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enetic Influences on Neural Plasticity
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bstract: Neural plasticity refers to the capability of the brain to alter function or structure
n response to a range of events and is a crucial component of both functional recovery after
njury and skill learning in healthy individuals. A number of factors influence neural
lasticity and recovery of function after brain injury. The current review considers the

mpact of genetic factors. Polymorphisms in the human genes coding for brain-derived
eurotrophic factor and apolipoprotein E have been studied in the context of plasticity and
troke recovery and are discussed here in detail. Several processes involved in plasticity and
troke recovery, such as depression or pharmacotherapy effects, are modulated by other
enetic polymorphisms and are also discussed. Finally, new genetic polymorphisms that
ave not been studied in the context of stroke are proposed as new directions for study. A
etter understanding of genetic influences on recovery and response to therapy might allow

mproved treatment after a number of forms of central nervous system injury.
PM R 2010;2:S227-S240

NTRODUCTION

any forms of acquired brain injury, such as stroke, along with other neurological diseases
nd disease conditions, result in a wide range of functional deficits and levels of ability. Even
ithin individuals having very similar injury, recovery and response to therapy can be vastly
ifferent. Stroke is the leading cause of serious, long-term disability in the United States,
ith more than 75% of stroke survivors experiencing disability severe enough to affect

mployment, and 80% experiencing motor impairments requiring rehabilitation [1,2].
lthough motor rehabilitation therapy is recommended after many forms of neural injury,
esults of this therapy are highly variable between individuals. Understanding factors related
o motor recovery, neurological disorders, and pharmacological and therapeutic response
ould increase the efficacy of motor rehabilitation strategies and dramatically improve
uality of life for many.

Successful motor recovery requires plasticity in many areas of the brain. Neural plasticity
ncludes the capability of neural circuits to alter their functional organization in response to
xperience and is a crucial component of both functional recovery after injury and skill
earning in healthy individuals. Throughout the early phases of stroke and rehabilitation,
eural networks are gradually restored to some degree around the lesion itself, whereas
econdary brain regions in a distributed network often are recruited to progressively
ompensate for and, depending on the extent of damage to a given region, adopt some of the
unctions of the damaged area. When injury is restricted to white matter, many of the same
hanges are apparent in the overlying gray matter [3-7]. These cortical plasticity events
ccur in many different forms, from synaptic plasticity at the cellular level to representa-
ional map plasticity at the systems level.

Functional reorganization emerges from neuronal processes, such as synaptic plasticity,
hich in turn are driven by specific intracellular and extracellular neural signaling path-
ays. Plasticity is crucial to recovery and to normal learning, but the rates and extent of

ecovery and learning vary considerably between individuals. Whereas individual factors
uch as lesion size and location, mechanism of infarct, functional magnetic resonance
maging (fMRI) activation patterns, and demographics such as age can each affect the extent
nd rate of recovery [8,9], the underlying neural mechanisms in individual subjects often

emain incompletely understood.
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S228 Pearson-Fuhrhop and Cramer GENETIC INFLUENCES ON NEURAL PLASTICITY
With such a multitude of molecular events being re-
ated to recovery, not surprisingly a number of genes have
een suggested as important to variability in stroke recov-
ry. Genetic variation in any of these plasticity-related
omponents could thus influence each individual’s capac-
ty for brain plasticity and could explain some of the
ariability encountered in motor rehabilitation efficacy.
hose individuals with a greater capacity for adapting and

avorably altering cortical connections have a theoretical
dvantage with regard to recovery from brain injury. Fur-
hermore, genetic differences might also influence the
mount or type of rehabilitation therapy required to in-
uce cortical plasticity and concomitant functional recov-
ry. This emphasizes the need for a precise understanding
f the factors that can favorably influence plasticity, pos-
ibly including genetic measures, and the relationship that
hese factors have with functional recovery.

ORMS OF BRAIN PLASTICITY AND THEIR
EASUREMENT

rain plasticity in the central nervous system (CNS) can be
escribed at several different levels. At the cellular level,
lasticity can be observed as changes in the number and/or
trength of synapses that, in turn, can be manifested at the
ystems level as alterations in neural networks and reorgani-
ation of representational maps.

A number of events underlie plasticity at the cellular
evel. At the synaptic level, plasticity can occur in relation
o increased dendritic spine formation, pruning, and re-
odeling [10]; calcium channel regulation [11]; changes

n N-methyl-D-aspartic acid (NMDA) receptors [12]; or
hanges in �-amino-3-hydroxyl-5-methyl-4-isoxazole-
ropionate (AMPA) receptor trafficking [13]. A commonly
tudied example of plasticity at the cellular level is long-
erm potentiation (LTP), that is, the long-lasting enhance-
ent of synaptic strength between 2 neurons that can

esult from application of high-frequency stimulation to a
resynaptic excitatory pathway [14].

