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Abstract

Semiclassics, Large Operators, and Holography
by

Adolfo Holguin

The planar expansion of large N gauge theories has been a remarkably fruitful idea,
inspiring many developments in theoretical physics. Perhaps the most important real-
ization of this idea is the duality between critical string theories in anti de-Sitter spaces
and large N conformal field theories, giving a window into otherwise intractable phenom-
ena in quantum field theories. One of the most promising aspects of this duality is the
possibility of studying truly quantum aspects of gravitational systems with conventional
tools from quantum mechanics. A major obstacle to this endeavor lies in the fact that
the most interesting questions about quantum gravity in anti de-Sitter space are related
to issues that are beyond current techniques in conformal field theory. This thesis deals
with various semiclassical aspects of large operators in holographic conformal field theo-
ries, focusing on the study of very large (near-)BPS operators in N' = 4 super Yang-Mills

theory and their corresponding gravitational avatars.
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Chapter 1

Introduction

Over the past 26 years, the AdS/CFT correspondence [I] has enjoyed a vast success in
elucidating aspects of strongly coupled gauge theories and quantum theories of gravity
in anti-de-Sitter space. One of the crowning successes has been the determinantion of
conformal dimensions of non-protected single trace operators in the planar limit of A" = 4
super Yang-Mills [2] thanks to the discovery of integrable structures in the theory [3 4],
which was in part influenced by the study of stringy states in A/ = 4 SYM [5]. This opened
up the possibility of precision tests of the correspondence beyond the supergravity regime.
More recently there has been a renewed interest in the study of black hole microstates
from holographic CF'Ts, fueled by recent computations of supersymmetric indices which
confirm that supersymmetric state counting on the dual CFT agrees with the entropy of
supersymmetric black holes [6, [7, .

This leads naturally to the study of large charge (BPS) operators, from which one can
hope to learn about the structure of supersymmetric black holes. One of the main set-
backs to this program has been the lack of efficient computational tools to address the
combinatorial complexity in the large N limit. Progress in this direction started with the

study of BPS operators in N' =4 SYM [9, 10} [I1] with a collective coordinate approach.

1



Introduction Chapter 1

These results suggest that the large N limit of large charge operators might be tractable
via semi-classical techniques, leading to an alternative expansion to the t” Hooft limit for
baryonic operators [12]. Signs of this expansion have also been observed in state counting
computations [I3] [14], indicating a delicate cancellation of states at finite but large N.

In holographic models, large charge operators are known to describe extended objects on
the bulk AdS space [15], or back-reacted geometries [16]. Their excitations correspond
to open strings stretched between giant graviton branes, or closed strings on non-trivial
backgrounds. These two descriptions (in terms of open and closed strings) are valid
in different regimes of parameter space, depending on the energy of the state, and a

geometric description often appears even in the free limit gyy = 0. [17, 18], 19].

1.1 Effective Strings

One of the first phenomenologically inspired models for the strong nuclear force came

from the observations of dual resonance of scattering amplitudes of hadrons
M(s,t) = M(t, s). (1.1)

Additionally, particles generated at experiments all seem to fall into families of Regge

trajectories:

{~ E? (1.2)

This led Veneziano to propose a functional form for M(s, t)

M(s, 1) = 2L () (1.3)
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with a(s) being a linearly decreasing function. In order to explain this behavior, Nambu
and Susskind noted that such an amplitude could be reproduced not by point-particle
scattering, but the scattering of rotating string-like objects. By now it is well understood
that these qualitative observations are explained by the low energy dynamics of QCD;
the particles generated by high energy scattering experiments are color charge neutral
bound states of strongly interacting quarks and gluons. This is the phenomenon of color
confinement, which remains as one of the least understood features of QCD.

The most powerful conceptual developments towards understanding the low energy dy-
namics of non-abelian gauge theories come from analogy with models of superconduc-
tivity. A characteristic feature of a superconducting medium is its ability to expulse
magnetic field lines from itself. Some materials (type II superconductors) may addition-
ally have intermediate phases of superconductivity in which an external magnetic field
partially penetrates the medium, forming thin flux tubes known at Abrikosov-Nielsen-
Olensen vortices. This phenomenon of magnetic is believed to be qualitatively similar to
the color confinement of Yang-Mills theory.

These observations pose the following puzzle: how do the degrees of freedom of gauge
theories rearrange themselves to describe extended (string-like) objects? This is duality
in which a seemingly fundamental "microscopic’ description of a system can be described
in terms of completely different macroscopic’ ingredients. In the sharpest instances of
duality, the distinction between macroscopic and microscopic variables is often meaning-
less, and neither description is more fundamental than the other. One of the goals of

current theoretical physics is to realize this duality between string-like variables and field

variables in QCD.
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1.1.1 The string action as an EFT: Long strings

Suppose we wanted to the describe an effective theory for a long string like excitation
in some Poincaré invariant UV theory. The most general effective action that describes
such a system can be thought of as a theory of Goldstone bosons for spontaneously broken

Poicaré symmetry [20]
ISO(1,D —1) = SO(1,1) x SO(D —2). (1.4)

Restricting to bosonic string excitations, this is the theory of D — 2 Goldstone bosons

X? corresponding to the unbroken rotational symmetry of a long straight string
X' = R0, (1.5)

while the unbroken SO(1,1) is the Lorentz group on the string worldsheet, acting on

coordinates along the string as usual:
o — Ao’ (1.6)

The remaining broken Poincaré symmetry generators are non-linearly realized and mix
the worldsheet Lorentz symmetry with the global SO(D — 2) symmetry. The EFT is
generically composed of an infinite sum of couplings weighted by theory dependent Wilson
coefficients. The symmetries force all the terms in the effective action to be geometric

invariants of the worldsheet:

1
Seff:/d% hx(ﬁJarL...), (1.7)
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where hg, is the induced metric on the string worldsheet. The first term in the EFT
expansion defines the relevant length scale of the problem /, which controls the effective
tension of the string. Higher curvature terms can be organized as an expansion in the
string tension, with order one coefficients that are theory dependent. In the infrared,
the dynamics of this family of models is universal and is governed by the Nambu-Goto

action.

1
S =3 / o\ fdet (0,X#0,X"n,) (1.8)

This is the theory describing relativistic string moving in D Minkowsky space. One now
well appreciated fact is that this theory is not a well defined QFT unless the strings
propagate in D = 26 dimensions. Surprisingly, the effective description is able to capture

many quantitative aspects of the dynamic of flux tubes in lattice gauge theory simulations

for D # 26.

1.2 Large N QCD and the 't Hooft Limit

One of the first concrete theoretical clues that strongly coupled gauge theories are
described by theories of strings came from 't Hooft’s study of large N QCD [2I]. The
main insight of 't Hooft was to realize that the correct expansion for large N QCD was

not in terms of the gauge coupling gyy but instead in terms two parameters

AIQ%MN 19
X (1.9)
gst

where g, is the parameter controlling corrections associated to non-planar Feynman dia-
grams. In the large N limit, the dominant contributions to amplitudes come from planar

diagrams, and non planar corrections organize themselves in a genus expansion suggestive
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of a string worldsheet description. In the 't Hooft limit

N —
gay — 0 (1.10)

A= gay N fixed,

the expectation was that the dynamics of QCD reduced to a theory of free mesons,
since % is the only true parameter of the theory. In this limit only planar Feynman
diagrams contribute to observables, with \ serving as a vertex counting parameter. In
the weak coupling regime A\ < 1, the theory is described by tiled Riemann surfaces with
no handles. Equivalently, the Feynman diagrams appear to form skeletons for some kind
of string worldsheet theory, with each vertex being associated to a hole on the surface.
The hope was that in the strong coupling regime A > 1, the vertices would condense to
form a continuous Riemann surface. From the point of view of the putative string, the
vertices of the dual Feynman diagrams are associated to insertions of vertex operators,
which one can associate to a non-trivial background for the string. This background

would have some curvature scale L, and the geometric string picture would arise when

the characteristic size of the strings is much smaller that the curvature of the background

M~ il /L < 1. (1.11)

The appeal of this idea is that one would then be able to compute correlation func-
tions involving mesons at strong coupling using a weakly coupled semi-classical string

description.
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1.3 A digression: how to solve every problem that
has been solved.

What makes a model solvable? Perhaps the most well-known exactly solvable model

is the XXX-Heisenberg magnet

Hype = —J Y _ ;- 6}, (1.12)
<ij>

famously solved by Hans Bethe. This model describes a system of L spin % particles on
a chain, interacting through spin-spin couplings with their nearest neighbor. One of the
peculiarities of this model is that the analogous model for spins on a square lattice has
evaded an analytic solution, despite their superficial similarities. This is now understood
to be a consequence of the quantum integrability of the model. A (quantum) integrable
system is usually characterized by having enhanced symmetries that highly constraint
the dynamics of the model. These constraint reduce the spectral problem for the system
into sets of algebraic equations that relate the conserved quantum numbers of the system.
The process of distilling these sets of equations for a particular integrable system is known
colloquially as the Bethe Ansatz. Some generic features of quantum integrable systems

are:

They live in 141 spacetime dimensions

Their S-matrices do not admit production of particles in scattering processes.

Their S-matrices factorize into products of two-excitation S-matrices.

Their S-matrices satisfy some form of the Yang-Baxter equation

S12513523 = 523513512 (1.13)
7
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All these properties are not mutually independent, but are consequences of the integra-
bility of the system. The power of these properties is that they allow for a full solution
of the model, given that one can solve a complicated set of algebraic equations. For
instance for a periodic chain of lenght L, the overall phase shift of an excitation as it
is taken around the chain is related to the factorized scattering matrices associated to

crossing other excitations by the Bethe ansatz equations

e Pt =11 Spip;). (1.14)
J#i

In particular he symmetries of the system allow for all other quantum numbers to be

determined in terms of the momenta p; through a dispersion relation that is determined

from the single excitation spectrum:

E(p1,....pn) :ZE(Z?Z) (1.15)

1.4 Feynman’s Dream

Can we hope to solve QCD? At first glance, the answer to this question is a resounding

no, since
e QCD is a 341 dimensional interacting theory.
e There certainly is particle production in the S-matrix of QCD.
e There is not enough symmetry to factorize the S-matrix into simple products.

e Yang-Baxter equation cannot be made to hold without forcing the theory to be

free.
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Yet we believe that QCD is a well-defined model which should be able to predict the
spectra of for instance hadrons. The intuition of Feynman was to consider deep inelas-
tic scattering processes in QCD. By scattering a suffliciently high energy electron off a
hadron, the hadron can fragment and emit a high energy hadronized quark. The motion
of the quark can then be split into hard (high momentum) directions, and soft transverse
directions. The physics along the high momentum directions is simple since the gauge
coupling becomes small at high energies. Along the remaining two transverse directions
to the quark, maybe the soft physics could become integrable in some regime. These
ideas were then partially realized by work of Balitsky-Fadin-Kuraev-Lipatov. Since pro-
cesses in which hadrons split are further supressed by % in QCD with N colors, the large

N limit became a natural target to look for an integrable toy model for QCD.

1.5 Permissions and Attributions

1. The content of chapters 3 and 4 are the result of a collaboration with David Beren-
stein, and has previously appeared in the Journal of High Energy Physics [22], 23].
It is reproduced here with the permission of the International School of Advanced
Studies: https://jhep.sissa.it/jhep/help/JHEP/CR_OA.pdf. The content of
chapter 5 are partly based on work with David Berenstein. Chapter 6 is the result
of collaboration with Shannon Wang and has appeared in the Journal of High En-
ergy Physics [24] 25]. The results of chapter 7 are the result of collaboration with
Wayne W. Weng and appeared in the Journal of High Energy Physics [26]. The

results of chapter 8 appeared previously in [26].


https://jhep.sissa.it/jhep/help/JHEP/CR_OA.pdf

Chapter 2

Basics of AdS/CFT

2.1 Conformal Field Theory

Quantum field theory is perhaps the most successful tools of modern theoretical
physics, to the extend that it is often referred to as the the Calculus of the 20th and 21st
centuries. This analogy is more than a mnemonic: QFTs are believed to describe in a very
precise way the continuum limit of systems with many interacting degrees of freedom.
A particularly interesting set of quantum field theories are those which in addition to
Poincaré symmetry also enjoy conformal symmetry. Such theories usually arise in the
study of critical systems. Criticality is usually characterized by correlations of arbitrary
range. This is characteristic of the fact that the system does not have a preferred length
scale, so the system develops a scaling symmetry. In many cases this scale invariance
is further enhanced to invariance under conformal transformations, and the system is
said to be described by a conformal field theory. For example, the Euclidean conformal

transformations are the set of transformations which preserve the values of angles between

10
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any pair of vectors in flat Euclidean space:

The generators of the Euclidean conformal group SO(1,d+ 1) are associated to infinitesi-
mal diffeomorphisms which change the metric by an overall factor; equivalently solutions

to the conformal Killing equation.

Leg=0%a)g. (2.2)

Similarly the Lorentzian conformal group is analogously defined as the set of transfo-
mations which change the spacetime metric by an overall positive function. In addition
to usual symmetry generators of the Poincaré group P,, M,,, the Lorentzian conformal
group SO(2,d) contains the generators of dilatations D, and special conformal transfor-
mations K ,:

[D . B, u] =P, 7

ID,K,] = -K, (2.3)

[Kw P = N D — iM,,,,
The dilatation operator D generates scaling transformations x# = \z#, while the gener-
ator of special conformal transformations can be thought of as generating translations
which fix the origin, in the same sense that the momentum operator P, generates trans-

lations which fix the point at infinity.

2.1.1 Euclidean CFT and Radial Quantization

A CFT on the Lorentzian cylinder is usually understood as the analytic continuation
of Euclidean radial quantization of the same theory . In the Euclidean theory one is

11
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interested in computing correlation functions of local operators O(x)

( HO()> (2.4)

Operators are then classified by their transformation under the Euclidean conformal
group. This can be done by looking at the representation theory of a maximally compact
SO(d) subgroup of SO(1,d 4+ 1), and the remaining non-compact SO(1,1) subgroup.
This means that operators can be classified by their quantum numbers A under SO(d),

and their conformal dimension A
[D,0(0)] = AO(0). (2.5)

Since P, and K, satisfy the algebra of a set of raising and lowering operators, acting on
an operator with them has the effect of raising and lowering the conformal dimension and
spin of the operator. By acting successively on an operator with K, we will eventually
obtain an operator with negative conformal dimension. In unitary theories the spectrum
of conformal dimensions is non-negative A > 0, which means that eventually the operator
is annihilated by a sufficiently high power of K,. A primary operator is an operator that

has a fixed conformal dimension (2.5 and is annihilated by K,
[K,, 0(0)] = 0. (2.6)

By performing a conformal transformation on the plane, we can identify the action of

the dilatation operator D as Euclidean time evolution in the radial variable r = e”
ds® = 0yda'da’ = dr® + r?dQ; = € (dr? + dQj) . (2.7)

12
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This means that by diagonalizing the dilation operator, we obtain a Hilbert space at
reach constant radius slice spanned by eigenstates of a Euclidean time evolution operator
generating shifts in 7. States of this Hilbert space live on S¢ corresponding to a constant
Euclidean time slice. Formally we may compute correlation functions by performing a
path integral over the fields of the theory; we do this by folliating the plane by spherical
slices centered around the origin and performing Euclidean time evolution from 7 = —o0
to 7 = oco. In the cylinder coordinates this can be understood as suming over state
preparations at equal time slices and time evolving.

An operator inserted at the origin of the plane is then naturally associated to a state
on the cylinder prepared in the infinite Euclidean past:

|O) = lim O(r,n)|0). (2.8)

T——00
In the path integral language this can be done by performing the path integral over a
ball centered at the origin with fixed boundary conditions

wmlo)= | Dig) e 590(0). 29)

(r=1,n)=¢(n)

Y

Similarly, any state |O) on the cylinder can be used to construct a local operator on
the plane by cutting a small ball around a point x on the plane and performing the
path integral over this ball with the fields taking the appropriate boundary conditions.
Due to conformal symmetry we can shrink the radius of the ball to zero size giving a
local operator insertion at x. This is known as the operator-state correspondence. It
is also important to note that Euclidean correlators are always computed with radial
ordering, since out-of-order correlators involve divergences due to exponential factors

coming from Euclidean time evolution. In practice we are mostly interested in analytically

13
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continuing these quantities to Lorentzian signature, where out-of-time order correlators

are meaningful.

2.1.2 Correlation Functions and Conformal Symmetry

We can now turn to the main object of study for conformal field theories. The simplest

observable to consider is the two-point function of (scalar) primary operators

(O1(21)Oa(22)); (2.10)

Lorentz invariance fixes this to be a function of only |x; — z3|. Acting with the dilation
operator forces us to consider operators with the same scaling dimension A; = Ay = A
in order to get a non-zero answer. By dimensional analysis this leads to a generic for for

the tw-point function of scalar primaries in any conformal field theory:

(O1(21)Oz(x2)) = 0a; Ay X . (2.11)

The number (g1 is often interpreted as a metric tensor in the space of primary operators,
and is called the Zamolodchikov metric. Since the overall scaling by a complex number
of the operator is irrelevant, we may chose linear combinations of operators of the same
dimension to bring the Zamolodchikov metric to a diagonal form. Some conformal field
theories can have a moduli space of exactly marginal deformations, in which case the
Zamoldchikov metric can take different forms at different points in the conformal mani-
fold. A deformation of the theory is formally understood as RG flow after deforming the

action of the theory by an operator O,

58 = A/dd+1x On(z); (2.12)

14
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a deformation is exactly marginal if the S-function of the coupling parameter A vanishes
B(A) = 0. The process of determining the spectrum of a CFT after an infinitesimal
deformation by an exactly marginal operator is known as conformal perturbation theory.
Generically, primary operators of the the theory at a particular value of the coupling A
will mix under RG flow with other operators, and the conformal dimensions of operators
might change. This change in conformal dimension is usually called the anomalous
dimension of the operator, relative to the undeformed theory. The first step in ”solving”
a conformal field theory is to fully determine the set of primary operators, or equivalently
a complete set of orthogonal states of the Hilbert space fof the theory on the cylinder,
and their conformal dimensions. The next simplest observable is a three-point function:
conformal symmetry fully fixes the form of any three point correlator of scalar operators

to be

(O1(21)Oa(22)O3(x3)) = (27 — | ATHAa B, — :Ejff+A3—A2|x2 e v Y

(2.13)
Unlike the normalization of the two point function, the normalization of the three-point
functions contain dynamical information about the theory; the coefficients Cj;;, describe
how two operators fuse into a third operator. The multiplication rule for operators is
known as the operator product (OPE) expansion

Ai+Aijk k(x)

O.n)0sw) ~ 3 (214)
k

The statement of the operator expansion is asymptotic as x is taken close to y, and
encodes the multiplication of the algebra of operators of the theory. it is widely believed

that the spectral data {A,Cjj,} fully determines any correlation function in a given

15
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conformal field theoryE]. For generic (strongly coupled) CFTs, there very few analytical
tools for determining the spectral data of a particular model, which has led to a successful
revival of the conformal bootstrap program. In the recent years, this class of tools
have been succesfully implemented in the study of strongly coupled CFTs, such as the

universality of the 3d Ising model.

2.1.3 Lorentzian CFT

The symmetry group SO(2, d) naturally acts on the Lorentzian cylinder R x S9!,

ds® = —dt* +dS0_,, (2.15)

rather than Minkowski space. The reason for this is clear; global conformal transfor-
mations on the plane are allowed to move points out to infinity, which leads to obvious
violations of causality in correlation functions. For this reason it is more natural to study
real time dynamics of conformal field theory on the cylinder, where we have explicit co-
variance under global conformal transformations, as opposed to the plane R*: where we
only have invariance under infinitesimal conformal transformations. After analytic con-
tinuation from the Euclidean cylinder, the conformal dimensions of operators are mapped
into the spectrum of the Hamiltonian generating time translations on the cylinder. The
spin quantum numbers are then naturally identified with harmonic modes on S? and
hence this analytic continuation leads to a quantum mechanics of infinitely many fields
labeled by angular momentum modes. This is in contrast to ordinary quantum field theo-
ries, where one has uncountably many modes transforming as irreducible representations

of the Poincaré group.

!There are some subtleties with some theories. For example relative CFTs do not have a single well
defined torus partition function, and instead the partition function is a section of a vector bundle. An
example of such an object is the 6d (2,0) theory.
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2.2 Anti-de-Sitter Space

There is yet another object with conformal symmetry; anti-de-Sitter space (AdS).
AdS4.1 is a homogeneous space-time of constant negative curvature. One particular
presentation of this space is as a certain coneﬂ Following [27], we can start with the
quadric

Q: uv —nyatz” =0. (2.16)

with the following scaling identification Q/ (~ R, ), where we identify the all coordinates
by scaling by positive real numbers. For any fixed scale, this space is embedded in R
with metric

dSemy = —dudv + 1, datdz”. (2.17)

For generic values of v we can use the scaling identification to set v = 1 and dv = 0, from
which we see that the space on a chart with v # 0 is simply Minkowski space. This space
however differs from Minkowski space near regions were u = 0 or v = 0; in effect this
construction compactifies Minkowski space by adding points at infinity. The topology
of this space is S' x S971; where S! is a Lorentzian time circle. To avoid closed-time
like curves we should pass to the universal cover of this space R x S%~!. This is the
Lorentzian cylinder which we will later identify with the conformal boundary of AdSy, .
In this construction we have a manifest SO(2,d) invariance of the Lorentzian cylinder.
What we have described is a cone over a positive real line segment R, , where at every
radial slice we have a Lorentzian cylinder which degenerates as in the deep interior of the

geometry. This degeneration can be removed by deforming Q

Qqeforned : U0 — N’’’ = L7 . (2.18)

2This presentation of AdS is closer to how one describe a resolved conifold.
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After going to the covering space, this gives a non-compact space-time manifold whose
boundary at infinity is a Lorentzian cylinder, and whose isometries are manifestly SO(2, d).

One particularly useful parametrization of this space is in terms of global coordinates

2
dr 9

—2 .2 2 2 2
Lyg ds™ = —(r 4+ 1)dt* + m + rodQy 4, (2.19)
in this description it is clear that the conformal boundary of the space is a Lorentzian

cylinder.

L2 ds® ~ 12 (—dt* +dQq_1) + ... for larger (2.20)

2.3 The AdS/CFT Correspondence

The AdS/CFT correspondence asserts that any theory of quantum gravity with
asymptotically AdS boundary conditions is exactly equivalent to a conformal field the-
ory in one lower dimension living on a Lorentzian cylinder which is identified with the
conformal boundary of AdS. As such, the AdS/CFT correspondence is a holographic

duality. The dictionary between observables of both theories is schematically of the form

<€f Jo O> = ZQO[¢3 = J], (2.21)

meaning that sources on the CFT are identified with a particular boundary condition
for the theory on AdS. In practice this only allows us to identify operators identified
with extrapolated values of semi-classical bulk fields; the problem of determining gravi-
tational dual of a particular operator is the goal of bulk reconstruction. The extrapolate
dictionary gives a precise relation between the mass spectrum of states in AdS to the
scaling dimensions of operators on the CFT. For example, if the bulk effective theory

contains a scalar field ¢ of mass m, there will be an operator O which sources ¢. In the
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semiclassical limit, the bulk path integral is dominated by configurations with solve the

classical equations of motion

(V. V" +m) o(t,r,Q) =0 (2.22)

The relation for a scalar field of mass m in AdSy,; is to the conformal dimension § of O

A(A —d) =m?, (2.23)

which follows from the scaling at large r for the non-normalizable modes of ¢; general-
ization to higher form tensor fields are obtained in a similar manner. In order to obtain
a valid semi-classical gravitational description in the bulk we require that there are no
light towers of higher spin fields in the spectrum; by generic EFT considerations this
equivalent to the statement of scale separation between the AdS scale L 45 and some
other scale controlling the masses of higher spin states l;. In the most well studied ex-
amples the scale [, corresponds to the string scale, and the statement of scale separation

is the statement that the typical size of a string is much smaller that the size of AdS.

L as

No higher spin light towers = > 1. (2.24)

S

This scale is also associated with the strength of higher derivative corrections coming
stringy effects. In order for the theory in the bulk to be well approximated by semi-
classical Einstein gravity, we should also require that the AdS scale is much larger that

the Planck scale:

2

. . . . : Laas
Semi-classical Einstein gravity = e > 1. (2.25)
N
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Usually one thinks of the Planck mass as the mass of the smallest black hole, so %;S
roughly quantifies the size of the largest black hole one can fit in an AdS, which makes
this quantity a measure of the number of degrees of freedom of the theory c.

While we still do not have a complete characterization of all conformal field theories
with a holographic dual, insisting on a dual description based on semi-classical Einstein
gravity with small higher derivative corrections restricts us to studying CFTs with a
sparse low-lying spectrum of conformal dimensions, with a gap at A ~ ¢, where c is the
central charge of the theory. These types of theories are also expected to be strongly
coupled. These restriction are quite strong, and very few examples of theories satisfying
said conditions are known to exist; most of these are supersymmetric large N gauge

theories and their dual description always involve strings.

2.3.1 Examples of the duality

The most studied example of the AdS/CFT correspondence is the duality between
maximally supersymmetric Yang-Mills theory in 4d and Type IIB superstrings living in
AdSs5 x S®. The first check of this duality one can perform is to match the symmetries
of both models; N' =4 SYM has a superconformal symmetry PSU(2,2[4) ~ SO(2,4) x
SO(6)r which are realized as isometries of the AdSs x S° background. The AdSs x S°
solution of type IIB supergravity preserves maximal supersymmetry in ten dimensions
and is known to be a solution of the Type IIB string to all orders in [,. This geometry can
be obtained as the near-horizon limit of a ten-dimensional black brane solution arising

from a stack of N D3 branes.

ANRE 14\ /2
ds]?)3 brane — (1 + 7"_) (_dt2 + d(l}ﬁ) + (]— + F) (d’f’Q + T2dQ§) (226)
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In the near horizon region r — 0, this metric reduces to a Poincaré patch of AdS5 x S°

2

Lidr?

L2 r4

(2.27)
=5 (—dt? + ndatda 4 dz*) + L?d$3.

In the D3 brane solution, the parameter L is related to the number of branes N and

brane tension T3 by

N L*
27T2TD3 10 GlO > ’ ( )

where Gy is the ten dimensional Newton’s constant. The tension of a p-brane is related

to the string tension o' and string coupling g, by the relation

1 ptl
Top~ ()7, (2.29)

so the parameter controlling higher derivative corrections in this case is

LY = L' ~ g,N ~ g’N > 1, (2.30)

where g, is the closed string coupling and g, is the coupling of the open strings on the
brane. On the other hand, the low energy effective dynamics on a stack of D3 branes is
the described by the lowest lying modes of the open strings ending on the branes. This
theory is an N/ =4 U(N) gauge theory with gauge coupling gs ~ gy . This allows us to
identify that U(N) N =4 SYM is dual to Type IIB strings on AdSs x S® with N units
of RR five-form flux on S°, with the ’t Hooft coupling A = g¥,,N being identified with
the string tension in AdS units, and with closed string coupling gs ~ % In particular

this example of AdS/CFT provides us with a concrete realization of 't Hoofts idea that
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large N gauge theories are described by theories of strings. Over the last two decades
there have been many remarkable precision checks of this duality which we will describe
in later sections. By extrapolating the duality to finite values of N and X one can hope to

give a non-perturbative definition of Type IIB string theory on a non-trivial background.

2.3.2 N =4 Super Yang-Mills Theory

One of the first pieces of evidences for the duality is the fact that the AdSs x S°
background of type IIB has 32 superchanges, which is consistent with the content of
an N = 4 superconformal algebra. The isometries of the background assemble into a
PSU(2,2|4) supergroup, which is precisely the superconformal algebra with maximal
supersymmetry in four dimension. The maximal bosonic subgroup of PSU(2,2[4) is
SO(2,4) x SO(6)r. One of the theories that realizes this symmetry is the maximally

supersymmetric Yang-Mills theory in four dimensions;

2 1 1 1 1
Sn=4 = — / d*z Tr { — ~F, F" — =D,¢:D"¢" — Z¢1 &' + = (b1, ¢4][¢1, 7]
9y m JRxS3 4 2 2 4

— %X T*D A — %X M [¢r, A]] :

(2.31)
The matter content of the theory is a vector gauge field A, six real scalars ¢; trans-
forming in the 6 representation of SO(6)z, and four Weyl fermions A\* in the spin rep-
resentation of SO(6) ~ SU(4)g, which we write as the dimensional reduction of a ten
dimensional Majorana-Weyl spinor. The matrices ' are ten dimensional gamma ma-
trices All fields are in the adjoint representation of the gauge group G, which we usually
take to be U(N) or SU(N). In addition to the generators of conformal transformations,

and global SO(6)r rotations, there are a set of 16 spacetime supersymmetries ) and 16
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superconformal generators S satisfying the algebra

{Q(olm Qb,ﬂ} = 262Pa,3
{52,58"%) = 28K ; (2.32)

(@2 5ua) =4 (15 + 223 - 302D

In particular, () and S act as raising and lowering operators for multiplets of the super-
conformal algebra. A particularly simple set of multiplets are short multiplets, which are
annihilated by some linear combination of supercharges. This is along with the unitarity
condition

{Q, 5} =0, (2.33)

implies the saturation of a BPS bound:

A= i+ Qs (2.34)
i J

where the explicit form of the bound depends on how many supercharges annihhilate the
short multiplet. The simplest family of short multiplets are the so-called %—BPS states
which satisfy

A = |Jgl, (2.35)

where Jg is the R-charge associated to one of the Cartan generators of SO(6)g. BPS
multiplets of PSU(2,2|4) have conformal dimensions that are protected by supersym-
metry. Finding explicit representations of these multiplets in terms of the free NV = 4
SYM fields is generically difficult due to operator mixing, although it is expected that
the spectrum of BPS operators of N' = 4 SYM is not renormalized beyond one loop.

For example %—BPS primary operators of the theory correspond to scalars transforming
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in symmetric traceless tensor representations of SO(6)g. It is customary to represent
these in terms of complex scalar fields associated to a particular choice of maximal torus

U(1)> € SO(6)p, for instance

X =¢1+ 192
Y = 65 + ity (2.36)
Z = ¢5 + igs.

So a generic %—BPS operator can be put in the form

o, =[] [2"]; (2.37)
-

3

due to non-renormalization theorems correlation functions of these kind of operators
can be performed exactly at the free theory point which allows us to find their precise
form after diagonalizing the two point function. It is expected that a similar analysis
is possible for other short multiplets of the theory, although there is little evidence of
non-renomalization of two point functions of more generic short multiplets. Finding ex-
act expressions for representations of generic (long) multiplets remains beyond current
techniques beyond low-loop orders where the mixing problem can be tackled explicitly.
Despite this there has been an impressive progress in determining the spectrum of anoma-

lous dimensions of non-protected operators in the planar limit.

2.3.3 AdS/CFT Integrability: realizing Feynman’s dream

One of the first clues towards the solvability of large N N = 4 SYM theory came
from the analysis of Berenstein, Maldacena, and Nastase (BMN) [5]. Their insight was

to consider not generic operators in long multiplets, but rather operators that are close
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to %—BPS operators
Oww ~ .. . ZINZZYQLLZZLF,, ZZ7 . ... (2.38)

These operators have large dimension A and large R charge J

N>A~J>1
(2.39)

A~ J~O(1).

