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Abstract. We associate two modules, the G-parking critical module and the toppling crit-
ical module, to an undirected connected graph G. The G-parking critical module and the
toppling critical module are canonical modules (with suitable twists) of quotient rings of
the well-studied G-parking function ideal and the toppling ideal, respectively. For each crit-
ical module, we establish a Tutte-like short exact sequence relating the modules associated
to G, an edge contraction G/e and an edge deletion G \ e (e is a non-bridge). We obtain
purely combinatorial consequences of Tutte short exact sequences. For instance, we reprove
a theorem of Merino that the critical polynomial of a graph is an evaluation of its Tutte poly-
nomial, and relate the vanishing of certain combinatorial invariants (the number of acyclic
orientations on connected partition graphs satisfying a unique sink property) of G/e to the
equality of the corresponding invariants of G and G \ e.
Keywords. Tutte polynomials, chip firing games, toppling ideals,G-parking function ideals,
canonical modules
Mathematics Subject Classifications. 13D02, 05E40

1. Introduction

LetG be an undirected, connected, multigraph on n-vertices labelled v1, . . . , vn and with ` loops.
Let K be a field and R = K[x1, . . . , xn] be the polynomial ring in n variables with coefficients
in K. The toppling ideal IG of R is a binomial ideal that encodes chip firing equivalence on G
[CRS00] and the G-parking function ideal MG is a monomial initial ideal of IG that closely
mirrors the properties of IG [PS04]. The ideals IG and MG (and their quotient rings) have
received significant attention recently, in part due to their connections with tropical geome-
try. Combinatorial commutative algebraic aspects of R/IG and R/MG such as their minimal
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and ICTP, Trieste. We thank the generous support and the warm hospitality of these institutes. The author was
supported by a MATRICS grant of the Department of Science and Technology (DST), India.
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free resolutions in terms of the underlying graph G have been studied from several perspectives
[PPW11, MS13, MSW15, DS14, MS16].

Both R/IG and R/MG are Cohen–Macaulay (of depth and Krull dimension one) and hence,
have associated canonical modules (also known as dualising modules) [BH98, Part b, Propo-
sition 3.6.12]. We refer to the canonical modules of R/IG and R/MG (both twisted by the
number of loops of G) as the toppling critical module and the G-parking critical module, re-
spectively. We denote the toppling critical module and theG-parking critical module by CToppG
and CParkG, respectively. In this article, we posit that the critical modules behave better com-
pared to the corresponding quotient rings in certain contexts. Specifically, we construct short
exact sequences relating the critical modules of G, its contraction G/e and deletion G \ e by an
edge e that is not a bridge 1. Taking cue from the deletion-contraction sequence that characterises
the Tutte polynomial of a graph, we refer to these sequences as Tutte short exact sequences.

We present purely combinatorial consequences of Tutte short exact sequences. For instance,
as a corollary we obtain an algebraic proof of a theorem of Merino [Mer97] that the critical poly-
nomial of a graph is an evaluation of its Tutte polynomial. This follows from the additivity of the
Hilbert series of the modules involved in one of the Tutte short exact sequences, namely the G-
parking Tutte short exact sequence. By considering associated long exact sequences of Tor, we
relate the vanishing of certain combinatorial invariants of G/e to the equality of corresponding
invariants ofG andG\ e. These combinatorial invariants are the number of acyclic orientations
satisfying a unique sink property on certain graphs derived from G called connected partition
graphs [MSW15, Pages 2854–2855]. We also note a deletion-contraction formula for certain
numbers associated to G called alternating numbers that are alternating sums of these combi-
natorial invariants.

The construction of the Tutte short exact sequences and the corresponding proofs involve a
delicate interplay between the algebraic structure of the critical modules and the combinatorial
structure of the graph, mainly its acyclic orientations. In the following, we state our main the-
orems concerning Tutte short exact sequences. Before this, we clarify one crucial point about
contraction and deletion of the edge e.

The notions G/e, G \ e and G/(vi, vj): Suppose that there are me > 1 edges between v1
and v2. By G/e, we mean the graph obtained from G by contracting the vertices v1 and v2 to
the vertex v1,2 and with me − 1 loops on the vertex v1,2. By G \ e, we mean the graph obtained
fromG by deleting the edge e and retaining all the otherme−1 edges parallel to e. On the other
hand, by G/(vi, vj) for a pair of distinct, adjacent vertices (vi, vj) we mean the graph obtained
by contracting every edge between vi and vj .

1.1. Tutte short exact sequences

Let e be an edge between the vertices v1 and v2 that is not a bridge. LetRe be the polynomial ring
K[x1,2, x3, . . . , xn] in (n− 1)-variables with coefficients in K so that its variables are naturally
in correspondence with the vertices of G/e.

1This condition ensures that G \ e remains connected and is needed to guarantee that resulting coordinate ring
retains some basic properties. For instance, ifG is not connected, then the quotient ring of the toppling ideal defined
analogously does not have Krull dimension one.
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G-parking Tutte short exact sequence: We construct a short exact sequence relating the G-
parking critical modules of G, its contraction G/e and deletion G \ e with respect to the edge e.
By definition, the G-parking critical modules of G and G \ e are R-modules, whereas the G-
parking critical module of G/e is an Re-module. We start by realising CParkG and CParkG\e
as Re-modules. For this, we consider the linear form L := x1 − x2 and note that Re

∼= R/〈L〉
via a map between R and Re that takes x1 and x2 to x1,2 and xi to itself for all i 6= 1, 2. This
isomorphism realises Re as an R-module. We consider the tensor products CParkG ⊗R Re and
CParkG\e⊗RRe asRe-modules. We defineRe-module maps ψ0 : CParkG/e → CParkG⊗RRe

and φ0 : CParkG ⊗R Re → CParkG\e ⊗R Re. We denote the map CParkG/e/ker(ψ0) →
CParkG⊗RRe induced by ψ0 also by ψ0. We show that ψ0 and φ0 fit into a short exact sequence.
More precisely,

Theorem 1.1 (G-parking Tutte short exact sequence). Let G be an undirected connected multi-
graph (possibly with loops) with at least three vertices. Let e be an edge between the vertices v1
and v2 that is not a bridge. The kernel of the map ψ0 is equal to x1,2 ·CParkG/e and the following
sequence of Re-modules:

0→ CParkG/e/(x1,2 · CParkG/e)
ψ0−→ CParkG ⊗R Re

φ0−→ CParkG\e ⊗R Re → 0

is a short exact sequence of graded Re-modules.

Toppling Tutte short exact sequence: The toppling critical module CToppG/e is by definition
an Re-module (rather than an R-module). In contrast, CToppG and CToppG\e are by definition
R-modules. We start by realising CToppG and CToppG\e as Re-modules. For this, we realize
Re as an R-module via the same isomorphism Re

∼= R/〈L〉 as in theG-parking case and regard
CToppG⊗RRe and CToppG\e⊗RRe asRe-modules. Hence, CToppG⊗RRe and CToppG\e⊗R
Re are Re-modules. We define Re-module maps ψ1 : CToppG/e → CToppG ⊗R Re and
φ1 : CToppG ⊗R Re → CToppG\e ⊗R Re. We also denote by ψ1, the injective map
CToppG/e/ker(ψ1)→ CToppG ⊗R Re induced by ψ1.

Theorem 1.2 (Toppling Tutte short exact sequence). LetK be a field of characteristic two. LetG
be an undirected connected multigraph (possibly with loops) with at least three vertices. Let e
be an edge in G between v1 and v2 that is not a bridge. The following sequence of Re-modules:

0→ CToppG/e/ker(ψ1)
ψ1−→ CToppG ⊗R Re

φ1−→ CToppG\e ⊗R Re → 0 (1.1)

is a short exact sequence of graded Re-modules.

Remark 1.3. The G-parking Tutte short exact sequence is not split exact in general. To see this,
suppose that e has parallel edges then both CParkG⊗R Re and CParkG\e⊗R Re have the same
number of minimal generators. If the corresponding Tutte short exact sequence was split exact,
then we would have β0(CParkG ⊗R Re) = β0(CParkG\e ⊗R Re) + β0(CParkG/e) which is not
true. We do not know whether the toppling short exact sequence is split exact.
Remark 1.4. Note that unlike the case of theG-parking critical module, (x1−x2) is never a non-
zero divisor of CToppG for any connected graphG. This can be seen by showing the equivalent
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property that (x1 − x2) is a zero divisor of R/IG which in turn follows from the fact that G has
a principal divisor, see [BN07, Page 768] for the definition, of the form d · (v1) − d · (v2) for
some positive integer d. The kernel of ψ1 is also in general more complicated in this case (see
the last line of Example 2.2): in general, it only strictly contains x1,2 · CToppG/e.
Remark 1.5. We expect that Theorem 1.2 does not require characteristic two and believe that it
can be generalised to arbitrary ground fields. We rely on characteristic two in, for instance, the
proof of Proposition 5.7.

1.2. Motivation and applications

Two sources of motivation for the Tutte short exact sequence are i. Merino’s theorem [Mer97]
and its connection to Stanley’s O-sequence conjecture [Mer01], ii. divisor theory on graphs
[BN07].

Merino’s theorem states that the generating function of the critical configurations of G is an
evaluation of the Tutte polynomial at (1, t). The first observation that relates the critical modules
to Merino’s theorem is that their Hilbert series are both equal to PG(t)/(1 − t), where PG(t)
is the generating function of the critical configurations of G (this is implicit in [MS13], also
see Remark 6.4). This leads to the question of whether Merino’s theorem can be enriched into a
short exact sequence of critical modules. Merino’s theorem can then be recovered from this short
exact sequence from the fact that the Hilbert series is additive in short exact sequences. Such a
short exact sequence might then allow the possibility of obtaining further combinatorial results
by, for instance, considering the associated long exact sequence of Tor, Ext and other derived
functors. The G-parking Tutte short exact sequence is such an enrichment and can be viewed as
a categorification of Merino’s theorem. By studying the associated long exact sequence in Tor,
we relate certain combinatorial invariants ofG/e to those ofG andG\e. We refer to [HR05] and
[JR06] for a categorification of the chromatic polynomial and the Tutte polynomial of a graph,
respectively. These works seem to be a different flavour from the current work.

Merino’s theorem is a key ingredient in the proof of Stanley’sO-sequence conjecture for co-
graphic matroids [Mer01]. Stanley’s conjecture is still open for arbitrary matroids. We raise the
question of exploring generalisations of the main results of this paper to matroids as a possible
approach to Stanley’s conjecture.

Merino’s theorem via Tutte short exact sequences: As an application of theG-parking Tutte
short exact sequence, we deduce the following version of Merino’s theorem as a corollary to
Theorem 1.1. Recall that the K-polynomial of a finitely generated graded module over the
(graded) polynomial ring is the numerator of the Hilbert series expressed as a rational function
in reduced form.

