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Abstract

An implicit method with selective total variation diminishing (TVD) term
inclusion was developed and used to find solutions to the shallow water equa-
tions (SWEs) for free-surface flows in natural and engineered channels. The
conservative form of the SWEs was employed, and the method incorporated an
algorithm for selectively underrelaxing the iterative process to maintain stability
and accuracy in the presence of shock interfaces. The value of the Courant
number and the frequency at which the TVD term was incorporated were
constantly updated during the computation to achieve optimal speed of execu-
tion while maintaining stability. The method was tested against published
results from physical experiments and from computations employing alterna-
tive algorithms, and the results obtained demonstrate both the economy and
accuracy of the proposed algorithm.

Introduction

The ability to capture shocks in the modelling of shallow
water flows is important for scenarios involving the propa-
gation of flood waves associated with levee failure and dam
breaching. High-order explicit methods have been shown to
be capable of capturing sharp discontinuities in shallow
water solutions, especially when coupled with a total vari-
ation diminishing (TVD) term (Liang et al., 2006). However,
the time-step sizes are governed within an explicit scheme
by the Courant–Friedrichs–Lewy (CFL) condition which
imposes strict limits that are necessary to maintain the
stability of the solution (Chaudhry, 2007). This limitation
on the time-step size makes the use of explicit schemes
computationally expensive and unsuited for real-time simu-
lations or for carrying out the large number of computations
needed to account for stochastic variability in the problem
inputs (i.e. as part of a Monte Carlo simulations process). To
avoid the restriction on time-step size, an implicit method
that can capture shocks is preferable. Such a method would
allow for faster solutions to large-scale problems, as the time
step is not bound by CFL conditions, as fully implicit
methods are unconditionally stable, and do not rely on the
CFL to maintain stability. Typically, implicit methods have
been prone to instability in the neighbourhood of sharp
discontinuities (Rogers et al., 2003; Liang et al., 2006). This

has led to the inclusion of artificial viscosity terms to stabilise
the solutions (Davis, 1984), or more recently to the calcula-
tion of exact or approximate Riemann fluxes in conjunction
with local characteristic decomposition in order to keep the
methods stable and accurate at shock interfaces (Bermudez
et al., 1998; Rebollo et al., 2003). Although the Riemann type
solutions have shown good results, implementation is
complex and computationally expensive (Delis et al., 2000).

Recently, attention has been placed on developing
methods that are numerically accurate, computationally effi-
cient, and easy to implement (i.e. Delis and Katsaounis,
2005; Liang et al., 2006; Liang et al., 2007). These methods
lend themselves well to large-scale engineering problems
where a limited loss in accuracy and refinement around
shocks is compensated for by significant speed-up in
the computations. The relaxation scheme of Delis and
Katsaounis (Delis, 2003; Delis and Katsaounis, 2005), and
the explicit method of Liang et al. (2006; 2007) are modern
schemes that compare well with Riemann-based solutions.

The current model demonstrates that selective inclusion
of a TVD term into a finite difference implicit method can
improve on the relaxation method of Delis and Katsaounis
(2005) and the explicit limitations of Liang et al. (2006;
2007). The method solves the shallow water equations
(SWEs) found by integration of the Navier–Stokes equations
over the water column using the assumptions of hydrostatic
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pressure distribution and the kinematic boundary condition
of the free surface. A properly formulated finite-difference
method allows solution of the weak conditions, creating a
converging solution while also admitting discontinuities.
The TVD term is introduced as needed to maintain stability
and accuracy at the shock interface. The method is second-
order accurate in both space and time; however, inclusion of
the TVD terms reduces the method to first order around
discontinuities.

Although the TVD term is important for maintaining
stability, its application is not necessary at every time step,
with overuse producing dissipative effects. The method
includes the TVD term as necessary, based on the magnitude
of the discontinuity within the solution domain. The
method also adapts the Courant number in situ, increasing
the time step as the solution domain smooths, and reliance
on the TVD term for stability lessens.