The biggest insight of their analysis is that the correct expansion parameter in this limit

A

is not the 't Hooft coupling A, but rather %5,

which allowed them to interpolate into the
strong coupling regime at the cost of studying large charge operators. In this picture,
the operators describing low lying string excitations on AdSs x S® are made out of long
chains of Z’s making up a ferromagnetic vacua with small numbers of defects inserted
along the chain. This was made precise by the work of Minahan and Zarembo, who

solved the one-loop mixing problem in the planar limit by mapping into an integrable

SO(6) spin chain
A
SO(6 SO(6
Donegl)oop = HXX(X) = W Z (Ki,i-‘rl +2— 2R,i+1> : (240)

Combined with the discovery of the classical integrability of the superstring sigma model
on AdSs x S® this led to a series of sophisticated works giving predictions for the finite

coupling spectrum of single trace operators of planar N’ = 4 SYM.
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2.4 Moving beyond integrability: Semiclassics and
Large Charge Operators

Despite the great progress towards a solution of N'= 4 SYM, many important issues
remained to be fully explored. Indubitably one of the properties that makes large N
N = 4 SYM an interesting model, is not only that it is a interacting theory of gauge
fields that can be tackled analytically in certain regimes, but that it promises to be
fully-fledge theory of quantum gravity. Unfortunately many of the truly gravitational
questions one can ask the theory are out of reach from most of our current tools, such as
bootstrap, or the planar expansion. One of the main issues one faces is the breakdown
of the planar 't Hooft limit for complex enough correlation functions. This occurs when
the number of non-planar diagrams becomes comparable to N. This suggests that in-
tegrability is generically broken, since string splitting processes contribute meaningfully.
One particularly important issue is to understand the spectrum of large operators (i.e.
A ~ N%) in holographic CFTS. These class of operators describe heavy probes and fully
backreacted geometries, such as black holes. By now it is well established that the de-
generacy of supersymmetric states in many holographic SCFTS accounts for the entropy
of supersymmetric black holes in AdS spaces, but the question of what these microstates
look like remains largely unexplored, mainly due to the sheer combinatorial complexity
associated with finding BPS states in large N SCF'Ts. Recent progress along these lines
has been fueled by revival of the idea that large charge states should have a simpler
semiclassical description in the large N limit. These ideas have been implemented suc-
cessfully in the study of large BPS operators, and have yielded very efficient techniques
for computing the large N limit of complicated correlation functions. One of the goals of
such a program is to develop techniques to deal with non-protected operators in a similar

manner as BMN, with the study of near-BPS operators being a natural target.
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Semi-Classical Open Strings and

Branes

One of the simplest large operators in N' =4 SYM is the determinant operator

1
det (Z) = ﬁefr--ffvejl,,JNZ{; LIV, (3.1)

Just like single trace operators are the analogs of mesons in N' = 4 SYM, determinant op-
erators (and their generalizations) are baryon-like objects. However unlike QC'D, where
the description of baryons a a simple bound-state of quarks is only valid at weak-coupling,
supersymmetry protects these kinds operators from mixing, making them genuine opera-
tors at all values of the coupling. Holographically, these operators describe a special kind
of compact D-brane known as a maximal giant graviton. This operator is half-BPS with
dimension A = Jg = N. The insertion of mutually %—BPS giant gravitons breaks the
symmetry of the theory to a psu(2|2) x psu(2]|2) x R subalgebra. In practice there are

non-primary operators which are invariant under a larger symmetry algebra, for instance
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the generating function

det (Z — 2) . (3.2)

This operator is invariant under a centrally-extended supersymmetry algebra, psu(2]2) x
psu(2]|2) x R3, where the complex parameter z acts as a central charge. The symmetry

breaking pattern is analogous to the long string EFT :

SO(2,4) x SO(6)r — (SO(4); x SO(4)g) x (R x C), (3.3)

For a sphere giant graviton the first SO(4) factor should be interpreted as the symme-
tries along the directions transverse to the brane, the second SO(4)g are the isometries
of the brane, and the semidirect product with R describe the helical motion of the brane.
Finally the additional C describes the position of the longitudinal position of the brane.
The remaining symmetry generators are non linearly realized, as with the long string.
From an EFT point of view, this constraints the effective metric seen by the branes to
be of the form

ds? = —hy(dt + V)2 + hydQ2 + hsdQ3 + hydzdz, (3.4)

and supersymmetry further constraint the forms of h; as to make the background a
slice of a half-BPS solution of type IIB supergravity. Then the most general effective
action for this sector of the theory should contain in addition to a supergravity action,
Dirac-Born-Infeld type terms describing the branes and Nambu-Goto terms describing
string between different branes. This centrally extended algebra fixes the kinematics of
excitations around large %—BPS states in the large charge limit. For single excitations,

the scaling dimensions takes the famous form

A—Jr=V@Q+ fN|Z] (3.5)
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For N' = 4 SYM the function f is expected to be f()\) = ﬁ, and Z is the central
charge carried by the state, and @ is the eigenvalue of one of the Cantan generators of
the residual symmetry. This dispersion relation has been interpreted as arising from a

relativistic mass formula for a W-boson, whose rest mass is given by the difference of

vacuum expectation values of the scalar field 7
m?j x |2 = |z — 2% (3.6)

In practice, this dispersion relation allows us to determine the conformal dimension of the
lowest lying primary states above a half-BPS state, to leading order in the large charge
regime. In principle this result can be understood in terms of a simple semi-classical
argument: for large enough operators the state is well approximated by a non-trivial
solution to the equations of motion of N'= 4 SYM, which is precisely a Coulomb branch
configuration for the scalar field Z. This analysis is unsatisfactory however, since it only
allows us to estimate the energy/conformal dimension of a special family of states, but
understanding further excitations around these states is a complicated task.

This naturally motivates the study of open string solutions on AdSsx S%, which we should
think as an effective description of near-BPS operators with large quantum numbers.
Since this leads to a well defined semiclassical problem, one can then hope to extract
information about the spectrum of heavy excited states.

In addition to the determinant operators describing sphere giant gravitons, there exists

an additional family of operators describing the so-called AdS giant gravitons;

St gz (3.7)
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where S is rank (k, k) fully symmetric tensor of U(IN). These class of operators are

naturally packaged together into a generating function

%dsm. (3.8)

This operator generates all fully symmetric tensors, and it creates a coherent state con-

figuration where Z has a single non-zero eigenvalue z

zSs zSs

7 has— J;A S -
Iygdsdet(Z—z) 20 dsdet(Z—z) (3:9)

3.1 Review of Giant Magnon Solutions

Let us recall the scaling limit of the giant magnons of Hoffman and Maldacena [2§].

We are interested in the following scaling limit:

J, A — o0
A—J=e<

Where J is one of the SO(6) R-charges, p is the momentum of the excitation, and A = g? N
is the t” Hooft coupling. In order for the semi-classical string description to be valid we
should also consider the t” Hooft coupling A to be large. Then we seek for the solution
with the least energy e for a fixed momentum p. The simplest of such configuration is
given by a string that sits at the origin of AdS; while its endpoints rotate along the

equator of S°. The motion takes place on R x S?

ds® = —dt* + cos® df* + dyp*. (3.11)
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Note that the spatial metric is for a sphere of radius one with two coordinate singularities
at ©» = —7m/2 and /2, where we have used a cosine of the angle, rather the sine of the
angle. We have chosen a slightly different convention for the the metric of the sphere in
order to make the analytic continuation into AdSs clear. We can choose a parametrization

for a rigidly rotating worldsheet coordinates for the Nambu-Goto string given by

T=1
o=t (3.12)
=0

The condition § = 1 arises from the fact that the string becomes asymptotically a fer-
romagnet for the SU(2) chain. In the presence of giant gravitons, this is the correct
coordinate velocity for the motion of the giant gravitons themselves.

Upon substitution of the rigid ansatz, we get the action

A
S = \2/—— deO’\/SiIlQ Yp’? + cos? . (3.13)
T
Using the coordinate transformation r = cost, minimizing the action (3.13)) takes the
form of a simple geodesic problem with an effective metric ds? = dr? +r2df?. This is not
the original metric of AdSs x S°, but it is a flat auxiliary geometry. By virtue of r < 1,
this is a flat metric on a disk. The conserved charges are given by

VA 2 4 cos? 1)
A=— | do
27 \/w’2 sin? ) 4 cos2 ¢

\/X wl? cos? w
J=—14d
2m / ’ V2 sin? 1) + cos?

(3.14)
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It is convenient to write them also in terms of the r variables:

VA

(r')?(1 —r?)~t +r?

A=—"1[d
w | e -
J = Q do (r')?r?(1 —r*)~" (315)
o N

These develop a singularity whenever » — 1 in the solution. Notice that by contrast
A
e:A—ng/dU\/rﬂ—i—r? (3.16)
i

is non-singular and stays finite. More to the point, for these simple strings, extremizing
€ is the same as minimizing the geodesic problem we found above.
Note that |r| < 1 in order for the solutions to make sense, as r = cos and the angle
1 is a real coordinate of the sigma model. Near r = 1 both of these expressions scale with
(1 — r?)~1. Substituting the explicit solution r = asec o, the expression for ¢"* diverges
whenever aseco = 1:
a®sec? o tan® o

Y? = (3.17)

1 —a?secto

so the density of the conserved charges becomes infinite near such points. This is how one
can have a smooth ending on an infinite spin chain that has not been closed. However
the effective energy of the configuration, A — J remains finite and it is the same as the
on-shell action, which is clearly the length of a straight line segment connecting the two
points on the edge of the auxiliary disk geometry:

VA . Af
—J = —’ sin —

s 2

A (3.18)

The angle between the two end-points is identified with the momentum of the defect p,

as originally noticed in [29] by a matrix model ansatz. For closed string solutions we
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can sew together various of these straight line solutions on the disk such that in the end
A6 = 0, forming a closed polygon. This is equivalent to the level matching condition of

a closed string piorar = 0.

The case of open strings stretched between giant gravitons is entirely analogous except
that one must impose that the endpoints of the string lie inside disk. The end points
must be attached to the location of the giant gravitons. As the S® on which the branes
are wrapped shrinks to zero size at r = 1, these do not exit the disk. The analysis has
been carried out in [30)].

As a result of the end-points not reaching r = 1, both of the charges A, J remain
finite. The disk coordinates ds?* = dr? + r?di? can then be seen to be the coordinates
for the LLM plane of AdSs x S® [16]. This description of the physics in terms of a disk

also appears directly from the field theory dual [31].

3.2 Open Giant Magnons in AdS

3.2.1 AdS, x S?

Now we proceed to study the analogous solutions for the case of open strings stretching
between two D3 branes that wrap an S inside AdSs while rotating at angular velocity
w = 1 along an S* C S5 As in the previous section we may consider the Nambu-Goto

action for a string on an AdS, x S! geometry. The metric is given by
ds* = — cosh? pdt? + dp? + do>. (3.19)

We will be interested in solutions of the equations of motion where the string rigidly

rotates with the dual giant gravitons. As such, ¢ will evolve in time in the same way
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that the coordinates of the dual giants do. These rotate at constant velocity in ¢, have
a fixed value of ¢ at each time and are located at fixed values of p [32, 33]. That is,
é = 1. These are a different type of solution to the rigidly rotating GKP string [34], as
they have motion in one extra dimension.

We choose to parametrize the worldsheet coordinates by t = 7, ¢ = 7 4+ ¢ and we

will be looking for solutions where p(o) is independent of 7. The induced metric on the

string worldsheet for these solutions is given by

—cosh?p+1 1

1 1+ (o).

This way we find that

VA VA

. drdoy/—g = ——— deO’\/SiIth(p) (p')% 4 cosh?(p) (3.21)

5= 2

which can be seen to be an analytic continuation of the sigma model action of the solutions
of the giant magnons of Hoffman and Maldacena, 1) — ip. The problem again simplifies

by introducing the change of variables r = cosh(p), so that

S T/dO'\/’r"2 + 72 (3.22)

The expression [ dov/r? 4+ 12 can be easily seen to be the length of a curve on a flat
geometry in polar coordinates ds? = dr? + r?do?, in a parametrization 7(c). This is

minimized by a straight line, where

r= P P (3.23)
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where a is the distance of closest approach to the origin and o is the angle in the plane
of closest approach. The energy computed this way is also proportional to the length of
the straight line in this auxiliary geometry from the starting point to the end point.

It is important to note that although superficially similar to the solutions of ,
for the change of variables to make sense in this case we must also impose that |r| > 1
everywhere on the worldhseet, the reason being the S® C AdS® shrinks to zero size at
r = 1. In particular solutions to which cross the unit circle are not physical, as
they would require the radial coordinate of AdS to become complex. Even though there
are in principle solutions of minimal length when one removes the inside of the disk, these
are not stable in that they should receive quantum corrections since they are no longer
BPS.

The coordinates of this auxiliary plane geometry span the region outside the disk in
the LLM plane, rather than the inside. Solutions with » = 1 somewhere have a similar
behavior to the Hofmann Maldacena solution, in that the density of the charges A, J
becomes infinite at r = 1, yet the energy A — J remains finite.

The introduction of the charge is straightforward. We will do that analysis in the
discussion of the following section. We mostly follow the discussion in [35], which starts

from the Nambu-Goto string, to make the analysis.

3.2.2 Rotating String in AdS; x S!

Now we consider the sigma model of a rotating string on AdSs x S! which corresponds

to a two-spin magnon solution. The metric is a simple generalization of ([3.19))

ds? = — COSh2 pdt2 —+ dp2 + Sinh2 pd@z + d¢2 (3'24)
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Here again it is convenient to use the coordinate r = cosh p in the Nambu-Goto string

action. As noticed in the appendix, the coordinate r = cosh(p) is the radius of the LLM

plane coordinate.
The metric ([3.24]) can be analytically continued via p — ip into R x S® where the S*

is expressed in Hopf coordinates. We make an ansatz for the embedding coordinates of

the form :

t = wT

r=rio) (3.25)
0 = pr+ g(o)

¢ = wyT + ¢(0)

Where we are interested in wy = wy = 1.

The action for the rigid string in these coordinates is given by:

VA

5 drdan/1" + ¢ +28g'¢'(r? — 1) + g?(r2 = 1)2 = B2(r"2 + (12 — 1)),
m

(3.26)

S =

where we have set the angular frequencies to one for simplicity. The conserved quantities

can be easily evaluated via the formulas:

oL
A=— /dUa—u)t o1
oL
= [ do== .
Jl / an¢ w1 (3 27)
oL
JQ == dO'a—B
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As we will see, one can eliminate the angular variable g by using its equation of motion:

= 03020

(r2 —1)(8¢ + (r2 — 1)g') )

0o
<\/T’2 + 90,2 + 259/90/(73 _ 1) + g’2(7"2 _ 1)2 _ 52(742 + (p’Q(TQ _ 1))
(3.28)

We have chosen to write it in terms of an expression that is implied by current conser-
vation, which forces J° to be constant. At first solving for g might seem daunting as
(3.28) reduces to a complicated equation depending on an integrating constant, which
is the value of J?. A great simplification is possible since in the end we are interested
in describing strings ending on a pair of giant gravitons, so one must be careful about
imposing the correct boundary conditions at the string end points.

The boundary term that arises from taking the variation of the action (3.8) is of the
form:

of

Spay o / dr (50 37) (3.29)

o
Where J° = % is precisely the quantity inside the parentheses of (3.10). The other
boundary terms are set to vanish by imposing the appropriate Dirichlet boundary con-
ditions 0r = d¢p = 0 and by the choice of static gauge 0,t = 0. Because the D-brane we
are considering is extended in the @ direction, the correct boundary conditions for 6 are
Neumann boundary conditions. That means that 6 is free to vary.

We must then conclude that J° vanishes at the end-points of the string in order for
the variational principle to be well-defined. In addition to this, equation implies

that this quantity vanishes everywhere along the string. This allows us to solve implicitly

for the function g in terms of the other coordinates:

(3.30)

Solutions of this type have been previously considered for infinite strings in the S% x R
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sigma model (see [35, [36]), but their physical interpretation was not made clear. Here
the meaning of the condition is clear: the giant magnon does not transport angular
momentum in the 0 direction from one D-brane to the other. The giant magnon carries
that angular momentum, but it does not transfer it to the D-branes. Eliminating the
variable ¢ in this case does not affect the variational principle for r, so one may substitute
that condition directly in order to express the conserved quantities in terms of the on-shell

action multiplied by some kinematic factors:

VA Z
VA B Z
Jl:ﬁ\/l——ﬁ (3.31)

wf dr
2= ["ap\ e (p
Pi dgp

To do the variation, we want to minimize the energy, ¢ = A — J at fixed 3, with the
endpoints on the dual giant gravitons. This is a straightforward minimization of Z that
results in a straight line. Clearly the variable Z corresponds (up to a factor) to the length
of the string on an auxiliary flat 2D geometry with a disk removed, and as such should
be identified with the central charge of the SL(2) sector of the spin chain. The complex
coordinate £ = 7 exp(iy) can be used to express the answer in terms similar to those of
(4.1)). Here we see that |&; —&;] is the length of the segment in the LLM plane connecting
the two giant gravitons.

Eliminating £ in terms of J, and | Z| yields the dispersion relation

A
A—Jy=1\]J53+-—|Z]? (3.32)
472

Which is precisely of the form expected from equation (4.1). Although the boundary
conditions considered here lead to solvable equations of motion for the ground state
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of the sigma model, it is not expected that these solutions (and their many magnon
counterparts) can be fully described by an integrable spin chain. The boundary effects
sourced by the branes are expected to destroy that property. This has been argued, at
least from the notion of a simple Bethe Ansatz point of view, for the open spin chains
attached to regular giant gravitons in [37]. It would be very interesting if a class of
solutions of the sigma model of this type do lead to integrable boundary conditions for
the dual spin chain description.

It is also instructive to give explicit expressions for the conserved quantities A, .J;.
Since we are considering open strings of finite size, one would expect that these quantities
are finite. However, for similar reasoning to that of the previous section, one must be
careful that the radial coordinate doesn’t touch the unit circle given by r = 1. We can

see this from the expressions:

) P 5P+ B =14
o
/ -1,/ =802+ ()?)
\/_ j— 2+ 52— 1+1r?
o
/ =~y = B0+ ()

(3.33)

It’s clear that these quantities diverge whenever r = 1 (that is, if the string touches the
origin of AdS), even though the length of the string on the auxiliary plane geometry
is finite as in the Hoffman-Maldacena string. Solutions like these, where a physical
worldsheet quantity is becoming divergent should become unphysical and lead to non-
normalizable states, in a way similar to the discussion in [38]. More concretely, these
lead to operators that would inject an infinite amount of energy into the bulk and where

the radial coordinate becomes complex.
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3.3 Discussion

In this chapter we have provided evidence for the all-loop dispersion relation for
the excitations of the SL(2) sector of the N' =4 SYM spin chain with open boundary
conditions. The calculation is done in the sigma model and it gives rise to a series
expansion in the t"Hooft coupling A\. We find a nice description of the solutions in terms
of an analytic continuation of the SU(2) sigma model and the solution has a form that
suggests that these states arise from a BPS condition on the string worldsheet, as would
be expected from shortening conditions of the central extension of the N’ =4 SYM spin
chain [39]. It would be nice to understand this better from the planar SL(2) sector of
the N'= 4 SYM theory in more detail. This spin chain should precisely realize the open
string sigma model in a continuum limit. It would also be of interest to consider more
general solutions to the string sigma model corresponding to scattering and bound states
of giant magnons. After all, the open strings suspended between ordinary giant gravitons
have a relation to the Bethe ansatz of the SU(2) spin chain, as noted in [30].

The description in the SL(2) sector is expected to be somewhat qualitatively different
than the SU(2) magnons due to the nontrivial boundary condition imposed by |r| > 1.
This is already clear from the sigma model description, as constructing solutions from
inverse scattering methods for the SL(2) model seems to require different Bethe roots
than the SU(2) sigma model, even though their solutions should be related by an analytic
continuation of the solutions in the SU(2) sector [40]. It is unclear what the precise
structure of bound and scattering states is without further study of the field theory side.

We also found that the LLM coordinates arise naturally from studies of the string
sigma model in the SL(2) sector. This might allow us to understand better how certain
aspects of locality in the radial direction of AdS arise from the dual field theory directly.

One should also expect that given these solutions, that one could also compute the
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spectrum of quadratic fluctuations around these solutions and could in principle compare
to the N/ = 4 SYM spin chain. Similar simplifications as the ones found here should also
be possible on backgrounds of the form AdSsx X5 where X5 is a Sasaki-Einstein manifold,
as they share the AdS part of the sigma model, an the Sasaki-Einstein geometries have
a U(1) fibration that should allow solutions of a similar kind. It is also interesting to
study the case of AdS,; x CP? with fluxes, related to the ABJM model [41]. The latter
should be quite interesting, as the exact characteristic of the allowed brane configurations
depend greatly on the details of the field theory set-up.

The work of D.B. is supported in part by the Department of Energy under grant
DE-SC 0011702.
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Chapter 4

Open Strings on LLM Geometries

4.1 Introduction

The AdS/CFT correspondence has established an equivalence between some theories
of quantum gravity in asymptotically AdS spacetimes and certain gauge theories. The
most celebrated example is the equivalence between IIB string theory on AdSs x S° and
N =4 SYM theory [1].

The free strings propagating on the AdSsx.S® background are believed to be integrable
for all values of the t’Hooft coupling. A review of the main results in this direction can
be found in [2]. On the field theory side, the integrability takes the form of a spin chain
Hamiltonian [3, 42]. The spin chain acts on the list of gauge invariant local operators,
the states being generated by traces of words of local fields of ' = 4 SYM and their
derivatives. The main computation of the energy on the spin chain side corresponds to
the anomalous dimension of the operators.

Integrability, combined with supersymmetry is very powerful. A particularly impor-
tant result that combines the two is the dispersion relation for magnons on the gauge

theory spin chain [39]. Tt follows from a central extension in the symmetry algebra of the
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spin chain and from the fact that magnons are in short representations of the centrally
extended symmetry algebra. This shortness condition fixes the kinematics.

When the magnons carry a lot of momentum on the spin chain, they become geo-
metrically large string solutions in the AdS dual. These are called giant magnons [28].
These also carry central charge on the spin chain. The total central charge of a closed
string state vanishes because of the level-matching constraint. In the spin chain side this
arises from the cyclic property of the trace [5].

The central charge on the gauge theory spin chain can also be sourced by open
boundary conditions. These can be realized by supersymmetric D-branes in the AdS
side, with open strings attached to them. These D-brane states provide a very tractable
connection between the gauge theory dynamics and the AdS geometry. This connection
to the central charge extension on the spin chain and gravity dual side has been analyzed
in the works [43] 44}, (30}, B8, 45| 46, 22]. Particularly, it has been suggested in [38] that the
central charge extension on the spin chain side is very closely related to the central charge
extension of the Coulomb branch of N' =4 SYM. Our recent work [22] showed how this
works on the sigma model side for open string states suspended between D-brane states
made of AdS giant gravitons. A complete picture in the analysis of the spin chain side
is still missing.

As a reminder, giant gravitons are D-brane states that preserve half the supersym-
metry of the A/ =4 SYM theory. They can grow into the sphere [47], or into the AdS
directions [33] 32]. The ones that grow in the AdS directions are related to (classical)
spontaneous symmetry breaking from U(N) — U(N — 1) x U(1) via the Higgs mecha-
nism, which generates expectation values for the scalars [32] (see also [31]). All of these
D-brane states can be understood in terms of the classification of half-BPS states in
N =4 SYM in terms of Young tableaux [48]. Sphere giant gravitons are represented by

long single columns [49], while AdS giant gravitons are long single rows.
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Very importantly, the AdS giant gravitons explore the radial direction of the AdSs5 ge-
ometry. This has always been the most mysterious emergent dimension in the AdS/CFT
correspondence. It has been related to a UV-IR relation [50], where the position in AdS
is related to the UV scale of physics on the boundary. The radial direction has also
been related to the Renormalization group flow [51] and via the AdS D-branes, it is also
related to the Higgs mechanism.

The radial direction on the spin chain side is much less well understood. Some states
that explore the radial direction appear when rotating strings in AdS are studied [34], see
also [52, 53]. They are characterized by logarithmic contributions in the spin quantum
number to their anomalous dimension. An argument for their logarithmic scaling of
anomalous dimension is given in [54]. The open strings strecthing between AdS giants
that have been studied previously by us [22] do not have such logarithmic contributions
to their anomalous dimension. Instead, their anomalous dimensions are governed by

supersymmetry, and in particular, by the amount of central charge they carry. Their

A
A T= e X zp (1)
472

where (@ is the angular momentum on S® C AdSs and Z is the central charge of the open

dispersion relation is

string, in geometric units. At very large angular momentum on the sphere (QQ — o0),
for the giant magnons suspended between D-branes, their anomalous dimension can be
arbitrarily close to zero, even at strong coupling. This follows because the square root
can be expanded in powers of Z/@Q). This is a power series in the t'Hooft coupling A, and
therefore one can in principle match coefficients order by order in perturbation theory
on the CF'T side.

Other sets of works suggest that the giant magnon dispersion relation also plays a

role in more general geometries. In particular, it has been argued that the central charge
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extension controls magnon dispersion relations in concentric LLM geometries [55, [56].
The LLM geometries are solutions of type IIB supergravity on AdSs x S° that preserve
exactly half of the supersymmetries [16]. They can be thought of as condensates of sphere
giant gravitons and/or AdS giant gravitons. These geometries depend on a two coloring
of a degeneration plane (the LLM plane). If the coloring is made of concentric circles, the
background geometry has a well defined additional circular R symmetry J. This is the
same J as the one appearing in . For general LLM background, only A — J is well
defined. The backgrounds break the J, A symmetries independently, leaving A — J =0
for the background configuration.

It is the purpose of the current work to address this idea on the sigma model side.
In particular, we want to understand exact solutions of the sigma model for open strings
stretching between sphere giant gravitons or AdS giant gravitons in general LLM ge-
ometries. These are more complicated geometries than AdSs x S°. To get a simple
finite answer, there must be interesting cancellations taking place in the gravity calcula-
tion. One of our goals to see how this analytic behavior arises in the string sigma model
computation.

In particular, we will find exact expansions in the t’"Hooft coupling for A —J as above,
that can in principle be matched to perturbative computations in field theory. It turns
out, that even though the sigma model in these geometries is not expected to be integrable
(for example, a naive Bethe ansatz is expected to have inelastic boundary conditions [57]),
it is under enough analytic control so that these BPS strings are analytically solvable
and the dispersion relations for the open strings will look identical to equation (4.1]).
We pay extra attention to geometries that correspond to concentric circles, because they
allow us to explore the amount of charge J that the string carries. It will turn out that
the quantity J contains additional information that is not carried by either the angular

momentum () or the central charge. It depends on more details of the precise position of
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the string in the background geometry. Nevertheless, after some manipulations, we will
show that it also gives rise to an expansion in the t’"Hooft coupling that can be matched
between the spin chain and the geometry, at least to leading order. These seem to be
non-protected quantities associated to the symmetries that are spontaneously broken by
the D-brane background for these states. These determine in the end if a putative string
state belongs to the Hilbert space or if it does not. If the J charge diverges, the string
state is not allowed. Such phenomena already arise in the spin chain computations [38],
so it is important to understand their behavior in the gravity dual setup as well.

Another interesting aspect of the open strings between sphere giant gravitons is that
there is a relation of the geometric sigma model solution and the Bethe ansatz on the spin
chain [30]. When one studies open strings attached to these giant gravitons, sites can
“jump in” and “jump out” of the spin chain [58]. To have a more standard description,
one realizes the spin chain in a bosonized language. One writes the states in terms of the
number of sites between defects on the spin chain, rather than in terms of spin up and
spin down state. Now, the number of sites in the spin chain is fixed, and the boundary
conditions allow number non-conservation for the bosonic excitations instead. If one
writes coherent states for these generalized bosons, one finds that the equations that
lead to the ground state of the spin chain can be understood as a bound state condition
on the S-matrix of the magnons, subject to corresponding boundary conditions. Similar
results are not known in the dual SL(2) sector. An approximation for the SL(2) sector at
very large vevs of the central charge for strings stretching between a dual giant graviton
and itself can be found in [59], where the “jumping in” and “jumping out” of letters is
self-consistently ignored in the limit of large spin/central charge. A similar connection
to the Bethe ansatz is not known.

We provide evidence in this chapter that the open strings stretching between dual

giant gravitons also have an interpretation in terms of zeros of an S-matrix for the SL(2)
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sector. In particular, we get a better understanding of the analytic continuation of the
SU(2) spin chain to the SL(2) sector. We will also show that our interpretation of the
analytic continuation is compatible with the sigma model calculations.

The chapter is organized as follows. In section 2 we review the form of all half BPS
solutions to type IIB supergravity, and we re-express them in form that makes certain
cancellations clearer. In section 3 we provide an explicit example of the open string
solutions in question by considering the case of AdSs x S°. In section 4 we solve for open
strings stretching between both sphere and AdS giants in a general half BPS geometry,
finding very similar expressions to those in the case of AdSs x S°. In section 5 we
concentrate on concentric half-BPS geometries, for which we study the form of the R-
charge .J and its relation to the metric of the half-BPS geometry. In the case of AdSsx S%,
we study various limits for which this expression simplifies, and match the leading sigma
model answer on R x S® to a computation on the dual one-loop su(2) spin chain. We
are able to interpret the sigma model solution as a continuum limit of a zero/pole of the
magnon S-matrix for the su(2) and s[(2). The answers on both sectors are related to

each other by an analytic continuation of the radial parameter of the LLM plane.

4.2 Review of LLM Geometries

The most general %—BPS solution to IIB 10d supergravity is given by the ansatz [16]:

1_ .2 L 1
2 _ Y 2 1~ * 2 2 2 27 % o 2+ 7 92
ds* = ———=(dt + V)" + ——(dy” + da7 + dx3) + y—=dQ3 + y—=d2;
1— 22 y s +2 -2
(4.2)

The only free parameter of this metric is an auxiliary function z of the coordinates

Y, 1, Ts, which satisfies a six dimensional Laplace equation with rotational symmetry
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ydV = *3dz

along four directions:

Where %3 is the Hodge star operation on the coordinates xq,x5,y. In order to ensure

the regularity of (4.2)), we must have that the quantity H 2 = %z? remains finite as
4

y approaches zero. This means that z = i% on the y = 0 plane which we will call the
LLM plane. Because of this, the metric is completely determined by a coloring of the
LLM plane into regions where z = j:%. It will also be convenient to rewrite the metric

in a more compact form:

_ 1 1 - o
ds® =H 2 (—(dt +V)? + (5 - z) a2 + (5 + z) dﬂg) + H? (dy? + Sijda'da’) (4.4)

This is convenient since the parametrization (4.4]) makes the metric explicitly regular at
y = 0 inside the colored regions. Generically, at the boundary of a droplet the one form V'
becomes singular, but such singularities can be eliminated via coordinate transformations.

An explicit form of V is:
Ve =2 (1.5
i\T1,22,Y _27T oD (X—X/)2+y2 .
Here the integration is taken along the boundaries of the droplets. This guarantees that

Vi — 0 as |z|,|y| — oo. Finally, the regions z = :I:% are the degeneration loci of the

either one of the two three-spheres, which is clear from equation (4.4]).
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4.3 Open Strings on AdSs; x S!

Now we wish to review the solutions of the Nambu-Goto sigma model corresponding
to rigidly rotating strings on a AdS3 x S! subspace of AdSs x S° that appeared in [22],
but studying the solution directly in the LLM cordinates instead. The corresponding
metric in the coordinates is described by a single droplet configuration on the LLM
plane of radius ry:

r gty
2\/(r2 +ré + y?)? — dr2rd

4.6
V——l r? 4+ rd+y? . (4.6)
? 2\ \/(r2 +r2 +y2)2 — dr2r}

We will be interested in solutions that reside at the y = 0 locus, with a D3 brane

z(r,y; o) =

wrapping the non-vanishing three-sphere with the strings rotating along a circle of the
non-vanishing sphere. The effective metric for the space on which the strings move can

be written in the form:

(dr® + r2d¢?)

( N %) (4.7)
+s (1 - :—z) (1(1 — ) + 51+ s>dé2)

0 2

2
ds® = —s (1 — :—2) (dt + Vydo)? + s
0

with s = sign(ro — ). The effective geometry for 7 > rq corresponds to AdSs x S', while
r < 1o corresponds to R, x S°. One should also note that the behavior of V at y = 0 is

non-trivial as r crosses rq:

Vo(r <ro,y=0)= 5—

Vo(r > 1o,y =0) =
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For r > ry, the metric is

2 2
di:—(r2—1)dt2+2dtd¢+Ll)

. G + dp* + (r? — 1)dy)? (4.9)
0

Where the variable r has been re-scaled to be unitless. Now we can consider the string
sigma model on this geometry, concentrating on rigid open string solutions that end on
two static dual giant gravitons. The boundary conditions allow for the endpoints of the
string to move freely along the 1 direction, so we restrict to configurations where the
string endpoints co-rotate at the same angular velocity 8. A convenient ansatz for the

embedding coordinates is of the form:

t=1T
= (4.10)
¢ =o(0)
Y = B1 +g(o)

Then, the string action in these coordinates is given by:

VA

5= 27

drdo/(r? — 129”2 + 23(r2 = 1)¢'g’ + ¢2(B2(1 — r2) +r2) + (1 — 2)r"?)
(4.11)

For the coordinate g one has to impose Neumann boundary conditions, which is equivalent

to saying that the worldsheet current density g—gﬁ, vanishes at the end points of the string.

In addition to this, since the action is independent of g this current must vanish identically

along the string. This leads to the condition:

y__ BY
9

=5 (4.12)
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which can be used to eliminate ¢ in the action. This reduces the problem to a geodesic

equation on a flat plane, as long as r # 1 where equation (4.12)) degenerates:

5= —2—‘/5\/(1 — ) /dem/ngb’Q o (4.13)

Due to the rotational symmetry of the droplet, a general solution can always be trans-
formed to one determined by a pair of angles ¢, ¢s from the x; axis and the closest
approach to the origin a. These are the same solutions studied in [22] in slightly different
coordinates. In particular, the conserved charge associated to time translations of the

coordinates (4.9) follows a relativistic dispersion relation

)
Q2 + 4_7[-232
\/X Bz
Q= N (4.14)

/de¢\/r2 d¢

where () is the angular momentum associated to rotations along ¢ and Z is the central
charge associated to the separation of the branes. It is also important to notice that the
density of central charge and angular momentum per unit length are constant along the
string. One can also check that the angular momentum density J associated to rotations
along the LLM plane diverges if the string solution touches boundary of the droplet. We

will make this more explicit in section 5.

4.4 Open Strings on LLM Geometries

We can now discuss more general solutions corresponding to open strings on general

%—BPS geometries. As we will see these share many similarities to the solutions discussed
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in the previous section.

4.4.1 Strings outside a droplet

First we consider the case for a string inside a connected region with z = —%. Within
each of these regions we have a non-vanishing three-sphere on which we can wrap D3
branes. In the end, we will be interested in rotating string solutions, so we will also single
out a circle within this three-sphere with coordinate 1 on which the string endpoints
rotate. The branes will sit at y = 0, but it is convenient to keep the value of y unfixed
along the string as this makes the various cancellations clear. The appropriate ansatz for

the embedding coordinates is the similar to the one before,

t=wT
Tr; = LCZ<O')
(4.15)
y =y(o)
Y = P71+ g(0)
except that the effective metric is now of the general form:
1 o
ds* =H?2 (—(dt + V) + (5 — z) CW) + H? (dy® + 6;;da’dz?) (4.16)
The Nambu-Goto action in these coordinates is:
A
5= VA / drdo/G
2
—4 1 12 1 / !
G=H (5 —2)9° +2(z — 5)9 V!, (4.17)

# B = Vi)?) + (1= B = Dl + o +57)
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Where we have set w = 1 for simplicity. The coordinate ¢’ can be eliminated by a
combination of its equation of motion and boundary conditions as before. This leads to

the simple relation which generalizes (4.12)):

g = BVl (4.18)

Once again, the relation (4.18) shows that the variable ¢’ becomes ill-defined whenever
the string touches the boundary of a droplet (4.5) at y = 0. One can also express this

relation in a way that is independent of the parametrization,

dg = BV (4.19)

so that dg is well defined in regions where z is locally constant. Substituting this relation
into the action (4.17) will cancel the terms in G which are multiplied by the warp factor

‘H, which simplifies the action to the form:

5= =32 [artoJ - - Dt + 74 (1.20)

One can also find a similar expression for the energy of the string by varying with respect

to w:

VA 1
e=— [ drdo o2+ 2+ y? 4.21
In general, having the string extend in the y direction makes the equations non-linear,
but such configurations happen to not have minimal energies. The minimal energy con-

figurations are those for which y = 0 along the string, for which the action reduces to a

geodesic problem on the LLM plane.