Theorem 1.6 (Merino’s theorem). The K-polynomial of CParkG is the Tutte evaluation
TG(1, t), where TG(x, y) is the Tutte polynomial of G.

Next, we note a deletion-contraction formula for alternating sums of the graded Betti num-
bers βi,j which is an immediate consequence of Merino’s theorem but does not seem to appear
in literature.
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A deletion-contraction formula for alternating numbers: For an integer k, let
Ak =

∑
i(−1)iβi,k be the k-th alternating number of H . We have the following deletion-

contraction formula for the numbers Ak:

Proposition 1.7 (Deletion-contraction for alternating numbers). The numbersAk(G) satisfy the
following formula:

Ak(G) +Ak−1(G/e) = Ak(G/e) +Ak(G \ e). (1.2)

Example 1.8. Suppose G is a triangle with vertices v1, v2 and v3 and let e = (v1, v2). The
associated numbers are the following.

Ak(G) = Ak(G/e) = Ak(G \ e) = 0 for k < 0.
A0(G) = 2,A1(G) = −3,A2(G) = 0,A3(G) = 1, Ak(G) = 0 for k > 4,.
A0(G/e) = 1,A1(G/e) = 0,A2(G/e) = −1, Ak(G/e) = 0 for k > 3.
A0(G \ e) = 1,A1(G \ e) = −2,A2(G \ e) = 1, Ak(G \ e) = 0 for k > 3.

Note that Formula (1.2) is satisfied for various values of k.

Note that A0(H) is the number of acyclic orientations on H with a unique sink at v2 and
A−1(H) = 0. Hence, as a corollary we obtain the familiar formula:

A0(G) = A0(G/e) +A0(G \ e).

Equality of Betti numbers of G and G \ e in terms of vanishing of Betti numbers of G/e:
LetH be an undirected, connected, multigraph with n vertices, m edges and ` loops. Following
[MSW15, Page 2854], a connected i-partition of H is a partition Π = {V1, . . . , Vi} of its vertex
set of size i such that the subgraph induced by each subset is connected. The connected parti-
tion graph associated to this partition Π is the multigraph with Π as its vertex set and with âi,j
edges between Vi and Vj , where au,v is the number of edges between vertices u and v of G and
âi,j =

∑
u∈Vi,v∈Vj au,v. We define βi,j+`(H) to be the number of acyclic orientations on con-

nected partition graphs ofH of size n−i, withm−j edges and with a unique sink at the partition
containing v2 (or any other fixed vertex). Note that from [MSW15] and the graded version of
[BH98, Corollary 3.3.9], we know that these are the graded Betti numbers of both CParkH and
CToppH (see Proposition 6.5 ).

Theorem 1.9. LetG be an undirected connected graph (with possible loops) and let e be an edge
of G that is not a bridge. For any (i, j) ∈ Z2, if βi,j(G/e) = βi−1,j−1(G/e) = βi−1,j(G/e) =
βi−2,j−1(G/e) = 0, then βi,j(G) = βi,j(G \ e).

Example 1.10. Suppose that G is a triangle with vertices v1, v2 and v3 and let e = (v1, v2). The
Betti numbers are the following:

β0,0(G) = 2, β1,1(G) = 3, β2,3(G) = 1,

β0,0(G/e) = 1, β1,2(G/e) = 1,

β0,0(G \ e) = 1, β1,1(G \ e) = 2, β2,2(G \ e) = 1.
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For (i, j) = (2, 4) the hypothesis of Theorem 1.9 are all satisfied and we have β2,4(G) =
β2,4(G \ e) = 0. We currently do not know of examples where the hypothesis of Theorem 1.9
are satisfied and βi,j(G) = βi,j(G \ e) 6= 0.

At the time of writing, we do not know of a combinatorial proof of Theorem 1.9.

Connections to divisor theory and related sequences: The toppling critical module has an
interpretation in terms of divisor theory of graphs. This connection is implicit in [MS13]. The
punchline is that the Hilbert coefficients of the toppling critical module CToppG count linear
equivalence classes of divisorsD whose rank ofD is equal to the degree ofD minus g, where g
is the genus of the graph (recall that g = m − n + 1, where m, n are the number of edges and
vertices, respectively of G). It seems plausible that the toppling Tutte short exact sequence also
has analogous combinatorial applications: one difficulty in this direction seems to be that the
kernel of the map ψ1 does not seem to have a simple description.

Short exact sequences in the same spirit as the Tutte short exact sequences have appeared in
literature. For instance, [OT92, Proposition 3.4] construct a deletion-restriction short exact se-
quence of Orlik–Solomon algebras of (central) hyperplane arrangements. We leave the question
of relating the deletion-restriction short exact sequence associated to the graphical arrangement
to the Tutte short exact sequences in this paper as a topic for further work. In a related direc-
tion, Dochtermann and Sanyal [DS14] use the graphical hyperplane arrangement to compute
the minimal free resolution of theG-parking function ideal. This work has been extended to the
toppling ideal by Mohammadi and Shokrieh [MS16].

2. The maps and proof sketch

In this section, we describe the maps ψi, φi and sketch the proofs of Theorem 1.1 and Theorem
1.2. The maps arise naturally from the combinatorial interpretation of the minimal generators
of the (toppling and G-parking) critical modules.

A key input to this is the combinatorial description of the minimal generators and the first
syzygies, i.e., a generating set for the relations between the minimal generators, of the critical
modules implicit in [MSW15]. We summarise this description here.

The minimal generators of CParkG are in bijection with acyclic orientations on G with a
unique sink at v2. The minimal generators of CToppG are in bijection with equivalence classes
of acyclic orientations on G defined as follows [BN07].

Given an acyclic orientation A on G, consider the divisor:

DA =
∑
v

(outdegA(v)− 1)(v),

where outdegA(v) is the outdegree of v with respect to the acyclic orientation A. Define an
equivalence class on the set of acyclic orientations on G by declaring two acyclic orientations
as equivalent if their associated divisors are linearly equivalent [BN07, Section 1.6]. Given an
acyclic orientation onA, we denote its equivalence class by [A]. Once a vertex v2 say is fixed, [A]
has a canonical representative: the acyclic orientation with a unique sink at v2 that is equivalent
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to A. Such an acyclic orientation exists and is unique [BN07, Section 3.1]. Hence, the two
critical modules have the same number of minimal generators. We refer to these generating sets
as the standard generating sets. Furthermore, by the right exactness of the tensor product functor
they induce a generating set on theRe-modules CParkG⊗RRe and CToppG⊗RRe that we also
refer to as the standard generating sets.

The first syzygies of the critical modules have (minimal) generators that correspond to cer-
tain acyclic orientations on graphs obtained by contracting a pair of vertices that are connected
by an edge. We refer to these as the standard syzygies. Also, by the right exactness of the
tensor product functor, they induce a generating set of the first syzygies of the corresponding
Re-modules CParkG ⊗R Re and CToppG ⊗R Re that we refer to by the same terminology. We
refer to Subsection 3.3.2 for more details.

The maps ψ0 and φ0: We use the free presentation described above to define ψ0 and φ0. Let
me be the multiplicity of the edge e. The map ψ0 takes the minimal generator A on G/e cor-
responding to an acyclic orientation with a unique sink at v1,2 to xme−1

1,2 Ae+ ∈ CParkG ⊗R Re,
whereAe+ is the minimal generator corresponding to the acyclic orientation obtained by further
orienting e such that v1 is the source of e. We identify this minimal generator with the corre-
sponding acyclic orientation. Note that the resulting acyclic orientation also has a unique sink
at v2.

We turn to the definition of φ0. We distinguish between two cases: me = 1 and me > 1.
Consider the case where me = 1. Suppose A′ is an acyclic orientation on G with a unique

sink at v2, following [MSW15] we say that an edge of G is contractible on A′ if the orienta-
tion A′/e induced by A′ on G/e is acyclic. If e is not contractible on A′, then v1 must be a
source of at least one edge on A′/e and hence, A′ \ e has a unique sink at v2. The map φ0 is
defined as follows:

φ0(A′) =

{
A′ \ e, if the edge e is not contractible on A′,
0, otherwise.

Suppose that me > 1. We define φ0(A′) = A′ \ e for every standard generator A′ of
CParkG ⊗R Re. Note that apriori the maps ψ0 and φ0 are only candidate maps and their well-
definedness needs further argumentation. We will carry this out in Section 4.

The maps ψ1 and φ1: Suppose that A is an acyclic orientation on G/e. Let Ae+ and Ae−
be acyclic orientations on G obtained by further orienting e = (v1, v2) such that v1 and v2 is
the source of e, respectively. If e is a simple edge, then the map ψ1 takes the generator [A] of
CToppG/e corresponding to the class ofA to [Ae+ ] + [Ae− ] in CToppG⊗RRe. More generally,
if e is an edge of multiplicity me, then the map ψ1 takes the generator [A] of CToppG/e ⊗R Re

to xme−1
1,2 [Ae+ ] + xme−1

1,2 [Ae− ] in CToppG ⊗R Re.
Suppose that A′ is an acyclic orientation on G, let A′ \ e be the acyclic orientation on G \ e

induced byA′ i.e., by deleting the edge e. The map φ1 takes the generator [A′] of CToppG⊗RRe

to [A′ \ e] in CToppG\e ⊗R Re.
Note that the fact that the maps ψ1 and φ1 are well-defined requires proof. The proof of

well-definedness consists of two parts: i. showing that the maps do not depend on the choice
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of representatives of the classes [A] and [A′], ii. showing that they induce Re-module maps
ψ1 : CToppG/e → CToppG ⊗R Re and φ1 : CToppG ⊗R Re → CToppG\e ⊗R Re.

Next, we outline the proofs of Theorem 1.1 and Theorem 1.2. A philosophy that is adopted in
both these proofs is the following: “the critical module associated toG has the same structure as
those associated to bothG/e andG\e except that the contraction and deletion operations respec-
tively modify them slightly and the maps ψi and φi (for i = 0 and 1) capture this modification”.
Both the proofs consist of the following two parts.

1. The Complex property: In this step, we show that the sequence of modules in Theorem
1.1 and Theorem 1.2 is a complex of Re-modules. To this end, we verify that the image
of ψi is contained in the kernel of φi.