These cellular events can be influenced by experience and
nvironment [15], for example, complexity of the housing
nvironment [16,17], maze training [18], avoidance condi-
ioning [19], and sensitization [20]. The mechanisms by
hich experience and environment exert their influence in-

lude increased protein and RNA synthesis [21-24]. Access
o such molecular/cellular data can be very difficult in human
eings, but this issue can be approached by considering the
enetics of such syntheses, matched by physiological and
uman brain mapping approaches.

Systems plasticity across neural networks in human
eings can be studied with a number of methods. Com-
on examples include fMRI, positron emission tomogra-
hy (PET), electroencephalography, magnetoencephalog-

aphy, transcranial magnetic stimulation (TMS), or i
ranscranial direct current stimulation (tDCS). These tech-
iques have been used to study the dynamics of brain
ystems, such as representational map size, area and mag-
itude of task-related activation, and changes in activation
atterns with time or therapy, as well as neurophysiolog-

cal measures such as short-interval cortical inhibition,
ntracortical facilitation, and paired associative stimula-
ion [25-29]. One example of a probe useful for assessing
lasticity in human subjects is the motor map, which can
e evaluated, for example, by the use of TMS to measure
he motor-evoked potential in 1-cm increments along a
rid placed over the scalp. The map can then be reassessed
fter an intervention to measure short-term plasticity [30].
nother motor-TMS paradigm involves stimulating a site

n the cortex that controls thumb movement, measuring
he direction of movement, and then training the thumb in
he opposite direction. After training, TMS stimulation
f this same site results in more evoked thumb movements
n the direction of training [27].

Neural plasticity of cortical representational maps can be
irectly evaluated in animals, across a wide range of motor
nd sensory domains [31,32]. A key method for its measure-
ent has been intracortical microstimulation [33-36]. In
onkeys, sensory maps for the digits have clear boundaries,

nd those boundaries change with tactile behavioral training
r surgical syndactyly [37,38]. Similar maps can be made to
xamine movement representations in primates and rats;
hanges in these motor maps are highly specific to the trained
kill and are accompanied by an enhancement in perfor-
ance on the trained task and increased synaptogenesis

33,35]. Studies in animals also suggest that motor map
lasticity is characteristic of, and may be crucial to, rehabili-
ation success after stroke [39].

In human beings, a number of methods have been used to
tudy cortical map plasticity after stroke, including TMS,
MRI, and PET. Overall, these studies suggest that after
troke, reorganization of function can occur in surviving
issue that surrounds an infarct and in distant areas such as
odes in a distributed network and homologous regions in
he contralesional hemisphere. Measurement and interpreta-
ion of poststroke plasticity in human beings have been
eviewed elsewhere [8,40-43].

The interrelationship of these measures of plasticity
uggests that individuals with a greater capacity for syn-
ptic plasticity, dendritic branching, protein and RNA
ynthesis, synapse formation, physiological changes, and
ap reorganization may be more likely to experience

reater behavioral improvements after stroke. Because
any of the neural signals driving plasticity involve the

ctivation of specific genes, genetic variation in human
eings might influence the expression of these plasticity-
elated events and thus their impact on reducing disability

n human beings after stroke.
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ENETIC FACTORS AFFECTING PLASTICITY

ither directly or indirectly, genetic factors can have an
nfluence on many of the processes related to brain plasticity.
hese likely have a variable relationship with nongenetic

actors that have been shown to influence brain plasticity,
uch as age, experience, mood, features of CNS injury, sever-
ty of behavioral deficit, training intensity, medication effects,
ocial factors, and even the point in the estrous or menstrual
ycle [8,44-46].

The human genome has a number of polymorphisms, or
ommon and different versions, for genes that influence
lasticity through diverse mechanisms. This genetic variation
ould allow identification of markers that might predict an
ndividual’s capacity for brain plasticity and thus potential for
ecovery after CNS injury such as stroke. Knowledge of such
arkers might someday allow investigators (1) to study the

iological role of a protein via polymorphisms that alter its
vailability or efficacy, (2) to design novel treatments based
n experimentally manipulating the activity of a protein in a
imilar way that a gene variant does endogenously, (3) to
redict which patients would be most likely to benefit from
uch interventions based on the presence or absence of these
olymorphisms, and (4) to identify biologically distinct sub-
opulations prospectively, which might be of particular
alue to clinical trials. Two specific candidate genes toward
hese goals are considered: (1) a single nucleotide polymor-
hism (SNP) on the gene for human brain-derived neurotro-
hic factor (BDNF); and (2) the pair of SNPs on the gene for
polipoprotein E (ApoE), resulting in the gene variants �2-4.
n addition to these genes, several less studied but potentially
mportant genetic polymorphisms will be explored.

rain-Derived Neurotrophic Factor

DNF, the most abundant growth factor in the brain, affects
eural plasticity both directly, through its modulation of
ellular processes, and indirectly, through its modulation of
ther factors that influence plasticity. Its direct involvement
ill be discussed next, and indirect involvement in a subse-
uent section.

