle point conditions and the expansion in terms of AdS or

sphere giant gravitons might be more suitable.

The regime we will be interested in is when N−2p is of order N , so that the constant

equilibrium configuration is a good approximation to the eigenvalue distribution. In the

large N limit the density of states becomes

ρ(x)dx =
1

π

√
4Kµ(1− x)−

(
1− (1− x)λλ̄

)2
1− x

dx, (3.14)
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with µ = p
N−2p

; this turns out to be simpler after we make the change of variables

z = λλ̄ (1− x). After this we can normalize the distribution such that
´
ρ(z)dz = 2µ

and find K = 1. In this convention the eigenvalues are quantized in units of 2gs =
1

N−2p
,

where gs is the effective string coupling of this system.

To compare with the corresponding LLM solution we can express the solution in

coordinates that manifest 1
8
of the supersymmetries [69]. The point is to write the 10d

metric in terms of a 6d complex basis with coordinates x, y, z. For the vacuum AdS5×S5

solution these coordinates should be identified with the coordinates of the five-sphere.

Translating the whole metric into these coordinates is a non-trivial task for generic LLM

geometries, but we will only be interested in determining the volume of the cycle wrapped

by the branes. In these coordinates the radius of the three-sphere wrapped by the giant

gravitons for a single droplet solution is given

r̃ =

√
(L2 − |z|2)(|z − a|2 − b2)

|z − a|
, (3.15)

where the droplet is centered at z = a, the size of AdS is L and b is the radius of the

droplet. Notice that this is essentially of the same form as (3.14) up to some relabellings.

The discrepancy between the denominators is due to the fact that the variable x is

actually related to the square of the radial direction of AdS. The precise mapping between

both pictures should involve some more complicated charge of variables in general, but

the analytic properties of both distributions are the same.

8.3.3 Three Point Functions: Diagonal Case

To compute the correlator of a single trace in the background of these coherent states

we can use the resolvent trick. Using the same kind of color-flavor transformation the

trace over the original color indices can be replaced by a trace over p× p matrix. In this
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case the moment generating function is

F(t) = trp

[(
(2− t(λ+ λ̄)

) (
(1− tλ)(1− tλ̄)Ip − t2λA†

11A11

)−1
]

= 2

p∑
i=1

1− t
2
(λ+ λ̄)

t2λλ̄(1− xi)− t(λ+ λ̄) + 1
.

(3.16)

The most natural variable to work with is once again zi = λλ̄(1− xi), which makes the

density of eigenvalues be of the form:

ρ(z) =

√
(z+ − z)(z − z−)

πz
, (3.17)

where z± are given by the roots of the polynomial inside the square root in (3.14)

z± = 1 +
2µ

λλ̄
± 2

√
µ(µ+ λλ̄)

λλ̄
. (3.18)

Expanding F(t) as a function of z gives an expression for the moment generating function

in terms of the moments of the Marchenko-Pastur distribution (3.17). After extracting

the Lth moment we get

〈
λ̄
∣∣Tr[(Z + Z̄ + Y − Ȳ )L

2L
] |λ⟩ =

∞∑
k=0

(L+k
2

L−k
2

)
2−(L−k)

(
λ+ λ̄

2

)k
mL−k

2
−

∞∑
k=0

2−(L−k)
(L+k

2
− 1

L−k
2

)(
λ+ λ̄

2

)k+1

mL−k−1
2

,

ml =

ˆ z+

z1

dz ρ(z) zl =
l∑

k=1

1

k

(
l

k

)(
l

k − 1

)(
z+ − z−

2

)k
= 2F1

(
1− l,−l; 2; , z+ − z−

2

)
(3.19)

To extract the diagonal part of this form factor we can average over the phase of λ.

Fλ λ̄L =
1L + (−1)L

2
√
L

L∑
k=0

(L+k
2

L−k
2

)(
k
k
2

)(
1k + (−1)k

2

)
|λ|k mL−k

2

(
L

L+ k

)
. (3.20)
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This correlator should be interpreted as encoding part of the angular distribution of the

bubbling geometry associated to the condensate of eigenvalues and should compute the

one-point function of a scalar operator on an LLM geometry with two circular droplets.

It would be interesting to compute these correlators holographically, for instance with

the methods developed in [112]. By performing an additional contour integral over |λ| we

can obtain three point functions for operators with fixed scaling dimensions as opposed to

coherent states as is done in [115]. One can similarly perform computations that extract

off-diagonal form-factors between heavy states with different dimensions.

8.3.4 General Matrix Model: Eigenvalue Picture

Now we will proceed to the general case and sketch how to extract specific operators

associated to a particular Young diagram of at most p rows with order N2 boxes, and

we will use this to compute diagonal form factors. To do this we need to consider the

generating function

〈
Λ̄p
∣∣Λp〉 = np

ˆ
dσ†dσ det

(
I− σ†σ

)
eNtrp[ΛσΛ̄σ†]. (1.1)

This formula is the analog of (3.9) for generic coherent state parameters. Computing this

integral is not an easy task for generic eigenvalues, since the argument of the exponential

is no longer just a function of σ†σ, and the matrix σ is not a normal matrix, so σ and σ†

cannot be simultaneously diagonalized. In this section we will give a heuristic argument

for a saddle point approximation to this integral. We will give a more concrete proof in

the next section where we will need a more careful analysis of these type of integrals.