2. The Homology of the Tutte complex: We show that the homology of the G-parking
and the toppling Tutte complex is zero at every homological degree. In both cases, the
argument is straightforward in homological degrees zero and two.
The argument is more involved at homological degree one: we must show that kernel of
φi is equal to the image of ψi. In order to give a flavour of the argument, we outline the
argument for the toppling Tutte complex. The overall strategy is the same for theG-parking
Tutte complex.
The key step is to explicitly compute the kernel of φ1. We show that ker(φ1) =
{xme−1

1,2 [Ae+ ] + xme−1
1,2 [Ae− ]| over all acyclic orientations A on G/e}. For this, we use

the combinatorial description of the syzygies of the toppling critical module from Subsec-
tion 3.3.2. The basic idea is as follows: Suppose α ∈ ker(φ1) and that α =

∑
[A] p[A] · [A]

in terms of the standard generating set of CToppG⊗RRe. Since α ∈ ker(φ1) we know that∑
[A] p[A] ·φ1([A]) = 0 and gives a syzygy of CToppG\e⊗RRe. Hence, this syzygy can be

written as an Re-linear combination of the standard syzygies of CToppG\e ⊗R Re. Next,
comparing the standard syzygies of CToppG ⊗R Re and CToppG\e ⊗R Re, we conclude
that α is generated by the elements xme−1

1,2 [Ae+ ]+xme−1
1,2 [Ae− ] in CToppG⊗RRe. The key

idea behind comparing the standard syzygies of CToppG ⊗R Re and CToppG\e ⊗R Re

is that upon deleting the edge e, all the standard syzygies of CToppG ⊗R Re except the
ones corresponding to contracting the edge e carry over to CToppG\e ⊗R Re. We refer to
Proposition 5.7 for more details.

Remark 2.1. We use the terminology ψ0, ψ1 and φ0, φ1 to reflect the fact by using the fam-
ily IG,t from [MSW15] we can define a one parameter family of critical R-modules CG,t such
thatCG,0 = CParkG andCG,1 = CToppG. It seems plausible that there is a Tutte short exact se-
quence for the critical moduleCG,t that interpolates between the two Tutte short exact sequences
constructed here. The corresponding maps ψt and φt seem more involved and we leave this for
future work.

Example 2.2 (Triangle). Consider the case where G = K3 a complete graph on three vertices
labelled v1, v2, v3 and e = (v1, v2). The graphG/e is a multigraph on two vertices (v1,2, v3) with
two multiple edges and G \ e is a tree on three vertices with edges (v1, v3) and (v2, v3).
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v1 v2

v3

v1;2

v1 v2

v3

v1

v3
A

A0

v3

v2

Figure 2.1: Acyclic orientations corresponding to the minimal generators of the critical modules:
the case where G = K3. The acyclic orientations on the top left and top right are Ae+ and Ae−
respectively.

The G-parking critical module CParkG is generated by two elements Ae+ and Ae− labelled
by acyclic orientations shown in Figure 2.1 with the following relations (see Subsection 3.3.1
for more details):

x1 · Ae+ = 0,

x3 · Ae− = 0,

x3 · Ae+ + x1 · Ae− = 0.

Note that Re/MG/e and R/MG\e are Gorenstein. The G-parking critical module CParkG/e
is generated by one element A labelled by the acyclic orientation with sink at v1,2 shown in
Figure 2.1 with the relation:

x23 · A = 0.

The G-parking critical module CParkG\e is also generated by one element A′ labelled by the
acyclic orientation with unique sink at v2 shown in Figure 2.1 subject to relations:

x1 · A′ = 0,

x3 · A′ = 0.

The map ψ0 takes A to Ae+ and is well-defined since x23 · ψ0(A) = x23 · Ae+ = 0. Note
that this relation can be obtained from the defining relations of CParkG ⊗R Re as
−x1,2(x3 · Ae−) + x3(x3 · Ae+ + x1,2 · Ae−).
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The map φ0 takes Ae+ to zero and Ae− to A′ and is well-defined (preserves relations).
Furthermore, the sequence is a complex since φ0(ψ0(A)) = 0, the kernel of ψ0 contains

x1,2 · CParkG/e and the map φ0 is surjective.
Next, we give a flavour of the argument for short exactness. At the homological degree one,

the element x1,2 · Ae− is in the kernel of φ0. However, it is also in the image of ψ0 since from
the third defining relation of CParkG we have x1,2 · Ae− = −x3 · Ae+ = −x3 · ψ0(A) and is
hence, in the image of ψ0. We generalise this argument in Section 4. Furthermore, the kernel of
the map ψ0 turns to be precisely x1,2 · CParkG/e.

Merino’s theorem follows by noting that x1 − x2 is a regular element on CParkG and
CParkG\e and x1,2 is a regular element on CParkG/e and from the additivity of the Hilbert
series in short exact sequences. The Hilbert series of CParkG,CParkG/e and CParkG\e are
(2 + t)/(1 − t), (1 + t)/(1 − t) and 1/(1 − t). Hence, the Hilbert series of CParkG ⊗R Re,
CParkG/e/(x1,2 · CParkG/e) and CParkG\e ⊗R Re are 2 + t, 1 + t and 1, respectively.

The toppling critical module of G is also generated by two elements [Ae+ ] and [Ae− ] that
naturally correspond to equivalence classes of acyclic orientations Ae+ and Ae− shown in Fig-
ure 2.1, with the following relations ((see Subsection 3.3.2 for more details)):

x1 · [Ae+ ] + x2 · [Ae− ] = 0,

x2 · [Ae+ ] + x3 · [Ae− ] = 0,

x3 · [Ae+ ] + x1 · [Ae− ] = 0.

The toppling critical modules ofG/e is generated by one element [A] labelled by the equiva-
lence class of the acyclic orientationAwith sink at v1,2, as shown in Figure 2.1, with the relation:

(x23 + x21,2) · [A] = 0.

The toppling critical module ofG \ e is generated by one element [A′] labelled by the equiv-
alence class of the acyclic orientation A′, as shown in Figure 2.1, and with the relations:

(x1 + x3) · [A′] = 0,

(x3 + x2) · [A′] = 0.

Note that CToppG\e is isomorphic to R/〈x1 + x3, x3 + x2〉. The map ψ1 takes [A] to
[Ae+ ] + [Ae− ] and the map φ1 takes both [Ae+ ] and [Ae− ] to [A′]. A quick check shows that
these candidate maps are indeed well-defined. Furthermore, note that the element x3 · [A] is in
the kernel of ψ1 and is not contained in x1,2 · CToppG/e.

3. Preliminaries

In this section, we formally define the G-parking and toppling critical modules. Before this, we
briefly recall the corresponding ideals followed by a discussion on canonical modules. We also
discuss a characterisation of equivalent acyclic orientations and a criterion for well-definedness
of candidate maps between modules. They will be turn out to be useful in the forthcoming
sections.
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3.1. The G-parking function ideal and the toppling ideal

We start by defining theG-parking function ideal of a graph. Fix a vertex v2, say ofG. For each
non-empty subset S of vertices in V (G) \ {v2}, associate a monomial mS =

∏
vj∈S x

degS(vj)
j ,

where degS(vj) is the number of edges in G one of whose vertices is vj and the other vertex is
in the complement S̄ = V \ S of S. The G-parking function ideal MG (with respect to v2) is
defined as

MG = 〈mS| ∅ 6= S ⊆ V (G) \ {v2}〉.

Note that MG depends on the choice of a vertex and we take this vertex to be v2. For MG/e

(recall that e = (v1, v2)), we take this to be the vertex v1,2 (the vertex obtained by contracting v1
and v2).

The toppling ideal of a graph is a binomial ideal that captures the chip firing moves on G. It
has been studied in several works recently, for instance [PPW11], [MS13]. We briefly recall its
definition here. Let n > 2. Let QG = DG − AG be the Laplacian matrix of G, where AG is the
vertex-vertex adjacency matrix ofG andDG = diag(val(v1), . . . , val(vn)) is the diagonal matrix
with its diagonal entries as the valencies of the corresponding vertices. Let LG, the Laplacian
lattice of G, be the sublattice of Zn generated by the rows (or equivalently the columns) of QG.
Since the graph G is connected, the Laplacian matrix QG has rank n− 1. Hence, the lattice LG
also has rank n− 1 and is a finite index sublattice of the root lattice An−1. The toppling ideal IG
of G is the lattice ideal of the Laplacian lattice LG. By definition,

IG = 〈xu − xv| u, v ∈ Zn>0, u− v ∈ LG〉.

3.2. The canonical module of a graded ring

Recall from the introduction that both the critical modules are defined, up to a twist, as canonical
modules of certain quotients of the polynomial ring. Hence, we start by briefly recalling the
notion of canonical module of a graded ring. We refer to [BH98, Chapter 3] and [MS05, Chapter
13, Section 4] for a more detailed treatment of this topic. However, we only deal with the critical
modules in terms of their free presentations and these can be described in terms of the data of
the underlying graph. Hence, a reader may choose to skip this subsection (and in principle, also
the definition of the critical modules) and directly proceed to the free presentation of the critical
modules presented in the next subsection.

Let R be a graded ring with a unique homogenous maximal ideal m that is also maximal in
the usual (ungraded) sense and of Krull dimension κ. Following [BH98, Definition 3.6.8] an
R-module C is called a canonical module ωR of R if

ExtiR(R/m,C) ∼=

{
0, for i 6= κ,

R/m, otherwise.

Note that the isomorphisms above are homogenous isomorphisms. Note that the definition of a
canonical module does not guarantee its existence and is, in general, a subtle issue. By [BH98,
Proposition 3.6.9], a canonical module if it exists is unique up to homogenous isomorphism.
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The existence of a canonical module for the G-parking and toppling ideals follows from
the following facts. By Example [BH98, 3.6.10], the standard graded polynomial ring R =
K[x1, . . . , xn] over any field K is a Gorenstein ring and hence, has a canonical module: R(−n)
i.e., R twisted 2 by −n. Furthermore, from [BH98, Part (b), Proposition 3.6.12] it follows
that any Cohen–Macaulay, graded quotient ring of the graded polynomial ring has a canoni-
cal module. Since both R/IG and R/MG are graded Cohen–Macaulay rings of depth and di-
mension one ([PPW11, Proposition 7.3] and from their minimal free resolutions in [MSW15]),
they have canonical modules that are unique up to homogenous isomorphism. Furthermore,
by [BH98, Part (b), Proposition 3.6.12], the canonical module has an explicit description as
ExttR(R/I,R(−n)), where t is the height of I . Hence, the canonical module can be computed
by applying graded HomR( , R(−n)) to a minimal free resolution of R/I as an R-module and
taking the t-th homology of the resulting complex. In particular, the canonical module is iso-
morphic to the cokernel of the dual (with the appropriate twist) of the highest differential in the
minimal free resolution of R/I . Since the minimal free resolution of the toppling ideal and the
G-parking function ideal can be described in purely combinatorial terms, this leads to a combi-
natorial description of their canonical module. One point to note before moving to the definition
of the two critical modules is that we primarily regard the critical modules as (graded) modules
over the polynomial ring and not as modules over the corresponding quotient ring.

3.3. Critical modules and their free presentations

In this subsection, we define both the critical modules, and then discuss their free presentations.
Recall that ` is the number of loops of G.

