
UC San Diego
Technical Reports

Title
Hardening the NOVA File System

Permalink
https://escholarship.org/uc/item/9278h2ww

Authors
Xu, Jian
Zhang, Lu
Memaripour, Amirsaman
et al.

Publication Date
2017-05-21

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/9278h2ww
https://escholarship.org/uc/item/9278h2ww#author
https://escholarship.org
http://www.cdlib.org/

Hardening the NOVA File System

Jian Xu, Lu Zhang, Amirsaman Memaripour, Akshatha Gangadharaiah, Amit Borase,
Tamires Brito Da Silva, Andy Rudoff*, Steven Swanson

University of California, San Diego, *Intel

{jix024,luzh,amemarip,agangadh,aborase,tbritodasilva}@eng.ucsd.edu, andy.rudoff@intel.com,

swanson@eng.ucsd.edu

Abstract

Emerging fast, persistent memories will enable systems that
combine conventional DRAM with large amounts of non-
volatile main memory (NVMM) and provide huge increases
in storage performance. Fully realizing this potential requires
fundamental changes in how system software manages, pro-
tects, and provides access to data that resides in NVMM.
We address these needs by describing a NVMM-optimized
file system called NOVA that is both fast and resilient in the
face of corruption due to media errors and software bugs.
We identify and propose solutions for the unique challenges
in hardening an NVMM file system, adapt state-of-the-art
reliability techniques to an NVMM file system, and quantify
the performance and storage overheads of these techniques.
We find that NOVA’s reliability features increase file sys-
tem size system size by 14.9% and reduce application-level
performance by between 2% and 38%.

1. Introduction

Fast, persistent memory technologies (e.g., battery-backed
NVDIMMs [52] or Intel and Micron’s 3D XPoint [3]) will
enable computer systems with expansive memory systems
that combine volatile and non-volatile memories. These hy-
brid memory systems offer the promise of dramatic increases
in storage performance.

Integrating NVMMs into computer systems presents a host
of interesting challenges. The most pressing of these focus
on how we should redesign existing software components
(e.g., file systems) to accommodate and exploit the different
performance characteristics, interfaces, and semantics that
NVMMs provide.

[Copyright notice will appear here once ’preprint’ option is removed.]

Several groups have proposed new file systems [19, 23,
92, 97] designed specifically for NVMMs and several Win-
dows and Linux file systems now include at least rudimentary
support for them [16, 32, 95]. These file systems provide
significant performance gains for data access and support
“direct access” (or DAX-style) mmap() that allows applica-
tions to access a file’s contents directly using load and store
instructions, a likely “killer app” for NVMMs.

Despite these NVMM-centric performance improvements,
none of these file systems provide the data protection fea-
tures necessary to detect and correct media errors, protect
against data corruption due to misbehaving code, or perform
consistent backups of the NVMM’s contents. File system
stacks in wide use (e.g., ext4 running atop LVM, Btrfs, and
ZFS) provide some or all of these capabilities for block-based
storage. If users are to trust NVMM file systems with critical
data, they will need these features as well.

From a reliability perspective, there are four key differ-
ences between conventional block-based file systems and
NVMM file systems.

First, the memory controller reports persistent memory
media errors as high-priority exceptions rather than error
codes from a block driver. Further, the granularity of errors is
smaller – a cache line rather than an entire block.

Second, persistent memory file systems must support
DAX-style memory mapping that maps persistent memory
pages directly into the application’s address space. DAX is the
fastest way to access persistent memory since it eliminates all
operating and file system code from the access path. However,
it means a file’s contents can change without the file system’s
knowledge, something that is not possible in a block-based
file system.

Third, the entire file system resides in the kernel’s address
space, vastly increasing vulnerability to “scribbles” – errant
stores from misbehaving kernel code.

Fourth, persistent memories are vastly faster than block-
based storage devices. This means that the trade-offs that
block-based file systems make between reliability and perfor-
mance need a thorough re-evaluation.

1 2017/5/21

We explore the impact of these differences on reliability
mechanisms by building NOVA, a hardened NVMM file
system. NOVA extends the NOVA [97] NVMM file system
with a full suite of data integrity protection features. We
quantify the performance and storage overhead of these
mechanisms and evaluate their effectiveness at preventing
corruption of both file system metadata and file data.

In particular, we make the following contributions:

1. We use the error-reporting and management interface that
existing NVMM-enabled systems provide to identify file
system reliability challenges that are unique to NVMM
file systems.

2. We identify a key challenge to taking consistent file
system snapshots while using DAX-style mmap() and
develop an snapshot algorithm that resolves it.

3. We describe a fast replication algorithm called Tick-Tock

for NVMM data structures that combines atomic update
with error detection and recovery.

4. We adapt state-of-the-art techniques for data protection to
work in NOVA and to accommodate DAX-style mmap().

5. We quantify NOVA’s vulnerability to scribbles and de-
velop techniques to reduce this vulnerability.

6. We quantify the performance and storage overheads of
NOVA’s data protection mechanisms.

7. We describe additional steps NOVA and other NVMM file
systems can take to further improve reliability.

We find that providing strong reliability guarantees in
NOVA increases storage requirements by 14.9% and reduces
application-level performance by between 2% and 38%.

To describe hardened NOVA, we start by providing a brief
primer on NVMM’s implications for system designers, ex-
isting NVMM file systems, key issues in file system relia-
bility, and the original NOVA [97] filesystem (Section 2).
Then, we describe NOVA’s snapshot and (meta)data protec-
tion mechanisms (Sections 3 and 4). Section 5 evaluates these
mechanisms, and Section 6 presents our conclusions.

2. Background

NOVA targets memory systems that include emerging non-
volatile memory technologies along with DRAM. This sec-
tion first provides a brief survey of NVMM technologies and
the opportunities and challenges they present. Then we de-
scribe recent work on NVMM file systems and discuss key
issues in file system reliability.

2.1 Non-volatile memory technologies

Modern server platforms have support of NVMM in form of
NVDIMMs [37, 52] and the Linux kernel includes low-level
drivers for identifying physical address regions that are non-
volatile, etc. NVDIMMs are commercially available from

several vendors in form of DRAM DIMMs that can store
their contents to an on-board flash-memory chip in case of
power failure with the help of super-capacitors.

NVDIMMs that dispense with flash and battery backup are
expected to appear in systems soon. Phase change memory
(PCM) [12, 17, 46, 67] and resistive RAM (ReRAM) [26, 84],
and 3D XPoint memory technology [3] are denser than
DRAM, and may enable very large, non-volatile main memo-
ries. Their latencies are longer than DRAM, however, making
it unlikely that they will fully replace DRAM as main memory.
Other technologies, such as spin-torque transfer RAM (STT-
RAM) [40, 58] are faster, but less dense and may find other
roles in future systems (e.g., as non-volatile caches [104]).
These technologies are all under active development and
what we understand about their reliability and performance
are evolving rapidly [87].

Commercial availability of these technologies appears
to be close at hand. The 3D XPoint memory technology
recently announced by Intel and Micron is rumored to offer
performance up to 1,000 times faster than NAND flash [3],
has already appeared in SSDs [35], and is expected to appear
on the processor memory bus shortly [2]. In addition all
major memory manufacturers have candidate technologies
that could compete with 3D XPoint. Consequently, we expect
hybrid volatile/non-volatile memory hierarchies to become
common in large systems.

Allowing programmers to build useful data structures
with NVMMs requires CPUs to make new guarantees about
when stores become persistent that programmers can use to
guarantee consistency after a system crash [5, 9]. Without
these guarantees it is impossible to build data structures in
NVMM that are reliable in the face of power failures [18, 48,
55, 60, 90, 93, 101].

NVMM-aware systems provide some form of “persist bar-
rier” that allows programmers to ensure that earlier stores
become persistent before later stores. Researchers have pro-
posed several different kinds of persist barriers [19, 43, 63].
Under x86 a persist barrier comprises a clflush or
clwb [36] instructions to force cache lines into the system’s
“persistence domain” and a conventional memory fence to en-
force ordering. Once a store reaches the persistence domain,
the system guarantees it will reach NVMM, even in the case
of crash. NOVA and other NVMM file systems assume these
or similar instructions are available.

2.2 NVMM File Systems

Several groups have designed NVMM file systems [19,
23, 92, 95, 96, 97] that address the unique challenges that
NVMMs’ performance and byte-addressible interface present.
One of these, NOVA [97], is the basis for NOVA, and we
describe it in more detail in Section 2.4.

2 2017/5/21

NVMMs’ low latencies make software efficiency much
more important than in block-based storage devices [10, 13,
78, 94, 98, 103].

NVMM-aware CPUs provide a load/store interface with
atomic 8-byte 1 operations rather than a block-based interface
with block- or sector-based atomicity. NVMM file systems
can use these atomic updates to implement features such
as complex atomic data and metadata updates, but doing so
requires different data structures and algorithms than block-
based file systems have employed.