Intuitively one would like to say that the integral is dominated by points where the all

the matrices in the trace are diagonal. One way to see why this could be true is that the
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exponent can be written in the form:

trp
[
ΛΛ̄σσ† − σΛ̄[Λ, σ†]− ΛΛ̄[σ, σ†]

]
. (1.2)

Since the first term is manifestly positive, the exponent is the largest when this term

is maximized which happens whenever all the matrix components are concentrated on

the diagonals. Any deviation from this contributes to the second and third terms, which

are not necessarily positive. So it is natural to expect that a good approximation to the

integral is obtained by integrating over the set of σ satisfying

[λ, σ†] = [σ, σ†] = 0. (1.3)

Indeed we will see later that these are the saddle point conditions for the integration over

the angular variables for σ. Because of the large exponent, corrections to this are heavily

suppressed as long as Λ† = Λ̄, and so

〈
Λ̄p
∣∣Λp〉 ≃ ˆ

[0,1]p
dxi∆p(xi)

2 (1− xi)
N−2p eN

∑
i |λi|2xi +O(e−N

2

). (1.4)

The other saddle points contribution for the norms consists of pairing the eigenvalues

λi with λ̄π(i)] for all permutations π, which are highly suppressed for non-coincident

eigenvalues.

eTr[ΛσΛ̄σ
†] →

∑
π∈Sp

e
∑

i |si|2λiλ̄π(i) × (one-loop) . (1.5)

We work out the appropriate one-loop determinant for this saddle point approximation in

section 4. This structure precisely explains the saddle point structure found in [9] for de-

terminant operators; the solutions to the matrix form of the saddle point equations always

involve summing over permutations of initial and final giant graviton states. For widely
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separated eigenvalues the Vandermonde determinant does not contribute meaningfully

to the saddle point approximation and the state is well approximated by a collection of

widely separated giant gravitons. A more interesting regime is whenever we have na coin-

cident branes at a point λa, for a = 1, . . . , k. As long as the λa are sufficiently separated

interactions between different droplets can be neglected and the eigenvalues xi are dis-

tributed along k cuts whose distribution is approximately given by the Marchenko-Pastur

distribution. More precisely, the norm of the coherent state with k lumps of eigenvalues

centered around λa is computed by the following matrix model:

Z(λ1, . . . , λk) =

ˆ
[0,1]p

k∏
a=1

na∏
ia

dx
(a)
ia

∆na

(
x(a)
)2 (

1− x
(a)
ia

)N−2p

eNλaλ̄axa ×
∏
c>b

∏
ib,jc

(
x
(c)
jc

− x
(b)
ib

)
.

(1.6)

The derivation of this class of models was presented in [151], and we outline the details

in the next section. As long as the cuts are not exponentially close to one another, the

last eigenvalue repulsion term is far enough from zero that it does not affect the saddle

point. The analysis for the three point function is then relatively straightforward; the

moment generating function can be block diagonalized and each block is dealt just like

the single-cut case. In the regimes when two cuts approach each other this approximation

is no longer valid and one has to solve the corresponding monodromy problem exactly

as the fluctuations around the stationary eigenvalue distribution will not be suppressed.

We expect that these corrections reproduce the supergravity picture of [69], with the

eigenvalue distribution being related to the volume of the three-sphere on which the

giant gravitons are wrapped (see for example equations (5.110) and (5.116) in [69]). We

expect that the spectral curve for the matrix model is precisely encoded by the dual

LLM geometry written in the coordinates advocated by [69], since our distribution of

eigenvalue for the single cut case is essentially identical to their equation (5.117). This
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aligns with the results coming from numerical tests performed in [156] and we advocate

for a similar viewpoint; 1/N effects will generically give some amount of granularity to the

edges of eigenvalue droplets, specially if multiple droplets are close to one another when

compared to the characteristic size of each eigenvalue. In order to resolve these details

one would need to solve the full interacting saddle point equations. We will not do this,

since in this regime there will not be a reliable geometric picture for the state. In other

words, the saddle point approximation we described above breaks down for states that

describe half-BPS geometries with string scale curvature, and instead we should think of

the state as being a deformation of a smooth geometry with some branes inserted.

8.3.5 Coulomb Branch Limit

One last interesting limit that we can consider is the limit in which the droplets are

widely separated from each other and from the origin. In this limit, the Marchenko-Pastur

distribution reduces to a delta function

ρ(x) →
∑
i

δ

(
λiλ̄i −

1

1− xi

)
. (1.7)

This is exactly the Coulomb branch limit discussed in [112]. In this sense the operators

we study here can be understood as quantum mechanical analogs of Coulomb branch

vacua of the theory. This makes the relation between the geometry of the moduli space

of vacua and asymptotically anti-de-sitter spaces clear; in the large N limit, the moduli

space should get quantum correction which deform its geometry into a bubbling geometry

and only in the dilute gas approximation can we approximate such a geometry by a multi-

center solution.
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8.4 Matrix Models for the Character Basis

Now we will concern ourselves with computing three point functions where the initial

and final state are specified by specific Young diagrams, as opposed to a collection of

eigenvalues λi. The idea will be to make a somewhat unconventional choice of integration

contour for the coherent states parameters. First we start with a pair of states
∣∣∣Λ̃†
〉
, |Λ⟩,

but now we treat the parameters as being independent from one another; we will also

force each of the eigenvalues λi and λ̃i to lie on a unit circle. By multiplying |Λ⟩ by the

square of the Vandermonde determinant of Λ, and integrating we can recognize that the

resulting integration measure is just a Haar measure for a new unitary matrix U = UΛU †:

ˆ
U(N)

dU

˛
dλi∆(λj)

2 →
ˆ
U(N)

dU . (4.1)

The resulting state is clearly proportional to the vacuum state, since there are no U †

insertions to feed to the exponential. From this it becomes clear that in order to extract

a term proportional to the state |R⟩ = SR(Z) |0⟩ one should multiply the integrand by a

character SR(U †):

|R⟩ = fR
Vol [U(N)]

ˆ
dU eTr[UZ] SR(U †) |0⟩ . (4.2)

A similar trick was used in [157] to study expectation values of Wilson loop for arbitrary

representations in large N Chern-Simons theory, with a slightly different generating func-

tion. For our choice of generating function the exponential factor can be expanded in

terms of unitary characters using Schur-Weyl duality and the resulting integrals are easily

evaluated using elementary orthogonality relations. On the other hand, for sufficiently

large representations we will be able to perform the integral using steepest descent after

we perform all contractions of the N = 4 SYM fields. This exponential generating func-
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tion is also useful for computing Wick contractions with other operators since we can

exploit the Campbell-Hausdorf formula. With all this in mind the coefficient fR is easily

determined to be

fR = nR!
TrR[ 1 ]

χR(id)
= nR!

DimR(N)

dR
; (4.3)

which is the norm of the corresponding state; this is done by expanding the exponential

and matching the terms as in [11].

We will want to compute quantities such as

CRR′L = 2−L ×
⟨R′|TrN

[(
Z + Z̄ + Y − Ȳ

)L] |R⟩√
L ⟨R′|R′⟩ ⟨R|R⟩

, (4.4)

in the limit that |R| ∼ |R′| ∼ N2. To compute the quantity in the numerator we can

substitute the equation (4.2) and perform the Wick contractions using the Campbell-

Hausdorff formula:

⟨R′|TrN
[(
Z + Z̄

)L] |R⟩ = fR′fR

Vol [U(N)]2

ˆ
dUdV SR(U †)SR′(V†) eNTr[U V]Tr

[
(U + V)L

]
.

(4.5)

This procedure replaces all of the free-field Wick contractions with unitary integrals which

we can evaluate very explicitly.

8.4.1 Diagonal Structure Constant

As before it will be easier to work with the moment generating function for the matrix

U + V instead of dealing with each individual trace. We now proceed by diagonalizing

both U and V , after which we are left with an integral of HCIZ-type:

F(t) ≃
ˆ
dŨdµ(u)dµ(v)SR(u

∗)SR(v
∗)eNTr[Ũ†u Ũv] Tr[

(
1− t(u+ ŨvŨ †)

)−1

]. (4.6)
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This integral is quite challenging to evaluate exactly, mainly due to the appearance of

the unitaries U inside of the trace of the resolvent. At large N , the integral over U can

be evaluated the method of steepest descent; the saddle point equations for the matrix

U are solved by permutation matrices which allows us to replace the integral over U by

a sum over permutations times a one loop determinant

ˆ
dŨ → 1

N !

∑
π∈SN

×
∏
j

1

νi
, (4.7)

where ν are the eigenvalues of the Hessian of Tr[U †uUv]; this determinant factor is well

known and it is proportional to ∆(u)∆(v). Now, due to the permutation invariance of

the measure of integration for u, v, this sum over permutations can be performed by

changing variables vi → vπ(i) in each of the terms in the sum, so that in the end we are

left with an integral over eigenvalues all lying inside a unit circle:

F(t) ≃
˛ ∏

i

duidvi
uivi

eNuivi det
(
ūN+Rk−k
j

)
det
(
v̄N+Rk−k
j

) N∑
l=1

1

1− t(ul + vl)
(4.8)

Now the main obstacle is that we have a pair of determinants in the integrand. To solve

this issue we can expand the determinants as sums over permutations, and exploit the

symmetry of the measure under index relabelling to reduce the number of sums. It is

also more convenient to work with the variables xi = uivi and yi = ui/vi;

F(t) ≃ 1

N !

∑
π∈SN

(−1)π
˛ ∏

i

dxi
xi

eNxi
√
x̄i
N+Ri−i√x̄π(i)

N+Ri−i

×
˛ ∏

j

dyj
2yj

√
yj
Rj−j√ȳj

Rπ(j)−π(j)
N∑
i=1

∞∑
L=0

tLx
L/2
i (2 + yi + ȳi)

L/2 .

(4.9)

To perform the integral over yj we set yj = e2iβj , since the coordinate yi winds around

the unit circle twice. In order to get a non-zero value, all of the integrals over yj should
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be non-zero and since the moments only multiply by one particular value of yj for each

term in the sum we can conclude that the integral is only non-zero for π = id. After

evaluating the integral over y we get

F(t) ≃ 1

N !