BDNF is directly involved in plasticity through both short-
nd long-term influences [47-49]. Shortly after being re-
eased, BDNF can rapidly depolarize postsynaptic neurons
nd elicit short-term postsynaptic effects on ion channels and
MDA receptors [50], in addition to potentiating excitatory

ynaptic transmission by promoting presynaptic neurotrans-
itter release [51-53]. In the long term, BDNF can induce

asting changes in synaptic plasticity, neurotransmitter and
europeptide production, and excitability [54-61]. BDNF is
rucial in development and plays an important role in adult-
ood as well by doing the following: modulating neuronal
tructure, function, and survival; enhancing synaptic trans-
ission; facilitating LTP; and mediating use-dependent plas-
icity [62-65]. t
Decreased BDNF levels in the brain have been associated
ith numerous functional deficits, providing further insight

nto the role of BDNF in the brain. Inhibition of BDNF via
ene knockout or infusion of antisense BDNF impairs spatial
earning and memory in rodents [66-70], and blocking
DNF in the hippocampus erases the cognitive benefits of
xercise [71]. BDNF-heterozygote mice fail to form new
ynapses or modify the balance between excitatory and in-
ibitory synapses in the somatosensory cortex after 24 hours
f whisker stimulation, whereas control mice undergo these
tructural changes [72]. Injecting antisense oligonucleotides,
eceptor antagonists, or BDNF receptor antibodies into the
otor cortex to inhibit BDNF function results in impaired

killed motor performance and disrupted cortical reorgani-
ation [73,74]. Subsequent application of exogenous BDNF
n the motor cortex can partially restore motor skill acquisi-
ion and motor cortical movement representation [74]. These
bservations emphasize the role of BDNF in modulating the
unctional organization of the cortex and its clear involve-
ent in processes supporting neural plasticity.
BDNF levels can increase in relation to a number of

xperimental and environmental stimuli, and this up-regula-
ion is often region specific. In rats, spatial learning and
ontextual fear conditioning both increase BDNF mRNA and
rotein in the hippocampus [69,75-77], whereas amygdala-
ependent fear conditioning increases BDNF mRNA in the
mygdala [78]. BDNF levels are increased in the motor cortex
fter motor skill learning [79], and whisker stimulation re-
ults in enhanced BDNF mRNA expression in barrel fields
orresponding to the stimulated whisker [80]. Similarly,
onkeys undergoing motor learning show motor map reor-

anization associated with region-specific up-regulation of
DNF expression, suggesting that BDNF is capable of alter-

ng cortical connections at a very specific level in response to
xperience [81,82]. These studies emphasize the specificity
f stimuli and spatial effects in the influence of BDNF on the
NS.

BDNF is also important to many forms of plasticity in
elation to repair of neurological conditions [83-86]. BDNF
evels have been associated with CNS repair in several rodent
troke models [87-92]. Treatment with exogenous BDNF is
ssociated with better motor recovery [93]. These findings
uggest that the plasticity-related effects of BDNF extend to
ecovery of function after stroke.

A functional SNP (rs6265) has been identified in the
DNF gene, in which a G to A substitution at nucleotide 196
esults in an amino acid switch from valine (Val) to methio-
ine (Met) at codon 66 of the BDNF protein (val66met).
pproximately 30% to 50% of the population is either het-
rozygous (Val/Met) or homozygous (Met/Met) for this
DNF val66met polymorphism [94]. Although this polymor-
hism does not affect protein function or constitutive release,

he intracellular trafficking of BDNF is dramatically altered,
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S230 Pearson-Fuhrhop and Cramer GENETIC INFLUENCES ON NEURAL PLASTICITY
educing neuronal activity–dependent BDNF release by 25%
95,96].

The val66met polymorphism has been associated with
bnormal cortical morphology as well as behavioral changes.
or example, structural MRI studies of healthy human beings
ave linked the Met allele with reduced volume in the pre-
rontal cortex, hippocampus, parahippocampal gyrus, cau-
ate nucleus, and temporal and occipital gray matter [97-
02]. These differences may be related to the role of BDNF in
evelopment, to effects of continued plasticity throughout
he lifespan, or both [103,104]. Volumetric differences could
rise through any combination of changes, including de-
reased dendritic complexity, fewer neuronal and supporting
ells, increased cell death, or decreased neurogenesis during
evelopment or over the lifespan. BDNF and its receptors
ave been shown to be important in mediating all of these
rocesses.