Since NVMMs reside on the processor’s memory bus,
applications should be able to access them directly via
loads and stores. NVMM file systems [23, 96, 97] bypass
the DRAM page cache and access NVMM directly using
a technique called Direct Access (DAX), avoiding extra
copies between NVMM and DRAM in the storage stack.
DAX has been deployed in Windows [32] and Linux file
systems [16, 95].

Most NVMM file systems also provide a DAX version of
mmap() that allows applications to perform loads and stores
directly to NVMM.

2.3 File System Consistency and Reliability

Apart from their core function of storing and retrieving data,
file systems also provide facilities to protect the data they
hold from corruption due to system failures, media errors,
and software bugs (both in the file system and elsewhere).

File systems have devised a variety of different tech-
niques to guarantee system-wide consistency of file sys-
tem data structures, including journaling [23, 89], Copy-on-
Write [11, 19, 69] and log-structuring [61, 70, 71]. Trans-
actional file systems [15, 53, 59, 62, 65, 81, 91] provide
stronger consistency guarantee that application data updates
are atomic.

The most reliable file systems provide two key features
that significantly improved their reliability: The ability to
take snapshots of the file system (to facilitate backups) and
set of mechanisms to detect and recover from data corruption
due to media errors and other causes.

Existing NVMM file systems provide neither of these fea-
tures, limiting their usefulness in mission-critical applications.
Below, we discuss the importance of each feature and existing
approaches.

2.3.1 Snapshots

Snapshots provide a consistent image of the file system
at a moment in time. Their most important application is
facilitating consistent backups without unmounting the file
system, affording protection against catastrophic system
failures and the accidental deletion or modification of files.

1 NVMM-aware Intel CPUs provide 8-byte atomic operations. Other archi-
tectures may provide different atomicity semantics.

Many modern file systems have built-in support for snap-
shots [11, 42, 44, 69]. In other systems the underlying storage
stack (e.g., LVM in Linux) can take snapshots of the under-
lying block device. Other work [22, 64, 73, 80, 85] tries to
improve the efficiency and reduce the space consumption of
snapshots.

Neither existing DAX-enabled NVMM file systems nor
current low-level NVMM drivers support snapshots, making
consistent online backups impossible. Several file systems
for NVMM do provide snapshots [47, 90, 105], but none
of them support DAX-style mmap(). Ext4-DAX [95] and
xfs-DAX [38] do not support snapshots.

2.3.2 Data Corruption

File systems are subject to a wide array of data corruption
mechanisms. These include both media errors that cause
storage media to return incorrect values and software errors
that store incorrect data to the storage media. Data corruption
and software errors in the storage stack have been thoroughly
studied for hard disks [6, 7, 74, 75], SSDs [50, 57, 76] and
DRAM-based memories [77, 82, 83]. The results of DRAM-
based studies apply to DRAM-based NVDIMMs, but there
have been no (publicly-available) studies of error behaviors
in emerging NVMM technologies.

Storage hardware, including NVMMs, uses error-
correcting codes (ECC) to provide some protection against
media errors. Errors that ECC detects but cannot correct re-
sult in an error. For block-based storage, this error appears as
read or write failure from the storage driver. Intel NVMM-
based system report these media errors via a high-priority
exception (see Section 4.1).

Software errors can also cause data corruption. If the file
system is buggy, it may write data in the wrong place or fail
to write at all. Other code in the kernel can corrupt file system
data by “scribbling” [45] on file system data structures or
data buffers.

Scribbles are an especially critical problem for NVMM file
systems, since the NVMM is mapped into the kernel’s address
space. As a result, all of file system’s data and metadata are
always vulnerable to scribbles.

We discuss other prior work on file system reliability as it
relates to NOVA in Section 4.7.

2.4 The NOVA File System

NOVA’s initial design focused on two goals: Fully exposing
the performance that NVMMs offer and providing very strong
consistency guarantees – all operations in NOVA are atomic.
Below, we describe the features of NOVA that are most
relevant to our description of NOVA.

NOVA divides NVMM into five regions. NOVA’s 512 B
superblock contains global file system information and the
recovery inode. The recovery inode represents a special file
that stores recovery information (e.g., the list of unallocated

3 2017/5/21

NVMM pages). NOVA divides its inode tables into per-CPU
stripes. It also provides per-CPU journals for complex file
operation (see below). The rest of the available NVMM stores
logs and file data.

NOVA is log-structured and stores a separate log for each
inode to maximize concurrency and provide atomicity for
operations that affect a single file. The logs only store meta-
data and comprise a linked list of 4 KB pages. Log entries
are small – between 32 and 64 bytes. Logs are generally non-
contiguous, and log pages may reside anywhere in NVMM.

NOVA keeps read-only copies of most file metadata in
DRAM during normal operations, eliminating the need to
access metadata in NVMM during reads.

NOVA uses copy-on-write to provide atomic updates for
file data and appends metadata about the write to the log. For
operations that affect multiple inodes NOVA uses lightweight,
fixed-length journals – one per core.

NOVA divides the allocatable NVMM into multiple re-
gions, one region per CPU core. A per-core allocator manages
each of the regions, minimizing contention during memory
allocation.

After a system crash, NOVA must scan all the logs to
rebuild the memory allocator state. Since, there are many logs,
NOVA aggressively parallelizes the scan. Recovering a 50 GB
NOVA file system takes just over 1/10th of second [97].

3. Snapshots

NOVA’s snapshot support lets system administrators take
consistent snapshots of the file systems while applications
are running. The system can mount a snapshot as a read-
only file system or roll the file system back to a previous
snapshot. NOVA supports an unlimited number of snapshots,
and snapshots can be deleted in any order. NOVA is the first
NVMM file system that supports taking consistent snapshots
when applications modify file data via DAX mmap().

Below, we described the three central challenges that
NOVA’s snapshot mechanisms addresses: Taking snapshots,
managing storage for snapshots, and taking usable snapshots
of DAX mmap()’d files.

3.1 Taking Snapshots

NOVA implements snapshots by maintaining a current epoch

number for the whole file system, and storing the epoch
number in each new log entry. To create a snapshot, NOVA
increments the file system’s epoch number and records the
old epoch number in a list of snapshots.

Figure 1 shows an example in which NOVA creates two
snapshots and the current epoch number is 2. Snapshot
creation does not block file system write operations as it
does in some other file systems [33, 85, 105].

0 0x1000 0x100File log

Snapshot 0Snapshot 0 Snapshot 1Snapshot 1

1 0x2001 0x200 1 0x3001 0x300 2 0x4002 0x400

Data Data Data Data

Snapshot 1 log 0x300, 20x300, 2

Snapshot 0 log 0x100, 10x100, 1

addr File write entryaddr File write entry Epoch IDEpoch IDSnapshot entry

Current epoch 2

Data in snapshot Reclaimed data Current data

Figure 1: Taking snapshot in NOVA NOVA takes a snapshot

by incrementing the epoch ID to start a new epoch. When a

data block or log entry becomes dead in the current epoch,

NOVA records its death in the snapshot log for most recent

snapshot it survives in.

3.2 Snapshot Storage Management

Supporting snapshots requires NOVA to preserve file contents
from previous snapshots while also being able to recover the
space a snapshot occupied after its deletion.

Preserving file contents requires a small change to how
NOVA implements write operations. To perform a write,
NOVA appends a write log entry to the file’s log. The log entry
includes pointers to newly-allocated and populated NVMM
pages that hold the written data. If the write overwrites
existing data, NOVA locates the previous write log entry
for that portion of the file, and performs an epoch check that
compares the old log entry’s epoch ID to the file system’s
current epoch ID. If the comparison matches, the old write
log and the file data blocks it points to no longer belong to any
snapshot, and NOVA reclaims the data blocks. In Figure 1,
an application overwrites the same block of the file for four
times. The epoch check for the third write reclaims the second
write’s data block, since they belong to the same epoch.

If the epoch IDs do not match, then the data in the old log
entry belongs to an earlier snapshot and NOVA leaves the old
entry and data alone.

Determining when to reclaim data belonging to deleted
snapshots requires additional bookkeeping. For each snap-
shot, NOVA maintains a snapshot log that records the inodes
and blocks that belong to that snapshot, but are not part of
the current file system image.

NOVA populates the snapshot log during the epoch check:
If the epoch IDs for the new and old log entries do not match,
it appends a tuple to the snapshot log that the old log entry
belongs to. The tuple contains the old log entry, and the
current epoch ID, called the delete epoch ID. In Figure 1, the
log entry for snapshot 0 shows that page 0x100 is part of the
snapshot 0 and that a write in epoch 1 overwrote it.

To delete a snapshot, NOVA removes the snapshot from
the list of live snapshots and appends its log to the following
snapshot’s log. Then, a background thread traverses the
combined log and reclaims dead inode/data based on the

4 2017/5/21

and issues a persist barrier to ensure that data is written to
NVMM. Then it does the same for the replica (tock). This
scheme ensures that, at any moment, one of the two copies is
correctly updated and has a consistent checksum.