Definition 3.1 (G-parking Critical Module). The G-parking critical module CParkG is defined
as ωR/MG

(`), where ωR/MG
is the canonical module ofR/MG andMG is theG-parking function

ideal of G.

Definition 3.2 (Toppling Critical Module). The toppling critical module CToppG is defined
as ωR/IG(`), where ωR/IG is the canonical module of R/IG and IG is the toppling ideal of G.

3.3.1 A free presentation of the G-parking critical module

We recall a free presentation of CParkG that is implicit in the minimal free resolution of MG

[MSW15, Section 4]. Recall that the minimal generators of CParkG are labelled by acyclic
orientations onGwith a unique sink at v2. The minimal first syzygies of CParkG are labelled by
acyclic orientations A on connected partition graphs G/(vi, vj) (where vi and vj are connected
by an edge) with a unique sink at the partition containing v2. We now describe the relation
corresponding to such a pair (A, G/(vi, vj)). Suppose thatA(vi,vj)+ andA(vi,vj)− are the acyclic
orientations on G obtained by further orienting every edge between vi and vj such that vi and vj
is the source respectively. Letmi,j be the number of edges between (vi, vj). Note that at least one

2Recall that for a graded R-module M, the i-th twist M(i) of M, for an integer i, is the R-module defined as
(M(i))j = Mi+j .
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of A(vi,vj)+ and A(vi,vj)− has a unique sink at v2. The relation corresponding to (A, G/(vi, vj))
is the following:

x
mi,j

i · A(vi,vj)+ , if j = 2 or A(vi,vj)− does not have a unique sink,
x
mi,j

j · A(vi,vj)− , if i = 2 or A(vi,vj)+ does not have a unique sink,
x
mi,j

i · A(vi,vj)+ + x
mi,j

j · A(vi,vj)− , otherwise.

See Example 2.2 for the case of a triangle. We refer to this relation as the standard syzygy
corresponding to the pair (A, G/(vi, vj)). We refer to each of the above three types of syzy-
gies as type one, two and three respectively. As mentioned in Subsection 3.2, the correctness
of this free presentation follows from the characterisation of the canonical module of R/MG

as Extn−1(R/MG, R(−n)).

3.3.2 A free presentation of the toppling critical module

In this subsection, we recall a free presentation of the toppling critical module CToppG, that
is also implicit in [MSW15, Section 3]. Recall that the toppling critical module has a minimal
generating set that is in bijection with the equivalence classes of acyclic orientations on G with
a unique sink at v2. This equivalence class is defined by declaring two acyclic orientations A1

and A2 to be equivalent if the associated divisors DA1 and DA2 are linearly equivalent. By [A],
we denote the minimal generator corresponding to the equivalence class of A.

In the following, we describe a minimal generating set for the first syzygies of CToppG.
This minimal generating set is in bijection with equivalence classes of acyclic orientations on
connected partition graphsPi,j ofG of size n−1. The graphPi,j is obtained by contracting a pair
of adjacent vertices (vi, vj) ofG i.e., by contracting all the edges between (vi, vj) simultaneously.
Note that the equivalence class of acyclic orientations onPi,j is defined as before by treatingPi,j
as a graph. This syzygy corresponding to the equivalence class of the acyclic orientation A
on Pi,j has the following explicit description. Suppose that A(vi,vj)+ and A(vi,vj)− are acyclic
orientations on G obtained from A by further orienting all edges between (vi, vj) such that the
source is vi and vj respectively. The syzygy corresponding to Pi,j is given by

x
mi,j

i [A(vi,vj)+ ] + x
mi,j

j [A(vi,vj)− ],

where mi,j is the number of edges between vi and vj . Note that we have assumed that K has
characteristic two. See [MSW15, Example 2.6] for example of the kite graph. We know from
[MSW15] that this does not depend on the choice of representatives in the equivalence class of
A. The corresponding argument is essentially the same as Lemma 5.1. In the following, we refer
to this minimal generating set and its syzygies as the standard generating set and the standard
syzygies for the critical module respectively.

Next, we extend the notion of standard generating set and standard syzygies to CToppG⊗RRe

as anRe-module. By the right exactness of the tensor product functor, we know that a generating
set for theRe-module CToppG⊗RRe and for its syzygies can be obtained from the correspond-
ing sets for CToppG by tensoring each element with 1 (the multiplicative identity of Re). We
refer to these sets as the standard generating set and the standard syzygies of CToppG ⊗R Re.
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The standard syzygies of CToppG ⊗R Re are obtained by replacing xi by x1,2 from the corre-
sponding elements in CToppG whenever xi is x1 or x2. The correctness of this free presentation
follows from the characterisation of the canonical module of R/IG as Extn−1(R/IG, R(−n)),
see Subsection 3.2 for more details.

3.4. Equivalence of acyclic orientations

Recall that we defined two acyclic orientations A1 and A2 on G to be equivalent if their as-
sociated divisors DA1 =

∑
v(outdegA1

(v) − 1)(v) and DA2 =
∑

v(outdegA2
(v) − 1)(v) are

linearly equivalent, where outdegAi
(v) is the outdegree of v with respect to the acyclic orienta-

tion Ai. The following characterisation of this equivalence in terms of reversal of a source or a
sink from [Mos72, Bac17] turns out be very useful. A source-sink reversal oppositely orients all
the edges incident on a source or a sink. It is immediate that the resulting orientation is acyclic
and is equivalent to the original one. The converse also holds.

Theorem 3.3. [Mos72, Bac17] Acyclic orientationsA1 andA2 are equivalent if and only there
is a sequence of source-sink reversals transforming A1 to A2.

This characterisation allows us to define a metric d on the set of equivalent acyclic orienta-
tions as follows:

d(A1,A2) is the minimum number of source or sink reversals transforming A1 to A2.

Note that d satisfies the metric axioms.

3.5. Criterion for well-definedness of candidate maps between modules

In this subsection, we record a criterion for the well-definedness of a candidate map f between
two finitely presented modules M1 and M2 over a commutative ring R. This criterion is well
known, we include proofs for completeness and easy access. The candidate map f is given by
specifying its image on a generating set of M1, and the modules M1 and M2 are given in terms
of a finite free presentation.

Proposition 3.4. The candidate map f is well-defined if and only if it preserves a generating set
of the first syzygy module of M1.

Proof. The direction⇒ is immediate. For the converse, noteM1
∼= Rn1/S1 andM2

∼= Rn2/S2,
where n1, n2 are the cardinalities of the corresponding generating sets and, S1 and S2 are the
first syzygy modules of M1 and M2 respectively (with respect to the chosen generating sets).
The map f is well-defined as a map between free modules i.e., f : Rn1 → Rn2 , we need to show
that it descends to a map on the corresponding quotients. For this, it suffices to show that the
image of f on S1 is contained in S2. Since, f takes a generating set of S1 to S2, it takes every
element of S1 to an element in S2.

We prove the well-definedness of the candidate maps ψ0, ψ1 and φ0, φ1 via Proposition
3.4 using the free presentation of the G-parking and toppling critical modules described in the
previous subsections. We also use the following method to construct module maps.
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Proposition 3.5. Suppose thatM1 andM2 are given as co-kernels of maps between free modules
G1

`1−→ F1 and G2
`2−→ F2 respectively, then the maps G1

%g−→ G2 and F1

%f−→ F2 between free
modules specify a unique homomorphism f : M1 →M2 if the diagram

G1 F1

G2 F2

`1

%g %f

`2

commutes.

Proof. It suffices to show that %f takes every element in the image of `1 to an element in the image
of `2. Hence, for an element b ∈ G1 consider %f (`1(b)) ∈ F2. Since the diagram commutes,
%f (`1(b)) = `2(%g(b)). Hence, %f (`1(b)) is in the image of `2.

4. The G-parking Tutte short exact sequence

In this section, we prove Theorem 1.1 that states that theG-parking Tutte sequence is short exact.
We starting by showing the well-definedness of the candidate maps ψ0 and φ0.

4.1. Well-definedness of ψ0

For an acyclic orientation B onG/(vi, vj) for some distinct vi and vj , we denote by B(vi,vj)+ and
B(vi,vj)− , the acyclic orientations on G obtained by orienting every edge between vi and vj such
that vi and vj is the source respectively. For an edge ẽ = (vi, vj) of G and an acyclic orientation
B on G/ẽ, we also use the notations Bẽ+ and Bẽ− for B(vi,vj)+ and B(vi,vj)− respectively. Recall
that the map ψ0 : CParkG/e → CParkG ⊗R Re is defined as follows. Let A be the minimal
generator of CParkG/e corresponding to an acyclic orientation with a unique sink at v1,2. We
defineψ0(A) = xme−1

1,2 Ae+ , whereAe+ is the minimal generator in CParkG⊗RRe corresponding
to the acyclic orientation on G obtained by further orienting e such that v1 is the source.

Proposition 4.1. The map ψ0 : CParkG/e → CParkG ⊗R Re is well-defined.

Proof. By Proposition 3.4, we verify that every standard syzygy of CParkG/e is preserved by
the map ψ0. We label the vertices of G/e by u2, u3, . . . , un, where u2 := v1,2 and for i from
3, . . . , n, the vertex ui in G/e corresponds to the vertex vi in G. Recall that each standard
syzygy of CParkG/e corresponds to a pair (B, Pi,j), where B is an acyclic orientation with a
unique sink at the partition containing v1,2 on the partition graph Pi,j obtained by contracting a
pair of vertices (ui, uj) of G/e that are connected by an edge.

We are led to the following cases: if neither ui nor uj is v1,2, then we claim that ψ0 maps the
standard syzygy of CParkG/e corresponding to (B, Pi,j) to the standard syzygy of CParkG⊗RRe

corresponding to the pair (Be+ , G/(vi, vj)). Note that Be+ has a unique sink at v2 and hence,
(Be+ , G/(vi, vj)) corresponds to a standard syzygy.

Furthermore, note that the acyclic orientation B(ui,uj)+ (and B(ui,uj)− respectively) on G/e
has a unique sink if and only if the acyclic orientation (B(vi,vj)+)e+ ((B(vi,vj)−)e+ respectively)
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onG obtained by further orienting e such that v1 is the source also has a unique sink. Hence, the
type of syzygy corresponding to (B, Pi,j) and (Be+ , G/(vi, vj)) among the three types described
in Subsection 3.3.1 is the same. Finally, we note that if B(ui,uj)+ has a unique sink (at v1,2),
then ψ0(B(ui,uj)+) = xme−1

1,2 · (B(vi,vj)+)e+ . Similarly, if B(ui,uj)− has a unique sink (at v1,2), then
ψ0(B(ui,uj)−) = xme−1

1,2 · (B(vi,vj)−)e+ . Hence, this standard syzygy corresponding to (B,Pi,j) is
preserved by ψ0.