˛ ∏
i

dxi
xi

eNxi x̄N+Ri−i
i

∑
i

1√
1− 4t2xi

. (4.10)

This final integral is a simple Fourier integral that can be evaluated by expanding in

powers of xi. After normalizing F(t) appropriately we obtain a formula for the generating

function of structure constant CRRL:

F(t) =
∞∑
L=0

tL
1L + (−1)L

2
√
L

×

{(
L

L/2

)
N−L/2

N∑
i=1

Γ(N +Ri − i+ 1)

Γ(N +Ri − i− L/2 + 1)

}
. (4.11)

For large representations Ri ∼ N with large blocks, the ratio of gamma functions can

be replaced by the asymptotic expansion Γ(x)
Γ(x−β) ≃ xβ as x → ∞, and the sum may be

replaced by an integral with x = (N − i) /N and αi = Rk+1−i/N :

F(t) =
∞∑
L=0

tL
1L + (−1)L

2
√
L

×

{(
L

L/2

) k∑
i=1

ˆ µi+1+αi

µi+αi

dx xL/2

}
, (4.12)

here µi are filling fractions that measure the number of rows of size greater than or equal

to Rk+1−i in units of N and we assume that there are k non-zero blocks in the Young

diagram for the representation R. Then the structure constants are:

CRRL/2 =
1L + (−1)L

2
√
L

×
{(

L

L/2

) ˆ ∞

0

dx ρR(x)× xL/2
}

=
1√
L

ˆ
dr r dϕ ρR(r) (z + z̄)L, z = reiϕ/2,

(4.13)

where x = r2 the density ρR is defined as follows.

Given the Young diagram we rotate it by −3π/4 radians. Then the diagram has (k+
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(a) (b)

Figure 8.1—(a) A Maya diagram associated to a large Young diagram. The rightmost
positive slope edge is mapped to the Fermi sea, while negative slope edges represent

large gaps of unfilled states. (b) A sketch of the LLM geometry associated to the Maya
diagram.

1, k) edges of slopes ∓1 of lengths µi and κi for negative and positive slopes respectively.

For example the length of the lth block is Ri = N
∑k+1−i

i κi = Nαi−k−1. We color

the edges with a negative slope black, and edges with positive slopes white and unfold

edges of the diagram into an infinitely long colored strip as in 8.1a. This strip is to be

identified with a radial slice of the LLM plane [152]. The variable r is taken to start at

the right-most colored edge; this is r = 0 in the LLM plane, and the asymptotic region

is taken to be towards the left of the strip. For every black region we have ρR(r) = 1,

and ρR(r) = 0 for every white region. Substituting this into (4.13) will reproduce the

integral expression in (4.12).

This quantity can be matched precisely to the formula found in [112] for the one point

point function of a chiral operator computed using holographic renormalization:

⟨OSk±k⟩LLM =
1√
k

ˆ
dr rdϕ ρ(r) rke±ikϕ. (4.14)
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For our background this quantity vanishes since there is a conserved U(1)R charge in the

background. To match this to the expression above we take the uncharged combination

OSk,+k + OSk−k and integrate over ϕ. This would correspond to the contribution of a

spherical harmonic Y L/2 ∼ (z + z̄ + y − ȳ)L.

8.4.2 Off-Diagonal Structure Constant

To compute off-diagonal structure constants we need to change one of the represen-

tations R to another representation R′ whose Young diagram is close to R. In this case

most of the integrals will vanish, unless R and R′ only differ at a single row Rl−R′
l = kl.

Since R has large blocks, this can only happen when Rl−1 > Rl, meaning after an edge.

The only non-zero integral over the y variables comes from the yl associated to the row

R′
l, so we only get one term:

CRR+kl L = e−∆SRR′N−L/21
L−k + (−1)L−k

2
√
L

L!

(L−k
2
)!(L+k

2
)!

Γ(N +Rl + kl/2− l + 1)

Γ(N +Rl + kl/2− L/2− l + 1)

≃ e−∆SRR′ 1
L−k + (−1)L−k

2
√
L

× L!

(L−k
2
)!(L+k

2
)!
α
L/2
l ,

(4.15)

where ∆SRR′ is the ratio of norms ⟨R|R⟩√
⟨R′|R′⟩⟨R|R⟩

. This should be interpreted as the linear

response to a fluctuation localized at the edge of a particular Fermi surface within the

LLM geometry.

8.4.3 Comparing to the eigenvalue picture: fixing the number

of rows

The method outline in this section allows us to compute expectation values of light

operators in a particularly radially symmetric bubbling geometry. A natural question to

address is how this connects to the eigenvalue coherent state picture. In other words,
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given a particular configuration of droplets, how can we determine which radially sym-

metry modes make up the state. Clearly a single droplet made out of p giant gravitons

can only be made out of Young diagrams with p rows. This is because the overlap
〈
λ̃
∣∣∣λ〉

has a character expansion, and setting N − p of the eigenvalues to zero makes characters

associated to representations with more than p rows vanish. To project to a particular

diagram made out of p rows we repeat the same trick where we integrate the remain-

ing eigenvalues over a unit circle with an appropriate measure. After regrouping the

integration variables we will end up with a pair integrals over U(p):

⟨R′, p|R, p⟩ ∝
ˆ
dµ(s†)dµ(s) det

(
I− s†s

)N−2p
ˆ
dUdV SR(U

†)SR′(V †)eNTr[UsV s†]

∝ δRR′

DimN(R)2

ˆ
dµ(s†)dµ(s) det

(
I− s†s

)N−2p
SR(s

†s)

∝ δRR′

DimN(R)2

ˆ
[0,1]p

p∏
i=1

dxi∆p(x) (1− xi)
N−2p xp+Ri−i

i .

(4.16)

For generic (non-rectangular) diagrams, the integral does not have a simple solution.