S = —\2/—5 /dr\/(l — 32)(da? + dad) (4.22)
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This is the same result as for open strings between D-branes in AdSs x S°, so the

kinematic features are the same. As a result, this class of solutions also admit a giant

Q2 + LZQ
-V (4.23)
/\/d$1 + da3

Generically, an LLM geometry will not have rotational invariance along the the LLM

magnon dispersion relation:

plane due to the placement of sources for z. This means the charge J associated to this
rotation is no longer a good quantum number in the dual description. However, there
is always an approximate translational symmetry in the limit that one zooms into the
boundary of a droplet. The effective geometry in this limit is always a plane-wave, and
the density of the momentum associated to the approximate translational symmetry will
generically diverge. This is because such quantities are always proportional to the gauge

potential V' which is not well defined at the interfaces between the different values of z.

4.4.2 Inside a droplet

The analysis for connected regions with z = % is completely analogous to the one in
the previous section. In this case there is a different non-vanishing three-sphere §3, from

which we single out a circle §. The effective metric is a simple variation of (4.16)

_ 1 - o
ds® = H™? <—(dt +V)*+ (5 + z) d62) + H? (dy® + 6;5dx'da’) (4.24)

The appropriate ansatz in this case is the same as before (4.10]), but we replace the
variable 1 by:
0 = B+ h(o) (4.25)
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The computation of the action is entirely analogous as to the discussion in the previous
section. The analogous condition (4.18)) that arises from the boundary conditions for h
is:

N = BV (4.26)

which tells us that A’ is the pullback of V' on the worldsheet inside the droplet regions.
This means that A’ has the same singularities along interfaces as ¢’ did, so that continuing
the variable ¢ to regions inside a droplet becomes problematic. After eliminating A, the

action takes the same form as before with the appropriate change in kinematic factors:

S = —\2/—5 /dr\/(l — [2)(da? + da3) (4.27)

Similarly, the energy can be easily shown to satisfy a similar relativistic dispersion relation

~ A
e=1/0%+ 4_71222 (4.28)

Where Q is the angular momentum along the circle 6.

4.5 On-Shell Charges

For this section we will concentrate on %—BPS geometries that correspond to concentric
droplets and rings on the LLM plane. This is useful since we will want to study the
behavior of the charge J associated to rotations around the origin of the LLM plane. One
important point that should be noted is that the coordinates are implicitly rotating
with respect to an observer that is far away from the sources to whom the geometry looks
like AdSs x S®. So solutions that are static in these coordinates correspond to strings that

rotate along a cycle that asymptotically looks like the equator of S°. As such the charge
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€ associated to time translation symmetry in the LLM coordinates actually corresponds
to A — J in the global AdS coordinates. One can find the expression for J for a general
concentric concentric geometry by modifying the ansatz for the coordinate ¢ (4.10) to
include time dependence,

¢ =p(0)+T (4.29)

and in the end substituting the on-shell value v = 0. Unlike the charges €, Z, Q(Q)
the angular momentum J turns out to be sensitive to the details of the geometry. This
is because the general form of e is fixed by supersymmetry [39], and the other charges
assemble into a relativistic dispersion relation. As discussed in [38], the shortening con-
dition is essential to get the right multiplicities for light open strings between nearby
giants. This is what guarantees that the local physics looks like N' = 4 SYM on the
Coulomb branch. For concreteness we first concentrate on the case where the strings live
in a region outside a single circular droplet on the LLM plane, and then we show that
the analysis extends to solutions sitting inside the droplet. The resulting expression for

J and its density along the string are:

J—Q doJ

2
. Vi ((¢')2 (r2 (% n 1) n (&ﬂbzlvg(ﬁ?l)) N (r,)fz) (4.30)
V= 82) (12 () + ()?)

From this we can see that the density J is proportional to Vj, so that it becomes
infinite at the boundaries of the droplets as claimed. Since the central charge density is

constant on-shell we can also express this as:
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A1 / _ _ HO +HH
e K e B R R R )

A
€ = Q2+EZ2

(4.31)

One can also express the density J in terms of the quantum numbers @), Z, the t’Hooft
coupling A and r. For completeness we will carry this out for the simplest droplet
configuration studied in section 3, in the regime that the strings are far away from the

droplet.

4.5.1 Strings near the boundary

We would like to evaluate for a string solution that sits very far away from a
single droplet, while the size of the string remains finite but large. These correspond to
strings that sit near the boundary of AdS5. As it turns out, the expression is not
the same as the angular momentum measured by an asymptotic observer in global AdS,
since the coordinates describe a rotating frame qg = ¢ —t, so that the expression for
J is actually a linear combination of the scaling dimension A and the spin J seen by a
static observer near the boundary. The two quantities J, J are related by a simple change
of coordinates, but it is more convenient to work with the expressions in [22] which have
a clearer physical interpretation. More concretely, this is the choice of coordinates for
which the scaling dimension A grows with the distance from the origin, while the spin J

becomes smaller:

(4.32)

(= 1), /(L= B3 (2 + (5£)?)

s
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Here ¢ = ¢ — t corresponds to the coordinate for the equator of the S°. We should
also note that this expression for J is not gauge invariant, as it will turn out that this
expression is related to the one form V' that appears in the metric. On the one hand these
gauge transformations can be always absorbed into a redefinition of the string coordinates
g and h . However, one should also keep in mind that gauge transformations that
vanish at infinity do not change the asymptotics of J, so that the coordinate choices for
which J vanishes at infinity are well-defined. In order to fix the residual gauge symmetry
one has to choose coordinates that look asymptotically like static global AdS rather than
the rotating LLM coordinates. It will also be convenient to make the choice V, = 0 in
order to keep the rotational symmetry explicit.

We wish to find an expression for in terms of the angular momentum (), the
string end points &, &, and the t'Hooft coupling A. For this, it is best to re-express
the integral using an affine parametrization for the the complex coordinate on the LLM
plane z = & (1 —s) + &2s. In order to eliminate the angular velocity 5, we have to impose
a double scaling limit based on . The particular double scaling limit we will be
interested in comes from fixing the angular momentum () and the positions of the end
points of the string:

Q_ \/XL < 00 (4.33)

Z o 1= 32
This is a physical choice of scaling, since the strings become tensionless in the relativitic

limit # — 1. This leaves us with two independent parameters to tune which we can

Q

choose to be the ratio >

and the t’"Hooft coupling, since changing the value of 3 has to
be compensated by a change of A in order to keep ) and Z fixed. The angular velocity
and the t’Hooft coupling can’t be changed independently from each other. The full

expression for J in terms of these parameters can be expressed as a sum of two terms:
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1 1 dz
Jz\/Q2+ﬁ|§1—§zl2/O szil'f‘ (4;) j TJm/ ds%
VO + e —gp o
(4.34)
This expression is interesting as it is a series expansion in A around zero, while also
showing a scale separation given at small and large energies €.

In particular, one can expect that this quantity can be recovered via a perturbative
calculation in the dual field theory since we have a series expansion in the t’Hooft cou-
pling. This is different from in the other giant magnon solutions studied in the literature
which always have infinite spin J and correspond to closed strings [28, 35]. Alternatively,
one can expand in K = A\/Q?, which can be done even at strong coupling. This is simi-
lar to how in the plane wave limit the effective perturbation parameter depends on the
quantum numbers of an excitation [5].

We will reproduce the leading term of the expansion in the su(2) sector by an ex-
plicit computation from the one-loop spin chain Hamiltonian with boundary conditions.
Motivated by an analytic continuation of the Bethe ansatz, we will obtain an expression
for the s[(2) spin chain with open boundary conditions, even when we do not know the
form of the precise computation on the dual field theory for this sector. In general, these
boundary conditions are expected to break integrability, but the existence of a Bethe-like
ansatz for the su(2) in terms of Cuntz oscillator coherent states suggests that a similar
story exists for the sl(2) spin chain. One should also note that even though the lead-
ing term is independent of A, the computation requires knowing the one-loop mixing
Hamiltonian for the su(2) sector, and higher order corrections arise from higher loop

contributions to the mixing of operators.
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4.5.2 Rapidly Rotating Strings

An interesting limit to consider is when the strings rotate with a large angular velocity
B — 1 with fixed angular momentum ). This is the limit where the t’Hooft coupling

becomes small, so that the second term in (4.34) can be ignored.

~ ! ds
J:|Q]/0 ’&(1_8)_’_525’2_1%—... (4.35)

The integral in (4.35)) is somewhat reminiscent of a Feynman parametrization, and

can be evaluated explicitly:

arctan [ Je2PlaPHa 6P | _ o ap (el lPola -6
7 2¢/lé1 %622~ |€1— 22 2/|€1 xE P~ €162 2
J=1el 5 - T (436)
V€L x &2 — & — & -
& x & =Tm (§&) = &€ sin b1y

In the limit that the string end points are very far away from the origin we can ignore

the 1 in the denominator of (4.35)):

012|Q)

|&1][&2] sin 012

(4.37)

Although the expression (4.37)) is regular at 615 = 0 where the string end points are
colinear, there is a divergence at 615 = 7 coming from the fact that the string has to
cross the droplet. In the strict & — oo limit, the leading order contribution for .J vanishes.
Generically, in the strict § — 1 limit the divergent contributions to the LLM angular
momentum will decouple so that the expressions for J and J match. More explicitly, the

expression (4.30) becomes much simpler in this limit.
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J = ﬁ 1 dsVy (r(s),y=0)+... (4.38)

V1=582Jo

Where r(s) is an affine parametrization for the string in the LLM plane. It also turns
out that the expression (4.38)) is valid inside and outside the droplet regions as long as
one chooses the correct branch for V,(y = 0). Another thing to note is that value of V
inside of the droplet is related to its value outside the droplet by a change of sign and
a transformation r — é, where r is related to the AdS radius r%,4 = ro. By restoring
the dependance on rg, the expression should be understood as the leading order
expansion in ro/m?, where m? is a large mass parameter compared to 9. This can be
done by either sending the string end points to infinity, or by considering a small droplet.
This is also the regime where the contribution to masses of the conformally coupled
scalars coming from the curvature of R x S? is negligible in the field theory, which is a
decompactification limit of the S®. This suggests that the leading non-vanishing term
in J at large 8 should be reproducible from a Coulomb branch computation, while the
higher order terms in powers r should come from taking into account correctly the mixing
between the higgsinos and gauginos, since a priori the massive vectors do not couple to
the curvature Rgs ~ Ra45. A calculation with background fields properly included would
look similar to [60], where the localization in the geometry is provided directly by the
D-brane background fields, rather than a saddle point.

For more general concentric droplet geometries the expression for Vy outside the

largest droplet is given by a linear combination of droplets [16]:

[\

(-1
r2 — 13

~

Ve(r,y=0) = Z

k
1=0

(4.39)

SN

The leading expression for J in this case can be easily seen to come from adding the

contributions coming from all the droplets and holes:
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k
J=1Q1> (-1)'J;

=0

arctan [ J&l=l&lP+a -6 _ arctan [ JePZlEP-lG -6 (4.40)
~ 9 2¢/l&1x&P—r2le1 & 2¢/lé1x&P—r2[&1 &

i v

& X &f* =6 — &f?

This suggests that the leading order computation on the dual field theory side also comes
from summing simple contributions and at leading order the droplets don’t affect each

other.

4.5.3 Strings Inside a Droplet

We can also do the analogous computation for string solutions sitting inside a circular
droplet region. In this case the motion of the string is restricted to an S® x R subspace
of AdSs x S°. Tt is well known that the giant magnons on S® x R have a dual description
in terms of a su(2) integrable spin chain whose Hamiltonian computes the mixing of

operators.

Dual Spin Chain Picture

The one loop Hamiltonian for the su(2) sector with open boundary conditions is of

the form [58, [38]:

.
Hy =AY (al —al,)(a; —ain) (4.41)
=0
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Here ag and aj,; are complex numbers describing the collective coordinates of the giant
gravitons, and the a; are Cuntz oscillators satisfying the algebra:
CLZ'CL;[- = 5ij

(4.42)
ajai =1-10), (0l;

The integer k + 1 is associated to the angular momentum @ which counts the number
of sites of the oscillator chain, which has a length corresponding to the central charge
Z. In the gauge theory variables k counts the number of Y insertions between Z in the

operator:

On~...222Yz . . Z2YE .
ZLiZk—i—l

A complete combinatoric picture of how the strings are attached to the giants and

(4.43)

how the boundary conditions emerge is found in the works [61], 62 63, [64]. To fix the
angular position of the brane one needs to add a coherent state description of the D-
branes [43]. These discussions usually only pertain to the SU(2) sector. For he SL(2)
sector, an incomplete description in the Cuntz oscillator language is found in [59], which
was derived from [4]. This description of the SL(2) sector is not that of a spin chain
with local nearest neighbor terms only. This makes a direct analysis very cumbersome.
When we discuss such calculations, we will sidestep this direct route of computation by
utilizing ideas from the Bethe ansatz.

We can then consider an unnormalized coherent state for each oscillator:

|2) = > _ 2" [n) (4.44)

Substituting this into the Hamiltonian and minizing the energy one obtains the condition
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z; — ziv1 = 02 for every adjacent pair of sites, where 02 is a constant which acts as a
lattice spacing for the string. The quantity 0 Z is generically complex, but we can always
align the coordinates so that it is real.

This means that the central charge density along the chain % is a fixed constant. It
can also be checked that this is in fact an eigenstate of the one-loop Hamiltonian with

minimal energy.

One can easily check that,

7140- 12 Z”Z”’" -

(4.45)
_ 1
(2l2) = 1—2Z
So that the average occupation number for each site is given by:
| 20, _
(2l20:12) 2% (4.46)
(Z|2) 1—2Z

This occupation number also computes the R-charge J for each oscillator, so that in total

we have:

(4.47)

b 2iZ

i%i
J Z ~
1— 22z

i=1
Since the central charge density along the string is constant, we can multiply each term

by the central charge density [0Z| = |z — 21| = £

—1 2% ~ ! 2z
J = € ’Z 53 5250 |Q) / ds (4.48)
0

1— 2z

The sum can then be approximated by an integral as we take the effective lattice spacing

0Z to zero, by which one expects to recover the continuum string description.
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Sigma Model Computation

The computation of the spin J for the sigma model is straightforward. In this case we
should take the metric with » < 1 where the string motion occurs on S® x R as opposed
to AdSs x S1. As before we will be interested in the double scaling limit that arises from
taking 5 — 1 while holding the angular momentum Q and central charge constant. The
charge Q and angular frequency /3 should not be confused with Q and A although their

roles are very similar. The leading order expression is simply:

7=l [ asvi(r(s)y =0 (4.49)

Again, we can introduce an affine parametrization for the complex variable on the LLM

plane z = (1 — s) + nps and re-express ([4.8)) in complex coordinates 7? = zZ:

J= |@|/01 ds—22 (4.50)

1—2z2Z2

Which matches the spin chain computation precisely. We can evaluate the integral ex-
plicitly by noting that there is a simple relation between the angular momentum density

inside and outside the droplet,

2z 1

= —1 4.51
1—2z2z 1—2z2Z2 ( )

Which reduces to the same integral (4.36]) as before:

2_ 2 _ 2 2 2 - 2
arctan (217 |771\|2+|71 7722> — arctan (glj;| |771||2 \7‘71 772|2)
n1Xn2|—=|n1—n2 1 X02|2—|n1—n2
J+1Q] = -] -

(4.52)
\/|771 X 1|2 — 1 — ma?
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4.5.4 Magnon S-matrix and Bethe Ansatz

An interesting property of the coherent state ansatz for the one-loop Hamiltonian
is that it leads to solutions to the Bethe equations. To see this more explicitly, substi-
tuting the coherent state ansatz into the Hamiltonian and minimizing over the complex

parameters z; one finds that their second difference vanishes:

Zi+1 — 2Zz + 21 = 0 (453)

We can always choose to parametrize the complex variables z; = e”*, which leads to the

relation:

6;0@'+1—Pi—1 _ 2601—/%'—1 + 1= 0 (454)

To make the connection to the Bethe ansatz more explicit it is convenient to make a

change of variables:

1P1+1 + 1P = Pyt — Pr—1

(4.55)
L= pr— pPr1
Solving these relations leads to an expression purely in terms of p; o,
et 961 1 = () (4.56)

which can be recognized as a pole for the 2-magnon S-matrix for the su(2) sector:

gou@ _ €M =26 41wy —up — i
12 ettt — et 41wy —ug + 14
: (4.57)
Gint w — /2
u; + i/2
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The interpretation of this pole is that we have formed a bound state of the magnons.
Such magnon bound states have the same dispersion relation of (5.13)), as they are also
in short representations of the centrally extended spin chain [65]. In this sense, the Bethe

ansatz computation and the sigma model are fully consistent with each other.

Analytic Continuation to sl(2)

Another important fact is that the 2-magnon S-matrix for the the sl(2) sector is

related up to a phase factor to the inverse of the su(2) S-matrix (we follow [66]):

eP2TPL — Qe 1y — Uy + i

Ss[(2) . =
12 eipzlJr’ipl —2e®2 4+ 1  u; —us —1 (4.58)
eipz — M

In the formula above, the right hand side of the S-matrix looks the same, but the iden-
tification of momentum with the u variable differs, and is clearly the inverse of the one
of su(2) above.

In particular, the role of poles and zeros is exchanged with respect to the su(2)
sector. Naively one would expect that the Cuntz oscillator representation of the su(2)
Hamiltonian can be analytically continued by allowing the complex parameters z; to lie
outside the unit disk, but this is not the case because then the ground state is no longer
normalizable and the S-matrix would not have the correct pole structure. In particular
the relation (4.53]) would lead to a zero of the 2 magnon S-matrix rather than a pole. If
instead one exchanges z; <+ z% = Z;, one finds that the zeros of are exchanged with

poles, while having |Z;| > 1. Substituting this directly in (4.47) leads to the expression:

G|

i1 Z2iZ — 1

J = (4.59)

where k now counts the number of derivatives between the Z operators as opposed to
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counting the number of Y insertions between Z’s. When we take the continuum limit of
this expression one obtains the same integral that appears in the the string sigma model
computation for AdS; x S'. This analytic continuation also appears naturally in the
LLM coordinates as the transformation that maps the inside and outside of a droplet to
each other. It now also appears as a consistency condition for the analytically continued
S-matrix. The fact that the string solutions are straight lines on the LLM plane would

translate to having a pole on the magnon S-matrix for the SL(2) sector.

4.6 Discussion

In this work we studied a class of :-BPS open string solutions ending on (dual)
giant gravitons and showed that important simplifications happen when one takes into
consideration the appropriate boundary conditions for the end points of the string. The
solutions found have a relativistic dispersion relation, so that they generalize the giant
magnon solutions to open strings. One difference between the solutions we studied is
that the strings are allowed to extend into the non-compact dimensions of the spacetime,
and they have well-defined finite charges inside droplet regions in the LLM plane. We
also found that the solutions cannot be extended between regions of different colors in
the LLM plane without having divergences in the approximate charges that generate
translations parallel to the droplets, or in the case of concentric geometries the angular
momentum J associated to rotations in the LLM plane. Additionally, the coordinates of
the string along the non-vanishing three-sphere fiber directions are related to the pull-
back of one form V', so that the string density on the fiber diverges at the boundaries
of the droplets. As a consequence, one can expect that the operators corresponding
to such crossing string solutions can only be constructed in a formal limit of infinite

conformal dimension as in the Hoffman-Maldacena solutions. These divergences are also
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suggestive of possible instabilities for the states corresponding to the solutions where the
strings grace a droplet. Our analysis also applies to a certain isolated class of 6d %—BPS
bubbling geometries [67, [68], which can be described by a torus being fibered over a
2d flat base, much like in the ansatz (?7). The isolated class of solutions are those for
which the torus is replaced by a product of circles. The analysis for general 6d %—BPS
bubbling geometries is complicated by the appearance of an axion corresponding to the
off-diagonal component of the metric for the torus fiber, which introduces additional
singularities where non-trivial sectional circles of the torus vanishes. This means in
particular, the dependence on the coordinate y drops out in the analog of , SO
that the string solutions are no longer restricted to y = 0, and the droplet picture is
modified by the additional singularities. Similarly, solutions of the form (7?) with less
supersymmetry have been studied. In those cases, the flat LLM plane is replaced by a
four or six dimensional Kéhler base with three or five dimensional droplets [69] . One
complication that arises in the case of 411 and % BPS bubbling geometries is that solutions
do not reduce to solving linear equations, so that constructing the explicit metrics is
non-trivial. Also, the cancellations that occur when imposing the boundary conditions
on do not simplify the action. It would be interesting to understand how the
% BPS gets corrected down by considering a linearized analysis for the general ;11 BPS
ansatz for instance, as this would also allow us to see how these corrections appear as a
function of the t’Hooft coupling A. Finally, although one can explictly match the sigma
model answer for J to a simple computation in the su(2) sector of the dual spin chain
description, the analogous computation for the s[(2) is not known. The fact that the
sigma model predicts that the central charge is a constant per unit string length appears
in the dual su(2) spin chain description as a condition on the coherent state ansatz for
the excited states. These condition on the parameters z; = e is a manifestation of the

conditions arising from the Bethe ansatz solution to the Heisenberg spin chain, where the
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z; behave like Bethe roots. It would be natural to expect that a similar condition should
arise in the sl(2) sector, as the sigma model descriptions of both sectors are analytic
continuations of each other. However, we should note that the presumed Bethe ansatz
might be different from the s[(2) Bethe ansatz [3] arising from twist-2 operators and other
operators with simple derivative insertions, since more interesting mixing of operators
should occur whenever the massive W-bosons (and their superpartners) corresponding
to open strings are introduced. Also the sigma model computation of the R-charge J
suggests that a simple background field computation where the fluctuations of the scalar
fields describing the giant gravitons are frozen is not enough to compute the correct R-
charge, but that one should rather carefully integrate out the heavy fields off-diagonal
fluctuations. At finite volume, the curvature coupling to the scalars lifts the Coulomb
branch, but it is well known that introducing an R-charge gives rise to an effective
potential whose minima describe (dual) giants [32]. As the become very large one expects
that the moduli space is approximately restored, so that the R-charge is no longer needed
to stabilize the solutions, however this is only true infinitely far away from the origin in
field space, where the corresponding operators become infinitely heavy. So somehow the
naive approximation to these operators reassembling neutral Coulomb branch operators
should be destabilized by interactions with charged operators. Also a careful analysis of
finite volume effects coming from the curvature of S? in the gauge theory could elucidate

how corrections depending on the size of AdS appear.
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Chapter 5

Open Spin Chains and Giant

Gravitons

5.1 i—BPS Boundaries:Classical Open strings on S°

We are interested in studying classical open strings solutions to the Nambu-Goto
string on AdSs x S® that correspond to BPS states of the centrally extended version of
the N' = 4 superconformal algebra SU(2,2|4) [70]. The central extension comes from
demanding that the strings end on giant gravitons that preserve 411 of the supersymmetries.
A natural set of coordinates for this problem are the generalization of the %— BPS LLM
coordinates of Type IIB supergravity to generic i (%)-BPS bubbling geometries [69].
These coordinates are the less-supersymmetric analog of the LLM coordinates for %—BPS
geometries [16]. For simplicity, we will consider the case where the motion of the string

is restricted to the S® factor of the space while it sits at the origin of AdSs:

ds® = —dt* + dQ2: (5.1)
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Instead of the usual spherical coordinates, it is better to express metric for the five-sphere
in Hopf coordinates which correspond to an S! fibered over a complex 2-disk, with the

circle degenerating at the boundary of the disk:

7 =1—r2e"
X = rcosfe? (5.2)

Y = rsinfe'®?

In terms of these coordinates we have the following relations,

Zd 2
I Y
1= (5.3)
| XdX +YdY|* = rdr? + (1 — r?)2 A

|dZ|* =

where we have introduced the following auxiliary quantities:

r? = |X*+|Y]?
 Im (XdX +VaY) (5:4)
L= [XP YR

Finally, to obtain %—BPS coordinates we do a coordinate transformation into a rotating
frame given by X — e®X | Y — €Y. Since Z is unchanged by this transformation, only
the combination |dX|* + |dY|* has a non-trivial transformation law. In total, the metric

for R x S° in these coordinates is:

1

ds? = = (L= IXP* = VP) (@ + A = d0) + =)

2
ds;

(5.5)
dsi= (1—|X]* = |Y]?) (JdX|* + |dY]*) + | XdX + YdY|?

Another way of writing these coordinates is as a conformal rescaling of the complex

hyperbolic disk model:
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|dX|? + |dY |? | XdX + YdY?
L= [XP=YP (- |X]P - |YP)?

ds* = e | = ((dt + A)? — dy?) +

K= —% log (1— |X[> — |[Y]?) (5.6)
A =1Im (dK)

These kinds of coordinates are particularly well suited to study open strings since the
equations of motion of Nambu-Goto action for an open string rigidly rotating along
can be expressed as a geodesic problem for the metric dsj much like in[23]).
For the boundary conditions, we will consider a class of open strings ending on a simple
class of BPS giant gravitons which wrap holomorphic cycles inside the disk: [71]:
F(X,Y)|p=0 =0
(5.7)
G(X.Y)|o=1 =0
More concretely, the giant gravitons are localized along the loci F' = G = 0 inside the
droplet | X|*> + [Y]? < 1 while they fill the fiber circle coordinate 1. These Dirichlet
boundary conditions must be supplemented with Neumann boundary conditions along

the normal direction in order for the strings to remain attached to the giants:

o ()

[&,X’- (Mﬂ o1 = 0 (5.8)

on

One last important point about the boundary conditions is the role of the worldsheet

coordinate (1, o) for which we will make the ansantz:

U(r,0) = B+ g(0) (5.9)
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Substituting this ansatz into the Nambu-Goto action in temporal gauge t(7,0) = 7 for

the metric (5.5)), the Neumann boundary conditions for ¢/ imply the following condition
dg = pA (5.10)

After imposing this condition the Nambu-Goto action for the string takes the form :

S:Q\/l—ﬂ2/d7/1d0\/§

o ° (5.11)

dX|* |dYy 2 '
g:(l—|X|2—!Y!2)<— all b

do do

2
)+\Xd_X+Yd_Y
do

One important aspect of the boundary conditions , is that generically the classes
of solutions satisfying the boundary conditions are much richer than the case where the
giant gravitons are only separated along a single complex coordinate [23]. For instance,
whenever the loci F' = G = 0 have mutual solution, the strings can become point-like
objects localized at such loci.

For the sake of completeness we will reproduce the equations of motion corresponding to
the action , but will leave the study of the general solutions for future work. As
it will turn out, the holomorphic nature of the boundary conditions is constraining
enough to simplify the analysis to the point where we will not need to solve the general

equations of motion. The geodesic equation for the induced metric are:

EX  2(XY —YX')(XVX +(1—|X]2)Y)

do? 1—|X|2—[Y]?
L (5.12)

Y 2(XY -YX)(1-[YP)X +XYY)

do? 1—|X]2—|Y]?

The main complication in these equations arises due to the second (non-holomorphic)

factor in both numerators.
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5.1.1 On-Shell Charges

All open string solutions with the specified boundary conditions can be partially char-
acterized by three conserved quantities: the angular momentum in the Z direction @), the
angular momentum along the X, Y directions J and the central charge | Z| corresponding

to the length of the string.

1 E
|Z| :/ dax/az/ ds
0 0

VA8
Q= %—T—BJZ’

2 xR YR W
- d A d
/ 5/0 8(1—\X!2—IY|2)+5 (W)/o s

g [Im (XX 4 V) (|X 2+ |V]? - 2)
b 1—|X]2 [y

(5.13)

Notice that the integrals are taken with respect to a affine parameter s, which corresponds
to a gauge choice in which the central charge density is constant along the string. This
choice is convenient since it will appear in the spin chain description of the string. The

energy of the strings has the form of the usual dispersion relation of the centrally extended

A
— A _ T — 2 2
E=A—-J=4/Q +47T2|Z| (5.14)

Here A is the generator of time translations in the non-rotating coordinates for R; x S°.

BPS states:

The expression for the spin J is of interest, since it corresponds to an symmetry that is
spontaneously broken by the boundary conditions. In particular, when expressed purely
in terms of of the other charges £, Z, @), it’s expansion in the t’"Hooft coupling terminates
at first order, which suggests that the quantum R-charge is one-loop exact at strong
coupling. We will later reproduce the first term in the expansion of J in the large spin
limit @ — oo and @Q/|Z] fixed with a spin chain computation in the SU(3) sector of
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N =4 SYM.

5.1.2 Some Simple Solutions

We will now study a few simple solutions that will serve as reference for the later
sections on open spin chains. The simplest class of boundary conditions to consider are
those for which only one linear combination of X and Y appears at both boundaries,
for example F(X,Y) = X — ¢ and G(X,Y) = X — 7. Since the Neumann conditions
imply that the derivatives of Y (o) vanish at the boundaries, one obvious ansatz is to try
Y (o) =Y = constant. Plugging this into the action simplifies the metric to that of a
flat disk:

S = 2—‘/5\/(1 —B2)(1— \YP)/dT/Ol doy/|dX |2 (5.15)

The solution to the equations of motion is simply a linear interpolation between ¢ and
n, X(0) = 0§ + (1 — o)n. This is virtually identical to 3-BPS (open) magnon solution,
except that the value of |Y] is important. Extremizing with respect to |Y| gives two
possible values for the lowest energy configurations, |Y| = 0, or |Y| = 1. This is due
to the rotation along the Y axis pushing the strings towards the edge of the droplet if
Y # 0. The solution with |Y| =1 is just a string moving along the equator of S°, which
has infinite spin J but finite energy [28], while the solution with Y = 0 is a massive string
with finite spin J.

Another important example is the choice F(X,Y) = X —¢ and G(X,Y) =Y —n. In this
case, the lowest energy configuration is a point-like string localized at the locus X = &,
Y =n. This means any choice of boundary conditions which is purely linear in X, Y will
lead to point-like solutions localized at the intersection of the lines.

Finally, another important example is the generalization of the simple linear intersecting

branes to intersections with multiplicities, such as double points. For concreteness, we
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consider the simple choice F = X — ¢ and G = Y? + X — 1. As in the first example, a
natural guess is to look for solutions within the level sets Y (o) = constant. For Y # 0,
the curves intersect at two different points Y = £/ — 1. Since these intersections are
holomorphic, the local analysis near each intersection is exactly the same as when the
branes are supported at intersecting lines. However at the level set where Y = 0 the
behavior is different; if we were to have that ¢ = 7, then we would have that the previous
pairs of intersections combine into a single double point intersection, so that when we de-
form away from £ = n there will be points along both curves where the normal direction
to the curves are parallel. In this case, since Y = 0 the normal to both F(X,Y =0) =0
and G(X,Y = 0) = 0 point along the Y direction. In particular, this means that there is
a straight line connecting ¢ and 7 that satisfies the Neumann boundary conditions .
With these examples in mind, it becomes clear that whenever we have boundary condi-
tions that intersect holomorphically, or we have a complex deformation thereof, which
is always the case for boundary conditions of the form , there will always be solu-
tions to the Nambu-Goto string equations that are either point-like (in the case where
there is an intersection), or are a straight line in D? (when we have a deformation of
a singular point). This can be explained as follows: if the intersection is non-singular,
the intersection loci is a circle and the string is a point inside this circle, but when we
have a singular intersection, or it’s deformation, there is always an SU(2) that aligns the
coordinate axes of D? with the normal and tangent vectors to the intersection which we
may call Xy, Yr. The Neumann boundary conditions are satisfied automatically when
the string’s coordinate along the tangent direction is constant Yy(c) = constant, which
simplifies the induced metric in D? to a flat D!. Generically these solutions are isolated,
since trying to deform the constant value of Yy (o) will break the boundary conditions,

because the normal derivatives along the two D-branes will be in general not aligned.
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5.2 Boundary Conditions for Open Spin Chains

5.2.1 Warm-Up: An SU(2) Bosonic Chain

In this section we expand on the ideas of [72] to introduce open boundary conditions
for spin chains, with the goal of describing open strings in holography. Before discussing
the case of the N/ = 4 SYM spin chain, we turn our attention to a simpler toy model
that captures a lot of the desired physics. In general grounds, the equations of motion of

a string are schematically of the form:
(2-A)X =0 (5.16)

Where A is the appropriate induced Laplacian on the worldsheet, and X denotes the
wordlsheet (bosonic) fields.In suitable coordinates, this is can always be written as an
expansion around the flat metric on the string in powers of the curvature of the target
space and derivatives, so to zeroth order in the curvature of the space, the equations of
motion for a string are simply a wave equation. Those equations can always be discretized
and viewed as coming from an effective Hamiltonian for the ”string-bits” making up the

string:

Hos =33 (o~ ) (- i) + (-0 ()] G
i=1

Where a;, b; are commuting bosonic raising and lowering operators acting on sites of the
form |n,) ® |np). This can be thought of as an effective discrete light-cone Hamiltonian
for a relativistic string with angular momentum @ ~ L + 1. We will use this as a toy
model for the bulk Hamiltonian of a discretized string living on a 2d complex plane. To

see this, consider a variational wavefunction ansatz for the ground state:
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W ({, ui})) = @ [2i) © [ys) (5.18)

Where |z) is a bosonic coherent state. The variational energy in the bulk of the would

be discretized string is simply:

L—-1
E({zi,yi}) =AY (lzi =zl + 19 — yona ) (5.19)
=1

This is clearly minimized whenever the parameters x;, y; satisfy a discrete second differ-
ence equation which can be interpreted as a discretized version of (5.16)):

iy — 21‘2' + Tiv1 = 0
(5.20)

Yin — 2Yi + Yiy1 =0
As they stand, this set of linear equations is under-determined; we need to impose bound-
ary conditions. To describe an open string, one would expect that the Hamiltonian must
include new terms that give rise to the appropriate discretizations of (5.7)) and (5.8). One

choice for such modification is to include boundary terms such as:

VDL = )\F(al, bl)TF(al, bl)
(5.21)

Vbr = AG(ar,br)'G(ag, by)
Where these should be interpreted as polynomial expressions on the raising and lowering
operators. When applied on the coherent state ansatz introduced before, the condition

needed such that the parameters x;,y; are at an extremum of the energy is:

T — T+ [3x1F($1, yl)]* F(xh yl) =0
(5.22)

Y1 — Y2 + [8y1F($1ay1)]* F(x1,y1) =0
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Multiplying the first equation by (9,, F/(x1,1))" and the second by (9,, F (z1,v1))" F(x1,v1)

and subtracting both of them gives:

(21 = 22) Oy, F(w1,11))" = (1 — 12) (O, F(21,1))" = 0 (5.23)

The form of this equation can be immediately recognized as a discretization of the con-
tinuum limit boundary conditions. In the large L continuum limit, these equations
would reproduce something reassembling the light-cone spectrum of an open string in
R, x S x C? stretched between D3-branes wrapping S! and a holomorphic cycle inside
C?. To see that the space is really C?, as opposed to R? (or something else), we can look

at the Kahler form which arises from the Berry connection of the coherent states:

/ dt (2] @ (y1) i, (1) @ |y)) = / dt (73 + g — c.c.) (5.24)

This should be interpreted as an integral of the canonical form [ pdg, so that Z and
x are canonically conjugate. This reproduces the standard Kahler form on C? with a
flat metric. Since the symplectic structure is canonical, this reaffirms the fact that the
commutation relations of a,a! were the usual relations of a harmonic oscillator in the

first place. With all this in mind, we can now discuss a more complex example.

