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Abstract 

Modeling the Role of Social Information in Speech Perception 

By 

Emily Remirez 

Doctor of Philosophy in Linguistics 

University of California, Berkeley 

Professor Keith Johnson, Co-chair 

Professor Kevin B. McGowan, Co-chair 

How do we model the relationship between “high level” social constructs and 
“low level” automatic processing of phonetic detail? Variation in pronunciation is 
socially informative, and listeners can draw on these social expectations when 
perceiving speech. This dissertation argues for a closer consideration of variation 
within sociophonetic exemplar modeling. I do this by reviewing the web of 
literature, simulating perception events in Python, and conducting an experiment. 
“Exemplar theory” is a class of models positing that past experiences interpreting 
stimuli are remembered as exemplars; new stimuli are categorized based on 
comparison to these stored memories. In particular, I focus on the Generalized 
Context Model (Nosofsky 1986; Johnson 1997), or GCM. The evidence that social 
categories, like other higher-order abstractions from stimuli, can play a role in 
categorization is well-established but loosely unified. Many adopt an episodic or 
exemplar-based framework in interpreting their results, but focus on the general 
patterns more than a specific model. I developed a Python library ExemPy which 
implements the GCM and provides routines for simulating common perception 
experiment tasks. I suggest applications for both enhancing empirical work and 
exploring theoretical space. I designed an experiment to explore a key difference 
among sociophonetic priming literature: whether social expectation is invoked as 
part of or outside of the phonetic stimulus. Taken together, this work advances an 
integrative, ecologically informed approach to exemplar-based sociophonetic 
research, drawing on multiple sources of evidence to contextualize our modeling. 
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Chapter 1 
Introduction 
Humans use language to build social structures that are too large to be viewed at 
anything other than a macro level, yet are instantiated in the most local of 
interactions. Any “high-level” construct is carried by numerous individual 
occurrences, each with their own “low-level” details (e.g., Mendoza-Denton 
2014). This is true for linguistic categories like voiceless and noun, and it’s true for 
social categories like woman and cowboy. Listeners draw on multiple “levels” of 
information during perception, including social categories. Those who expect to 
hear a certain type of speaker may perceive that person’s speech as being more 
characteristic of that group. Because these effects can be induced, a robust model 
of perception needs to account for them. 

So, how do we model the relationship between these high level social 
categories and the low level perception of speech? I contextualize this question 
within two overlapping strains of research: Exemplar modeling and sociophonetic 
perception of spoken language. I present both a review of the literature and an 
empirical contribution within each sphere. Specifically, I introduce and 
demonstrate ExemPy, an original Python library for simulating speech perception 
events and report the results of a listening experiment. The chapters are outlined 
in more detail in Section 1.1 below. 

 A recurrent theme in this dissertation is to ask what it means for 
things to be the same. How are differences blurred or accentuated according to 
category membership? As Whorf wrote, category divisions are both non-obvious 
and consequential: 

We dissect nature along lines laid down by our native languages. The 
categories and types that we isolate from the world of phenomena 
we do not find there because they stare every observer in the face; on 
the contrary, the world is presented in a kaleidoscopic flux of 
impressions which has to be organized by our minds—and this means 
largely by the linguistic system in our minds. (Whorf 1940) 

Or, as my professor Terry Regier once put it during a class discussion: “It’s all 
variation; some of it’s just a bit clumpy.” Categories, in these terms, are the well-
motivated but violable boxes we draw around those clumps. 

On one level, I raise the topic of priming and activation spreading during 
perception. Inferring something to be a member of a category creates an 
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expectation that the something will have certain attributes. That is, we expect it 
to have things in common with the examples of the category we’ve seen before–
things that are “the same.” We’ll review some of the evidence for this type of top-
down effect in Chapter 3, and consider some mechanisms for it in Chapter 4. On 
another level, the way that we, as researchers, categorize theories or findings 
impacts the questions we ask and conclusions we draw. Chapter 2, for example, 
begins with a review of variation within the category of “Exemplar Theory.” 

This term, without contextualization of the class of episodic models of 
perception, implies a single theory. Difficulty arises when we try to reconcile the 
varied, contradictory assumptions represented across the class. Emphasizing what 
these frameworks have in common is crucial for collaborating and synthesizing 
ideas; remembering where they differ is crucial for responsibly contextualizing 
them. The experiment I report in Chapter 5 operationalizes some of the 
differences across methodologies.  

And, my motivation to connect these topics reflects a deeply held belief 
that what we try to study in the lab is in some way meaningfully the same thing–
language–that our colleagues in fields like linguistic anthropology describe. If we 
believe that the same language users who are constructing and perceiving high-
level identities out in the world are coming into the phonetics lab as test subjects, 
we can get a more accurate picture of speech perception by incorporating 
concepts from interactional and ethnographic accounts. This bridge draws us 
closer to an integrative, ecologically-informed approach to exemplar-based 
speech perception research. 

In writing this dissertation, I’ve adopted a less formal and more 
conversational style of writing. Everyone has the capacity to understand these 
concepts and should be able to access them. In a way, I’m writing in the voice I 
would take with my students, committed to presupposing that we are all full of 
potential and curiosity and capable of achieving our goals. Further, when we 
begin at the margins of our target audience, stating things in clear and basic 
terms, it edifies the positions for everyone. I can only hope that I’ve been 
successful in breaking these ideas down, and am grateful for my committee 
members’ support of this goal. 

1.1 Summary of chapters 
First, Chapter 2: Episodic Models and the Generalized Context Model introduces 
exemplar-based, or episodic, models of language and perception. In particular, we 
focus on a specific implementation proposed by Nosofsky (1986, see also Medin & 
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Schaffer 1978) and elaborated for phonetics by Johnson (1997). The Generalized 
Context Model (GCM) is an example of “Exemplar Theory.” This term is often used 
to capture what this set of models have in common: an overarching focus on 
specific experiences (episodes) of the listener’s language use. While this level of 
abstraction is useful and appropriate for many contexts, it makes it difficult to 
make and assess specific predictions. As we move toward disambiguating 
individual models from each other, it becomes even more important to 
remember that “Exemplar Theory” is not a single theory at all. In addition to 
restating and clarifying the basics of the model, I identify two key mechanisms 
that may be leveraged in modeling sociophonetic perception: Stable effects in 
base activation weights, and resonance, a cyclical process of categorization. 

Contextualizing these mechanisms first requires us to understand the 
behavior they’re meant to account for. The evidence for these effects is well-
established but loosely unified. Chapter 3: Sociophonetic Priming reviews 
previous findings showing that social information can condition perceptual 
responses in priming experiments. Listeners who expect to hear a certain type of 
speaker are more likely to make a choice that reflects those expectations. Given 
this body of evidence, a model of speech perception must be able to account for 
the integration of “non-linguistic” social cues and phonetic details. The chapter 
discusses both experimental results and theoretical accounts for them. With the 
simulations presented in Chapter 4, I target alternate accounts using the GCM. To 
close the chapter, I call further attention to the variety of ways “social factors” are 
construed in these experiments, previewing the motivations for my investigation 
in Chapter 5.  

With that foundation laid out, Chapter 4: ExemPy, introduces and 
demonstrates a library of routines in Python which implements the GCM. I argue 
that perceptual simulation can be leveraged in both theoretical and empirical 
applications. The precise control of parameters allows hypotheses to be 
generated and tested under different accounts, enabling systematic exploration 
of a theoretical space. Likewise, where empirical data does not exist, simulations 
can be used, cautiously, as a non-resource-intensive proxy. After introducing the 
library in general, I demonstrate its functions using data from Peterson and 
Barney (1952), which I used in developing the library. Finally, I turn to two 
applications of the library. I collaborate with Dr. Sarah Bakst to leverage ExemPy 
in analyzing data from an altered auditory feedback experiment she conducted. 
We partially replicate an experimental result by using ExemPy in place of a sub-
experiment. The chapter ends with some demonstrations of how two 
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mechanisms–priming and resonance–could integrate social and phonetic 
information during perception. 

Chapter 5 describes a study on sociophonetic priming that uses different 
types of cues to talker identity and measured their effects on a vowel 
categorization task. The results in Chapter 3 are re-considered with an emphasis 
on variation in their methodologies: What constitutes “social factors” in these 
experiments? How is expectation induced? How is perception measured? The 
experiment focuses on this second dimension in a matched guise lexical 
classification task. I divide the set of cue types into two broad categories. That is, 
the social category can be cued outside of the auditory stimuli, such as with a 
photo or label, or carried on the phonetics of ta stimulus itself. This experiment 
operationalizes that difference, probing the quality of these two cue types and 
their interaction. A “valley girl” persona, associated with the California Vowel 
Shift, is invoked through visual primes and through enregistered phonetic 
features. Listeners heard a re-synthesized continuum spanning “bat” and “bot.” 
The number of “bat” responses was used to measure degree of association with 
the sound change associated with valley girls. While unable to answer the 
question about cue types, I report the unexpected findings: In the final iteration 
of the experiment, I found no effect of the visual prime. Further, counter 
expectation, creaky voice was associated with less perception of centralization 
than modal voicing. 

Chapter 6 concludes. 
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Chapter 2 
Episodic Models and the GCM 

2.1 Episodic models of language 
To say that a model of speech perception, or of language more generally, is 
exemplar-based is essentially synonymous with describing it as episodic 
(Goldinger 1998). Exemplar-based models of speech perception differ from other 
models in a few key ways. Where those models depend on abstract, pre-existing 
categories to structure input from the top down, exemplar models build 
categories up based on experience. These frameworks posit that the listener 
stores memories of past perception events as examples of categories. Exemplar 
models differ from accounts like Motor Theory (Mattingly et al. 1988) and Direct 
Realist Theory (Fowler 1986) in that the object of perception is generally assumed 
to be acoustic and not articulatory—though there is no reason, in principle, that 
exemplars couldn’t have articulatory components (Johnson 1997). Like Direct 
Realist Theory and general auditory approaches (Diehl, Lotto, & Holt 2004) and in 
contrast with modularist perspectives such as Motor Theory, the perception of 
speech in “Phonetic Exemplar Theory” (Hay & Bresnan 2006) is general to 
cognition rather than specific to language. 

Speech perception involves parsing complex, variable, multi-modal signals 
into discrete, meaningful linguistic categories. An exact definition of “category” is 
hard to pin down. Recall from Chapter 1, I introduced categories in the context of 
variation. I referred to categories as well-motivated but violable boundaries 
drawn around clusters of similar things. Figure 2.1 elaborates the conception of 
categories that will be most relevant for this dissertation. 

Episodic models of speech perception posit that the language user 
categorizes novel input by comparing that input to their memories. These 
examples are referred to functionally interchangeably as exemplars, episodes, 
and traces. The stores of memories are often called exemplar clouds or exemplar 
distributions. Crucially, these models can account for the same phenomena often 
discussed in speech perception literature, while also extending the power. 
Prototype-like effects and categorical perception fall out naturally from the fact 
that the “best” members of the category will likely be well-represented and near 
the center of the distribution, therefore producing the most activation in 
aggregate (see Hintzman 1986 on schema abstraction).  
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As mentioned above, these are also a natural choice for processes involving 
variation in speech, because variation in the signal is “baked into” the mechanism, 
rather than being extra noise to be accounted for. Listeners don’t need to 
normalize, or strip away all acoustic differences in novel speech to access some 
“pure” and abstract form of that speech (Johnson 1997). 

Exemplar-based frameworks are general to categorization (Kruschke 2008) 
and have been elaborated into particular models in distinct areas of linguistics. 
The Generalized Context Model, which was developed out of work with visual 
perception Some find it helpful to capture these differences as Phonetic Exemplar 
Theory and Syntactic Exemplar Theory (Hay & Bresnan 2006, Bod & Cochran 
2007). Like the term Exemplar Theory itself, this grouping blurs differences 
between the distinct models within the categories. And, it usefully captures the 
differences between how these theories have developed. 

In syntax, perhaps the most famous example of an episodic model is 
Construction Grammar (CxG) (e.g., Goldberg 2006). In CxG and other 
constructionist approaches, morphosyntactic knowledge emerges from discourse 
in chunks called constructions, which vary both in size and level of abstraction. At 
the core, a construction is a pair between form and meaning. Although this 
mirrors almost exactly the definition of morpheme I give to undergraduate 
students, constructions can take on numerous different forms: Every word is itself 
a construction, but transitive clause and polar question are also constructions that 
take the form of templates with certain restrictions on what can fill in the slots 
(e.g., [animate noun] [transitive verb] [noun]). On the other extreme, idioms can 
be sentence-length constructions in which every aspect is fixed. When extended, 
shortened, or otherwise used creatively, we understand this as a reference to the 
construction. For example, many English speakers will be familiar with the phrase 
“too many cooks spoil the broth.” (When too many opinions are involved, the 
product can actually come out worse.) We can also refer to “too many cooks (in 
the kitchen)” or make playful versions like “too many advisors could spoil the 
dissertation.” That we’re able to subvert the construction this way can be taken 
as evidence that we have a shared understanding of these sentence-length 
constructions as units. 

As Bod and Cochran (2007) state, “Phonetic Exemplar Theory” like the 
GCM, and “Syntactic Exemplar Theory” like CxG have developed largely 
independently. There is still behavioral evidence that supports their joint 
predictions. For example, Hay and Bresnan (2006) find that the degree of 
advancement in a New Zealand English sound change in the words “give” and 
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“hand” vary systematically based on the construction type. That is, the phrase-
level construction “giving a hand” is pronounced differently than the word-level 
constructions that comprise it. Gahl and Garnsey (2004) don’t frame their 
investigation specifically as a joint prediction of exemplar theories, but they do 
find higher rates of phonological processes associated with phonetic reduction in 
environments where syntactic structure is contextually predictable.  

Goldinger observes that a hybrid model, which contains both experiential 
details and abstractions “may prove necessary to accommodate many linguistic 
processes” (1998). That is, given the complexity of human speech and 
communication, we may not be able to model everything with a purely episodic 
model without room for some of these “higher level” cognitive constructs. Bod 
writes that exemplars are not tokens of experiences but analyses of tokens 
(2006). The ability to carry out such an analysis, as well as the category labels 
used by the GCM, seem to imply some sort of abstraction at a very basic level. It’s 
also unsettled what the unit of experience should be: lexemes, morphemes, 
phones, phrases, or even “discourse-sized chunks” as Goldinger suggests (1998). 
There are logical reasons to believe that any of these must be the basic unit. And, 
as Goldinger and Azuma (2003) argue, we have reason to believe that the “basic” 
unit is flexible, responding to the task. They show that even something as 
innocuous as the beliefs of stimulus talkers or research assistants regarding the 
experiment’s hypothesis is enough to produce self-confirming results. Following 
this line of reasoning, perhaps the reason we haven’t isolated a single basic unit 
for exemplars is that there is not one basic unit. Whatever the case may be, 
Johnson (2006) writes that exemplars are incredibly rich in detail and are a type of 
recognition memory, not declarative memory. That is, even if speakers wouldn’t 
be able to list out all of their experiences, they store multimodal, detailed 
representations of these experiences that they have subconscious access to. 

To summarize, exemplar-based or episodic theories are general to 
cognition and categorization, and show up differently in different models, 
subfields, and domains (Hay & Bresnan 2006). In spoken language perception, 
these theories tend to differ from other models in a few key ways. I identify 3 
unifying generalizations among exemplar models: 

 
1. Humans store memories of past linguistic experiences  
2. These exemplars are linked to categories 
3. New stimuli are categorized based on comparison to the exemplars 
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2.2 The Generalized Context Model 
Recall that “Exemplar Theory” is a class of models, which show a lot of variation. 
Just like any category, grouping these models together blurs a lot of the important 
differences and predictions. The Generalized Context Model, or GCM, is an 
extension of Medin and Schaffer’s (1978) context theory of classification 
(Nosofsky 1986). Although I use it here to understand speech perception, this 
model isn’t specific to language and was in fact developed in the visual domain. 

Basics 
The GCM can be summarized using the following equations. I’ve taken these 
particular formalizations from Johnson (2006), with only slight notational 
deviations. By comparing a stimulus i to past examples j, we calculate the 
probability that a language user would categorize the stimulus i as a member of a 
category J. The variable j is a stand-in for each stored example we’ll be comparing 
the stimulus i to. Each exemplar j was identified as belonging to various categories 
J during its perception and storage. 

From the perspective of implementation, it’s useful to refer to a category 
list: a set of category types, each having a set of category labels. This relationship 
is visualized as a hierarchy in Figure 2.1; note this reflects the structure of the 
model implementation, not real-world categorization. The category labels, J are 
organized into category types, C. We assume that the category labels within a 
category type are mutually exclusive, and that these labels describe the same 
type of thing. In Figure 2.1, the objects can be categorized by two different 
category types: color and shape. The shape will be either category label “circle” or 
“square.” The dotted lines represent that a particular exemplar is linked to a 
category label under each category type.  

To arrive at the probability that a stimulus is an exemplar of a particular 
category label, we need to calculate a series of values for each exemplar with 
respect to the stimulus: distance, similarity, and activation. These values are then 
totaled, separated by category labels. This gives us the evidence that the stimulus 
is a member of each category. 
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The distance between two exemplars is calculated based on the values x for 

each feature f, and a set of attention weights w for each feature (Equation 2.1). 
Elsewhere, you may see these features referred to as dimensions of variation m. 
This denotes any aspect along which something could vary, which therefore could 
be used to compare those things to each other.  The term x_if1 refers to the 
input’s value for a given feature, and x_jf is the exemplar’s value for the same 
feature. We calculate the squared difference between exemplars i and j for every 
feature and sum those differences up. 

 

(2.1)  𝑑𝑖𝑗 = √∑ 𝑤𝑓(𝑥𝑖𝑓 − 𝑥𝑗𝑓)2
𝑓  

 
Distance is scaled according to how much “attention” is being paid to each 

feature, often normalized to sum to 1. Attention weights, w, scale the 
psychological distance between objects based on which features they have in 
common.  It may be easiest to understand this visually. In Figure 2.2, consider 
wavelength (color) and number of sides (shape) to be two different features, or 

 
1 For convenience, I use underscores as notation for subscripts in the text. 

Figure 2.1: Schematization of the relationship between category types, category labels, and 
exemplars. The solid lines represent the hierarchical relationship between category types and 
labels. The dotted line represents the category labels assigned to a particular exemplar. 
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dimensions of variation, we can use to describe each object. Imagine you’ve been 
asked to sort these objects into groups, or categories. The answer will change 
depending on how features are weighted. The more weight is given to a feature, 
the more similar objects with smaller differences in that feature will seem. 

The distance value calculated in Equation 2.1 is used to calculate similarity S 
(Equation 2.2). There are three components of this equation to pay attention to: 
Exemplar sensitivity c, the exponential e, and the negative value of the exponent -
cd_ij. 

(2.2)  𝑆𝑖𝑗 = 𝑒−𝑐𝑑𝑖𝑗

Imagine that each exemplar has a field around it. If the stimulus fits within 
that field, that exemplar will become activated. Taking the exponential of the 
distance has the effect of distributing distances normally. We can look to Figure 
2.3 to understand the negative value of the exponent: a larger sensitivity value 
produces a lower similarity. With a lower c value, exemplars with higher distances 
still correspond to some degree of similarity. However, when c is high, only those 
exemplars with low distance are considered similar and therefore contribute 
more activation. Because of the non-linear relationship between distance and 

Figure 2.2: Feature weighting scales distance between objects. 
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similarity, the differences in similarity between any two distances will be larger at 
a higher c value; at a low c, these differences have less impact on similarity. That 
is, when c is high, a stimulus must be more similar to a given exemplar in order for 
that exemplar to be meaningfully activated. Following past research, c is treated 
as a constant. This is not done as a matter of proposition, but to constrain the 
endeavor and focus on other aspects. Unlike w, c cannot vary across dimensions, 
because it applies after the distances along each dimension have been summed to 
calculate distance d. However, it remains possible that c varies across individuals 
or even across tasks.  

 
We use the similarity between the stimulus and each exemplar to calculate 

the exemplar activations a (Equation 2.3). Each exemplar is weighted by a starting 
activation value, N_j. In other words, when N is less than 1, activation will be a 
proportion of similarity S. When N is larger than 1, activation will be a multiple of 
S. This value  represents a listener’s expectations about what the stimulus will be. 
We attribute this value to properties such as the overall frequency of the category 

Figure 2.3: Similarity of i,j at different distances (0-10), with different sensitivity values (0.5, 1, 
5, 10). 
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label and its likelihood within a specific context (Johnson 2006). For example, 
listeners have a tendency, known as the Ganong effect, to perceive auditory 
stimuli as real words even if the stimulus is not a real word (Ganong 1980).  

(2.3)  𝑎𝑖𝑗 = 𝑁𝑗𝑆𝑖𝑗 

 
To get the evidence that the input is a member of some category label big-

J, E_ J,i, we add up the activation of every exemplar little-j that belongs to that 
label. We do this for every category label within each category type. 

 
(2.4)  𝐸𝐽,𝑖 = 𝛴𝑎𝑖𝑗 , 𝑗 ∈ 𝐶𝐽 

 
The equation in (2.5) is specialized from a more general axiom known as 

Luce’s choice rule. Luce’s choice rule normalizes the evidence relative to the total 
amount of activation in the system. The probability that A commonly cited 
property of exemplar theories is that more frequent categories have a bigger 
effect on perception. Frequency increases the chances to add activation, 
producing more evidence for that label. Because the increase in numerator is 
scaled by the increase to the denominator, frequency alone doesn’t overwhelm 
the effect of similarity. Effectively, a more frequent label needs to be less similar 
to the input than labels with fewer examples. However, distance and similarity 
are still the basis of categorization. 

 

(2.5) 𝑃(𝑅𝐽|𝑆𝑖)  =  
𝐸𝐽

∑ 𝑎𝑗
 

 

N and N-accretion 
Base activation of an exemplar, N, scales the total activation of an exemplar, as in 
Equation 2.3. The higher the activation value of exemplar little-J, the more 
evidence that the stimulus belongs to category label big-J. When a social 
expectation has been induced, exemplars that share a category label are primed, 
raising their base activation level. 

So, N can be selectively raised depending on consistent cues in individual 
speech perception events. But where does N come from in other contexts? I’d like 
to draw a parallel here between this kind of phonetic perception at what I 
consider a “low level” and some “higher level” phenomena that have been 
observed in discourse and ethnography. As Englebretson describes in the 
introduction to his 2007 book Stancetaking in Discourse, the term stance is used 
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to encompass a broad range of phenomena, both in everyday speech and in 
research. In this same volume, Du Bois proposes a particular configuration of 
stance-taking, the stance triangle, defining stance as a social subject’s 
simultaneous evaluation of objects, positioning of subjects, and alignment with 
other subjects (Du Bois 2007). We can understand stance as something highly 
local to specific interactions. Stance is performed through talk and interaction.  

And yet, as Bucholtz and Hall (2005) note, citing Du Bois (2002), someone 
who is seen as repeatedly taking a particular stance—say, anger—in specific 
interactions can over time become known as an “angry” person. The “angriness” 
could then increase in indexical order (Silverstein 2003) and even come to be seen 
as an attribute of a group to which that person belongs or is associated. As with 
many enregistered cues or attributes, it often won’t matter whether a stereotype 
is true of any one individual, or even accurate of the group as a whole. As 
Clopper’s (2017) paper argues, stereotypes can fill a function similar to actual 
familiarity in perception experiments. Englebretson (2023) associates stance 
accretion with “third wave” models of sociolinguistic variation that emphasize 
speaker agency and context. 

Stance accretion describes a mechanism in which something highly local 
and inherently dialogic can be inferred and constructed without interaction (Du 
Bois 2002, Bucholtz & Hall 2006). Through repeated use, the local performance of 
stance becomes part of a stable, transportable identity.  

Stance performance is specific to the interaction. We can conceptualize 
individual speech events as something similarly local. By the same logic as stance 
accretion, can a particularly high base activation N of particular exemplars accrete 
through repeated occurrences? Let’s say that something repeatedly raises N 
during perception of what Sumner et al. (2014) describe as “socially salient” 
speech. Perhaps through this repeated activation, the increase in N could accrete 
into something more stable, creating the reliable effect of variety observed in 
differences in encoding accounts. That is, we see robust representation of these 
salient varieties and variants not because they are encoded more strongly, but 
because their consistently high activation after the fact, during categorization, is 
“remembered” and allows them to play a larger role in future perception events. 

This idea raises the possibility that there may be value in modeling two 
separate components to N. Again, let’s draw an analogy to terms used in 
discourse. In Zimmerman’s (1998) conception, a transportable identity is one that 
language users “carry around,” such as their ethnicity or religious affiliation. It 
doesn’t easily change, it isn’t constructed by the discourse or the situation, but it 
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can be invoked and become locally relevant. The transportable identity contrasts 
with positions based on institutional relationships (student/teacher, 
caregiver/child) or roles within the conversation (question asker/responder).  

Despite their differences in origin, and in particular in “permanence,” all of 
these identities can be relevant in discourse. It may be useful to consider what it 
would mean to split N into multiple components: one for more transportable 
effects, and one for more local. For the purpose of this argument, I’m committing 
to the assumption that any of these effects are subject to change and built up 
from individual examples. This is, after all, the primary difference I’ve noted 
between the GCM and difference in encoding accounts.  

It may require a large effect to change the transportable base activation, 
while the local may be more violable. This is because local context changes very 
quickly, perhaps even from trial to trial of an experiment. The metaphor that 
keeps coming to mind involves the computer game The Sims, or at least my 
memory of it from my childhood in the early 2000s. Players operate simulated 
characters, sims, who interact and develop relationships with each other. The 
relationship between two sims is represented by two progress bars: a long-term 
relationship and a short-term one. The short-term meter fluctuates easily during 
an interaction. The long-term meter changes slowly as extreme positive or 
negative values are sustained. 