Consider the case where one of ui or uj , ui say is v1,2. Suppose that only v2 and not
v1 is adjacent to vj in G then consider the standard syzygy of CParkG ⊗R Re corresponding
to (Be+ , G/(v2, vj)) and note that both these standard syzygies corresponding to (B,Pi,j) and
(Be+ , G/(v2, vj)) are of the second type and that ψ0(B(u2,uj)−) = xme−1

1,2 · (B(v2,vj)−)e+ . Hence,
this standard syzygy corresponding to (B,Pi,j) is preserved by ψ0.

Suppose that among v1 and v2, precisely v1, or both v1 and v2 are adjacent to vj . Consider
the standard syzygy of CParkG ⊗R Re corresponding to (Be+ , G/(v1, vj)). If this syzygy is of
the first two types, then it must be of the second type and then the syzygy (B, Pi,j) must also be
of the second type (since only possibly vj among v1 and vj can be a sink of Be+). The syzygies
are xmj · B(u1,uj)− and xmj · (B(v1,vj)−)e+ , where m is the multiplicity of the edge (v1, vj). Note
that ψ0(B(u1,uj)−) = xme−1

1,2 · (B(v1,vj)−)e+ and hence, this is preserved.
Otherwise, this syzygy is of the third type and it is of the form xm1,2 · K + xmj · (Be+)(v1,vj)− ,

where K = (Be+)(v1,vj)+ is the acyclic orientation on G obtained from (Be+)(v1,vj)− by re-
versing the orientation of every edge between the vertices (v1, vj). We consider the syzygy
corresponding to the acyclic orientation induced by K on G/(v1, v2) (note that the edge e is
contractible on K). Since v2 is a sink this syzygy is of the form xme

1,2 · K, where me is the mul-
tiplicity of the edge e. Hence, if m > me we obtain the syzygy xmj · (Be+)(v1,vj)− from the
standard syzygies as (xm1,2 · K+ xmj · (Be+)(v1,vj)−)− xm−me

1,2 (xme
1,2 · K). Otherwise, we obtain the

syzygy xme−m
1,2 (xmj · (Be+)(v1,vj)−) as xme−m

1,2 (xm1,2 · K + xmj · (Be+)(v1,vj)−)− (xme
1,2 · K). Hence,

xme−1
1,2 xmj ·(Be+)(v1,vj)− is a syzygy of CParkG⊗RRe. Finally, note that xme−1

1,2 xmj ·(Be+)(v1,vj)− =
ψ0(x

m
j · B(v1,2,uj)−) and that xmj · B(v1,2,uj)− is the standard syzygy corresponding to the pair

(B, Pi,j) to complete the proof.

4.2. Well-definedness of φ0

We need the following combinatorial lemma for the well-definedness of φ0. Recall that an edge
e ofG is said to be contractible on an acyclic orientationA′ onG if the orientationA′/e induced
by A′ on G/e is acyclic.

Lemma 4.2. Suppose that A is an acyclic orientation on G with a unique sink at v2. Suppose
that there is a directed edge from v1 to vj 6= v2, then the edge e = (v1, v2) is not contractible.

Proof. In order to show that e is not contractible, we need to exhibit a directed path from v1 to
v2 that is not equal to the edge e. Construct a directed walk starting from vj by picking arbitrary
outgoing edges. This walk cannot repeat vertices since A is acyclic and hence, it will terminate
since G is a finite graph. Furthermore, it terminates in v2 since it is the unique sink. Appending
the directed edge (v1, vj) to the beginning of this walk yields the required directed path from v1
to v2.
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Recall that we defined the map φ0 : CParkG ⊗R Re → CParkG\e ⊗R Re as the following.
If me = 1, then

φ0(A′) =

{
A′ \ e, if the edge e is not contractible on A′,
0, otherwise.

If me > 1, then φ0(A′) = A′ \ e for every standard generator A′ of CParkG ⊗R Re.

Proposition 4.3. The map φ0 is well-defined.

Proof. By Proposition 3.4, we verify that every standard syzygy of CParkG⊗RRe is preserved
by the map φ0. We start by noting that any standard syzygy corresponding to the partition graph
P1,2 of G obtained by contracting (v1, v2) is of the form xme

1,2 · Ae+ , where A is an acyclic ori-
entation on G/e. If me = 1, then φ0 maps it to zero. Since e is contractible on Ae+ and hence,
φ0(Ae+) = 0. If me > 1, then φ0(x

me
1,2 · Ae+) = xme

1,2 · (Ae+ \ e) = 0 since xme−1
1,2 · (Ae+ \ e) is

the standard syzygy of CParkG\e ⊗R Re corresponding to the pair (A, G/(v1, v2)).
We now consider standard syzygies corresponding to other partition graphs. If one of the

vertices is v2 and the other vertex is vj 6= v1, then the standard syzygy corresponding to (A,P2,j)
is of type two and is of the form xmj · A(v2,vj)− . The map φ0 takes it to the standard syzygy
corresponding to (A \ e,P2,j \ e).

If one of the vertices is v1 and the other vertex is vj 6= v2, then if the standard syzygy S is of
type three and is of form xm1 · A(v1,vj)+ + xmj · A(v1,vj)− . We consider two cases:

Case I: Suppose that me = 1. Note that by Lemma 4.2, the edge e is not contractible on
A(v1,vj)+ . We have the following two cases: If e is not contractible on A(v1,vj)− , then we have
φ0(A(v1,vj)−) = A(v1,vj)− \e and φ0(A(v1,vj)+) = A(v1,vj)+ \e. Furthermore, the standard syzygy
corresponding to the acyclic orientation (A/(v1, vj)) \ e on (G \ e)/(v1, vj) (this is the acyclic
orientation induced by A on the graph obtained by contracting (v1, vj) and deleting e) is a type
three syzygy since in both A(v1,vj)− \ e and A(v1,vj)+ \ e, the vertex v1 has at least one outgoing
edge and is hence not a sink. This implies that both acyclic orientations have a unique sink at v2.
This syzygy S ′ is of the form: xm1 ·A(v1,vj)+ \e+xmj ·A(v1,vj)− \e. Hence, φ0 takes S to S ′. If e is
contractible onA(v1,vj)− , then φ0(A(v1,vj)−) = 0 and φ0(A(v1,vj)+) = A(v1,vj)+ \e. Furthermore,
the standard syzygy S ′ corresponding to the acyclic orientation (A/(v1, vj)) \ e is of type one
and of the form xm1 · A(v1,vj)+ \ e. Hence, φ0 takes S to S ′.

Case II: If me > 1, then φ0(A(v1,vj)−) = A(v1,vj)− \ e and φ0(A(v1,vj)+) = A(v1,vj)+ \ e.
Also, this standard syzygy maps to the standard syzygy of CParkG\e ⊗R Re corresponding to
(A,Pi,j). Suppose that this standard syzygy of CParkG ⊗R Re is of type two, then it is of the
form xm1 · A(v1,vj)− and φ0 (irrespective of me) maps it to the standard syzygy xm1 · A(v1,vj)− \ e
corresponding to the acyclic orientation (A/(v1, vj)) \ e on G \ e, note that this is also a syzygy
of type two.

If none of the vertices is v1 or v2, then the standard syzygy corresponding to (A,Pi,j) is
mapped to the standard syzygy corresponding to A \ e on Pi,j \ e independent of me. Note that
the type of these two standard syzygies are the same and φ0 mapsA(vi,vj)+ to (A(vi,vj)+) \ e and
maps A(vi,vj)− to (A(vi,vj)−) \ e (when they are well-defined).
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4.3. Complex property

Proposition 4.4. The G-parking Tutte sequence in Theorem 1.1 is a complex of graded Re-
modules.

Proof. We show that the property of a complex is satisfied at each homological degree. At
homological degrees zero and two, this is immediate. At homological degree one, we need to
show that φ0(ψ0(b)) = 0 for every b ∈ CParkG/e. It suffices to prove this for every standard
generator A of CParkG/e. To see this, consider the case where me = 1, we have ψ0(A) = Ae+
and φ0(Ae+) = 0 since the edge e is contractible on the acyclic orientationAe+ onG. Ifme > 1,
then ψ0(A) = xme−1

1,2 · Ae+ and φ0(Ae+) = xme−1
1,2 · (Ae+ \ e) = 0 since xme−1

1,2 · (Ae+ \ e) is the
standard syzygy (of CParkG\e⊗RRe) corresponding to the acyclic orientationA onG/(v1, v2).

4.4. The kernel of ψ0

Proposition 4.5. The kernel of ψ0 : CParkG/e → CParkG ⊗R Re is equal to x1,2 · CParkG/e.

Proof. The inclusion x1,2 · CParkG/e in the kernel of ψ0 is immediate since ψ0(x1,2 · A) =
xme
1,2 · Ae+ = 0 since xme

1,2 · Ae+ is the standard syzygy corresponding to the acyclic orientation
A of the partition graph G/(v1, v2).

For the other direction, consider an element α =
∑
A pA · A in the kernel of ψ0. We show

that the coefficients pA can be chosen such that x1,2|pA for each A. Since α ∈ ker(ψ0), we
obtain xme−1

1,2

∑
A pA · Ae+ = 0. Furthermore, since the map A → Ae+ regarded as a map

between sets of acyclic orientations (with a unique sink at a fixed vertex) is injective, we note
that xme−1

1,2

∑
A pA · Ae+ is a syzygy of CParkG ⊗R Re.

Hence, it can be written as an Re-linear combination of the standard syzygyies of CParkG.
Hence,

xme−1
1,2

∑
A

pA · Ae+ =
∑

(B,Pi,j)

r(B,Pi,j)s(B,Pi,j), (4.1)

where s(B,Pi,j) is the standard syzygy corresponding to the acyclic orientation B (with a unique
sink at the partition containing v2) on the partition graph Pi,j and r(B,Pi,j) ∈ Re. Note that
Equation (4.1) is an equation in the free Re-module of rank equal to the number of acyclic
orientations with a unique sink at v2.

Consider the caseme = 1. Next, we observe that if (i, j) (as an unordered pair) is not (1, 2),
then the syzygy s(B,Pi,j) is the image of a standard syzygy of CParkG/e, namely the standard
syzygy corresponding to the acyclic orientationB/e on (G/(vi, vj))/e obtained by contracting e.
These syzygies can be cleared out by regarding α as α −

∑
(i,j)6=(1,2) r(B,Pi,j)sB/e,G/(vi,vj))/e and

using the expansion in Equation (4.1) forψ0(α). Hence, we can assume that the standard syzygies
in Equation (4.1) all correspond to P1,2. A standard syzygy corresponding to P1,2 is of the form
x1,2 · Ae+ for some acyclic orientation A on G/(v1, v2). This implies that each coefficient pA
divides x1,2. This completes the proof for me = 1.