5.2.2 N =4 SYM SU(2) open spin chain at one-loop

A more complex realization of the idea that strings arise from spin chains is realized
by the N = 4 SYM integrable spin chain. The simplest closed sector consists of operators

made out only of complex scalars X, Z:

O~ .. ZXMzXP ZXk7 . .. (5.25)
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Since we are interested in operators describing open strings, we will take the end points of
the word ZX*M Z Xk . . ZX* 7 in to be sewn together to an operator of dimension
A ~ O(N), as opposed to taking a simple trace. Operators belonging to this SU(2) sector
which correspond to open strings between giant gravitons were studied in [73], and further
n [58, 44, [43], 62]. One important aspect of such spin chains is that the number of sites
is indefinite in the usual SU(2) spin variables. One way to deal with this is to chose
to fix the number of Z’s appearing in the operator, while letting the total number of
letters fluctuate. This would correspond to a Heisenberg magnet where the number of
spin up sites is constant, but the number of spin down defects is allowed to change. The
Hamiltonian for this system is more naturally expressed in terms of bosonic oscillators

that satisfy the following Cuntz algebra instead of the usual harmonic oscillator relation:

ATA =1-10) (0]
(5.26)
AAT =1
In these variables the one loop Hamiltonian is:
\ L
Hsuz) = 2 Z ( z+l> (Ai — Aitr)
™ =0 (5.27)

Ag=¢ Apa=¢€

Despite the simple form of this Hamiltonian, the fact that the raising and lowering oper-
ators satisfy a Cuntz algebra makes the spectrum of the system very complex. However,

the ground state of the system can obtained by a coherent state ansatz [74]:

Alz) = z|z)

- VITFEY. (o
n=0

(5.28)
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With the energy function being given by:

L

E = )\Z (Zl* - Z;Ll) (2 — 2i41)
=0 (5.29)

20=4§, zp11=4¢

As in the toy example, the energy is minimized whenever the z; satisfy a second difference
equation. Another way of stating this is that the ground state can be associated with
a straight line inside a flat unit disk, and the central charge density of the string is

associated to the quantity:

This Hamiltonian can also be thought of as a first term in a the curvature expansion of
a light-cone Hamiltonian of the string on R x S®, with discrete light-cone momentum
@ = L+ 1. The zeroth order correction to the energy is simply the light-cone momentum

(Q = L + 1. The ground state energy to leading order is given by:

_ N LA [E=¢P
E=Fy+ E; + —(L+1)+2<4W2> 1 + ... (5.31)

Higher order corrections to the ground-state energy have been computed in [45], and in

agreement with the dispersion relation (5.14]).

5.2.3 SU(3) open spin chain at one-loop

We will now consider operators belonging to a holomorphic SU(3) sector. As with
the SU(2) case, it will be convenient to fix the number of Z’s appearing in the operator,

so that the most general operator is of the schematic form:

O~ . IWWZWy. .. ZWLZ ... (5.32)
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Where W; are arbitrary words made out of the fields X,Y. Clearly, the usual spin
variables of SU(3) are not well suited for analysing the Hamiltonian of the corresponding
spin chain, because as before the number of spin sites is not a well defined quantity.
One also has to take into account the order in which the X and Y fields appear in each
word W;, so the operators in the Hamiltonian have to be sensitive to this ordering. One
solution to both of these issues is to map this SU(3) spin chain into a Cuntz oscillator

chain with two Free variables at each site:

AAt = BBT =1
AB' = BAT =0
(5.33)
ATA+ B'B =1—10) (0|

Al0) = B|0) =0

The use of such operators for us is that the letters A, B have no relation between one

another, so they can easily encode the words W; by the identification:

X — At

Y — Bf
(5.34)
9 — A

0
ay P

Then, each word W, separated by the Z’s can be viewed as a site for a spin chain of
these Cuntz oscillators. In particular, these are ”bosonic” in the sense that the operators
commute at different sites. Now, we will translate the integrable SU(3) C SO(6) spin
chain Hamiltonian arising at one loop from N' = 4 SYM from spin variables in these

bosonic operators by treating the insertions of the field Z as a vacuum [70], 58].
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SU(3) Cuntz Hamiltonian

The bulk Hamiltonian for the integrable SU(3) chain coming from N = 4 SYM

consists only of interactions of the form

Hij1~ 101 —Piin (5.35)

where P; ;1 is the permutation operator acting on the tensor product of fundamental
representations of SU(3), V;®Vi11, and 1,11 is the identity operator. We need to express
the action of these in terms of the free variables A, B. In the spin variable representation,
there are basically three possible actions that the operator P; ;11 can do: if this operator

acts on a section of a word such as

LP(ZX)... (5.36)

, the resulting word will be ... X Z ...; this deletes the leftmost X in one of the words
W, for some [, and moves attached it to the rightmost spot in the word W;_;. In other
words, this is a hopping term in the Free variable language. The identity operator 1;,;
clearly counts the number of adjacent letters of the same kind. This is also the case for

sections of words that look like:

A (5.37)

and

X7 ... (5.38)
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. These are the same interactions as in the SU(2) spin chain, except that one needs to
keep track of the order in which the letters X, Y are attached to the words Wi:

k—1

Ho a0 (Alg = Al ) (Aie = Aiin) + (Ble = Blia) (B = Binia) - (5.39)

=1

Where A; 1/ acts on the left /right end of the word W; corresponding to the state WW; |0),.

AL (W) |0) = (A:iW;) |0)
(5.40)
Air (W) [0) = (AW])" [0)
Naively one might think that this alone is the correct noncommutative version of the toy
model introduced in the beginning of this section and the correct SU(3) Hamiltonian,
however there is another allowed interaction; the operator P; ;1 can also permute XY —
Y X, for any adjacent X and Y. This seems hard to do in the free variable language,
since this would amount to permuting every pair of different letters inside each word
W,. This means that this is an on-site interaction term; the same is true for the identity

operator. The end result is that the integrable Hamiltonian 1, ;1 — P; ;41 acting on such

combinations of letters is encoded in the action of the following operator:

Vap =Y W' (B'ATAB + A'B'BA — B'ATBA — ATB'AB) W
w (5.41)

(BT, AT[[A,B]

" 1-AtT® A-Bf®@ B

Since this is a somewhat formal expression, we should clarify what such an operator
does. First, the sum over W should be understood as a sum over all Free words in
A, B of any length; this has the effect of annihilating all layers of a word, implementing
either an identity operation, or a swap, and then rebuilding the previously annihilated

layers. The way the normal ordering should be understood is as follows: the expression
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[Bt,A'][A,B]

T ATeA-BTep 1S a formal power series in A, B and A", Bt made out of all possible ways

of multiplying A, B (AT, BT ). The ordering ambiguity is removed by requiring that the
lowering operators act to the right first, without commuting any A past a B, and then
multiplying to the right with the raising operators in the transposed order. Finally, the
bulk Hamiltonian for the integrable SU(3) spin chain with a variable number of sites can

be written as:

L—1
Hsu =AY { (AI,R - AZ'L+1,L> (Air — A1) + (BZR - B1T+1,L> (Bir — Bit1,1)

. [BLAl[A;, B ]
" 1-Al®A -B @B

(5.42)
This Hamiltonian can be easily generalized from SU(3) to SU(N) by introducing N — 3

additional oscillators at each site and replacing the relations between them with:

ArAL =6,
N-1

ATA; =1—10) (0] (5.43)
I=1

Ar]0) =0

This is very similar to the representations of SU(N) in terms of constrained bosons [75].
One should be able to also include fermionic operators with slightly different relations
to describe the SU(3|2) sector of the theory without too much difficulty as in [70], but
we leave this analysis for a later time. At first this change of variables might seem a
bit convoluted, since the on-site interactions look very complicated, but it turns out the
the coherent state analysis becomes very simple. This would not be the case with the

usual SU(N) spin coherent states found in the literature, since the number of spins in
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the chain is a dynamical quantity.

SU(3) Cuntz Coherent states

The fact that the lowering operators A, B always act first suggest that we should
look for a coherent state ansatz for the ground state; to do this we should build coherent

states for these kinds of operators. There is a natural ansatz for these:

|z, y) Z 96AT+yBT )" 10) (5.44)

n=0

To check that this indeed works, we notice that if one applies the A lowering operator

on zA" + yBt, it will annihilate the B'’s and combine with the A':
A(zA" +yB") = 2 AAT + yABT = (5.45)

In other words we have:
Alz,y) = x|z, y)
(5.46)
Blz,y) = ylz,y)

So the seemingly formal objects |z, y) are indeed coherent states. One last thing to check

is whether these states have finite norm. This norm can be easily evaluated using the

relations (5.33)),

- 1
(@, yle,y) =D (|2 +1y?)" ST REP P (5.47)
n=0

which means that these states are only well defined for |z|? + |y|* < 1.

As mentioned previously, we wish to consider variational wavefunctions of the form:

U(z;, 1)) ® |, yi) (5.48)

87



Open Spin Chains and Giant Gravitons Chapter 5

When we evaluate the expectation value of the Hamiltonian (5.17)) on this set of states

we recover the same variational energy function that that we encountered before:

L—-1

E({zi, yi}) = /\Z (| — 21 |* + |yi — yira]?) (5.49)

i=1

One important simplification is the vanishing of the expectation value of the on-site in-
teration term; this happens because the coherent states have the effect of replacing A
and B with commuting numbers x,y. As before, this energy function is minimized when-
ever the coordinates x;,y; satisfy separate second difference equations. Since the set of
linear equations resulting from this are underdetermined, we have to impose boundary
conditions in this case too. Before that, we will first give a brief discussion of the quan-
tum numbers of these ground states, and show their agreement with the classical open
string picture . Lastly, the form of the energy functional makes it seem as if the
coordinates x,y are independent of each other. This is not the case, since the normal-
ization constraint couples them. More explicitly, their (quantum) commutation relations

inherited from the Kéhler form are nontrivial, as we will discuss later.

Quantum Numbers: Q and J

In analogy to the classical open strings on S°, the ground state of this spin chain is
determined by three quantum numbers, the central charge Z and a pair of spins @, J.
The spin @ in the spin chain corresponds to the total number of Z’s in the word, and is

related to the total number of sites L of the spin chain:

Q=L+1 (5.50)
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This makes sense, since the angular momentum along the circle ¢ is quantized. This is
not the case with the spin J; the rotational symmetry associated to J is spontaneously
broken by the end points of the string, so the corresponding quantum number is no longer
quantized. This is reflected on the fact that the number of X’s and Y’s in the chain is not
constant. The spin J is also associated to the R-charge in the BPS shortening condition
A — J = 0 that the giant gravitons to which the strings are attached must satisfy. In
the spin chain, this is given to leading order by the expectation number of the number
operator:

|zil* + |yl

L
‘ = (5.51)

L L
. . AlA; + B! B
N = N; = : el L
; ; 1 - AlA; - Bl B,

For large Q) = L + 1, this is in precise agreement with the expression coming from the
classical string solution, to leading order in the t’Hooft coupling.
Berry Curvature and Symplectic form

To find the symplectic form associated to the parameters x, y we need to evaluate the

Berry curvature:

Ay = ((t), y(0)] 10y [« (t), (1)) (5.52)

This can be evaluated by first computing:

(w210 o(0).y(0) = 0 00 (5.59)

And substituting w = z(t) and z = y(t):

Ay = (a(t), y(0)] i, [2(2), y (1)) = i (” Ifﬁx‘jié : yy*) (5.54)
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This is precisely the same form as the one-form 4 appearing in the metric on which the
classical string moves (5.4)). To find the Kéhler form one needs to take the derivative of
this quantity in the correct (holomorphic) way. Doing this carefully gives the symplectic

form on the unit complex hyperbolic disk:

__dx/\di—%dy/\dg_%(idx—%gdy)A(xdi—Fydg)

0= 5.55
1= [z = [y]? (1= 2> = [y[?)? (55

This shows that even in the semi-classical limit, that is when one takes the coherent
state expectation value of the quantum Hamiltonian as a classical Hamiltonian for the
system of string-bits, the coordinates x and y are still interacting, despite the fact that
the quantum interaction term vanishes. Omne thing to note about this form, is that
if one restricts to surfaces where y = dy = 0, the Kéahler form reduces to the usual
canonical form dx A dx. This is true in all orthonormal bases; if one sets one of the
independent coordinates to zero the Kéahler form reduces to the canonical form in the

left over coordinate.

5.2.4 Open Boundary Conditions for SU(3) open Cuntz Chain

One subtle point that was ignored in the previous section, is what happens to the
operator O at the end points. In principle, the operator is attached to a coherent com-
bination of quarter BPS operators corresponding to the giant gravitons. In practice,
constructing such operators is combinatorially diffucult, and the non renormalizability
properties of quarter BPS operators are less restricting than that of half BPS operators
[76].

These issues can be bypassed by finding boundary terms for the Hamiltonian (}5.17)
that implement the correct boundary conditions on the ground state (6-8), and only

dealing with long spin chains so that the curvature corrections to this prescription are
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well under control. From this it becomes clear that the generalization for the boundary

terms of the SU(3) Cuntz chain should be:

VDL ~ F(A17 Bl)TF(Alu Bl)
(5.56)

Vpr ~ G(AL, BL)'G(AL, By)

We should note that there is an ordering ambiguity in defining these boundary terms,
since the operators A;, B; do not commute. One possible choice is to consider a completely
symmetrized polynomial in the lowering operators. For example for a polynomial F'(z,y),

one can build an operator F(A, B) as follows:
F(z,y) = Z Fymxy™

1
F(A,B) =" Fun (" ;m> S amBe

permutations of A,B

(5.57)

Since this operator differs from other orderings by commutators, the difference from this
choice is a higher curvature correction, which is subleading in the limit of long chains
L>>1.

This means that the most general (and Free-est) boundary terms that implement Dirichlet
conditions are of the form

VoL = A F(Ay, B)) F(Ay, By)
(5.58)

VDR = A g(ALa BL)TQ(ALa BL)

When applied on the Cuntz coherent states, these will lead to the extremization condi-

tions:

Ty — To + [ale(%,yl)]* F(Ilayl) =0
(5.59)

Y1 — Yo + [0y F(x1, 1) Fz1,11) =0
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At this point, it should become clear that the analysis is identical to our simple toy
boson Hamiltonian, since the noncommutativity of A and B is erased when one replaces
them with c-numbers. In the next section we will compute the ground states for a some
simple examples of boundary conditions, and we will show qualitative agreement with the
fact that introducing such boundary terms does indeed describe open strings stretching
between various D-brane set-ups. Then we will outline a general method for finding such

ground states for generic holomorphic boundary conditions via a level-set analysis.

5.3 Some simple examples of boundary conditions

5.3.1 Branes at angles

Let us consider a simple class of boundary conditions for the SU(3) spin chain which
reproduce the boundary conditions associated to giant gravitons wrapping S*’s at angles
inside S°. To clarify what we mean by having these branes at angles, we should clarify
the geometry of the S® in quarter BPS coordinates. In these coordinates, the geometry
of the S% is better described as an S! bundle over a disk D? . For simplicity, we will
take the giant gravitons that wrap the S! fiber throughout, while they lie in a line inside
D2 A (complex) line inside D? is determined by a two component vector (x,y). The

angles between any two lines can be determined by a PSU(2) = SU(2)/Z, matrix g:

g= (5.60)

More explicitly, we can align the first giant to lie along the Y axis of D?. This means
that the D3 brane is point like in the X direction, and we may denote its position to

be £&. The position of the string end point along Y is undetermined since the boundary
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condition along the D3 brane allows it to me freely along it. This would corresponds to

a boundary term in the spin chain like:
Vi=a(Al-¢) (4 -9 (5.61)

For the second giant graviton, let us take a line inside D? of the form L : X +aY —n = 0.
Then, there is a complex codimension one surface with coordinates X — fY normal to
this line. This surface would be the analog of the LLM disk [I6] after a change of
coordinates. We can choose to place the giant graviton at position aX + Y =n as a
Dirichlet boundary condition. Again we are not allowed to fix the position of the string

end point along L. The boundary term in this case would look like:
Ve=A (oz*AE + BBl — n*) (aAr + BB —n) (5.62)

Making use of the coherent state ansatz introduced in the previous section, we obtain a
simple variational function for the ground state energy. The bulk equations on the spin
chain imply that the difference z;,1 — z; and y;1 — y; are independent of the site i. The
only non- trivial step is to solve the boundary equations of motion. Let us first solve the

equations for y;:
1 0F
A Oy

=y1—y2=0 (5.63)

This in particular sets all bulk equations for ¢ to zero. On the other end of the spin chain

we get the condition:

1 0F
oy B*(axr + Py —n) +yr — yr—1 = B (ax, + Py, —n) =0 (5.64)
L
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Where we used the fact that yo —y1 = yr — yr_1 = 0. Turning to the x; equation we

find that for nonzero [, the bulk equations for the x variables must also vanish

1 0F
~———=a"(axp,+Pyr—n)+arr—xp 1 =2, —2-1=0 (5.65)
A0z

Finally, the equation for z; can only be satisfied if the string remains at z; = &:

1 0F
T :xl—f—i‘(l’l—l’g) :$1—§+($L_1—1’L) :.7)1—520 (566)
A Oxy
This means that the energy is minimized when the string localizes at the intersection of

the two branes as expected:
r;=§
(5.67)
ax; + Py =1
Notice that solutions to these equations only give normalizable states whenever these
solutions lie inside the unit disk |z|? + |y|> < 1. In that case, the corresponding state
is a zero mode of the Hamiltonian, as one would expect of the lowest energy modes of
a string localized at the intersection of two D-branes. If the intersection of the lines
lies outside the unit disk, the gradient flow of the Hamiltonian will push any variational
wavefunction towards this would be intersection, so that eventually the strings hit the
boundary of the unit disk and become non-normalizable states.
One important point is that one should be able to see the eigenvalues e of the SU(2)
in the string spectrum. In the double scaling limit where the tension A and spin L + 1
are very large with ﬁ < 1, the commutator terms in the Hamiltonian should be
highly suppressed, and the energy can be approximated by the continuum limit. Since

the commutators [A;, B;| are small, the leading contributions come from fully symmetric

tensors representations of the SU(2) symmetry that rotates A and B into each other.
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The continuum action can be obtained by using the symplectric form obtained from the

coherent states:

H= /\/da (|0z]* + |0y|*) (5.68)

Although this looks simple, the commutation relations of the coordinates are non-trivial

due to the curvature of the Kéhler form Q = £991log (1 — |z|* — [y[?):

[2(0),%(0")] = 26(c — ') : (1 = [a(0) ") (1 = |z(o)]* — |y(o) ") :

20(0 —o') : 2(0)5(0) (1 — |z (0)[* = [y(o)[*) :

(5.69)

=
=
=
q\
I

Then one would proceed by doing a mode expansion along the coordinate o. In the
semiclassical regime, the boundary conditions can be implemented on these modes be-
fore quantization, Since the D-branes are related by an SU(2) rotation, we ca usen the
eigenbasis of this rotation for the worldsheet coordinates; one can always chose to place

the first D-brane along Rez and Rey, and the second at a rotation (and a shift) of these

axes with eigenvalues e*®. In these coordinates the boundary conditions have a nice
form [77]:
0 0
— Rexz(0) = — Rey(0) =0
55 Re(0) = 5 Rey(0)
Imz(0) =Imy(0) =0
% Reez(1) = % Ree ™y(1) =0 (5.70)

Ime“z(1) = ¢
Ime“y(1) =0
The constant term at ¢ = 1 can be taken care of by explicitly solving for the zero more

xg = &sinf. The fluctuations around the zero mode get a phase shift of #/7 in their
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mode number:

x(o‘) =20+ Z ei(ﬂn—e)aan_e/ﬂ_

n#0

y(o) = Z S S

n#0

(5.71)

In the limit of small fluctuations |z| << 1, the mode operators reproduce the flat space
spectrum of open strings on a pair of D-branes intersecting at angles, but in general the
commutation relation between the modes are nontrivial even at this order. This is not
surprising, since even the discrete Hamiltonian function coming from the coherent states
is not the Hamiltonian for a free particle; in polar coordinate representation x; = /p;e'%
and y; = /e, the Hamiltonian is an SU(2) generalization of a class of Calogero

integrable systems [78]:

L L
H = Z pi +G) + Z (\/Pipj cos(pi — i) + /min; cos(b; — Qk)) + Vioundary (5.72)
i=1 i,j=1

We won’t dwell too much into the exact form of the boundary terms, but we will comment
that since they come in the form of a polynomial in x,y, in polar coordinates these will
look generically like a complicated sum of spherical harmonics for S°. As before, the
subtlety arises in that the Kéhler form is non-trivial, so that the pairs {p;,n:}, {©;,0;}

are not canonical conjugates to each other.

5.3.2 Massive %-BPS states

One thing to note about the class of ground states in the previous section is that they
all are either massless, or have non-normalizable wavefunctions. This is expected from
D-brane intersections; at a holomorphic/supersymmetric intersection, the states localized
to this loci preserve both the supersymmetries associated to each of the branes. Naively

one would think that this might be lifted to a massive BPS state if the branes are moved
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apart in a transverse direction, but this is not the case since a massive BPS multiplet
has twice as many degrees of freedom as a massless BPS multiplet. To obtain massive
states we should first look for boundary conditions for which the ground state is doubly
degenerate and massless, meaning that the D-branes intersect twice or at a double point,
and then separate the branes transversally. One simple choice of boundary term is to

replace the linear relation in (5.62)) with a conic:
2
Vi = A (ATL +(B) - ) (A + B2 — 1) (5.73)

We can repeat the analysis of the previous section to find that the variational energy is
only dependent on the first and last coordinates z; 1, y1,1, the only difference being that
the solutions to the minimization problem need to be split into two cases. The equations

in question are:

ry— & — (n—xL—yi) =0
(5.74)
v (n—aL—y1) =0
These must me supplemented with the constraints:
Tip1 — X = Tijp2 — Tip
(5.75)

Yier — Yi = Yixo — Yir1 = 0

Clearly the solutions depend on the relationship between ¢ and 1. More explicitly, we
can look for solutions for which y; # 0, which sets ©1 =2, =&, y1 =y = --- = yr, and

xr +y2 =n. Solving for ¥ gives two solutions :

5::{71:---:])[/

ypi=-=yr=+1VE—

(5.76)
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Since the equations at the boundaries z; = £ and z + y7 = n are satisfied, the energy
of these two states vanishes..

The other case occurs when we look for solutions with y;, = 0. The only zero energy
solutions in this case are those with & = n, which are a limiting case of the previous
solutions. For & # 7, the second equation in is automatically satisfies, and the first
equation gives that x;1 — & = n — xy. The constraint equations also tell us that this is a

constant along the spin chain, so that:
Tip1 — 2 = (L+1) (n = &) (5.77)

Finally, the energy can be evaluated to be:

LA\ In=€P
E‘E(H) LT (5.78)

5.3.3 Branes Wrapping Holomorphic Cycles

It is not hard to see that the for generic intersecting and holomorphic curves, the
ground state wavefunction will be localized at the intersection as in the previous case. So

without loss of generality let us consider two giant gravitons specified by the equations:

F(z0,10) =0 (5.79)

G($L+17 yL+1) =0

Where we introduced additional ”end-point” coordinates for the string. The boundary

terms for a string with such a configuration are given by

VDL = )\ ]—"(al,bl)T}"(al,bl) (5 80)

Vbr = A Glag,br)'G(ar,br)
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Repeating the analysis of the previous section, it’s not hard to see that the bulk variables

x;,y; for e = 2,... L — 1 serve purely as lagrange multipliers which set the equations:

OF \™ OG\"
<8_a:1) F(wlayl) = - (0_%) G(xLayL) =T — Ti—1

OF\® oG \*
<8_y1) F(xy,p) = — <3_yL> G(xrp,yr) = ¥i — Vi1

This means that the energy function expressed purely in terms of the variables 1, y1 1.

(5.81)

is:

2

ML -1 | [9FY G \*
b= \(axl)F (a—u)G

+ )\|F(:U17 y1>|2 + )\|GxL7 yL|2

2 * *
ML—lW(@F) (aa)
p A e (2 ¢
4 oy YL,

(5.82)
The first think to note is that the quantities |F'(z1,y1| and |G(z,y.| are the geometric
distance from the D-branes to the points (z; 1, y1.1) along a straight line. Also, since
the expression x; — x; 11 is holomorphic, the corresponding left hand side of must
also be holomorphic. This means that either x; — x;;1 vanishes whenever F* depends
explicitly on z7,yj, or if (gTFlY is a constant , then this would allow us to have a non-
trivial central charge density in the x direction x;11 — x;, and similarly in the y direction.
By arranging that the magnitudes of the functions at the first and last sites are equal
|F'| = |G|, meaning that the distance from the first and last string bits to the D-branes
is the same, it becomes clear that the energy is simply the length of the line connecting

two points in the two D-branes where the normal vectors are parallel. To make this more
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precise we can introduce the quantities:

OF \* 9G \"
02, = < ) F(zi,) = — (—) G(zL,yr) =z — xi

8_113'1 a{L'L
OF\" OG\"
0Z, = <8_y1) F(zi,y) = — <3_yL) G(rL,yr) = Yi — Vi1 (5.83)

62" + |02, = 02" = |F|* = |G

This extremization procedure is somewhat reminiscent of a toric decomposition, where
the moment map (or D-terms) are given by:

Py = |Tig1 — 951'\2 = |53:c|2
" (5.84)

My = |yi+1 - yi|2 = ’(SZyP

After doing this reduction of (DQ)L7 the only thing left to do is to minimize the boundary
contributions (or F-terms):
(dzy +dxp)dZ; + (dyr + dyr)oZ;
0 Z* N
0 0
0= |dris—+dy - |
Z { Tig T yayl} (5.85)

oW =

€

This means that the space of variational ground states has a nice decomposition in terms

of the levels sets of the moment maps: (5.84)):

{ground states} = U {ow =¢e} Ju " (|62)?) (5.86)
0z

The case with 62 = 0 should be treated with care; this is precisely when the boundary

curves intersect and € should be taken to vanish, since this is exactly the deformation
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parameter that resolves the intersection for massive states.

In general, this space is not connected, and has isolated points whenever the there
exist massive ground states. An important point to make about this decomposition is
that it shows that there is an additional set of conserved charges in the ground state
of the system, the central charge densities z;11 — x;. This should be seen as a further
indication that the coherent state ansatz for the ground state of these spin chains is some

sort of Bethe wavefunction with complex Bethe roots z; as was noted in [44], 23].
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Chapter 6

Generating Functions for BPS

Operators

6.1 Introduction

Recently, there has been a renewed interest in determinant operators in large N
holographic gauge theories and their string dual description as giant gravitons [9, 10, 19|
13 B]; the dimension of these operators is order N, which makes them ideal to probe
sub-AdS physics. A natural basis for gauge invariant operators is the Schur functions,
which are characters of the unitary and symmetric groups. Combinatorial methods for
computing correlation functions in free N' = 4 SYM were developed in [48] [79]. More
recent works have emphasized the utility of an effective action approach obtained by
recasting the determinant operators as fermionic integrals and integrating out the super
Yang-Mills fields. In this description, the non-perturbative physics of the problem can
be obtained from a saddle point approximation for an effective action in terms of a set
of collective fields [9] [19].

A similar prescription for AdS giant gravitons was proposed in [I1], where it was re-
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alized that the norms of BPS states are encoded in the expansion of the Harish-Chandra-
[tzykson-Zuber (HCIZ) integral, which appears in the evaluation of the norms of a certain

class of gauge invariant coherent states:

O\(0) = /SU(N) dU exp (Tr [AUCLTZUT]> . (6.1)

This sheds light on why the group characters evaluated on the Yang-Mills fields may
serve as an orthogonal basis, even though they are only orthogonal with respect to the
Haar measure, and gives a different interpretation of the norms of BPS states as the
coefficients in the expansion of the HCIZ integral. This technique has the advantage
of repackaging the combinatorics of the Schur functions into integrals over the unitary
group.

The Harish-Chandra integrals have natural generalizations to the B, C', D series,
Sp(2N) and SO(M). For a choice of simple Lie group G, the HCIZ integral has an exact

formula in terms of a sum over the saddle points:

. e(w)elw@)y)

H(x,y) = /e<Ad9( W dg = ngezw m (6.2)

Each saddle point of the integral corresponds to a Weyl reflection, and the denom-

inators are given by the discriminant of the Lie algebra. These integrals have received

less attention than the unitary HCIZ integral, which serves as a single plaquette model
in lattice gauge theory.

The bulk of the work on probing finite N physics is limited to field theories with U (V)

and SU(N) gauge groups (see [80, 1], 82, [83]), but more recently, there has been some

interest in extending these studies to field theories with Sp(2N), SO(2N +1), or SO(2N)

gauge groups [84, [R5, [86]. There is good reason for this surge of interest: maximally
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supersymmetric Yang-Mills theory with symplectic and orthogonal groups are dual to
type IIB strings on AdSs x RP® [12]. Depending on the choice of the orientifold projection,
the gauge group of the theory is either Sp(2N), SO(2N+1), or SO(2N); S-duality relates
the spectrum of the Sp(2N) and the SO(2N + 1) theories, while the SO(2N) theories are
self-dual. The exact matching of the spectrum for the symplectic and orthogonal theories
is poorly understood, due to the combinatorial difficulty associated with constructing
states of these theories.