To access a metadata structure and check for corruption
NOVA copies the primary and replica into DRAM buffers
using memcpy_mcsafe() to detect media errors. Then
it confirms the checksums for each copy. If either of them
has suffered a media error or has an inconsistent checksum,
NOVA recovers using the other copy. If both copies are
consistent but not identical, the system failed between the
tick and tock phases, and NOVA copies the primary to the
replica.

If both copies suffered a media error or are inconsistent,
the metadata is lost, and NOVA returns an error.

Design Decisions and Alternatives Tick-tock meta-data
protection provides strong protection against both media
errors and scribbles and is easy to implement. We considered
several other designs and evaluated alternative in the details
of our implementation.

Using checksums to detect data corruption and relying
on replication for error correction more than double the
storage required for metadata storage. We could rely on error
correction codes instead to handle detection and correction
and avoid full replication. For instance, using Reed Solomon
codes to protect a 32-byte log entry would require storing
two bytes of ECC information, a 6.2% overhead, but it could
only correct a single byte error. Computing Reed Solomon
(and other ECC codes) is much slower than CRC. Intel’s
CRC32 acceleration instructions can compute a 32-byte CRC
in 13 ns compared to more than 1000 ns to compute the Reed
Solomon code word using the implementation in Linux.

Replication also provides better resilience to scribbles.
Though we know of no systematic study of scribble size
in real systems, we expect that some of them may arise
from misdirected memcpy()-like operations. Since NOVA’s
metadata structures are small, it is likely that such a scribble
will obliterate an entire data structure. Full replication can
recover from these, but ECC cannot.

We could adopt a log-based mechanism for committing
changes, but that would require at least as many stores and
persist barriers as tick-tock. It would also eliminate full
replication, increasing vulnerability to scribbles.

4.3 Protecting File Data

NOVA adapts RAID-style parity protection and checksums
to protect file data and it includes features to maximize
protection for files that applications access via DAX-style
mmap().

RAID Parity and Checksums NOVA makes each file
data page its own stripe, and divides each page into equally
sized stripe segments, or strips. The strip size is configurable,

but it must be larger than 512 B (the default) and smaller
than a page. It also must be a least one PR. NOVA stores
an additional parity strip for each page and it maintains
two separate copies of CRC32 checksums for each data
strip. Figure 4 shows the checksum and parity layouts in
the NVMM space.

When NOVA performs a read it checks the target strip’s
checksum. If the strip is corrupted, NOVA performs RAID-5-
style recovery to restore the lost data. If more than one of the
strips is corrupted, the page is lost.

Writes are simple since NOVA uses copy-on-write by de-
fault: For each file page write, NOVA allocates new pages,
populates them with the written data, computes the check-
sums and parity strip, and finally commits the write with an
atomic log appending operation.

Protecting DAX-mmap’d data By design, DAX-style
mmap() lets application modify file data without involving
the file system, so it is impossible for NOVA to keep the
checksums and parity for read/write mapped pages up-to-
date. Instead, NOVA provides the following guarantee: The
checksums and parity for data pages are up-to-date at all
times, except when those pages are mapped read/write into
an application’s address space.

We believe this is the strongest guarantee that NOVA can
provide on current hardware, and it raises several challenges.
First users that use DAX-mmap() take on responsibility for
detecting and recovering from both media errors (which
appear as SIGBUS in user space) and scribbles. This is
an interesting problem but beyond the scope of this paper.
Second, NOVA must be able to tell when a data page’s
checksums and parity should match the data it contains and
when they may not.

To accomplish this, when a portion a file is mmap()’d,
NOVA records this fact in the log, signifying that the check-
sums and parity for the affected pages are no longer valid.
NOVA only recomputes the checksums and parity for dirty
pages on msync() and munmap(). On munmap(), it adds
a log entry that restores protection for these pages when the
last mapping for the page is removed. If the system crashes
while pages are mapped, the recovery process will identify
these pages while scanning the logs, recompute checksums
and parity, and add a log entry to mark them as valid.

Design Decisions and Alternatives Using RAID parity
and checksums to protect file data is similar to the approach
that ZFS [11] and IRON ext3 [66] take, but we store parity for
each page rather than one parity page per file. The approach
incurs storage overheads for both the parity strip (which
grows with strip size) and the checksums (which shrinks
with strip size, because the number of strips drops). For
512 B strips the total overhead is about 13.4%. Increasing the
NVMM page size reduces the storage overhead, but it would

7 2017/5/21

Primary allocation

SB
Replica

SB

csum
Replica

csum
parity inode

Replica

inode
log & data

Replica

log
DZ

Replica allocation

NVMMNVMM

CPU 0CPU 0 CPU 1CPU 1 CPU nCPU n......CPU 0 CPU 1 CPU n...

Figure 4: NOVA space layout NOVA’s per-core allocators

satisfy requests for primary and replica storage from different

directions. They also store data pages and their checksum

and parity pages separately. The virtual “dead zone” (DZ) for

metadata allocation guarantees a gap between primary and

replica pages.

1 16 256 4K 64K 1M 16M 256M
Scribble Size in Bytes

1.5E-05

1.2E-04

9.8E-04

7.8E-03

0.06

0.5

4

32

256

2K

16K

M
e
ta

d
a
ta

 P
a
g
e
s

a
t

R
is

k

 two-way rep., max

 two-way rep., avg

dead-zone rep., max

dead-zone rep., avg

no replication, max

no replication, avg

 simple rep., max

 simple rep., avg

Figure 5: Scribble size and metadata bytes at risk Repli-

cating metadata pages and taking care to allocate the replicas

separately improves resilience to scribbles. The most effective

technique enforces a 1 MB “dead zone” between replicas and

eliminates the threat of a single scribble smaller than 1 MB.

The graph omits zero values due to the vertical log scale.

lead to more fragmentation in log pages or require a more
complex NVMM page allocator.

We also considered a simpler scheme that would allow
users to mark files as RAID-protected or not. This eliminates
the need for tracking which parts of which files are protected,
but places an administrative burden on the file system’s
user and raises policy questions without obvious answers.
For instance, if a user copies an unprotected file, should
the copy also be unprotected? and What should happen if
an application mmap()’s a protected file? On balance, the
benefits of a clearer, simpler rule about when file data is
protected outweighs the costs of implementing our more
sophisticated scheme.

4.4 Minimizing Vulnerability to Scribbles

Scribbles pose significant risk to NOVA’s data and metadata,
since a scribble can impact large, continuous regions of
memory. We are not aware of any systematic study of the
prevalence of these errors, but scribbles, lost, and misdirected
writes are well-known culprits for file system corruption [23,
29, 45, 102]. In practice, we expect that smaller scribbles are

more likely that large ones, in part since the bugs that result
in larger scribbles would be more severe and more likely to
be found and fixed.

To quantify the risk that these errors pose, we define bytes-

at-risk (BAR) for a scribble as the number of bytes it may
render irretrievable.

NOVA packs log entries in to log pages, and it must scan
the page to recognizing each entry. Without protection, losing
a single byte can corrupt a whole page. For replicated log
pages, a scribble that spans both copies of a byte will corrupt
the page. To measure the BAR for a scribble of size N we
measure the number of pages each possible N-byte scribble
would destroy in an aged NOVA file system.

Figure 5 shows the maximum and average metadata BAR
for a 64 GB NOVA file system with four different metadata
protection schemes: “no replication” does not replicate meta-
data; “simple replication” allocates the primary and replicas
naively and tends to allocate lower addresses before higher
address, so the primary and replica are often close; “two-way
replication” separates the primary and replica by preferring
low addresses for the primary and high addresses for the
replica; and “dead-zone replication” extends “two-way” by
enforcing a 1 MB “dead zone” between the primary and
replica. Figure 4 shows an example of NOVA two-way allo-
cator with dead zone separation. For each pair of mirrored
pages, the dead zone forbids the primary and replica from
becoming too close, but data pages can reside between them.

We aged the file system by spawning multiple, multi-
threaded, filebench workloads. When each workload finishes,
we remove about half of its files, and then restart the workload.
We continue until the file system is 99% full.

The data show that even for the smallest 1-byte scribble,
the unprotected version will lose up to a whole page (4 kB)
of metadata and an average of 0.06 pages. With simple
replication, scribbles smaller than 4 kB have zero BAR. Under
simple replication, an 8 kB scribble can corrupt up to 4 kB,
but affects only 0.04 pages on average.

Two-way replication tries to allocate the primary and
replica farther apart, and it reduces the average bytes at risk
with an 8 kB scribble to 2.9×10−5 pages, but the worst case
remains the same.

Enforcing the dead zone further improves protection: A
1 MB dead zone can eliminate corruption for scribbles smaller
than 1 MB. The dead zone size is configurable, so NOVA
can increase the 1 MB threshold for scribble vulnerability if
larger scribbles are a concern.