For large diagrams we can use the saddle point approximation to find the density of

eigenvalues xi. The procedure to evaluate this class of integrals was outlined in [151] and

also [158, 159, 150]. For a Young diagram with k large blocks with na rows, we split the

variables xi into k groups of size na, xi = (x
(1)
1 , . . . , x

(1)
n1 , x

(2)
1 , . . . , x

(2)
n2 , . . . , x

(k)
1 , . . . , x

(k)
nk ).

Then we use the fact that the integration variables are invariant under permutations to

rewrite ˆ k∏
a=1

na∏
ia=1

dx
(a)
ia

(
x
(a)
ia

)Ra−Na
(
x
(a)
ia

)na−ia

ˆ k∏
a=1

na∏
ia=1

dx
(a)
ia

× 1

na!

∑
π∈Sna

(
x
(a)
ia

)Ra−Na
(
x
(a)
π(ia)

)na−ia

ˆ k∏
a=1

na∏
ia=1

dx
(a)
ia

(
x
(a)
ia

)Ra−Na

∆na(x
(a)),

(4.17)
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where Na is the partial sum
∑

b≤a nb and N1 = 0. Putting it all together, we are left with

a multi-cut matrix model:

Z(R) =

ˆ
[0,1]p

k∏
a=1

na∏
ia

dx
(a)
ia

∆na

(
x(a)
)2 (

1− x
(a)
ia

)N−2p (
x
(a)
ia

)Ra−Na

×
∏
c>b

∏
ib,jc

(
x
(c)
jc

− x
(b)
ib

)
(4.18)

A matrix model quite similar to this one studied in [151] for computing vevs of giant

Wilson loops in Chern-Simons theory on Lens spaces S3/Zp. To make the analogy more

precise we can change variables to xi = e−ui after which the partition function becomes:

Z(R) =

ˆ k∏
a=1

∏
i

du
(a)
i

∏
j<i

(
2 sinh

u
(a)
j − u

(a)
i

2

)2(
2 sinh

u
(a)
i

2

)N−2p

× e−(La+N/2−p)u(a)i

∏
b>a

∏
i,j

(
2 sinh

u
(b)
j − u

(a)
i

2

)
.

La = Ra −
1

2

a−1∑
b=1

nb +
1

2

∑
b>a

nb

(4.19)

The only difference between this and the matrix model studied in [151] is that the Gaus-

sian term is replaced by (1− e−u
(a)
i )N−2p, and u differs by a sign. In this representation

the saddle point analysis is quite straightforward. The equations of motion for the eigen-

values u
(a)
i take the form:

1

N

∑
j ̸=i

coth
u
(a)
j − u

(a)
i

2
+

1

2N

∑
b ̸=a, l

coth
u
(b)
l − u

(a)
i

2
=

(1− 2p/N)

2

(
coth

uai
2

− 1

)
− La/N.

(4.20)

The resolvents for this type of problem can be taken to be of the form ω(a)(z) =

1
N

∑
i coth

z−u(a)i

2
, and the total resolvent is ω(z) =

∑k
b=1 ω

(b)(z). At large N the eigen-
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values condense into k branch cuts and the saddle point equation on the ath cut reads

ω(a)(z + i 0) + ω(a)(z − i 0) +
∑
b ̸=a

ω(b)(z) =
(1− 2p/N)

2

(
coth

u
(a)
i

2
− 1

)
− La/N, (4.21)

or equivalently

ω(z ± i 0) = −ω(a)
∓ (z) +

(1− 2p/N)

2

(
coth

z

2
− 1
)
− La/N. (4.22)

This equation defines a Riemann-Hilbert problem for the total resolvent ω(z). Notice

that for large enough values of z, the potential rapidly approches a constant value of

−La/N , and for small values of z there is exponential barrier pushing the eigenvalues

away from z = 0. This means that the eigenvalues will sit far from z = 0, and will be

uniformly distributed along the cut. To solve (4.22) we need to find a function of the

resolvents that is regular for Re(z) > 0. Following [151] we can define a set of complex

variables

X0 = e−(1−2p/N)(coth z
2
−1)/2eω = W eω

Xa = e−La/Ne−ωa ;

(4.23)

then the equations (4.22) are equivalent to a monodromy condition for the XI as we

around each of the cuts. The solution to this problem is given by a polynomial of degree

(k + 1), f(Y,W ), with roots at the XI and the spectral curve is the zero locus of this

polynomial. The precise eigenvalue distribution is then found by solving f(Y,W ) = 0 for

Y and taking the discontinuity of the resolvent ω ∝ log Y at each cut.

In the thermodynamic limit, the branch cuts become widely separated and the saddle

point equations simply significantly. Substituting in the ansatz u
(b)
j − u

(a)
i ≫ 1 in (4.20)

turn the terms of the form coth
u
(b)
j −u(a)i

2
into a constant. The interaction term between

eigenvalues in the same cut becomes a step function for large u(a) beginning at the first
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eigenvalue on the cut which given an equation for each of the eigenvalues on a given cut:

(1− 2p/N)

2

(
coth

uak
2

− 1

)
=

1

N

(
La − (n(a) − k) +

1

2

∑
b>a

nb

)
⇒

2gs

(
N − 2p

1− xk

)
= gs

[
Ra −

a∑
b=1

nb +
∑
c>a

nc +

(
2k +

∑
b>a

nb +Ra

)
+ 2

]
.