In this chapter, we study BPS coherent states of ' = 4 SYM for special orthogonal
and symplectic groups. The norms of such states are given precisely by a Harish-Chandra
integral over the corresponding group. By explicitly expanding the integral, we find
that these coherent states serve as generating functions for gauge invariant states in
the gauge theory, and the corresponding coefficients in the expansion give their norms.
In principle, this gives a way of constructing an orthogonal basis of states for these
theories from group theoretic data for the corresponding gauge group. We argue that
these generating functions are only able to capture information about the "unitary” part
of the gauge symmetry, which is to say that operators we find in the expansion match
in form to operators in the unitary theory. In section 2, we review the construction
of gauge invariant coherent states for the SU(NN) theory. In section 3, we generalize
this to the symplectic case and argue that the odd special orthogonal case is related to
the symplectic case by a rank-level duality that exchanges a Young diagram with its
conjugate diagram. We repeat the calculations for the even orthogonal case. In section
4, we discuss other attempts at finding an orthogonal basis for Sp(2N), SO(2N + 1),
or SO(2N) and how our results can be interpreted in a relevant context. Finally, we

conclude with a discussion of a few open questions and future directions of work.
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6.2 Review of the U(N) case

We begin with a brief review of BPS coherent states in U(N). The same analysis
may be applied to any free gauge theory with an adjoint scalar field Z. We know from

[T1] that given a naive coherent state F[A] of the form:

exp (Tr(A . aTZ)> 0), (6.3)

where A is taken to be a diagonal matrix-valued set of parameters and al is the raising
operator for the s-wave of the field Z on S? in [I7], we may introduce an auxiliary U(N)
group action and average over the group, which allows us to rewrite a gauge invariant

coherent state as:

FIA] = m / dUexp(Tr(UAU‘laTZ)> 0) (6.4)

where dU is the Haar measure. Our normalization factor Vol(U(N)) = [ dU; we can set
it equal to one for the sake of brevity. We may compute the overlap of F[A] as defined
in Eq. (6.4) with its adjoint F[A] by evaluating the HCIZ integral:

FIA] = FIA] = / dU exp (Tr (U*U\UA’)) . (6.5)

We see that we have sidestepped most of the Wick contractions of the matrix operators
(aT);, which would make F[A] difficult to compute in the form it takes in Eq. (6.4]). F[A]

can be evaluated through a character expansion, as described in [87]:

FA =S finRm)xR(a*Z) 0) (6.6)

We may also rewrite Eq. (6.5]) through a character expansion:
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Z —XR Xr (M) (6.7)

We can then compare the coefficients of the characters from the equation above to

what we would obtain from multiplying Eq. by its adjoint and find:

(0l xr(a)xr(a") |0) = fr (6.8)

It becomes obvious that we must compute fr to evaluate the overlap of yg(a) and
xr(a'). The thing to keep in mind is that the representations R in the coherent state
F[A] correspond to Young diagrams for U(N), which are characterized by the indices
J1 > J2 > ...JN, where each index j; iterates over row i. Because these are characters of

the unitary group, they may be rewritten with the Weyl character formula:

det (XH)

X5 (A) = TTAG) (6.9)

where A, are the eigenvalues of A and A(A) is the Vandermonde determinant of A. Then

we may rewrite the HCIZ integral as a product of these expanded characters:

det (eXp ()\J\;) )
A(M)AN)

I(AA) = / dU exp <Tr (ff*%ﬁ]\’)) - (6.10)

where €2 is a normalization constant. We rewrite the numerator to reintroduce fg:

Qdet (exp(NA))) = Z I det ()\JHFN z) det ()\’JHFN l> (6.11)

3‘ J

We have relabeled R with the indices ;‘, and have rewritten the equation above ac-
cordingly. The expressions inside the determinants are monomials and correspond to the

term [], )\ZﬁN*i + ... in det (A?JFN*Z'). Thus we may expand the exponential in Eq.
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(6.11)) as:

det (exp(Ad)) = 3 ﬁ det(AX)™) = 37 [L

|
] !

det(N') [N +.... (612

7

where we have made use of the multilinearity of the determinant. The factor [n]
encapsulates ny,...,ny; then [n]! = J];n;!. We see that we are limited to ny > ns...
when we restrict ourselves to the monomials with the correct descending order; when
we set n; = j; + N — i, we arrive at an explicit sum over the characters. Thus our

denominator f; may be computed as:

= TG+ N =i, (6.13)

We may set fz =1, as (0/0|0|0) = 1. Then we arrive at:

Q=]Jw - (6.14)
From this we can easily read off the norms of the states yr(a'):

(xr(a)xr(a")) =0 Hi(]{i N i)!, (6.15)

which agrees with the well-known result of [48].

6.3 Symplectic and orthogonal cases

Before repeating the analysis for the other simple lie groups, we should comment

on the interpretation of the Sp(2N) and SO(N) theories as orientifold projections of a
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unitary theory. To do this, we first consider a simple toy model correponding to a single
harmonic oscillator. As it turns out, this simple model captures a lot of the qualitative

behaviour of the answer for symplectic and orthogonal groups.

6.3.1 A toy model for the orientifold projection

As a warm-up, we consider a single quantum harmonic oscillator:

[a,a'] = 1. (6.16)

A natural basis of states for this system is the eigenstates of the occupation number
operator n|n) = n|n). One thing that we may do with this system is to define a par-
ity operator 2 = (—1)" and further divide the set of states into those that are mutual
eigenvectors of n and 2. This gives an orthogonal decomposition of the Hilbert space of
the harmonic oscillator into sectors of positive and negative parity H = H, @ H_, and
divides all the states into even and odd states under the orientation reversal transforma-

tion
P:x— —x
(6.17)
P:p— —p,
where x and p are the position and momentum operators. Because the raising operators
are monomials in x and p, the odd parity states are created with odd numbers of rais-
ing operators and vice versa. The operators % (1 £ Q) respectively serve as orthogonal
projection operators into H, and H_.
What we would like to do is build coherent states in each of these two sectors of the

theory. For instance, we can project a coherent state into the sector of positive parity by

applying the operator £ (14 Q):

108



Generating Functions for BPS Operators Chapter 6

(1+Q)]a) == (1+e™) e |0) = <e‘mT + 6_0‘”T> |0) = cosh (aa') [0).  (6.18)

N | —

1
2

N | —

We call this state |, +). One nice property of this state is that it is annihilated by a?***

for any non-negative integer k. It is also an eigenstate of a? with eigenvalue o?. In this
sense, we can call this a coherent state for the positive chirality sector of the model. By

a similar computation, the overlap between any two of these coherent states is given by:

(B*,+ |a, +) = cosh (af3) . (6.19)

The case for negative parity requires more care, and will be the case that is relevant
to the analysis of the Sp(2N) and SO(2N + 1) theories. If we project a coherent state

into the sector of negative chirality, we obtain the state:

(1 —9Q)|a) = sinh (aa') 0) . (6.20)

N | —

The issue is that this state is not a coherent state in the usual sense; when we act on
the state with a lowering operator, the state won’t return to the original state since the
minimum ocupation number that appears in the series is |1). Rather, this state is also
an eigenvector of a? with eigenvalue o®. Since the original vacuum state is annihilated
by the projector % (1 — ), the true vacuum in this sector is the state occupation number
one |1). By a relabeling of the states for the odd sector, the coherent state can be written

as

|, =) = —i sinc (iaa’) |0), (6.21)

where sinc(z) = *2%, and the new vacuum is ‘(~)> = |1). A simple computation yields the
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norm of this coherent state:

. _ sinhap
(B, = o, =) = af (6.22)

6.3.2 The symplectic HCIZ integral

We now seek to expand our definition for a well-defined BPS operator averaged over

the unitary group to the symplectic group:

Fapom[A] = m /S o dre(Torg el 10) (6.23)

where dg is the Haar measure for the symplectic group and Vol(Sp(2N)) = fSp(2N) dg
is a normalization factor, which we can always rescale to one. The group elements of

Sp(2N) can be represented by 2NV x 2N matrices that are both unitary and symplectic:

QTQ = Loy
(6.24)
9" =9,
where () is a choice of anti-symmetric symplectic matrix:
0 1y
Q= . (6.25)
-1y O

The symplectic condition (6.24)) translates into the orientifold projection of the Chan-
Paton indices for the open strings ending on a stack of 2N D3 branes [12]. This forces the
raising and lowering operators of the Sp(2N) theory to satisfy the orientifold projection

condition:

Qd, Q= (a,)T = —al,, (6.26)
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where the transpose is taken on the group indices, which we omit for clarity. This means
that any operator made from traces of odd numbers of fields will automatically vanish.
We choose to normalize the commutation relations for the raising and lowering operators
by a factor of %, which will make the computation of the norm of the coherent state more

transparent:

(8407, — Q7). (6.27)

DN | —

[(az)j (a})i] =

As with the unitary case, we wish to compute the overlap between two coherent states.
This is done by applying the Campbell-Hausdorff formula; since the raising and lowering
operators have different relations from the unitary case, we must check that commuting
the exponentials really simplifies the norm into the form where it can be evaluated by
a Harish-Chandra integral. After some algebra, we see that in the symplectic case, the
exponentials can be commuted as follows:

[Tr (ga.g'A) , Tr (halhTA)] = %Tr (ghA(gh)TA) + %Tr (gAgt QR AT (RT)71Q)

(6.28)
= Tr (ghA(gh)TA) .

The second term in (6.28]) is equivalent to the first term after using the group relations
(6.24]). This means that once again, we can compute the operator’s overlap with its

adjoint with the symplectic Harish-Chandra integral:

FSP(QN) [/_\] * FSp(zN) [A] = /df] exXp (Tr (§_1A§/_\’)) = HSP(QN)(A, A/), (629)

where Hgpn) (A, A') is given in [38]:

. aN-1 det [sinh (QAj/_\ZH?N
Hpoom (A, N) = op + 1)! T T 6:50
Sp(2N)( ) ( }1:[1 ( p ) ) A (A(Q)) A (A(Q)) sziv1 /\i)‘; ( )
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The denominator in this formula is computed using the Weyl denominator formula

for the corresponding discriminant, as demonstrated in [89] ©0]:

Agiamy ( H Ao T (8 =A%) =det(A) A (A?) (6.31)

j 1<j<k<N

Thus we may rewrite Eq. (6.30) as:
Ay on) (N Aapion (V) Hispon (A, AY) = (H(zp + 1)!) det [sinh(2A;A7)] . (6.32)

p=1

The numerator can be simplified by using the identity that sinh(QAj/_\,’,f) is a modified

Bessel function of the first kind of order v = %, and expanding the determinant. We
know that:
= = + - 2m+1 =1\ 2m+1
. N Y /
sinh (2AA") = VAN Iy (2AN)) = mE:O il @m T Dl (AN) (6.33)

Then we can use the Cauchy-Binet formula to expand the determinant:

mi+1
det [sinh (2A;A;) Z H o~ zml ) det [A?miﬂ] det [K’?m#l} (6.34)

Thus Eq. (6.30) becomes:

N omitl (o det [AZ™] det | A2™
H AN = \ \
spem (A A7) = H — AV =N

m;

(6.35)

m;! (2m; + DU

z<j<

Once again, if we set m; = p; + N — i, we may rewrite Eq. (6.23]) as an explicit sum
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over the Schur polynomials:

Hapan (4 4) = 3 2, (A)42), (6.36)
" 12

where the coefficient in the expansion is given by

N : :
fu:H(/Li+N—z)!(2,ui+2N—2z+l)!! (6.37)

QuitN=i+1 (2 — 1) ’

i
and the sum is taken over all integer partitions pu.

This form of the expansion is natural from the point of view of the orientifold projec-
tion, since we projected out all the states with an odd number of raising operators acting

on the vacuum state. Similarly, the operator that creates the coherent state must have

a formal expansion of a similar form:

O, = /S o ae (T (907 1aL ) = > fiuxum?)xu((a})% (6.39)

This indicates that just as in the unitary case, the norms of states are given by the inverse

of the coefficients that appear in the expansion of the Harish-Chandra integral.

6.3.3 Special orthogonal groups
Odd special orthogonal group

It is known that the Harish-Chandra integral for the odd orthogonal group is the same
as that for the symplectic group. This can be thought of as a result of the S-duality of
N = 4 super Yang-Mills theory; S-duality exchanges the Sp(2N) and SO(2N + 1), while
SO(2N) is S-duality invariant [I2]. This means that the spectrum of the Sp(2N) and

the SO(2N + 1) theories are related by a change of basis. We will argue that this change
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of basis is simply the transpose operation on the Young diagram p associated to a given
representation.

One reason to suspect that this is the case comes from the Schur-Weyl duality for
odd orthogonal and symplectic groups. It is well-known that the centralizer algebra
associated to the k-fold tensor product of fundamental representations of SU(N) is the
group algebra of the symmetric group CS;. This means that the k-fold tensor product
of fundamental representations of SU(N) decomposes into tensor products of irreducible

representations of Sy and SU(N):

Vs@Uk(N) = @ ™ ® U,. (6.39)
A

This is more complicated for the symplectic and orthogonal groups, since the corre-
sponding centralizer algebra is no longer a group algebra, but rather the algebra asso-
ciated to the Brauer monoid. One way to understand this is that the symplectic and
orthogonal lie algebras have additional invariant tensors compared to the unitary case.
For tensor products of fundamental representations of unitary groups, the only invariant

tensors allowed are the identity and permutation operators:

I(V, ®Vh) = Vo, ® Vi
(6.40)

PV, @V,) =V, ®V,.

Clearly these operations are invertible and generate the symmetric group Si. For

orthogonal groups, there is an additional invariant tensor, called the trace operation:
K(V,®V,) — C. (6.41)

These tensors are well known in the integrable spin chain literature, and are the same
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kind of tensors that appear in the SO(6) integrable spin chain [2]. Unlike the identity
and permutation operators, the trace operation is not invertible, and together with the
identity, it generates the Temperley-Lieb algebra T'L,(2N) [91, [92]; the linear span of
these three operations generates the Brauer algebra By(2N). The importance of Brauer
centralizer algebras has been emphasized in [93, 94], where they were used to diagonalize
two-point functions in the space of gauge theory operators and their adjoints. These
operators correspond to bound states of non-holomorphic giants. Brauer centralizer
algebras have also been used to construct coherent states in [95].

Returning to the tensor decomposition of the k-fold tensor product of fundamentals

of SO(2N + 1), the corresponding decompostition is [92]:

L£/2]

VS% (2N+1) — @ @ Dy ® Vi, (6.42)
k=0 A-f—2k

with D, and V), respectively denoting the irreducible representations of the Brauer algebra
and SO(2N + 1). The analogous statement for the symplectic group Sp(2NN) exchanges
N with —N and V), with Wyr, where Wyr is the irreducible representation of Sp(2NNV)

associated to the diagram conjugate to A:

Vekon = @ EB Dy @ Wiyr. (6.43)

Since the Harish-Chandra integral involves group averages of powers of traces of the
form Tr(gAg='A’), it is natural to expect that every term in expansion for the odd
orthogonal groups should match to a term with the corresponding transposed Young
diagram in the expansion for the symplectic integral. This might appear surprising,
since the number of boxes that can appear in a column is bounded from above by N,

while the number of boxes in a row can be arbitrary. One way of understanding this
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apperent mismatch is that the fundamental degrees of freedom in one description might
be mapped to a bound state by S-duality. In reality, representations with arbitrary

numbers of boxes in a column are possible, but will not be irreducible.

Special even orthogonal group

Extending our definition for a well-defined BPS operator to the even special orthog-
onal group requires a little more work. We modify the definition of F[A] to reflect

averaging over the even special orthogonal group:

Fsopm[A] = / A0 exp(Tr(OAOa})) [0) (6.44)

As before, the overlap of F[A] and its adjoint is the corresponding Harish-Chandra

integral:

Fsoem[A] * Fsoan[A] = / O exp (Tr (O—%OA’)) = Hsopn) (A, X)), (6.45)

where Hso@n)(A, ) is given by [88]:

N1 det [cosh (ZAJJ\%)]N + det [sinh (2A;A] )}N
A — | j,k=1 I ) 1 k=1
Hsoen) (A, A) (H (2p).> A (AD) A (VO) . (6.46)
p=1
We note that Eq. (6.44) is invariant under an additional symmetry:
0 — 10, (6.47)

where I is a diagonal matrix with determinant equal to +1. To get rid of this redundancy,
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we could integrate over the entire orthogonal group O(N). For SU(N), Sp(2N) and
SO(2N + 1), this process does not change the value of the integral. This is similar to
what happens in the Kazakov-Migdal model in [96], where the additional abelian part
of the gauge field decouples from the collective field effective action. We also note that

even though the whole integral is invariant under the parity transformation

P:A— —A
(6.48)
P:N — —N,
the overlap is not invariant under the individual reflections of each of the eigenvalue
matrices. This is because the second term is odd under transformation by individual

reflections of the matrices A and A’. Since each state must be individually invariant

under this reflection, we choose to use the Harish-Chandra integral for O(2N):

N-1 det [cosh (2Aj]\§c)];vk:1
Hown) = (11_[1 (2p)!> A(A®)A (A/(2)) . (6.49)

This is precisely the matrix analogue of the norm of the coherent state for the positive
parity states of a harmonic oscillator. The main difference between each of the orientifold
projections is that the vacuum of each theory is charged differently under parity; the
symplectic case formally begins at occupation number one of the parent theory, while

the even orthogonal case begins at occupation number zero.

N

We can now repeat the analysis of the previous sections with det [cosh (2Aj/_\§€)]j b1

. We know that:

cosh (2AN) = VAANT_, (2AA/0)—Zm(AA')2’“ (6.50)
m=0

Applying the Cauchy-Binet formula yields:
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N m
det [cosh (20,A7)] =D T] o~ (2727” —y et [A2] det [A™] (6.51)

Then the Harish-Chandra integral for O(2/V) becomes:

S 2mi 22 — 2 det [Azmi] det [K,]Zmlj|

Howeny (A, A) ZH LA S (6.52)
m‘ 2m — 1 ”Hl<]< )‘2)()‘/1 _ )‘Ij)
By setting m; = p; + N — i, the expression once again becomes a sum over Schur
polynomials:
1
Hom(A ) = 3 (A2 ((A)?), (6.5
PRRAL
where the coefficient is now given by:
p o (it N — i)l (2p + 2N — 2 — 1)) (6.54)
e QuitN=i(2j — 2 '
Once again, we can expand the operator itself as a formal sum:
1
| d0ew (0007a)) = 37 Al (a)?), (6.55)
O(N) PRRETZ

which implies that the norm of the states are given by h,,.

We chose to get rid of the redundancy by integrating over O(2N) rather than SO(2N);
in doing so, we have chosen a specific partition function. The drawback to choosing
O(2N) as our gauge group is that we eliminate the Pfaffian operator, which is defined

as:

Pf(A)? = det(A), (6.56)
where A is a 2n x 2n skew-symmetric matrix. If we make another choice and integrate
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over SO(2N) instead, our Harish-Chandra integral becomes:
N om; 2Z _ 2 det [Azm’] det [K,sz}
(A N) =
Moo M) =2 = or moe )

N gnitt (97y) det [A2nit] det [K’Qnﬁl}

+ - =
ZH ng! (2n; + 1)!! H <3(>‘2 )‘32‘>()‘/§ _ )\/5))

z<](

(6.57)

We see that the Pfaffian of SO(2N), which changes sign under a single reflection,
makes an appearance in the term we previously discarded. If we write A = X 4 i X,
where X; and X are two of the six scalar fields X; in the adjoint representation of
SO(2N) N =4 SYM, then P f(A) corresponds to a single BPS D3 brane wrapped around
the non-trivial three-cycle of RP® [12,97]. It can be considered half of a maximal giant
graviton, which is identified as det(A), since the maximal giant graviton wraps around

the non-trivial cycle twice.

6.4 Multi-matrix Generating Functions

We are interested in studying operators in gauge theories that are made out of more
than one matrix-valued scalar field. In particular, we will work with }—l—BPS operators in
U(N) N =4 SYM on the cylinder R x S3. At weak coupling, these operators can be
built out of symmetrized products of two of the three complex scalar fields of the theory
X,Y. Generalizing to more than two matrices is straightforward. This class of operators
transforms in the [p, ¢, p] representations of the SU(4)r symmetry, and the operators are
generically of multi-trace form. We will concentrate on scalar primary states at an equal
time slice for simplicity. Unlike l—BPS operators, which can be built explicitly in the
free theory, -BPS operators of the interacting theory are different from those of the free

theory. The lifting of states due to non zero gauge coupling can be treated pertubatively
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and the loop corrections to dilatation operators annihilate operators that are made out of
symmetric products of X and Y. This problem was studied in detail for small operators
n [76], but for generic large operators, explicit constructions in terms multi-traces are
cumbersome. An alternative expansion in terms of characters was introduced in [62],
which the authors call the restricted Schur polynomial basis. This basis is convenient for
dealing with the mixing between the different trace structures since it diagonalizes the

matrix of two point functions for all values of V.

6.4.1 Generating i BPS States

Yet another way of generating %—BPS states can be found by studying operators of

the form:

|Ax, Ay) = m / dU exp (Tr [UXUTAx + UYU'Ay]) |0). (6.58)

If we insist that the coherent state parameters Ax and Ay commute, |Ax,Ay) is
annihilated by the one-loop dilatation operator; it was shown in [98] that this persists to
two-loop order. In [99], it was conjectured that the space of BPS states in N = 4 SYM
is given by the kernel of the one-loop dilatation operator at all values of the coupling;
we will take this as a working assumption and work with the set of states annihilated by

the Beisert one-loop dilatation operator:
D3'® = T [[X, Y][0x, 0y]] . (6.59)

Because the states (6.58) are coherent states of X,Y [I1], they form an overcomplete
basis of states for any value of N. This has many computational advantages, mostly due

to the fact that taking the large N limit is very straightforward, but translating back
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into a complete orthogonal basis of operators can be complicated. This may be solved
by computing the norm of the coherent states. By exploiting the Campbell-Hausdorff

formula, we arrive at an integral of the form:

(Ax. Ay |Ax, Ay) = m / dU exp (Tx [UAxUTAx + UAYUTAY]) . (6.60)

Since we can in principle expand in terms of an orthonormal basis, we may use
this overlap to determine the coefficients relating the multi-trace basis of operators to an
orthogonal basis by expanding in a series and matching the coefficients as done in [I1].
The precise tool relating the multi-trace basis operators and the character expansion in
this case is the Weingarten calculus [100]; an example illustrating this technique can be
found in [I0I]. The main obstacle we face is evaluating the integral for generic
coherent state parameters. To our knowledge, these types of integrals have not been
studied before, and a closed form expression for them is needed. Our main goal will be
to evaluate this class of integrals for any value of N. Although we only explicitly study
the case of U(N) integrals, the methods should apply generally and should generalize
to SO(N) and Sp(IN) groups as well as to quivers. These types of integrals are also a
natural object to study in the context of matrix models, since they arise in the study of

multi-matrix models of commuting matrices.

6.4.2 The Four-Matrix Model in SU(2)

Before proceeding to the case of general N, we will study the following integral

f= /m v (Travta+uBUTH] (6.61)
2
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for commuting matrices A, B, A, B. We will first approximate I, by a saddle point
approximation; the critical points of the function in the exponential are given by the

solutions to the equations

[A,UTAU] + [B,UTBU] = 0. (6.62)

For generic enough matrices, this is only satisfied if each of the two terms vanishes
individually

[A,UtAU] = [B,UTBU] = 0. (6.63)

The only problematic cases occur when a subset of the eigenvalues of B is a permu-
tation of a subset of eigenvalues of —A. From here on, we assume that the eigenvalues
are generic enough that this does not happen. This means that, generically, the saddle
points are labelled by permutation matrices U,. We are then left with a Gaussian in-
tegral around each of the saddle points, which can be evaluated easily; this results in a

"one-loop determinant” factor given by:

DQ(G, d, b, b) = ((ll - ag) (dl - dg) -+ (bl - bg) (61 - 1_72) (664)

This gives an approximate value for the integral (up to a convention dependent nor-

malization factor):

eald1+a262+b151+b252 _ ea1ﬁ2+a2@1+b152+5251
I, ~ - e (6.65)
(CLl — CLQ) (Cll — Clg) + (bl — bg) (bl — bg)

At first sight, it is not clear that this approximation is reliable, since there is no large
parameter in the exponential. To gain more intuition, we evaluate I, through an explicit

computation.
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First, we must parameterize our unitary matrix U; then, we need to compute the

Haar measure. We start with the following matrices:

A _ aq 0 7 B b1 0
0 asg 0 b2

(6.66)
e a 0 5 by ,0
0 C_lg 0 b2

We then seek to parametrize our unitary matrix. We know that any arbitrary SU(2)

matrix must meet the following conditions:

a b
SU(2) = eC¥? | |a* +b)* =1 (6.67)

-b* a*

For ease of computation, we choose to parameterize U with Euler angles:

_sta Y .
U e "2 Cosg —e' 2 smg
= 6.68
=« . 9 e 0 ( )
e sing €2 cosg

We seek to rewrite the Haar measure dU in terms of J(0,~, «)dfdyda, where J(6, v, a)
is the Jacobian. We may do so by computing the inverse of the unitary matrix and
multiplying it by its partial derivatives with respect to the Euler angles. We start by

finding the inverse of U:

Syt iy—a
. e 2 cosg ez smg
U = (6.69)
i’yfoz 0 i’Y+Oé 4]

—e 2 sm§ (& 2 COSE

Then we calculate the partial derivatives with respect to v, a, and 6 and multiply by
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the inverse. We obtain:

U—la_U _ _% O
vy a 0 =
2
oU —lcosh LeMsind
vlo-=1| 2 2 (6.70)
@ %e*” sinf £ cosd
Ut oUu _ 0 _%eiv
80 a 1 _—iy O
56
t 0
We calculate the Jacobian matrix using the following basis ¢ = , € =
0 —i
0 ie” 0 —e”
,and €3 =
e ™ 0 e " 0
—% —%COSQ 0
J=10 5sing 0 (6.71)
0 0 i
The Jacobian J(6,~, «) we seek is the determinant of 7:
L .
det(J) = é’ sin 6| (6.72)

We see that it is only dependent on €. Our integral becomes:

/de/47r dry /%d_oz|s eyeTr[AUAUT—i-BUBUT]

- / da’ sin 8|€2 ( a1+a2)(a1+a2)+(b1+b2)(bl+b2)+<(a1—a2)(61—ﬁ2)+(b1—b2)<51 —52)) cos 9)
B

(6.73)
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Our critical points are § = 0 and § = 7, so we can remove the absolute value bars.

Then we evaluate our integral:

12 — 1 /’W d0 sin 6)6%((a1+a2)(@1+62)+(b1+b2)(51+52)+((al*az)(fll*62)+(b1*b2)(51*52))6059)
0
€a151+a262+b151+b252 _ 66102+a1ﬁ2+51b2+b152 (674>

4 ((a1 —ap) (a1 — ag) + (by — by) (51 - B2))

This is precisely the same result that the saddle point approximation yields. From
the intermediate steps, it is clear that there are never any terms that mix the eigenvalues

of A and B; if we set either A =0 or B = 0, we immediately recover the HCIZ formula
for U(2).

6.4.3 Proof of General Formula

Generically, we expect that the following formula holds:
Iy = / dU eTf[UAUTA+UBUTB]
U(N)

Cy Y det [T, ettt
=N etm X — — — —
=, [Tiss [0 — @) (@ — @) + (b = b) (0 — )] (6.75)

det (eaiaj+bi5j>
A(A)AAz) + A(As)A(AE)

where Cy is a constant that depends on the normalization for the volume of U(N); a;, a;,
b;, and l_)j are respectively the eigenvalues of the matrices A, A, B, and B; the matrices
A4, As, Ap, Ag are respectively the diagonal matrices of the eigenvalues of A, A, B,
and B; and A(Ayy) is the Vandermonde determinant of matrix Ay;. The main idea is as

follows. The function

H(U) = Tr[UAUTA 4] (6.76)
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can be thought of as a Hamiltonian function generating a U(1)"Y action on U(N); the
HCIZ integral localizes on the fixed points of this action. The integration is done over
a coadjoint orbit Oy, which has a natural symplectic structure. Alternatively, the in-
tegration domain can be reduced to U(N)/U(1)", where U(1)" is the maximal torus

commuting with A4. For a generic pair of commuting matrices, the analogous funtion
Y(U) = Te[UALUTA 5] + Tr[UAgUTA 5] (6.77)

still generates an action of the maximal torus on U (), although the integration domain
does not have a natural interpretation as a coadjoint orbit. Despite of this, one can
still formally reduce the integration to the symplectic space U(N)/U(1)Y, with Asp
being treated as elements of the Cartan subalgebra of u(/N). Up to the assumption of
non-degeneracy of fixed points, these are the necessary conditions for the Duistermaat-

Heckman theorem.

6.5 Connection with Restricted Schur Polynomials

A natural question to ask is: What sort of basis of operators do the coherent states
(6.58) actually generate? This is quite non-trivial, since there are in principle many
different ways of orthogonalizing the two point function of }L—BPS operators at finite N.

Recalling the definition of the restricted Schur polynomials
X&,(r5)ap(X,Y) = Tr[Pr s ap X" @ Y™, (6.78)

where R is a Young diagram associated to a representation R of S, ..., r is a Young
diagram for the representation r of S,, and s is another Young diagram for a representation

s of Sy, the object Pg () s can be understood as follows. Starting with S,, X.S;, C Sppn,
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we can find representations r x s sitting within R. Generically, the representation r x s
can appear more than once inside of R, so one needs to keep track of how one embeds
r X s into R. The matrix indices «, § keep track of this information. More formally, we
can label each of the embeddings of  x s by an index «, and consider the space R, C R.

The restricted Schur polynomial is then given by

Xrr, (X,Y) = ﬁ > Trg [Ca(o)TrfoX" @ Y™, (6.79)

" 0ESnim

where T'r(0) is the matrix represetating o [62]. The most complicated part of the re-
stricted Schur polynomials is the evaluation of Trg [['r(c)], which involves building R,
explicitly.

By expanding the exponential and evaluating the unitary integrals, we obtain
1 (6.80)

where Wg(o, N) is the Weingarten function. Explicit combinatorial formulas for Wein-
garten functions are well known from the work of Collins (see [100] for an elementary
introduction), but before delving into specific details, we should contrast this with the
situation where one of Axy is zero. In that case, the resulting sum can be recast as a
diagonal sum of products of unitary characters; right now, we have a complicated sum

of traces. For a moment, let us consider the situation for a single matrix. The resulting
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sum 1is:
1

Vol [U(V)]

= Z Z Trlo A% Tr[r ' X" Wg(or™', N)

n=0 o,TESy

Z Z Tr[o A% Tr[r 1 X" Zn! f/\X/\(T_ld)X)\(l)

/ dU exp (UXUTAy)

8
?IH

(6.81)

8

:l,_.

I
OM8

Z%sm Jsr(Ax).

A=

The last line is obtained from the character expansion of the integral, which was

computed in [11]. Then for two matrices, we have:

1
VTN XUTA YUTA
vol[U(N)]/dU exp (UXUTAy + UY UlAy) o
o Z mln!(n+m) Z Z (7)Tr[o A% @ AP Tr[7 X" @ Y.

)\F +m O, TESn+m

(Clearly this has a similar structure to the definition of the restricted Schur polynomials
(6.79), but the restricted characters have been replaced with ordinary symmetric group
characters instead. This discrepancy can be traced back to the fact that the sum over
Sp+m has many redundancies owing to the fact that we can conjugate by an element
of S,, x S,, while leaving the traces fixed. This is the statement that we can permute
the n X’s and m Y’s among themselves while simultaneously permuting the Axy’s. As
explained in [I02], there is an equivalence relation between elements of S, ., in such a
way that

o~71 & TrjcA" @ B™] = Tr[tA" @ B™], (6.83)

which happens exactly when o can be conjugated into 7 by an element of S, x 5,,. In
other words, the construction of restricted Schur polynomials is equivalent to constructing

generalized class functions on restricted conjugacy classes. Unfortunately this means
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that the coherent state generating function (|6.58) cannot differentiate between different
restricted Schur polynomials by itself for the simple reason that the Weingarten function
is a class function. This means that if we want to replace the characters in (6.58|) with
restricted characters, we must change the domain of integration. In any case, the coherent
states still form an overcomplete basis of operators that can be used for computations,
even if we do not currently know how to project into a particular primary state. One
way of achieving this projection would be by integrating against pairs of Schur functions
of Axy as was done for %—BPS operators in [26]; this would give a description of the
restricted Schur polynomials in terms of half-BPS partons as advocated by [102], but it
is still unclear how one would be able to deal with possible multiplicities of the subduced

representations (7, s).

6.6 Discussion

In this chapter, we extended the method of computing the norms of half BPS coherent
states through localization [I1] to theories with the gauge groups Sp(2N), SO(2N + 1),
and SO(2N). We did this by constructing coherent states averaged over a group orbit
from each group and computing the norm of these states through the symplectic and
special orthogonal Harish-Chandra integrals. The integration over the group may be
viewed as a sort of path integral over the emergent world-volume gauge symmetry of a
stack of N giant gravitons inside AdSs; x RP’; the norm of the state gives the effective
action of this theory. Curiously enough, these types of integrals first appeared in models of
induced QCD. By expanding the Harish-Chandra integrals, we found that each integral
admits an expression as a sum of unitary characters. This matches what one would
expect of an orientifold projection of a U(2N) gauge theory; all the states that are

spanned by the coherent states are "doubled” versions of those in the original theory.
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In particular, the coherent states considered here do not span the complete spectrum
of the free Sp(2N) and SO(2N) theories. This is because the Harish-Chandra integral
is only able to capture information from tensor contractions of the invariant tensors of
the unitary group (meaning all products of traces). It is likely that some of the data
corresponding to worldsheets with cross-caps is missing.

As in the unitary case, the coefficient associated with the characters in this series
expansion computes the overlap of the corresponding Schur polynomials of the operators
(a); and (a)?. Our method should be contrasted to other constructions of basis of

operators for the Sp(2N) and SO(2N) theories [85], [86], since our construction uses

group theoretic objects more closely associated to each group.

1
4

We also studied multi-matrix coherent states for bosonic matrices that generate
and % BPS states in N' = 4 SYM. We showed that the norm of these coherent states
admits a fixed point formula generalizing the Harish-Chandra-Itzykson-Zuber formula.
This gives in principle a way of generating expressions for BPS states for any value N
in N =4 SYM. One technical obstacle we face is that our construction does not give an
alternative construction of the so-called restricted Schur polynomial operators [62]. This
is related to the expectation that there is a hidden symmetry under which different op-
erators are charged. One idea is that determining the Casimir charges should be enough
to differentiate between different operators, but this problem is quite non-trivial even in
the % BPS sector [103]. It is also unclear how to implement this idea efficiently at large
N since the number of Casimirs needed to distinguish between different operators grows
with the complexity of the operators. Despite this obstacle, our results are important for
computing correlators of 411 and % BPS operators dual to bound states of giant gravitons
[71] and generic bubbling geometries [69]. Understanding the precise map between the
overcomplete ’eigenvalue basis’ of coherent states and specific orthogonal bases of opera-

tors remains an important problem. We conclude with a few more immediate directions
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for future work.