Scribbles also place data pages at risk. Since NOVA stores
the stripes of data pages contiguously, scribbles that are larger
than the strip size may causes data loss, but smaller scribbles
do not. NOVA could tolerate larger scribbles to data pages by
interleaving strips from different pages, but this would make
disallow DAX-style mmap(). Increasing the strip size can

8 2017/5/21

also improve scribble tolerance, but at the cost of increased
storage overhead for the parity strip.

4.5 Preventing Scribbles

The mechanisms described above let NOVA detect and re-
cover from data corruption. NOVA also includes a mechanism
that leverages the memory protection system in Intel proces-
sors to prevent most scribbles.

By default, NVMM is mapped read/write into the kernel’s
address space. This provide easy access for NOVA, but leaves
the NVMM exposed to scribbles from other parts of the
kernel [14]. We can reduce this vulnerability by mapping
NVMM as read-only, and then using the WriteProtect Enable
(WP) bit in the per-core CR0 control register to disable write
protection on all kernel memory when NOVA needs to modify
NVMM. WAFL [45] and PMFS [23] both use this mechanism
to protect data as well.

The approach also requires disabling local interrupts to
prevent a context switch while write protection is disabled.
Clearing and restoring the WP bit and disabling and re-
enabling local interrupts takes 400 ns on our machines.

Using the WP bit means that NOVA no longer needs to
trust the rest of the kernel, but it also requires that the rest of
the kernel trust NOVA to not accidently modify other data in
the kernel that is read-only.

We are careful to limit the risk that NOVA poses to
other kernel data. We have implemented a version of
memcpy() that we use for writing to NVMM, called
memcpy_to_pmem(). It includes the code to clear and
restore the WP bit, disable and enable interrupts, and a sanity
check to ensure that the target address range is in NVMM.

The WP approach will only protect against scribbles from
other kernel code. It cannot prevent NOVA from corrupting
its own data by performing “misdirected writes,” a common
source of data corruption in file systems [8].

4.6 Relaxing Data and Metadata Protection

Many existing file systems can trade off reliability for im-
proved performance (e.g., the data journaling option in Ext4).
NOVA can do the same: It provides a relaxed mode that
relaxes atomicity constraints on file data and metadata.

In relaxed mode, write operations modify existing data
directly rather than using copy-on-write, and metadata opera-
tions modify the most recent log entry for an inode directly
rather than appending a new entry. Relaxed mode guarantees
metadata atomicity by journaling the modified pieces of meta-
data. These changes improve performance and we evaluate
their impact in Section 5.

4.7 Related and Future Work

File system reliability has been the focus of a great deal of
research driven by the file systems’ importance, their com-
plexity, and the complex (and error-prone) behavior of other

parts of the storage stack. Below, we describe proposed “best
practices” for file system design and how NOVA addresses
them. Then, we describe other tools, techniques, and studies
that would further improve NOVA’s reliability.

4.7.1 Is NOVA Ferrous?

InteRnally cONistent (IRON) file systems [66] provide a set
of principles to that lead to improved reliability. We designed
NOVA to embody these principles:

Check error codes Uncorrectable ECC errors are the
only errors that the NVMM memory system delivers
to software (i.e., via memcpy_mcsafe()). NOVA uses
memcpy_mcsafe() for all NVMM access and triggers
recovery if it detects an MCE. NOVA also interacts with
the PMEM driver that provides low-level management of
NVDIMMs. For these calls, we check and respond to error
codes appropriately.

Report errors and limit the scope of failures NOVA
reports all unrecoverable errors as -EIO, and never calls
panic().

Use redundancy for integrity checks and distribute re-

dundancy information NOVA’s tick-tock replication
scheme stores the checksum for each replica with the replica,
but it is careful to allocate the primary and replica copies
far from one another. Likewise, NOVA stores the parity and
checksum information for data pages separately from the
pages themselves.

Type-aware fault injection For testing, we built a NOVA-
specific error injection tool that can corrupt data and metadata
structures in specific, targeted ways, allowing us to test all of
NOVA’s detection and recovery mechanisms.

4.7.2 Other Reliability Techniques

Several groups have proposed techniques and built tools
that help verify file systems. SQCK [30] provides a declar-
ative languages for specifying file system invariants, and
FiSC [100] provide a model checking framework for the
same. Crash refinement [79] and EXPLODE [99] can auto-
matically check a file system’s implementation against its
specification or existing consistency checks. EDP [31] would
identify any error codes NOVA mishandles. All these tech-
niques would likely find bugs in NOVA. Other techniques,
such as Recon’s consistency invariants [28] and Membrane’s
restartability [86] could be applied to NOVA to help it survive
bugs that remain.

Other works highlight areas where NOVA’s (and most
other file systems’) reliability could be improved. Corruption
of DRAM data structures can result in file system corrup-
tion [27, 102] and some file systems (e.g., WAFL [45] and
HARDFS [21]) protect DRAM structures with checksums.

9 2017/5/21

4.7.3 Areas for Improvement

There are several additional steps NOVA could take to further
improve reliability. All of them are the subject of ongoing
development, and we do not expect any of them to have a
large impact or performance or storage overheads.

NOVA protects some, but not all, DRAM data structures.
Most DRAM structures that NOVA does not protect are
short lived (e.g., the DRAM copies we create of metadata
structures) or are not written back to NVMM. However, the
snapshot logs and allocator state are exceptions and they are
vulnerable to corruption. The allocator protects the address
and length of each free region with checksums, but it does
not protect the pointers that make up the red-black tree that
holds them, since we use the kernel’s generic red-black tree
implementation. The snapshot logs are currently unprotected.

Sector or block failures in disks are not randomly dis-
tributed [6], and errors in NVMM are also likely to exhibit
complex patterns of locality [51, 82, 83]. For instance, a
NVMM chip may suffer from a faulty bank, row, or column,
leading to a non-uniform error distribution. Or, an entire
NVDIMM may fail.

NOVA’s allocator actively separates the primary and
replica copies of metadata structures to eliminate logical

locality, but it does not account for how the memory system
maps physical addresses onto the physical memory. A layout-
aware allocator could, for instance, ensure that replicas reside
in different banks or different NVDIMMs.

NOVA cannot keep running after an unrecoverable MCE
(since they cause a panic()), but it could recover any
corrupted data during recovery. The PMEM driver provides
a list of poisoned PRs on boot, and NOVA can use this
information to locate and recover corrupted file data during
mount. Without this step, NOVA will still detect poisoned
metadata, since reading from a poisoned PR results in a
normal MCE, NOVA reads all metadata during recovery.
Poisoned file data, however, could accumulate over multiple
unrecoverable MCEs, increasing the chances of data loss.

Finally, NOVA does not scrub data or metadata. PMEM
detects media errors on reboot, but if a NOVA file system ran
continuously for a long time, undetected media errors could
accumulate. Undetected scribbles to data and metadata can
accumulate during normal operation and across reboots.

5. Performance Trade-offs

NOVA’s reliability features improve its resilience but also
incur overhead in terms of performance and storage space.
This section quantifies these overheads and explores the trade-
offs they allow.

5.1 Experimental setup

We use the Intel Persistent Memory Emulation Platform
(PMEP) [23] to emulate different types of NVMM and study

their effects on NVMM file systems. PMEP supports config-
urable latencies and bandwidth for the emulated NVMM, and
emulates clwb instruction with microcode. In our tests we
configure the PMEP with 32 GB of DRAM and 64 GB of
NVMM, and choose two configurations for PMEP’s memory
emulation system: We use the same read latency and band-
width as DRAM to emulate fast NVDIMM-N [72], and set
read latency to 300 ns and reduce the write bandwidth to 1/8th
of DRAM to emulate slower PCM. For both configurations
we set clwb instruction latency to 40 ns.

We compare NOVA against three other file systems. Ext4-
DAX and xfs-DAX are the two DAX-enabled file systems
currently supported available in Linux (PMFS [23] has been
deprecated). Neither of them provides strong consistency
guarantees (i.e., they do not guarantee that all operations
are atomic), while our baseline filesystem does provide
these guarantees. To compare to a file system with stronger
guarantees, we also compare to ext4 in data journaling (ext4-
dataj) mode running on the NVMM block device that exposes
block device interface to an NVMM region. Ext4 and xfs have
checksums for metadata, but they do not provide any recovery
mechanisms for NVMM media errors or protection against
stray writes.

We perform all our experiments on Linux x86-64 kernel
4.10.

5.2 Performance Impacts

To understand the impact of NOVA’s reliability mechanisms,
we begin by measuring the performance of individual mecha-
nisms and basic file operations. Then measure their impact
on application-level performance.

We compare several version of NOVA: We start with
“Baseline”, which includes snapshot support but no metadata
or data protection, and add metadata protection (“MP”), data
protection (“DP”), and CR0-based write protection (“WP”).
“Relaxed mode” weakens consistency guarantees to improve
performance and provides no data protection (Section 4.6).