 

 
Figure 2.4: A screenshot from the Sims 2 computer game shows an icon of a character with two 
bars. The upper, long-term bar shows a score of 84, while the lower, short-term bar shows 80. 
Source: https://strategywiki.org/wiki/The_Sims_2/Tutorial_2 

 
An alternative explanation is to seriously theorize hysteresis and some kind 

of elastic memory for N. It may be the case that the more an exemplar is primed, 
the more primeable it becomes.  

Considering what to do with N raises an obstacle I’ve encountered 
repeatedly in this work. While we might understand what should happen at an 
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algorithmic level, it becomes very difficult to choose particular values or 
arithmetic operations in a principled and consistent way. For example, it’s easy to 
say that “N increases or decreases,” and this intuitively makes sense. But how 
does it change? Is it multiplied, or added and subtracted? Do social expectations 
and other types of context (word frequency, syntactic predictability, Ganong 
effects, etc.) affect N at the same point in time? Are types of expectations scaled 
or weighted differently? This is one reason I argue that future work should remain 
skeptical about particulars of any implementation.  

In service of unifying the differences in encoding approaches with the GCM, 
consider that strength in encoding, even without N-accretion, is exemplar storage 
with a particularly high N. This would counter the GCM’s assumption that all 
exemplars are encoded with the same strength at the time of perception, but it 
would allow us to retain the flat structure of the exemplar cloud. 

2.3 Resonance 
Resonance is a cyclical process of categorization in which initial impressions re-
enter the categorization process, spreading activation among related exemplars. 
This mechanism can integrate “macro” and local top-down expectation with 
bottom-up processing of linguistic and non-linguistic cues. The process of 
resonance is schematized in Figure 2.5 

Strand (2000) finds that listeners respond faster to voices that are 
stereotypical for the gender categories “male” and “female,” as judged by a 
separate group of listeners. The perception of sociolinguistic cues related to 
gender also vary according to the gender-stereotypicality of the voice. Johnson 
(2006) uses this finding to explore resonance.  

In an exemplar resonance model, evidence for category membership 
accumulates over the course of exemplar activation (Johnson 2006). In an initial 
round of categorization, activation is calculated for each exemplar. This activation 
feeds back “up” to the category level. If there’s a lot of evidence that the stimulus 
is a member of a category, activation spreads back down to other members of 
that category. If there isn’t evidence, activation for those exemplars is shut off. 
This has the effect of blurring differences between members of some category. 
For me, it’s easiest to think about this when, as in the case of gendered clustering 
in speech, a listener may use cues to make a decision about the speaker’s gender. 
The bottom-up perceptual cues (phonetic or otherwise) create the same type of 
top-down expectation induced in sociophonetic priming experiments. Based on a 
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first impression of a speaker, I make a decision and use that decision to structure 
subsequent categorization. 

Johnson’s description of resonance is related to Goldinger’s (1998) notion 
of an echo (2006). Goldinger uses Hintzman’s MINERVA 2 for demonstrating this 
concept, though he notes that the principle could apply to any exemplar-based 
model. During spoken word recognition, an analog probe P, analogous to our 
stimulus i goes out to all traces T (exemplars little-j). In a first round of activation, 
P activates each T proportional to its similarity, as in the GCM. An echo, which can 
contain both linguistic and non-linguistic information, is sent from long-term 
memory to working memory. Echoes are aggregates of activated traces and the 
total activity created by the probe. The content of the echo, then, is the net 
response to the probe. When this response is fed back into the categorization, it 
reinforces perception of features associated with that original percept. 

Figure 2.5: Schematization of resonance. The stimulus activates each exemplar within the cloud. 
That activation adds up to evidence within each category membership. In a unidirectional model, 
stimulus classification would be based on this evidence alone. In a resonance model, activation is 
adjusted based on this evidence, and evidence is recalculated. 
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2.4 Sociolinguistic Exemplar Theory 
In the next chapter, I present some of the evidence used to argue for 
sociophonetic priming in speech. Sociolinguists may be particularly drawn to 
“Exemplar Theory” as a unifying model that encompasses many aspects of the 
linguistic and social system (Mendoza-Denton 2007). By considering linguistic 
knowledge as holistic and contextual, these approaches can account for both 
grammatical and social aspects within a single system. As Foulkes and Docherty 
(2006) point out, Exemplar Theory is uniquely suited for foregrounding socio-
indexical information because “associations are automatically created in memory 
between linguistic and indexical information conveyed by the speech signal.” The 
characterization of “Exemplar Theory” as a coherent approach can be misleading, 
as it implies a compatibility among specific models that doesn’t in fact exist. For 
example, Sumner et al. propose dual-route encoding, wherein some exemplars 
are stored more robustly at the time of encoding (2014), while the GCM 
accomplishes this effect through activation weighting. Hay et al. (2006) suggest 
that non-useful aspects of exemplars decay over time, while Munson and 
Solomon (2004) suggest that listeners selectively store or not store entire 
exemplars. One reason I chose to look at the GCM in particular is a difficulty in 
reconciling aspects of “the same” theory. 
 

2.5 Conclusion 
In this chapter, we reviewed the class of models known as episodic, or “Exemplar 
Theory,” with a particular focus on the Generalized Context Model. I also 
introduced the idea that, analogous to theories in interactional work, stable 
effects in activation level may have origins in more mundane and regular 
interaction. Finally, we considered cyclical categorization, or resonance, as a 
bridge between bottom-up and top-down effects in perception. With this 
foundation, Chapter 3 will discuss literature supporting a particular type of 
behavior in perception: sociophonetic priming. 
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Chapter 3 
Sociophonetic Priming 
Some of the earliest evidence used to argue that social expectation guides speech 
perception comes from Nancy Niedzielski’s 1999 study of listeners in Detroit, 
Michigan. Listeners associated a raised variant of the MOUTH diphthong with 
Canadian English, despite its being present in both regional varieties. Although 
the stimuli were identical, listeners who believed they were listening to a 
Canadian matched the stimulus to a more distinctive token with a more raised 
vowel nucleus than those who believed they were listening to a Michigander. 
Niedzielski interpreted her result by positing a “stereotype filter” that colors 
listeners’ perception. Their stereotypes prevent them from hearing certain 
characteristics of speech. However, an episodic model of perception could also 
provide a parsimonious explanation. In their previous experiences, listeners could 
have paid less attention to “non-standard” features of their own community’s 
speech, such as Canadian raising. The expectations set up by the task, combined 
with their attention to certain features, produced this difference in perception 
based on a social expectation. 

The basic idea behind Niedzielski’s investigation has been replicated in 
other contexts. The KIT vowel is more raised in Australian English (AusE) and more 
centralized in New Zealand English (NZE) relative to other varieties of English 
(Watson, Harrington, & Evans 1998, via Hay, Nolan & Drager 2006). Hay, Nolan, 
and Drager (2006) played New Zealand listeners words with the KIT vowel 
embedded either in the middle or at the end of sentences. Listeners recorded 
their responses on answer sheets that were labeled with either Australian or New 
Zealander. Those with Australian answer sheets matched the stimulus to a choice 
with a more raised KIT vowel (“feesh” for fish), while those with New Zealander 
answer sheets chose a more centralized vowel (“fush”). The authors theorize that 
the regional label primes exemplars of speakers from that area, making a more 
socially stereotypical pronunciation more highly activated.  

In addition to labeling, analogous results can be found for facial stimuli. This 
follows naturally from the assumption that exemplars are rich, detailed 
recognition memories, as posited by Johnson (2006). For sighted language users, 
linguistic experience likely includes visual stimuli, relevant both for visual 
articulatory cues, such as labialization, and social identities conveyed by physical 
appearance, such as gender expression or ethnic phenotype. Both gender and 
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ethnicity have been explored by Strand and Johnson (e.g., Strand & Johnson 1999, 
Strand 1999, Johnson 2006) and McGowan (2015). In Strand’s work with 
stereotypical and non-stereotypical male and female voices, any voice paired with 
a stereotypically female face causes the boundary between sibilants /s/ and /ʃ/ to 
shift up in frequency, consistent with both a shorter vocal tract and performance 
of more feminine gender. McGowan (2015) found that the accuracy of perceiving 
speech in noise is improved when facial stimuli provide a social cue consistent 
with auditory stimuli. Listeners with both low and high exposure to Chinese-
accented English listened to Chinese-accented English in noise, paired with either 
an Asian face, a white face, or a silhouette, and transcribed their speech. The 
transcriptions were most accurate with the Asian face, which is the most likely of 
the three to have been experienced along with Chinese-accented English. This 
work suggests that in laboratory settings, listeners use social information they 
infer from the putative speaker’s face to influence their perception. By 
hypothesis, they do this in ways that have proven facilitative in their interactions 
with real speakers. That they employ this strategy, integrating various sources of 
information, in experiments hints that this could be a basic feature of speech 
perception outside the laboratory. 

Each of these investigations support a model of speech perception which is 
rich, multimodal, and guided by our experiences. Our perception of speech is 
influenced by our expectations around the talker. In the next section, I further 
examine different types of social primes that have been linked to differences in 
perception.  

3.1 What are “social factors” anyway?  
As we saw above, there are several ways to deliver “social information,” but what 
exactly do we mean by this term? I interpret the word “social” to mean anything 
dealing with how speakers position themselves or are positioned by observers 
with respect to other people, ideas, institutions, and objects. This includes a 
person’s ethnicity, religious beliefs, gender expression, hobbies, sexual identity, 
language background, and more. Although many authors work with “social cues” 
or “indexical information,” there seems to be nuanced differences in the way the 
term “social” is applied. While some authors stick to macro-demographic 
categories such as nationality, ethnicity, gender, or age-group (e.g., Hay, Nolan, & 
Drager 2006; Kim & Drager 2017; Hay & Drager 2010, McGowan 2015), others 
delve deeper into the nuances of identity construction and look at personae 
(D’Onofrio 2015, 2019). Some authors don’t focus on separating out the specific 
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social cues at all (e.g., Munson 2010, King & Sumner 2015, Kapnoula & Samuel 
2019) and treat variation at a more holistic (but therefore less generalizable) 
level. The effect of social expectation holds both if the only cue comes from the 
voice itself (e.g., Strand & Johnson 1996, Johnson 2006), or if the social identity is 
cued at an abstract level (Hay, Walker, Sanchez, & Thompson 2015). In the rest of 
this section, we will review some of this literature in greater detail.  

Hay and Drager (2010) extended the NZE vs AusE priming discussed above 
to an even more subtle class of social cue: the physical presence of either a koala 
or a kiwi stuffed animal in the lab. The koala is iconic oDf Australia, and the 
presence of this animal indeed leads to a more raised, Australian-like variant 
being chosen by participants. The kiwi, on the other hand, which is associated 
with New Zealand, is linked with the perception of more centralized, New 
Zealand-like variants. What’s more, Hay, Drager, and Warren (2010) show that 
the native dialect of the experimenter who describes the instructions can also 
influence perception. When the experimenter was a speaker of RP, responses in a 
written, non-auditory oddball task were more RP like; when the experimenter 
was a speaker of North American English, the responses were more like those 
pronunciations. All of this research suggests that the social cues can be quite 
subtle, and possibly under the level of consciousness.  

Hay et al. (2015) show additional support for abstract cues. In a combined 
implicit association task and written lexical decision task, they find an effect of 
association between gender-skewed words—words that tend to be used by one 
gender more than others, but do not explicitly refer to gender—and not only 
gendered faces, but gendered objects such as shoes. Although this effect is not 
the most robust or consistent, manifesting alternately in either reaction time or in 
accuracy, it extends even to objects which are only learned to be gendered in the 
context of the experiment. It is important to note that some of this work on NZE 
finds an effect of the listener’s socio-economic background. As the authors noted, 
speakers with more financial resources are not only more likely to have had the 
opportunity to travel to Australia or other places where different varieties of 
English are used. The sound changes being investigated are, like many others, 
stratified by class within New Zealand. This suggests that by focusing on 
nationality, we may be obscuring some of the relevant intersections of this 
identity with others.  

D’Onofrio’s (2015, 2019) manipulation of persona adds some of this 
necessary nuance to the conception. Using broad macro-demographic labels such 
as race and gender has been quite common and fruitful in experimental settings. 
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However, other, ethnographic-based, work in style and social identity 
construction suggests that persona, or a similarly flexible and dynamic structure, 
is a more appropriate unit in interactional settings (e.g., Eckert 2008, Bucholtz & 
Hall 2005). Personae are holistic, embodied identities that often correspond to 
macro-demographic groups, but are not equivalent. In her 2019 study, D’Onofrio 
used a cloze test, in which listeners fill in missing words from a passage, with 
three different visual primes and two different voices. Two of the photos were of 
the same Korean man, an actor, in two different settings—wearing either a rather 
North American-looking flannel shirt, or formal wear associated with Korean 
popular music, known as K-Pop—while the third was of a white man. One of the 
voices was L1 American English, and the other L2 English with Korean L1. The two 
different photos of the actor evoke two different types of ethnically Korean 
people listeners may be familiar with: a Korean or a Korean American. Listeners 
were most accurate at transcribing the L1 English voice overall, but for the 
Korean-accented English, the K-Pop persona was linked with more successful 
transcription than either of the other photos. The Korean American persona 
patterned with the white American persona, not with the K-Pop performer, 
despite being the same individual. 

In her (2015) paper, which we’ll discuss more in Chapter 5, she found that 
expecting to hear a “Valley Girl” was associated with variants affected by the 
California Vowel Shift more than a non-specific Californian. Listeners aren’t 
swayed by knowing that someone is a Californian as much as they are by knowing 
what type of Californian that person is. D’Onofrio’s two studies suggest that by 
considering ethnicity or region alone, researchers might be aiming “too broadly” 
when it comes to social cues. Support for the concept of persona in 
sociophonetics is mirrored in production with, for example, Podesva’s (2011) 
work on style shifting performed by a single speaker who inhabits multiple 
personae in different social settings.  

Munson (2010) proposes a mechanism in which phonological knowledge is 
multi-level. Abstract knowledge emerges from exemplars or distributions. 
Generalizations about phonotactics, e.g., are based on the lexicon. Developing as 
a speaker of a language entails gradually more abstract generalizations forming 
over time. Based on this, Munson proposes a lexicon of talkers. Language users 
generalize from a lexicon of talkers to speaker attributes. Munson doesn’t discuss 
these attributes in detail, but suggests that they might be indexical fields (Eckert 
2008), webs of related, but distinct social meanings, that take on different 
semiotics depending on the context and the observer. By starting from the talker 
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who commands those indexical meanings, listeners compute whatever stylistic 
resources they need for production or perception. 

This type of approach seems to me to be reflected in the use of voices 
inherently rich with social cues without honing in on any particular acoustic or 
social characteristic as a target. The implicit belief here—which I personally find to 
be a quite reasonable one—seems to be that speakers will sort out the variation 
and the cues they have experience with, regardless of whether or not the 
experimenter is aware of it. In fact, this exact process could produce confounds in 
matched guise tasks, if the experimenter is unaware of variation that is 
informative below the level of consciousness, such as higher formants. For 
example, E. King and Sumner (2015) intentionally chose two speakers who were 
very different across multiple levels of variation: an older Black man and a 
younger white woman. Responding to these different constellations of features, 
listeners associate the same semantic prime with different responses. For 
example, when presented with the prime “yeast,” most listeners thought of 
baking when it came to the older man and yeast infections when it came to the 
younger woman. Kapnoula and Samuel (2019) treat the entire voice as “indexical 
information” in their analysis, varied by the speaker’s gender expression. While 
these approaches make a great deal of sense, they would ideally be 
complemented by careful ethnographic and experimental investigations into the 
specifics of the variation. With this information available, the lessons learned can 
be generalized more easily.  

Social identities can also be conveyed through other phonetic features of 
the speech. For example, Strand (2000) finds that listeners respond faster to 
voices that are stereotypical (as judged by a separate sample of listeners) for the 
gender categories “male” and “female,” and that perception of sociolinguistic 
cues related to gender also varies according to the gender-stereotypicality of the 
voice. In an exemplar model with resonance, as Johnson (2006) proposes, inspired 
by Goldfinger’s (1998) “echoes,” evidence for category membership accumulates 
over the course of exemplar activation. Information gleaned from speech can re-
enter the categorization “loop” and increase the activation level of consistent 
exemplars (see Figure 2.5). I have found a similar effect in my work wherein 
listeners seem to use formant information within a whisper to make categorical 
inferences about gender that are reflected in their model of the modal voice. All 
voices contain information that links to social identities, and there is compelling 
evidence that listeners, inside and outside of the sound booth, are adept at 
extracting that information and using it to their advantage in perception. 
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Above, we explored some of the different ways that social cues and social 
information have been treated in experimental work. The inconsistencies with 
how social identities are treated, and the consequences for both producers and 
consumers of research, became especially salient to me while teaching an 
undergraduate course, Language and Gender. For example, some bisexual 
students told me they were uncomfortable with seeing “themselves” lumped in 
with either gay and lesbian participants, because they aren’t straight, or with 
straight participants, because they aren’t gay or lesbian. Other sexual identities, 
such as asexuality, demisexuality, or pansexuality, are often not mentioned at all. 
Queer identities are carved up, adequated, and erased in experiments and in the 
literature in ways that reproduce the exclusion these speakers experience both 
from straight people and within Queer communities. In my role as instructor, I 
explained the trade-off we must make as researchers between generalizability 
and specificity, between scientific control and ecological validity. What makes an 
analysis possible for a researcher does not necessarily reflect their views on the 
world, and no single investigation could ever tell the whole story. 

But I want to call attention to this tension here. I believe that our work and 
our relationships with the speakers whose linguistic knowledge we benefit from 
will be strengthened by not ignoring it. I am also reminded of Sumner’s 
presentation during the Sociolinguistic Cognition symposium I co-organized at the 
2018 Linguistic Society of America meeting, in which she cautioned about 
extrapolating from an individual to a group effect in speech perception. That is, 
she problematized a very common approach, one which I myself have adopted in 
experimental work, one which sometimes seems impossible to avoid, in which a 
single speaker represents a whole group of speakers. Some of the features of the 
stimulus person’s speech will in fact be attributable to the target axis of variation. 
However, other features may be idiosyncratic, or representative of the 
intersection of the targeted identity with the speaker’s other identities. As 
Sumner noted, there isn’t an easy way around this, aside from using different 
speakers with overlapping identities in follow-up experiments to try to tease out 
specific cues. 

I want to acknowledge that many of us would likely take issue with the 
adequation inflicted on both listeners and speakers in phonetics experiments if 
they occurred in other contexts. Intersecting or very marginalized identities are 
often ignored, while single speakers bear the burden of representation for entire 
heterogeneous groups. I am not yet sure how we can do better, but I believe that 
we must try, both to bolster the ecological validity of our research and to produce 
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work that we are proud to show our students who experience exclusion in their 
everyday lives.  
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Chapter 4: 
The ExemPy Library 
This chapter introduces ExemPy, the library I’ve written in Python for modeling 
spoken language perception using the Generalized Context Model. Before 
explaining more details about ExemPy and how to use it, let’s first consider how 
simulations can contribute to phonetics research. Once that’s established, we’ll 
move on to some specifics of the library and how to use it. Finally, we’ll see some 
examples of how ExemPy can be used in research contexts. This chapter overlaps 
with a manuscript currently under review which was co-authored with Sarah 
Bakst, but represents my own work. Corresponding code is provided in the 
appendix and on GitHub. The library and documentation are here: 
https://github.com/emilyremirez/ExemPy/tree/main/ExemPy; the 
demonstrations are here: 
https://github.com/emilyremirez/ExemPy/tree/main/Dissertation%20demos  

4.1 Motivations and Considerations for Simulating 
Speech Perception 
ExemPy’s central use case is to categorize a set of stimuli based on a provided set 
of “exemplars.” The resulting dataframe resembles the aggregated data of a 
perception experiment. Each stimulus is assigned a “response” and a probability 
for that response. For the purpose of comparing simulated and behavioral data, 
we take this probability as a stand-in for the proportion of responses.  

I find it worth stating explicitly that I take this model as a descriptively 
useful abstraction, not a literal account of cognitive processes. A simulation of 
speech perception is not a substitute for behavioral evidence, but it can be used 
as a tool in combination with descriptive and behavioral work. I want to call 
particular attention to the potential of simulated experiments to make 
predictions and explore theoretical spaces.  

With simulations, researchers have precise control over each parameter 
that’s been hypothesized. This lets us visualize what behavior would look like if 
different accounts were true. We can compare these predictions to existing 
evidence or use them to motivate new investigations. In incorporating simulations 
like ExemPy into experimental work, it’s important to be clear and specific about 
what the simulation can and can’t do. Most importantly, we can’t expect this sort 
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of illustration to tell us something new about the exemplar dataframe we use. 
Rather, we should conceptualize this type of research as a concrete answer to the 
question, “what if this account were true?” 

There are also cases where a perception result would be useful, but isn’t 
possible. For example, when designing experiments, it can be helpful to know 
things like how similar two sounds are for listeners. If that research doesn’t yet 
exist, a simulation can provide some basis for the design. A sleeping language has 
no living first-language users, but a well-motivated simulation can approximate a 
behavioral result that isn’t possible to observe. Learning to use the library and 
running the code require significantly less investment, creating new opportunities 
for students, for example, who may have limited funding or training to explore 
their data. 

As with any methodology, there are limitations we must continually 
address while using ExemPy. Implementing a model forces us to make choices 
that we may be theoretically agnostic to. For example, the code may require two 
processes to happen sequentially, and so one of those steps has to happen first. A 
theory may tell us that some value increases, but we have to decide whether to 
add or multiply. Every parameter requires some value, and it isn’t always obvious 
what that should be. When we choose a dataframe to act as a set of exemplars, 
we must artificially constrain their properties relative to the rich, embodied, 
multimodal experience of using language. We choose an artificial number of 
dimensions that we think may be important, and we choose how to measure or 
record them. We also choose how many observations of each category we 
include. Further, participants in behavioral tasks have wholly individual 
experiences with language, while the ExemPy “perceiver” has only one set of 
experiences. I accept these limitations because there’s value in what they make 
possible. Every individual decision should be considered with skepticism. As a 
whole, they work together to give us an impression that’s “close enough.” That is, 
useful, if imprecise. 

A further aspiration is to contribute infrastructure for bridging between 
subfields. This type of collaboration and cross-pollination enriches both the 
research and the researcher. We can’t make robust, generalizable claims about 
language using data only from overrepresented colonial languages. The easier it is 
for people with the relevant data to participate in modeling, the more perception 
researchers can benefit from their work. Language documentarians who collect 
phonetic data from spoken language production can leverage simulations to offer 
insight into both that language in particular and perception in general. 
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In writing the library, I drew on my own experiences incorporating 
computation into research and watching others do the same. I don’t think I’m 
alone in saying that I developed my programming skills primarily by editing 
snippets of code I got from other people. Further, the lessons really don’t stick 
unless I’m invested in the application. A motivating ambition was to provide a 
friendly place to get that starting code. I tried to anticipate what users would 
want to do and what questions or mistakes might come up along the way. I 
worked with friends’ data to generalize the library and get their feedback on 
usability. My muse was a hypothetical researcher who wants to develop 
computational skills and has a question about language that perceptual 
simulation could inform. By working through the routines in the documentation 
and editing the code to their needs, they could contextualize programming 
concepts and build confidence. They don’t need to have secured funding, for 
example, to begin exploring their data. 

4.2 Overview of ExemPy 
This section provides a narrative overview of the ExemPy library, from the 
perspective of common workflows. Detailed documentation of the code is 
available here: https://github.com/emilyremirez/ExemPy/tree/main/ExemPy A 
notebook overview is available here: 
https://github.com/emilyremirez/ExemPy/blob/main/Dissertation%20demos/Bas
ics.ipynb. All code is also included in the appendix. 

 

Types of simulations  
So, if our goal is to compare the results of the model with observable behavior, 
we begin with reproducing experimental conditions. Currently, ExemPy simulates 
two types of tasks:  
 

1. Identification tasks, in which the “perceiver” chooses the most probable 
label, from among all those represented in the exemplar cloud 

2. Forced choice tasks, in which the “perceiver” chooses which of two options 
is more likely 

 
Both of these tasks are simulated using the wrapper function multicat(), 
which categorizes multiple stimuli. As a wrapper function, it calls a series of 
functions corresponding to smaller steps. Equations 2.1-2.3 of the Generalized 
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Context Model (see Chapter 2) are implemented as part of the activation() 
function; probs() implements Equations 2.4 and 2.5; and choose() selects 
the category label with the highest probability as the “percept.”  

During a forced choice task, an experiment participant must choose 
between a limited set of options. Often, these choices are two clear endpoints of 
an interpolated continuum. But what does it mean for a perceiver to know that 
they'll have to pick between two choices? At this time, I identify three, non 
mutually exclusive vectors for modeling the task effects on perception. The first 
two are implemented through during the activation() function, adjusting 
the weights of individual exemplars (N) or relevant features in the contrast (w).  

The expectation within the experiment is that the percept will be one of 
few, delimited options. Base activation N may be raised for exemplars belonging 
to the category of the alternatives and dampened for would-be competitors in a 
straightforward example of priming. This may also affect the way a listener 
attends to features. Increasing the weights for the dimensions the two 
alternatives tend to differ along would maximize the psychological distance 
between the categories and minimize the differences within categories. 