(4.24)

Clearly the eigenvalues λi = 1/(1 − xi) are uniformly distributed along each cut, and

they are quantized in units of 2gs = 1/(N − 2p). So again we see that this is indeed the

correct parameter controlling the fluctuations around the saddle. These equations are

also exactly analogous to the saddle point equations for the single giant graviton case,

1

1− xk
= |λk|2 = r2k (4.25)

and the distribution ρR(r) for rk is the same distribution we found before.

Computing correlators: reduced matrix elements

To compute correlation functions of single trace operators between a set of states

|R, p⟩ , |R′, p⟩ we need to perform a series of elaborate coordinate substitutions to simplify

the matrix integral calculations. First, the states are obtained by a certain projection of

the reduced coherent generating function

|R, p⟩ ∝
ˆ
U(p)

dU1

ˆ
dV1dV

†
1 e

trp[U1V
†
1 ZV1]SR(U

†
1) |0⟩

⟨R′, p| ∝
ˆ
U(p)

dU2

ˆ
dV2dV

†
2 ⟨0| etrp[U2V

†
2 Z̄V

†
2 ]SR′(U †

2).

(4.26)
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If we insert a half BPS single trace operator between these states, the scalar fields Z and

Z̄ inside the trace are traded by complex valued matrices:

Z → V2U2V
†
2

Z̄ → V1U1V
†
1 .

(4.27)

We can then perform a color-flavor transformation to express any trace of a power of

Z + Z̄ (over N color indices) into a trace over 2p× 2p matrices. Then after performing

all of the contractions between the two exponentials we end up with a pair of unitary

integrals over U1,2 and an integral over the p× p ‘radial’ matrix σ = V †
1 V2.

⟨R′, p|Tr
[(
Z + Z̄ + Y − Ȳ

)L] |R, p⟩ =
ˆ
dU1dU2 dσ

†dσ

{
det
(
1− σ†σ

)N−2p
etrp[U1σU2σ†] SR(U

†
1)SR(U

†
2)

× tr2p


 U1

√
U1 σ

√
U2

√
U2 σ

†√U1 U2


L},

(4.28)

and here
√
U1,2 refers to the unitary matrix whose eigenvalues are square roots of the

eigenvalues of U1,2. To solve this integral at large N we will diagonalize U1,2 and perform

a singular value decomposition of σ.

σ = UL sUR

U1 = U †eiα U

U2 = V†eiβ V .

(4.29)

Although this at first glance looks daunting one should realize that the translational

invariance of the Haar measure allows us to reabsorb most of the unitary integrals into

the integration over UL and UR. This reduces the calculation to a pair of integrals
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involving simple complex exponential associated to the eigenvalues of U1,2 which encode

the angular dependence of the correlator, one integral over the radial eigenvalues, and a

pair of difficult unitary integrals over UL,R. First we address the integration over UL and

UR. At large N we can perform a saddle point approximation for this integral; since the

only term that is relevant for this is the exponential we are left with the task of finding

the critical points of the following function:

S(UL, UR) = trp

[
U †
Le

iα UL sUR e
iβU †

R s
†
]
. (4.30)

The critical points of this function are given by the solutions to a pair of matrix equations

[s†U †
Le

iα UL s , UR e
iβU †

R] = [sUR e
iβU †

R s
†, U †

Le
iα UL] = 0. (4.31)

These equations essentially imply that these two pairs of matrices are simultaneously

diagonalizable. For example, the first equation is unitarily equivalent to the condition

that eiβ and U †
Rs

†U †
Le

iα UL sUR are both diagonal in the same basis. The second equation

gives a similar condition for eiα and UL sUR e
iβU †

R s
† U †

L. But since e
iα, eiβ and s are all

diagonal the only way that this can be achieved is if UL,R are permutation matrices. This

is clear because making the ansatz UR = Uπ in the first equation for some permutation

matrix Uπ immediately forces UL to be a permutation matrix and vice versa. This means

that we have one critical point for every pair of permutations π, τ in Sp, which act on

eiα and eiβ by permuting their eigenvalues independently from each other. To get the

correct answer we should also compute the one-loop determinant around each of the

saddles. This boils down to computing the Hessian of (4.30), which is the same for each

each critical point up to a sign associated to the determinant of the permutation. To
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quadratic order S(eM , eN) is

S(m,n) ≃ trp[e
iα s eiβ s†]− 1

2

∑
i,j

{
(eiαi − eiαj)(sis

∗
i e

iβi − sjs
∗
je
iβj)|mij|2

+ (eiβi − eiβj)(sis
∗
i e

iαi − sjs
∗
je
iαj)|nij|2

− (eiαi − eiαj)(eiβi − eiβj)sis
∗
j

(
mijn

∗
ij + nijm

∗
ij

)}
+ . . . ,

(4.32)

so the one-loop factor becomes simply

det (∂ij∂klS(m,n)) = ∆p

(
eiα
)
∆p

(
eiβ
)
∆p

(
s†s
)
∆p

(
ei(α+β)s†s

)
. (4.33)

Each saddle point is weighted by det(τπ), so after a coordinate transformation every

term in the sum will give the same value. As before, the one-loop factor when combined

with the denominators of the determinantal expressions for the Schur polynomials will

cancel the Vandermonde determinants in the integration measure of αi and βi, which

makes the integrals over the angular variables straightforward

⟨R′, p|Tr
[(
Z + Z̄ + Y − Ȳ

)L] |R, p⟩ =
ˆ
dαi
2π

dβi
2π

ˆ
[−1,1]p

dsi

{
∆p(s

†s)

∆p(ei(α+β)s†s)

(
1− |si|2

)N−2p
exp

(
ei(αi+βi)|si|2

)
det
l,k

(
e−i(p+Rl−l)αk

)
det
l,k

(
e−i(p+R

′
l−l)βk

)
×
(
L

L/2

)
trp

[
(s†s)L/2 ei(

α+β
2

)L
]}

.