5.3 Microbenchmarks

We evaluate basic file system operations: create, 4 KB
append, 4 KB write, 512 B write, and 4 KB read.
Figure 6 measures the latency for these operations with
NVDIMM-N configuration. Data for PCM has similar trends.
Create is a metadata-only operation and adding metadata
protection increases the latency by 47%. Append affects
metadata and data updates. The baseline append operation
is much more efficient than the existing file systems (5.2×
to 5.4× times faster). Adding metadata and data protection
increase the latency by 36% and 100%, respectively, and
write protection increases the latency by 22% on average.
With the maximum level of protection NOVA is 146% slower
than the baseline version of NOVA and 2.1× faster than the
existing alternatives.

10 2017/5/21

Fileserver Varmail Webproxy Webserver RocksDB MongoDB Exim TPCC
0.0

0.2

0.4

0.6

0.8

1.0

1.2

N
o
rm

a
liz

e
d
 t

h
ro

u
g
h
p
u
t

(a) NVDIMM-N

xfs-DAX ext4-DAX ext4-dataj NOVA baseline w/ MP w/ MP+WP w/ MP+DP w/ MP+DP+WP Relaxed mode

Fileserver Varmail Webproxy Webserver RocksDB MongoDB Exim TPCC
0.0

0.2

0.4

0.6

0.8

1.0

1.2

N
o
rm

a
liz

e
d
 t

h
ro

u
g
h
p
u
t

to
 N

V
D

IM
M

-N

(b) PCM

Figure 9: Application performance on NOVA The costs of reliability and the benefits of relaxed mode are both smaller for

applications. Read-intensive workloads (e.g., web-proxy) show little change. Reliability impacts the performance of databases

and key-value stores more.

Application Data size Notes

Filebench-fileserver 64 GB R/W ratio: 1:2
Filebench-varmail 32 GB R/W ratio: 1:1
Filebench-webproxy 32 GB R/W ratio: 5:1
Filebench-webserver 32 GB R/W ratio: 10:1
RocksDB 8 GB db_bench’s overwrite test
MongoDB 10 GB YCSB’s 50/50-read/write
Exim 4 GB Mail server
TPC-C 26 GB The ’Payment’ query

Table 1: Application Benchmarks

the copies, so RocksDB benefits from relaxed mode more
than other workloads.

On the PCM configuration, fileserver, webserver and
RocksDB show the largest performance drop. This is because
fileserver and RocksDB are write-intensive and saturate
PCM’s write bandwidth, and webserver is read-intensive and
PCM’s read latency limits file systems’ performance.

Compared to other file systems, NOVA is more sensitive
to NVMM performance, because it has lower software over-
head and reveals the underlying NVMM performance more
directly. Overall, the NOVA baseline outperforms other DAX
file systems by 1.9× on average, and adding full protection
reduces performance by 11% on average compared to the
baseline.

5.5 NVMM storage utilization

Protecting data integrity via redundancy inevitably introduces
storage overheads. Figure 10 shows the break down of space
that different (meta)data structures occupy in an aged, 64 GB
NOVA file system. Overall, NOVA devotes 14.8% of storage

Replica inode: 0.10%

Replica log: 2.00%

File checksum: 1.56%

File parity: 11.1%

Primary log: 2.00%

Primary inode: 0.10%

File data: 82.4%

Unused

0.75%

Redundancy

14.76%

Figure 10: NVMM storage utilization. NOVA file system

utilization by a large file server workload.

space to improving reliability. Of this, metadata redundancy
accounts for 2.1% and data redundancy occupies 12.7%.

6. Conclusion

We have used NOVA to explore the unique challenges that
improving NVMM file system reliability presents. The so-
lutions that NOVA implements facilitate backups by taking
consistent snapshots of the file system and provide signifi-
cant protection against media errors and corruption due to
software errors.

The extra storage required to implement these changes
is modest, but their performance impact is significant for
some applications. In particular, the cost of checking and
maintaining checksums and parity for file data incurs a
steep cost for both reads and writes, despite our use of
very fast (XOR parity) and hardware accelerated (CRC)
mechanisms. Providing atomicity for unaligned writes is also
a performance bottleneck.

These costs suggest that NVMM file systems should
provide users with a range of protection options that trade off
performance against the level of protection and consistency.

12 2017/5/21

For instance, NOVA can selectively disable checksum based
file data protection and the CR0-based write protection
mechanism. Relaxed mode disables copy-on-write.

Making these policy decisions rationally is currently dif-
ficult due to a lack of two pieces of information. First, the
rate of uncorrectable media errors in emerging NVMM tech-
nologies is not publicly known. Second, the frequency and
size of scribbles has not been studied in detail. Without a
better understanding in these areas, it is hard to determine
whether the costs of these techniques are worth the benefits
they provide.

Despite these uncertainties, NOVA demonstrates that
NVMM file system can provide strong reliability guarantees
while providing high performance and supporting DAX-style
mmap(). It also makes a clear case for developing special
file systems and reliability mechanisms for NVMM rather
than adapting existing schemes: The challenges NVMMs
presents are different, different solutions are appropriate, and
the systems built with these differences in mind can be very
fast and highly reliable.

References

[1] Advanced configuration and power interface specification.
http://www.uefi.org/sites/default/files/resources/ACPI_6_1.pdf.

[2] Intel ships first Optane memory modules for test-
ing. http://www.pcworld.com/article/3162177/storage/
intel-ships-first-optane-memory-modules-for-testing.html.

[3] Intel and Micron produce breakthrough mem-
ory technology. http://newsroom.intel.com/
community/intel_newsroom/blog/2015/07/28/
intel-and-micron-produce-breakthrough-memory-technology.

[4] AXBOE, J. Flexible I/O Tester. https://github.com/axboe/fio.

[5] BAILEY, K., CEZE, L., GRIBBLE, S. D., AND LEVY, H. M.
Operating system implications of fast, cheap, non-volatile
memory. In Proceedings of the 13th USENIX Conference on

Hot Topics in Operating Systems (Berkeley, CA, USA, 2011),
HotOS’13, USENIX Association, pp. 2–2.

[6] BAIRAVASUNDARAM, L. N., ARPACI-DUSSEAU, A. C.,
ARPACI-DUSSEAU, R. H., GOODSON, G. R., AND

SCHROEDER, B. An Analysis of Data Corruption in the
Storage Stack. Trans. Storage 4, 3 (Nov. 2008), 8:1–8:28.

[7] BAIRAVASUNDARAM, L. N., GOODSON, G. R., PASUPA-
THY, S., AND SCHINDLER, J. An Analysis of Latent Sector
Errors in Disk Drives. In Proceedings of the 2007 ACM

SIGMETRICS International Conference on Measurement and

Modeling of Computer Systems (New York, NY, USA, 2007),
SIGMETRICS ’07, ACM, pp. 289–300.

[8] BAIRAVASUNDARAM, L. N., RUNGTA, M., AGRAWA, N.,
ARPACI-DUSSEAU, A. C., ARPACI-DUSSEAU, R. H., AND

SWIFT, M. M. Analyzing the effects of disk-pointer corrup-
tion. In 2008 IEEE International Conference on Dependable

Systems and Networks With FTCS and DCC (DSN) (June
2008), pp. 502–511.

[9] BHANDARI, K., CHAKRABARTI, D. R., AND BOEHM, H.-
J. Implications of CPU Caching on Byte-addressable Non-
volatile Memory Programming. Tech. rep., HP Technical
Report HPL-2012-236, 2012.

[10] BHASKARAN, M. S., XU, J., AND SWANSON, S. Bankshot:
Caching Slow Storage in Fast Non-volatile Memory. In Pro-

ceedings of the 1st Workshop on Interactions of NVM/FLASH

with Operating Systems and Workloads (New York, NY, USA,
2013), INFLOW ’13, ACM, pp. 1:1–1:9.

[11] BONWICK, J., AND MOORE, B. ZFS: The Last Word in File
Systems, 2007.

[12] BREITWISCH, M. J. Phase change memory. Interconnect

Technology Conference, 2008. IITC 2008. International (June
2008), 219–221.

[13] CAULFIELD, A. M., MOLLOV, T. I., EISNER, L. A., DE,
A., COBURN, J., AND SWANSON, S. Providing safe, user
space access to fast, solid state disks. In Proceedings of

the seventeenth international conference on Architectural

Support for Programming Languages and Operating Systems

(New York, NY, USA, 2012), ASPLOS XVII, ACM, pp. 387–
400.

[14] CHEN, F., MESNIER, M. P., AND HAHN, S. A Protected
Block Device for Persistent Memory. In Mass Storage

Systems and Technologies (MSST), 2014 30th Symposium

on (2014), IEEE, pp. 1–12.