The third place to model the effects of the experiment design is during the 
choose() function. Forced choice can be implemented after probability has 
been calculated. Rather than choosing the category label with the highest 
probability overall, the “perceiver” chooses the alternative with the higher 
probability of the two. 

As much as possible, I tried to keep this customizable by the user, but I do 
model a default behavior. In the current implementation, probabilities are 
calculated as usual, but the choose() function chooses between two 
alternatives. 

 

Setting attention weights 
We have hypotheses about the role attention weights serve theoretically, but the 
model requires us to set actual values.  I used scipy.optimize. 
minimize() to generate values for w that result in “accurate” categorization. 

Because there are so many variables, there are numerous possible 
solutions that result in low error. Different sets of local minima could be found 
depending on the starting values of the weights. To address this, I run 
minimize() multiple times with multiple, random initial guesses. Anchoring 
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the first parameter at 1 and using guesses between 1 and 3 constrains the 
solution space. This greatly reduces the duration of the optimization procedure. 

Once the process is finished, the researcher may need to choose a single 
set of values for the simulations. This is ultimately a judgment call, but I consider 
three factors. First, I choose a w with a low error rate. However, error rates across 
trials tend to be consistent, regardless of the specific values fit. In deciding 
between low-error solutions, I take a “common sense” approach of prioritizing 
weights that, second, match behavioral evidence and, third, are similar orders of 
magnitude. The alternative, which I adopt below, is to use multiple generated sets 
of values. 

The exemplar cloud 
The “exemplar cloud,” or set of stored memories, is represented by a Pandas 
dataframe, which can be created from a spreadsheet or table. Each row 
represents an exemplar or observation. 

There are two types of columns: categories and dimensions. Figure 4.1 
shows a sample of the dataframe I used to develop this library, from Peterson and 
Barney’s famous 1952 study. In this example, the category types are speaker type 
(defined below), speaker gender, speaker id, and vowel. The dimensions are 
fundamental frequency (F0) and the first three formant frequencies (F1-F3). You’ll 
notice that Figure 4.1 also includes the variable repetition. For this work, we 
aren’t interested in the difference between repetitions 1 and 2; however, 
including it in the dataframe allows to locate individual observations within the 
code. 

The stimulus, i, or set of stimuli, should also be a dataframe with at least 
one row. In the exemplar cloud, every cell must be filled. Each exemplar has a 
category label for each category type, and a value for each feature. For the stimuli 
being categorized, only the dimension values are necessary. It’s crucial that the 
columns are named identically, and that these same names are used in the 
dictionary specifying attention weights for each dimension. In most of our 
examples, we draw the stimuli from the same dataframe as the exemplar cloud. 

Choosing an exemplar cloud necessitates some artificial assumptions. First, 
the researcher chooses what the dimensions are and represents them as static 
points in time. In experimental research, stimuli have often been designed to 
emphasize and isolate particular cues. Because of this, we attribute differences in 
behavior to those differences in the stimuli. And, the embodied experience of 
perceiving contains an unknowable number of cues, including information about 
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how they change over time. Johnson (2006) addresses this by using auditory 
spectrograms, representations of the physical properties of sounds and the 
physiology of hearing. Even this removes the context and detail fundamental to 
the theory. The values chosen also tend to be continuous and numeric. Second, it 
delineates a limited number of exemplars, likely not scaled for frequency.  

 

 

Figure 4.1: A sample of an exemplar cloud dataframe. Data from Peterson & Barney 1952, via 
Barreda 2015. 

 
The dataframe or spreadsheet format is an abstraction, but it’s a useful 

one. The format is familiar and will allow many researchers to “plug and play” 
using existing datasets. Its limited scope is also an advantage when it comes to 
controlling for specific factors.  

4.3 Demonstrations with Peterson & Barney 
The data in these demonstrations are from Peterson & Barney 1952. One reason I 
chose this dataset is that other phoneticians will be very familiar with it as a 
landmark study of US English vowels. It’s been used in other simulations (e.g., 
Ames & Grossberg 2008), and using an established set of exemplars lets us 
compare results more directly. Further, we know how at least one set of human 
listeners respond to speech synthesized from these formant values (Hillenbrand & 
Gayvert 1993). 

The dataset is tagged for both linguistic and social categories. 76 speakers 
repeated 10 vowels twice each. I represent these vowels using lexical set 
notation; each word stands for the vowel it contains. The speakers are divided 
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into 3 “types”: man (33 speakers), woman (28), and child (15). While this reflects 
a limited and binary view of gender, it allows us to consider how these types of 
categories interact. 

I downloaded the dataset from the phonTools R package (Barreda 2015). 
Prior to working with the data, I changed the X-SAMPA vowel transcriptions to 
lexical set notation (Wells 1982), to make it easier to code with and interpret.  
 

Identification task 
To simulate an identification task, I categorized the entire Peterson and Barney 
(1952) dataset. Each row in the data frame is compared to every other row, 
except for itself. Researchers using ExemPy can choose other exemplars to 
exclude during activation. For example, perceiving a novel talker can be simulated 
by not comparing stimuli to exemplars from the same speaker. 

Doing this allows us to compare our results to human behavior. A model is 
judged not just on how it gets things right, but how it gets things wrong. That is, 
when human listeners responded to these stimuli, they sometimes mistook one 

Lexical Set  IPA X-SAMPA Arpabet 

FLEECE i i IY 

KIT ɪ I IH 

DRESS ɛ E EH 

TRAP æ } AE 

STRUT ʌ V UH 

PALM ɑ A AH 

THOUGHT ɔ O AW 

FOOT ʊ U OO 

GOOSE u u UW 

NURSE ɝ 3 ER 

Table 4.1: Lexical set, IPA, X-SAMPA, and arpabet notation of 
vowels included in dataset 
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vowel for another. Informative patterns in these mistakes are captured in 
confusion matrices. These tables show how often a stimulus was given a 
particular response. If perceivers regularly confuse one sound for another, that 
tells us those sounds are perceptually similar.  

ExemPy’s confusion() function will generate a dataframe like the one 
in Figure 4 below from a dataframe of choices. The columns here represent the 
stimulus, while the rows represent the response. The diagonal captures accurate 
identification, and has the highest values. That is, in all cases, the “listener” was 
more likely to be right than wrong. 

The results of the simulation are highly correlated with the experimental 
results reported by Hillenbrand and Gayvert (1993). Again, the exact results will 
vary depending on the attention weighting parameters, but the results of this 
example are representative of other simulations, as demonstrated in Table 4.2. 

To compare the confusion tables, I use two measures. The root mean 
square (RMS) distance is a measure of the difference between two matrices, 
while Pearson’s correlation (r) measures their similarity. If the tables are similar, 
RMS will be low and r will be high. To calculate these results, I first excluded every 
0.0 from the table. Because 0 correlates perfectly with 0, skipping this step would 
artificially inflate the correlations. 

To create Table 4.2, I fit attention weights and simulated the identification 
task 5 times. For each set of parameters, z0 (fundamental frequency in Bark) was 
anchored at 1. That is, the other weights will be set assuming that z0 will be 1, 
accelerating the parameter fitting process. Note that the attention weights shown 
in the table have been normalized to sum to 1, rounded to 2 decimal places. For 
all 5 trials, RMS Is between 0.073 and 0.075, and r is between 0.964 and 0.966. 
The minimized error rate is between 0.109 and 0.118.  

Forced choice task 
https://github.com/emilyremirez/ExemPy/blob/main/Dissertation%20demos/For
ced%20choice.ipynb  

To simulate a forced choice task, I first created three sets of “stimuli” using 
ExemPy’s continuum() function. This function creates interpolated continua 
between two end points. These 7-step continua started with average values for 
FOOT on one end, moving in even increments towards the value for STRUT on the 
other. I did this using average values for the three speaker types: w[oman], 
c[hild], or m[an].  
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Figure 4.3 was created using the cpplot() (categorical perception plot) 

function in ExemPy. It shows the results of categorizing these three sets of 
continua. The X-axis shows the step along the continuum, with 1 being distinctly 
FOOT, 7 being distinctly STRUT, and the rest being somewhere in between. The Y-
axis represents the probability of a response, taken as the proportion of people 

 
a) GCM 

 
b) Hillenbrand & Gayvert 1993 

Figure 4.2: Confusion matrices from (a) one round of identification task and (b) Hillenbrand & 
Gayvert.  
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who would have given that response in a listening experiment. The gray dotted 
line at 0.5 visualizes chance. The point at which the curve intercepts the 0.5 line is 
considered the “boundary” between those two categories. This graph shows that 
our “listener” draws the boundary between FOOT and STRUT differently for the 
type m stimuli than for w and c. 

Remember that ultimately the more similar an exemplar is to the stimulus, 
the more likely it is that the stimulus will be categorized the same way as the 
exemplar. Based on past experience, listeners know that the difference between 
FOOT and STRUT depends in part on the overall frequencies and whether those 
qualities are more associated with men or with women and children. 

In Figure 4.3, there is no point for step 4 in the woman stimuli. This is 
because the most probable response was neither FOOT nor STRUT, but PALM. To 
plot any point along this axis would imply an artificially high probability of one of 
the two options. When running the routine in ExemPy, the user will get a printout 
notifying them, along with the step number, category label choice, and 
probability. 
 

 
 

 Attention weight w values Comparisons 

Trial z0 z1 z2 z3 error RMS r 

1 0.10 0.37 0.23 0.29 0.109 0.073 0.964 

2 0.17 0.46 0.22 0.15 0.118 0.075 0.964 

3 0.27 0.43 0.16 0.15 0.109 0.074 0.966 

4 0.14 0.35 0.26 0.25 0.109 0.073 0.965 

5 0.18 0.31 0.29 0.21 0.115 0.075 0.966 

Table 4.2: Comparisons of confusion matrices categorized using 5 different sets of attention 
weights 
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Figure 4.3: Results of simulated forced choice task between FOOT and STRUT 

4.4 Using ExemPy to understand altered auditory 
feedback: Co-authored work with Dr. Sarah Bakst 
In a collaboration with Dr. Sarah Bakst, we used ExemPy to simulate real-time 
data from an experiment she had conducted using altered auditory feedback to 
investigate vowels in Tamil. After working together to identify a relevant 
question, I provided some starter code for Sarah to use in her analysis. From 
there, she conducted the simulations and interpreted the results, with some 
feedback from me. Through this collaboration, we were able to analyze her 
existing data in a novel light. 

This process was also crucial for making ExemPy more generalizable and 
user-friendly, functioning almost like a beta test. The insightful feedback from a 
trusted collaborator identified targets for more robust documentation or 
exception handling, for example. Ensuring the code worked with Dr. Bakst’s data 
forced technical debt to be repaid and hard-coding shortcuts be undone. I am 
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very grateful to have had such an intelligent, empathetic, and pleasant partner for 
this task. 

As Dr. Bakst writes in our manuscript, “In an altered auditory feedback 
experiment, participants hear a version of their speech that does not match what 
they actually produced. For example, a formant may be altered in near-real time 
so that participants hear themselves producing a different vowel than they 
intended” (Remirez & Bakst 2023). As speakers adjust their articulation in 
response to these perturbations, the vowel they produce could have been 
perceived as the same category, or a different category. In other words, their 
articulation may or may not cross a would-be category boundary. The relevant 
question is perceptual, not acoustic, but we only have access to these speakers’ 
productions, as well as what they would have heard themselves say. Using 
ExemPy to simulate the categorization can fill this gap. The model identifies 
altered utterances that were likely to have crossed the perceptual boundary. In 
the absence of empirical data, the simulation is leveraged to make another 
analysis of the acoustic data possible. 

Using this methodology, she finds that the GCM more or less replicates a 
lab finding in which category boundaries were derived empirically:  

Niziolek et al. (2013) conducted an altered feedback study where category 
boundaries were empirically derived. These category boundaries were then used 
to determine which trials in the altered feedback study would have caused 
participants’ feedback to cross category boundary lines–that is, where speakers 
would have heard themselves producing a categorically different vowel from the 
target. On boundary-crossing trials, speakers showed a greater degree of 
perturbation-opposing behavior. In the experiment presented here, speakers who 
experienced a higher percentage of category-crossing shifts also showed more 
feedback-opposing behavior on average, but not on all the individual trials where 
these category-crossings occurred. That said, out of all the trials, those with the 
greatest amount of perturbation opposition occurred when the heard signal 
crossed simulated category boundary lines (Remirez & Bakst 2023). 

By comparing the results of the simulation to lab-based insights, we lend 
credibility to the methodology. This showcases ExemPy as a viable, useful 
resource for understanding empirical data.  

4.5 Using ExemPy to model priming and resonance 
As previewed in the introduction, ExemPy can be used to explore a theoretical 
space. Here I explore two facets discussed in sociophonetic priming, activation 
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raising (Chapters 2 and 3) and resonance (Chapter 2). I model the effect of each 
process on activation. 

In order to conduct the simulations, I first identified an ambiguous 
stimulus: Speaker 47’s second repetition of the FOOT vowel. I chose this stimulus 
because the probability of both speaker type and vowel was consistently low. 
Classifying both repetitions using the weights given in Table 4.2, yields 10 sets of 
vowel and speaker type probabilities. Of these 10 categorizations, the speaker 
was mis-categorized as a child 3 times. Vowel choice–FOOT–was always accurate, 
but probabilities were low (details in Table 4.4 below). 

Phonetic details of that stimulus, along with two points of comparison, are 
given in Table 4.3. Comparing repetition 2 to both the speaker’s other repetition 
and mean values for this vowel across type w speakers, we see in particular that 
the fundamental frequency, 205 Hz, is lower than both the other repetition (286 
Hz) and the type w average (234 Hz). This is especially interesting given that 
fundamental frequency is closely linked to the percept of pitch, which is in turn 
linked to gender performance and ideology. In other words, this observation may 
be comparable to the type of non-stereotypicality manipulated in Strand’s 
experiments (Strand 1999, Strand & Johnson 2000, Johnson 2006). 

 

 F0 (Hz) F1 (Hz) F2 (Hz) F3 (Hz) 

Ambiguous stimulus: 
Speaker 47, rep 2 

205 570 1200 2970 

Speaker 47, rep 1 286 540 1200 2860 

Average w values 234 469 1161 2685 

Table 4.3: Phonetic details of FOOT productions. 

 
Specifically, probabilities are split across four other vowels, as shown in 

Table 4.4. As expected, the exact ratio depends on the attention weighting, but 
the two biggest competitors are STRUT and THOUGHT, followed by GOOSE and 
PALM. 
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w FOOT STRUT THOUGHT GOOSE PALM 

1 0.419 0.134 0.390 0.033 0.023 

2 0.271 0.266 0.264 0.058 0.141 

3 0.368 0.340 0.196 0.041 0.054 

4 0.369 0.270 0.226 0.053 0.082 

5 0.440 0.370 0.073 0.044 0.073 

mean 0.373 0.276 0.229 0.046 0.037 

Table 4.4: Probabilities of classification as different vowels, rounded to three decimal 
places, using the attention weights in Table 4.2. 

 
In order to consider the effects of resonance and category priming, we’ll be 

looking at plots like the one in Figure 4.4 below. The graph plots each exemplar in 
the cloud in F1, F2 space (Bark). As customary, axes are inverted to correspond 
more closely to articulatory space. Vowel categories are separated by color. The 
size of the exemplar corresponds to how activated it is by the stimulus. The 
stimulus is not plotted as an exemplar in the graph because it was excluded from 
comparison. That is, the stimulus was not compared to itself. For reference, the 
stimulus is marked instead with a dark blue x. 

For these figures, I’ve chosen to use the 2nd set of exemplar weights, 
where FOOT is the winner, but competition is tight with STRUT and THOUGHT. 
Top-down effects are especially observable where uncertainty is high, so starting 
from a place of high competition among vowels is more likely to demonstrate the 
effect we’re after. 
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Figure 4.4: Activation of exemplars by vowel, in acoustic space. Color marks 
vowel category, and size marks amount of activation. The stimulus is 
represented by the dark blue x.  

 
In the rest of this section, we’ll compare these activations under certain 

conditions. First, recall that the ambiguous stimulus–Speaker 47, FOOT, repetition 
2–has an unusually low F0 compared to the other repetition (286 Hz), the overall 
type w average F0 for FOOT (234 Hz), and the speaker’s average F0 across all 
repetitions of all vowels (253 Hz). (The lowest F0 for a type w speaker in the 
Peterson and Barney data is 150 Hz.) F0 is linked to perception of gender, so 
“inducing expectation” that the speaker is a woman by raising the resting 
activation scaling for women speakers will push the vowel more towards veridical 
perception. The amount of scaling, of course, determines the effect. In Table 4.5, 
we see the effects of setting resting activation for type “woman” exemplars to 2, 
5, 10, and 25. That is, where “man” and “child” had a resting activation of 1, 
activation for “woman” exemplars was multiplied by these values. (Recall 
Equation 2.3, which defines activation of an exemplar a_ij as similarity scaled by 
resting activation N.) Likewise, we can predict the output of expecting a “man” or 
“child”, making the vowels STRUT and THOUGHT, respectively, more likely. That 
is, the vowel percept changes depending on speaker type. The effect on activation 
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for 10 times bias towards each type is shown in Figure 4.5. In each case, we can 
see that the most activated exemplars are those close to the stimulus–those that 
really are similar. However, the category that the most activated exemplars 
belong to depends on the “expectation.” (The category whose members have the 
highest activation, of course, corresponds to the highest probability.) 

 

N Category FOOT STRUT THOUGHT GOOSE PALM 

w: 1 FOOT 0.271 0.266 0.264 0.058 0.141 

w: 2 FOOT 0.293 0.199 0.274 0.040 0.193 

w: 5 FOOT 0.317 0.127 0.285 0.021 0.249 

w: 10 FOOT 0.328 0.093 0.290 0.012 0.176 

w: 25 FOOT 0.336 0.069 0.294 0.005 0.296 

m: 10 STRUT 0.088 0.751 0.093 0.180 0.049 

c: 10 THOUGHT 0.355 0.072 0.379 0.156 0.038 

Table 4.5: Probability of categorization of each vowel label with different activation scaling for 
types. If the value is not given, the resting activation was set at 1. 

 
The effect is the least noticeable in Figure 4.5a, where woman exemplars 

are more activated. Activation increases for several similar FOOT exemplars and a 
single STRUT exemplar very close to the stimulus in F1/F2 space. We may expect 
the activation of STRUT to correspond to an increase in its probability; however, 
the single exemplar is not enough to have an observable effect. When a man 
speaker is “expected,” however, activation shifts to several STRUT exemplars, 
enough to change the classification from FOOT to STRUT. Likewise, in 4.5c, 
activation shifts toward THOUGHT when a child is expected, changing the percept 
of the vowel. With this priming, exemplars that are less similar are still able to 
contribute significant activation. 

In the prior paragraphs, we manipulated the type “expectation” that occurs 
“outside” the speech perception event. This is a proxy for the sort of “non-
linguistic” priming invoked through images or labels. Now, let’s consider the other 
mechanism we’ve discussed: resonance. To simulate resonance, we first calculate 
activation and probability as usual. Resting activation is then incremented by a 
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“resonance term”: the probability of categorization with the category level is 
divided by the number of cycles. Taking the probability allows for gradient 
activation spreading, while dividing by a number of cycles constrains the term 
from becoming too large. In this implementation, one category is set to be 
resonated on, and have its probabilities reenter the categorization loop through 
an increase in activation. For these demonstrations, we’ll use speaker type. To 
schematize the process being described, the listener would hear the stimulus, 
make a preliminary decision about the type of speaker, and then use this 
information to modulate expectations about vowel categories. As seen in Table 
4.6, the effect is similar to that of priming, but is generated bottom-up, without 
external priming. In this case, the change in activation too minimal to be observed 
in the plots, but its evidence is seen in changes to probabilities. 

This section demonstrated some of the knobs that can be adjusted using 
ExemPy to probe the approximate different theoretical assumptions. While it’s 
worth re-stating the risks of taking this kind of parameter fitting too literally, if 
what we’re truly interested in is human behavior, the output can be compared to 
experimental results. The experiment described in the next chapter was designed 
with this type of simulation in mind. Can we observe a difference in the modeling, 
and does that difference correspond to what we observe in behavior? A 
correspondence between the two would provide supporting evidence for that 
model. Further, this simulation has pedagogical implications for explaining 
concepts like priming and resonance, which can be opaque. Not only can the 
results of the simulations be used as illustrations, a learner could easily make 
their own tweaks and observe the output. This was a specific goal in writing the 
library: A non-expert should be able to quickly test predictions in order to test and 
expand their understanding of the theory. 
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a) w: 10 

b) m: 10 
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c) c: 10 

Figure 4.5: Reproduction of Figure 4.4–exemplars in acoustic space, with marker size 
corresponding to activation level–with priming toward different speaker types. 

 
 
 

Cycles FOOT STRUT THOUGHT GOOSE PALM 

0 0.271 0.266 0.264 0.058 0.141 

1 0.277 0.249 0.268 0.056 0.150 

5 0.283 0.232 0.271 0.053 0.160 

10 0.285 0.225 0.273 0.052 0.164 

Table 4.6: Probability of categorization of each vowel label with different numbers of 
resonance cycles on speaker type. 
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Figure 4.6: Reproduction of Figures 4.4-4.5 insets. 

44



Chapter 5 
An Experimental Investigation of Cue Types in 
Sociophonetic Priming 

The group of experiments in speech perception used to argue for social 
expectation, like those presented in Chapter 3, in fact show significant 
methodological variation. Before moving on to the methods of this experiment, 
let’s revisit some of these experiments and review variation in their 
methodologies.  

5.1 Variation in sociolinguistic perception methodologies 

I’ve identified three axes of variation for us to consider. First, this research 
depends heavily on the concept of variation linked to social identity. But what is a 
social identity within this context? Second, “perception” can be measured in 
different ways. To what extent are they measuring the same thing? Third, and 
most relevant to this experiment, how are cues given to listeners? 

What is “social information”? 

A common locus of identity variation has been geographic-based differences in 
pronunciation. For example, Niedzielski (1999) investigated Detroit listeners’ 
reaction to Canadian Raising. This feature, in which MOUTH and PRICE have a 
more mid vowel in the onset, is found in both Michigan and Canadian speech. Hay 
and colleagues have conducted numerous studies leveraging the relationship 
between Australian and New Zealand English users (e.g., Hay & Drager 2010; Hay, 
Nolan & Drager 2006). Another example is Clopper’s use of Southern, Northern, 
and Midland US English, and the regions at which they intersect (2017; see also 
Clopper, Tamati, and Pierrehumbert 2016; Jones & Clopper 2019). Sumner et al.’s 
work often leverages the overlap of features across varieties, including arhoticity 
in both NYC English and Southern Standard British English (Sumner & Samuel 
2009; Sumner & Kataoka 2013).  

Another factor is gender. In individual and joint work, Johnson and Strand 
explore gendered expectation. Using non gender-stereotypical voices, Strand 
found a  gradient effect of expectation on sibilant perception (e.g., Strand 1999, 
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Strand & Johnson 1999, Johnson 2006). Hay et al. (2015) use words that have 
different frequencies in production according to a binary gender.  
Kim and Drager (2017) leverage an age-based difference in Korean stop 
realization, pairing it with differences in lexical frequency for different age groups. 
Likewise, Koops et al. (2008) look at  the PIN/PEN merger in Houston, Texas. 
Although the contrast is neutralized for many older speakers in the area, younger 
residents are less likely to produce the merger.  

Race and ethnicity is also considered. Sharese King and Meghan Sumner’s 
2014 experiment compares African American (Vernacular) English with General 
American English, which is typically understood to be linked to Whiteness. 
McGowan (2015) varies the ethnicity of the “speaker” in visual stimuli. This study 
and others have also considered the imagined speaker’s status as an L1 or L2 user 
of the language (McGowan 2015; Witteman, Weber & McQueen 2014; Gnevsheva 
2018). 

Using the concept of persona, D’Onofrio has complicated the use of macro-
demographic categories such as geographical region, race, and nationality. A 
Californian in general is compared to a California Valley Girl in particular 
(D’Onofrio 2015). In a 2019 paper, she investigates the role that personae can 
play in racialized expectations. 

In a perhaps similar vein, some experimenters combine multiple identity 
categories in the voice as a whole, maximizing the differences between the 
speakers. For example, Ed King and Meghan Sumner’s 2015 paper in Cognitive 
Science compares word association responding to an older black man and a 
younger white woman. Kapnoula and Samuel (2019) consider the entire voice as 
“indexical information,” varying age, race, gender, and speaking rate. In the 
experiment, this is tracked primarily by pitch and gender.  

How is perception measured? 

As another dimension of variation to consider, “perception” is measured in 
different ways. In part, this seems to depend on the nature of the phonological 
variation. For example, the shift of a category boundary between SOD and SHOD 
related to gendered expectation can be measured with a lexical classification task, 
in which listeners choose which word they heard between alternatives. D’Onofrio 
(2015) also uses eye-tracking to get on-line measures of perception.  

Some tasks seem to target the perception of sounds by having listeners 
match an auditory stimulus to bare vowel reference points along a continuum 
(e.g., Niedzielski 1999, Hay et al. 2006). Others emphasize lexical access and the 
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perception of words through lexical decision tasks (e.g., Sumner & Samuel 2009), 
in which a participant identifies whether a stimulus is a real word in their 
language. A quick reaction time indicates that the participant had an easy time 
accessing that word because of an expectation. 