More generally, if me > 1, then we multiply both sides of the Equation (4.1) by xme−1
1,2 . The

argument then proceeds similar to the case me = 1. If (i, j) (as an unordered pair) is not (1, 2),
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then xme−1
1,2 · s(B,Pi,j) is the image of a standard syzygy of CParkG/e, namely the standard syzygy

corresponding to the acyclic orientationB/e on (G/(vi, vj))/e obtained by contracting e. Hence,
these syzygies can be cleared out and we can assume that only terms corresponding to P1,2

appear. A standard syzygy corresponding to P1,2 is of the form xme
1,2 · Ae+ for some acyclic

orientationA on G/(v1, v2). Hence, we conclude that x2me−1
1,2 |(x2me−2

1,2 · pA) and hence, x1,2|pA.
We conclude that α is contained in x1,2 · CParkG/e.

4.5. Exactness

Proposition 4.6. The G-parking Tutte complex is a short exact sequence.

Proof. We show the exactness of the G-parking Tutte complex at every homological degree.
At homological degree zero, the exactness follows from Proposition 4.5. At homological degree
two, the exactness is equivalent to the surjectivity of φ0. To see the surjectivity of φ0, we consider
two cases. Suppose thatme = 1. Note that for every standard generatorA′′ of CParkG\e⊗RRe,
there is the acyclic orientationA′ onG obtained by further orienting e such that v1 is the source.
The edge e is not contractible onA′ since there is at least one edge other than ewith a source at v1
and we can now apply Lemma 4.2. Hence, φ0 takesA′ toA′′. Since every standard generator of
CParkG\e⊗RRe is in the image of an element in φ0 we conclude that φ0 is surjective. Ifme > 1,
then this is immediate from the construction of φ0 since every acyclic orientation on G \ e with
a unique sink at v2 gives rise to an acyclic orientation on G with a unique sink at v2 by further
orienting e such that v1 is the source.

We turn to homological degree one. We must show that the kernel of φ0 is equal to the
image of ψ0 which in turn is 〈xme−1

1,2 Ae+〉, whereA ranges over acyclic orientations onG/ewith
a unique sink at v1,2. Suppose that b =

∑
A′ pA′A′ is an element in the kernel of φ0. We know

that
∑
A′ pA′φ0(A′) = 0. Suppose that me > 1. Note that the map A′ → A′ \ e at the level of

sets is a bijection. Hence,
∑
A′ pA′ · φ0(A′) is a syzygy of CParkG\e ⊗R Re and can be written

as an Re-linear combination of the standard syzygies of CParkG\e ⊗R Re. More precisely, we
have: ∑

A′
pA′ · φ0(A′) =

∑
(A′′,Pi,j)

r(A′′,Pi,j) · s(A′′,Pi,j), (4.2)

where r(A′′,Pi,j) ∈ Re and s(A′′,Pi,j) is the standard syzygy of CParkG\e⊗R Re corresponding to
the acyclic orientation A′′ on the partition graph Pi,j of G \ e. Note that this equation is on the
free Re-module of rank equal to the number of acyclic orientations on G \ e with a unique sink
at v2.

Suppose that (i, j) 6= (1, 2) as an unordered pair. By the construction of the map φ0, the
standard syzygy is the image of φ0 over the standard syzygy of CParkG ⊗R Re corresponding
to the same pair (A′′,Pi,j). Hence, these syzygies can be cleared exactly as in the proof of
Proposition 4.5 and we can assume that (i, j) = (1, 2) in the right hand side of Equation (4.2).
Since every standard syzygy corresponding to (A′′,P1,2) is of the form xme−1

1,2 ·A′′e+ , we conclude
that xme−1

1,2 divides pA′′ for every A′′ and hence, b ∈ 〈xme−1
1,2 Ae+〉. Thus, the Tutte complex is

exact in homological degree one for me > 1.
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We turn to the case me = 1. Consider any element of the form
∑
A′ pA′ · A′, where A′ is

an acyclic orientation on G such that e is not contractible on it. It suffices to show that if such
a
∑
A′ pA′ ·A′ is in kernel of φ0, then it is also in the image of ψ0. By Equation (4.2), we assume

by a clearing argument that (i, j) = (1, j) where j 6= 2 in Equation (4.2). Furthermore, we can
assume that the standard syzygies that appear in Equation (4.2) corresponding to P1,j are of the
form x

m1,j

1,2 · A′′. These are precisely standard syzygies that change type from type three to type
one from G to G \ e. This means that the acyclic orientation A′′ is such that there is a unique
vertex vj /∈ {v1, v2} that is adjacent to v1, and with v1 as the source of every edge between v1
and vj . Hence, we conclude that xm1,j

1,2 divides pA′ .
Next, note that xm1,j

1,2 · A′ + x
m1,j

j · B′ is a standard syzygy of CParkG ⊗R Re corresponding
to the acyclic orientation A′/(1, j) = B′/(1, j) on G/(1, j) and B′ is the acyclic orientation
on G obtained from A′ by reversing the orientation of every edge between (1, j). Note that the
edge e is contractible on B′ (since φ0(B′) = 0) and hence, it is of the form Ae+ for an acyclic
orientationA on G/e. Hence, xm1,j

1,2 · A′ = −x
m1,j

j · B′ is in the image of ψ0. This completes the
proof of exactness at homological degree one.

5. The toppling Tutte short exact sequence

In this section, we detail the proof of Theorem 1.2.

5.1. Well-definedness of ψ1

We start by recalling the construction of the candidate map ψ1. Suppose that e is an edge of
multiplicity me between the vertices v1 and v2. Let A be an acyclic orientation on G/e, and
let Ae+ and Ae− be orientations on G obtained by further orienting e such that its source is v1
and v2 respectively. Note that since A is acyclic, the orientations Ae+ and Ae− are also acyclic.
The candidate map ψ1 takes [A] to xme−1

1,2 [Ae+ ] + xme−1
1,2 [Ae− ] in CToppG⊗R Re. We first show

that this association is independent of the choice of representatives in the equivalence class ofA.

Lemma 5.1. Suppose that A is an acyclic orientation on G/e. The equivalence classes of the
acyclic orientations Ae+ and Ae− on G are independent of the choice of representatives in the
equivalence class of A.

Proof. Suppose that acyclic orientations A1 and A2 on G/e are equivalent. We know from
[BN07, Section 3.1] that for any vertex u ofG/e, there exists a (unique) acyclic orientationAuni

with a unique sink at u that is equivalent to A1 and A2. Furthermore, by Theorem 3.3, there is
a sequence of source-sink reversals that transform them to Auni.

Take u = v1,2 and note that a sink reversal at v1,2 can be avoided in this sequence. This allows
us to perform precisely the same sequence of source-sink reversals for (A1)e+ and (A2)e+ . If v1,2
is a sink for an acyclic orientation A on G/e, then v2 is a sink for Ae+ and v1 is a sink for Ae− .
Hence, for i = 1, 2 these operations transform (Ai)e+ and (Ai)e− into an acyclic orientation
on G with a unique sink at v2 and v1 respectively. From [Mos72, Bac17], this implies that the
acyclic orientations (A1)e+ and (A2)e+ onG are equivalent and that (A1)e− and (A2)e− are also
equivalent.



combinatorial theory 2 (2) (2022), #8 21

Next, we show this candidate map induces a map between the toppling critical modules
CToppG/e and CToppG ⊗R Re. We show this using Proposition 3.4.

Lemma 5.2. The candidate map ψ1 is well-defined.

Proof. We use Proposition 3.4 to show that ψ1 is well-defined. In other words, we show that
ψ1 preserves the standard syzygies of CToppG/e. Using the combinatorial description of the
syzygies of CToppG/e in Subsection 3.3.2, we know that the generators of the first syzygy module
of CToppG/e are in one to one correspondence with equivalence classes of acyclic orientations
on contractions of pairs of adjacent vertices of G/e. For a pair of adjacent vertices (vi, vj)
and an acyclic orientation A on the contraction of (vi, vj) in G/e, the corresponding syzygy of
CToppG/e is given by xmi [A(vi,vj)+ ] − xmj [A(vi,vj)− ], where m is the number of edges between
the pair (vi, vj) and A(vi,vj)+ and A(vi,vj)− are acyclic orientations obtained from A by further
orienting all the edges between (vi, vj) so that the source is vi and vj respectively. We must show
that xmi ψ1([A(vi,vj)+ ])− xmj ψ1([A(vi,vj)− ]) is a syzygy of CToppG ⊗R Re. Note that

xmi ψ1([A(vi,vj)+ ])− xmj ψ1([A(vi,vj)− ])

= xmi ([(A(vi,vj)+)e+ ] + [(A(vi,vj)+)e− ])− xmj ([(A(vi,vj)−)e+ ] + [(A(vi,vj)−)e− ]).

Suppose that none of vi and vj is v1,2, then xmi [(A(vi,vj)+)e+ ] − xmj [(A(vi,vj)−)e+ ] and
xmi [(A(vi,vj)+)e− ]−xmj [(A(vi,vj)−)e− ] are standard syzygies of CToppG⊗RRe. Similarly, if vi =
v1,2 and exactly one of v1 and v2 is adjacent to vj inG, then xmi [(A(vi,vj)+)e+ ]−xmj [(A(vi,vj)−)e+ ]
and xmi [(A(vi,vj)+)e− ]− xmj [(A(vi,vj)−)e− ] are standard syzygies of CToppG ⊗R Re.

Finally, consider the case where vi = v1,2, and both v1 and v2 are adjacent to vj inG. In other
words, if there is a triangle between v1, v2 and vj inG, then an analogous argument does not hold.
We employ a different argument. We express S = xm1,2[(A(v1,2,vj)+)e+ ]−xmj [(A(v1,2,vj)−)e+ ] as an
Re-linear combination of two standard syzygies of CToppG⊗RRe. These standard syzygies S1
and S2 are the following: the syzygy S1 corresponds to the acyclic orientation A1 on the con-
traction of the pair (v1, vj) inG defined as follows: A1 agrees withA(v1,2,vj)+ on all the common
edges and the edge v1, v2 is further oriented such that v1 is the source. The other one S2 corre-
sponds to the acyclic orientationA2 on the contraction of the pair (v2, vj) inG whereA2 agrees
with A(v1,2,vj)− on all the common edges and the edge v1, v2 is further orientated such that v1
is the source, see Figure 5.1. Note that the former syzygy S1 is xm1

j [(A(v1,2,vj)−)e+ ] − xm1
1,2 [K]

and the later syzygy S2 is xm2
j [L] − xm2

1,2 [(A(v1,2,vj)+)e+ ], where m1 and m2 is the number of
edges in G between (v1, vj) and (v2, vj) respectively. Furthermore, observe that K = L (we do
not make K and L more explicit since we do not invoke it) and that m = m1 + m2. Hence,
S = xm2

j S1 + xm1
1,2S2. Similarly, we express xm1,2[(A(v1,2,vj)+)e− ]− xmj [(A(v1,2,vj)−)e− ] as an Re-

linear combination of standard syzygies of CToppG by interchanging v1 and v2 in the above
construction. This completes the proof of the well-definedess of ψ1.