[15] CHIDAMBARAM, V., PILLAI, T. S., ARPACI-DUSSEAU,
A. C., AND ARPACI-DUSSEAU, R. H. Optimistic crash
consistency. In Proceedings of the Twenty-Fourth ACM

Symposium on Operating Systems Principles (New York, NY,
USA, 2013), SOSP ’13, ACM, pp. 228–243.

[16] CHINNER, D. xfs: updates for 4.2-rc1. http://oss.sgi.com/
archives/xfs/2015-06/msg00478.html.

[17] CHOI, Y., SONG, I., PARK, M.-H., CHUNG, H., CHANG,
S., CHO, B., KIM, J., OH, Y., KWON, D., SUNWOO, J.,
SHIN, J., RHO, Y., LEE, C., KANG, M. G., LEE, J., KWON,
Y., KIM, S., KIM, J., LEE, Y.-J., WANG, Q., CHA, S., AHN,
S., HORII, H., LEE, J., KIM, K., JOO, H., LEE, K., LEE,
Y.-T., YOO, J., AND JEONG, G. A 20nm 1.8V 8Gb PRAM
with 40MB/s program bandwidth. In Solid-State Circuits

Conference Digest of Technical Papers (ISSCC), 2012 IEEE

International (Feb 2012), pp. 46–48.

[18] COBURN, J., CAULFIELD, A. M., AKEL, A., GRUPP, L. M.,
GUPTA, R. K., JHALA, R., AND SWANSON, S. NV-
Heaps: Making Persistent Objects Fast and Safe with Next-
generation, Non-volatile Memories. In Proceedings of the

Sixteenth International Conference on Architectural Support

for Programming Languages and Operating Systems (New
York, NY, USA, 2011), ASPLOS ’11, ACM, pp. 105–118.

[19] CONDIT, J., NIGHTINGALE, E. B., FROST, C., IPEK, E.,
LEE, B., BURGER, D., AND COETZEE, D. Better I/O
through byte-addressable, persistent memory. In Proceedings

of the ACM SIGOPS 22nd Symposium on Operating Systems

Principles (New York, NY, USA, 2009), SOSP ’09, ACM,
pp. 133–146.

13 2017/5/21

[20] DEAN, J., AND GHEMAWAT, S. LevelDB. https://github.
com/google/leveldb.

[21] DO, T., HARTER, T., LIU, Y., GUNAWI, H. S., ARPACI-
DUSSEAU, A. C., AND ARPACI-DUSSEAU, R. H. HARDFS:
Hardening HDFS with Selective and Lightweight Versioning.
In Presented as part of the 11th USENIX Conference on File

and Storage Technologies (FAST 13) (San Jose, CA, 2013),
USENIX, pp. 105–118.

[22] DRAGGA, C., AND SANTRY, D. J. GCTrees: Garbage
collecting snapshots. ACM Transactions on Storage (TOS)

12, 1 (2016), 4.

[23] DULLOOR, S. R., KUMAR, S., KESHAVAMURTHY, A.,
LANTZ, P., REDDY, D., SANKARAN, R., AND JACKSON, J.
System Software for Persistent Memory. In Proceedings of

the Ninth European Conference on Computer Systems (New
York, NY, USA, 2014), EuroSys ’14, ACM, pp. 15:1–15:15.

[24] Exim Internet Mailer. http://www.exim.org.

[25] FACEBOOK. RocksDB. http://rocksdb.org.

[26] FACKENTHAL, R., KITAGAWA, M., OTSUKA, W., PRALL,
K., MILLS, D., TSUTSUI, K., JAVANIFARD, J., TEDROW,
K., TSUSHIMA, T., SHIBAHARA, Y., AND HUSH, G. A
16Gb ReRAM with 200MB/s write and 1GB/s read in 27nm
technology. In Solid-State Circuits Conference Digest of

Technical Papers (ISSCC), 2014 IEEE International (Feb
2014), pp. 338–339.

[27] FRYER, D., QIN, M., SUN, J., LEE, K. W., BROWN, A. D.,
AND GOEL, A. Checking the Integrity of Transactional
Mechanisms. Trans. Storage 10, 4 (Oct. 2014), 17:1–17:23.

[28] FRYER, D., SUN, K., MAHMOOD, R., CHENG, T., BEN-
JAMIN, S., GOEL, A., AND BROWN, A. D. Recon: Verifying
File System Consistency at Runtime. Trans. Storage 8, 4 (Dec.
2012), 15:1–15:29.

[29] GANESAN, A., ALAGAPPAN, R., ARPACI-DUSSEAU, A. C.,
AND ARPACI-DUSSEAU, R. H. Redundancy Does Not Imply
Fault Tolerance: Analysis of Distributed Storage Reactions to
Single Errors and Corruptions. In 15th USENIX Conference

on File and Storage Technologies (FAST 17) (Santa Clara,
CA, 2017), USENIX Association, pp. 149–166.

[30] GUNAWI, H. S., RAJIMWALE, A., ARPACI-DUSSEAU,
A. C., AND ARPACI-DUSSEAU, R. H. Sqck: A declara-
tive file system checker. In Proceedings of the 8th USENIX

Conference on Operating Systems Design and Implementation

(Berkeley, CA, USA, 2008), OSDI’08, USENIX Association,
pp. 131–146.

[31] GUNAWI, H. S., RUBIO-GONZÁLEZ, C., ARPACI-
DUSSEAU, A. C., ARPACI-DUSSEA, R. H., AND LIBLIT, B.
Eio: Error handling is occasionally correct. In Proceedings of

the 6th USENIX Conference on File and Storage Technologies

(Berkeley, CA, USA, 2008), FAST’08, USENIX Association,
pp. 14:1–14:16.

[32] HARRIS, R. Windows leaps into the NVM
revolution. http://www.zdnet.com/article/
windows-leaps-into-the-nvm-revolution/.

[33] HITZ, D., LAU, J., AND MALCOLM, M. A. File system
design for an NFS file server appliance. In USENIX Winter

(1994), pp. 235–246.

[34] INTEL. Intel 64 and IA-32 Architectures Soft-
ware Developer’s Manual, Volume 3, Chapter 15.
https://software.intel.com/sites/default/files/managed/
a4/60/325384-sdm-vol-3abcd.pdf, Version December 2016.

[35] INTEL CORPORATION. Intel Optane Mem-
ory. http://www.intel.com/content/www/us/en/
architecture-and-technology/optane-memory.html.

[36] Intel Architecture Instruction Set Extensions Program-
ming Reference. https://software.intel.com/sites/default/files/
managed/0d/53/319433-022.pdf.

[37] NVDIMM Namespace Specification. http://pmem.io/
documents/NVDIMM_Namespace_Spec.pdf.

[38] INTERNATIONAL, S. G. XFS: A High-performance Journal-
ing Filesystem. http://oss.sgi.com/projects/xfs.

[39] JOHNSON, R., PANDIS, I., HARDAVELLAS, N., AILAMAKI,
A., AND FALSAFI, B. Shore-MT: A Scalable Storage
Manager for the Multicore Era. In Proceedings of the 12th

International Conference on Extending Database Technology:

Advances in Database Technology (New York, NY, USA,
2009), EDBT ’09, ACM, pp. 24–35.

[40] KAWAHARA, T. Scalable Spin-Transfer Torque RAM Tech-
nology for Normally-Off Computing. Design & Test of Com-

puters, IEEE 28, 1 (Jan 2011), 52–63.

[41] KERNEL.ORG. [PATCH v14] x86, mce: Add mem-
cpy_mcsafe(). https://patchwork.kernel.org/patch/8427231.

[42] KESAVAN, R., SINGH, R., GRUSECKI, T., AND PATEL,
Y. Algorithms and Data Structures for Efficient Free Space
Reclamation in WAFL. In 15th USENIX Conference on

File and Storage Technologies (FAST 17) (2017), USENIX
Association.

[43] KOLLI, A., ROSEN, J., DIESTELHORST, S., SAIDI, A.,
PELLEY, S., LIU, S., CHEN, P. M., AND WENISCH, T. F.
Delegated Persist Ordering. In 2016 49th Annual IEEE/ACM

International Symposium on Microarchitecture (MICRO) (Oct
2016), pp. 1–13.

[44] KONISHI, R., AMAGAI, Y., SATO, K., HIFUMI, H., KI-
HARA, S., AND MORIAI, S. The Linux implementation of a
log-structured file system. ACM SIGOPS Operating Systems

Review 40, 3 (2006), 102–107.

[45] KUMAR, H., PATEL, Y., KESAVAN, R., AND MAKAM, S.
High Performance Metadata Integrity Protection in the WAFL
Copy-on-Write File System. In 15th USENIX Conference on

File and Storage Technologies (FAST 17) (Santa Clara, CA,
2017), USENIX Association, pp. 197–212.

[46] LEE, B. C., IPEK, E., MUTLU, O., AND BURGER, D.
Architecting phase change memory as a scalable DRAM
alternative. In ISCA ’09: Proceedings of the 36th Annual

International Symposium on Computer Architecture (New
York, NY, USA, 2009), ACM, pp. 2–13.