Zheng and Samuel (2019) suggest that some of these tasks may not reflect 
perception per se at all. Rather, this data shows participants’ decision-making and 
interpretation. McGowan and Babel (2020) identify two levels of awareness: “high 
level” and “low level.” The concepts of contextual salience, awareness, and 
attention are incredibly important for this body of work but notoriously hard to 
define and measure. Differences in conceptualization of “awareness” perseverate 
into both research questions and results. In this experiment, Central Bolivian 
listeners performed a discrimination task twice, under two locally significant 
guises: Spanish monolingual or L1-Quechua bilingual. While Spanish has a 5-vowel 
system, Quechua is understood to have 3 vowels. Residents are aware of this fact 
and its reflection in the Spanish of the bilingual Quechua speakers. In this task, 
expectation was revised midway through the task. For the first set of trials, the 
expected effect of social expectation was observed. When expectation is revised, 
the first impression still holds for the low level discrimination task. However, 
qualitatively, they do adjust expectations at a higher level of awareness. 

So, to what extent are we conceptualizing and measuring the same 
phenomenon across these tasks?  

How is “social expectation” induced? 

The type of cue given to induce an expectation also varies. In general, cues are 
either visual, textual, or implicit. 

One type of visual cue is to show listeners a representation of the  
“speaker”. Some experimenters show participants images or videos of the 
speaker (Strand 1999; McGowan 2015; D’Onofrio 2019; Koops, Gentry & Pantos 
2008; Zheng & Samuel 2019). Others show the participant images of symbolic 
objects. D’Onofrio uses outlines of the American states California and Michigan, 
shopping bags and glasses. The visual stimuli in Hay et al. (2015) include 
stereotypically gendered clothing. Hay and Drager (2010) pull the visual cue into 
the third dimension by using artifacts. Stuffed toys, a kiwi bird and a koala, 
represent New Zealand and Australia, respectively. 

Another method is to explicitly label the speaker, as D’Onofrio does in a 
(2018) study comparing Valley Girls and business professionals. Niedzielski (1999) 
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and Hay et al. (2006) include a label on the response sheet and leave the listener 
to infer an association.  

Finally, some studies depend on the listeners’ ability to detect social 
information from features of the voice itself. Social expectation studies work 
because phonological features are indexically linked to “non-linguistic” social 
variables. These variables pattern in complex constellations known as indexical 
fields (Eckert 2008). So, a particular phonological variable is linked to other 
variables, both structural (e.g., phonological) and social. This is often the case for 
studies where the experimenter doesn’t isolate a particular social variable, as in 
King and Sumner (2015). In an experiment I presented at ASA and LSA meetings, I 
asked a related question by crossing socially enregistered syntactic constructions 
and phonological variants (Remirez 2019, 2020). Taken together, this reflects the 
integrated nature of language use and perception in interaction, but does leave 
ambiguous the relationship between the source of information and its effect on 
perception. 

Most relevant for the discussion is the timing of labeling and visual cues 
that can be observed before the onset of the auditory stimulus in these 
experiments. The assumption is that these non-speech cues contribute their 
priming effect before speech perception begins. Phonological cues, however, 
become available at the same time as the stimulus. 

A closer look at D’Onofrio (2015) 

The experiment in this chapter is directly inspired by Annette D’Onofrio’s 2015 
paper and is intended as a partial replication and extension of that work. As 
mentioned above, this work represents an important step toward more 
accurately capturing the complexity of identity construction. Ethnographic and 
descriptive work shows that identity is instantiated through interaction (e.g., 
Bucholtz & Hall 2006), malleable and locally specific. Using non-specific, macro-
demographic labels like race or broad geographic regions therefore misses the 
mark on how language is actually used, how stances are conveyed and positions 
negotiated during interaction. 

Specifically, this experiment invokes the association of the California Vowel 
Shift with the state in general and the “Valley Girl” persona in particular. Many 
descriptions of this vowel change exist; I’ll follow D’Onofrio and co-authors 
elsewhere  (Podesva et al. 2015) in referring to Eckert’s (2004) description. This 
system of chain shifts includes the lowering of /æ/ as in TRAP to something more 
like /a/, as in LOT. 
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Listeners responded to auditory stimuli from two speakers. The target voice 
was judged by norming participants to be from a White woman in her 30s, whose 
speech was associated with multiple different regions of the US. In other words, 
it’s reasonable to assume that listeners would not be surprised to learn that the 
speaker was from California or not. A distractor voice was a White man in his 30s 
from the midwest. While hearing the audio, they were presented with icons 
evoking social factors. A control group saw green or orange circles, while the two 
test groups saw either a macro-demographic cue, the states of California and 
Michigan, or a persona cue, a purse and shopping bag or a taped pair of glasses. 
They received explicit instructions that the glasses speaker had been described as 
a “nerd” and the shopping bag speaker “a Valley Girl.” 

By using eye-tracking, D’Onofrio is able to probe the role of personae in 
automatic processing. Listeners chose a word from among four orthographic 
options presented on a screen. Automatic processing can be approximated by 
measuring looks to each word. For our purposes, we’ll focus on the word 
classification portion of the experiment.  

Word choice for the persona-level cue group was significantly different 
from the baseline, but not the state-level cue. As predicted, listeners who 
expected a “Valley Girl” perceived more centralization than those without such 
expectations.  

 

5.2 Methods 

I follow D’Onofrio in leveraging the association between TRAP-backing and 
California/Valley Girl and trying to measure how much centralization listeners 
perceive. One reason for this choice is that it’s locally relevant to the San 
Francisco Bay Area, where this research was conducted. 

To simplify the design, I forgo eye-tracking and present each listener with a 
single voice. Where D’Onofrio focuses on decisions in ambiguous trials, I focus 
instead on the overall numbers of centralized responses in each condition. The 
conditions of the experiment design are shown in Table 5.1. 

Conditions 

The experiment was repeated 4 times (Table 5.2) with slight variations to the 
stimuli. In each experiment, participants were pseudo-randomly assigned to one 
of 6 conditions in a 2x3 design (Table 5.1). Implicit cues based on the auditory 
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stimuli guise are crossed with explicit labeling given in the instructions. In 
Experiments 1-3, listeners were instructed that they would hear a recording of “a 
Valley Girl,” “a business professional,” or “a person.” Experiment 4 did not include 
a “person” condition, with listeners assigned to groups 1, 2, 4, or 5. No 
participants were made aware of the other conditions in the experiment. 

Stimuli 

This experiment uses two sets of 7-point continua, one “professional” guise and 
one “Valley Girl.” Stimuli creation is schematized in Figure 5.1, and representative 
stimuli are shown in Figure 5.2. 
 

Experiment Participants n Noise (-3dB SNR) Images 

Non-Californians Anyone on Prolific 84 None No 

Californians Registered in California 92 None No 

Noise Registered in California 79 Babble No 

Images Registered in California 73 Pink Yes 

Table 5.2: Summary of experiments 

 

 Phonetic cues 

Creaky voice Modal voice 

Instructions 

Valley Girl group 1 group 4 

Business 
professional 

group 2 group 5 

Person group 3 group 6 

Table 5.1: Summary of experiment conditions 
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Undergraduate research assistant Jiacheng Liu used Tandem-STRAIGHT 
(Kawahara 2008) to resynthesize a 7-point continuum from the words “bat” 
(TRAP) to “bot” (LOT) based on natural recordings. To get the starting recordings 
for the stimuli, I recruited self-identified Valley Girls from my extended network 
to record a word list featuring minimal pairs in “Valley Girl” and “business 
professional” guises. The words were embedded in the carrier phrase “say [word] 
again.” 
 

 
Figure 5.1: Schematization of stimulus creation. Professional guise is shown in dark blue, 
Valley Girl in red. Ellipses represent the original, natural recordings, while rectangles 
represent resynthesized continua. Resynthesis processes are shown with solid yellow arrows. 
The dotted yellow line indicates that the replacement of pitch tier and addition of raspiness 
were applied to the resynthesized professional continuum. 

 

 
The speaker whose voice was ultimately used for the stimuli is a non-binary 

person who self-identified with the labels woman+ and woman-adjacent used in 
recruiting descriptions. The speaker is in their early 30s and has lived in Southern 
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California and the San Francisco Bay Area. I recorded them in a sound attenuated 
booth in the UC Berkeley PhonLab. 

Vowels were standardized for length before any resynthesis by duplicating 
a complete cycle at the midpoint of the vowel, at zero-crossings, until total vowel 
durations were comparable. As anticipated, the clips recorded in the Valley Girl 
guise prominently featured creak. Because this made pitch interpolation 
unreliable, the Valley Girl stimuli were modified from the business professional 
continuum. The pitch tier was extracted from a Valley Girl recording of “bot” and 
used to replace that of the business professional continuum. I used the Praat 
package Vocal Toolkit (Corretge 2012-2023) to add 25% raspiness to each 
stimulus, approximating the creak in the original Valley Girl recordings. The clips 
were exported using PSOLA re-synthesis. 

Step Professional Valley Girl 

1 
bat 

4 
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7 
bot 

  

Figure 5.2: Steps 1, 4, and 7 of Professional and Valley Girl stimuli continua 

 
The results of a norming task were limited, but of the 6 responses, no one 

responded that the stimuli were unnatural or not Valley Girl-like. Volunteers 
listened to 8 clips and rated statements based on how likely they were to be true 
on a scale of 1-4, with 1 being not at all likely and 4 being very likely. Table 5.3 
summarizes responses to the 4 clips belonging to our stimulus talker. It shows the 
count of 3 (“more likely to be true than false”) and 4 (“very likely to be true”) 
responses to some of the statements: Their likelihood of having been described as 
a ”Valley Girl,” a “business professional,” or “chill”; being from California; or 
surfing and/or skating. The latter 3 statements are meant to cue qualities 
associated with the CVS (Podesva 2011). 
 

 Number of very/likely to be true responses 

“Valley 
Girl” 

“bus. 
pro.” 

“chill” From 
California 

Surfs &/ 
or skates 

Valley 
Girl 
 

TRAP (hat) 
Re-synth 

2 1 3 3 1 

LOT (bot) 
Re-synth  

4 1 4 4 4 

Pro TRAP (bat) 
Re-synth 

1 3 3 3 3 

LOT (hot) 
Natural  

2 2 3 2 1 

Table 5.3: Subset of stimuli norming responses 
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 The Valley Girl and professional guises are each more associated with the 
intended label than with the other. Although only 2 respondents rated the Valley 
Girl TRAP clip likely to have been described as a Valley Girl, it didn’t receive any 
“not at all likely to be true” ratings.  

Embedding stimuli in noise 

To increase uncertainty, the stimuli in Experiments 3 and 4 were embedded in 
noise at a signal-to-noise ratio of -3 dB. First, in Experiment 3, multi-talker babble 
was used. However, upon closer inspection, a peak in noise overlapped with the 
ambiguous stimuli, arguably turning this experiment into a phoneme restoration 
task. To address this, pink noise was used for Experiment 4. Figure 5.3 visualizes 
the differences between stimuli. Step 5 is used as the example based on the 
results in Figure 5.6, below, which show an unexpected result around this point. 
 
 

 Professional Valley Girl 

B 

  

P 
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O 

  

Figure 5.3: Spectrograms of stimuli at point 5. Professional guise is on the left, with Valley Girl 
on the right. Rows show multi-talker babble (B), pink noise (P), and the original resynthesized 
continuum, without added noise (O). 

Visual stimuli 

In addition to the audio stimuli, Experiment 4 included images of women 
intended to represent a “Valley Girl” and a “business professional” (Figure 5.4). In 
this condition, the neutral instruction, with “person,” was not included. These 
images were found via searching Google Images. 

 
Figure 5.4: Visual stimuli used with business professional (left) and Valley Girl (right) 
instructions 
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Task 

In this two-alternative forced choice lexical classification task, listeners chose 
between “bat” and “bot” to label the stimulus. The experiment was compiled for 
the web using JavaScript by Keith Johnson and administered on Prolific. 
Participants were limited to those who were registered on Prolific as California 
residents.  

Listeners heard each clip once per trial, with the entire 7-point continuum 
presented 11 times, for a total of 77 trials. The task was unspeeded, and reaction 
time was recorded. They used the keyboard to press  “z” for “bat” and “m” for 
“bot.”  

Demographic questions 

Participants completed a brief questionnaire at the conclusion of the experiment, 
answering the following questions:  
 

1. How old are you? 
○ Drop down of age ranges; 5 year bins for 15-60, 10 year bins for 60+ 

2. If data are combined into groups based on gender, which group should we 
include your data with? 

○ Drop down: Men, Women, A third group, Do not include my data in 
any of these groups 

3. How would you describe your race or ethnicity? 
○ Free response 

4. What languages can you use to converse with other people? If more than 
one, list them in the order of your comfort or proficiency from most to 
least. 

○ Short answer with “English” in gray text 
5. Do you consider yourself "online" or engaged in "internet culture" on 

platforms such as twitter, tiktok, tumblr, or reddit? Do you usually know 
who "the main character"1 is? (If you don't know what this question means, 
answer "No") 

 
1 A person, usually another poster, who becomes the topic of extended derisive discussion, with their 
transgressions being treated as common knowledge on the platform.  
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○ Drop down: Yes; No, but I do use social media; No, I rarely or never 
use social media 

6. Do you think of yourself as a Californian?  
○ Drop down: Yes or No 

 

5.3 Participants 

Across the 4 experiments, a total of 357 participants were recruited. Demographic 
details of the latter 3 groups are given below.  

Exclusions 

In both experiments, participants’ data was excluded if they used the same 
response for over 80% of trials, or if more than 10% of their responses were 
excluded. Responses were excluded based on reaction time and response. If the 
reaction time was more than 2 standard deviations outside of that participants’ 
mean. That is, only responses that seemed to be typical for that person were 
included. A response was also thrown out if an unambiguous endpoint-stimulus 
was labelled with the inappropriate alternative. If a key other than “z” or “m” was 
pressed, listeners were instructed to press a valid option. This second response 
was included, provided that it didn’t push the reaction time beyond the cut-off. 

Participant demographics 

The following sections describe the participants in Experiments 2-4. In phrasing 
the questions, I considered participants’ privacy and self-determination, in 
addition to my plans for the data. Treating age as a bin at the time of data 
collection, for example, makes the participant’s data less identifiable. The lower 
need for uniformity in race and ethnicity data led me to prioritize self-
determination in a free-response question. The primary role of the demographic 
data here is to establish coverage of basic demographic categories across the 
total subject pool. 
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Age 

In all three experiments, participants skew younger, with a mode between 21 and 
35. The majority of participants were 40 or younger: about 85%, 87%, and 70%, 
respectively. Age data are summarized in Table 5.4 
 

 18-
20 

21-
25 

26-
30 

31-
35 

36-
40 

41-
45 

46-
50 

51-
55 

56+ Total 

Exp 2 11 14 24 16 13 5 5 1 3 92 

Exp 3 6 25 18 8 12 5 3 1 1 79 

Exp 4 3 14 6 21 7 9 4 4 5 73 

Table 5.4: Participant age demographics 

 

Gender 

While the gender balance in the noisy-but-no-pictures condition has a relatively 
even split between men and women, men outnumber women substantially in the 
other two experiments, with a ratio of 2 (Experiment 4) or 2.5 (Experiment 2) men 
to each woman participant. Counts are shown in Table 5.5. 
In each experiment, the “third group” received a single response. I take this as 
evidence of two things. First, this category is used by at least one participant. To 
do ethical research, we must consider the subjective and qualitative experience of 
volunteers. Because of the way I phrased this question, at least 3 people were not 
forced to misgender themself during my experiment. Second, this reveals room to 
improve gender diversity in my sampling and recruiting. 
 

 Men Women 3rd group Total 

Exp 2 65 26 1 92 

Exp 3 39 39 1 79 

Exp 4 48 24 1 73 

Table 5.5: Participant gender demographics 
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Race and ethnicity 

The free response format of the race and ethnicity question reveals a downside of 
prioritizing participant self-determination during questionnaires. That is, the 
responses are difficult to organize. Post-hoc, I divided the responses into the 
following bins: Asian (including South Asian), Black, Latine, Multiple, or White. 
Counts are shown in Table 5.6. 
 

 Asian Black Latine Multiple White Total 

Exp 2 25 4 20 11 32 92 

Exp 3 29 3 14 3 30 79 

Exp 4 16 2 8 6 41 73 

Table 5.6: Participant ethnicity demographics 

 
While some participants in the “Multiple” category did indicate that they’re 

Black, there is a glaring underrepresentation of Black participants compared to 
other groups. Although race was not predictive in the model, this provides 
important limitations to what we can conclude from the results: We can’t say this 
is what “people” do if we don’t know about Black people. In no case can we 
extrapolate totally from individuals to a group, but to do so in this case, when 
White, Asian, and Latine participants are comparatively so well-represented, 
would be especially egregious. 

Participants in Experiment 3 were the least ethnically diverse. Compared to 
the other experiments, there are more White participants and fewer Asian and 
Latine participants. White participants make up 35% and 38% of the first two 
experiments, respectively, but 56% in the final experiment. This question is 
especially relevant as we consider possible racialization of the Valley Girl persona. 
That is, when we say “Valley Girl,” do we implicitly mean someone who’s White? 
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Internet culture 

In each experiment, very few participants identified as not being “online” at all, 
with the majority identifying with “Internet culture.” Responses are summarized 
in Table 5.7. 

Yes, I’m “online” Some social media No social media 

Exp 2 64 23 5 

Exp 3 46 29 4 

Exp 4 48 22 3 

Table 5.7: Participant internet use demographics 

The question of social media usage was originally designed with the 
persona label influencer in mind. The term influencer was suggested through a 
response to a social media post as a more modern label associated with this way 
of languaging. The terms aren’t meant to be synonymous or interchangeable. 
Rather, the label would leverage the association of the speech style with an online 
persona that makes use of it. Under this reasoning, engagement with Internet 
culture could correlate with degree of exposure or familiarity. Although the 
decision to use the Valley Girl label rather than influencer made the connection to 
the Internet less relevant, I chose not to remove it from the survey. The question 
poses negligible risk for participants, but would allow any effect of engagement 
with the speech style through social media to emerge. 

One caveat to this question in any case is that we can’t assume that people 
are doing the same things online, or that they interpreted the question the same 
way. I intended to evoke something like a community of practice that takes place 
online. Although the “community” is loosely defined, there is a shared 
understanding of “main characters”--those unlucky enough to be the subject of 
viral critique–and key voices across platforms like TikTok and the late Twitter. 
However, the phrasing of the question would include someone who interacts with 
friends and family on Facebook only. Those who don’t participate in the culture 
may not even be aware it exists, not considering it whatsoever in responding to 
my question. 
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5.4 Measuring degree of centralization 

This methodology seeks to measure whether the listener expects TRAP to be 
centralized. That is, will the participant assume, based on other information, that 
the speaker has features of the California Vowel Shift and accept a more LOT-like 
vowel as a production of TRAP? Figure 5.5 schematizes the possible results. On 
the Y-axis, a higher value indicates more “bat” responses, while a lower value 
indicates more “bot”. On the X-axis is the stimulus number, with step 1, clearly 
“bat” on the left hand side, step 7 “bot” on the right, and the ambiguous stimuli in 
the middle. 

Figure 5.5: Plot schematizing potential results of forced choice experiment with categorical 
perception boundaries 

 
I interpret a boundary in categorical perception at the point where the 

sigmoid curve crosses the 0.5 line marking chance. If the curve intercepts the 0.5 
line at a later stimulus, as in the blue line, we interpret this as more TRAP-
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centralization being expected. That is, because TRAP overlaps with LOT in 
phonetic space, a more central vowel can still be perceived as TRAP. The yellow 
curve, with a 0.5 intercept earlier in the continuum, represents less tolerance or 
compensation for a centralized TRAP vowel. To look for an effect, we compare 
curves for the different conditions of the experiment. The farther right the 
intercept is, the greater the impact of social expectation. A participant’s total 
number of “bat” responses can be used as an outcome for degree of 
centralization perceived. 

5.5 Results 

Classification 

The results of this series of experiments are unexpected and fail to answer the 
initial research question. Recalling the schematization in Figure 5.1, we can 
qualitatively compare the curves for each experiment (Figure 5.2). In each case, 
there is no real difference among instruction types. In Experiment 2, there is a 
small difference between the creaky and modal voice conditions. However, the 
other experiments show a larger effect in the opposite direction. 

The graphs also illuminate an issue with the multi-talker babble stimuli: 
there is a large burst of noise at roughly the middle of the vowel. In this way, the 
stimuli almost represented more of a silent center or phoneme restoration 
manipulation. The consistent pink noise shows the expected smooth curve, rather 
than the jagged plateau of the variable babble. 

The data were submitted to a linear regression analysis in R. Exploratory 
mixed effects modeling used the lme4 and lmerTest packages. The number of z 
responses was predicted as a function of phonation and instructions each as main 
effects, and their interaction. The default levels were the modal voice and the 
neutral instructions. 
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 By Voice By Instruction 

Exp 2 
No noise 

  

Exp 3 
Babble 
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The regression models corroborate the qualitative observations, 
consistently showing no effect of instruction type, even with the inclusion of 
pictures. Further, we assumed that a creaky voice would be associated with a 
Valley Girl guise, and therefore more centralization. We in fact found the 
opposite. In the two experiments including noise, there is a significant main effect 
of phonation type, with creaky voice’s negative coefficient indicating less 
centralization. Table 5.8 shows a closer look at the regression for the final 
experiment (p < 0.001, adjusted R2 = 0.319).   

Reaction time 

During the experiment, reaction time was recorded in milliseconds. The duration 
of clip was subtracted from this number to get reaction time from offset of 
stimulus in milliseconds. These values were log-transformed for analysis. This 
analysis also considers the step along the continuum or token number. We 
centered this number around 0 and took the absolute value. So, 0 represents the 
most ambiguous stimulus, the midpoint of the continuum, with higher values 
indicating stimuli closer to the endpoints.  

Exp 4 
Pink 
noise, 
Images 

Figure 5.6: Results of classification task. Graphs plot the proportion ‘bat’ response against the 
token number, with ‘bat’ at token 1 and ‘bot’ at token 7. Rows show results for different 
experiments. For each experiment, both ways of grouping conditions are shown: by voice, 
with instructions separated into subplots (left) and by instruction, with different subplots for 
voice (right). 
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I modeled log reaction time using a mixed effects linear regression, using 

lme4 and lmerTest, with fixed effects token, trial, and instructions * voice, and 
random intercepts for listener. The results in Table 5.9 show that there is no 
effect of experiment condition on reaction time. Effects of token and trial are 
both significant (p < 0.001). As expected, participants take longer on ambiguous 
stimuli and respond quicker as the experiment progresses. 
 
 
 
 
 
 

Call: 

lm(formula = Number of z responses ~ Voice condition * Instruction condition) 

Residuals: 

 Min 1Q Median 3Q Max  

 -12.4444 -3.4444 -0.8125 4.1875 16.0526  

Coefficients: 

 Estimate Std. Error t value Pr(>|t|)  

(Intercept) 42.812 1.57 27.271 < 2e-16 *** 

Voice-Creaky -10.762 2.106 -5.11 2.74E-06 *** 

Instructions-Val -1.368 2.158 -0.634 0.528  

Voice-
Creaky:Instructions-Val 4.265 2.95 1.446 0.153  

Residual standard error 6.279 on 69 degrees of freedom 

Multiple R-squared 0.3746 Adjusted R-Squared: 0.3192 

F-statistic 12.25 on 3 & 69 DF p-value: 1.618e-06 

Table 5.8: Regression table for classification model, Experiment 4. 
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Call: 

lmer(formula = log rt ~ token + trial + Voice condition * Instruction condition + 
(1|Listener)) 

Scaled residuals: 

Min 1Q Median 3Q Max 

-10.6875 -0.5618 -0.1360 0.3367 7.727 

Random Effects: 

Groups Name Variance Std.Dev
. 

Listener (Intercept) 0.04286 0.2070 

Residual 0.02901 0.1703 

Fixed effects: 

Estimate Std. Error df t value pr(>|t|) 

(Intercept) 7.44E+00 5.23E-02 7.05E+01 142.305 < 2e-16 *** 

token -3.49E-02 4.43E-03 5.48E+03 -7.895 3.47E-15 ***

trial -2.48E-03 1.03E-04 5.48E+03 -24.054 < 2e-16 ***

Instructions-Val 9.35E-04 7.15E-02 6.90E+01 0.013 0.99 

Voice-Creaky -3.28E-02 6.98E-02 6.90E+01 -0.47 0.64 

Instructions-
Val:Voice-Creaky -6.77E-02 9.77E-02 6.90E+01 -0.693 0.491

Table 5.9: Regression table for reaction time model, Experiment 4. 

Why was there no pattern without noise? 

One reason to add noise to perception experiments is to increase the uncertainty 
listeners experience. In Regier and Xu’s (2017) proposal, perception can be 
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modeled as the combination of general categories and specific stimuli. When 
perceivers are uncertain, they draw more heavily from the less specific category 
representation. The effect of this combination is similar to resonance. The 
response leans heavily towards typical category members, blurring the details of a 
specific stimulus with ideas about the category. Perhaps in Experiment 1, without 
noise to increase uncertainty about the stimulus, listeners drew less from ideas 
about categories. 

Why is there no effect of labeling in instructions? 

One reason there is no effect of which instructions the participants saw may be 
that the cue was too subtle. The task was completed online, without a researcher 
present to ensure instructions were read carefully. Although the label was bolded 
and repeated on the page for each trial, it’s possible that some participants only 
skimmed the instructions and focused on the sound clip. 

For a similar reason, we expected the effect to be more robust with visual 
cues added. This was not the case. The images were not normed on the same 
population for their associations, so it’s possible that the images don’t evoke the 
intended personae for these listeners. However, the effect, or lack thereof, is 
consistent with or without the images, suggesting that a mismatch between label 
and visual stimuli is not an issue.  

