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Extinction Dynamics of Spiral Defect Chaos

David Vidmar and Wouter-Jan Rappel
Department of Physics, University of California, San Diego, La Jolla, CA 92093

Abstract

Spatially extended excitable systems can exhibit spiral defect chaos (SDC) during which spiral 

waves continuously form and disappear. To address how this dynamical state terminates using 

simulations can be computationally challenging, especially for large systems. To circumvent this 

limitation, we treat the number of spiral waves as a stochastic population with a corresponding 

birth-death equation and use techniques from statistical physics to determine the mean episode 

duration of SDC. Motivated by cardiac fibrillation, during which the heart’s electrical activity 

becomes disorganized and shows fragmenting spiral waves, we use generic models of cardiac 

electrophysiology. We show that the duration can be computed in minimal computational time and 

that it depends exponentially on domain size. Therefore, the approach can result in effcient and 

accurate predictions of mean episode duration which may be extended to more complex 

geometries and models.

I. INTRODUCTION

Spiral waves are generic solutions of spatially extended excitable systems. Under certain 

conditions, these spiral waves are unstable and break up, creating multiple, drifting spiral 

waves. The resulting dynamical state can be described as spiral defect chaos (SDC), present 

in a variety of different pattern-forming systems [1–9]. During SDC, spiral waves 

continuously break down to form new ones, and are removed through collisions with other 

spiral waves or with non-conducting boundaries. as has been shown by many computational 

studies. This stochastic competition between creation and annihilation persists until the last 

spiral wave is terminated, with its duration representing a stochastic event. Often, the mean 

episode duration τ of SDC is of interest, which is a statistical measure of the average until 

termination. Determining τ through direct simulations of spatially extended models of SDC 

can be challenging because a statistically significant quantification of this stochastic quantity 

requires the time-consuming task of simulating a multitude of episodes [10, 11]. This 

becomes even more problematic for large geometry sizes since τ typically increases as a 

function of the system size.

In this study, we will use generic excitable systems as an example and show how statistical 

physics techniques can be used to determine τ. Specifically, we are motivated by cardiac 

fibrillation and use two cardiac electrophysiological models. During fibrillation, spiral waves 

underly the irregular conduction patterns and many computational studies have reported that 

the number of spiral waves increase due to wave break or decrease due to collisions with 

other spiral waves or with non-conducting boundaries [12–16]. In other words, this 

fibrillatory state can be described by SDC and lasts until the last spiral wave is terminated.
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In this study we are interested in the mean episode duration τ which is a statistical measure 

of the average time of annihilation of all spiral waves. Determining τ through direct 

simulations of spatially extended cardiac models is challenging because previous simulation 

studies have shown that τ increases sharply as a function of the system size [17, 18]. This 

increase is related to the so-called critical mass hypothesis which posits that fibrillation 

requires hearts with a minimal size [19, 20].

Our method to compute τ treats number of spiral tips n as a stochastic quantity and casts its 

birth-death process into a master equation, a commonly used approach in the field of 

population dynamics [21–23]. This approach was also used previously for understanding 

spiral wave dynamics in spatially extended fluid dynamical systems [1–9]. Furthermore, it 

was used in recent studies that examined filament turbulence in phenomenological models 

and that described the dynamics of surface defects in terms of a master equation [24–26]. 

Contrary to these studies, we focus here on tips migrating in 2D and on termination events 

and the associated mean episode duration. In our case, the master equation describes the 

probability P(n, t) of having n spiral tips at time t as

dP(n, t)
dt = ∑

r
Wr(n − r)P(n − r, t) − Wr(n)P(n, t) (1)

where Wr are transition rates for the number of spiral tips to change by r tips and can be 

computed directly from spatially extended simulations of cardiac models. Since tips are 

created and annihilated either as pairs or as singlets, we only need to consider r = ±1, ±2. As 

a boundary condition we take n = 0 to be absorbing. This means that there is no escape from 

the no-tip state and that all birth rates for n = 0 vanish: Wr(0) = 0. Furthermore, an additional 

boundary condition stems from the fact that for n = 1 the pair-wise death rate equals 0: W

−2(1) = 0. Once the rates are known, we can construct a transition matrix which can be used 

to compute τ at minimal computational cost [27].