1—16 BPS States and Black Hole Microstate Operators

One of the more interesting generalizations would be to the case of 1—16 BPS operators.
By now, there is ample evidence that there exists a class of % BPS operators describing
the microstates of supersymmetric black holes in AdSs x S° [7, [6, 104, 105]. Recently,
there have been some studies of these types of states for small values of N [106] [107];
see [108] for a more general discussion. It would be nice to develop more systematic
techniques to build these types of operators. In principle, there are no obstructions to
generalizing our techniques to this setup, with the working assumption that finding states
with vanishing one-loop anomalous dimension is enough [99]. The idea would essentially

be to build a superfield coherent state [109]:

/ dU exp{ / d*0 / dzTr [U@Ufcp}} 0), (6.84)

where W¥(z, 6) is the C?® superfield discussed in [109, 104], and @ is an auxiliary superfield
of coherent state parameters. The combined effect of the exponentiation and integration
over the unitary matrices is to generate all possible gauge invariant tensor contractions.
One should expect that the operators generated by this generating function are general-
izations of the SU(2|3) restricted Schur polynomials constructed in [I10]. Generically the
terms in the expansion of will not be of multi-graviton form, so they are natural
candidates for microstates of supersymmetric black holes. In practice, the main disad-
vantage of an expression like is that it might not be practically useful, in the sense
that the expansion necesarily involves an infinite number of matrix fields associated to
covariant derivatives acting on the fields. One way of avoiding this difficulty is to use

generating functions such as the ones studied in [98]. Alternatively, one can view the
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auxiliary superfield ® as a full-fledged dynamical collective coordinate. One would then
hope that integrating out the SYM fields leads to an effective matrix quantum mechanics
describing (near)-BPS black hole microstates, with the lightcone coordinate z acting as

a time variable.

Three Point Correlators, Bubbling Geometries, and Twisted Holog-
raphy

Although eventually we would like to study black holes, it is important to build intu-
ition from simpler examples. One class of such examples is the BPS bubbling geometries
[69] generalizing LLM geometries [16]. Although the droplet description of such states
in supergravity is compelling, a precise mapping between the weak coupling BPS states
is not fully developedE]. The coherent states have a more natural connection to
such geometries[26]. A worthwhile exercise would be to study correlators of single trace
chiral primaries in the background of heavy coherent states corresponding to both giant
gravitons or bubbling geometries; see [I11] for some finite N results. The holographic
renomalization techniques of [I12] are also applicable in these cases, but it would be
interesting to develop more efficient computational techniques in supergravity along the
lines of [113]. A good toy model for this would be to study these types of questions in
Twisted Holography [114].

We would like to thank D. Berenstein for helpful discussions. SW's research was

supported in part by the Department of Energy under grant DE-SC0019139.

'For instance, it is unclear whether the solutions found in [69] exhaust the set of all + and § BPS
states.
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Chapter 7

Holographic Three Point Functions

7.1 Introduction

The AdS/CFT correspondence provides in principle a way of addressing interesting
questions in simple theories of quantum gravity [I]. However the usual lore states that
this is a weak/strong duality; objects that behave classically in gravity are described by
complicated states in a strongly coupled conformal field theory. Fortunately this is not
the case, as protected operators with large dimensions can and do behave semiclassically
on both sides of the duality.

One of the simplest example of such an object is a half-BPS determinant operator in

N =4 SYM

D, €) = det (16 — Z(a)) = [ dxdyesp (~x[€ - Z(a)] ). (7.1)

whose dual description is a wrapped D3-brane inside of S°, sitting at the origin of
AdS [48]. The fact that these operators describe localized probes of AdSs x S® makes

them ideal probes for bulk locality. The main obstacle to dealing with such objects on
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the gauge theory lies in the sheer combinatorial complexity of summing large numbers
of planar graphs. Recently, this problem was revisited by using saddle-point meth-
ods to systematically resum these non-planar contributions [9, [I0]. This allows for
an efficient computation of simple correlators involving determinant operators in the
large N limit. As an application, the authors of [I15] studied the three-point func-
tion of a BPS single trace operator and two determinants and found a remarkable
agreement with the orbit average of the holographic computation of [I16]. Holographic
three-point functions of giant gravitons have been studied extensively in the literature
[T, 118, 119, 120, 121, 122, 123, 124 125, 126], 116, 127, 128, 129, 130, 131], with
some discrepancies and ambiguities appearing between the holographic and gauge the-
oretic computations in the case of off-diagonal extremal correlators and for AdS giant
gravitons.

In [10, 115], similar techniques were introduced for studying fully-symmetric Schur

polynomial operators:

1
(1&—Z(x)

S(w.6) = [ dpdpesp (¢l Z(@e) = 15 (7.2

Formally, this object is a generating function for BPS operators transforming in fully-
symmetric representations of U(N), which describe giant gravitons extended along the
AdS; directions. Despite the similarities between the techniques developed for determi-
nant operators, these generating functions have an important distinction in that they do
not correspond to simple semiclassical states. In fact, these generating function create a
non-physical state of infinite norm in /' = 4 SYM. The symmetry between sphere and
AdS giants can be restored by considering BPS coherent states in the gauge theory [11].
These are given by a group averages of the exponential of one of the complex scalar fields.

The goal of this chapter is to extend the analysis in [I15] to the case of AdS giant

134



Holographic Three Point Functions Chapter 7

gravitons and to further clarify some technical aspects of their computation. Our analysis
essentially mirrors [IT16] but the set-up and results are different. After performing an
orbit average of the semiclassical one-point functions of a BPS supergravity mode, we
find precise agreement with the gauge theory computation of a BPS three-point function
involving two heavy symmetric Schur polynomials and a single trace operator. Despite
the fact that the intermediate steps in the computation are rather different from the case
of sphere giants we find that the final results are related by a simple analytic continuation.
Our derivation of the structure constant in /' = 4 SYM is new, and also involves a sort
of orbit average, although its relation to the one in holography is unclear. As we will
explain, our methods have straightforward generalizations to the case of correlators of
more general Schur polynomials, although we leave the details of this analysis for future
work.

The chapter is structured as follows. In section we review the orbit average
method and how it applies to holographic correlation functions. Then, we review the
coherent state techniques necessary for the large N analysis in the field theory in section
[7.3l In section we turn to computation of the structure constant of two BPS fully-
symmetric Schur polynomials and a single trace BPS operator. We provide an exact
integral formula for the generating function for these structure constants, which we then
evaluate via the saddle-point approximation. In section we compute diagonal and
off-diagonal structure constants in the dual supergravity following [115], finding an exact

matching with the gauge theory result. Finally we comment on possible future directions.

7.2 Review of Orbit Average

We begin by giving a brief review of the semiclassical techniques found in [132, [133]

and [I15], known as the orbit average method.
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The idea is as follows: consider a quantum mechanical system whose action S [X] is
invariant under some global symmetry G. In general, the eigenstates of the Hamiltonian
will not be invariant under this global symmetry, but will rather transform in some rep-
resentation of G labelled by a set of charges {.J;}. One is usually interested in computing

correlation functions of operators in backgrounds with non-zero charges

Crro, = (J'10L(t = 0)J), (7.3)

where we can think of the states |.J) , |.J’) as being created by the insertion of operators
with large charges, J, J' > 1. In the WKB approximation, this quantity can be computed
by a path integral with the corresponding classical action evaluated on solutions to the
equations of motion:

(J'|OL(t = 0)|J) ~ e XO[X™, (7.4)

where Op[X] = (X|OL| X).

Generically, these classical solutions may spontaneously break (some part of) the
global symmetry and are therefore parametrized by a set of moduli {¢;} describing the
action of (a subgroup of) G on the solutions. Beginning from a given solution X, one can
generate a moduli space of solutions under an orbit of the G-action X§ — X7 ,. Since
these solutions contribute equal exponential factors, one must integrate over this moduli
space in order to reproduce the correct saddle-point approximation to the correlator.
Additionally, in the case where J and J' are not equal, and J — J' < 1, one needs to
take into account the contributions coming from the WKB wavefunction of the initial

and final states

(J|X2) mem'e, (XX|T) = ete, (7.5)
The condition J — J" < 1 is necessary for the WKB approximation to hold. Putting
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it all together, the semiclassical correlator is given by the orbit average
uwm=WﬂwﬁW7TNwmw@w@%ﬁ, (7.6)

where O[X*] should be understood as the classical analog of the operator Oy,.

7.3 BPS Coherent States

In this section we review the coherent state methods introduced in [I1], and their
application to BPS correlators of fully-symmetric Schur polynomials. Firstly, half-BPS
operators in N' = 4 SYM are described by polynomials in the traces of a complex scalar
field Z. For our purposes we will want to consider the theory on the cylinder R x S3, so
that our initial and final states are inserted at ¢t = +=0o. Then, the main idea is that the

following expression serves as a generating series for all half-BPS operators

1

_ 6Tr(UAUTZ) .
)= G oy o 7

where A is a diagonal matrix with complex eigenvalues \;. A simple calculation shows
that this is in fact a coherent state, in the sense that the action of Z on this state can be
replaced by multiplication by UAUT. This state also has a simple expression as a sum

over the Schur basis

wzzﬁmwmmm, (7.8)

where dp is the norm of the state created by xr(Z). One important property of this
formalism is that correlation functions involving these coherent states can be recast in

terms of a unitary matrix integral. For example, the overlap between two coherent states
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has an explicit formula as a sum over saddle points

i Xido(i)

AMAR) (79)

</_X‘A> = /U(N) dUeTr(UAUTf\) =Cy Z (_1)sign(o')

oESN

the overall normalization constant Cy that depends on conventions. More generally,
commuting the exponential in |A) with insertions of Z will have the effect of replacing
Z with Z + UAU?T, and similarly for Z. Although this formulation is quite explicit, it
is unclear that the term with the largest exponential actually dominates the sum, since
there are N! — 1 other saddle point contributions that could in principle lead to an
exponentially large correction. This is not always the case, since the leading contribution
always corresponds to the identity permutation, while the remaining saddle points are
weighted by a sign; whenever some of the eigenvalues {\;} are exponentially close to one
another different saddles become comparable to the identity saddle and their contribution
will become important.

For our purposes, we will restrict to the case where a single eigenvalue \; = A is
taken to be non-zero, which restricts the sum over representations to those associated
with single row Young diagrams. In this case, the formula in terms of unitary integrals
is difficult to perform calculations with simply because the numerator and denominator
in become degenerate. To remedy this, one should realize that the integral is really

being performed over an orbit parametrized by:
Oy={\UPU" | UcU(N)}=CP" !, (7.10)

where P; denotes the projector into the eigenspace of ;. Geometrically this is straight-

forward to understand; the projector operator P; is naturally associated to a unit vector
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in CV by

P, = pyl, (7.11)

so a choice of projector P is in one-to-one correspondence to a line in CV. The action of
the unitary group moves this line inside of CV, so the resulting integral should be taken

over the Grassmannian Gr(1, N) = CPY~!. This suggests that the natural generalization

of (2.6)) is actually

1

Y e

/(CIP’N1 dptdp VN1 Z¢ |0) . (7.12)

Formally this generating functions looks similar to the generating function introduced in
[10], but there are many important differences that make |\) much better behaved.

The first important difference is that |A) is a coherent state of finite norm:
Tr [ZF] [A) = AL |A) (7.13)

To find the norm of this state, we can exploit the fact that the integration measure on
CP"~! is left-invariant under the action of U(N). More precisely, once we use the Baker-
Hausdorff-Campbell formula to commute the exponentials coming from (A| and |\) we

are left with a pair of integrals as in [9] [10]:

1 ? oot vt
M) = | ——— dp'dp diptdyp eNMAeTTe, 7.14
A (Vol(CPN_I)) /(CPN—1)2 ldip dy'dy (7-14)
At this point our analysis differs from that of [9] 10} [IT5], in that we can proceed without
performing a Hubbard-Stratonovich transformation. To see why this is the case, we
should remember that we may parametrize ) as a rank-one projector conjugated by a

unitary matrix ¢ = UP,U". Since the measure for ¢ is invariant, this reduces the integral
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over v into a volume integral over U(N)/ (U(N —1) x U(1)) = CP"¥

M) = ——— dptdy eNMeien
< | > Vol ((CPNﬁl) /(CIP’N—l pape

Vol (S2V73%) ! 5
_ dr(1 — r V2N

N_l)! = - N
:<(N)—N—1 XN: ( L!) ~ VN,

where we have chosen the projective space to have radius v N, and used the Stirling
approximation in the last line. In comparison, the norm of the state created by a deter-

minant operator has a norm given by [10]

(det (Z — X) det (Z — \)) = /000 dr e N (AN + 7)Y
(7.16)

N

N VR e
_NNZ(N—k)! ~ VNPT

k=0

Hence, the second important difference between the approach using an inverse deter-
minant operator and |A) is that we do not need to introduce an additional set of auxiliary
variables to obtain an integral which we can evaluate via the saddle-point approximation,
and the resulting saddle-point equations are equivalent in both approaches. The most
important difference between our approach is the fact that we can easily generalize our
construction to write down generating functions of characters associated to Young dia-
grams with more than one row in a very compact way, with very explicit formulas. For
instance, the product of determinant operators has a character expansion coming from

one of the Cauchy identities of Schur functions:

[ det(Z — X) = det(Z @ 1, — 1y @ Ay) = det(Ap)™ D xr(Z)xrr (AL, (7.17)
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and there is a similar expansion for inverse determinants

k
[ det(Zz = X)™" =det(Z @ 1 — 1y @ Ap) ™" = det(Ae)™ Y xr(Z)xr(—Ay"). (7.18)
i=1 R

One difficulty with dealing with the latter expression is that once one performs the
Hubbard-Stratonovich transformation the resulting saddle-point equations are compli-
cated matrix equations, and extracting the contribution from each character seems dif-
ficult. Also, the state created by such an operator does not have a finite norm, so the
expressions have to be treated as formal generating functions. In our approach, one can
generate the same class of states by letting A in have k non-zero eigenvalues and
integrating over the appropriate homogeous space. More precisely, one needs to replace

the integral over ¢ by an integral over an isometry

VvV =D,
(7.19)
ViV =1,

where Py is a rank k projector. The integration is then performed over the space of
k-dimensional subspaces of CV, which is the Grassmannian Gr(k, N). Similar types of
integrals have been studied previously in the literature [I34], and they are known to have

exact formulas in terms of iterated residues [135].

7.4 Gauge Theory Computation

7.4.1 Generating function for BPS Three-Point Functions

We are interested in computing the overlap of two AdS giant graviton states with a

light BPS single trace operator. This correlator is related to the three-point structure
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constant by

(Sy| T [ZL] 1S;)
VL(Sy1Sr) (S1185)

(7.20)

Cs,s,0, =

Z4+Z+(Y-Y)

where Z is the twisted translated frame operator Z = 3

. The boundary states
|Ss) are to be understood as the insertion of a fully-symmetric Schur polynomial operatorﬂ
at t = o0

S5) = x((£)0) . (7.21)

Because half-BPS correlators are protected, we can perform the calculations in the free

field theory. The boundary states can be generated using the following operators:

_ VN=2XpTZyp
= [ dee o)

7.22
(Al = (0] dU eV N2 (2UTAY), 72

U(N)
where we can set A = AP, during the later parts of the computation. The advantage of
this setup is that the measure d¢ is invariant under unitary transformations, so when we
commute the exponentials using the Campbell-Hausdorff formula the integral over the
unitary group will drop out of the correlator. The overlap that we will want to compute

is given by:

FOLAt) = (A Tr { } ). (7.23)

1-2t7
When we commute all raising and lowering operators past each other, the net effect

is to replace the fields by their saddle-point value

(7.24)

UTAU + Al A+ NUpp!U?
. ;w :UT( + zw )U

'We differentiate between the notation used in [9, [115], |D;), since the operators we are considering
are not determinants.
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Since the expression inside the exponential only depends on Uy after applying the
Campbell-Hausdroff formula, all unitaries can be reabsorbed by a change of variables.

So in the end the generating function F is expressed as:

1
1—t(A+ dppt)

F\ A ) = / dip e N2 Aoy : (7.25)

cpN-t

This integral can be computed exactly via equivariant localization. A simple way of
seeing this is that the integral may be turned into a Gaussian integral subject to the

constraint |p|? = 1.

5(lol2 = 1) = / ds M=), (7.26)

After this substitution, we can perform the Gaussian integral over ¢ on the whole complex
plane by contour integration. By choosing a set of contours such that the phase of the
exponential is stationary, the resulting integrals are Gaussian integrals peaked at the
eigenvalues of A, so in the end we only need to sum over N saddle points. After performing
the Gaussian integral, each saddle point will correspond to a pole on the complex s plane,
and every insertion of goigo} in the integral can be replaced by its moment taken from the

Gaussian distributions;

L il 1~ (ﬁ)j . (7.27)

After this we are left to compute a contour integral over the complex S plane over a
infinitely large circle. The particular choice of orientation for the contours that we need
guarantees that the sum in homology of the NV contours is equivalent to the trivial contour
encircling a pole at infinity.

In practice we will need consider cases where A has rank one, which makes the torus
action on CPY~! degenerate. However, we can still compute the integral exactly as a

sum over residues of poles of higher order. When A has one non-zero eigenvalue, the
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integral is exponentially dominated by a single saddle point.
In order to compute the integral with the resolvent, we will need to invert the matrix

inside of the trace. A simple way of doing this is by writing this matrix as

1—t(A+ ) ppl) =1 - &,%;;0! (7.28)

J =90

where ¥ is a 2 x 2 diagonal matrix with components (tA,t\), and ®; is an N x 2 matrix

consisting of (vy, ), where vy is a unit vector. The inverse of this matrix is given by
(1—t(A+2ppN)) ' =140 (=7 + 0f0) " o, (7.29)

In some respects, the matrix XJ;; plays a similar role as the Hubbard-Stratonovich field p
needed to simplify correlation functions involving determinants. When we take the trace
the first term will be independent of ¢, so it will not contribute to the three-point and

the second term becomes a trace over the 2 x 2 auxiliary indices

Tr (1- ¢ (A4 Ape)) ' = Nt (@fe (57! + 0f) ')
_t Y (7.30)
v 1 LA+ ) ] 1)
EANprer — 1)+t (A + ) —1

So the exact expression for the form factor is obtained by performing the integral over ¢

and since the first and third terms are analytic in ¢ we can simply ignore them:

_ - I—t(A+A
F M) ~ — / dip e N =DM eien - s (A - . (7.31)
CpN-1 EANpior — 1)+t (A+A) =1

This integral can be evaluated easily by using spherical coordinates and expanding in

powers of ¢jp;, but it will turn out to be better to approximate this quantity via the
saddle-point approximation.
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7.4.2 Large N Limit

The first thing to note about the integral expression for F is that the integrand breaks
the U(N) symmetry of the measure to U(1) x U(N — 1), so it is convenient to perform
the angular integration over the N — 1 directions perpendicular to ¢, first. For a fixed
value of ¢y, this is given by half of the volume of a sphere of radius (1 — %p;)/2. The
exact value of the angular integrals is not very important since the overall factor in front
of the generating function will cancel when we normalize the structure constants, but

what is important is that the integral over ¢; is done with the correct measure

N-2

- m N—2_(N—2)A\\r 1- % ()‘ i 5‘)
FOA) —‘m/drdﬂ(l‘” o <t2)\)\(r—1)+t()\+>\) _1>'
(7.32)

Finally, we can evaluate this integral using the saddle-point approximation. Since the
terms coming from the resolvent do not scale with N, they will not lead to large expo-

nents, so only need to consider the critical points of the following effective action

Sees = M +log (1 — 7). (7.33)

The saddle points of this action precisely fix r in such a way as to simplify the denominator

of the expression in parentheses:

. 1
A\ = 34
A (7.34)
which yields
. 1-5(A+2)
Foadare(A A, t) = e Sradte, 7.35
care(A A1) (t?—t(A+A)+1 ‘ (7:35)

Since the exponential factor computes the saddle point value of the overlap of the AdS
giant states it will cancel when we compute the structure constants so we will omit its

explicit form.
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7.4.3 Diagonal Structure Constants

We now have an approximate expression for the form factor F (A, \,t) which is a
generating function for three point functions involving two BPS AdS giant gravitons and a
BPS singe trace operator. One feature of this calculation is that the form factor describes
a semiclassical giant graviton localized along some null geodesic on the hemisphere of S°.
To obtain a correlator with fixed R charge we need to average over the position of the
giant to project into a fixed charge state. In our case, the moduli of the solution is the
phase of the eigenvalue A\. So it is natural that we perform an average over the orbit

generated by the phase of A

A = ycosh pg
o (7.36)
A = — cosh py,
which gives
_t 1
PI ] i)t | e
2 |y t2—t(y—|—§> cosh pg — 1 Vtt —2t2cosh2p + 1

To obtain the one-point function of a BPS single trace operator we simply expand this

function in ¢, and extract the L’'th coefficient with a contour integral:

7 (cosh 2p0) 127 (1 — 12)
(7.38)

Cousson = 3 P P
SASAOL — 27T’L\/_ tL+1 — 27TZ\/_ tL+1
1L +( 1)L

= NEVA <P% (cosh 2pg) — Pr_y (cosh 2/)0)) :

This is exactly the answer obtained in [115], with a minor difference. In their analysis
one needs to perform an integral over |A| with a measure that effectively replaces it with
the discrete dimension of the operator dual to the AdS giant. In our case we are still

left with cosh 2py as a continuous parameter corresponding to the radial position of the
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brane inside AdS. This will match exactly the answer obtained from the semiclassical

computation.

7.4.4 Off-Diagonal Structure Constants

Since our integral formula is identical to the one found in [I15], we can borrow their

results to find the off-diagonal structure constants. The idea is to replace the integral

over the phase in (7.36]) by

dy dy
Y 75 S (7.39)

This is the contribution from the wavefunctions of the boundary states whenever the
difference of the R-charges of the in and out states is k. If £ < N, the saddle point
is not modified, and the integrand remains the same. The structure constant for AdS
giant gravitons can also be obtained by analytically continuing the structure constant for
sphere giant gravitons

Here we will prove the formula given in [I15] for all values of k. After performing the
residue integral over y we arrive at the following expression for the generating function

of off-diagonal structure constants at large N

1 (t"(t* — 1) cosh” p ) 2
gk’<t) = _5 A
V1t —2t2cosh2p + 1 (1 + 2 4 \/t* — 22 cosh 2p + 1)
(7.41)
1 [e.9]
= Etk(l — %) Z P}O’k) (cosh 2pg) 127,
J=0
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where we used the generating function for Jacobi polynomial P}a”g ) (x) to expand the
function in powers of 2. Finally, we perform the contour integral over ¢ to obtain the

off-diagonal structure constant.

dt

1
OSA+kSAOL = 271_2.\/? % L+ gk<t>
1L7k -1 L—k
=— + (=) x cosh® py (Pio;’];) (cosh 2pg) — Pﬂll (cosh 2,00)) .
2 2

2V/'L
(7.42)

Similarly, the formula for the off-diagonal structure constants for sub-determinant oper-

ators can be written as

CDA+kDAOL = - 2\/z

x sin” 6, (Pg)_’l,f) (cos 26y) + P§°_”,§)

2 2_1

(cos 200)> . (7.43)

We have checked that our formula agrees with the formula given in [115] for many
values of L and k, and the two formulas can be turned into one another by using the
recurrence relations of the hypergeometric function. In the extremal limit L = k, the
second term in both structure constants vanish and the Jacobi polynomials reduce to
a factor of unity, so the formula is well-defined for all £ < L. For k > L, the contour
integral has no poles, and so the structure constants vanish identically as expected from

R-charge conservation.

7.5 Holographic Computation

We now move on to the holographic computation of the structure constant ((7.20)).

To do so, we simply replace each part of the formula by its holographic counterpart.

2The Jacobi polynomials Py(La’b)(ac) span a large family of orthogonal polynomials; they reduce to
Legendre polynomials for a = b = 0. For a = 0 and b = k they correspond to the radial parts of Zernike
polynomials.
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The dual of the Schur polynomial operators |S;) are BPS AdS giant gravitons with
angular momentum A = J, whose quantum state we denote by ]3A>. The single trace
operator Tr [Z L] is replaced by an operator O, which describes the backreaction on the
worldvolume of the giant graviton. Altogether the holographic structure constant is given
by

(s.Jo.fs)

Cs s = .
RTINS

The three-point function can be computed from a path integral on the worldvolume of

(7.44)

the giant graviton, which is amenable to a saddle-point analysis. As we will see, a proper
treatment via the orbit average method will yield a result which matches the gauge theory

exactly.

7.5.1 AdS Giant Graviton Solution

We will be interested in solutions to the DBI action describing a giant graviton wrap-
ping an S? C AdSs, which rotates along the equator of the S° at the speed of light. For

our set up it will be convenient use global coordinates to parametrize AdSs x S°:
ds? = — cosh? pdt® + dp? + sinh? pdQ2 + dQ2, (7.45)
where the metric of the five-sphere is
dQZ = df? + sin® 0d¢” + cos® 0 (dxi + sin® x1dx3 + cos” x1dx3) - (7.46)

We can then gauge fix the worldvolume coordinates o of the D-brane to agree with the
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coordinates of R; x S* C AdS;
p=po, 0'=t=¢, o'=x (7.47)

where the tilded coordinates x; are the coordinates of the three-sphere inside AdS5. The
size of a BPS giant graviton is equal to its R-charge (angular momentum along S®), which
is related to its radial position in the AdS direction by

cosh py = %, J > N. (7.48)

To compute the three-point function we will need to compute the corrections to the

D3-brane action coming from a light supergravity perturbation as in [117, [118].

7.5.2 Fluctuations of the D3-brane action

The action for an AdS giant graviton is given by the sum of the DBI and Wess-Zumino
(WZ) actions
N
S=— [ (\/—h + P[C4]) : (7.49)

o2
where h is the induced worldvolume metric and P[Cy] is the pull-back of the Ramond-

Ramond four-form potential of the background. For our purposes we will want to con-

centrate on the RR flux through the AdS factor
C, = —sinh?® pdt A Vol(€3). (7.50)

The light operator insertion can then be identified by the perturbations to the D3-

brane action [125]

OL, = 6Spp1 + 0Swz. (7.51)
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For this we will need the fluctuations of the spacetime metric g as well as for the

four-form potential [136]:

6

5guu - __Lg;w +

5 ViV | s“(X)Y2(Qs)

4
L+1
59(16 = QLQQBSL(X)YL(Q5) (752)

50#1#2#3#4 = _46u1/¢2u3u4u5vu5SL<X)YL(Q5>7

where y, v, ... denote coordinates on the AdSs, «, 3,... denote coordinates on the S°,
Y (€25) denotes a spherical harmonic on the S° and s"(X) is the bulk-to-boundary
propagator. The kinds of fluctuations that are dual to the operator Tr [Z L] are given by
choosing a spherical harmonic corresponding to the homogeneous polynomial (Z + Z +

Y —Y)L, where X, Y, Z are the coordinates on S° C C?,
Y1 (Z) = (sin 0 cos ¢ + i cos 0 cos x1 sin x3)" . (7.53)

The bulk-to-boundary propagator is given by

N

sH(X) = m,

(7.54)

where P represents the coordinates of the operator insertion on the boundary coordinates

P! and X are the embedding coordinates of AdSs:

Xt =coshpcoshty, X°=coshpsinhty X'=sinhpn'
(7.55)
P! =coshtpy, P°=sinhty, P'=n',

where t is the Euclidean time coordinate ¢z = it and |n|?> = |f|*> = 1. The unit vectors

n' and 7’ represent the position of the operator insertion on the S* inside AdS; in the
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bulk and the boundary, respectively. In our case the bulk-to-boundary propagator is

given by

L 1
L i =1
s (tg,n',n') = — , 7.56
( ) 2E (cosh pg cosh tg — n - sinh py)” (7.56)
where n - . = cos X1 sin 3 and the normalization A is chosen such that the two-point

function is unit-normalized.

DBI Action Fluctuations The fluctuation of the induced metric on the D3-brane

has the form

1
Vh = 5\/ﬁhab (0 X 0y X g, + 0u X 0p X 6 gus) - (7.57)

Substituting the worldvolume coordinates into the variation of the induced metric gives

1 4 2L(L —1)
) = —Vh([——h 2 T peb 2LAM ) stY;. )
\/— 2\/_ (L " ] vavb L i 1 Gab + ) S I (7 58)

To simply this expression, it is useful to exploit the fact that s“(X) is a scalar field of
mass-squared L(L —4) in AdS units. To use this fact we may rewrite the induced metric
on the brane in terms of the metric of AdSs
hab = Gab + 5252
X (7.59)
h® = g"* — (sinh® pcosh® p) 6707,
and then we can add and subtract the second covariant derivative in the p direction to

complete the Laplacian in ([7.58)) which gives:

N
5SDBI = 2—7T2/d30' (S\/E|t:0
(7.60)

472

N .
= — sinh? py / d*c Fppili—o
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where
F; L 4 i X
DBI = — 7 S X1 COS X1
é\;L 1 (7.61)
—t2 + sinh? p082 — tanh pyd, + L? cosh? po+ 2L sinh? P0 shy;
cosh” py r

The differential operator in parenthesis basically raises the spin of the propagator S* by

two units L + 2 and multiplies it by a simple polynomial in sinh py and n - n.

WZ Action Fluctuations The fluctuations of the WZ term are straightforward to
compute. The four-form potential only has indices in the AdSs directions, so the only

possible term is

(50@21)22)23 = —48p3L(X)YL(Q5), (762)

The contribution from the WZ action is thus

N N
§Swz = ﬁ/di”aP [6Cy) = ) /d30\/9Ads55Ct>21>22>23

Y 3 (7.63)
=-1z sinh® py | d°c Fwzli=o

where

8
Fywyz = N sin ¥, cos X1 sinh pg cosh pg 9,5"Y7,. (7.64)

Operator insertion Putting everything together, we obtain an expression for the in-
sertion of the light operator O, in the semiclassical limit. In practice it is useful to
rewrite the resulting expression in terms of s“*2 so that the DBI and WZ terms combine

nicely. As in [I16], the combination of DBI and WZ terms simplifies significantly:

o N
OL [Xg] = (SSDBI + 5SWZ = — smh2 £o / d30 (FDBI — sz) ’t:O (765)

472
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where

VL(L+1) sin x1 cos X1 cos” ¢
N (cosh pg cost — cos X1 sin x3 sinh py)

Fppr — Fwz = — (7.66)

L+2°

So our analysis closely mirrors that of [116], with some minor differences in the simplifi-
cation of the fluctuation analysis.

At this point our analysis will differ importantly; in their set-up, they proceed by
substituting the worldvolume solution ¢ = t and integrating over the insertion time
t. Our calculation instead follows the prescription used by [I15], which means that
the coordinates appearing in O [X] are not the worldvolume coordinates of the giant
graviton, and instead they should be thought of as the coordinates of the insertion of the
operator on the sphere wrapped by the giant. This means that we should not set ¢ =t,
but instead we should treat ¢ = ¢y as a moduli of the solution. The second moduli of
the solution is associated to the action of the dilatation operator ¢ — t + i, which is
different from the Lorentzian time evolution of the fluctuation.

Concretely, one should replace the unshifted solution Xg by the shifted solution X7

0,70’

which can be obtained by ¢ — ¢ + ¢ and t — t + i1y in ([7.65))

. N
Or [ X5 = 42 sinh? pg / d’c [Fopi (¢, 70) — Fwz (¢0, 70)] =0 (7.67)
where
VI(L+1) sin X1 cos X1 cos” ¢y
F 9 T - F 9 T = = ‘
pBr (G0, To) wz (60, 70) N (cosh pg cosh 7y — cos Y1 sin X3 sinh pg )"
(7.68)

Since these solutions spontaneously break the rotation and dilatation symmetry of the

background, the orbit average method tells us to integrate over the moduli space. As
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we will see this is the correct prescription for computing the three-point function, and
this will also fix the apparent discrepancy found in [116]. It will also allow us to com-
pute the off-diagonal three-point functions by including contributions from the boundary

wavefunctions, which was inaccessible from their analysis.

7.5.3 Diagonal Structure Constants

We can now obtain the diagonal structure constant by performing the orbit average

of (59)

27 d(bO R
SASAOL dTO OL X¢O 7—0] . (769)

The details are presented in appendix 77 and the final answer can be written in terms of
a hypergeometric function

1 tanh? pq L L
Cos 6 5 =—— <1L -1 L> Lx —"L,F [14+ =1+ =,2, tanh? . (7.70
NN 2 +(—=1) VL x osh” o ot | 1+ 5 + 5 anil” po (7.70)

This answer is of the same form as the result found in [I15] for sphere giant gravitons. To
see the matching with the gauge theory computation one needs to apply the recurrence
formulas of the hypergeometric function to write the expression above as a sum of two
Legendre polynomials

£+ (=)t

Cs, 6,0, = — Vi3 (P% (cosh2pg) — Pr_, (cosh 2,00)> . (7.71)

Clearly this matches exactly with the gauge theory computaion, and is also a simple
analytic continuation of the stucture constant involving two sub-determinant operators

and a light single trace.
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7.5.4 Off-Diagonal Structure Constants

For the off-diagonal structure constants with A + k£ ~ A, the only change to the

computation is the contribution from the phases of the boundary wavefunctions:

o L A * ikeo —kT
Coamsaon = / %/_wd% Oy [X;, -] e™etm. (7.72)

The final expression is a simple generalization of the diagonal case, and involves a

similar type of hypergeometric function:

1, )
O$A+kSA©L = _5 <1L g + (_1)L k) \/Z
tanh? L—k L+k (7.73)
(b (1+ Ayt ,g,tanmpo)
(cosh pg) 2 2

for k < L, and zero for k£ > L. An analogous computation as in the diagonal case shows

that this is equivalent to

CSA+k$A@L - = 2\/Z

x cosh® py <Pg) (cosh2pg) — Pg)_l (cosh 2p0)>
2 2
(7.74)

which matches the gauge theory computation.

7.5.5 No ambiguities for Sphere Giants

We note that unlike the case of the sphere giant graviton in [I15], our expression is
unambiguous for the extremal case L = k. Here we will argue that the extremal case for
sphere giant gravitons is also unambiguous if one performs the integrals in the correct
order.