We might also ask how relevant the term “Valley Girl” is for younger 
speakers. I most commonly hear the term used to critique the behavior of young, 
typically White or White-adjacent, women or woman-adjacent people. Media 
openly mocks their “vocal fry” (creaky voice) and “uptalk” (appellate intonation), 
and associates these features with negative traits such as being immature, 
unserious, and insincere. Even if the persona is still salient, would a different, 
more modern label be more evocative for younger listeners? 

The label influencer was suggested by Cassandra Jacobs (p.c.) as a 
replacement for a persona associated with this way of languaging. As is so often 
the case when we do research on human beings, how language users construct 
the meaning of influencer or Valley Girl and understand that term could be 
exploded into its own research program. One reason I chose to follow D’Onofrio 
in using Valley Girl was simply that a choice needed to be made. Without a 
systematic understanding of the terms based in ethnographic and descriptive 
insights, there was no clear path that one alternative was superior. When in 
doubt, replicate.  
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Another reason is that influencer in fact encompasses a wide range of 
personae. While the prototypical influencer may still be Kim Kardashian, this term 
can also be interpreted as an occupation, rather than a persona. Whether 
different terms would affect the results is really an empirical question that can be 
studied in follow-up experiments. 

Finally, an assumption throughout this dissertation is that cues take 
perceptual precedence over each other given context and expectation. We 
intended to create a clear cue to persona with labeling and images, inducing 
social expectation. In terms of the GCM, base activation would be increased for 
each exemplar that’s been categorized as “Valley Girl.” Because many of these 
exemplars would also contain TRAP-centralization, those centralized vowels 
would contribute more activation to categorization. This could have still 
happened, but the effect is masked. Recall the discussion from Chapter 2 
addressing frequency effects. Multiple factors go into similarity and activation 
calculation; even though frequency plays a role, categorization is still 
fundamentally about similarity. If unscaled similarities already point to a clear 
percept, the differences in resting activation won’t be observable.  

A future version of this experiment should use more ambiguous auditory 
stimuli. Uncertainty was induced by embedding speech in noise, but this may not 
have been enough uncertainty. The reaction time data, which show that tokens 
near the middle of the continuum took longer to respond to, support that these 
stimuli were ambiguous. But were they ambiguous enough? I chose to instantiate 
the California Vowel Shift with the words “bat” and “bot” to follow D'Onofrio’s 
(2015) “sack” and “sock.” Trying pairs of vowels that are generally more 
confusable should show a more extreme effect. If the vowels are more likely to be 
confused without the priming, there’s more room for the difference in base 
activation due to priming to play a role. The difference in phonological contexts 
may also change perception of the vowel quality. Further, I’m curious about the 
role of chain shifting in perception of these vowels. What would it look like to do 
a 3-alternative forced choice, for example, adding a “bet” to “bot” continuum? 
Another change would be to mix in a filler voice, as D’Onofrio did. Asking listeners 
to make a comparison between two voices may likewise enhance the importance 
of category-level cues over the specific stimulus. 

Why is creaky voice associated with less centralization? 

One of the unexpected findings of this study is that the two phonetic features 
expected to resonate–creaky voice and centralization–are not in fact associated. 
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Listeners who were in a creaky voice condition in fact responded with fewer 
“bat”s than their modal voice counterparts.  

One explanation is that the creaky vowel simply doesn’t carry enough 
spectral information. Stimuli were normalized for vowel duration before creak 
was added, but this modification dropped the number of vowel quality-bearing 
glottal pulses in each clip. The question then becomes why this lack of 
information led to more “bot”s. It also bears repeating that the norming done 
before the experiment received limited responses. I continued with the stimuli in 
large part in the interest of time. 

Another idea is that by adding creak and changing the intonation to create 
a second continuum, we changed the stimuli in unexpected ways. These changes 
were meant to invoke the Valley Girl persona, but they could have shifted the 
boundary in and of themselves. If this effect is robust enough, it may overshadow 
any sociolinguistic associations. For example, could we be inducing perceptual 
compensation for coarticulation? Listeners are familiar with the predictable 
acoustic effects segments have on each other during speech production. 
Expecting this variation, listeners may attribute consistent acoustic cues to 
coarticulation, rather than another source.  

Another explanation is that the task caused people to be mindful of their 
biases. Modern listeners could be actively countering negative stereotypes about 
young women and resisting status quo interpretations of “appropriateness.” 
While this would be a nice story, it seems unlikely that such an effect would be 
consistent across participants. 

How does this relate to the simulations? 

When I designed this experiment, I imagined a neat set of data which I could 
compare to the output of modeling. The effect of vocal guise would be modeled 
via resonance, while the effect of instructions would be modeled with an increase 
in resting activation level. If the steps in the simulation can approximate the 
behavioral effects, that would support the corresponding theoretical account. The 
“bones” of this experiment and its connection to the type of simulations in the 
previous chapter remain ready for analysis once the relevant data can be 
gathered. As discussed above, the effect may be more observable with more 
phonetically ambiguous or socially representative stimuli, or a new set of 
personae and enregistered phonetic features. 
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Chapter 6 
Conclusion 

In the introduction, I quote Whorf’s famous description of the world as a 
“kaleidoscopic flux of impressions” (1940). I cannot read this phrase without 
picturing my undergraduate thesis advisor, Michel Achard, gesturing expansively 
in front of a projector in Rice University’s Baker Hall. In those lectures I learned 
concepts like fuzzy boundaries and prototypes, internalizing some basic ideas 
about categorization that would underlie the rest of my research. All cognition is 
fundamentally categorization, assigning a label to something so that we can 
conceive of it. Even insects sort things into categories: food or not food. The 
categories of our language don’t constrain what we can perceive, but they do 
shape our mental representations. 

Humans are presented with an absolutely overwhelming array of stimuli. 
We parse this variation into clusters and construct metaphorical boundaries 
around them. The category boundary separates phenomena, creating the 
possibility of a binary sameness or difference. The act of perception sorts novel 
stimuli into these categories. We expect the things we encounter in the world to 
share properties with other examples of the “same.” Sociophonetic priming 
results pulling on these expectations demonstrate a link between phonetic and 
social categories. This raises the question: How does our knowledge of the “high-
level” stuff integrate with our perception of “low-level” phonetic detail? 

The more I tried to answer this question, the more I was drawn to a 
secondary one: How do we as researchers understand the relationship? For many 
sociolinguists, the answer seemed to be “Exemplar Theory.” This term itself 
muddies the water: although it can be used to refer to a number of distinct 
models, it gets presented as a single theory.  The emphasis on experiences, 
multimodality, and flexible categories make episodic models a natural choice for 
describing sociophonetic perception. At the same time, a tendency to de-
emphasize or underspecify the particulars of the model can produce confusion in 
how behavior relates to underlying phonetic processing. To tackle these two 
interrelated questions, my first step was to clarify what “Exemplar Theory” is, and 
to choose a particular model to investigate further. 

In Chapter 2, I argue for the necessity of precision when referring to an 
episodic model of speech perception. Exemplar models tend to have 3 major 
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propositions in common: Humans store memories of past linguistic experiences; 
these exemplars are linked to categories; and new stimuli are categorized on the 
basis of comparison to stored exemplars. Scholars have proposed a distinction 
between Syntactic and Phonetic Exemplar theory (Hay & Bresnan 2006, Bod & 
Cochran 2007), capturing a split between models like Construction Grammar or 
Data-Oriented Parsing, which are used to describe syntactic structure, and models 
used to describe speech. The set of episodic models, even within perception, 
contains contradictory assumptions. If we’re to interpret results within the light of 
“exemplar theory,” which assumptions should we take up? Being specific and 
explicit about the mechanism enables more accurate synthesis of ideas and 
results from different researchers’ work. Examining variation across a set of 
models is not only clarifying but generative. Comparing one model to another, 
noting their differences, establishes the crucial aspects of each. Further, a clear 
understanding of these differences provides a framework for asking deeper, more 
specific questions, filling the gaps left by incremental scientific progress. 

In particular, I elaborate the Generalized Context Model, or GCM (Nosofsky 
1986). The GCM is an extension of Medin and Schaffer’s context theory of 
classification (1978). In this model, similarity between each exemplar and a novel 
stimulus is calculated based on Euclidean distance, with a variable attention 
weight scaling distance along each dimension of the exemplars. Activation is 
calculated based on this similarity, weighted by each exemplar’s base activation 
level. The evidence for category membership is the sum of activation values for 
each exemplar belonging to that category. The percept will be whichever category 
has the most activation, relative to the total amount of activation in the system. 
Frequency of a category influences categorization: A more common category will 
have more exemplars to contribute evidence for category membership. 
Categorization can also be skewed by the relative weighting of the dimensions. 
Different sets of weights will increase or decrease distance, therefore changing 
the amount of activation within each category. Likewise, at the exemplar level, 
base activation can be raised, or lowered, changing the amount of evidence for its 
category. 

I compare the GCM to dual-route or “difference in encoding” accounts, as 
described by Sumner et al. (2014). The dual-route approach is embraced for its 
ability to account for stable effects in perception, like social prestige. The GCM, 
however, does not allow for this type of difference in storage. I propose two 
processes that could achieve a similar result, and built the program in Chapter 4 
to explore these mechanisms. First, I present the resting activation level of each 
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exemplar as an underutilized vector for sociolinguistic effects. The stable 
robustness of representations of socially salient speech, regardless of frequency, 
could build up from repeated priming to exemplars, rather than as the result of 
differences at the time of encoding. Second, I reintroduce resonance as a 
component of the GCM, following on Johnson’s (2006) proposal. During a speech 
perception event, listeners form an initial impression of the category a stimulus 
likely belongs to. Based on this preliminary categorization, activation spreads to 
other exemplars within that category. In this way, a “top-down” effect of social 
expectation can be generated “bottom-up” from the stimulus. 

In Chapter 3, I explore some of the sociophonetic perception results these 
models need to account for. For example, Niedzielski’s 1999 study in Detroit, 
Michigan, found that listeners responded differently to identical stimuli based on 
whether the label associated the clip with Canada or Michigan. This result has 
been replicated with New Zealand and Australian English (Hay, Nolan, & Drager 
2006). The effects appear to be multimodal, with visual stimuli exerting a similar 
priming influence on perception (e.g., Strand & Johnson 1999, McGowan 2015). I 
go on to review the variation in how social categories are considered and cued, 
previewing motivations for the experiment in Chapter 5. These experiments vary 
in the type of social category, the way the category expectation is induced, and in 
how perception is measured. Where Chapters 2 and 3 examine variation in 
episodic modeling and sociophonetic priming literature, Chapters 4 and 5 address 
some of the questions this exercise raises.  

Chapter 4 introduces the Python library ExemPy, built to simulate speech 
perception events according to the Generalized Context Model. Simulations of 
speech perception are relevant for both empirical and theoretical applications. 
First, there may be cases where a perception result is useful but not possible to 
obtain. In these situations, ExemPy can provide a well-motivated hypothesis that 
scaffolds future investigations. Additionally, the simulation allows us to visualize 
what perception would look like if different accounts are true, answering 
questions that may be difficult to tease apart from experimental evidence alone. 
These findings can, in turn, motivate future experiments. 

The ExemPy library takes a dataframe of “exemplars,” where each row is an 
observation. Among the columns should be at least one category and at least one 
dimension of variation. Attention weights can be supplied by the researcher, for 
example, to explore the impact of cue weighting; or, they can be estimated using 
parameter optimization. I use Peterson & Barney’s famous 1952 dataset of 
American English vowels to simulate two common types of perception 
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experiment: forced choice and identification. Compared to Hillenbrand and 
Gayvert’s experimental results (1993), the confusion matrices for ExemPy are 
highly correlated. In collaborative work with Dr. Sarah Bakst, we used ExemPy to 
explore altered acoustic feedback data. In Bakst’s experiment, listener’s heard a 
re-synthesized version of the vowels they produced. To counter the perturbation, 
listeners will adjust their production to varying degrees. Previous work (Niziolek 
et al. 2013) used listeners’ perceptual category boundaries to analyze their 
production data. In this work, we asked whether we can reap a similar benefit to 
analysis by estimating these boundaries, enabling new ways to explore the data. 
Finally, I present ExemPy as a tool to understand resonance and priming as 
mechanisms for sociophonetic perception. Priming is modeled as an increase to 
base activation before any comparison between exemplars and stimuli. 
Resonance, however, happens after activation and evidence have already been 
calculated. Activation spreads among exemplars belonging to likely categories, 
solidifying expectations from initial impressions. I explore this proposed 
difference in timecourse in the next chapter. 

Chapter 5 reports the results of a two-alternative lexical classification task. 
Returning to the type of behavioral evidence presented in Chapter 3, I identify 
three key areas of variation across studies: First, what constitutes a social 
identity? Second, what task is used to measure perception? Finally, how is social 
expectation induced? Specifically, some researchers cue the social identity 
separately from the voice, whether that’s with labels (e.g., D’Onofrio 2018) or 
visual stimuli (e.g., McGowan 2015). Other studies depend on the listener to infer 
social characteristics from the voice itself (e.g., King & Sumner 2015). I map this 
distinction in methodology to the one between priming and resonance. Priming, 
like labeling or visual stimuli, sets the expectation before the stimulus to be 
categorized has been heard. Inferences based on the voice, however, can only 
occur once categorization has already begun. 

To draw this distinction out, I designed a lexical classification experiment 
using both types of cues. Following D’Onofrio (2015), I used the labels “valley girl” 
and “business professional,” and the association of the valley girl persona with 
the California Vowel Shift (CVS). For a speaker participating in the CVS, the vowel 
in “bat” will be centralized to sound more like “bot.” I used the number of “bat” 
responses as a proxy for the degree of centralization, or TRAP-backing, perceived. 

Listeners in the experiment heard a continuum of “bat” to “bot,” with or 
without creak, an enregistered phonetic feature associated with valley girls. The 
instructions indicated that the participant was going to hear either a valley girl or 
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a business professional; in the final version of the experiment, they also saw a 
picture representing that persona. The results of the classification task are 
unexpected given the literature, and fail to address the original research question. 
Unlike D’Onofrio, I did not find an effect of persona label on the degree of 
centralization perceived. Likewise, where I expected the creaky voice stimuli to be 
associated with less centralization, it was in fact the boundary for the modal voice 
that showed a more centralized “bat.” To gather data that fits into the proposed 
simulations, I suggest two changes for follow-up experiments. First, the 
ethnographic relevance of the persona label, and their associations with phonetic 
features, should be considered more carefully and developed more empirically. 
Second, increasing uncertainty in the experiment would allow category effects 
more space to become visible. 

In this dissertation, I’ve raised theoretical, empirical, and methodological 
questions about categorization, social identity, and the perception of spoken 
language. Within the Generalized Context Model and similar episodic models, we 
can understand priming and activation spreading as depending on the 
representational “sameness” of category members. This results in sociophonetic 
priming effects where the same stimulus can be perceived differently in different 
contexts. At a more meta level, how does our understanding of models and types 
of evidence as “the same” influence our research? My experiment establishes a 
design for empirically considering differences in the literature.  
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"""
Created on Sat Sep 03 2022
@author: Emily Remirez (eremirez@berkeley.edu)

"""

"""Functions for implementing the Generalized Context Model for speech perception."""

import math
import random
import matplotlib.pyplot as plt
#%matplotlib inline
import numpy as np
import pandas as pd
from pandas import DataFrame
from scipy.optimize import minimize
import seaborn as sns

def activation(testset, cloud, dimsdict, c = 25):
    '''
    Calculate activation for all exemplars stored in the cloud
    with respect to some stimulus, referred to as test. Returns
    a data frame with column 'a' added for each row.

    Required parameters:

    testset = a dataframe with one or more rows, each a stimulus to be categorized
must have columns matching those given in the 'dims' dict. These columns
should be dimensions of the stimulus (e.g., formants)

    cloud = A dataframe of stored exemplars which every stimulus is compared to. 
Each row is an exemplar, which, like testset should have columns matching
those in the dims dict

    dimsdict = a dictionary with dimensions as keys and weights, w, as values. 

    c = an integer representing exemplar sensitivity. Defaults to 25. 

    '''
    # Get stuff ready
    dims = dimsdict.copy()
    dims.update((x, (y/sum(dims.values()))) for x, y in dims.items())   # Normalize weights to sum to 
1

    # If the testset happens to have N in it, remove it before joining dfs 
    test = testset.copy()
    if 'N' in test.columns:

test = test.drop(columns='N', axis=1,inplace=True)

    exemplars = cloud.copy()

    # Merge test and exemplars
    bigdf = pd.merge(

test.assign(key = 1), # Add column named 'key' with all values == 1
exemplars.assign(key = 1),    # Add column named 'key' with all values == 1
on = 'key', # Match on 'key' to get cross join (cartesian product)
suffixes = ['_t', '_ex']

    ).drop('key', axis=1) # Drop 'key' column

    dimensions = list(dims.keys()) # Get dimensions from dictionary

Appendix 1: ExemPy 
CŽde Ănd DŽĐƵmenƚĂƚiŽn
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    weights = list(dims.values())                 # Get weights from dictionary
    tcols = [f'{d}_t' for d in dimensions]      # Get names of all test columns
    excols = [f'{d}_ex' for d in dimensions]    # Get names of all exemplar columns
    
    
    # Multiply each dimension by weights
    i = bigdf.loc[:, tcols].values.astype(float)     # Get all the test columns
    i *= weights                                     # Multiply test columns by weight
    j = bigdf.loc[:, excols].values.astype(float)    # Get all the exemplar columns
    j *= weights                                     # Multiply exemplar columns by weights
    
    # Get Euclidean distance
    bigdf['dist'] = np.sqrt(np.sum((i-j)**2, axis=1))
    
    # get activation: exponent of negative distance * sensitivity c, multiplied by N_j
    bigdf['a'] = np.exp(-bigdf.dist*c) * bigdf.N
    return bigdf

def exclude(cloud, test, exclude_self = True, alsoexclude = None): 
    '''
    Removes specific rows from the cloud of exemplars, to be used
    prior to calculating activation. Prevents activation from being
    overpowered by stimuli that are too similar to particular exemplars.
    E.g., prevents comparison of a stimulus to itself, or to exemplars
    from same speaker. Returns dataframe containing a subset of
    rows from the cloud.
    
    Required parameters:
    
    cloud = A dataframe of stored exemplars which every stimulus is compared to. 
        Each row is an exemplar
    
    test = single row dataframe containing the stimulus to be categorized
    
    exclude_self = boolean. If True, stimulus will be removed from exemplar cloud
        so that it isn't compared to itself. Defaults to True 
    
    Optional parameters:
    
    alsoexclude = a list of strings matching columns in the cloud
        categories) to exclude if value is the same as that of the test.
        (E.g., to exclude all exemplars from
        the speaker to simulate categorization of novel speaker)
    '''
    # Make a copy of the cloud and call it exemplars. 
    #    This is what we'll return at the end
    exemplars = cloud.copy()
    
    
    # Remove the stimulus from the cloud
    if exclude_self == True:
        exemplars = exemplars[~exemplars.isin(test)].dropna()  
    
    if alsoexclude != None:
        if type(alsoexclude) != list:
            alsoexclude = [alsoexclude]
        for feature in alsoexclude:
            featval = test[feature].iloc[0]
            exclude_exemps = exemplars[exemplars[feature] == featval].index
            exemplars = exemplars.drop(exclude_exemps)
    
    return exemplars

def reset_N(exemplars, N = 1):
    '''
    Adds an N (base activation) column to the exemplar cloud so
    that activation with respect to the stimulus can be calculated
    Default value is 1, i.e., equal activation for each exemplar.
    Returns the exemplar data frame with added or reset column
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    Required parameters:

    exemplars = data frame of exemplars to which the stimulus is being
compared

    N = integer indicating the base activation value to be added to
each exemplar (row) in the dataframe. Defaults to 1

    '''
    extemp = exemplars.copy()
    extemp['N'] = N
    return extemp

def bias_N(exemplars, cat, catbias):
    '''
    Adds or overwrites an N (base activation) colummn to the exemplar 
    cloud so that activation with respect to the stimulus can be 
    calculated. Unlike reset_N, which assigns the same N value to all exemplars,
    bias_N will set N values according to values in a dictionary.
    That is, within a category type, each category will have the N
    value specified in the dictionary

    Required parameters:

    exemplars = dataframe of exemplars to which the stimulus is being compared

    cat = a string designating the category type which is being primed

    catbias = dictionary with categories (e.g. vowels) as keys and N value for the  
category as values

    '''
    extemp = exemplars.copy()
    extemp['N'] = extemp[cat].map(catbias)
    return extemp

def probs(bigdf, cats):    
    '''
    Calculates the probability that the stimulus will be categorized with a
    particular label for a given category (e.g., vowel labels 'i', 'a', 'u' for
    the category 'vowel'). Probability is calculated by summing the activation
    across all exemplars sharing a label, and dividing that by the total amount
    of activation in the system for the category. Returns a dictionary of dictionaries.
    Each key is a category; values are dictionaries where keys are labels and values
    represent probability of the stimulus being categorized into that label.

    Required parameters: 

    bigdf = a dataframe produced by activation(), which contains a row for each
exemplar with the additional column 'a' representing the amount of 
activation for that exemplar with respect to the stimulus

    cats = a list of strings containing at least one item, indicating which
categories probability should be calculated for (e.g. ['vowel','gender']).
Items should match the name of columns in the data frame

    '''
    prs = {}

    if type(cats) != list:
cats = [cats]

    # Loop over every category in the list of categories
    for cat in cats: 

if cat in bigdf:
label = cat

else: 
# make category match the exemplar category in name if i and j share column names
label = cat + '_ex'

# Sum up activation for every label within that category
cat_a = bigdf.groupby(label).a.sum()
# Divide the activation for each label by the total activation for that category
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        pr = cat_a / sum(cat_a)
        # rename a for activation to probability
        pr = pr.rename_axis(cat).reset_index().rename(columns={"a" : "probability"})
        # add this to the dictionary 
        prs[cat] = pr
    return prs

def choose(probsdict, test, cats, fc = None):
    '''
    Chooses a label for each category which the stimulus will be categorized as.
    Returns the test/stimulus dataframe with added columns showing what was 
    chosen for a category and with what probability. Optionally will give the
    second most probable label as well. 
    
    Required parameters:
    pr = dictionary of probabilities, given from probs(). Each key should represent
        a category (e.g. 'vowel'), with values as dataframe. Dataframe should
        have a probability for each category label
        
    test = single line data frame representing the test/stimulus being categorized
    
    cats = list of categories to be considered (e.g., ["vowel"])
            
    Optional parameters:

        
    fc = Dict where keys are category names in the dataframe and
        values are a list of category labels.
        Used to simulate a forced choice experiment
        in which the perceiver has a limited number
        of alternatives. For example, if fc = {'vowel':['i','a']},
        the choice will be the alternative 
        with higher probability, regardless of whether other vowels not
        listed have higher probabilities. 
        There can be any number of alternatives in the list.
    
    '''
    newtest = test.copy()      # make a copy of the test set to add to
    pr = probsdict.copy()        # make a copy of the probs dict to subset if forced choice is set
    choice = ''
    choiceprob = 1
    
    # If using forced choice, restrict the choices to the terms 
    # This doesn't change the probability! So something could have a low prob,
    ## but still be the winner
    if fc != None: 
        fccats = fc.keys()
        for fccat in fccats:
            options = fc[fccat]
            scope = probsdict[fccat]
            toconsider = scope.loc[scope[fccat].isin(options)]
        pr[fccat] = toconsider

    for cat in cats:
        choicename = cat + 'Choice'
        choiceprobname = cat + 'Prob'
        
        dframe = pr[cat]
        prob = dframe['probability']
        winner = dframe.loc[prob==max(prob)]
            
        # if more than one winner, choose randomly
        if len(winner) > 1:
            winner = winner.sample(1)
                                                 
        choice = winner[cat].item()
        choiceprob = winner['probability'].item()
        
        newtest[choicename] = choice
        newtest[choiceprobname] = choiceprob      
    return newtest
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def wideprobs(cats,pr):
    '''
    Get a list of probabilities reshaped to a wide format.

    Required parameters:

    cats = a list of strings containing at least one item, indicating which
categories probability should be calculated for (e.g. ['vowel','gender']).
Items should match the name of columns in the data frame

    pr = Output of probs function. Dictionary of dictionaries.
Each key is a category; values are dictionaries where keys are
labels and values represent probability of the stimulus
being categorized into that label.

    '''
    widelist=[]
    for cat in cats:

pref = str(cat+"_")
dframe = pr[cat]
wide = dframe.set_index(cat).transpose().reset_index(drop=True).add_prefix(pref)
widelist.append(wide)

    return widelist

def probsdf(widelist, test):
    '''
    Alternative to the choose function. Rather than picking the category labels
    with the highest probability, join the wide format probalities alongside the stimulus.
    Returns the larger dataframe.

    Required parameters:

    widelist = Output of the wideprobs function. A list of probabilities for each category
label, reshaped to wide format.

    test = single line data frame representing the test/stimulus being categorized
    '''
    newdf = test
    for wide in widelist:    

newdf = pd.merge(
newdf.assign(key = 1),
wide.assign(key = 1),
on = 'key').drop('key', axis=1)

    return newdf

def categorize(testset, cloud, cats, dimsdict, c, 
exclude_self = True, alsoexclude = None, N=1, fc=None):

    '''
    Categorizes a stimulus based on functions defined in library. 