In addition to modifying cortical structure and function,
he BDNF val66met polymorphism has been associated with
ehavioral effects, primarily in the domain of hippocampal-
ependent memory. This has been demonstrated for carriers
ho have either 1 copy (Val/Met) or 2 copies (Met/Met) of

his polymorphism. With the use of a battery of neuropsy-
hological tests, Met carriers, as compared with noncarriers
Val/Val), have been shown to have poorer performance on
pisodic memory tasks, which are more hippocampal depen-
ent, with no differences on tasks that are considered to be

ess hippocampal dependent, such as semantic memory and
erbal fluency [95,97,105,106].

A good deal of research conducted thus far has exam-
ned effects of the BDNF val66met polymorphism on the
ippocampus; but BDNF and its TrkB receptor are widely
istributed throughout the brain, and the BDNF val66met
olymorphism has been shown to broadly influence phys-

ological and experience-dependent forms of plasticity
25,28].

Kleim et al [28] investigated how the BDNF val66met
olymorphism influences network-level plasticity in the mo-
or cortex. They used TMS to study the motor cortex repre-
entational map for a hand muscle before and after short-
erm motor practice. Whereas Val/Val, Val/Met, and Met/Met
ubjects showed similar motor map organization at baseline,
et carriers exhibited reduced short-term, experience-de-

endent plasticity in the motor cortex. Similarly, McHughen
t al [107] examined the effect of the BDNF val66met poly-
orphism on the same short-term experience-dependent
lasticity paradigm by using fMRI and found similar results

n multiple regions throughout the brain. Further concurrent
vidence across several plasticity-inducing paradigms comes
rom a TMS study by Cheeran et al [25]. Given the impor-
ance of cortical reorganization in the motor system after
troke, these studies suggest that this polymorphism might
ffect poststroke recovery, although studies of polymor-

hism effects on long-term plasticity are needed. A
These polymorphism-related findings raise speculations
s to potential clinical implications. Evidence supports a role
or BDNF in CNS repair after neurological injury such as
troke [53], traumatic brain injury [86], spinal cord injury
83], and Alzheimer disease (AD) [108]. The Met allele has
een associated with poorer outcome after subarachnoid
emorrhage [109]. This finding raises the concern that if the
0% to 50% of human beings [94] carrying at least 1 Met
llele have abnormal BDNF release and responsiveness, these
ndividuals might have decreased CNS repair and thus di-

inished capacity for functional recovery after neurological
nsult.

It is clear from studies in both animals and human beings
hat BDNF and the BDNF val66met polymorphism play a role
n brain plasticity. Future studies might examine how these
ndings relate to functional recovery after stroke and the
herapeutic implications.

polipoprotein E

poE is primarily involved in lipid transport from 1 cell type
r tissue to another, although it also plays a significant role in
he growth and regeneration of peripheral and CNS tissues
nd in modulating neuronal repair, remodeling, and protec-
ion [110,111]. There exists a set of 2 common SNPs on the
uman ApoE gene, 1 SNP at amino acid position 112 and 1
NP at position 158, which result in 3 distinct alleles, termed
2-4 or ApoE2-4. The most common allele, �3, has a cystine
esidue at position 112 and an arginine at position 158; �2
as a cystine at both positions, and �4 has an arginine at both
ositions [110]. The most common genotype, E3/E3, ranges

n frequency between 43% and 74% of human beings de-
ending on ethnicity [112]. Approximate frequencies for

ess-common genotypes are as follows: 22% E3/E4,12% E2/
3, 3% E4/E4, 2% E2/E4, and 1% E2/E2 [112,113].

The ApoE alleles are often studied in the context of AD.
he ApoE4 allele is highly implicated in the risk for AD, with

ndividuals carrying 1 or more ApoE4 alleles being much
ore likely to have AD and to have an earlier age of onset as
ell [114,115]. One theory of the involvement of ApoE in AD

s that ApoE3 facilitates the clearing of A� plaques and
angles at a much greater rate than ApoE4 [110]. Expanding
eyond this, other investigators have shown that the ApoE4
llele is linked to accelerated cognitive decline with age
116], impaired episodic memory [117], decreased hip-
ocampal volume and cortical thickness [118-120], and
emory, cognitive, and attentional impairments on other
easures [121,122] (for review, see Parasuraman et al

123]). In addition, individuals carrying the ApoE4 allele
ave shown fMRI and PET activation patterns similar to
atients diagnosed with AD [124,125].