Naively, if one computes the extremal case as a limit & — L one obtains a spurious

divergence coming from an integral over ¢y, yet when one evaluates the integral explicitly
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the answer is manifestly finite. The seemingly problematic integral in our case is

T dgy i 1
Lo L _
/0 %6 % cos gbo = 2_L (775)

Clearly the integral is finite and well-defined. However, this integral has an alternate
expression in terms of sums of hypergeometric functions with a spurious singularity at
k = L. If the integral is split into this form, the answer appears to be ambiguous in
the sense that it is a sum of two infinite quantities, even though the integral has a well-
behaved limit. In contrast, the off-diagonal structure constants for sphere giant gravitons
appear to have a real divergence in the extremal limit coming from the average over Ty,
which is multiplied by a prefactor that vanishes in the extremal limit. In [I15] it was
argued that the analytic continuation of the non-extremal case to k = L is ambiguous
due to the fact that one can always multiply the result by an analytic function that only
modifies the function the behavior of the three-point function at k& = L. Since there
no clear constraints on the analytic properties of the three-point function as a function
of k, there is no unique analytic continuation of the three-point function. However, in
their analysis they separated the expressions in the integrals into a finite piece and an
infinite piece multiplied by a zero prefactor. Strictly speaking this is not correct, since
the integral is not convergent and depending on how one separates the terms one can
obtain different answers for the regularized integral.

Upon closer inspection, the source of the divergence can be traced back to the imag-

inary part of a factor in the sum of the DBI and WZ terms

VL(L+1) yI-1 o (i cos B cos x1 sin x5 cosh 275 — cos ¢y sin 6y)
2N cosh?*2 7, .

FWZ — FDBI = (776)

Note that the first term in the parentheses will also lead to a divergent quantity when we
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average over Ty, but this way of splitting the integrals into divergent and finite parts is
different from the one used in [I15]. Our expression comes from adding and simplifying
both contributions to the fluctuations of the action. Now, if we evaluate the average of
the second (finite) term we obtain

sin” 6,

finite _
CﬁA+LﬁA©L - \/z 9 (777)

which is exactly the extremal structure constant evaluated in the Schur basis. The re-
maining term is ambiguous, since its contribution is regularization dependent. A natural
choice of regularization is to perform the integral over ¢, before the 7y integral, or equiv-
alently to perform the 7y integral with a finite upper and lower bound +7" and then take
the limit 7" — oco. With this choice the problematic term vanishes and the holographic
computation agrees with the field theory computation. Physically this makes sense, since
the integral over ¢, of the first term vanishes due to R-charge conservation. Hence if one
treats the integrals carefully, there is no ambiguity in defining the three-point functions
for sphere giants. In fact similar ambiguities happen for the case where k£ > L in both
computations; if one computes the 7y integral first the answer has divergent terms, even

though the integral vanishes since the integral over ¢ is zero.

7.6 Discussion

We computed diagonal and off-diagonal structure constants of two AdS giant gravi-
tons and a light supergravity mode in the large N limit, both in (free) N' = 4 SYM theory
and holographically in AdSs x S°. Our analysis shows a precise matching between both
descriptions as expected, even in the cases where ambiguities were believed to appear.

A crucial step in our calculations was the orbit average over the moduli space of solu-
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tions which spontaneously break the rotation and dilatation symmetry of the AdSs x S°
background, and the order in which these integrals are performed is crucial for agree-
ment in the computations of extremal correlators. It would be interesting to apply these
methods to the class of open strings solutions [126] found in [23], where there appear
to be discrepancies between the boundary conditions for the semiclassical string and the
spin chain descriptions [63]. Since the positions of the open string endpoints along the
worldvolume of the giant appear as extra moduli, one should in principle integrate over
them in order to compare with the gauge theory computations. This would explain why
certain angular momentum modes are allowed on the spin chain description, even though
semiclassically they are forbidden by the boundary conditions.

Our calculation in the gauge theory demonstrate the power of the methods intro-
duced in [11, 24, O8] for computing correlators of fully-symmetric Schur polynomials.
Our methods are in many respects more streamlined when compared to the approach
introduced in [I0] for dealing with symmetric Schur functions. In principle our compu-
tation gives an exact integral representation for half-BPS correlators, without having to
deal with a divergent generating series. Since we can express this generating function
as a sum of residues with only one residue providing an exponentially large contribu-
tion, it is natural to expect that the saddle-point approximation gives the exact answer
up to a simple one-loop determinant coming from the remaining residues. In fact the
holographic computations of non-extremal correlators seem to agree with the exact com-
putations obtained from explicit computations with the Schur basis [127]. It would be
nice to check whether this expectation holds by embedding the correlator into a super-
symmetric observable where supersymmetric localization techniques can be used [137].
For example, the connection between the coadjoint orbit integrals and Wilson loops via
geometric quantization is well-known [138].

From our saddle-point analysis, it seems that similar computation involving more
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generic mostly-symmetric Schur operators should proceed in the same way. More pre-
cisely, the HCIZ formula (2.6)) gives in principle a sum over all possible pairings of the
initial and final configurations of eigenvalues. These can describe systems of more than
one AdS giant graviton at different positions. Whenever the giants are well-separated
we expect that the identity saddle dominates in a way that the computation reduces
to a sum over the individual contributions of each giant. It would be more interesting
to study set-ups where the positions of the branes coincide, in which case saddle points
corresponding to permutations of equal eigenvalues are all relevant. It would be useful to
understand the details in those cases before studying configurations of order N? stacked
branes.

One surprising feature of these calculations is that the result is given by simple com-
binations of orthogonal polynomials in cosh pg or cosfy for AdS and sphere giants, re-
spectively. This suggests that one might be able to compute these quantities by solving
a wave equation with a non-trivial radial potential given by the presence of the branes.
Understanding this connection would elucidate many of the physical aspects that are
obscured in the present computations. One might expect that three-point functions with
a spinning non-BPS single trace might be expressible as a spherical harmonic multiplied
by a radial wavefunction. Also, since Legendre and Jacobi polynomials satisfy various re-
cursive formulas, it might be possible to find non-trivial relations between BPS structure
constants involving operators of different conformal dimensions in the large N limit.

Another issue that needs attention is whether AdS giant gravitons can lead to inte-
grable boundary states for the N’ =4 SYM spin chain. Since many quantities associated
with AdS giants can be obtained by analytic continuations from the sphere giant quan-
tities, we expect that the answer to this question is negative, since non-maximal sphere
giants do not appear to lead to integrable boundary states [I0]. However, there is new

evidence that non-maximal giants do lead to integrable boundaries in the ABJM theory
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[139]. Since there is no obvious reason for this qualitative difference, it would be useful
to revisit some of these computations with new techniques.
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Chapter 8

%-BPS Structure Constants and

Random Matrices

8.1 Introduction

The study of baryonic operators in large N gauge theories is an old subject [140] that
has received renewed attention in the context of holographic field theories [9] 10, [11].
Such operators are extremely interesting from the point of view of the large N expansion,
since they correspond to heavy non-perturbative objects that are not very well captured
by the conventional t’ Hooft expansion. On physical grounds one expects that such
heavy objects modify the physics at the semi-classical level, and that one should attempt
to approach the problem from a point of view where one treats the dynamics of the
many constituents of the object in terms of a simpler collective coordinates [141] [142].
This is well understood in string theories; heavy objects can lead to non-trivial boundary
conditions for strings, or in some cases deform the target space geometry which the string
probes. For this reason such an approach is essential for understanding how gravitational
physics arises from large N models. In examples of the AdS/CFT correspondence [I]
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these ideas have sharp realizations in terms of giant gravitons, and in suitable limits,
non-trivial supergravity backgrounds like bubbling geometries and black holes. Given
that maximally supersymmetric Yang-Mills theory is expected to be fully-fledged theory
of quantum gravity, a particularly interesting question to address is how N' = 4 SYM
resolves the many puzzles of gravitational theories, in particular the physics of black holes.
At the moment such questions are out of reach and they lie in regions of parameter
space where current non-perturbative techniques such as integrability are expected to
fail. One particular fruitful approach has been to concentrate on observables which are
protected by supersymmetry in order to test and develop tools, and the half-BPS sector
of asymptotically AdS type IIB supergravity and A/ = 4 SYM is perhaps the simplest
non-trivial toy model.

The spectral problem in this sector of the U(N) theory was solved by the work of
Corley, Jevicki, and Ramgoolam [48]; half-BPS operators are Schur functions and their

structure constants are given by multiplicities of representations of the unitary group

(Ory(2)Op,(Z2)Or,(2)) = Crimais 1 (1.1)

where Cr, g,r, are Richardson-Littlewood coefficients and fr is the norm of the operator
Opg. Although this solves the problem in principle and combinatorial algorithms exist
which generate these coefficients for a fixed value of N it is unclear how the asymptotics
of these coeflicients are reflected in the corresponding supergravity solutions. Since these
numbers appear naturally in the study of the intersection theory of Grassmannians,
a natural expectation is that there is an alternative description for such calculations
involving only geometric data coming from the gauge group of the theory. Another
issue is that most results in the existing literature on structure constants of half-BPS

operators either focus on single trace operators, or in operators preserving the same
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supersymmetries, or rely heavily on the free fermion description of model. Holographic
computations of one point-functions in half-BPS backgrounds have also been studied in
generality, but explicit calculations are limited to maximally charged operators which are
charged under the same symmetry as the background and to operators of low dimensions.
So an important step towards understanding very heavy operators in N’ =4 SYM is to
develop tools that can tackle problems of this kind for generic BPS operators in the large
N limit. Such tools have been developed recently for operators of dimension A ~ N
[9, 10, [115] 143), 144, [145] and in this chapter we extend this to operators of dimensions
that scale as N2. We show that the computation of very generic three-point functions of
half-BPS operators can be packaged in a large family complex matrix model of matrices
valued on a Grassmannian. Although we mostly focus on the U(N) theory, our results
generalize readily to orthogonal and symplectic gauge groups. For simple observables,
such as set-ups involving a single stack of AdS giant gravitons, the corresponding matrix
ensemble is a unitary Jacobi ensemble, while for more generic observables the matrix
model cannot be easily reduced to integrals over eigenvalues. At large N, we find that
the saddle point equations simplify the calculation significantly allowing us to either
reduce the integrals to sums over integrals over eigenvalues, where each term in the sum
is labelled by a permutation. The average density of eigenvalues is universal and is
given by the well-known Marchenko-Pastur distribution, which appears as the Poisson

distribution of noncommutative probability theory [140]

p(z) = : (1.2)

Gaussian matrix integrals have been used extensively in the study of the combinatorics
of half-BPS correlators in the past [I7, [147] and in other contexts [148], 137]; the matrix

models we study on the other hand describe large deviations from the vacuum state.
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for a similar story for Wilson loops see [149, 150, 151]. In simple terms they describe
wavefunctions of semi-classical BPS states in A/ = 4 SYM and as such they provide a
quantum mechanical description of half-BPS Coulomb branch configurations. This makes
them ideal candidates for computing quantities that one can match to the dual geometric
description. In fact, we argue that despite the fact that one expects an exact match for
half-BPS observables on both sides of the duality due to a lack of ¢g?N corrections to
the free-field theory answer, the corresponding supergravity will not in general compute
a precise quantity from the point of view of the conformal field theory but rather a
(micro-canonical) average. This is purely an effect of the large N limit and the full
stringy description should be able to resolve the details of the boundary observable.
These observations have been made in this context before, for instance in [112], but we
clarify how this happens on the field theory side of the computation. Our main result
is a large N formula for all heavy-heavy-light structure constants of half-BPS operators,

for instance

1
Crrrj = ﬁ/dZdZPR(Zﬁ) (= +2)%, (1.3)

where the density pg is determined entirely from Young diagram data in a well-known way
[152]. This is essentially the formula motivated in [I12] from holographic renormalization
of low lying operators and Coulomb branch limits. Our computation provides a check
of this one-point function formula for all single trace primaries and in principle for all
LLM geometries without relying on free-fermion methods. We also compute off-diagonal
structure constants between sufficiently close heavy states suggesting that semi-classical
supergravity calculations should be able to probe the precise microstructure of bubbling
geometries.

This chapter is structured as follows. In section 2, we review the BPS coherent state

construction and and discuss the computation of the form factor of a single trace operator

165



%—BPS Structure Constants and Random Matrices Chapter 8

in the background of a giant graviton. In section 3 we generalize the computation to the
case where the number of giant gravitons scales with N. To do this we explain how to
reduce the corresponding integral over a Grassmannian to a more conventional matrix
model involving square matrices and then solve the model at large N. The resulting
distribution essentially reproduces the distributions studied in [69], up to a change of
variables. We then study the general problem of multiple stacks of giant gravitons using
steepest decent methods. In section 4 we return to the problem of computing correlators
in the character basis and provide a more explicit connection from the eigenvalue picture
presented by the coherent state generating functions and the character basis. In section

5 we conclude by discussing some general lessons and future directions.

8.2 Coherent States and Form Factors

Most of our discussion will concentrate on the simplest correlation functions in the
N =4 SYM theory, which are three point functions of half-BPS operators. We will also
work mostly with the theory on the cylinder R x S, but translating the results to the
plane is straightforward. A convenient parametrization for half-BPS operators is given

in terms of a six dimensional null complex vector n - n = 0:
Z(I>n) :nlqbl(x)a (21)

and any half-BPS operator is obtained by taking gauge invariant combinations of Z(z,n).

One common choice of operators are single and multi-trace operators

Ousf) =[] e (- 3)"]. 22)
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In the large N limit with A = )", L, < V/N these provide an approximately orthogonal
basis of operators; this is the usual statement that in the large N limit planar graphs
contribute the most in correlation functions. This class of operators is naturally asso-
ciated to the supergravity modes of AdSs x S° and their bound states. However, for
operators with large enough conformal dimension A, various non-planar effects can con-
tribute meaningfully or eventually dominate over planar graphs. Even more strikingly,
certain extremal correlators of single traces operators have enhanced contributions from
non-planar diagrams even for small charges [153]. For these reasons it is useful to first
perform the computation at finite N with a proper orthogonal basis of states, and then
take the large N limit.

By restricting to primary operators, we will often drop the space coordinates x93
since we will mostly work with constant modes on the S3. Due to non-renormalization
properties of half-BPS operators, the two and three point functions of such operators
can be computed in the free field theory limit gy = 0, so that our task reduces to
a combinatorial problem of performing Wick contractions of free fields. This problem
was first addressed in [48] for extremal correlators n; = ny = ni. The main idea is to
construct an orthogonal basis of states for one matrix quantum mechanics with U(N)
gauge symmetry, or equivalently a set of operators that diagonalize two point functions.
The resulting basis is build from characters of the unitary group and is often referred to

as the Schur basis:

Ogr (Z(x,n)) = % Z (M) Tener [1Z(2,n)%*] = sg (Z(z,n)), (2.3)

’ TES

where k£ denotes the number of boxes of the Young diagram associated to the represen-
tation R of U(N) and x(7) is the character of the corresponding representation of Sj.

A different proof that this set of operators provides a diagonal basis was given in [I1].
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These operators have a dual description in terms of giant gravitons, or their bound states,
in asymptotically AdSs x S® spaces [48, 17, [32].
Instead of performing the explicit contractions for a particular operator, it was realized

that one could instead work with a coherent state for the free field Z(x,n)

1

|A) = SR / dU ™A Z@n] gy (2.4)

A straightforward computation gives an alternate formula for |A) as a expansion in

characters of the unitary group sg,

=3 fiRoR (Z(x,1)) sr(A), (2.5)

and sr(A) is a Schur polynomial. The point of this analysis is that by exploiting the
Campbell-Hausdorff formula the free field contractions of the operators Og (Z(z,n)) can
all be replaced by an integral over the unitary group. For the two point functions the
resulting integral is a Harish-Chandra-Itzykson-Zuber integral which has an exact fixed

point formula:

elidn(i)

/ dU e™VAVIN = ¢ N det(r) AMAR) (2.6)
TESN

- 1
AJA) = 7o [U(N)]

Following the ideas of [9] [10, 19], one can reduce the computation of any correlator in
the free theory to a matrix integral by commuting various generating functions past each
other using the Campbell-Hausdorff formula. In the language of [9], this is equivalent to
replacing the fields inside small operators (such as traces) by their vevs after integrating
out the SYM fields and then performing a saddle point approximation over the auxiliary

parameters (in this case U).
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More concretely we will be interested in computing form factors such as:

(A, ng| Te[Z(t = 0,m2)"] [A,n1) 2> Crop (A A) (R ng| Te[Z(t = 0,m2)"] R, i),
R,R’

(2.7)
where the initial and final states are created by heavy operators A ~ N? in the large N
limit. For relatively simple choices of operators, such as determinants and traces of fully
symmetric tensors [9) [10, 115] [144], the saddle point analysis can be performed rather
explicitly and the correlators can be matched precisely to their holographic counterparts.
For more complicated operators, such as insertions of many determinant operators, or
operators associated to generic Young diagrams, the saddle point analysis appears to
be less straightforward and the structure of the solutions to the saddle point equations
is not fully understood. The main difficulty lies in the fact that the resulting matrix
models cannot be easily reduced to integrals over eigenvalues, so that the saddle point
equations appear to be truly matrix equations. We will discuss in the later sections how

to overcome these complications in the regimes relevant to states with nice supergravity

descriptions (i.e. states corresponding to non-trivial geometries with small curvatures).

8.2.1 Example: AdS giant graviton

Before proceeding to the case of interest, it is convenient to review the results pre-
sented in [9, 144] since many of the parts of the calculations presented there extend
naturally. In the simplest of cases, the heavy operators can be taken to be of rank
one, meaning that they correspond to Schur polynomials of fully symmetric or fully anti-
symmetric representations. In the case of fully anti-symmetric representations the correct

generating function is the determinant operator [43], for instance :

det(es + ids — \) = det(Z — \), (2.8)
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which describes a sphere giant graviton sitting at the origin of global AdS at a position
inside S° given by €' cosfy = A. This operator is a semi-coherent superposition of
all subdeterminant operators, each describing the R-charge eigenfunctions of a sphere
giant graviton. The method for semi-classical computation with this class of operators
was presented in [9] and also [I9] so we refer the reader there for details. Instead we
will describe how the analogous computation is done for an operator describing a semi-
classical AdS giant graviton. The reason for this is that in the end both calculations lead
to very similar integrals for the correlators, but their form is much easier to understand
for the computation involving symmetric tensors.

First we consider the following coherent state:

1

e e

/ dodpt 9172 0) . (2.9)
cpN-t

As discussed in [IT] [T44] this is the same state that one obtains from setting A to be a

rank one projector in (2.6). This state has a natural U(1) gauge symmetry
© ~ e, (2.10)

which can be identified with the gauge symmetry on the worldvolume of the giant gravi-
ton, as well as invariance under U(N) gauge transformations of Z. This state is also
a coherent superposition of AdS giant graviton wavefunctions with fixed R-charge. A

simple calculation yields:

_ 1 ,
ANy = ——— dodpt '8, 2.11
(A[X) Vol [CPY ] /CIPNl pap € (2.11)

To evaluate this integral we need to do a series of simple coordinate transformations.

Without loss of generality, we can let P; be a rank one projector into the first component
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of ¢. Then we can split the coordinates of CPY ! into ¢; and ¢, with n > 1. The reason
we emphasize this will become clear when we generalize this more complicated coherent

states. Then, we can parametrize the coordinates ¢,, in terms of an 2N — 2 dimensional

spherical slices of radii R = /1 — [p1]> = v/1 — 2. Finally we can rewrite the radial

part of the integral as

) 1 N
/d (7"2> d (R2) R2N74 6<R2 +T’2 o 1) e)v\T :/ dx (1 o ZIZ’)N72 6)\)\36. (212>
0

This last integral is simply the moment generating function of a particular unitary Jacobi

distribution. To make contact with the calculation involving determinants, we can rewrite

N-2 N-2

. AA
(W)Y (1= )2 = det A I T el IR E)

Api A P21 P22
Although this step is not necessary and the previous integral expression is simple enough
to evaluate explicitly, doing this change of variables makes it clear that the final answer
the large N approximation for AdS giants is the same as that of sphere giants (up to

analytic continuation). After a final simple re-scaling, A — +/N — 2 X we finally arrive

at the expression

<;\|/\> = C’N/ dp det pV 2 e(N_2)tr2[ppT], (2.14)

det p >AX—2

which apart from the contour on integration is identical to the integral obtained from
the Hubbard-Stratonovich trick used in [I15] for determinant operators H This will be
true generically, once we solve the saddle point equations for a configuration of AdS giant

gravitons, we automatically have the solution for a configuration of sphere giant gravitons

'Our trace convention is so that tr,,1 = 1 as opposed to tr,,1 = m
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after a simple analytic continuation. In this case the saddle point equations are simply:

pl=p"" = propn = —1
(2.15)
A\ > 1.

The second equation comes from the fact that the exponential needs to be positive
for the saddle point to be a maximum; this implies that the semiclassical approximation
is valid whenever |A| = cosh pg is greater than one which simply says that the brane is at

a position py > 0 in global AdS, and this is true for all half-BPS giant graviton solution.

Form Factors

The next step is compute the following form factor;

(Z+Z+Y_YY/W‘ (216)

(X Try [(ﬁ(E)L] A) = (A Ty '

Our choice of 7 is taken from [I15] for clarity of presentation and is arbitrary. To evaluate
this quantity, we use the fact that the initial and final states are coherent states which

lets us replace Z and Z by constant matrices. The resulting trace is

e

To proceed we use the fact that the integrals over dy and dp are invariant under the

TI"N

(Z+Z+Y—Y)L
2

action of U(N), so we can gauge fix ¢ to be a unit vector v with a one in the first

component. Finally one uses the trick introduced in [9] to exchange the trace over color
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indices into a trace over “flavor” indices associated to the in and out states of the brane:

L
A A
= 27 ¢r, S_Ol ~ troph. (2.18)
AT A

TYN

(Z+Z+Y—Y)L
9

Now instead of evaluating every power the matrix p, it is better to work with the resolvent

1 — ttry[p]
t2det p — 2ttra[p] + 1

Rt)=tro [(1—tp)~'] = (2.19)

When we evaluate this expression at the saddle point value for p, we can immediately
recognize that the resolvent R(t) is a generating function for Chebyshev polynomials of

the first kind.

(R(t)) yeoo = ZTn(cos ¢o cosh pg) t", (2.20)

n=0

where we parametrized the eigenvalue in terms of LLM coordinates A = ¢ cosh p.

Extracting Structure Constants

Naively one might expect that the saddle point approximation of the resolvent com-
putes a generating function of some half BPS structure constants. This is not quite
correct for the following reason. First we would need to extract the contribution to the
form factor from a particular set of primary operators. In this case this is somewhat easy
to do, given that the coherent state has a simple expansion in terms of Schur polynomials

for rank one representations

o /\N+k 1

N miow@10). (2.21)

We should then think of the coefficients in the expansion as the distribution of lengths

for a Young diagram with a single row. The distribution is similar to a Poisson random
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variable, so that the average length is of the Young diagram is of order |\|. Another way
of seeing this is by using the Stirling formula for the denominator and extremizing with
respect to | = N + k — 1; the maximum occurs when |A\| = N + k — 1. This is the reason
why the coherent state calculation in [144] gives the correct answer for structure constants
without the need to project into a particular character. However, the dependence on the
phase of A when we insert an operator will not be correct due to unwanted contributions
coming from off-diagonal terms. To fix this one should project the intermediate operator
into a an R-charge singlet operator. This is done by performing a group average over the
phase of \. Since the wavefunction </_\’/\> is already invariant under shifts in the phase
of A\ whenever A = \*, the only effect of averaging is to project out off-diagonal terms
from the resolvent.

Strictly speaking this averaging should be performed prior to doing the saddle anal-
ysis, since averages do not generally commute. One way of performing this average is to
rescale t — \/det p t, and then perform the integration over the phase of A by a contour

integral. The result is

2 —1
2v/(1+ 2)2det p — 422X |

R(t) = \/det p

(2.22)

In the large N limit, we can set det p = 1, and the averaged resolvent will take the form
of a generating function of Legendre polynomials. Since the saddle point analysis for this
case basically involves setting p to a particular value, the averaging procedures commute
so the large N limit was taken first in [115] 144] without any trouble. This is not the case
for operators made out Schur polynomials for large Young diagrams, since the large N
limit leads to a continuous distributions of eigenvalues. Once the eigenvalues condense,
the result of the computation will be highly sensitive to the analytic properties of the

moment generating function, and performing the averaging and large N limit can lead
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to contradicting results. The most natural prescription to remedy this is to perform the
projection into a particular primary operator first by an appropriate averaging, and then

take the large N limit of this quantity.

8.3 Matrix models for general coherent states

8.3.1 Two Droplets

The next simplest calculation that we can perform is the case where the matrix A in
(2.6) is taken to be a rank p projector. In this case, the analogous coherent state is an
integral over the Grassmannian Gr(p, N). The expression for the coherent state is simple
to write down, but some of the steps needed to evaluate the resulting matrix integrals

require some care; the main task will be to evaluate the following norm:

1
A p) = /G v ATRVVIZ ) (3.1)
7’ p7

~ Vol [Gr(p, N)]

We will argue that this state described the wavefunction of a stack of p giant gravitons
sitting at position A in the LLM plane. The first thing to note is that this coherent
state has an explicit U(p) gauge symmetry V ~ Vg which we can identify as the gauge
symmetry on a stack of D-branes. The expectation value of Ay on this state is given by
p|A]? so that whenever |A| ~ v/N and p ~ N, the average dimension of this state is of
order N2. By inspection, we can also deduce that this state is a coherent superposition
of Schur operators of at most p rows. by acting with Tr[Z] on this state, we can see that
this state breaks the gauge symmetry spontaneously from U(N) to U(N —p) x U(p), and
that the center of mass of the stack of p branes is at the position z = A on a complex

plane.

Before proceeding we need to comment on the choice of coordinates for Grassmannian,
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since the details on how to perform these types of integrals are known but not readily
available. We will mostly follow the notation of [154, [I55]; for a pedagogical presentation
we refer the reader to [146]. First, we can choose to split any given group element U in

terms of block matrices

U= , (3.2)

where Ay and Agy are px p and (N —p) x (N —p) square matrices, and Ajy is a px (N —p)
matrix (similarly for As;). Then we make an arbitrary choice of frame distinguished by

a rectangular matrix
v = (Hp O(N—p)Xp;) (3.3)

this matrix can then be used to build projectors into arbitrary p-dimensional subspaces of
C¥ by acting on v with unitaries. This set of projectors precisely gives a parametrization
of the affine Grassmannian Gr(p, N). By an affine Grassmanian we will simply mean the

space spanned by the unitary transformations of v:
Gr(p,N) ={V=U-v|Ue€G}. (3.4)

Clearly any V in this space is rank deficient, so all of the information about its singular

value decomposition is captured a square matrix:

Al A 0
vt =utpy =" . (3.5)
0 0

In analogy to the rank one calculation, we can write down the integration measure for
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this space as
dVdVT = dA;dAL dAd AL, x § (ALAH + Al A — ]Ip) (3.6)

By a similar calculation we can see that the norm of this state is given by

1

Ap[Ap) = Vol [Gr(p, N)

/ AV VT TV IRV (3.7)
Gr(p,N)

One last fact that we need before continuing is the Jacobian for the coordinate transfor-
mation M = ATA for any n x m rectangular matrix A. This change of variables is well

known in the context of Wishart distributions;
dAdAT oc det(M)"™dM, (3.8)

where the constant of proportionality is an integral over angular variables that will not

be important for our analysis. So in the end we find

dAL A, det (]Ip - ALAH)  exp <)\5\Trp [ALAHD .

Gop | Ap) =, |

AI1A11'_< Ip

(3.9)
Since the only combination of A;; and Ail that appears in the integral is AJ{1A11, we can

reduce the computation to an integral over the eigenvalues of ALAH.

P P
(\p | A p) =Chyp Hdmi A(z)? (1 —2)V % exp ()\)\ ij> : (3.10)
j=1

(0,17 54

8.3.2 Large N Limit: Steepest Descent

We will now sketch the evaluation of ([3.10]) in the large N limit. As before, |A|* will

scale with IV so that the exponential term is large. The integral can evaluated explicitly
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using the Andreief identity [146]:

1 -
C;}D = p! cﬁt (/0 dr (1 — x)N_prﬁk_QeM“) (3.11)

The function inside the determinant is an incomplete Gamma function. Another way
interpreting it is at the moment generating function for the GUE Jacobi ensemble. Even
though we can evaluate simple moments in this distribution exactly, the final form will
always be a large determinant of a Hankel matrix which we cannot deal with easily.
Instead we can perform a saddle point analysis of for large N and large p. After
rescaling a similar rescaling A — /N — 2p \ the saddle point equations of this integral

are of the form

- 1 2 1
AN — — = 0. 3.12
1 - N—Qp;:cj—xi ( )

The behavior of the saddle point configurations are easy to understand; the first two
terms are the same as in the single eigenvalue problem so that all the eigenvalues have a
tendency to condense around A\ = 1%% while second term the usual eigenvalue repulsion
term. We should also note that for distribution to be stable we have to require that
p < N/2. This makes sense, since condition forces the second droplet to be smaller than
the first. In the case that p > N/2, this configuration is no longer a small deformation
of the original vacuum configuration and the remaining N — 2p eigenvalues become the
relevant degrees of freedom. The case with p ~ N/2 has to be treated with particular
care as we will see. To solve these equations at large N with p/N fixed we simply recast

the saddle point equations as a Ricatti equation for the resolvent matrix R,(2):

< 1 K P 1
A\ — Ry(2) — — R,(2)? R (2)=0 3.13
D L e X e A0 R N CEE
where K = % L ﬁ = ’1’(3 is a constant that is determined from R, (z) by imposing
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self-consistency conditions of the distribution. From this we can identify Ni2p as the
relevant A parameter in the problem; this is the reason why p ~ N/2 should be treated
with care, since the 1/N fluctuations of the resolvent are no longer under control and
one must solve the differential equation exactly. This can be seen from a simple scaling
argument; if N —2p is of order one, the exponential and determinant terms in are of
order e?, while the Vandermonde term is of order e?”. This says that the dominant effect
in this case is the eigenvalue repulsion, so that the separation of each of the individual
eigenvalues is large when compared to the size of the system. In particular we should
expect the corresponding geometry to have a region with string scale curvature where
the supergravity approximation breaks down. This is expected, since wavefunction |\, p)
no longer has a good semiclassical approximation in the large N limit. If instead we
decide to keep N — 2p of order one but this time scaling A\ as /p ~ V/N, then the
Vandermonde contribution is off-set by the exponential term and the determinant term
is still sub-leading, so the distribution of eigenvalues z; is approximately semi-circular.
What this is saying is that now the two droplets are too close together to be treated as
separate (meaning that their size is of the same order as their separation), and instead the
deviation from vacuum is described by a collection of order one giant gravitons probing
the vacuum. In other words, depending on how we decide to scale N — 2p we will obtain
qualitatively different saddle point conditions and the expansion in terms of AdS or
sphere giant gravitons might be more suitable.

The regime we will be interested in is when N — 2p is of order N, so that the constant
equilibrium configuration is a good approximation to the eigenvalue distribution. In the

large N limit the density of states becomes

1 VAR —2) — (1 - (1 - 2)AN)’

T 1—=x

p(x)dr = dx, (3.14)
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; this turns out to be simpler after we make the change of variables

z = A\ (1 — ). After this we can normalize the distribution such that [ p(z)dz = 2u

1

and find K = 1. In this convention the eigenvalues are quantized in units of 2¢g, = o

where g, is the effective string coupling of this system.

To compare with the corresponding LLM solution we can express the solution in
coordinates that manifest % of the supersymmetries [69]. The point is to write the 10d
metric in terms of a 6d complex basis with coordinates x,y, z. For the vacuum AdSs x S®
solution these coordinates should be identified with the coordinates of the five-sphere.
Translating the whole metric into these coordinates is a non-trivial task for generic LLM
geometries, but we will only be interested in determining the volume of the cycle wrapped
by the branes. In these coordinates the radius of the three-sphere wrapped by the giant

gravitons for a single droplet solution is given

S VI - IZIQ)(IZ—GIQ—b2)7 (3.15)

|2 —al

where the droplet is centered at z = a, the size of AdS is L and b is the radius of the
droplet. Notice that this is essentially of the same form as up to some relabellings.
The discrepancy between the denominators is due to the fact that the variable x is
actually related to the square of the radial direction of AdS. The precise mapping between
both pictures should involve some more complicated charge of variables in general, but

the analytic properties of both distributions are the same.

8.3.3 Three Point Functions: Diagonal Case

To compute the correlator of a single trace in the background of these coherent states
we can use the resolvent trick. Using the same kind of color-flavor transformation the

trace over the original color indices can be replaced by a trace over p X p matrix. In this
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case the moment generating function is

F(t) = tr, {( (2—tA+N) ( (1 —tA)(1 — tN)I, — t2>\ALAH>_1} -

The most natural variable to work with is once again z; = AA(1 — z;), which makes the

density of eigenvalues be of the form:

T2

where 2z, are given by the roots of the polynomial inside the square root in (3.14)

2 2 A\
=14 2LV RHE AN

_ 1
AA A\ (3.18)

Expanding F(t) as a function of z gives an expression for the moment generating function
in terms of the moments of the Marchenko-Pastur distribution (3.17)). After extracting

the L'™ moment we get

(Z+Z+Y YL

ATy I3 =

A4 A e S5 — A+ A
(i ) (1
2
l Zy — RZ— k Zy — R—
my = / de Z ()< >< 9 >:2F1(1_l7_l;2;7 9 >
21 k=1

(3.19)

To extract the diagonal part of this form factor we can average over the phase of \.