1. Exclude any desired stimuli
2. Add N value
3. Calculate activation
4. Calculate probabilities
5. Choose labels for each category
Returns the output of choose(): test/stimulus dataframe with
added columns showing what was
chosen for a category and with what probability

    Required parameters:

    testset = a dataframe with one row, a stimulus to be categorized
must have columns matching those given in the 'dims' dict. These columns
should be dimensions of the stimulus (e.g., formants)

    cloud = A dataframe of stored exemplars which every stimulus is compared to. 
Each row is an exemplar, which, like testset should have columns matching
those in the dims dict

    cats = a list of strings containing at least one item, indicating which
categories probability should be calculated for (e.g. ['vowel','gender']).
Items should match the name of columns in the data frame
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    dimsdict = a dictionary with dimensions as keys and weights, w, as values. 

    c = an integer representing exemplar sensitivity. Defaults to .01. 

    exclude_self = boolean. If True, stimulus will be removed from exemplar cloud
so that it isn't compared to itself. Defaults to True 

    Optional parameters:
    alsoexclude = a list of strings matching columns in the cloud (categories)

to exclude  if value is the same as that of the test.
(E.g., to exclude all exemplars from the speaker
to simulate categorization of novel speaker)

    N = integer indicating the base activation value to be added to
each exemplar (row) in the dataframe. Defaults to 1

    '''
    exemplars = cloud.copy()
    test = testset
    exemplars = exclude(exemplars, test, exclude_self = exclude_self, alsoexclude = alsoexclude)
    exemplars = reset_N(exemplars, N = N)
    bigdf = activation(test, exemplars, dimsdict = dimsdict, c = c)
    pr = probs(bigdf, cats)
    choices = choose(pr, test, cats, fc = fc)
    return choices 

def multicat(testset, cloud, cats, dimsdict, c = 25, N = 1, biascat = None, catbias = None,
exclude_self = True, alsoexclude = None,  fc = None):

    '''
    Categorizes a dataframe of 1 or more stimuli based on functions defined in library

1. Exclude any desired stimuli
2. Add N value
3. Calculate activation
4. Calculate probabilities
5. Choose labels for each category
Returns the output of choose(): test/stimulus dataframe with added columns
showing what was chosen for a category and with what probability

    Required parameters:

    testset = a dataframe with one or more rows, each a stimulus to be categorized
must have columns matching those given in the 'dims' dict. These columns
should be dimensions of the stimulus (e.g., formants)

    cloud = A dataframe of stored exemplars which every stimulus is compared to. 
Each row is an exemplar, which, like testset should have columns matching
those in the dims dict

    cats = a list of strings containing at least one item, indicating which
categories probability should be calculated for (e.g. ['vowel','gender']).
Items should match the name of columns in the data frame

    dimsdict = a dictionary with dimensions as keys and weights, w, as values. 

    c = an integer representing exemplar sensitivity. Defaults to 25. 

    exclude_self = boolean. If True, stimulus will be removed from exemplar cloud
so that it isn't compared to itself. Defaults to True 

    Optional parameters:

    biascat = A string indicating the category type to be biased
or primed on (e.g. 'vowel', 'speaker')

    catbias = Dict where keys are categories of biascat and values are
ints that indicate relative N values. (e.g., {'i':5,'a':1} would make every 'i' exemplar 
contribute 5 times as much activation as each 'a)
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    alsoexclude = a list of strings matching columns in the cloud (categories) to exclude 
if value is the same as that of the test. (E.g., to exclude all exemplars from
the speaker to simulate categorization of novel speaker)

    N = integer indicating the base activation value to be added to
each exemplar (row) in the dataframe. Defaults to 1

    fc = Dict where keys are category names in the dataframe and values are a list of category 
labels.

Used to simulate a forced choice experiment in which the perceiver has a limited number
of alternatives. For example, if fc = {'vowel':['i','a']}, the choice will be the alternative 
with higher probability, regardless of whether other vowels not listed have higher 

probabilities. 
There can be any number of alternatives in the list. 

    '''
    choicelist=[]
    prlist=[]
    for ix in list(testset.index.values):

# Reload exemplars within the loop
## if not, exemplars shrinks every time you use exclude()!
exemplars = cloud.copy()   
test = testset.loc[[ix,]]

# exclusions
exemplars = exclude(exemplars, test, exclude_self = exclude_self, alsoexclude = alsoexclude)

#add N 
if catbias != None: 

exemplars = bias_N(exemplars, biascat, catbias)
else: exemplars = reset_N(exemplars, N = N)

# calculate probabilities
bigdf = activation(test, exemplars, dimsdict = dimsdict, c = c)
pr = probs(bigdf, cats)

# Luce's choice rule
choicerow = choose(pr, test, cats, fc = fc)
choicelist.append(choicerow)
# Get probabilities 
widelist = wideprobs(cats, pr)
widerow = probsdf(widelist,test)
widelist.append(widerow)

    choices = pd.concat(choicelist, ignore_index = True)

    return choices
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"""
Created on Sat Sep 03 2022
@author: Emily Remirez (eremirez@berkeley.edu)

"""

"""Utility functions for implementing and evaluating the Generalized Context Model for speech 
perception."""

import math
import random
import matplotlib.pyplot as plt
#%matplotlib inline
import numpy as np
import pandas as pd
from pandas import DataFrame
from scipy.optimize import minimize
import seaborn as sns

def HzToBark(cloud, formants):
    '''
    Convert selected columns from Hz to Bark scale. Renames the formants as z.
    Returns the data frame with additional columns: the value of the formant
    converted from Hz to Bark

    Required parameters:

    cloud = dataframe of exemplars 

    formants = list of formants to be converted 
    '''
    # Make a copy of the cloud
    newcloud = cloud.copy()

    # For each formant listed, make a copy of the column prefixed with z
    for formant in formants:

for ch in formant:
if ch.isnumeric():

num = ch
formantchar = (formant.split(num)[0])
name = str(formant).replace(formantchar, 'z')
# Convert each value from Hz to Bark
newcloud[name] = 26.81 / (1 + 1960 / newcloud[formant]) - 0.53

    return newcloud

def gettestset(cloud, balcat, n):     #Gets n number of rows per cat in given cattype
    '''
    Gets a random test set of stimuli to be categorized balanced across a particular
    category, e.g., 5 instances of each label 'i','a', 'u' for category 'vowel'. 
    Returns a data frame of stimuli.

    Required parameters:

    cloud = dataframe of exemplars

    balcat = category stimuli should be balanced across 

    n = number of stimuli per category label to be included
    '''
    testlist=[]
    for cat in list(cloud[balcat].unique()):

samp = cloud[cloud[balcat] == cat].sample(n)
testlist.append(samp)

    test = pd.concat(testlist)
    return test

def checkaccuracy(choices, cats):
    '''
    Check rather the choices made by the model match the 'intended' label for each category.
    Returns a copy of the testset dataframe with column added indicating whether the choice for
    each category was correct (y) or incorrect (n)

87



    Required parameters:

    choices = output of choose() function: the test/stimulus dataframe with added columns showing 
what was 

chosen for a category and with what probability.

    cats = a list of strings containing at least one item, indicating which
category's probability was calculated for (e.g. ['vowel','gender']).
Items should match the name of columns in the data frame

    '''
    if type(cats) != list:

cats = [cats]

    acc = choices.copy()
    for cat in cats: # Iterate over your list of cats

accname = cat + 'Acc' # Get the right column names
choicename = cat + 'Choice'

# If choice is the same as intended, acc =y, else n
acc[accname] = np.where(acc[cat]==acc[choicename], 'y', 'n')      

    return acc

def propcorr(acc, cat):
    '''
    Calculates the proportion of stimuli under each label which were categorized correctly
    Returns a dataframe with keys as labels and values as proportions between 0 and 1.

    Required parameters:

    acc = output of checkaccuracy() function: a copy of the testset dataframe with column
added indicating whether the choice for each category was correct (y) or incorrect (n)

    cat = string ndicating which category accuracy should be assessed for. String should match
column in acc.

    '''
    perc = dict(acc.groupby(cat)[cat+'Acc'].value_counts(normalize = True).drop(labels = 'n',level = 
1).reset_index(level = 1,drop = True))
    pc = pd.DataFrame.from_dict(perc, orient = 'index').reset_index()
    pc.columns = [cat,'propcorr']
    return pc

def overallacc(acc, cat):
    '''
    Calculates accuracy for categorization overall, across all labels. Returns a 
    proportion between 0 and 1. 

    Required parameters: 

    acc = output of checkaccuracy() function: a copy of the testset dataframe with column
added indicating whether the choice for each category was correct (y) or incorrect (n)

    cat = string ndicating which category accuracy should be assessed for. String should match
column in acc.

    '''

    totalcorrect = acc[cat+'Acc'].value_counts(normalize=True)['y']
    return totalcorrect

def confusion(choices, cats):
    '''
    Returns a confusion matrix comparing intended category with categorization.

    Required parameters:

    choices = output of choose() function: the test/stimulus dataframe with added columns showing 
what was 

chosen for a category and with what probability.

    cats = a list of strings containing at least one item, indicating which
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categories probability was calculated for (e.g. ['vowel','gender']).
Items should match the name of columns in the data frame

    '''
    if type(cats) != list:

cats = [cats]

    matrices = {}
    for cat in cats:

matrices[cat] = pd.crosstab(choices[cat], 
choices[cat+'Choice'],
normalize ='index').round(2).rename_axis(None)

    return matrices

def errorfunc(x, testset, cloud, dimslist, cat):
    ''' 
    Returns a proportion representing the total amount of error for a single category that
    the categorizer makes given a certain set of c and w values. This is intended to
    be used with an optimization function so that the total amount of error can be 
    minimized; that is, the accuracy can be maximized. 
    Note that z0 is automatically set to 1.

    Required parameters: 

    x = a vector of values to be used by multicat. x[0] should be c, x[1], x[2], x[3]
should correspond to dimslist[1], dimslist[2], dimslist[3]

    testset = a dataframe with one or more rows, each a stimulus to be categorized
must have columns matching those given in the dims list. These columns
should be dimensions of the stimulus (e.g., formants)

    cloud = A dataframe of stored exemplars which every stimulus is compared to. 
Each row is an exemplar, which, like testset should have columns matching
those in the dims list

    dimslist = a list of dimensions (e.g., formants), for which weights w should be given,
and along which exemplars should be compared.

    cat = the category, 

    '''
    #x = [c,z1,z2,z3]
    catlist = [cat]
    c = x[0]
    dimsdict = {dimslist[0] : 1,

dimslist[1] : x[1],
dimslist[2] : x[2],
dimslist[3] : x[3]}

    choices = multicat(cloud, testset, catlist, dims = dimsdict, c = c)
    accuracy = checkaccuracy(choices, catlist)
    err = accuracy[cat+'Acc'].value_counts(normalize = True)['n']
    return err

def continuum (data, start, end, dimslist, steps = 7, stimdetails = False, addcol=None):
    '''
    Returns a continuum dataframe with interpolated values
    from a start to end value with a given number of steps

* Users should be sure to specify any and all parameters they want
start and end to match for. That is, say there are 2 repetitions of
a stimulus. If it doesn't matter whether start and end are from the same
repetition, you do not need to specify repetition number; one row will
be chosen randomly. If it *does* matter that they're the same repetition,
be sure to include repetition number in the dictionary.

    Required parameters:

    data = DataFrame to draw start and end stimuli from

    start = Dictionary indicating properties of the desired start
with category types as keys, and their desired category as values.
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e.g., {"vowel":"i","speaker"="LB"}

    end = Dictionary indicating properties of the desired start
with category types as keys, and their desired category as values

    dimslist = list containing the names of dimensions to be interpolated

    Optional parameters: 

    steps = integer indicating the total number of continuum steps. Defaults to 7.

    stimdetails = Boolean, defaults to False. Debugging/auditing tool to
get details of the stimulus that aren't preserved in the returned
dataframe (e.g., speaker ID)

    addcols = Dictionary indicating a column to preserve in the continuum, e.g., s
    '''
    # create a copy of the entire df to subset according to conditions
    # match category to value from dictionary, subset
    # repeat subsetting until all conditions are satisfied
    st = data.copy()
    for i in range(0, len(start)):

cat = list(start.keys())[i]
val = list(start.values())[i]
condition = st[cat] == val
st = st.loc[condition]

    # reset index has to be outside of the loop to work with >2 conditions
    # sample(1) is there to just pick an observation if the conditions don't point
    ## a unique row in the dataframe
    st = st.sample(1).reset_index()

    en = data.copy()
    for i in range(0,len(end)):

cat = list(end.keys())[i]
val = list(end.values())[i]
condition = en[cat] == val
en = pd.DataFrame(en.loc[condition])

    en = en.sample(1).reset_index()

    # remember start & end values if needed
    if stimdetails == True:

print("Start: " , st.iloc[0])
print("End: " , en.iloc[0])

    norms = {}
    for dim in dimslist: # Calculate the difference between start and end for 
each dim

norms[dim] = en[dim] - st[dim] 

    rowlist = []
    for i in range (0, steps):

vals = {"step" : (i+1)}
if addcol != None:

vals.update(addcol)
for dim in dimslist: 

vals[dim] = st[dim] + (norms[dim] * i/(steps-1))    # the values for each dim = start val 
+ diff by step

row = pd.DataFrame(vals)
rowlist.append(row)

    contdf = pd.concat(rowlist, ignore_index = True)
    return contdf

def datasummary(dataset, catslist, dimslist):
    '''
    Creates dataframe of mean values grouped by catgories

    Required parameters: 

    dataset = A dataframe to be analyzed, where each row is an observation
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        Requires at least one category and one dimension
        
    catslist = List of categories to group by. Also accepts string.
    
    dimslist = List of dimensions to get values for. Also accepts dict
        with dimensions as keys.
    '''
    # Convert cat to list (e.g. if only one term is given)
    if type(catslist) != list:
        catslist = [catslist]
    # If the weights dictionary is given instead of the dimlist,
    ## take just the keys as a list
    if type(dimslist) == dict:
        dimslist = list(dimslist.keys())
    
    # group by categories: cats[0] will be used to group first, then cats[1]
    # i.e., if cats = ["vowel","type"], vowel1-type1, vowel1-type2, vowel2-type1, vowel2-type2...
    # get the mean of values for each dimension grouped by categories
    d = dataset.copy()
    df = d.groupby(catslist, as_index = False)[dimslist].mean()
    return df
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"""
Created on Sat Sep 03 2022
@author: Emily Remirez (eremirez@berkeley.edu)

"""

"""Functions for visualizing ExemPy simulations."""

import math
import random
import matplotlib.pyplot as plt
#%matplotlib inline
import numpy as np
import pandas as pd
from pandas import DataFrame
from scipy.optimize import minimize
import seaborn as sns

def getactiv(activxn, x, y, cat):

    """ 
    Creates a simplified data frame showing the activation for each exemplar 
    with respect to the stimulus. Primarily for use with the activplot()
    function. 

    Required parameters:

    actxn = DataFrame resulting from the activation() function, containing
one row per stored exemplar, with their activation 'a' as a column

    x = String. Dimension to be plotted as x axis in scatterplot (e.g., F2). Matches
the name of a column in the activation DataFrame.

    y = String. Dimension to be plotted as y axis in scatterplot (e.g., F1). Matches
the name of a column in the activation DataFrame.

    cat = String. Category used to color code exemplars in scatter plot. Matches the name
of a column in the activation DataFrame.

    """

    renamedict = {}    
    activseries={"a" : activxn['a']}

    for item in (x, y, cat):
name = str(item + "_ex")
if name not in activxn:

name = item
renamedict[name] = item
activseries[item] = activxn[name]

    activ = pd.DataFrame.from_dict(activseries)
    return activ     

def activplot(a, x, y, cat, test, invert = True, catlegend = False):
    """
    Plots each exemplar in x,y space according to specified dimensions. Labels within
    the category are grouped by color. The stimulus or test exemplar is plotted in dark
    blue on top of exemplars. Note: axes are inverted, assuming F1/F2 space

    Required parameters:

    a = DataFrame produced by getactiv() function. Contains a row for each exemplar

    x = String. Dimension to be plotted as x axis in scatterplot (e.g., F2). Matches
the name of a column in the activation DataFrame.

    y = String. Dimension to be plotted as y axis in scatterplot (e.g., F1). Matches
the name of a column in the activation DataFrame.

    cat = String. Category used to color code exemplars in scatter plot. Matches the name
of a column in the activation DataFrame.
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    test = name of test exemplar, one row of a DataFrame.
    
    Optional parameters:
    
    invert = Boolean. Specifies whether axes should be inverted (as for a vowel space). Defaults to 
true.
    
    catlegend = Boolean. Specifies whether to show a legend for the category. Defaults to false.
        
    """
    
    
    pl = sns.scatterplot(data = a,
                         x = x,
                         y = y,
                         hue = cat,
                         size = 'a',
                         size_norm = (0, a.a.max()),
                         alpha = 0.5,
                         sizes = (5, 100),
                         legend = catlegend)
    
    
    pl = sns.scatterplot(data = test,
                         x = x,
                         y = y,
                         alpha = .5,
                         color = 'darkblue',
                         marker = "X",
                         s = 50,
                         legend = False)
    
    
    if invert == True:
        pl.invert_xaxis()
        pl.invert_yaxis()
    return pl

def accplot(acc, cat, **kwargs):
    '''
    Plots a bar graph showing the proportion of trials which were categorized
    veridically, that is, accuracy of categorization.
    
    Required parameters:
    
    acc = output of checkaccuracy() function: a copy of the testset dataframe with column
        added indicating whether the choice for each category was correct (y) or incorrect (n)
        
    cat = string ndicating which category accuracy should be assessed for. String should match
        column in acc.
    
    '''
    perc = dict(
        acc.groupby(cat)[cat+'Acc']
            .value_counts(normalize = True)
            .drop(labels = 'n', level = 1)
            .reset_index(level = 1, drop = True))
    pc = pd.DataFrame.from_dict(perc, orient = 'index').reset_index()
    pc.columns = [cat,'propcorr']
    
    obs = str(len(acc))
    pl = sns.barplot(x = cat, y = 'propcorr', data = pc)
    plt.ylim(0,1.01)
    pl.set(ylabel = 'Proportion accurate of ' + obs + ' trials')
    pl.set_xticklabels(
        pl.get_xticklabels(),
        rotation = 45,
        horizontalalignment = 'right',
        fontweight = 'light',
        fontsize = 'x-large')
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    plt.show()
    return pl

def cpplot(datalist, cat, xax, datanames = None, plot50 = True, stv=None, env=None):
    '''
    Generates a (cp = categorical perception) plot. On the X axis is the stimulus number,
    on the Y axis is the proportion of [label] responses with [label] being the label that
    was assigned to the first stimulus. Designed to be used with stimuli continua

    Required parameters:

    datalist = Designed to be output of multicat() or multicatprime(). Dataframe or list of 
dataframes

containing each stimulus, what it was categorized as, and the probability

    cat = Type of category decision to visualize, e.g., 'vowel'

    Optional parameters:

    xax = String giving the name of a column to use as the x-axis on the plot; for example, the step
number along a continuum

    datanames = List of labels to use for each curve in the plot. Names should be in same
order as in datalist

    plot50 = Boolean indicating whether a dashed line is added at 0.5 to aid in assessing
boundaries in categorical perception. Defaults to true. 

    '''
    if type(datalist) != list:

datalist = [datalist]
    choicename = cat + 'Choice'
    probname = cat + 'Prob'

    if stv == None:
stv = datalist[0].loc[0][choicename] #start value

    if env == None:
env = datalist[0].iloc[-1][choicename] #end value

    def copy(d):
d = d
return d

    def inv(d):
d = 1-d
return d

    j = 0
    for dataset in datalist:

if datanames != None:
lab = datanames[j]

else:
lab = "Data " + str(i)

## get the inverse of probability if not first value, for each dataset
# If neither start nor end, set value to NaN

dataset['yax'] = dataset.apply(
lambda x: copy(x[probname]) if x[choicename] == stv
else (inv(x[probname]) if x[choicename] == env else float("NaN")),
axis = 1)

dataset["Data"] = lab
j += 1

    datalist = pd.concat(datalist)
    curve = sns.pointplot(

x = xax,
y = "yax",
data = datalist,
hue = "Data")

    for line, row in datalist.iterrows():
if math.isnan(row["yax"]):

realchoice = str(row[choicename])
realprob = str(np.round(row[probname], 2))
stimulusnumber = str(row[xax])
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            dataset = str(row["Data"])
            print("----- Hey! -----")
            print("Stimulus", stimulusnumber)
            print("in dataset", dataset)
            print("was categorized as", realchoice)
            print("with probability", realprob)

    # Add labels & plot
    yaxisname = "Proportion " + stv + " Response"
    curve.set_ylabel(yaxisname)
    curve.set_xlabel("Step")
    curve.set_ylim(-0.05, 1.05)

    if plot50 == True:
        plt.axhline(y = 0.5, color = 'gray', linestyle = ':')
        
    return curve
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Basic functions
%load_ext autoreload
from ExemPy import *
from ExemPy.utils import *
from ExemPy.viz import *
from ExemPy.GCM import *
%aimport ExemPy, ExemPy.utils, ExemPy.viz, ExemPy.GCM
%autoreload 1
import math
import random
import matplotlib.pyplot as plt
#%matplotlib inline
import numpy as np
import pandas as pd
from pandas import DataFrame
from scipy.optimize import minimize
import seaborn as sns
sns.set(style='ticks', context='paper')
colors=["#e3c934","#68c4bf","#c51000","#287271"]
sns.set_palette(colors)

Set up data

• Read in Peterson and Barney 1952

• Convert Hz to Bark

• Read in confusion matrix from PB52

• Preview pb52

pb52 = pd.read_csv('pb52_data//pb52.csv')
pbcm = pd.read_csv('pb52_data//pbcm.csv').drop([0]).set_index
hgcm = pd.read_csv('pb52_data//hgcm.csv').drop([0]).set_index
pb52 = HzToBark(pb52, ["F0", "F1", "F2", "F3"])
pb52.sample(5)

Appendix 2: ExemPy Demonstrations
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type gender speaker vowel repetition F0 F1 F2

1161 w f 59 FLEECE 2 261 280 2740

1383 c m 70 KIT 2 212 420 2480

1197 w f 60 GOOSE 2 188 340 920

1492 c m 75 THOUGHT 1 270 535 970

981 w f 50 FLEECE 2 200 400 2600

Set default parameters (based on previous
work)

• dimensions m & attention weights w
• list of categories

• exemplar sensitivity c
• set to be categorized

• exemplar cloud used to categorize against

dimsvals={'z0' : 1,
'z1' : 2.56,
'z2' : 1.985,
'z3' : 1.34}

dimslist = list(dimsvals.keys())

catslist = ['type', 'vowel'] # man, woman, or child; lexical set not

cval = 25

Categorize one stimulus

You can also use the function xm.categorize() to do these steps all at

once! (Note, however, that you won't be able to visualize and verify at

each step of the process!)