(4.34)

For light operators and diagonal structure constants we can simply interchange (Z+ Z̄)L

with
(
L
L/2

)
(ZZ̄)L/2, which is simpler to work with. The integration over αi−βi will again

force the pair of sums over permutations coming from the two determinants to collapse

to a single sum, and the integral over αi + βi cancels the factor of (sks
∗
k)
L/2. Finally the
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integral over si factors out completely and the correlator comes only from the integrals

over the angular variables:

⟨R, p|Tr
[(
Z + Z̄ + Y − Ȳ

)L] |R, p⟩
= Z(R)

∑
i

1L + (−1)L

2
×

{(
L

L/2

)
N−L/2

p∑
i=1

Γ(p+Ri − i+ 1)

Γ(p+Ri − i− L/2 + 1)

}
.

(4.35)

This is the same answer as (4.13) except that we are missing one term coming from

the droplet made out of N − p spectator branes. The reason that we miss this term in

this calculation is that the reduced generating functions project out all Young diagrams

with more than p rows, which essentially freezes N − p of the branes that make up the

background. This agrees with our interpretation of the off-diagonal structure constant

as the linear response of a particular Fermi sea level. Since we projected out all the

contributions from Young diagrams with more than p rows, ripples of the first Fermi sea

surface are projected out from this computation.

8.5 Discussion and Future Directions

In this chapter we introduced techniques for dealing with large BPS operators in N =

4 SYM theory and revisited the computation of one-point functions in the background of

states corresponding to the bubbling geometries of [16]. Our method is based on the semi-

classical techniques introduced in [11, 9, 10] and further developed in [144, 13, 24, 143, 98]

and provides an independent derivation of the results of [147]. One advantage of our

methods is that they do not rely on diagonalizing any the field operators of the theory, or

performing any kind of consistent truncation of the model, which makes weak coupling

computation of non-BPS observables possible. We also fleshed out the relation between

coherent states and characters by providing an explicit integral transform between both
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pictures. This gives somewhat complementary methods that can be used to compute

correlators of operators describing somewhat generic LLM backgrounds. Although our

results are expected and perhaps unsurprising, we hope that the techniques developed

here serve as a starting point for performing a systematic large N expansion for large

operators.

One question worth asking is whether we learned anything about the statistics of

(BPS) OPE coefficients in N = 4 SYM. We are hesitant to claim that our results display

any kind of chaotic behavior predicted by the eigenstate thermalization hypothesis [160],

since half-BPS operators in N = 4 SYM are completely captured by a free theory. We

instead attribute the appearance of random matrix statistics to the averaging necessary

to describe large semi-classical states, and to effects due to the large charge limit. In

fact our computations suggest that true structure constants (as opposed to fixed charged

three point functions) only receive contributions from a single term, and that the would

be distribution of eigenvalues in these cases are essentially constant distributions. On

the other hand, correlators involving large operators that break the R-symmetry sponta-

neously but with fixed charge are generically given by complicated averages. In the large

N limit with the charges of the operators scaling with N2 this leads to the appearance of

random matrix behavior in the OPE coefficients. Interestingly similar distributions were

found to emerge from the large charge limit of extremal correlators in rank one SCFTs

[161].

We conclude by commenting on some future directions of work.

Holographic computation of off-diagonal three-point functions

Our methods allow us to make predictions for the value of the off-diagonal structure

constant between two LLM geometries. This quantity is only non-zero when the two
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geometries differ by a small fluctuations. It would be ideal to try develop semi-classical

techniques for computing such things using the gravitational path integral. Since states

are highly degenerate (there is one for each Young diagram!), we expect that there is a set

of commuting charges that differentiates between different states in gravity. These charges

would correspond to some kind of higher spin asymptotic symmetries of LLM solutions.

Then, computing off-diagonal three-point functions would correspond to dressing the

semi-classical saddle by a wavefunction charged with the appropriate asymptotic charge

as suggested by [115]. This would be a very simple toy model of the soft hair proposal

[162] in the sense that one is able to probe very precise details of the interior of the

geometry from simple boundary manipulations. Such a technique would also have to

go far beyond our current methods of holographic renormalization [163]. We take the

fact that the formulas for one-point functions in LLM backgrounds are quite simple as

indicative of the existence of a different method for computing holographic one point

functions in them. Perhaps a careful WKB analysis [164] might be able to reproduce the

result for operators of arbitrary charge without the need for a non-linear Kaluza-Klein

reduction.