5.2. Well-definedness of φ1

Recall that the mapφ1 : CToppG⊗RRe → CToppG\e⊗RRe takes the generator [A′] of CToppG,
corresponding to an acyclic orientation A on G, to [A′ \ e] in CToppG\e. The following lemma
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Figure 5.1: The acyclic orientations A1,A2 in the proof of Lemma 5.2.

shows that the association [A]→ [A\ e] in the candidate map φ1 does not depend on the choice
of representatives.

Lemma 5.3. Let A1 and A2 be equivalent acyclic orientations on G. The acyclic orientations
A1 \ e and A2 \ e on G \ e are equivalent.

Proof. Using the characterisation of equivalent acyclic orientations (Theorem 3.3), we know
that there is a source-sink reversal sequence transforming A1 to A2. Since, any source or sink
in an acyclic orientation A on G remains so in the acyclic orientation A \ e on G \ e, we can
perform the same source-sink reversal sequence to transform A1 \ e to A2 \ e. Hence, A1 \ e
and A2 \ e are equivalent.

Lemma 5.4. The candidate map φ1 is well-defined.

Proof. Using Proposition 3.4, it suffices to prove that φ1 preserves the standard syzygies of
CToppG⊗RRe. The proofs lends itself into two cases: the first case corresponds to the standard
syzygy arising from contractingG by a pair of vertices (vi, vj) other than (v1, v2) and the second
case corresponds to the standard syzygy arising from contracting G by (v1, v2).

Consider the standard syzygy corresponding to an acyclic orientation A on G/(vi, vj) i.e.,
G contracted by the pair of vertices (vi, vj) 6= (v1, v2) that are connected by an edge. This
syzygy is xmi [A(vi,vj)+ ]− xmj [A(vi,vj)− ], where m is the number of edges between vi and vj . By
construction, φ1([A(vi,vj)+ ]) = [A(vi,vj)+ \ e] and φ1([A(vi,vj)− ]) = [A(vi,vj)− \ e]. Note that
xmi φ1([A(vi,vj)+ ])−xmj φ1([A(vi,vj)− ]) is a standard syzygy of CToppG\e⊗RRe and corresponds
to the acyclic orientation A \ e on (G \ e)/(vi, vj) i.e., G \ e contracted by the pair of vertices
(vi, vj). Hence, this standard syzygy on CToppG ⊗R Re is preserved.
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Suppose that the standard syzygy corresponds to an acyclic orientationA on the G/(v1, v2).
This standard syzygy is xme

1,2 [A(v1,v2)+ ] − xme
1,2 [A(v1,v2)− ], where me is the number of edges be-

tween the pair (v1, v2). Suppose that me = 1. In this case, there is exactly one edge between
(v1, v2) and sinceA(v1,v2)+ \ e = A(v1,v2)− \ e we have φ1([A(v1,v2)+ ]) = φ1([A(v1,v2)− ]). Hence,
x1,2φ1([A(v1,v2)+ ])− x1,2φ1([A(v1,v2)− ]) = 0.

Suppose that me > 1 i.e., there are multiple edges between (v1, v2). In this case,
φ1([A(vi,vj)+ ]) = [A(vi,vj)+ \ e] and φ1([A(vi,vj)− ]) = [A(vi,vj)− \ e]. Furthermore, we know
that xme−1

1,2 φ1([A(vi,vj)+ ])− xme−1
1,2 φ1([A(vi,vj)− ]) is a standard syzygy of CToppG\e⊗RRe. This

corresponds to the acyclic orientation induced by A on (G \ e)/(v1, v2) = G/(v1, v2). Multi-
plying by x1,2 throughout, we conclude that xme

1,2φ1([A(vi,vj)+ ]) − xme
1,2φ1([A(vi,vj)− ]) = 0. This

completes the proof.

5.3. Complex property

In this subsection, we show that the toppling Tutte sequence in Theorem 1.2 is a complex of Re-
modules. At homological degree zero and two, this property is immediate. Only homological
degree one requires an argument and we address it in the following proposition.

Proposition 5.5. The kernel of the map φ1 contains the image of the map ψ1. In other words,
for any element b ∈ CToppG/e/ker(ψ1) we have φ1(ψ1(b)) = 0.

Proof. Note that, since ψ1 and φ1 are Re-module maps, it suffices to prove the statement for
the projection of the standard generating set of CToppG/e on CToppG/e/ker(ψ1). Consider
an element [A] of the standard generating set of CToppG/e. We use the same notation for its
projection in CToppG/e/ker(ψ1) and consider ψ1([A]). By definition, ψ1([A]) = xme−1

1,2 [Ae+ ]+

xme−1
1,2 [Ae− ] ∈ CToppG ⊗R Re. Hence, φ1(ψ1([A])) = xme−1

1,2 φ1([Ae+ ]) + xme−1
1,2 φ1([Ae− ]).

We have two cases: me = 1 i.e., there is precisely one edge e between (v1, v2). Hence,
φ1(ψ1([A])) = φ1([Ae+ ]) + φ1([Ae− ]). In this case, φ1([Ae+ ]) = φ1([Ae− ]) since Ae+ \
e = Ae− \ e and hence, φ1(ψ1([A])) = 0 (note that K has characteristic two). Suppose that
me > 1 i.e., there are multiple edges between (v1, v2). In this case, φ1([Ae+ ]) = [Ae+ \ e]
and φ1([Ae− ]) = [Ae− \ e]. Note that xme−1

1,2 [Ae+ \ e] + xme−1
1,2 [Ae− \ e] is a standard syzygy

of CToppG\e ⊗R Re: the standard syzygy corresponding to the acyclic orientation induced by
A on the contraction of G \ e by (v1, v2), which in turn is G/(v1, v2). Hence, φ1(ψ1([A])) =
xme−1
1,2 φ1([Ae+ ]) + xme−1

1,2 φ1([Ae− ]) = 0.

5.4. Exactness

We show that the toppling Tutte complex in Theorem 1.2 is exact in every homological degree.
Since, by construction, the map ψ1 : CToppG/e/ker(ψ1) → CToppG ⊗R Re is injective by
construction, the Tutte complex is exact in homological degree zero. We are left with show-
ing the exactness in homological degrees one and two. They are handled in the following two
propositions.

Proposition 5.6. The map φ1 is surjective. Hence, the toppling Tutte complex is exact in homo-
logical degree two.
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Proof. It suffices to prove that every element in the standard generating set of CToppG\e⊗RRe

is in the image, under the map φ1, of some element in CToppG⊗RRe. To see this, note that any
equivalence class of acyclic orientations onG \ e has an acyclic orientationA′ \ e with a unique
sink at v2. This acyclic orientation A′ \ e can be extended to an acyclic orientation A′ on G by
further orienting e so that the source is v1. By construction, φ1([A′]) = [A′ \ e]. Hence, φ1 is
surjective.

Proposition 5.7. The kernel of φ1 is equal to the image of ψ1. In other words, the toppling Tutte
complex is exact in homological degree one.

Proof. By definition, the image of ψ1 is equal to the submodule generated by xme−1
1,2 [Ae+ ] +

xme−1
1,2 [Ae− ] over all the standard generators [A] of CToppG/e/ker(ψ1) (the projection of the

standard generating set of CToppG/e onto CToppG/e/ker(ψ1)). We show that this is also the
kernel of φ1.

Consider an element b =
∑

[A] p[A][A] ∈ ker(φ1). Since, φ1(b) = 0 it gives rise to a syzygy
in CToppG\e ⊗R Re (possibly the trivial syzygy where the coefficient of each standard gener-
ator is zero). Hence, it can be written as an Re-linear combination of the standard syzygies of
CToppG\e⊗RRe. Next, we compare the standard syzygies of CToppG⊗RRe that are in the image
of the standard syzygies of CToppG\e⊗RRe. By clearing out these standard syzygies, we assume
that the syzygy corresponding to φ1(b) is generated by the standard syzygies of CToppG\e⊗RRe

that are not in the image of the standard syzygies of CToppG ⊗R Re. We refer to these as the
relevant standard syzygies of CToppG\e⊗RRe. Furthermore, b is generated by elements whose
image with respect to φ1 is a relevant standard syzygy of CToppG\e ⊗R Re and by sums (recall
that K is characteristic two) of pairs of elements in a fiber over φ1 of any standard generator of
CToppG\e⊗RRe (note that φ1 takes standard generators of CToppG⊗RRe to standard generators
of CToppG\e⊗RRe). To see this, consider φ1(b) =

∑
[A] p[A]φ1([A]) and collect coefficients of

each standard generator φ1([A]) of CToppG\e ⊗R Re. The sum of the terms corresponding to
those φ1([A]) whose coefficient is non-zero is a syzygy of CToppG\e ⊗R Re. A simple calcula-
tion shows that for each φ1([A]) whose coefficient is zero, the sum

∑
[A′] p[A′]φ1([A′]) of all [A′]

that are mapped to φ1([A]) by φ1 is generated by sums of pairs of elements in a fiber over φ1 of
the standard generator φ1([A]) of CToppG\e ⊗R Re.

We have two cases, if the multiplicity me of the pair (v1, v2) is precisely one i.e., there is
precisely one edge between (v1, v2). In this case, there are no relevant standard syzygies of
CToppG\e ⊗R Re. Consider two elements [A1] and [A2] in the fiber over φ1 of some standard
generator [A′′] of CToppG\e⊗RRe. We show that [A1] + [A2] is the image of ψ1. To show this,
we consider the fiber over the map φ1 of a standard generator [A′′] of CToppG\e ⊗R Re. This
can be described as follows: consider all acyclic orientations B′′ on G \ e that are equivalent to
A′′ (see Subsection 3.4) and take the union of [B′′e+ ] and [B′′e− ] for each orientation of the form
B′′e+ and B′′e− on G obtained from B′′ by further orienting e such that v1 and v2 is the source
respectively that is acyclic.

Consider the sum [B1] + [B2] of any two elements in the fiber over φ1 of [A′′]. This means
that the acyclic orientations B1 \ e and B2 \ e on G \ e are equivalent. By [Mos72, Bac17],
there is a source-sink reversal sequence transforming B1 \ e to B2 \ e. Taking this into account,
we perform an induction on the distance d between the acyclic orientations B′′1 := B1 \ e and
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Figure 5.2: Acyclic orientations corresponding to the minimal generators of the toppling critical
module of a four cycle.