2GS ()0 (2 b ().

k=0 2
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This correlator should be interpreted as encoding part of the angular distribution of the
bubbling geometry associated to the condensate of eigenvalues and should compute the
one-point function of a scalar operator on an LLM geometry with two circular droplets.
It would be interesting to compute these correlators holographically, for instance with
the methods developed in [112]. By performing an additional contour integral over |A| we
can obtain three point functions for operators with fixed scaling dimensions as opposed to
coherent states as is done in [I15]. One can similarly perform computations that extract

off-diagonal form-factors between heavy states with different dimensions.

8.3.4 General Matrix Model: Eigenvalue Picture

Now we will proceed to the general case and sketch how to extract specific operators
associated to a particular Young diagram of at most p rows with order N? boxes, and
we will use this to compute diagonal form factors. To do this we need to consider the

generating function
(A,|A,) = n, / dotdo det (I — o) ViAo’ (L.1)

This formula is the analog of for generic coherent state parameters. Computing this
integral is not an easy task for generic eigenvalues, since the argument of the exponential
is no longer just a function of oo, and the matrix ¢ is not a normal matrix, so ¢ and o'
cannot be simultaneously diagonalized. In this section we will give a heuristic argument
for a saddle point approximation to this integral. We will give a more concrete proof in
the next section where we will need a more careful analysis of these type of integrals.
Intuitively one would like to say that the integral is dominated by points where the all

the matrices in the trace are diagonal. One way to see why this could be true is that the
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exponent can be written in the form:
tr, [AMoo! — cA[A, o] — AA[o, o] . (1.2)

Since the first term is manifestly positive, the exponent is the largest when this term
is maximized which happens whenever all the matrix components are concentrated on
the diagonals. Any deviation from this contributes to the second and third terms, which
are not necessarily positive. So it is natural to expect that a good approximation to the

integral is obtained by integrating over the set of o satisfying
[\, o' = [0,01] = 0. (1.3)

Indeed we will see later that these are the saddle point conditions for the integration over
the angular variables for o. Because of the large exponent, corrections to this are heavily

suppressed as long as AT = A, and so
(Ap|Ap) =~ / di; Ay () (1 — ) V720 V2 P O, (1.4)
[0,1]»

The other saddle points contribution for the norms consists of pairing the eigenvalues
A; with Xﬁ(i)] for all permutations 7, which are highly suppressed for non-coincident

eigenvalues.

eTr[AU[XO'T] N Z €Ei|5i|2)\i5\w(i) X (OIlG‘lOOP)- (15)
TESY

We work out the appropriate one-loop determinant for this saddle point approximation in
section 4. This structure precisely explains the saddle point structure found in [9] for de-
terminant operators; the solutions to the matrix form of the saddle point equations always

involve summing over permutations of initial and final giant graviton states. For widely
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separated eigenvalues the Vandermonde determinant does not contribute meaningfully
to the saddle point approximation and the state is well approximated by a collection of
widely separated giant gravitons. A more interesting regime is whenever we have n, coin-
cident branes at a point A,, for a = 1,..., k. As long as the \, are sufficiently separated
interactions between different droplets can be neglected and the eigenvalues x; are dis-
tributed along k cuts whose distribution is approximately given by the Marchenko-Pastur
distribution. More precisely, the norm of the coherent state with £ lumps of eigenvalues

centered around )\, is computed by the following matrix model:

Z(A, o0 0) =
k  ng _ 16)
a a 2 a N=2p o c (
H de§a> A, (95( )) (1 - xE(}) eNAatata 5 H H (:Ug) - ng)) .
017 4—=1 "4, c>b ip,je

The derivation of this class of models was presented in [I51], and we outline the details
in the next section. As long as the cuts are not exponentially close to one another, the
last eigenvalue repulsion term is far enough from zero that it does not affect the saddle
point. The analysis for the three point function is then relatively straightforward; the
moment generating function can be block diagonalized and each block is dealt just like
the single-cut case. In the regimes when two cuts approach each other this approximation
is no longer valid and one has to solve the corresponding monodromy problem exactly
as the fluctuations around the stationary eigenvalue distribution will not be suppressed.
We expect that these corrections reproduce the supergravity picture of [69], with the
eigenvalue distribution being related to the volume of the three-sphere on which the
giant gravitons are wrapped (see for example equations (5.110) and (5.116) in [69]). We
expect that the spectral curve for the matrix model is precisely encoded by the dual
LLM geometry written in the coordinates advocated by [69], since our distribution of

eigenvalue for the single cut case is essentially identical to their equation (5.117). This
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aligns with the results coming from numerical tests performed in [I56] and we advocate
for a similar viewpoint; 1/N effects will generically give some amount of granularity to the
edges of eigenvalue droplets, specially if multiple droplets are close to one another when
compared to the characteristic size of each eigenvalue. In order to resolve these details
one would need to solve the full interacting saddle point equations. We will not do this,
since in this regime there will not be a reliable geometric picture for the state. In other
words, the saddle point approximation we described above breaks down for states that
describe half-BPS geometries with string scale curvature, and instead we should think of

the state as being a deformation of a smooth geometry with some branes inserted.

8.3.5 Coulomb Branch Limit

One last interesting limit that we can consider is the limit in which the droplets are
widely separated from each other and from the origin. In this limit, the Marchenko-Pastur

distribution reduces to a delta function

o(z) — Zi(s <>\Z~>\i - _1x) | (1.7)

This is exactly the Coulomb branch limit discussed in [112]. In this sense the operators
we study here can be understood as quantum mechanical analogs of Coulomb branch
vacua of the theory. This makes the relation between the geometry of the moduli space
of vacua and asymptotically anti-de-sitter spaces clear; in the large N limit, the moduli
space should get quantum correction which deform its geometry into a bubbling geometry
and only in the dilute gas approximation can we approximate such a geometry by a multi-

center solution.

185



%—BPS Structure Constants and Random Matrices Chapter 8

8.4 Matrix Models for the Character Basis

Now we will concern ourselves with computing three point functions where the initial
and final state are specified by specific Young diagrams, as opposed to a collection of
eigenvalues \;. The idea will be to make a somewhat unconventional choice of integration
contour for the coherent states parameters. First we start with a pair of states ‘/~U> , [A),
but now we treat the parameters as being independent from one another; we will also
force each of the eigenvalues ); and ); to lie on a unit circle. By multiplying |A) by the
square of the Vandermonde determinant of A, and integrating we can recognize that the

resulting integration measure is just a Haar measure for a new unitary matrix 4 = UAUT:

/ dU}léd)\iA()\j)Q—)/ dU. (4.1)
U(N) U(N)

The resulting state is clearly proportional to the vacuum state, since there are no UT
insertions to feed to the exponential. From this it becomes clear that in order to extract
a term proportional to the state |R) = Sr(Z) |0) one should multiply the integrand by a
character Sp(UT):

|R) = %/du eTUZL p(UTY 10) . (4.2)

A similar trick was used in [I57] to study expectation values of Wilson loop for arbitrary
representations in large N Chern-Simons theory, with a slightly different generating func-
tion. For our choice of generating function the exponential factor can be expanded in
terms of unitary characters using Schur-Weyl duality and the resulting integrals are easily
evaluated using elementary orthogonality relations. On the other hand, for sufficiently
large representations we will be able to perform the integral using steepest descent after
we perform all contractions of the A" = 4 SYM fields. This exponential generating func-
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tion is also useful for computing Wick contractions with other operators since we can
exploit the Campbell-Hausdorf formula. With all this in mind the coefficient fj is easily

determined to be
TI"R[l] | DlmR(N) .

g (4.3)

which is the norm of the corresponding state; this is done by expanding the exponential
and matching the terms as in [11].

We will want to compute quantities such as

(R Ty [(Z+2+Y - 7)!]|R)

, 44
VI RIR) (RIR) (44)

CRR’L = 2_L X

in the limit that |R| ~ |R| ~ N?. To compute the quantity in the numerator we can
substitute the equation (4.2) and perform the Wick contractions using the Campbell-
Hausdorff formula:
Ty [(2+ 2] 1B = T [ auaay suutysw ) ™0 (@4 v)].
Vol [U(N)]
(4.5)
This procedure replaces all of the free-field Wick contractions with unitary integrals which

we can evaluate very explicitly.

8.4.1 Diagonal Structure Constant

As before it will be easier to work with the moment generating function for the matrix
U + V instead of dealing with each individual trace. We now proceed by diagonalizing

both U and V, after which we are left with an integral of HCIZ-type:

F(t) ~ / A0 dp(w)dp(v) Sr(u*) Sp(v*)eN 0 w0 Tr[(1—t(u+z7w*))_1]. (4.6)
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This integral is quite challenging to evaluate exactly, mainly due to the appearance of
the unitaries U inside of the trace of the resolvent. At large N, the integral over U can
be evaluated the method of steepest descent; the saddle point equations for the matrix
U are solved by permutation matrices which allows us to replace the integral over U by

a sum over permutations times a one loop determinant

/dU—>—Z H; (4.7)

TESN

where v are the eigenvalues of the Hessian of Tr[UTu Uv]; this determinant factor is well
known and it is proportional to A(u)A(v). Now, due to the permutation invariance of
the measure of integration for u,v, this sum over permutations can be performed by
changing variables v; — v(;) in each of the terms in the sum, so that in the end we are

left with an integral over eigenvalues all lying inside a unit circle:

Mz

ygl—[ du;dv; Nuivs det( N+ Ry~ k) det( N+ Ry~ ) (4.8)
U3 = 1 —t ul + Ul

Now the main obstacle is that we have a pair of determinants in the integrand. To solve
this issue we can expand the determinants as sums over permutations, and exploit the
symmetry of the measure under index relabelling to reduce the number of sums. It is

also more convenient to work with the variables x; = w;v; and y; = u;/v;;

F t) ~ % Z (_1)“¢H % eNl’i \/:Z,_iN+Ri—i\/mN+Ri—i

TESN

N o]
%Hd% N B ]\/_ "o ZZthL/2 2+?Jz‘+?jz‘)L/2'

i=1 L=0

(4.9)

To perform the integral over y; we set y; = €%/ since the coordinate y; winds around

the unit circle twice. In order to get a non-zero value, all of the integrals over y; should
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be non-zero and since the moments only multiply by one particular value of y; for each
term in the sum we can conclude that the integral is only non-zero for © = id. After

evaluating the integral over y we get

1 dQJZ Nz: =N+R;—i 1
~ — Ti it _ 41
=5 §£H A Z T— 1P, (4.10)

This final integral is a simple Fourier integral that can be evaluated by expanding in
powers of x;. After normalizing F(t) appropriately we obtain a formula for the generating

function of structure constant Crpry:

& (1)t LY. oo~ T(N+R—i+1)
f(t)_LZ:Ot VT x{(L/2>N /;r(N+Ri—¢—L/2+1)}' (4.11)

For large representations R; ~ N with large blocks, the ratio of gamma functions can

I'(z)
I(z—p)

replaced by an integral with x = (N —4) /N and «; = Ry41-/N:

ro- S SR [ we)

L=0

~ 2% as * — oo, and the sum may be

be replaced by the asymptotic expansion

here p; are filling fractions that measure the number of rows of size greater than or equal
to Riy1-; in units of N and we assume that there are k non-zero blocks in the Young

diagram for the representation R. Then the structure constants are:

e ESG{(1) [smir=)

X (4.13)
_ 1 L _ L i)2
\/Z/drrdgpr(r) (z+2)", z=re?",

where x = r? the density pg is defined as follows.
Given the Young diagram we rotate it by —3m /4 radians. Then the diagram has (k +
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\<</\/\/

(a) (b)

Figure 8.1—(a) A Maya diagram associated to a large Young diagram. The rightmost
positive slope edge is mapped to the Fermi sea, while negative slope edges represent
large gaps of unfilled states. (b) A sketch of the LLM geometry associated to the Maya
diagram.

1, k) edges of slopes F1 of lengths y; and k; for negative and positive slopes respectively.
For example the length of the I block is R; = NZfH_i ki = Noaj_p_1. We color
the edges with a negative slope black, and edges with positive slopes white and unfold
edges of the diagram into an infinitely long colored strip as in [8.1a] This strip is to be
identified with a radial slice of the LLM plane [152]. The variable r is taken to start at
the right-most colored edge; this is » = 0 in the LLM plane, and the asymptotic region
is taken to be towards the left of the strip. For every black region we have pg(r) = 1,
and pgr(r) = 0 for every white region. Substituting this into (4.13]) will reproduce the
integral expression in (4.12)).

This quantity can be matched precisely to the formula found in [I12] for the one point

point function of a chiral operator computed using holographic renormalization:

1 ,
(Ogrsr) Loy = 7E / drrde p(r)rFe**e. (4.14)
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For our background this quantity vanishes since there is a conserved U(1)g charge in the
background. To match this to the expression above we take the uncharged combination
Ogr,+r + Oge-x and integrate over ¢. This would correspond to the contribution of a

spherical harmonic Y/2 ~ (2 4+ z +y — 7).

8.4.2 Off-Diagonal Structure Constant

To compute off-diagonal structure constants we need to change one of the represen-
tations R to another representation R’ whose Young diagram is close to R. In this case
most of the integrals will vanish, unless R and R’ only differ at a single row R, — R] = k;.
Since R has large blocks, this can only happen when R;_; > R;, meaning after an edge.

The only non-zero integral over the y variables comes from the y; associated to the row

/, so we only get one term:

T L G O L! I(N+ R +k/2—-1+1)
Crrin =€ “Srr N~L/
’ WL (BENEENT(N + R+ kij2— L2 —1+1)

2

1Lk 4 (—1)Lk L
~ eiASRR/ + ( ) X OZZL/2,

- 2VL (5E)1(E5E)!

(4.15)

(R|R)

where ASg r is the ratio of norms ————L—
(R'|R)(RIR)

. This should be interpreted as the linear
response to a fluctuation localized at the edge of a particular Fermi surface within the

LLM geometry.

8.4.3 Comparing to the eigenvalue picture: fixing the number

of rows

The method outline in this section allows us to compute expectation values of light
operators in a particularly radially symmetric bubbling geometry. A natural question to

address is how this connects to the eigenvalue coherent state picture. In other words,
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given a particular configuration of droplets, how can we determine which radially sym-
metry modes make up the state. Clearly a single droplet made out of p giant gravitons
can only be made out of Young diagrams with p rows. This is because the overlap <5\‘)\>
has a character expansion, and setting N — p of the eigenvalues to zero makes characters
associated to representations with more than p rows vanish. To project to a particular
diagram made out of p rows we repeat the same trick where we integrate the remain-
ing eigenvalues over a unit circle with an appropriate measure. After regrouping the

integration variables we will end up with a pair integrals over U(p):

(R, p|R,p) /du(s*)du(s) det (I — s*s)N‘zp/dUdv Sr(UN)Sg (V)N TUsVs]

Onm f A s,
x Dy ()2 /du(s )du(s) det (I — s's) Sgr(s's)

p
. Dz’qiL]jVR(/R)Q /[07”17 Ed% Ap(z) (1 - xi)N_Qp forRFi-

(4.16)
For generic (non-rectangular) diagrams, the integral does not have a simple solution.
For large diagrams we can use the saddle point approximation to find the density of
eigenvalues ;. The procedure to evaluate this class of integrals was outlined in [I51] and
also [158, 159, [150]. For a Young diagram with k large blocks with n, rows, we split the
variables x; into k groups of size n,, x; = (xgl), e ,xgl), x?), e ,wg), e ,m(lk), e ,ngc)).

Then we use the fact that the integration variables are invariant under permutations to

/ﬁ ﬁ dxga) (xga)>Ra—Na <x£a)>na—z’a

rewrite

a=11i,=1
TIT @ o L (@) N (@) Y
/H H dx;” X = (J;Z-a ) (xﬂ(ia)) (4.17)
a=11i,=1 @ 1€Sn,
kE  na Ro—N,
JITL e (+2)™ " A,
a=11i,=
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where N, is the partial sum Zbga ny and Ny = 0. Putting it all together, we are left with

a multi-cut matrix model:

ko 7a N—2p Ra—Ng
2R)= [ [T 2, @) (1) (@) % [T T (o - o)
017 =1 "4, e>b ipyje
(4.18)
A matrix model quite similar to this one studied in [I51] for computing vevs of giant
Wilson loops in Chern-Simons theory on Lens spaces S*/Z,. To make the analogy more

precise we can change variables to x; = e~ after which the partition function becomes:

k 4@ _ @ 2 4@ N—2p
Z(R) = /HHduEa) H (2 sinh %) <2 sinh 22 )

a=1 1 1<

(La+N/2—p) u® u — o
x ¢~ FatN/2=p)u; 2¢inh 22— * | 4.19
: 11T (2 a

b>a i,j

1 e 1
La:Ra—§;nb+§an

b>a

The only difference between this and the matrix model studied in [I51] is that the Gaus-

sian term is replaced by (1 — e %

(a) . . : .
ui YN=2 and u differs by a sign. In this representation

the saddle point analysis is quite straightforward. The equations of motion for the eigen-

a
[

values ¢'¥ take the form:

(a) (a) (b) (a) a
1 u; =y 1 — U, 1-2p/N !
N E coth]T + = 5 coth 5 e M ( p/N) (coth%z - 1) — L4/N.

JF b#a,l
(4.20)

The resolvents for this type of problem can be taken to be of the form w®(z) =

—u{® : .
L3 coth o, and the total resolvent is w(z) = Sop_, w®(z). At large N the eigen-
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values condense into & branch cuts and the saddle point equation on the a* cut reads

1—2p/N (@
w(a)(z —f—iO) +w(a)(z —iO) + Zw(b)(z) — % (coth u; — 1) — La/N, (4.21)
b#a
or equivalently
1—2p/N
w(z+i0) = —w'(2) + (—QW) <coth§ - 1) — La/N. (4.22)

This equation defines a Riemann-Hilbert problem for the total resolvent w(z). Notice
that for large enough values of z, the potential rapidly approches a constant value of
—L,/N, and for small values of z there is exponential barrier pushing the eigenvalues
away from z = 0. This means that the eigenvalues will sit far from z = 0, and will be
uniformly distributed along the cut. To solve we need to find a function of the
resolvents that is regular for Re(z) > 0. Following [I51] we can define a set of complex

variables
X, = e—(1—2p/N)(cothg—1)/2ew — W e

(4.23)

X, = e ta/Ne=wa,

Y

then the equations are equivalent to a monodromy condition for the X; as we
around each of the cuts. The solution to this problem is given by a polynomial of degree
(k+ 1), f(Y,W), with roots at the X; and the spectral curve is the zero locus of this
polynomial. The precise eigenvalue distribution is then found by solving f(Y, W) = 0 for
Y and taking the discontinuity of the resolvent w o logY at each cut.

In the thermodynamic limit, the branch cuts become widely separated and the saddle

point equations simply significantly. Substituting in the ansatz W — 0 > 1in (14.20))

j i
ONMNCY
turn the terms of the form coth +———

5 into a constant. The interaction term between

eigenvalues in the same cut becomes a step function for large u(® beginning at the first
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eigenvalue on the cut which given an equation for each of the eigenvalues on a given cut:

(1-2p/N) ug 1 1
P (eoth %~ 1) = — [ Ly — (0@ — )+ 5
5 coth N (n )—|—2b>anb =
N —2p
295(1 >:gs

) (4.24)
Ry =) my+ > ne+ <2k+2nb+Ra> +2
b=1
Clearly the eigenvalues \; = 1/(1 — x;) are uniformly distributed along each cut, and

c>a b>a

they are quantized in units of 2g; = 1/(N — 2p). So again we see that this is indeed the
correct parameter controlling the fluctuations around the saddle. These equations are

also exactly analogous to the saddle point equations for the single giant graviton case,

1

= [\s|? = 12 4.25
1— 2, | Akl Tk ( )

and the distribution pg(r) for ry is the same distribution we found before.

Computing correlators: reduced matrix elements

To compute correlation functions of single trace operators between a set of states
|R,p), |R, p) we need to perform a series of elaborate coordinate substitutions to simplify
the matrix integral calculations. First, the states are obtained by a certain projection of

the reduced coherent generating function

|2, p) OC/ dUl/dvldVlT etrp[Ulvfzvl]SR(UlT) 10)
- t oot (4.26)

(R, pl OC/ dUz/dedVJ <0|etrP[U2V2ZV2]SR/<U2T).
U(p)

195



%—BPS Structure Constants and Random Matrices Chapter 8

If we insert a half BPS single trace operator between these states, the scalar fields Z and

Z inside the trace are traded by complex valued matrices:

Z — VUV
(4.27)

7 — Vih V.

We can then perform a color-flavor transformation to express any trace of a power of
Z + 7 (over N color indices) into a trace over 2p x 2p matrices. Then after performing
all of the contractions between the two exponentials we end up with a pair of unitary

integrals over U; 5 and an integral over the p x p ‘radial’ matrix o = VITVQ.

H%Mﬂ“Z+Z+Y—YfMRm:

/dU1dU2 daTda{ det (1 — O'TO')N_QP erp[UroUao] Sr(UNSR(UD

(4.28)

Uy VUL 0Ty }
YV UQ O'T\/ U1 UQ

X trgp

and here /U, o refers to the unitary matrix whose eigenvalues are square roots of the
eigenvalues of U; ». To solve this integral at large N we will diagonalize U, » and perform

a singular value decomposition of o.

U:ULSUR
U, =UTe™U (4.29)
Uy, = VieP .

Although this at first glance looks daunting one should realize that the translational
invariance of the Haar measure allows us to reabsorb most of the unitary integrals into

the integration over Uy and Upg. This reduces the calculation to a pair of integrals
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involving simple complex exponential associated to the eigenvalues of U o which encode
the angular dependence of the correlator, one integral over the radial eigenvalues, and a
pair of difficult unitary integrals over Uy r. First we address the integration over Uz, and
Ug. At large N we can perform a saddle point approximation for this integral; since the
only term that is relevant for this is the exponential we are left with the task of finding

the critical points of the following function:
S(UL, Ug) = tr, |Ule® Uy, s Up ¢PUT, ST] . (4.30)
The critical points of this function are given by the solutions to a pair of matrix equations
[stUlei Uy s, Ug ePUL] = [sUr ePUL s, Ul e > U] = 0. (4.31)

These equations essentially imply that these two pairs of matrices are simultaneously
diagonalizable. For example, the first equation is unitarily equivalent to the condition
that e® and U};STU}Eeia Up, s Ui are both diagonal in the same basis. The second equation
gives a similar condition for e/ and Uy, s Ug ¢PU}, s Ul But since ¢/, ¢® and s are all
diagonal the only way that this can be achieved is if Uy, p are permutation matrices. This
is clear because making the ansatz Ur = U, in the first equation for some permutation
matrix U, immediately forces Uy, to be a permutation matrix and vice versa. This means
that we have one critical point for every pair of permutations 7,7 in \S,, which act on

iox

e’ and e by permuting their eigenvalues independently from each other. To get the

correct answer we should also compute the one-loop determinant around each of the
saddles. This boils down to computing the Hessian of (4.30]), which is the same for each

each critical point up to a sign associated to the determinant of the permutation. To
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quadratic order S(eM, M) is

S(m,n) ~ tr,[e’* s e sf] — 5 Z {(e’ai — €9)(s;57 P — sjs;elﬁjﬂmij\z
Y]
+ (€ — €9)(si8] €' — s5557€" ) ;| (4.32)

— (e — i) (" — ezﬂj)sis;‘f (mijng; +niymy;) } +...,

so the one-loop factor becomes simply
det (9;;04S(m,n)) = A, (e'*) A, (e®) A, (sTs) A, (e"@PsTs) . (4.33)

Each saddle point is weighted by det(77), so after a coordinate transformation every
term in the sum will give the same value. As before, the one-loop factor when combined
with the denominators of the determinantal expressions for the Schur polynomials will
cancel the Vandermonde determinants in the integration measure of «; and f;, which

makes the integrals over the angular variables straightforward

(R, p| Tx [(Z+Z+Y—Y)L] IR,p) =

da; df; A, (sts) Vs o
: : d i 'p 1 — i 2 P Z(O‘ZJF/BZ)
/ 27 27 /[_171],, 5 {Ap(ez(a—l-ﬁ)sfs) ( |53 ) exp (e

. . / L ratB
—i(p+Ri—lag —i(p+R;—1)Bk T\L/2 i )L
It (e ) dt (et (L/2>trp (o)t 2 501 }

sl) (w3

For light operators and diagonal structure constants we can simply interchange (Z + Z)*
with ( ].52) (ZZ)"/? which is simpler to work with. The integration over o; — 3; will again
force the pair of sums over permutations coming from the two determinants to collapse

to a single sum, and the integral over a; + 3; cancels the factor of (ss:)*/2. Finally the
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integral over s; factors out completely and the correlator comes only from the integrals

over the angular variables:

(R, p| Tr [(Z+ Z4Y - Y)L] IR, p)

_ 1+ (-1)F LN 1~ T(p+Ri—it1) (4.35)
—zm Y x{(m)N/zrwi_i_ww}.

7 =1

This is the same answer as except that we are missing one term coming from
the droplet made out of N — p spectator branes. The reason that we miss this term in
this calculation is that the reduced generating functions project out all Young diagrams
with more than p rows, which essentially freezes N — p of the branes that make up the
background. This agrees with our interpretation of the off-diagonal structure constant
as the linear response of a particular Fermi sea level. Since we projected out all the
contributions from Young diagrams with more than p rows, ripples of the first Fermi sea

surface are projected out from this computation.

8.5 Discussion and Future Directions

In this chapter we introduced techniques for dealing with large BPS operators in N =
4 SYM theory and revisited the computation of one-point functions in the background of
states corresponding to the bubbling geometries of [16]. Our method is based on the semi-
classical techniques introduced in [111, 9} [10] and further developed in [144] [13],24] 143, 0§]
and provides an independent derivation of the results of [I47]. One advantage of our
methods is that they do not rely on diagonalizing any the field operators of the theory, or
performing any kind of consistent truncation of the model, which makes weak coupling
computation of non-BPS observables possible. We also fleshed out the relation between

coherent states and characters by providing an explicit integral transform between both
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pictures. This gives somewhat complementary methods that can be used to compute
correlators of operators describing somewhat generic LLM backgrounds. Although our
results are expected and perhaps unsurprising, we hope that the techniques developed
here serve as a starting point for performing a systematic large N expansion for large
operators.

One question worth asking is whether we learned anything about the statistics of
(BPS) OPE coefficients in N/ = 4 SYM. We are hesitant to claim that our results display
any kind of chaotic behavior predicted by the eigenstate thermalization hypothesis [160],
since half-BPS operators in A/ = 4 SYM are completely captured by a free theory. We
instead attribute the appearance of random matrix statistics to the averaging necessary
to describe large semi-classical states, and to effects due to the large charge limit. In
fact our computations suggest that true structure constants (as opposed to fixed charged
three point functions) only receive contributions from a single term, and that the would
be distribution of eigenvalues in these cases are essentially constant distributions. On
the other hand, correlators involving large operators that break the R-symmetry sponta-
neously but with fixed charge are generically given by complicated averages. In the large
N limit with the charges of the operators scaling with N2 this leads to the appearance of
random matrix behavior in the OPE coefficients. Interestingly similar distributions were
found to emerge from the large charge limit of extremal correlators in rank one SCFTs
[161].

We conclude by commenting on some future directions of work.

Holographic computation of off-diagonal three-point functions

Our methods allow us to make predictions for the value of the off-diagonal structure

constant between two LLM geometries. This quantity is only non-zero when the two
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geometries differ by a small fluctuations. It would be ideal to try develop semi-classical
techniques for computing such things using the gravitational path integral. Since states
are highly degenerate (there is one for each Young diagram!), we expect that there is a set
of commuting charges that differentiates between different states in gravity. These charges
would correspond to some kind of higher spin asymptotic symmetries of LLM solutions.
Then, computing off-diagonal three-point functions would correspond to dressing the
semi-classical saddle by a wavefunction charged with the appropriate asymptotic charge
as suggested by [115]. This would be a very simple toy model of the soft hair proposal
[162] in the sense that one is able to probe very precise details of the interior of the
geometry from simple boundary manipulations. Such a technique would also have to
go far beyond our current methods of holographic renormalization [163]. We take the
fact that the formulas for one-point functions in LLM backgrounds are quite simple as
indicative of the existence of a different method for computing holographic one point
functions in them. Perhaps a careful WKB analysis [164] might be able to reproduce the
result for operators of arbitrary charge without the need for a non-linear Kaluza-Klein

reduction.

Three Heavy Operators

One obvious extension of our calculations would be to consider the structure con-
stants of three really heavy operators half-BPS operators. There are in principle no
conceptual obstructions for performing such computations, since we only have to include
an additional exponential generating function. Technically speaking the saddle point
analysis is more involved and we expect the form of the structure constants to be much
richer. More precisely many of the simplifications that occur for the one-point functions

of single trace operators are basically due to the fact that for small operators the term
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in the tensor decomposition only show up with multiplicity one. This is why we are able
to reduce the number of sums in ([£.34). For example one can insert a particular Schur
polynomial of Z + Z +Y —Y between two coherent states. In this case we can commute
the coherent states past the Schur polynomial resulting in a matrix model generaliz-
ing (3.9). Obtaining an approximate formula even for extremal three point functions of
very large operators would be a rather non-trivial since would encode information about
the statistics of Littlewood-Richardson coefficients. On the other hand, such correlators
predict the existence of supergravity solutions which interpolate between different LLM
geometries [9]. Since these types of three point functions are protected, we expect that
one should be able to match both results precisely in the large /N limit, so obtaining an
approximate form for such correlators might give some intuition about how to construct
such geometries. Perhaps a simpler problem is to consider correlators of two LLM ge-
ometries and a giant graviton, or between three giant gravitons. These quantities give

predictions for giant graviton nucleation amplitudes.

Extremal Correlators

Another immediate generalization would be to study higher point extremal correla-
tors involving various combinations of single trace, giant graviton, and LLM geometries.
These correlators are also protected, so we can hope to be able to perform a holographic
check for these quantities as well. In practice this will likely involve a very careful group
averaging procedure to be able to overcome any possible ambiguities that often arise in
extremal correlators. For instance one can conceivably study correlators in which many
branes nucleate into a bubbling geometry, or where large droplets all fuse into a single
droplet, or a large droplet splits into smaller ones. Such processes are somewhat remi-

niscent of baby universe creation and annihilation processes. Whether such a geometric
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picture can be realized from the bulk point of view is unclear.

Worldsheet and spin chain interpretation of one-point functions

in LLM background

One particularly puzzling issue is to interpret the result of the computation of a
three point function of a non-protected single trace primary and two very large half-BPS
operators. For large operators of dimension of order N the interpretation as a worldsheet
g-function was advocated in [9], and various checks were performed. This makes sense
since operators of dimension of order N can change the boundary conditions of the
string worldsheet in the bulk. For operators of dimension of order N? this interpretation
is inadequate, since we expect that the correct description is instead in terms of a string
moving in an LLM background, rather than simply an open string ending on a stack of
branes. From the worldsheet point of view one would expect that the worldsheet CFT
flows as the background is deformed. Understanding what this would mean from the

point of view of the spin chain picture would be quite interesting.

, and 1—16 BPS operators

ool

9

i L

A more long term goal would be to understand the systematics of less supersym-
metric BPS operators in the N/ = 4 SYM theory. In principle introducing additional
scalar matrices in the exponentials gives a way of generating % and é BPS [11], 10}, [165].
This was carried out for rank two }l BPS operators in [165]. Additionally, the gener-
ating functions introduced in [I1] contain all bosonic % operators. The main difficulty
lies in constructing explicit expressions for restricted Schur polynomials with which one

can project to particular BPS operators of the weakly coupled theory. In other words,

finding the integration rules for the analog of the Schur polynomials in (4.2]) with mul-
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tiple matrices would be a big step in this program. This problem is even more stark
for % BPS operators where one seems needs to need to introduce an infinite number of
matrices corresponding to covariant derivatives of the scalar fields. In analogy to the
construction in [I1], one can generate liﬁ BPS states by exponentiating the so-called %6
BPS letter introduced in [I66]. Understanding precisely what kind of excitations are rel-
evant for studying supersymmetric black holes would be a first step towards a boundary

derivation of the results of [167].

Twisted Holography

A natural setting where our techniques can be readily applied is in the context of the
Twisted Holography program. For instance sphere giant gravitons and non-conformal
vacua have already been studied [19, [168] and their geometric picture is quite clear.
Extending this to include the analog of AdS giant gravitons and more generic Schur
polynomial operators seems like a straightforward task. It would be nice to develop the
more conventional view of giant gravitons wrapping compact cycles on the deformed
conifold SL(2,C) in the B-model by developing a global version of Twisted Holography,
in analogy to global AdS holography. This should be related to studying the chiral
algebra on P! instead of C. The point of this exercise is that when we insert an operator
associated to a Young diagram R, there is a well-studied recipe for producing a spectral
curve, and hence a bubbling Calabi-Yau manifold [I51]. This story is well-understood
for the A-model on the deformed conifold, so it is not implausible that a similar story
exists for the B-model. This might help bridge the conceptual gap about the relation

between the full physical holography and the twisted version.
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Semiclassics and Large N

Inevitably one will need to include g?/N corrections in a systematic way when dealing
with non-protected operators. A good place to start would be consider simpler models
where the techniques developed in [169, 170, I71] can be combined with the large N
expansion. Performing a near BPS expansion seems like a natural starting point since
one expects the coupling constant to be enhanced by additional kinematic effects [5]
making a reliable extrapolation to strong coupling a possibility for certain observables. A
good target would to understand the correlation functions of more complicated ‘baryonic’

operators in the Wilson-Fisher fixed point of the O(N) model [172] in the large N limit;

B~ Sy iyt (5.1)

where S is a symmetric tensor. The simplest example of these operators where studied
in [172], although it would be interesting to extend these kinds of results to operators
associated to other representations of O(N). These kind of operators can also be ex-
ponentiated with the help of real gaussian integrals over Grassmannians, so the main

difficulty would be to study the gap equations in the presence of these baryons.
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