Studies in animal models and cell culture suggest that
poE is also important in CNS plasticity. Levels of the

poE protein spontaneously increase after olfactory bulb
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esion [126], and ApoE knockout mice show delayed and
iminished synaptic recovery after olfactory bulb lesions
ompared with wild-type mice [127]. Recent evidence has
hown that ApoE4 results in less NMDA receptor activa-
ion in response to Reelin signaling, a potential mecha-
ism for its affect on synaptic plasticity [128]. After ento-
hinal cortex lesions transgenic mice expressing human
poE4 have substantially less compensatory sprouting
nd reactive synaptogenesis than those mice expressing
uman ApoE3 [129]. In human neuronal cell cultures,
dding nerve growth factor plus ApoE3 enhances neurite
utgrowth, whereas nerve growth factor plus ApoE4 does
ot [130]. A study of postmortem human brains from
atients with AD found that ApoE4 allele carriers show
reater levels of neuronal loss than those lacking ApoE4,
nd impaired neuronal remodeling. This study also found
gene– dose effect, with the greatest levels of neuronal loss
ccurring in E4/E4 individuals [131].

These data related to ApoE genotype effects on brain
orphology and cognitive function suggest that this poly-
orphism might also affect neural plasticity after brain in-

ury. Studies examining the relationship between ApoE ge-
otype and outcome after severe traumatic brain injury (TBI)
upport this. In a prospective cohort study, Teasdale et al
132] found that patients with the ApoE4 allele were more
han twice as likely to have an unfavorable outcome 6 months
fter TBI as were patients without this allele. A recent meta-
nalysis concluded that the presence of the ApoE4 allele was
ssociated with increased risk for poor long-term outcome
fter TBI [133]. Another meta-analysis found an effect of
poE genotype on outcome after subarachnoid hemorrhage,
ut no overall influence on death or dependency in the 3
onths after other forms of stroke [134]. In a recent study of

41 patients with stroke followed as part of a clinical trial,
nvestigators found that ApoE genotype was associated with
egree of recovery at both 1 and 3 months after stroke, with
poE4 associated with poorer outcome [135].

Although the relationship between the ApoE polymor-
hism and poststroke plasticity has received limited study in
uman beings, animal studies and acute stroke recovery
tudies point to its importance in plasticity and recovery.
urther studies are needed to clarify the significance of ApoE
enotype on plasticity and outcome after stroke in human
eings.

ENETIC INFLUENCES ON OTHER
LASTICITY-RELATED PROCESSES

actors such as learning, attention to task, depression, and
ype of intervention are integrally related to the process of
rain plasticity, and each has its own set of relationships with

enetic factors. a
earning

ecovery of function after stroke relies on mechanisms sim-
lar to, and in some cases directly overlapping with, those
nderlying normal learning [136]. Furthermore, learning is
ften a key component of poststroke therapy [137,138]. As
iscussed thus far in this review, the BDNF val66met and
poE � polymorphisms have been shown to modulate cog-
itive and motor learning in healthy subjects, and some
atecholamine gene polymorphisms affect cognitive, and
ikely motor, learning as well [139].

ttention to Task

ne key moderator of plasticity is attention and task salience
44]. This is seen in both animals and human beings, across
ll motor and sensory systems. Animal studies have found
hat reward modulates attentional valence and influences
lasticity [140], and in human beings the paired associative
timulation TMS paradigm elicits plasticity only when the
ubject is paying attention to the paired stimulus [141].
ecause rehabilitation generally involves intense and repeti-
ive activity over a long period of time, constant attention can
e difficult.

Polymorphisms in genes related to dopamine, steroid
ulfatase, acetylcholine, and ApoE have each been linked to
ttention. Several studies of children with attention-deficit/
yperactivity disorder (ADHD) have generated evidence that
he dopaminergic system and polymorphisms affecting it are
nvolved in attention modulation. Inattention is a hallmark
ymptom of ADHD, and tests of attention can be used as
ndophenotypes [142-150].

Another gene recently associated with inattention is the
-linked steroid sulfatase gene. Deletion of this gene results

n a greater likelihood of ADHD, particularly the inattentive
nonhyperactivity) subtype. Recently 2 polymorphisms on
he gene have been associated with ADHD in children having
he combined or inattentive subtype [151].

A cholinergic receptor gene, CHRNA4, and the ApoE �2-4
olymorphisms have also been implicated in spatial atten-
ion, speed of attentional reorienting, and sustained attention
152], and ApoE genotype has been shown to modulate
ttention in healthy middle-aged individuals [153].