Three Heavy Operators

One obvious extension of our calculations would be to consider the structure con-

stants of three really heavy operators half-BPS operators. There are in principle no

conceptual obstructions for performing such computations, since we only have to include

an additional exponential generating function. Technically speaking the saddle point

analysis is more involved and we expect the form of the structure constants to be much

richer. More precisely many of the simplifications that occur for the one-point functions

of single trace operators are basically due to the fact that for small operators the term

201



1
2 -BPS Structure Constants and Random Matrices Chapter 8

in the tensor decomposition only show up with multiplicity one. This is why we are able

to reduce the number of sums in (4.34). For example one can insert a particular Schur

polynomial of Z + Z̄ +Y − Ȳ between two coherent states. In this case we can commute

the coherent states past the Schur polynomial resulting in a matrix model generaliz-

ing (3.9). Obtaining an approximate formula even for extremal three point functions of

very large operators would be a rather non-trivial since would encode information about

the statistics of Littlewood-Richardson coefficients. On the other hand, such correlators

predict the existence of supergravity solutions which interpolate between different LLM

geometries [9]. Since these types of three point functions are protected, we expect that

one should be able to match both results precisely in the large N limit, so obtaining an

approximate form for such correlators might give some intuition about how to construct

such geometries. Perhaps a simpler problem is to consider correlators of two LLM ge-

ometries and a giant graviton, or between three giant gravitons. These quantities give

predictions for giant graviton nucleation amplitudes.

Extremal Correlators

Another immediate generalization would be to study higher point extremal correla-

tors involving various combinations of single trace, giant graviton, and LLM geometries.

These correlators are also protected, so we can hope to be able to perform a holographic

check for these quantities as well. In practice this will likely involve a very careful group

averaging procedure to be able to overcome any possible ambiguities that often arise in

extremal correlators. For instance one can conceivably study correlators in which many

branes nucleate into a bubbling geometry, or where large droplets all fuse into a single

droplet, or a large droplet splits into smaller ones. Such processes are somewhat remi-

niscent of baby universe creation and annihilation processes. Whether such a geometric
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picture can be realized from the bulk point of view is unclear.

Worldsheet and spin chain interpretation of one-point functions

in LLM background

One particularly puzzling issue is to interpret the result of the computation of a

three point function of a non-protected single trace primary and two very large half-BPS

operators. For large operators of dimension of order N the interpretation as a worldsheet

g-function was advocated in [9], and various checks were performed. This makes sense

since operators of dimension of order N can change the boundary conditions of the

string worldsheet in the bulk. For operators of dimension of order N2 this interpretation

is inadequate, since we expect that the correct description is instead in terms of a string

moving in an LLM background, rather than simply an open string ending on a stack of

branes. From the worldsheet point of view one would expect that the worldsheet CFT

flows as the background is deformed. Understanding what this would mean from the

point of view of the spin chain picture would be quite interesting.

1
4,

1
8, and

1
16 BPS operators

A more long term goal would be to understand the systematics of less supersym-

metric BPS operators in the N = 4 SYM theory. In principle introducing additional

scalar matrices in the exponentials gives a way of generating 1
4
and 1

8
BPS [11, 10, 165].

This was carried out for rank two 1
4
BPS operators in [165]. Additionally, the gener-

ating functions introduced in [11] contain all bosonic 1
8
operators. The main difficulty

lies in constructing explicit expressions for restricted Schur polynomials with which one

can project to particular BPS operators of the weakly coupled theory. In other words,

finding the integration rules for the analog of the Schur polynomials in (4.2) with mul-
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tiple matrices would be a big step in this program. This problem is even more stark

for 1
16

BPS operators where one seems needs to need to introduce an infinite number of

matrices corresponding to covariant derivatives of the scalar fields. In analogy to the

construction in [11], one can generate 1
16

BPS states by exponentiating the so-called 1
16

BPS letter introduced in [166]. Understanding precisely what kind of excitations are rel-

evant for studying supersymmetric black holes would be a first step towards a boundary

derivation of the results of [167].

Twisted Holography

A natural setting where our techniques can be readily applied is in the context of the

Twisted Holography program. For instance sphere giant gravitons and non-conformal

vacua have already been studied [19, 168] and their geometric picture is quite clear.

Extending this to include the analog of AdS giant gravitons and more generic Schur

polynomial operators seems like a straightforward task. It would be nice to develop the

more conventional view of giant gravitons wrapping compact cycles on the deformed

conifold SL(2,C) in the B-model by developing a global version of Twisted Holography,

in analogy to global AdS holography. This should be related to studying the chiral

algebra on P1 instead of C. The point of this exercise is that when we insert an operator

associated to a Young diagram R, there is a well-studied recipe for producing a spectral

curve, and hence a bubbling Calabi-Yau manifold [151]. This story is well-understood

for the A-model on the deformed conifold, so it is not implausible that a similar story

exists for the B-model. This might help bridge the conceptual gap about the relation

between the full physical holography and the twisted version.
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Inevitably one will need to include g2N corrections in a systematic way when dealing

with non-protected operators. A good place to start would be consider simpler models

where the techniques developed in [169, 170, 171] can be combined with the large N

expansion. Performing a near BPS expansion seems like a natural starting point since

one expects the coupling constant to be enhanced by additional kinematic effects [5]

making a reliable extrapolation to strong coupling a possibility for certain observables. A

good target would to understand the correlation functions of more complicated ‘baryonic’

operators in the Wilson-Fisher fixed point of the O(N) model [172] in the large N limit;

B ∼ Si1,...,iN ϕ
i1 . . . ϕiN (5.1)

where S is a symmetric tensor. The simplest example of these operators where studied

in [172], although it would be interesting to extend these kinds of results to operators

associated to other representations of O(N). These kind of operators can also be ex-

ponentiated with the help of real gaussian integrals over Grassmannians, so the main

difficulty would be to study the gap equations in the presence of these baryons.
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