Governing equations

For flows in natural domains, numerical instabilities have
often been observed in shock-capturing methods, arising
due to uneven bed topographies (Liang et al., 2006). More-
over, inconsistent discretisation of the flux-gradient and
source terms are common in cases where the water depth
and discharge are the unknown. Following Rogers et al.
(2003) and Liang et al. (2006), in order to more consist-
ently discretise these terms, the deviatoric method is
employed, where deviation from the still-water level and
the discharge are taken as the variables of interest. Using
this method proves more accurate not only during quies-
cent conditions, but during times of rapidly varied flow, or
where complex bottom geometries are encountered. The
general form, accounting for the deviatoric method, of the
SWEs can be written as (Rogers et al., 2003; Liang et al.,
2006):
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In the above, t is time, η is the deviation of the water
surface elevation with respect to the still-water level, qx and qy

are the discharge per unit width, h is the depth below the
still-water datum, g is the gravitational acceleration, and n is
Manning’s n.

Numerical method
The implicit method utilised is based on a central differ-
enced discretisation of the deviatoric formulation of the
SWEs given in Eqns (1)–(4), and is second-order accurate in
both time and space. Without special care, the method can
generate spurious oscillations around areas that contain
large gradients, as visible in Figure 2(c) and (d). Selective
application of the presented TVD method was generally suf-
ficient to eliminate or sufficiently dampen the oscillations
inherent to the method as demonstrated in the Results and
Discussion section. Underrelaxation (α) was used in con-
junction with the TVD method to prevent over- and under-
shoots and further stabilise and speed completion of the
iterative process. α is reported, if used, for simulations with
very large velocity or depth gradients contained in this
paper. The discretised two-dimensional equations, with
included TVD and α terms, take the form:
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The superscripts o and n give the time level of the associ-
ated variable: o level values represent the previous time level,
and n level values represent the most recent iteration. A
series of equations dependent upon values from the current
time level for calculation are created by applying Eqns (5)–
(7) across all interior points of the domain. Therefore, the
Gauss–Seidel iterative technique was chosen to solve for the
unknown values η, qx, and qy. Because terms from Eqns
(5)–(7) are interdependent, all three equations sets must be
solved before a new iteration can begin. The Gauss–Seidel
method iterates individually upon these systems of equa-
tions by calculating and successively replacing n level values
for η, qx, and qy within the current time level until the indi-
vidual total difference of all variables between the current
and previous iteration fall below a preset number (Ε), set at
10−3 for the presented simulations. Only when this criteria is
met do the n level values get written to the o level, and a time
step is completed. A generic stencil showing the time step
relationship between the n (current iteration) and o super-
scripted levels indicated in Eqns (5)–(7) is given in Figure 1:

Boundary conditions were obtained using the method of
characteristics. In this method, the reflective boundary
velocities and water depths were obtained from:
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Where the subscripts e and int represent edge and
immediate interior cells, respectively, and E can be found in
Eqn (4). The new edge velocity then can be found following:
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The method proved adequate for boundary reflections, as
evidenced in the two-dimensional results section.

Adaptive TVD and Courant number
calculation methods

The TVD method used was adapted from the research of
Liang et al. (2006; 2007) for use within the framework of this
scheme. The model was originally proposed by Davis (1984),
and used for the solution of the SWEs by Louaked and
Hanich (1998). The method was modified so that the pre-
dominant direction of flow dictates the terms used to deter-
mine the TVD correction. For a flow moving towards the
coordinate origin, the TVD term takes on the form found in
Eqn (10), otherwise the TVD term is as found in Eqn (11).
Inclusion of this directional bias method improved the
stability, measured as an increase in maximum stable
Courant number, of the numerical method relative to a
nondirectionally biased TVD term. The TVD method takes
the form:
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where X is initially defined in Eqn (2):