Several polymorphisms are related to abnormalities in
ttentional control, as evidenced by their association with
DHD. Some of these genes may affect a patient’s ability to
ay attention to rehabilitation training and therefore may
ffect plasticity and the efficacy of such training. In subjects
ith stroke, it is likely that attention to rehabilitation is, to

ome extent, modulated by the effects of depression and
elated emotions.

epression

epression is a serious condition affecting 12% of men

nd 20% of women during their lifetime, but anywhere
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rom 20% to 79% of stroke survivors [154,155]. Stroke
urvivors with concurrent depression show worse func-
ional recovery and are 3.4 times less likely to survive the
rst 10 years after stroke [155,156]. Several factors might

nfluence poststroke depression, including age of onset,
ender, lesion location, social support, psychiatric history,
troke severity, and functional outcome [155], but genet-
cs are likely influential as well. Depression is a multifac-
ted illness, and several genetic factors have emerged as
otential risk factors, particularly in the context of gene–
nvironment interactions [154,157].

One logical step is to examine the effects of polymor-
hisms in the monoamine neurotransmitter systems, partic-
larly serotonin. Depression has been suggested by some to
e related to a deficiency in serotonin or norepinephrine
ecause presently the most effective antidepressant drugs act
y increasing their levels in the CNS [158]. One key poly-
orphism, termed 5-HTTLPR, is found in the serotonin

ransporter gene SLC6A4 and occurs in either a “long” or
short” form [154,157,159]. The short form, which arises
rom a 44-bp deletion, results in less serotonin transporter
ynthesized and therefore reduced uptake in the presynaptic
eurons [159]. Investigators have linked the 5-HTTLPR
hort allele with depression and vulnerability to stress. This
nd several other serotonin-related polymorphisms are ex-
mined in several reviews [154,157,159]. Polymorphisms in
nterleukin genes have been associated with nonremission,
motional processing, and response to pharmacological
gents in subjects with depression [160,161].

The final impact of these genetic studies on understanding
nd treating depression is not clear at this time, however,
ecause there are also many negative studies. In the 1953-
atient Sequenced Treatment Alternatives to Relieve Depres-
ion (STAR*D) Study, 768 SNPs were examined for their
elationship to major depression, and only 1 SNP in the gene
or serotonin receptor 2A was significantly associated with
reatment response [162].

The BDNF val66met polymorphism has also been studied
n relation to depression; although studies show mixed re-
ults, they generally point toward higher susceptibility to
epression with the Met allele [163]. Geriatric depressed
aiwanese and American subjects have been shown to have a
reater incidence of the Met allele [164,165], but this associ-
tion was not replicated in either Chinese [166,167] or
erman populations [168]. Frodl et al [101] suggested that

he lower hippocampal volumes associated with Met allele
arriers might make these individuals more susceptible to
epression, consistent with the observed reduction in post-
ortem BDNF levels within the hippocampus and prefrontal

ortex of depressed patients [169]. In addition, among sub-
ects with treatment-resistant depression, repetitive TMS has
een shown to improve depression symptoms in Val/Val

ubjects to a significantly greater extent than Val/Met or s
et/Met subjects, suggesting that treatment strategies may
iffer between the 2 groups [170].

ype of Therapy

xercise Therapy. Therapy including exercise would
ake advantage of the positive relationship among exercise,
DNF, and brain plasticity. Exercise increases BDNF mRNA
nd protein in cerebral cortex, cerebellum, and spinal cords
f rodents [76,171-173], sometimes in as little as 30 minutes
174]. In human beings with spinal cord injury, multiple
rain regions show activity-dependent increases in BDNF

evels after 10 to 30 minutes of activity [175]. Because exer-
ise has been shown to up-regulate BDNF, addition of exer-
ise therapy in a stroke patient’s daily routine may have a
ositive impact on plasticity. Initial evidence suggests that
he BDNF val66met polymorphism modulates response to
xercise [176,177]. Such an interaction suggests that various
herapy strategies may differentially impact patients of each
enotype, and therefore genotype could be used to guide
herapy choice.

harmacotherapy. A number of different drugs have
een examined as pharmacological means to improve func-
ion after stroke, particularly agents that affect monoamine
eurotransmitters. Genetic factors can be strong determi-
ants of drug effects [178]. Drugs studied include the follow-

ng: the selective serotonin reuptake inhibitors escitalopram,
uoxetine, and citalopram [179-183]; the norepinephrine
euptake inhibitors maprotiline and reboxetine [179,184];
nd catecholamine enhancers such as amphetamine [185],
evodopa [186,187], and methylphenidate [188]. An under-
tanding of the interaction between relevant polymorphisms
nd pharmacotherapy effects will allow treatment options to
e tailored to the individual patient. As an example, Mattay et
l [139] found a differential effect of amphetamine adminis-
ration on cognitive performance between subjects with and
ithout a val108/158met polymorphism in the gene for the

nzyme catechol-O-methyl transferase (COMT), which af-
ects the level of catecholamines in the CNS (described in the
ection “Catechol-O-Methyl Transferase”). Amphetamine
mproved performance in Val/Val subjects but degraded per-
ormance in subjects carrying at least 1 Met allele. Another
rug used in the context of stroke recovery is methylpheni-
ate [188], and a polymorphism in the dopamine transporter
rotein has been shown to affect TMS response to methyl-
henidate in children with ADHD [189,190].