Set up

• Randomly select a stimulus
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• Add an resting activation N value of 1to all stored exemplars

• Exclude the stimulus from the exemplar cloud

▪ This way, the stimulus will not be compared to itself

stim = pb52.sample()
stim

type gender speaker vowel repetition F0 F1 F2 F3

855 w f 43 FOOT 2 233 467 1167 2595

exemplars = reset_N(pb52, N = 1)
exemplars = exclude(exemplars, stim, exclude_self = True)
print(exemplars.sample())

    type gender  speaker  vowel  repetition     F0     F1      
F2      F3  \
685    w      f     35.0  DRESS 2.0  210.0  630.0  230
0.0  3170.0   

z0 z1 z2 z3  N  
685  2.064516  5.991351  13.944883  16.036803  1  

o = stim.isin(exemplars)
print('Is stim contained within exemplars?')
print(o)

Is stim contained within exemplars?
      type  gender  speaker  vowel  repetition     F0     F1     
F2     F3  \
855  False   False    False  False False  False  False  
False  False   

z0     z1     z2     z3  
855  False  False  False  False  

Calculate activation of each exemplar wrt the
stimulus

• For exemplars that share categories with stimulus,

▪ activation (a) a is higher

▪ distance (dist) d is lower

• Plot activation:

▪ exemplars plotted in F2, F1 (Bark) space

▪ stimulus plotted in a blue X
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▪ color = exemplar category

▪ size = activation

activation_df = activation(
testset = stim,
cloud = reset_N(exemplars, N=1),
dimsdict = dimsvals,
c = cval
)

print("---- Stimulus info ----")
print(stim[['type', 'vowel', 'speaker']])
print("")
print(stim[['F0', 'F1', 'F2', 'F3']])
print("-----------------------")
smallactivdf = activation_df[['a',

'dist',
'type_ex',
'vowel_ex',
'F0_ex',
"F1_ex",
"F2_ex",
"F3_ex"]]

print(gettestset(smallactivdf, "vowel_ex", n = 2))
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---- Stimulus info ----
    type vowel  speaker
855    w  FOOT       43

      F0   F1    F2    F3
855  233  467  1167  2595
-----------------------
                 a      dist type_ex vowel_ex  F0_ex   F1_ex   
F2_ex   F3_ex
160   5.916923e-25  2.231472       m   FLEECE  175.0   316.0  
2200.0  2800.0
700   7.340776e-33  2.959675       w   FLEECE  210.0   290.0  
2700.0  3020.0
1261  4.186318e-34  3.074243       c      KIT  290.0   580.0  
2760.0  3400.0
483   2.311896e-19  1.716442       m      KIT  108.0   430.0  
1940.0  2590.0
924   6.340351e-27  2.412915       w    DRESS  260.0   520.0  
2340.0  3040.0
1203  1.499031e-21  1.917979       w    DRESS  245.0   640.0  
1980.0  2920.0
1006  2.697548e-29  2.631305       w     TRAP  203.0   678.0  
2420.0  3080.0
267   2.640673e-18  1.619020       m     TRAP  109.0   750.0  
1710.0  2440.0
1008  2.242467e-12  1.072938       w    STRUT  214.0   772.0  
1280.0  2660.0
449   9.100084e-10  0.832703       m    STRUT  124.0   650.0  
1000.0  2520.0
50    1.479473e-11  0.997470       m     PALM   91.0   640.0  
1080.0  2140.0
1249  3.393938e-27  2.437912       c     PALM  265.0  1170.0  
1500.0  3440.0
1411  5.237315e-15  1.315319       c  THOUGHT  232.0   670.0  
1160.0  3550.0
1111  2.266704e-10  0.888301       w  THOUGHT  229.0   688.0  
1029.0  2750.0
135   5.752845e-06  0.482633       m     FOOT  170.0   493.0  
1120.0  2300.0
215   7.663624e-08  0.655368       m     FOOT  143.0   430.0  
1030.0  2275.0
536   3.500509e-15  1.331435       m    GOOSE  133.0   294.0   
930.0  2050.0
1036  4.321375e-05  0.401974       w    GOOSE  188.0   375.0  
1143.0  2700.0
479   5.157253e-18  1.592245       m    NURSE  150.0   600.0  
1470.0  1820.0
1097  1.206244e-16  1.466154       w    NURSE  213.0   533.0  
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1425.0  1830.0

act = getactiv(activation_df, 'z2', 'z1', 'vowel')

activplot(act, 'z2', 'z1', 'vowel', stim)

<AxesSubplot:xlabel='z2', ylabel='z1'>

Calculate probabilities & choose

Use Luce's choice rule to calculate probabilities & choose

• Calculate probability for categorization as each label

▪ Add up activation by category

▪ Add up total amount of activation

▪ Divide category activation by total activation

◦ Probability of being categorized as that

• Choose the label with the highest probability

pr = probs(activation_df, catslist)
pr
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{'type':   type  probability
 0    c     0.041233
 1    m     0.110480
 2    w     0.848287,
 'vowel':      vowel   probability
 0    DRESS  1.011615e-12
 1   FLEECE  2.450425e-21
 2     FOOT  9.522804e-01
 3    GOOSE  4.659325e-02
 4      KIT  7.843954e-14
 5    NURSE  1.351160e-11
 6     PALM  1.100953e-04
 7    STRUT  8.571126e-04
 8  THOUGHT  1.591088e-04
 9     TRAP  1.147804e-10}

choices = choose(pr, stim, catslist)
choices[['typeChoice','typeProb','vowelChoice','vowelProb']]

typeChoice typeProb vowelChoice vowelProb

855 w 0.848287 FOOT 0.95228

Check for "veridical perception"

accu = checkaccuracy(choices, catslist)
print('Was vowel categorized accurately?          '

+ accu.iloc[0]['vowelAcc'])
print('Was speaker type categorized accurately?   '

+ accu.iloc[0]['typeAcc'])

Was vowel categorized accurately?          y
Was speaker type categorized accurately?   y

Categorize dataset with respect to itself

In the past sections we:

• Set some parameters for categorization, including

▪ Dimensions & their attention weights

▪ Category types to categorize for

• Calculate the activation of each exemplar wrt the stimulus

• Calculate probabilities

• Choose the most probable category label for each category type
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• Evaluate the stimulus

Now, let's do the same process with multiple exemplars. In fact, let's

simulate the perception component of Peterson and Barney 1952 by

having our "perceiver" categorize every exemplar.

First, let's re-set our variables

As a reminder or in case something got wonky!

dimsvals={'z0' : 1,
'z1' : 2.56,
'z2' : 1.985,
'z3' : 1.34}

dimslist = list(dimsvals.keys())

catslist = ['type', 'vowel']

cval = 25

exemplars = pb52
test = pb52

Next, let's categorize!

This may take a minute!

choices = multicat(
testset = test,
cloud = exemplars,
cats = catslist,
dimsdict = dimsvals,
c = cval,
N = 1,
exclude_self = True)

print(choices)
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     type gender  speaker   vowel  repetition   F0   F1    F2    
F3        z0  \
0       m      m        1  FLEECE           1  160  240  2280  
2850  1.493396   
1       m      m        1  FLEECE           2  186  280  2400  
2790  1.793700   
2       m      m        1     KIT           1  203  390  2030  
2640  1.986149   
3       m      m        1     KIT           2  192  310  1980  
2550  1.861970   
4       m      m        1   DRESS           1  161  490  1870  
2420  1.505083   
...   ...    ...      ...     ...         ...  ...  ...   ...   
...       ...   
1515    c      f       76    FOOT           2  322  610  1550  
3400  3.253006   
1516    c      f       76   GOOSE           1  345  520  1250  
3460  3.482777   
1517    c      f       76   GOOSE           2  334  500  1140  
3380  3.373461   
1518    c      f       76   NURSE           1  308  740  1850  
2160  3.110864   
1519    c      f       76   NURSE           2  328  660  1830  
2200  3.313392   

            z1         z2         z3 typeChoice  typeProb vowe
lChoice  \
0     2.394727  13.886698  15.355343          m  0.999809      
FLEECE   
1     2.821250  14.227798  15.217347          m  0.994734      
FLEECE   
2     3.919319  13.110175  14.856609          m  0.982181         
KIT   
3     3.131278  12.943046  14.628647          m  0.999517         
KIT   
4     4.832000  12.560000  14.282831          m  0.739049       
DRESS   
...        ...        ...        ...        ...       ...         
...   
1515  5.833463  11.309174  16.476343          c  0.999919        
FOOT   
1516  5.091452   9.910031  16.584871          c  0.993950        
FOOT   
1517  4.919187   9.329161  16.439625          c  0.998422        
FOOT   
1518  6.817926  12.487979  13.525728          c  0.495870       
NURSE   
1519  6.223664  12.415198  13.648365          c  0.855784       
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NURSE   

      vowelProb  
0      0.999925  
1      0.998462  
2      0.973843  
3      0.996075  
4      0.572512  
... ...  
1515   0.983871  
1516   0.934974  
1517   0.825487  
1518   0.503462  
1519   0.898766  

[1520 rows x 17 columns]

Check accuracy

• We'll get a dataframe where each exemplar is labeled with

whether or not it was categorized accurately ([CATNAME]Acc)

Then, for each category type:

• We'll tabulate and plot accuracy by category label

• And then look at overall accuracy as a proportion

acc = checkaccuracy(choices,catslist)
acc.sample(5)

type gender speaker vowel repetition F0 F1 F2

981 w f 50 FLEECE 2 200 400 2600 3100

345 m m 18 DRESS 2 129 490 1930 2650

1198 w f 60 NURSE 1 222 530 1670 2050

1247 c f 63 TRAP 2 285 1140 2000 3560

1189 w f 60 STRUT 2 214 770 1530 2780

For vowel

accplot(acc, 'vowel')
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<AxesSubplot:xlabel='vowel', ylabel='Proportion accurate of 
1520 trials'>

propcorr(acc,'vowel')

vowel propcorr

0 DRESS 0.842105

1 FLEECE 0.967105

2 FOOT 0.815789

3 GOOSE 0.822368

4 KIT 0.881579

5 NURSE 0.894737

6 PALM 0.848684

7 STRUT 0.901316

8 THOUGHT 0.848684

9 TRAP 0.901316

print("Overall accuracy: " + str(overallacc(acc,'vowel')))

Overall accuracy: 0.8723684210526316
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For speaker type (man, woman, child)

accplot(acc,'type')

<AxesSubplot:xlabel='type', ylabel='Proportion accurate of 1
520 trials'>

propcorr(acc,'type')

type propcorr

0 c 0.756667

1 m 0.962121

2 w 0.851786

print("Overall accuracy: " + str(overallacc(acc,'type')))

Overall accuracy: 0.8809210526315789

Get confusion matrices

• Calculate a confusion matrix for our "perceiver"

• Look at the confusion matrix from the Peterson and Barney paper

we read in earlier

cm = confusion(choices,catslist)['vowel']
cm
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vowelChoice DRESS FLEECE FOOT GOOSE KIT NURSE PALM STRUT

DRESS 0.84 0.00 0.00 0.00 0.12 0.01 0.00

FLEECE 0.00 0.97 0.00 0.00 0.03 0.00 0.00

FOOT 0.00 0.00 0.82 0.13 0.00 0.00 0.00

GOOSE 0.00 0.00 0.14 0.82 0.00 0.00 0.00

KIT 0.07 0.05 0.00 0.00 0.88 0.00 0.00

NURSE 0.06 0.00 0.00 0.00 0.02 0.89 0.00

PALM 0.00 0.00 0.00 0.00 0.00 0.00 0.85

STRUT 0.00 0.00 0.00 0.00 0.00 0.00 0.09

THOUGHT 0.00 0.00 0.01 0.03 0.00 0.00 0.09

TRAP 0.10 0.00 0.00 0.00 0.00 0.00 0.00

pbcm

DRESS FLEECE FOOT GOOSE KIT NURSE PALM STRUT

DRESS 0.658 0.013 0.004 0.001 0.237 0.011 0.000 0.003

FLEECE 0.006 0.962 0.000 0.000 0.031 0.000 0.000 0.000

FOOT 0.001 0.000 0.620 0.284 0.002 0.009 0.001 0.052

GOOSE 0.000 0.002 0.090 0.891 0.002 0.002 0.000 0.007

KIT 0.067 0.251 0.006 0.000 0.670 0.001 0.000 0.001

NURSE 0.040 0.003 0.030 0.007 0.041 0.866 0.000 0.009

PALM 0.002 0.000 0.006 0.001 0.000 0.000 0.550 0.136

STRUT 0.009 0.000 0.027 0.001 0.001 0.012 0.128 0.747

THOUGHT 0.000 0.000 0.130 0.059 0.000 0.000 0.059 0.080

TRAP 0.280 0.001 0.003 0.000 0.006 0.019 0.040 0.020

Next, let's analyze the confusion matrices in a
couple different ways

• Take a simple difference
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• Set up a dataframe to look at correlations

▪ Convert matrices to stacksw

▪ Join together into dataframe

• Calculate root mean square

• Get correlation using df.corr

• Set up a dataframe where all 0s are converted to NaN

▪ Afterall, 0 correlates real good with 0!

• Get RMS

• Get correlation

cm - pbcm #differences

vowelChoice DRESS FLEECE FOOT GOOSE KIT NURSE PALM

DRESS 0.182 -0.013 -0.004 -0.001 -0.117 -0.001 0.000

FLEECE -0.006 0.008 0.000 0.000 -0.001 0.000 0.000

FOOT -0.001 0.000 0.200 -0.154 -0.002 -0.009 -0.001

GOOSE 0.000 -0.002 0.050 -0.071 -0.002 -0.002 0.000

KIT 0.003 -0.201 -0.006 0.000 0.210 -0.001 0.000

NURSE 0.020 -0.003 -0.030 -0.007 -0.021 0.024 0.000

PALM -0.002 0.000 -0.006 -0.001 0.000 0.000 0.300

STRUT -0.009 0.000 -0.027 -0.001 -0.001 -0.012 -0.038

THOUGHT 0.000 0.000 -0.120 -0.029 0.000 0.000 0.031

TRAP -0.180 -0.001 -0.003 0.000 -0.006 -0.019 -0.040

# flatten and combine confusion matrices
pbcmfl = pd.Series(pbcm.stack(), name = "PB")
cmfl = pd.Series(cm.stack(), name = "GCM")
cms = pd.concat([pbcmfl, cmfl], axis = 1)

#Remove 0s (which correlate with each other)
cmsnan = cms.replace(0, np.nan) 

print("0s included")
print("RMS =  ", (((cms.PB-cms.GCM) ** 2).mean()) ** .5)
print("r =    ", (cms['PB'].corr(cms['GCM'])))
print("")
print("0s removed")
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print("RMS =  ",(((cmsnan.PB-cmsnan.GCM) ** 2).mean()) ** .5)
print("r =    ", cmsnan['PB'].corr(cmsnan['GCM']))

0s included
RMS =   0.0741105255682349
r =     0.964581333955327

0s removed
RMS =   0.12843085629429107
r =     0.9519894540508784
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Setting attention weights
%load_ext autoreload
from ExemPy import *
from ExemPy.utils import *
from ExemPy.viz import *
from ExemPy.GCM import *
%aimport ExemPy, ExemPy.utils, ExemPy.viz, ExemPy.GCM
%autoreload 1
import math
import random
import matplotlib.pyplot as plt
#%matplotlib inline
import numpy as np
import pandas as pd
from pandas import DataFrame
from scipy.optimize import minimize
import seaborn as sns
sns.set(style='ticks', context='paper')
colors=["#e3c934","#68c4bf","#c51000","#287271"]
sns.set_palette(colors)

# Read in data, set initial parameters
pb52 = pd.read_csv('pb52_data//pb52.csv')
pb52 = HzToBark(pb52, ["F0", "F1", "F2", "F3"])
dimsvals={'z0' : 1,

'z1' : .761,
'z2' : .681,
'z3' : .407}

dimslist = list(dimsvals.keys())

catslist = ['type', 'vowel'] 

cval = 25

exemplars = pb52.copy()

# Define error function
def calcerror(x, test, exemplars, catslist, fitdims, cval, anchordim

'''
    Categorizes a data set and returns the proportion of stimuli/test
    rows that were categorized inaccurately. A lower value means a
    lower amount of error. Designed to be used with parameter
    fitting functions to assign values to attention weighting
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    for dimensions.

    Required paratemers:

    x = Array. Initial guesses for parameters

    test = DataFrame. Stimuli to be categorized

    exemplars = DataFrame. Exemplar cloud to use for categorization

    catslist = List of strings. Each string should correspond to a
category that should be assigned to the test

    fitdims = List of strings. Each string should correspond to a 
dimension for which parameters should be fit.

    Optional parameters:

    anchordim = String. Dimension for parameter which will not be fit,
but will instead be hard-coded as 1. This helps constrain
the set of possible solutions

    '''
dimsvals = {fitdims[i]: x[i] for i in range(len(fitdims))}
if anchordim != None:

dimsvals.update({anchordim:1})

choices = multicat(test, cloud, catslist, dimsvals, cval)
accuracy = checkaccuracy(choices, catslist)
category = catslist[0]
err = accuracy[category+"Acc"].value_counts(normalize=True
return err

# Specify arguments for optimization
fitdims = dimslist[1:] # Fit all dimensions except item 0
anchordim = dimslist[0] # Set item 0 to 1

name = 'pb52-111723' # name of output spreadsheet
nt = 3 # number of times that random x is generated
t = 0.1 # Tolerance value -- lower = more evals

# To demonstrate, fit based on 50 exemplars of each vowel
test = gettestset(exemplars, "vowel", 50)

cloud = exemplars
cats = ["vowel"]
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# Optimize
# Initialize lists
resultslist=[['start','fit','error','evals']]
wlist=[]

print("----- Parameters -----")
if anchordim != None: 

print("Anchored (1):  ", anchordim)
    
print("Optimized:     ", fitdims)
print("")
print("Categorizing for: ", cats)
print("")
print("Trials: ", nt)
print("")

for i in range(0,nt): 
x=np.divide(random.sample(range(0,300),len(fitdims)),100)
xguess = x
result = minimize(calcerror,

xguess,
args=(test, cloud, cats, fitdims, cval, anchordim
method='Powell',  
tol = t) 

# Create list to save as csv
start = x
fit = np.round(result.x,3)
error = result.fun
evals = result.nfev
row = [start,fit,error,evals]
resultslist.append(row)

    
# Re-compose w dict to save with json  
wdict_keys = fitdims
wdict_vals = list(fit)
#if anchordim != None: 
wdict_keys.insert(0, anchordim)
wdict_vals.insert(0, 'hi')    
wdict = {wdict_keys[i]: wdict_vals[i] for i in range(len(wdict_keys
wlist.append(wdict)

    
print ("-----", (i+1) ," -----")
print("Initial guess:    ", start)
print("Optimized:        ", fit)
print(" ")
print("Number evals: ", evals)
print("Error:        ", error)
print("")
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results=pd.DataFrame(resultslist)
results.columns = results.iloc[0]
results=results[1:]

settings = {"fitdims": fitdims, "anchordim": anchordim,
"cats": cats, "trials":nt, "tol": t }

# Write results to csv
results.to_csv(name+".csv")     
with open((name+"_info.txt"),"w") as file:

file.write(str(settings))

#Clear lists
resultslist = []

----- Parameters -----
Anchored (1):   z0
Optimized:      ['z1', 'z2', 'z3']

Categorizing for:  ['vowel']

Trials:  3

----- 1  -----
Initial guess:     [2.53 0.1  0.28]
Optimized:         [ 1.912  0.482 -0.192]
 
Number evals:  33
Error:         0.1

----- 2  -----
Initial guess:     [1.34 2.29 1.85 0.05]
Optimized:         [3.092 0.987 0.633 0.585]
 
Number evals:  52
Error:         0.098

----- 3  -----
Initial guess:     [1.15 0.56 2.44 1.38 2.32]
Optimized:         [2.15  1.56  3.44  1.526 2.367]
 
Number evals:  28
Error:         0.118
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Correlations
%load_ext autoreload
from ExemPy import *
from ExemPy.utils import *
from ExemPy.viz import *
from ExemPy.GCM import *
%aimport ExemPy, ExemPy.utils, ExemPy.viz, ExemPy.GCM
%autoreload 1
import math
import random
import matplotlib.pyplot as plt
#%matplotlib inline
import numpy as np
import pandas as pd
from pandas import DataFrame
from scipy.optimize import minimize
import seaborn as sns
sns.set(style='ticks', context='paper')
colors=["#e3c934","#68c4bf","#c51000","#287271"]
sns.set_palette(colors)

The autoreload extension is already loaded. To reload it, use:
  %reload_ext autoreload

# Read in data and confusion matrix
pb52 = pd.read_csv('pb52_data//pb52.csv')
pbcm = pd.read_csv('pb52_data//pbcm.csv').drop([0]).set_index

'vowelChoice').rename_axis(None)
pb52 = HzToBark(pb52, ["F0", "F1", "F2", "F3"])
pb52.sample(5)

type gender speaker vowel repetition F0 F1 F2

362 m m 19 KIT 1 132 370 1750 2700

1458 c f 73 NURSE 1 300 540 1770 2040

289 m m 15 STRUT 2 110 660 960 2450

454 m m 23 FOOT 1 125 390 900 2100

417 m m 21 GOOSE 2 145 290 1000 2300

# Set parameters
catslist = ["type", "vowel"]
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cval = 25
exemplars = pb52
test = pb52

dims1 = {'z0' : 1,
'z1' : 3.585,
'z2' : 2.246,
'z3' : 2.736}

dims2 = {'z0' : 1,
'z1' : 2.72,
'z2' : 1.322,
'z3' : 0.882}

dims3 = {'z0' : 1,
'z1' : 1.589,
'z2' : 0.586,
'z3' : 0.55}

dims4 = {'z0' : 1,
'z1' : 2.534,
'z2' : 1.891,
'z3' : 1.784}

dims5 = {'z0' : 1,
'z1' : 1.685,
'z2' : 1.59,
'z3' : 1.162}

weightslist = [dims1, dims2, dims3, dims4, dims5]

Next, let's categorize!

This may take a minute!

# Flatten the confusion matrix for comparison
pbflat = pd.Series(pbcm.stack(), name = "PB")

i = 1
rowlist=[]

print("trial", "rms PB", "r PB", "rms HG", "r HG")
for w in weightslist:

choices = multicat(
testset = test,
cloud = exemplars,
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cats = catslist,
dimsdict = w,
c = cval,
N = 1,
exclude_self = True)

    
cm = confusion(choices, catslist)['vowel']
flat = pd.Series(cm.stack(), name = "GCM")
matrices = pd.concat([pbflat, flat], axis=1)
matrices.replace(0, np.nan)

    
rms = (((matrices.PB-matrices.GCM) ** 2).mean()) ** .5
r = matrices['PB'].corr(matrices['GCM'])

    
matrices2 = pd.concat([hgflat, flat], axis=1)
matrices2.replace(0, np.nan)

    
rms2 = (((matrices2.HG-matrices2.GCM) ** 2).mean()) ** .5
r2 = matrices2['HG'].corr(matrices2['GCM'])

    
print(i, np.round(rms,3), np.round(r,3), np.round(rms2,3),

i += 1

trial rms PB r PB rms HG r HG
1 0.073 0.964 0.073 0.964
2 0.075 0.964 0.075 0.964
3 0.074 0.966 0.074 0.966
4 0.073 0.965 0.073 0.965
5 0.075 0.966 0.075 0.966
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Simulating forced choice tasks in
ExemPy
ExemPy is built to simulate the types of tasks that are often used in

speech perception experiments. This allows to more directly compare

simulated results with behavior.

In ExemPy-Basics, we simulated an identifcation task, in which the

"perceiver" provides a label from multiple options. This allowed us to

produce a confusion matrix.

Simulating a two-alternative forced choice (2AFC) task allows us to

produce the type of plot often used to demonstrate categorical

perception.

In this section we'll

1. Create a continuum interpolated from one vowel to another

2. Categorize that continuum

3. Introduce considerations for simulating forced choice

4. Visualize forced choice results

5. Repeat the process with additional continua

6. Analyze the graph

%load_ext autoreload
from ExemPy import *
from ExemPy.utils import *
from ExemPy.viz import *
from ExemPy.GCM import *
%aimport ExemPy, ExemPy.utils, ExemPy.viz, ExemPy.GCM
%autoreload 1
import math
import random
import matplotlib.pyplot as plt
#%matplotlib inline
import numpy as np
import pandas as pd
from pandas import DataFrame
from scipy.optimize import minimize
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import seaborn as sns
sns.set(style='ticks', context='paper')
colors=["#e3c934","#68c4bf","#c51000","#287271"]
sns.set_palette(colors)

The autoreload extension is already loaded. To reload it, use:
  %reload_ext autoreload

Set up data

• Read in Peterson and Barney 1952

• Convert Hz to Bark

• Preview pb52

• Set parameters for preliminary categorization

pb52 = pd.read_csv('pb52_data//pb52.csv')
pb52 = HzToBark(pb52,["F0", "F1", "F2", "F3"])
excloud = pb52.copy()

dimsvals = {'z0' : 1,
'z1' : .761,
'z2' : .681,
'z3' : .407}

dimslist = list(dimsvals.keys())
catslist = ['type', 'vowel'] # man, woman, or child; lexical set not
cval = 25

Create type m continuum

Get mean dimensions for each type x vowel
combination

datasumm = datasummary(pb52, catslist, dimslist)
print("Type 'm' formant averages (Bark) by vowel:")
print(datasumm[datasumm["type"] == "m"])
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Type 'm' formant averages (Bark) by vowel:
   type    vowel        z0        z1         z2         z3
10    m    DRESS  1.116743  5.132435  12.491891  14.438514
11    m   FLEECE  1.207534  2.674882  13.914472  15.535502
12    m     FOOT  1.208595  4.347787   8.636553  13.766756
13    m    GOOSE  1.247804  3.093098   7.695949  13.727507
14    m      KIT  1.204788  3.931608  12.975164  14.668190
15    m    NURSE  1.168517  4.807455  10.439210  11.939155
16    m     PALM  1.061577  6.653223   9.038935  14.315383
17    m    STRUT  1.118489  5.989758   9.588147  14.146945
18    m  THOUGHT  1.100155  5.484137   7.457763  14.207406
19    m     TRAP  1.073975  6.240755  12.013320  14.270487

Create a FOOT-STRUT continuum using m values

start = {"type" : "m", "vowel" : "FOOT"} # Step 1
end = {"type" : "m", "vowel" : "STRUT"} # Step n
steps = 7 # Number of steps in continuum

mcont = continuum(datasumm, # dataframe for starting values
start, 
end, 
dimslist, 
steps, 
stimdetails = True # Print details of the endpoints

) 
print(mcont)
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Start:  index           12
type             m
vowel         FOOT
z0        1.208595
z1        4.347787
z2        8.636553
z3       13.766756
Name: 0, dtype: object
End:  index           17
type             m
vowel        STRUT
z0        1.118489
z1        5.989758
z2        9.588147
z3       14.146945
Name: 0, dtype: object
   step        z0        z1        z2         z3
0     1  1.208595  4.347787  8.636553  13.766756
1     2  1.193577  4.621449  8.795152  13.830121
2     3  1.178560  4.895111  8.953751  13.893486
3     4  1.163542  5.168773  9.112350  13.956851
4     5  1.148524  5.442435  9.270949  14.020215
5     6  1.133507  5.716097  9.429548  14.083580
6     7  1.118489  5.989758  9.588147  14.146945

What does forced choice mean for
perception?

During a forced choice task, an experiment participant is, well, forced

to choose between two options. Often, these choices are two clear

endpoints of an interpolated continuum like the one we just created.

But what does it mean for a perceiver to know that they'll have to pick

between two choices?

At this time, I identify three, non mutually exclusive vectors for

modelling the "side effects" of a forced choice task. These occur at

two different levels: the level of perception and the level of deciding

how to respond.

My thinking about this dinstinction is heavily influenced by Zheng and

Samuel's (2017) problematization of perception vs interpretation. I
need to re-read the paper to decide/interpret whether I'm using the
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word decision is a different way than they use interpretation. To be

honest, I definitely thought they had said "decide" until I looked up the

citation. It almost feels like a "below vs above the level of

consciousness" situation.