ΔX X Xi
n

i
n

i
n

+ += −1 2 1/ (12)

ΔX X Xi
n

i
n

i
n

− −= −1 2 1/ (13)

r
q q q q

i
i
n

i
n

x
n

x
n

y
n

yi i i i+ − +=
⋅ + ⋅ + ⋅− + − +Δ Δ Δ Δ Δ Δη η1 2 1 2 1 2 1 2 1 2 1/ / / / / //

/ / // /

2

1 2 1 2 1 2 11 2 1 2

n

i
n

i
n

x
n

x
n

y
n

yq q q qi i i iΔ Δ Δ Δ Δ Δη η+ +⋅ + ⋅ + ⋅+ + + + //2
n (14)

r
q q q q

i
i
n

i
n

x
n

x
n

y
n

yi i i i− − +=
⋅ + ⋅ + ⋅− + − +Δ Δ Δ Δ Δ Δη η1 2 1 2 1 2 1 2 1 2 1/ / / / / //

/ / // /

2

1 2 1 2 1 2 11 2 1 2

n

i
n

i
n

x
n

x
n

y
n

yq q q qi i i iΔ Δ Δ Δ Δ Δη η− −⋅ + ⋅ + ⋅− − − − //2
n (15)

Where G(x) is given as:
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and the flux limiter is given as:
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and finally Cl, the local Courant number:
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The use of the above TVD method requires no solution of
eigenvalues or eigenvectors, reducing the number of compu-
tational steps needed per time step.

Figure 1 Stencil for the centre-differenced method employed in
the current paper.
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The TVD method is introduced in the solution at a rate
that decreases as the solution smooths, and shocks diminish
in the solution domain. Limiting TVD use maintains a sharp
interface around shocks and bores while concurrently stabi-
lising the numerical method. An empirical method has been
developed for inclusion of the TVD term based on the pres-
ence of strong bores within the solution. The G(x) term
found in Eqn (16), which has the range [0, 0.25] is moni-
tored from the first iteration and used to calculate the fre-
quency of TVD inclusion (TVDi). The term is calculated as
the inverse average of all positive, nonzero values of G(x) at
a given time step multiplied by 0.25, as shown in the follow-
ing pseudo-code example, and dictates the number of
iterations that will occur until the TVDi term is again
incorporated into the method:
for i = (1,n_cells)

if (Gx(i) > 0.0) then
GXi_sum = GXi_sum+Gx(i)
GXi_poscount = GXi_poscount+1

end if
end for

TVD i integer floor GXi sum GXi poscount_ . _ _= ( )( )( )0 25

n_cells is the total number of cells in the domain,
GXi_sum and GXi_poscount are reset to zero before
each iteration, and TVDi is rounded down to its integer
value. The TVD operator is included on the first
iteration, and then is included again in n iterations, where
n = TVDi.

The TVD terms and TVDi are only calculated when dic-
tated by TVDi. For the tests included in this paper, this
method has proved successful for maintaining stability and
accuracy, even during times of strong shock propagation.
Because the TVD method operates in transcritical areas by
reducing the local solution from second to first order, apply-
ing the method a minimal number of times will minimise
diffusion at the interface.

Figure 2 is a plot of a standard friction-free two-
dimensional dam break scenario that has been used histori-
cally to analyse behaviour, accuracy, and shock capturing
ability of SWE solution methods [(Louaked and Hanich,
1998; Liang et al., 2006; Chaudhry, 2007) et al.]. Shown is the
effect of differing levels of TVD application. As the applica-
tion of the first-order TVD method decreases, the shock
front steepens. Figure 2(a) shows the effect of applying the
TVD method every iteration, resulting in a very smoothed
solution, lacking characteristics generally found in
transcritical flow. Figure 2(b) shows TVDi using the method
described above, which had an average application rate of
once every nine iterations throughout the simulation run
time. Figure 2(c) and (d) show further decreasing TVD use,
and increasing instability can be observed. The goal of
the variable TVDi is to maintain a sharp transcritical flow

region while damping nonphysical oscillations as seen in
Figure 2(c) and (d).