In a similar manner, several serotonin-related genes have
een studied for their effects on response to fluoxetine and
italopram. Peters et al [191] found that polymorphisms and
NP haplotypes in genes for the enzyme tryptophan hydrox-
lase, the serotonin transporter protein, and serotonin recep-
or genes, each predicted response to fluoxetine, although
hese same polymorphisms had no effect on citalopram re-

ponse in the large STAR*D clinical trial [192]. In a meta-
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nalysis, Smits et al [193] suggest that the short allele of
he SLC6A4 gene is related to unfavorable response to
elective serotonin reuptake inhibitors in Caucasian pop-
lations. Robinson et al found an improvement in post-
troke depression outcome with escitalopram versus pla-
ebo; genetic modulators of escitalopram are being
xplored [161,182,194]. In addition to polymorphisms
losely related to individual compounds, the cytochrome
450 superfamily of drug-metabolizing enzymes have
olymorphic alleles that affect the efficacy of numerous
harmacological agents, including most antidepressants
195]. Knowledge of a patient’s genotype for several of
hese genes might predict response to a particular phar-
acological treatment, a consideration that gains impor-

ance when considering the large effect that depression has
n outcome after stroke.

An interesting report has been written regarding the use of
arnings from the Food and Drug Administration to indicate

hat individuals with certain genotypes respond differently to
he antiplatelet medication clopidogrel [196]. This report
iscusses this specific example as well as general topics
elated to the field of pharmacogenetics.

rain Stimulation Therapy. Several forms of brain
timulation have been used to enhance plasticity after
troke; these include repetitive TMS (rTMS), tDCS, and
irect electrical stimulation. With the use of rTMS in
epression, researchers have found that rTMS helps ame-

iorate depression symptoms in individuals with the BDNF
al/Val genotype more than in those with the Val/Met or
et/Met alleles [170]. In rats, rTMS has been found to
odulate expression and function of monoamine trans-
orter proteins [197]. Further evidence reveals that, in
nimals, DCS promotes LTP by enhancing BDNF release,
nd it is likely that, in human beings, tDCS acts in a similar
anner [198]. This study found that both tDCS and BDNF
al/Val genotype were significantly associated with en-
anced motor learning, although the genotype*tDCS in-
eraction was nonsignificant. Further studies are needed to
nderstand the molecular mechanisms underlying effects
f brain stimulation to identify those genetic variations
hat might impact therapy effects.

obotic Therapy. Robotic devices have the potential to
romote plasticity and improve function in many neurolog-

cal domains [199-201]. One potential therapeutic implica-
ion of this treatment approach in the context of genetics lies
n modulating attention, a key covariate in this context.
obotic therapy can combine therapeutic maneuvers with
ighly salient virtual reality games and other modifiers of
ttention [202]. Such manipulation of attention might be
seful to overcome the effects that certain polymorphisms
ave on the function of brain attentional systems during

herapy. [
ESS-STUDIED GENETIC FACTORS FOR
UTURE CONSIDERATION

here are numerous growth factors, signaling pathways, re-
eptors, and other proteins that play a role in the multitude of
vents related to cortical plasticity. Theoretically, mutations
n the genes for any of these factors that alter function or
vailability of recovery-related proteins could have an effect
n cortical plasticity and recovery of function. Two highly
tudied polymorphisms with established effects on plasticity-
elated molecules were described previously. Other poten-
ially important factors are considered in this section.

eurotrophin 3

n addition to BDNF, neurotrophin 3 is highly expressed in
eural structures [203], and a polymorphism in the neurotro-
hin 3 gene has been associated with schizophrenia
204,205]. The gene has not been studied in the context of
eural plasticity; but if studies find that it is a functional SNP,

t may affect plasticity as well.

eurotrophic Tyrosine Kinase Receptors

olymorphisms in the neurotrophic tyrosine kinase recep-
ors have been studied in the context of AD [206]. These are
he receptors for BDNF and other neurotrophic factors, so
olymorphisms that alter their efficacy may produce some of
he same changes seen with the BDNF polymorphism.