1. At the level of perception (implemented during the

activation()  function)

• Base activation N: The expectation within the experiment is that

the percept will be one of two options. Activation may be raised

for the alternatives and quashed for would-be competitors in a

straightforward example of priming.

• Attention weights w:

2. At the level of decision (implemented during the choose()
function)

• Rather than choosing the label with the highest probability overall,

the 'perceiver' chooses the alternative with the higher probability

of the two

The argument fc = {<category type> : [<label>, 
<label>, ...]}  implements forced choice at the level of decision.

Probabilities for the category type given are calculated as usual, but

the choices are restricted to the options given.

It's tempting to see the activation()  function as 'perception' and

the choose()  function as interpretation. At every step, I think we

should be explicit about the following: Something making the

implementation possible, or being possible in the implementation,

does not imply the analog in language users' perception or

interpretation.

Categorize continuum with respect to
pb52

terms = {"vowel" : ["FOOT", "STRUT"]}
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choices_mcont = multicat(
mcont,
excloud,
catslist,
dimsvals,
cval,
exclude_self = True,
N = 1,
fc = terms)

print(choices_mcont)

   step        z0        z1        z2         z3 typeChoice  t
ypeProb  \
0     1  1.208595  4.347787  8.636553  13.766756          m  0
.998427   
1     2  1.193577  4.621449  8.795152  13.830121          m  0
.998456   
2     3  1.178560  4.895111  8.953751  13.893486          m  0
.998329   
3     4  1.163542  5.168773  9.112350  13.956851          m  0
.995452   
4     5  1.148524  5.442435  9.270949  14.020215          m  0
.998454   
5     6  1.133507  5.716097  9.429548  14.083580          m  0
.999070   
6     7  1.118489  5.989758  9.588147  14.146945          m  0
.999296   

  vowelChoice  vowelProb  
0        FOOT   0.975880  
1        FOOT   0.994435  
2        FOOT   0.972424  
3       STRUT   0.555092  
4       STRUT   0.978905  
5       STRUT   0.976005  
6       STRUT   0.943317  

Categorical perception plot

The plot below shows the results of our simulated 2AFC identification

task. On the X-axis is the continuum from FOOT (step 1) to STRUT

(step 7). On the Y-axis is the probability of categorization as FOOT

(rather than STRUT), which is taken as analagous to the proportion of

FOOT responses in an experiment.

A dotted line is printed at 0.5, or roughly chance. Above this line,
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"FOOT" is a more likely response than "STRUT". We can consider the

point along the continuum at which the curve crosses this line as the

boundary between "FOOT" and "STRUT".

p = cpplot(datalist = choices_mcont,
cat = "vowel",
xax = "step",
datanames = ["m averages"]

)
p.set(title = "Results of simulated forced choice task")
plt.show()

Repeat this process with average woman
values

Repeating the process with the average woman values demonstrates

the need for care and transparency in how the "forced choice" aspect

of the text is simulated.

For the man continuum, the probability was always above 0.5. For the

w values, this won't be the case.

start = {"type" : "w", "vowel" : "FOOT"} # Step 1
end = {"type" : "w", "vowel" : "STRUT"} # Step n
steps = 7 # Number of steps in continuum

wcont = continuum(datasumm, start, end, dimslist, steps, stimdetails
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choices_wcont = multicat(
wcont,
excloud,
catslist,
dimsvals,
cval,
exclude_self = True,
N = 1,
fc = terms)

print(choices_wcont)

   step       z0        z1         z2         z3 typeChoice  t
ypeProb  \
0     1  2.32341  4.636707   9.405672  14.947067          w  0
.958173   
1     2  2.30292  5.019998   9.615083  14.981178          w  0
.977810   
2     3  2.28243  5.403288   9.824495  15.015290          w  0
.980696   
3     4  2.26194  5.786579  10.033906  15.049401          w  0
.960333   
4     5  2.24145  6.169870  10.243318  15.083513          w  0
.961737   
5     6  2.22096  6.553161  10.452729  15.117624          w  0
.990411   
6     7  2.20047  6.936452  10.662141  15.151736          w  0
.983766   

  vowelChoice  vowelProb  
0        FOOT   0.974100  
1        FOOT   0.992542  
2        FOOT   0.607590  
3        FOOT   0.280120  
4       STRUT   0.767191  
5       STRUT   0.994830  
6       STRUT   0.994342  

At step 4, there is only a 0.28 probability that the vowel will be

classified as FOOT. Although we expect to see uncertainty at the most

ambiguous point along the continuum, this is an unusually low value

for any winning category label.

In fact, PALM, not FOOT, was the label with the highest probability. To

see this, let's turn off the forced choice parameter with fc = None
(or by simply not providing the argument).
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choices_wcont_2 = multicat(
wcont,
excloud,
catslist,
dimsvals,
cval,
exclude_self = True,
N = 1,
fc = None) # Turn off the forced choice terms

print(choices_wcont_2)

   step       z0        z1         z2         z3 typeChoice  t
ypeProb  \
0     1  2.32341  4.636707   9.405672  14.947067          w  0
.958173   
1     2  2.30292  5.019998   9.615083  14.981178          w  0
.977810   
2     3  2.28243  5.403288   9.824495  15.015290          w  0
.980696   
3     4  2.26194  5.786579  10.033906  15.049401          w  0
.960333   
4     5  2.24145  6.169870  10.243318  15.083513          w  0
.961737   
5     6  2.22096  6.553161  10.452729  15.117624          w  0
.990411   
6     7  2.20047  6.936452  10.662141  15.151736          w  0
.983766   

  vowelChoice  vowelProb  
0        FOOT   0.974100  
1        FOOT   0.992542  
2        FOOT   0.607590  
3        PALM   0.624499  
4       STRUT   0.767191  
5       STRUT   0.994830  
6       STRUT   0.994342  

p = cpplot([choices_wcont, choices_wcont_2],
"vowel",
xax = "step",
datanames = ["fc on", "fc off"])

p.set(title = "Results of simulated forced choice task")
plt.show()

----- Hey! -----
Stimulus 4
in dataset fc off
was categorized as PALM
with probability 0.62
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Repeat the process for all 3 types

Next

continuum_is = {"vowel" : ["FOOT", "STRUT"]}
grouping = {"type" : ["w", "c", "m"]}
steps = 7
dimsvals = {'z0' : 1,

'z1' : .761,
'z2' : .681,
'z3' : .407}

dimslist = list(dimsvals.keys())
catslist = ['vowel']
cval = 25
excloud = pb52.copy()

# unpack variables
contcat = list(continuum_is.keys())[0]
start = continuum_is[contcat][0]
end = continuum_is[contcat][1]
groupingcat = list(grouping.keys())[0]
labellist = grouping[groupingcat]

datsumm = datasummary(excloud, ['type','vowel'], dimslist)
datalist = []

for l in labellist:
# get start and end rows
strt = {contcat : start, groupingcat : l}
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nd = {contcat : end, groupingcat : l}
# make continuum
cnt = continuum(datsumm, strt, nd, dimslist, steps = steps
# make choices
chs = multicat(cnt, excloud, catslist, dimsvals, cval,

exclude_self = True, N = 1, fc = None)
datalist.append(chs)

p = cpplot(datalist = datalist,
cat = "vowel",
xax = "step",
datanames = labellist)

p.set(title = "Results of simulated forced choice task")
plt.show()

----- Hey! -----
Stimulus 4
in dataset w
was categorized as PALM
with probability 0.62

And let's visualize the continua for good measure

labix = 0
for d in datalist:

# get the name of the dataset
lab = labellist[labix]
pl = sns.scatterplot(x = 'z2', y = 'z1', data = d, label =
# Label points
for line, row in d.iterrows():

pl.text(d['z2'][line]+0.1, d['z1'][line], d['step'][line
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labix += 1
pl.invert_yaxis()
pl.invert_xaxis()
plt.title("Continua by speaker type, formant values in Bark")
plt.show()
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Priming and Resonance
%load_ext autoreload
import ExemPy
from ExemPy import *
from ExemPy.utils import *
from ExemPy.viz import *
from ExemPy.GCM import *
%aimport ExemPy, ExemPy.utils, ExemPy.viz, ExemPy.GCM
%autoreload 1
import math
import random
import matplotlib.pyplot as plt
#%matplotlib inline
import numpy as np
import pandas as pd
from pandas import DataFrame
from scipy.optimize import minimize
import seaborn as sns
sns.set(style='ticks', context='notebook')
colors=["#e3c934","#68c4bf","#c51000","#287271"]
sns.set_palette(colors)

The autoreload extension is already loaded. To reload it, use:
  %reload_ext autoreload

# Read in data
pb52 = pd.read_csv('pb52_data//pb52.csv')
pb52 = HzToBark(pb52,["F0", "F1", "F2", "F3"])

# Set parameters
w1 = {'z0' : 0.10, 'z1' : 0.37, 'z2' : 0.23, 'z3' : 0.29}
w2 = {'z0' : 0.17, 'z1' : 0.46, 'z2' : 0.22, 'z3' : 0.15}
w3 = {'z0' : 0.27, 'z1' : 0.16, 'z2' : 0.15, 'z3' : 0.25}
w4 = {'z0' : 0.14, 'z1' : 0.35, 'z2' : 0.26, 'z3' : 0.21}
w5 = {'z0' : 1, 'z1' : .761, 'z2' : .681, 'z3' : .407}

wlist = [w1, w2, w3, w4, w5]

dimsvals = w1
dimslist = list(dimsvals.keys())
catslist = ['type', 'vowel']
cval = 25
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exemplars = pb52
test = pb52

thestim = pb52.loc[(pb52['speaker']==47) & (pb52['vowel']=='FOOT'

print(thestim)

    type gender  speaker vowel  repetition   F0   F1    F2    
F3        z0  \
935    w      f       47  FOOT           2  205  570  1200  29
70  2.008591   

           z1        z2         z3  
935  5.510198  9.651013  15.621258  

# Get probabilities in normal categorization task
prlist = []
choicelist = []
for w in wlist:

exemplars = exclude(exemplars, thestim,
exclude_self = True,
alsoexclude='speaker')

exemplars = reset_N(exemplars, N = 1)
bigdf = activation(thestim, exemplars,

dimsdict = w, c = cval)
pr = probs(bigdf, catslist)
pr['vowel']=np.round(pr['vowel'],3)
prlist.append(pr)
choices = choose(pr, thestim, catslist)
choicelist.append(choices)

prlist
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[{'type':   type  probability
  0    c     0.582884
  1    m     0.085716
  2    w     0.331400,
  'vowel':      vowel  probability
  0    DRESS        0.000
  1   FLEECE        0.000
  2     FOOT        0.419
  3    GOOSE        0.033
  4      KIT        0.000
  5    NURSE        0.000
  6     PALM        0.023
  7    STRUT        0.134
  8  THOUGHT        0.390
  9     TRAP        0.000},
 {'type':   type  probability
  0    c     0.300413
  1    m     0.252053
  2    w     0.447534,
  'vowel':      vowel  probability
  0    DRESS        0.000
  1   FLEECE        0.000
  2     FOOT        0.271
  3    GOOSE        0.058
  4      KIT        0.000
  5    NURSE        0.000
  6     PALM        0.141
  7    STRUT        0.266
  8  THOUGHT        0.264
  9     TRAP        0.000},
 {'type':   type  probability
  0    c     0.199046
  1    m     0.010684
  2    w     0.790270,
  'vowel':      vowel  probability
  0    DRESS        0.000
  1   FLEECE        0.000
  2     FOOT        0.368
  3    GOOSE        0.041
  4      KIT        0.000
  5    NURSE        0.000
  6     PALM        0.054
  7    STRUT        0.340
  8  THOUGHT        0.196
  9     TRAP        0.000},
 {'type':   type  probability
  0    c     0.350119
  1    m     0.192685
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  2    w     0.457196,
  'vowel':      vowel  probability
  0    DRESS        0.000
  1   FLEECE        0.000
  2     FOOT        0.369
  3    GOOSE        0.053
  4      KIT        0.000
  5    NURSE        0.000
  6     PALM        0.082
  7    STRUT        0.270
  8  THOUGHT        0.226
  9     TRAP        0.000},
 {'type':   type  probability
  0    c     0.136430
  1    m     0.033758
  2    w     0.829812,
  'vowel':      vowel  probability
  0    DRESS        0.000
  1   FLEECE        0.000
  2     FOOT        0.440
  3    GOOSE        0.044
  4      KIT        0.000
  5    NURSE        0.000
  6     PALM        0.073
  7    STRUT        0.370
  8  THOUGHT        0.073
  9     TRAP        0.000}]

# Get activation plot for normal categoriztaion
exemplars = exclude(exemplars, thestim,

exclude_self = True,
alsoexclude='speaker')

exemplars = reset_N(exemplars, N = 1)
bigdf = activation(thestim, exemplars,

dimsdict = w2, c = cval)
a = getactiv(activxn = bigdf,

x='z2', y = 'z1',
cat='vowel')

pl = activplot(a=a, x='z2', y='z1',
cat='vowel', test=thestim,
invert = True)
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# Set up dicts to refer to later
typebias = {"m":1,

"c":1,
"w":10}

vowelbias = {"DRESS" : 1,
"FLEECE" : 1,
"FOOT" : 100,
"GOOSE" : 1,
"KIT" : 1,
"NURSE" : 1,
"PALM" : 1,
"STRUT" : 1,
"THOUGHT" : 1,
"TRAP" : 1}

cat = "type"
catbias = typebias

# Get probabilities where N for w = 10
exemplars = exclude(exemplars, thestim,

exclude_self = True,
alsoexclude='speaker')

exemplars = bias_N(exemplars,
cat=cat, catbias=catbias)

134



bigdf = activation(thestim, exemplars,
dimsdict = w4, c = cval)

pr = probs(bigdf, catslist)
pr['vowel']=np.round(pr['vowel'],3)
a = getactiv(activxn = bigdf, x='z2', y = 'z1', cat='vowel')
pl = activplot(a=a, x='z2', y='z1', cat='vowel',

test=thestim, invert = True)
print(pr)

{'type':   type  probability
0    c     0.068453
1    m     0.037672
2    w     0.893875, 'vowel':      vowel  probability
0    DRESS        0.000
1   FLEECE        0.000
2     FOOT        0.474
3    GOOSE        0.012
4      KIT        0.000
5    NURSE        0.000
6     PALM        0.153
7    STRUT        0.201
8  THOUGHT        0.160
9     TRAP        0.000}

# Try out different numbers of bias towards women
cat = "type"
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aclist = [1,2,5,10,25]
for ac in aclist:

print(ac)
catbias = {"m":1, "c":1, "w":ac}
exemplars = exclude(exemplars, thestim, exclude_self = True
exemplars = bias_N(exemplars, cat=cat, catbias=catbias)
bigdf = activation(thestim, exemplars, dimsdict = w2, c =
pr = probs(bigdf, catslist)
pr['vowel']=np.round(pr['vowel'],3)
a = getactiv(activxn = bigdf, x='z2', y = 'z1', cat='vowel'
pl = activplot(a=a, x='z2', y='z1', cat='vowel', test=thestim
plt.show
print(pr)
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1
{'type':   type  probability
0    c     0.300413
1    m     0.252053
2    w     0.447534, 'vowel':      vowel  probability
0    DRESS        0.000
1   FLEECE        0.000
2     FOOT        0.271
3    GOOSE        0.058
4      KIT        0.000
5    NURSE        0.000
6     PALM        0.141
7    STRUT        0.266
8  THOUGHT        0.264
9     TRAP        0.000}
2
{'type':   type  probability
0    c     0.207534
1    m     0.174126
2    w     0.618340, 'vowel':      vowel  probability
0    DRESS        0.000
1   FLEECE        0.000
2     FOOT        0.293
3    GOOSE        0.040
4      KIT        0.000
5    NURSE        0.000
6     PALM        0.193
7    STRUT        0.199
8  THOUGHT        0.274
9     TRAP        0.000}
5
{'type':   type  probability
0    c     0.107670
1    m     0.090337
2    w     0.801993, 'vowel':      vowel  probability
0    DRESS        0.000
1   FLEECE        0.000
2     FOOT        0.317
3    GOOSE        0.021
4      KIT        0.000
5    NURSE        0.000
6     PALM        0.249
7    STRUT        0.127
8  THOUGHT        0.285
9     TRAP        0.000}
10
{'type':   type  probability
0    c     0.059750
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1    m     0.050132
2    w     0.890118, 'vowel':      vowel  probability
0    DRESS 0.000
1   FLEECE 0.000
2     FOOT 0.328
3    GOOSE 0.012
4      KIT 0.000
5    NURSE 0.000
6     PALM 0.276
7    STRUT 0.093
8  THOUGHT 0.290
9     TRAP 0.000}
25
{'type':   type  probability
0    c     0.025587
1    m     0.021468
2    w     0.952945, 'vowel':      vowel  probability
0    DRESS 0.000
1   FLEECE 0.000
2     FOOT 0.336
3    GOOSE 0.005
4      KIT 0.000
5    NURSE 0.000
6     PALM 0.296
7    STRUT 0.069
8  THOUGHT 0.294
9     TRAP 0.000}
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# Bias towards women
cat = "type"
catbias = {"m":1, "c":1, "w":10}
exemplars = exclude(exemplars, thestim,

exclude_self = True,
alsoexclude='speaker')

exemplars = bias_N(exemplars, cat=cat,
catbias=catbias)

bigdf = activation(thestim, exemplars,
dimsdict = w2, c = cval)

pr = probs(bigdf, catslist)
pr['vowel']=np.round(pr['vowel'],3)
a = getactiv(activxn = bigdf, x='z2', y = 'z1',

cat='vowel')
pl = activplot(a=a, x='z2', y='z1', cat='vowel',

test=thestim, invert = True)
plt.show
#print(pr)

<function matplotlib.pyplot.show(close=None, block=None)>
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# Bias towards men
cat = "type"
catbias = {"m":10, "c":1, "w":1}
exemplars = exclude(exemplars, thestim,

exclude_self = True,
alsoexclude='speaker')

exemplars = bias_N(exemplars, cat=cat,
catbias=catbias)

bigdf = activation(thestim, exemplars,
dimsdict = w2, c = cval)

pr = probs(bigdf, catslist)
pr['vowel']=np.round(pr['vowel'],3)
a = getactiv(activxn = bigdf, x='z2', y = 'z1',

cat='vowel')
pl = activplot(a=a, x='z2', y='z1', cat='vowel',

test=thestim, invert = True)
plt.show
#print(pr)

<function matplotlib.pyplot.show(close=None, block=None)>
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# Bias towards children
cat = "type"
catbias = {"m":1, "c":10, "w":1}
exemplars = exclude(exemplars, thestim,

exclude_self = True,
alsoexclude='speaker')

exemplars = bias_N(exemplars, cat=cat,
catbias=catbias)

bigdf = activation(thestim, exemplars,
dimsdict = w2, c = cval)

pr = probs(bigdf, catslist)
pr['vowel']=np.round(pr['vowel'],3)
a = getactiv(activxn = bigdf, x='z2', y = 'z1',

cat='vowel')
pl = activplot(a=a, x='z2', y='z1', cat='vowel',

test=thestim, invert = True)
plt.show
#print(pr)

<function matplotlib.pyplot.show(close=None, block=None)>
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rescat = "type"

exemplars = exclude(exemplars, thestim,
exclude_self = True,
alsoexclude='speaker')

exemplars = reset_N(exemplars, N=1)
bigdf = activation(thestim, exemplars,

dimsdict = w2, c = cval)
pr = probs(bigdf, catslist)

#resonate!!
for n in range(0,1):

edict = pr[rescat].set_index(rescat).to_dict()['probability'
exemplars['resterm'] = exemplars[rescat].map(edict) / (n+1
exemplars['N'] = exemplars['N'] + exemplars['resterm']
bigdf = activation(thestim, exemplars, dimsdict = w2, c =
pr = probs(bigdf, catslist)

pr['vowel']=np.round(pr['vowel'],3)
a = getactiv(activxn = bigdf, x='z2', y = 'z1', cat='vowel')
pl = activplot(a=a, x='z2', y='z1', cat='vowel',

test=thestim, invert = True)
plt.show
print(pr)
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{'type':   type  probability
0    c     0.288510
1    m     0.233064
2    w     0.478427, 'vowel':      vowel  probability
0    DRESS 0.000
1   FLEECE 0.000
2     FOOT 0.277
3    GOOSE 0.056
4      KIT 0.000
5    NURSE 0.000
6     PALM 0.150
7    STRUT 0.249
8  THOUGHT 0.268
9     TRAP 0.000}
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Voice responses 2022
Introduction

• Hi! I'm Emily Remirez, a PhD candidate in Linguistics at UC Berkeley 
• I'm seeking volunteers to help develop a listening experiment
• Your participation is a huge help!
• The survey should take under 10 minutes to complete

Instructions

• Please listen to the audio clips here: https://tinyurl.com/
4vs5zv2w and Pll out the table according to your !rst impression.

• Try to consider each statement and each voice separately, and not 
related to your previous responses.

• There is no limit to the number of times you can play the clip, but we 
really are looking for your very Prst gut instinct.

• Please listen only as many times as you need to give this Prst 
impression. Moving quickly gives me more useful information and 
also protects your time!

• Use the free response box after each table if there's anything else 
you'd like to say about the clip.

• You can skip any question you don't want to answer, but the more 
information you give me, the more helpful your response is!

A few more things!

• Your responses will be used to inform the design of a study, but will
not be themselves studied to draw generalizable conclusions about 
human behavior. That is, your responses will help make my research 
more effective, but your participation will not be the object of a 
research analysis.

• Tasks like these can make people uncomfortable. Many of us have
practiced not making assumptions about people. Sharing your gut 
instinct makes it possible to study this kind of assumption. Knowing 
more about problems helps solve them.

• Your participation is anonymous. Ratings will be aggregated and 
reported alongside the research in order to explain how we designed 
the experiment. At the end of the form, you'll have a chance to let us

Appendix 3: Norming Questionnaire

144

https://tinyurl.com/4vs5zv2w
https://tinyurl.com/4vs5zv2w
https://tinyurl.com/4vs5zv2w
https://tinyurl.com/4vs5zv2w


Audio clips 1/2: A-D

The audio Ples are linked in this Google Slides presentation: https://
tinyurl.com/4vs5zv2w; you can also access the folder here: https://
tinyurl.com/ydwpdtb8 

(To keep your participation anonymous, you may wish to access the Ples in a 
private browsing window or while signed out of any google accounts!)

know whether it's okay to reproduce any of your free response 
comments.

Sections

1. Audio clips A-D
2. Audio clips E-H
3. A bit about you
4. Wrap-up
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1.

Mark only one oval per row.

A

1 - Not
at all
likely
to be
true

2 -
More
likely
to be
false
than
true

3 -
More
likely
to be
true
than
false

4 -
Very
likely
to be
true

Decline
to

answer

This person
has been
described as
an incuencer

This person
has been
described as
"chill"

This person
surfs and/or
skates

I would be
friends with
this person

This person
has been
described as
a "Valley Girl"

This person
is a
millennial /
gen Y

This person
has been
described as
an incuencer

This person
has been
described as
"chill"

This person
surfs and/or
skates

I would be
friends with
this person

This person
has been
described as
a "Valley Girl"

This person
is a
millennial /
gen Y
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2.

This person
is gen Z

This person
has been
described as
a "business
professional"

This person
is from
California

This person
has been
described as
"White"

This is a real
person and
not a robot

This person
is from the
Midwest

This person
is gen Z

This person
has been
described as
a "business
professional"

This person
is from
California

This person
has been
described as
"White"

This is a real
person and
not a robot

This person
is from the
Midwest

Comments about clip A
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17.

Check all that apply.

Southern California / SoCal

SF Bay Area

California

"The West Coast"

"The East Coast"

"The South"

"The Midwest"

"The Northeast"

Another part of the USA (as you dePne it!)

Outside of the USA

A place where it's *not* common to engage with (social) media from
the USA

A bit about you

This information will help me contextualize responses. Often, the way we 
would respond to questions like those above depends on our own history. 
Knowing a bit about you will help me identify these patterns that may be 
relevant for my study.

Think about the places you consider "home" in some way. 
For me, this includes: the cities in Texas where I was raised and
went to college, and Berkeley, CA, where I've lived for about 7
years. It doesn't include the city in Michigan where I lived for 3
months.

Which term(s) describe those places?
I would check: SF Bay Area, California, The West Coast, and The
South
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18.

Mark only one oval.

Other:

Yes

No

Unsure

19.

Other:

Check all that apply.

Someone has used it to describe me

I would use it to describe myself

The "girl" part of the term doesn't resonate with me, but the "valley"
part does

It has mostly positive or neutral connotations for the majority of
people similar to me

It has mostly positive or neutral connotations for the majority of
people different from me

It's mostly used tongue-in-cheek or ironically

It isn't used very commonly

I have never heard it before in my life!

Would you describe yourself as "online" or participating in "Internet
culture"?

Which of the following statements about the term "Valley Girl" would
you more or less agree with?
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20.

21.

Mark only one oval.

Sure, you can reprint my comments!

No, please don't reproduce any of my comments!

22.

Many thanks!!

Do you think certain people use this term more than others? Do you
have any thoughts about who uses it?

Is it okay to quote your comments in order to explain the design of
the experiment? (Your participation will remain anonymous.)

Any final thoughts?
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Your participation makes my work possible. As a thank you for your time,
I'd like you to send you a copy of my zine about linguistic variation and
spoken language perception. If you'd like to receive a copy, you can
complete this separate form to give me your contact information. Your
participation will remain anonymous, and your address will be deleted
once your zine is in the mail. 
Zine website
Send me your address

This content is neither created nor endorsed by Google.
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