B′′2 := B2 \ e (recall the notion of distance from the Preliminaries, end of Subsection 3.4). The
base case corresponds to the distance between B′′1 and B′′2 being zero i.e., B′′1 = B′′2 . In this
case, [(B′′1 ])e+ ] + [(B′′1)e− ] is in the image of ψ1 on the standard generator corresponding to the
acyclic orientation on G/e induced by B′′1 . Note that since both (B′′1)e+ and (B′′1)e− are acyclic
orientations on G, the orientation (B′′1)e+/e = (B′′1)e−/e is an acyclic orientation on G/e.

The induction hypothesis is that elements of the form [(B′′1)e± ]+[(B′′2)e± ] in CToppG⊗RRe,
where B′′1 and B′′2 are acyclic orientations on G \ e that are equivalent and at a distance at most d
is in the image of ψ1 for some non-negative integer d. For the induction step, consider equivalent
acyclic orientations B′′1 and B′′2 that are at a distance d+1. There exists an acyclic orientation B′′3
that is equivalent to both and d(B′′1 ,B′′3) = d and d(B′′3 ,B′′2) = 1. By the induction hypothesis,
the sum of any pair [(B′′1)e± ] + [(B′′3)e± ] is in the image of ψ1. We are left with showing that
[(B′′2)e± ] + [(B′′3)e± ] is in the image of ψ1. Since d(B′′2 ,B′′3) = 1, there is precisely one source-
sink reversal that transforms B′′3 to B′′2 . If the source or sink that is reversed in neither v1 nor v2,
then this vertex will remain so in (B′′3)e+ and (B′′3)e− . This can be reversed to obtain (B′′2)e+ and
(B′′2)e− respectively. Hence, [(B′′3)e+ ] = [(B′′2)e+ ] and [(B′′3)e− ] = [(B′′2)e− ]. We conclude that
any element of the form [(B′′2)e± ] + [(B′′3)e± ] is in the image of ψ1.

Suppose that a sink is reversed and this is either v1 or v2, v1 say. We note that (B′′3)e− is
equivalent to (B′′2)e+ since v1 will remain a sink in (B′′3)e− and can be reversed to obtain (B′′2)e+ .
Hence, [(B′′2)e+ ] = [(B′′3)e− ]. Hence, we know that [(B′′2)e+ ] + [(B′′3)e− ] = 0, [(B′′2)e− ] + [(B′′3)e− ]
and [(B′′2)e+ ] + [(B′′3)e+ ] are in the image of ψ1. We conclude that the sum [(B′′2)e− ] + [(B′′3)e+ ] =
([(B′′2)e− ] + [(B′′2)e+ ]) + ([(B′′3)e− ] + [(B′′3)e+ ]) is in the image of ψ1.

Similarly, if a source is reversed and this is either v1 or v2, v1 say, then (B′′3)e+ is equivalent
to (B′′2)e− . An analogous argument shows that the any pair [(B′′2)e± ]+ [(B′′3)e± ] is in the image
of ψ1. This completes the argument for the case me = 1. We refer to Example 5.8 for the case
of a four cycle.

Consider the case where me > 1. The relevant standard syzygies of CToppG\e ⊗R Re

bijectively correspond to acyclic orientations on G/(v1, v2). The map φ1 induces a bijection
between the standard generators of CToppG⊗RRe and CToppG\e⊗RRe. Hence, each fiber over
φ1 of the standard generators of CToppG\e ⊗R Re has precisely one element. Hence, the kernel
of φ1 is generated by elements whose image is a relevant standard syzygy of CToppG\e ⊗R Re

and are of the form xme−1
1,2 [Ae+ ] + xme−1

1,2 [Ae− ] over all acyclic orientations on G/e. Hence, the
kernel of φ1 is equal to the image of ψ1.

Example 5.8. LetG be the four cycle. It has three acyclic orientations B1,B2, B3 with a unique
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sink at v2 shown in Figure 5.2. Let e = (v1, v2). The graph G/e is the three cycle and has two
acyclic orientations A1 := B1/e, A2 := B2/e with a unique sink at v2 and G \ e is a tree with
one acyclic orientation C with a unique sink at v2. The map ψ1 is as follows:

ψ1([A1]) = [B1] + [B2],
ψ1([A2]) = [B1] + [B3].

The map φ1 is as follows:

φ1([B1]) = φ1([B2]) = φ1([B3]) = [C].

The element [B2] + [B3] is in the kernel of φ1. It is however not an image of ψ1 on the stan-
dard generators of CToppG/e ⊗R Re but is the image of [A1] + [A2]. The core of the proof of
Proposition 5.7 is to generalise this.

6. Applications

6.1. Merino’s theorem

We obtain Merino’s theorem as a corollary to Theorem 1.1. The main remaining step is to show
that x1 − x2 is a non-zero divisor on CParkG and CParkG\e, and that x1,2 is a non-zero divisor
on CParkG/e. This is handled by the following propositions.

Proposition 6.1. The element x1 − x2 is a non-zero divisor on CParkG and CParkG\e.

Proof. First, we note that it suffices to show that x1 − x2 is a non-zero divisor of R/MG and
R/MG\e ([BH98, Sections 3.3 and 3.6 ]). To see this note that x2 is a non-zero divisor ofR/MG

and R/MG\e since the vertex v2 is the sink and the idealsMG andMG\e are generated by mono-
mials each of which is not divisible by x2. We conclude the proof by noting that if x1 − x2 is a
zero divisor on R/MG (or R/MG\e), then both x1 and x2 are zero divisors (since MG and MG\e
are monomial ideals). This yields the required contradiction.

Proposition 6.2. The element x1,2 is a non-zero divisor on CParkG/e.

Proof. From [BH98, Proposition 3.3.3], it suffices to show that x1,2 is a non-zero divisor
ofR/MG/e. This follows from the fact that v1,2 is the sink forMG/e and hence,MG/e is generated
by monomials each of which is not divisible by x1,2.

We are now ready to deduce Merino’s theorem as a corollary.

Corollary 6.3 (Merino’s theorem). The K-polynomial of CParkG is the Tutte evaluation
TG(1, t), where TG(x, y) is the Tutte polynomial of G.

Proof. We verify the base cases first. It consists of trees with n vertices and ` loops in total and
graph on two vertices withmmultiple edges and ` loops in total (recall that Theorem 1.1 requires
G to have at least three vertices). In the first case, theK-polynomial of CParkG is t`. On the other
hand, the Tutte polynomial TG(x, y) is xn−1y`. In this case, we verify that TG(1, t) = t`. In the
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second case, theK-polynomialKCParkG(t) of CParkG is t`+m−1+t`+m−2+ · · ·+t` (use the fact
that CParkG is Gorenstein). The Tutte polynomialTG(x, y) is y`+m−1+y`+m−2+· · ·+y`+1+x·y`
and hence, TG(1, t) = KCParkG(t).

Since the Hilbert series is additive under short exact sequence of graded modules, we obtain
the following equation from Theorem 1.1:

HilCParkG⊗RRe(t) = HilCParkG/e/(x1,2·CParkG/e)(t) + HilCParkG\e⊗RRe(t).

Using the fact that theG-parking critical module has Krull dimension one and Propositions 6.1,
6.2, we conclude that

HilCParkG⊗RRe(t) = KCParkG(t),HilCParkG/e/(x1,2·CParkG/e)(t) = KCParkG/e
(t)

and HilCParkG\e⊗RRe(t) = KCParkG\e(t).

Hence we obtain:
KCParkG(t) = KCParkG/e

(t) +KCParkG\e(t).

This completes the proof of Merino’s theorem.

Remark 6.4. Note that the Hilbert series and hence, theK-polynomials of CParkG and CToppG
are equal. To see this, note that R/IG and R/MG have the same Hilbert function [MS13] and
hence, their canonical modules share the Hilbert function [BH98, Corollary 4.3.8].

6.2. Deletion-contraction formula for alternating numbers

We first note that βi,j(H) as defined in the introduction is the (i, j)-th graded Betti number of
the both the G-parking and the toppling critical module.

Proposition 6.5. The number βi,j(H) is the (i, j)-th graded Betti number of theG-parking crit-
ical module CParkH and the toppling critical module CToppH .

Proof. This is an immediate consequence of the description of the Betti numbers of R/MH and
R/IH from [MSW15], and from the graded version of [BH98, Corollary 3.3.9] i.e., the relation
between the Betti numbers of a graded Cohen–Macaulay module and its canonical module.

Proof of Proposition 1.7. First, note that by expressing the Hilbert series of a graded module in
terms of its Betti numbers, we obtain(∑

i,j

(−1)iβi,j(G)tj
)
/(1− t)n = KG(t)/(1− t),

(∑
i,j

(−1)iβi,j(G \ e)tj
)
/(1− t)n = KG\e(t)/(1− t) and

(∑
i,j

(−1)iβi,j(G/e)t
j
)
/(1− t)n−1 = KG/e(t)/(1− t).

Applying Merino’s theorem and comparing the coefficients of powers of t yields the deletion-
contraction formula for the alternating numbers.
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6.3. The Tutte long exact sequence of Tor

Proof of Theorem 1.9. Consider the long exact sequence in Tor associated with the short exact
sequence 0→ CParkG/e(−1)

·x1,2−−→ CParkG/e → CParkG/e/(x1,2 ·CParkG/e)→ 0 and restrict
to the j-th degree. Note that βr,s−1(G/e) is the (r, s)-th graded Betti number of CParkG/e(−1).
Hence, if βi,j(G/e) = βi−1,j−1(G/e) = 0, then the (i, j)-th Betti number of CParkG/e/(x1,2 ·
CParkG/e) is zero. Similarly, if βi−1,j(G/e) = βi−2,j−1(G/e) = 0, then the (i − 1, j)-th Betti
number of CParkG/e/(x1,2 · CParkG/e) is zero.

Next, consider the long exact sequence in Tor associated with theG-parking Tutte short exact
sequence 0→ CParkG/e/(x1,2 ·CParkG/e)

ψ0−→ CParkG ⊗R Re
φ0−→ CParkG\e⊗R Re → 0 and

restrict to the j-th degree. Note that if the (i, j)-th Betti number and (i− 1, j)-th Betti number
of CParkG/e/(x1,2 · CParkG/e) are zero, then the map between Torij(CParkG ⊗R Re,K) and
Torij(CParkG\e ⊗R Re,K), (where Torij(., .) is the j-th graded piece of the i-th Tor module) is
an isomorphism. Taking dimensions on both sides, completes the proof of Theorem 1.9.

A couple of remarks are in place. The deletion-contraction formula for alternating numbers
can also be proved via the two long exact sequences in the proof of Theorem 1.9: by taking
their Euler characteristic and comparing them. We do not know the graded Betti numbers of the
quotient CParkG/e/(x1,2 · CParkG/e) (as an Re-module).
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