Similar to the variable TVD term inclusion, the Courant
number used for time step calculation is calculated in a
manner to add to the efficiency of the present scheme.
Although implicit methods are not bound to the CFL con-
dition for stability purposes, proper Courant number choice
will minimise the required number of iterations within a
time step, therefore increasing the overall speed of the
method. Two terms, Cmax and Cmin are dictated within
the computer code, corresponding to the maximum and
minimum allowable Courant numbers. The Courant
number is then calculated by sweeping the domain with the
following equation:

Courant C G x G x C Ci i= + − ⋅ ( ) − ( )( )[ ]⋅ −( )+min max minmax | |1 4 1

(20)

Where max() represents the maximum value obtained in
the sweep of the domain. When Cmax and Cmin are chosen
properly, this method monitors solution smoothness to
apply a maximal time step, speeding computation time of
the method, while maintaining accuracy and stability.
Because all simulations in this paper contained strong
shocks, a Cmin of 0.4 and a Cmax of 2.5 were used. Maximal
(Cm) and average (Cavg) Courant numbers are reported for
results within this paper.

Results and discussion
The current method was checked against experimental data
and results from other simulations and analytical solutions
for steady and unsteady flow problems. Most attention was
given to problems that included a generated shock within the
solution domain. The results are documented below.

Analytical comparison – one dimensional
dam break

Following examples given in previous articles [(Tseng, 1999;
Delis et al., 2000; Lin et al., 2003; Liang et al., 2006) –
(Benkhaldoun and Quivy, 2006) et al.], a one-dimensional
dam break was analysed in order to measure the shock cap-
turing ability of the current scheme. The test cases involved
dam break scenarios that are usually used for the assessment
of methods for shallow water computations. As the ratio
between the water depth above and below the dam increases,
the shock propagation speed also increases. Typically,
implicit methods have difficulty maintaining stability at the
transition zone, leading to oscillation, and eventually the
divergence of the computations (Liang et al., 2006). The
current method was able to accurately predict the water
surface elevation and shock propagation speeds, without
oscillation, and at time step resolutions not bound by unity
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of the CFL condition. Analytical solutions for total and
instantaneous one-dimensional dam breaks have been
obtained in Kim and Han (2000) and Liang et al. (2006), and
are also included in the figures.

Figures 3–5 show comparison to the one-dimensional
method initially found in Falconer (1986), where artificial
viscosity was used to damp the oscillations. The channel has
a length of 1000 m, and is slope and friction free. The dam
bisects its length, with the upstream half having an initial
water depth of 10 m, and the downstream half having a
depth of 2 m, 0.1 m or 0.001 m. At time t = 0, the dam
separating the two halves is instantaneously removed.
Figures 3–5 show the method versus the analytical results of
Liang et al. (2006) and the computations available in
Chaudhry (2007) with both low and high artificial viscosity
terms. Following examples in Delis et al. (2000) and Liang

et al. (2006), Δx for each test case was 5 m. The current
method exhibits none of the oscillatory or diffusive behav-
iour associated with use of artificial viscosity, while main-
taining an accurate track on the advancing shock front. For
Figures 3–6, the Courant number was in the range [0.4, 2].

Figure 6 shows the current method as tested against an
Implicit – Essentially Non-Oscillatory scheme partially
developed by Kim and Han (2000). The channel length is
2000 m, with an upstream depth of 10 m, and a downstream
depth of 0.001 m. Again, the method compares favourably. A
sharp front is maintained in the current method through use
of the combination of the underrelaxation term and
Courant number bracketing.