orepinephrine Transporter Protein

here is evidence that norepinephrine is involved in synaptic
lasticity, particularly in the amygdala [207]. There are poly-
orphisms in the norepinephrine transporter protein (NET)

hat have been studied in the context of depression, with
ome positive and some negative results [208]. In addition,
he NET protein has a high affinity for dopamine and may
ffect attention and depression as well [209]. Given the
otential effectiveness of amphetamines in stroke recovery
185,210], NET polymorphisms might be explored in the
ontext of stroke recovery and amphetamine therapy.

atechol-O-Methyl Transferase

he enzyme COMT is responsible for catabolizing catechol-
mine neurotransmitters such as dopamine and norepineph-
ine, although it has the highest affinity for dopamine
211,212]. The gene for COMT has one highly studied SNP,
valine to methionine amino acid substitution at position

08 in the soluble form and 158 in the membrane-bound
orm (val108/158met) [213]. Substituting Met at position 108/

58 results in a protein with 3 to 4 times lower enzymatic
ctivity and thus greater baseline CNS dopamine levels

212,214]. This polymorphism in the COMT gene has been
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ssociated with risk and therapeutic interventions in schizo-
hrenia [139,215-218]. Participants with the low-activity
et allele, and thus greater levels of prefrontal cortex dopa-
ine, exhibit superior performance on working memory

asks [213], and administering amphetamines to increase
NS dopamine shows differential results based on genotype

139]. In patients with psychosis, cognitive deterioration was
reatest in patients with the Val/Val genotype, intermediate
n patients with Val/Met, and least in patients with the Met/

et genotype [219]. The COMT Val/Val genotype is also
ssociated with motor impairments in patients with severe
eficit schizophrenia [220], giving it at least one direct link to
otor performance. Two longitudinal studies have associ-

ted the Val/Val genotype with greater cognitive decline with
ging, a potentially important finding considering the late age
f onset for stroke [221,222]. Such biochemical and behav-
or-related studies demonstrate that CNS dopamine levels are
ncreased with the Met allele, enough to see several behav-
oral effects, which may be a factor in plasticity and rehabil-
tation.

holinergic Polymorphisms

lexander Luria, the founder of modern neuropsychology,
oncluded that cholinergic drugs had a favorable effect on
rain repair [223]. The activation or blockage of cholinergic
eceptors has been shown to influence memory and LTP in
everal paradigms [224-226]. Administration of scopolamine
r other muscarinic acetylcholine receptor antagonists im-
airs memory performance in several domains [227-230],
nd administration of nicotine or nicotinic acetylcholine
eceptor agonists enhances memory and memory-related
asks [231-235] (see Giocomo and Hasselmo [236] for a
etailed review). There are several cholinergic receptor SNPs
hat are beginning to be studied in relation to a variety of
eurological conditions [237-239]. These polymorphisms
ay represent a future direction to take in the study of

enetic factors in brain plasticity.

YT1

DYT1 SNP is related to abnormally excessive plasticity to
he point of dystonia [240]. Future studies might examine
he effects of this SNP in the context of brain repair.

biquitin Carboxyl-Terminal Hydroxylase-1

biquitin carboxyl-terminal hydroxylase (UCHL) is an en-
yme highly expressed in neurons and is part of the ubiquitin
roteasome pathway. UCHL proteins have been shown to be
ecessary for long-term facilitation in Aplysia and hippocam-
al-dependent memory in rats [241,242]. The UCHL1 gene
n human beings contains an SNP that affects its enzymatic
ctivity [243] and might be evaluated in future studies of
troke recovery.

Many of these polymorphisms have undergone little or no
tudy in the context of stroke recovery, but evidence suggests
hese might be potential avenues for research into genetic
ffects on plasticity and rehabilitation.

ONCLUSION

he aforementioned findings suggest that genetic factors are
mportant considerations in the context of neural plasticity
nd recovery from stroke, both spontaneous and therapy
nduced. Genetic factors may work directly to influence
lasticity, or they may modulate other processes that influ-
nce plasticity in a more indirect manner.

A key aspect of these studies is how patient outcomes may
enefit from this information. As described previously, such
ata might be used to design new therapies taking advantage
f molecular insights, predict treatment response for individ-
al patients, improve efficiency of resource use, and inform
ntry criteria in clinical trials. Pharmacogenetic approaches
ill likely receive increased attention as stronger evidence

ccrues supporting a role of SNPs in modulating drug re-
ponse. Once the effects of single genes are understood, the
mpact of multiple genes or epigenetic phenomena can also
e studied [244-246]. As always, genetic data must be treated
ith the greatest of ethics and respect. Genetic studies show
reat promise in explaining and enhancing the potential of
lasticity and recovery of function after neural injury such as
troke. As rehabilitation techniques become more and more
efined, genetics will likely play a larger role in determination
f treatment strategies for individual patients.
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