[47] LEE, E., JANG, J. E., KIM, T., AND BAHN, H. On-
demand snapshot: An efficient versioning file system for

14 2017/5/21

phase-change memory. IEEE Transactions on Knowledge

and Data Engineering 25, 12 (Dec 2013), 2841–2853.

[48] NVM Library. http://pmem.io/nvml.

[49] LU, L., PILLAI, T. S., ARPACI-DUSSEAU, A. C., AND

ARPACI-DUSSEAU, R. H. WiscKey: Separating Keys from
Values in SSD-conscious Storage. In 14th USENIX Con-

ference on File and Storage Technologies (FAST 16) (Santa
Clara, CA, 2016), USENIX Association, pp. 133–148.

[50] MEZA, J., WU, Q., KUMAR, S., AND MUTLU, O. A
Large-Scale Study of Flash Memory Failures in the Field.
In Proceedings of the 2015 ACM SIGMETRICS International

Conference on Measurement and Modeling of Computer

Systems (New York, NY, USA, 2015), SIGMETRICS ’15,
ACM, pp. 177–190.

[51] MEZA, J., WU, Q., KUMAR, S., AND MUTLU, O. Revisiting
Memory Errors in Large-Scale Production Data Centers:
Analysis and Modeling of New Trends from the Field. In
2015 45th Annual IEEE/IFIP International Conference on

Dependable Systems and Networks (June 2015), pp. 415–426.

[52] Hybrid Memory: Bridging the Gap Between DRAM Speed
and NAND Nonvolatility. http://www.micron.com/products/
dram-modules/nvdimm.

[53] MIN, C., KANG, W.-H., KIM, T., LEE, S.-W., AND EOM,
Y. I. Lightweight Application-Level Crash Consistency
on Transactional Flash Storage. In 2015 USENIX Annual

Technical Conference (USENIX ATC 15) (Santa Clara, CA,
2015), USENIX Association, pp. 221–234.

[54] MONGODB, INC. MongoDB. https://www.mongodb.com.

[55] MORARU, I., ANDERSEN, D. G., KAMINSKY, M., TOLIA,
N., RANGANATHAN, P., AND BINKERT, N. Consistent,
Durable, and Safe Memory Management for Byte-addressable
Non Volatile Main Memory. In Proceedings of the First ACM

SIGOPS Conference on Timely Results in Operating Systems

(New York, NY, USA, 2013), TRIOS ’13, ACM, pp. 1:1–1:17.

[56] NALLI, S., HARIA, S., HILL, M. D., SWIFT, M. M.,
VOLOS, H., AND KEETON, K. An Analysis of Persistent
Memory Use with WHISPER. In Proceedings of the Twenty-

Second International Conference on Architectural Support

for Programming Languages and Operating Systems (New
York, NY, USA, 2017), ASPLOS ’17, ACM, pp. 135–148.

[57] NARAYANAN, I., WANG, D., JEON, M., SHARMA, B.,
CAULFIELD, L., SIVASUBRAMANIAM, A., CUTLER, B.,
LIU, J., KHESSIB, B., AND VAID, K. SSD Failures in
Datacenters: What? When? And Why? In Proceedings of the

9th ACM International on Systems and Storage Conference

(New York, NY, USA, 2016), SYSTOR ’16, ACM, pp. 7:1–
7:11.

[58] NOGUCHI, H., IKEGAMI, K., KUSHIDA, K., ABE, K.,
ITAI, S., TAKAYA, S., SHIMOMURA, N., ITO, J., KAWA-
SUMI, A., HARA, H., AND FUJITA, S. A 3.3ns-access-time
71.2uW/MHz 1Mb embedded STT-MRAM using physically
eliminated read-disturb scheme and normally-off memory ar-
chitecture. In Solid-State Circuits Conference (ISSCC), 2015

IEEE International (Feb 2015), pp. 1–3.

[59] OU, J., AND SHU, J. Fast and failure-consistent updates of
application data in non-volatile main memory file system.
In 2016 32nd Symposium on Mass Storage Systems and

Technologies (MSST) (May 2016), pp. 1–15.

[60] OUKID, I., LASPERAS, J., NICA, A., WILLHALM, T., AND

LEHNER, W. FPTree: A Hybrid SCM-DRAM Persistent and
Concurrent B-Tree for Storage Class Memory. In Proceedings

of the 2016 International Conference on Management of Data

(New York, NY, USA, 2016), SIGMOD ’16, ACM, pp. 371–
386.

[61] OUSTERHOUT, J., GOPALAN, A., GUPTA, A., KEJRIWAL,
A., LEE, C., MONTAZERI, B., ONGARO, D., PARK, S. J.,
QIN, H., ROSENBLUM, M., RUMBLE, S., STUTSMAN, R.,
AND YANG, S. The RAMCloud Storage System. ACM Trans.

Comput. Syst. 33, 3 (Aug. 2015), 7:1–7:55.

[62] PARK, S., KELLY, T., AND SHEN, K. Failure-atomic
Msync(): A Simple and Efficient Mechanism for Preserving
the Integrity of Durable Data. In Proceedings of the 8th ACM

European Conference on Computer Systems (New York, NY,
USA, 2013), EuroSys ’13, ACM, pp. 225–238.

[63] PELLEY, S., CHEN, P. M., AND WENISCH, T. F. Memory
persistency. In Proceeding of the 41st Annual International

Symposium on Computer Architecture (Piscataway, NJ, USA,
2014), ISCA ’14, IEEE Press, pp. 265–276.

[64] PETERSON, Z., AND BURNS, R. Ext3cow: A time-shifting
file system for regulatory compliance. Trans. Storage 1, 2
(May 2005), 190–212.

[65] PILLAI, T. S., ALAGAPPAN, R., LU, L., CHIDAMBARAM,
V., ARPACI-DUSSEAU, A. C., AND ARPACI-DUSSEAU,
R. H. Application Crash Consistency and Performance with
CCFS. In 15th USENIX Conference on File and Storage

Technologies (FAST 17) (Santa Clara, CA, 2017), USENIX
Association, pp. 181–196.

[66] PRABHAKARAN, V., BAIRAVASUNDARAM, L. N.,
AGRAWAL, N., GUNAWI, H. S., ARPACI-DUSSEAU, A. C.,
AND ARPACI-DUSSEAU, R. H. IRON File Systems. In The

ACM Symposium on Operating Systems Principles (SOSP)

(2005), ACM.

[67] RAOUX, S., BURR, G., BREITWISCH, M., RETTNER, C.,
CHEN, Y., SHELBY, R., SALINGA, M., KREBS, D., CHEN,
S.-H., LUNG, H. L., AND LAM, C. Phase-change random
access memory: A scalable technology. IBM Journal of

Research and Development 52, 4.5 (July 2008), 465–479.

[68] RODEH, O. B-trees, Shadowing, and Clones. Trans. Storage

3, 4 (Feb. 2008), 2:1–2:27.

[69] RODEH, O., BACIK, J., AND MASON, C. BTRFS: The
Linux B-Tree Filesystem. Trans. Storage 9, 3 (Aug. 2013),
9:1–9:32.

[70] ROSENBLUM, M., AND OUSTERHOUT, J. K. The Design
and Implementation of a Log-structured File System. In
Proceedings of the Thirteenth ACM Symposium on Operating

Systems Principles (New York, NY, USA, 1991), SOSP ’91,
ACM, pp. 1–15.

[71] RUMBLE, S. M., KEJRIWAL, A., AND OUSTERHOUT, J.
Log-structured Memory for DRAM-based Storage. In Pro-

15 2017/5/21

ceedings of the 12th USENIX Conference on File and Storage

Technologies (Santa Clara, CA, 2014), FAST ’14, USENIX,
pp. 1–16.

[72] SAINIO, A. NVDIMM: Changes are Here So What’s Next?
In In-Memory Computing Summit 2016 (2016).

[73] SANTRY, D. S., FEELEY, M. J., HUTCHINSON, N. C.,
VEITCH, A. C., CARTON, R. W., AND OFIR, J. Deciding
when to forget in the elephant file system. In Proceedings

of the Seventeenth ACM Symposium on Operating Systems

Principles (New York, NY, USA, 1999), SOSP ’99, ACM,
pp. 110–123.

[74] SCHROEDER, B., DAMOURAS, S., AND GILL, P. Under-
standing Latent Sector Errors and How to Protect Against
Them. In Proceedings of the 8th USENIX Conference on

File and Storage Technologies (Berkeley, CA, USA, 2010),
FAST’10, USENIX Association, pp. 6–6.

[75] SCHROEDER, B., AND GIBSON, G. A. Disk failures in the
real world: What does an mttf of 1,000,000 hours mean to
you? In USENIX Conference on File and Storage Technolo-

gies (FAST) (2007).