Finally, the one-dimensional dam break solution obtained
using the current method was compared against a method
utilising Roe’s Riemann solver (Tseng, 1999; Lin et al., 2003)
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Figure 2 (a) TVD applied every iteration (Cm = 2.5, Cavg = 1.95) (b) TVDi method application (Cm = 2.5, Cavg = 1.84) (c) every 30th iteration
(Cm = 2.26, Cavg = 1.27) (d) every 50th iteration (Cm = 1.71, Cavg = 0.93).
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and a nonhomogeneous Riemann solver (Benkhaldoun and
Quivy, 2006). For this example, an upstream depth of
6 m and a downstream depth of 2 m were used. Δx was
set to 0.1 m. Results shown are for time t = 0.4 s.
Although the Roe method is noniterative, it requires the
computation of eigenvalues and eigenvectors making it more
computationally inefficient than methods that do not rely on

these computations (Tseng, 1999; Vincent et al., 2000;
Benkhaldoun and Quivy, 2006). The presented method
compares favourably to both the Roe and nonhomogeneous
Riemann methods, for a greatly reduced cost in complexity
in comparison to the Riemann method while not requiring
the computation of eigenvectors and eigenvalues necessary
for the Roe method (Figure 7).
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Figure 3 One-dimensional dam break: ho = 2 m (Cm = 1.88, Cavg = 1.12).
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Figure 4 One-dimensional dam break: ho = 0.1 m (Cm = 1.52, Cavg = 0.86).
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Figure 5 One-dimensional dam break: ho = 0.001 m (Cm = 1.48, Cavg = 0.82).
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Physical comparison

The friction-free dam break models have analytical solutions
that provide for excellent numerical solution comparison.
However, comparisons to measured physical flow data
obtained in real-world simulations can demonstrate a
numerical method’s ability to approximate flow when esti-
mated parameters, such as Manning’s n are used. To this end,
the following one-dimensional and two-dimensional com-
parisons are based on laboratory-conducted experiments
where flow was measured physically.

Dam break with bed friction

A 1960 test case carried out by the United States Army Corp
of Engineers (USACE, 1960) is shown below. A physical

model 122 m in length and 1.22 m in width was constructed
that had a slope of 0.005 and a Manning’s n of 0.009. A
partition was inserted halfway, with an upstream water
depth of 0.305 m. The dam was removed at t = 0 s. The
propagating wave front is similar in nature to what is found
in the friction-free test cases, but inclusion of friction will
slow the shallow flow significantly, causing the front to
quickly increase in depth as shown by the results computed
using the current method.

Figure 8 shows the current method results against the
measured results from the USACE test at t = 5 s, using a Δx of
1 m, an underrelaxation value α = 0.99, and a bounded
Courant number of [0.4, 2]. The accuracy of the current
method is adequate, sufficiently tracking the increased water
depth and wave propagation speed, and maintaining stabil-
ity over a very thin flow with a significant friction factor.
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Figure 6 One-dimensional dam break: ENO method comparison, Δx = 2 m (Cm = 1.48, Cavg = 0.82).
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Figure 7 One-dimensional dam break: Roe and nonhomogeneous Riemann method comparison, (Cm = 2.08, Cavg = 1.21).
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Errors in the upstream propagating wave may be the result of
the lack of correction for the finite time it would take to
remove the partition.

Two-dimensional dike break in a flume

The following dyke-break attempts to model the complex
flow found in real-world flood wave propagation scenarios.
A two-dimensional dyke break experiment was constructed
in the Fluid Mechanics Laboratory at Delft University of
Technology (Stelling and Duinmeijer, 2003). Figure 9 shows
the geometry of the experiment. Manning’s n was fixed at
0.012 across the domain, and Δx and Δy were both 0.1 m. For
testing, the Courant number was in the range [0.4, 2.5].

The raising of the gate between the upstream and down-
stream water depths occurred at a relatively slow 0.16 m/s,
necessitating special treatment within the code as follows
(Stelling and Duinmeijer, 2003): The gate was opened in an
upward direction. At the cells that bordered the gate, if the

water level was higher than the gate opening, the gate
boundary was treated as a solid wall. On the upstream end,
the water level was fixed to 0.6, and velocities at the gate
remained zero. On the downstream end, the boundary con-
ditions were given as:

H C hh G= ⋅ (21)

q C h h C hx h G R h= −( )2g g (22)

qy = 0 (23)

where Ch is the contraction coefficient (0.6), hG is the height
of the gate opening (t·0.16), and hR is the upstream water
level (0.6 m) Immediately after the dike is initially broken
(t = 0), a semicircular shock front propagates downstream,
pushed by the jet of water from the breeched dike. A
supercritical zone of flow is created behind the front, which
eventually causes the creation of hydraulic jumps as the flow
interacts with the walls and bottom of the solution domain.
The supercritical zone and reflected bore is evident in
Figure 10. As the solution is allowed to propagate, the initial
circular bore spreads almost evenly across the width of the
domain, as seen in Figure 11. The variety of flow regimes in
this test shows the current schemes ability to predict sub-,
trans-, and super-critical flow, all which exist in Figures 10
and 11. Measurements taken at gauging stations located at
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Figure 8 One-dimensional dam break: comparison against USACE
(1960) results, (Cm = 1.81, Cavg = 1.04).

Figure 9 Geometry of the dyke-break experiment, taken from
(Liang et al., 2007).

Figure 10 Dyke-break experiment, t = 9 s.

Figure 11 Dyke-break experiment, t = 18 s, (Cm = 2.23, Cavg = 1.38).
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6 m, 9 m, 13 m, and 17 m were compared against the com-
putational results of the current method. Wave arrival times
and evolution showed general agreement with the measured
values, evident in Figure 12, and in comparison to previous
results (Stelling and Duinmeijer, 2003; Liang et al., 2004).
The most significant deviation occurs from the measured
data at the 17 m gauging station found in Figure 12(d),
where the wave arrival time was 1 s early and off by 0.025 m.
The method of characteristics boundary conditions utilised
in the current method are unable to perfectly mimic the
wave reflection detail or oscillation patterns found in the
physical model, however wave reflection patterns compared
well to the computational results in Liang et al. (2004). Gen-
erally, the lack of reflective wave detail should not greatly
influence the accuracy of the current method with respect to
prediction of flooding, except in cases where wave amplifi-
cation may occur.

Conclusions
1. An implicit numerical scheme was formulated that uti-

lised selective underrelaxation, a TVD term, and the
deviatoric discretisation of the SWEs. The developed
method was shown to exhibit good shock capturing
characteristics.

2. The developed implicit method compared favourably
with both explicit and implicit methods formulated
expressly for transcritical flow prediction.

3. The scheme was able to at least match time step sizes of its
explicit counterparts when shocks were present in the
solution domain, and was able to maintain significantly
larger time steps than the CFL condition would allow
when the flow regime was gradually varied in the numeri-
cal field.

4. The method matched the accuracy of recently developed
numerical methods that are more computationally
expensive and more complex to code.

5. Adaptive time stepping and TVD term inclusion were
used to minimise computational resources, and promote
an overall faster code.

6. Using the adaptive TVDi method damps oscillations
around shocks and bores, but does not cause severe dif-
fusive behaviour associated with constant TVD term
application.

7. The current method has shown validity for both one- and
two-dimensional flow, across all flow regimes, including
those considered more extreme than would be expected
in nature.

8. The model has promise as an efficient solution algorithm
for transcritical flow regimes including shocks that were

Figure 12 (a) gage station 6 m from the gate (b) 9 m from the gate (c) 13 m from the gate (d) 17 m from the gate.
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previously the domain of explicit or computationally
complex and expensive numerical schemes.

9. The method is robust and easy to implement, making it a
valuable tool for numerical modelling of complex flow
regimes.
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