[76] SCHROEDER, B., LAGISETTY, R., AND MERCHANT, A.
Flash Reliability in Production: The Expected and the Un-
expected. In 14th USENIX Conference on File and Storage

Technologies (FAST 16) (Santa Clara, CA, 2016), USENIX
Association, pp. 67–80.

[77] SCHROEDER, B., PINHEIRO, E., AND WEBER, W.-D.
DRAM Errors in the Wild: A Large-scale Field Study. In
ACM SIGMETRICS (2009).

[78] SEHGAL, P., BASU, S., SRINIVASAN, K., AND VORUGANTI,
K. An Empirical Study of File Systems on NVM. In
Proceedings of the 2015 IEEE Symposium on Mass Storage

Systems and Technologies (MSST’15) (2015).

[79] SIGURBJARNARSON, H., BORNHOLT, J., TORLAK, E., AND

WANG, X. Push-button verification of file systems via crash
refinement. In Proceedings of the 12th USENIX Conference

on Operating Systems Design and Implementation (Berkeley,
CA, USA, 2016), OSDI’16, USENIX Association, pp. 1–16.

[80] SOULES, C. A. N., GOODSON, G. R., STRUNK, J. D., AND

GANGER, G. R. Metadata Efficiency in Versioning File
Systems. In Proceedings of the 2Nd USENIX Conference on

File and Storage Technologies (Berkeley, CA, USA, 2003),
FAST ’03, USENIX Association, pp. 43–58.

[81] SPILLANE, R. P., GAIKWAD, S., CHINNI, M., ZADOK, E.,
AND WRIGHT, C. P. Enabling Transactional File Access via
Lightweight Kernel Extensions. In Proccedings of the 7th

Conference on File and Storage Technologies (Berkeley, CA,
USA, 2009), FAST ’09, USENIX Association, pp. 29–42.

[82] SRIDHARAN, V., DEBARDELEBEN, N., BLANCHARD, S.,
FERREIRA, K. B., STEARLEY, J., SHALF, J., AND GURU-
MURTHI, S. Memory Errors in Modern Systems: The Good,
The Bad, and The Ugly. In International Conference on Archi-

tectural Support for Programming Languages and Operating

Systems (ASPLOS) (2015), ACM.

[83] SRIDHARAN, V., AND LIBERTY, D. A study of DRAM
failures in the field. In High Performance Computing, Net-

working, Storage and Analysis (SC), 2012 International Con-

ference for (Nov 2012), pp. 1–11.

[84] STRUKOV, D. B., SNIDER, G. S., STEWART, D. R., AND

WILLIAMS, R. S. The missing memristor found. Nature 453,
7191 (2008), 80–83.

[85] SUBRAMANIAN, S., SUNDARARAMAN, S., TALAGALA, N.,
ARPACI-DUSSEAU, A. C., AND ARPACI-DUSSEAU, R. H.
Snapshots in a Flash with ioSnap. In Proceedings of the Ninth

European Conference on Computer Systems (2014), ACM,
p. 23.

[86] SUNDARARAMAN, S., SUBRAMANIAN, S., RAJIMWALE,
A., ARPACI-DUSSEAU, A. C., ARPACI-DUSSEAU, R. H.,
AND SWIFT, M. M. Membrane: Operating System Support
for Restartable File Systems. Trans. Storage 6, 3 (Sept. 2010),
11:1–11:30.

[87] SUZUKI, K., AND SWANSON, S. The Non-Volatile Memory
Technology Database (NVMDB). Tech. Rep. CS2015-1011,
Department of Computer Science & Engineering, University
of California, San Diego, May 2015. http://nvmdb.ucsd.edu.

[88] TARASOV, V., ZADOK, E., AND SHEPLER, S. Filebench: A
flexible framework for file system benchmarking. USENIX;

login 41 (2016).

[89] TWEEDIE, S. C. Journaling the Linux ext2fs Filesystem. In
LinuxExpo’98: Proceedings of The 4th Annual Linux Expo

(1998).

[90] VENKATARAMAN, S., TOLIA, N., RANGANATHAN, P., AND

CAMPBELL, R. Consistent and durable data structures for
non-volatile byte-addressable memory. In Proceedings of the

9th USENIX Conference on File and Storage Technologies

(San Jose, CA, USA, February 2011), FAST ’11.

[91] VERMA, R., MENDEZ, A. A., PARK, S., MANNARSWAMY,
S. S., KELLY, T. P., AND III, C. B. M. Failure-Atomic
Updates of Application Data in a Linux File System. In
13th USENIX Conference on File and Storage Technologies

(FAST 15) (Santa Clara, CA, 2015), USENIX Association,
pp. 203–211.

[92] VOLOS, H., NALLI, S., PANNEERSELVAM, S., VARADARA-
JAN, V., SAXENA, P., AND SWIFT, M. M. Aerie: Flexible
File-system Interfaces to Storage-class Memory. In Proceed-

ings of the Ninth European Conference on Computer Systems

(New York, NY, USA, 2014), EuroSys ’14, ACM, pp. 14:1–
14:14.

[93] VOLOS, H., TACK, A. J., AND SWIFT, M. M. Mnemosyne:
Lightweight Persistent Memory. In ASPLOS ’11: Proceeding

of the 16th International Conference on Architectural Support

for Programming Languages and Operating Systems (New
York, NY, USA, 2011), ACM.

[94] VUČINIĆ, D., WANG, Q., GUYOT, C., MATEESCU, R.,
BLAGOJEVIĆ, F., FRANCA-NETO, L., MOAL, D. L.,
BUNKER, T., XU, J., SWANSON, S., AND BANDIĆ, Z.
DC Express: Shortest Latency Protocol for Reading Phase
Change Memory over PCI Express. In Proceedings of the

12th USENIX Conference on File and Storage Technologies

(Santa Clara, CA, 2014), FAST ’14, USENIX, pp. 309–315.

16 2017/5/21

[95] WILCOX, M. Add support for NV-DIMMs to ext4. https:
//lwn.net/Articles/613384/.

[96] WU, X., AND REDDY, A. L. N. SCMFS: A File System for
Storage Class Memory. In Proceedings of 2011 International

Conference for High Performance Computing, Networking,

Storage and Analysis (New York, NY, USA, 2011), SC ’11,
ACM, pp. 39:1–39:11.

[97] XU, J., AND SWANSON, S. NOVA: A Log-structured File
System for Hybrid Volatile/Non-volatile Main Memories. In
14th USENIX Conference on File and Storage Technologies

(FAST 16) (Santa Clara, CA, Feb. 2016), USENIX Associa-
tion, pp. 323–338.

[98] YANG, J., MINTURN, D. B., AND HADY, F. When poll is
better than interrupt. In Proceedings of the 10th USENIX

Conference on File and Storage Technologies (Berkeley, CA,
USA, 2012), FAST ’12, USENIX, pp. 3–3.

[99] YANG, J., SAR, C., AND ENGLER, D. Explode: A
lightweight, general system for finding serious storage system
errors. In Proceedings of the 7th Symposium on Operating

Systems Design and Implementation (Berkeley, CA, USA,
2006), OSDI ’06, USENIX Association, pp. 131–146.

[100] YANG, J., TWOHEY, P., ENGLER, D., AND MUSUVATHI,
M. Using model checking to find serious file system errors.
ACM Trans. Comput. Syst. 24, 4 (Nov. 2006), 393–423.

[101] YANG, J., WEI, Q., CHEN, C., WANG, C., YONG, K. L.,
AND HE, B. NV-Tree: Reducing Consistency Cost for NVM-
based Single Level Systems. In 13th USENIX Conference on

File and Storage Technologies (Santa Clara, CA, Feb. 2015),
FAST ’15, USENIX Association, pp. 167–181.

[102] ZHANG, Y., RAJIMWALE, A., ARPACI-DUSSEAU, A. C.,
AND ARPACI-DUSSEAU, R. H. End-to-end Data Integrity
for File Systems: A ZFS Case Study. In USENIX Conference

on File and Storage Technologies (FAST) (2010).

[103] ZHANG, Y., AND SWANSON, S. A Study of Application Per-
formance with Non-Volatile Main Memory. In Proceedings

of the 2015 IEEE Symposium on Mass Storage Systems and

Technologies (MSST’15) (2015).

[104] ZHAO, J., LI, S., YOON, D. H., XIE, Y., AND JOUPPI,
N. P. Kiln: Closing the Performance Gap Between Systems
With and Without Persistence Support. In Proceedings of

the 46th Annual IEEE/ACM International Symposium on

Microarchitecture (New York, NY, USA, 2013), MICRO-46,
ACM, pp. 421–432.

[105] ZHENG, S., HUANG, L., LIU, H., WU, L., AND ZHA, J.
HMVFS: A Hybrid Memory Versioning File System. In
Proceedings of the 32st Symposium on Mass Storage Systems

and Technologies (MSST), IEEE (2016).

17 2017/5/21