For large n, the death rate will exceed the birth rate since tips will have a high probability of 

colliding. As a result, the number of spiral tips does not grow to very large numbers. If for 

small n the birth rate is larger than the death rate, then a long-lived (quasi-stationary) 

metastable state exists with a mean number of tips n. The distribution associated with this 

metastable state is called the quasi-stationary distribution Pqs(n) [28, 29]. Note that for 

systems with an absorbing state at n = 0, the stationary distribution trivially corresponds to 

P(n) = 0 for all n ≠ 0 and P(0) = 1 In the quasi-stationary state, the number of tips fluctuates 

around the average value for prolonged periods of time and the mean episode duration can 

be computed using

1
τ = ∑

r < 0
Wr( − r)Pqs( − r) . (2)

Termination only occurs during rare escape events, corresponding to a large fluctuation away 

from the mean number of tips. As a consequence, standard equilibrium statistical physics 
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approaches based on small fluctuations do not apply [29, 30]. Instead, techniques from non-

equilibrium statistical physics must be invoked to determine statistical quantities 

corresponding to extinction, including τ.

To illustrate our stochastic approach to quantifying termination dynamics, we carry out 

simulations of SDC using spatially extended electrophysiological models. We should stress, 

however, that the approach should also work for other systems that exhibit spiral wave 

dynamics, including the complex Ginzburg-Landau equation [31] or simple 

phenomenological models [32]. The “direct” simulations use the standard reaction-diffusion 

equation:

∂tV = D∇2V − Iion/Cm (3)

where V is the transmembrane potential, Cm(μF cm−2) is the membrane capacitance and 

D∇2 expresses the inter-cellular coupling via gap junctions and diffusion constant D. The 

membrane currents in the electrophysiological model are denoted by Iion which are governed 

by nonlinear evolution equations coupled to V. For our purposes, the precise form of Iion is 

not important and we present results using the detailed Luo-Rudy (LR) model [33], modified 

to obtain spiral wave break-up as described in Qu et al. [34]. To stress the generality of our 

approach we also carry out simulations using the simplified Fenton-Karma (FK) model 

(parameter set 8) [35]. We perform the simulations in square two-dimensional computational 

domains although our approach can be equally well applied in more complex geometries. As 

boundary conditions, we consider both non-conducting and periodic boundary conditions, 

and we vary the area of the computational domain, which is equivalent to varying D while 

keeping the area constant. For both models, we use Cm = 1μF/cm2 while the diffusion 

constant is chosen to be D =0.0005 cm2/ms for the LR model and D =0.001 cm2/ms for the 

FK model. Simulations are carried out with a discretization of 0.025 cm, using a 5-point 

stencil, and a time step of 0.025 ms, using explicit Euler integration. For both models, the 

conduction velocity along a cable is within the electophysiological range: 33 cm/s for the LR 

model and 51 cm/s for the FK model. Errors in direct simulation results are reported as 

standard deviations.

II. RESULTS USING DIRECT SIMULATIONS

Starting with a random initial condition that contains multiple spiral waves, we solve the 

reaction-diffusion equation and keep track of the number of spiral tips using a standard 

algorithm (Fig. 1A) [35]. The number of tips fluctuates and the simulation ends after time Te 

when the number of spiral tips reaches 0 (Fig. 1B). We can compute the distribution of these 

termination times by repeating the simulations many times, starting with different and 

independent initial conditions. These conditions are created by perturbing multi-spiral states 

with randomly placed current stimuli in the form of a current stimulus of duration 2 ms and 

strength several times the excitation threshold. After perturbation, the system is allowed to 

evolve for another 100 ms before measurements are started. Our simulations reveal that this 

distribution is exponentially distributed, indicating that spiral wave termination can be well 

described as a Poisson process (Fig. 1C).
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Next, we compute the birth and death rates as a function of the number of tips n using 

different domain sizes with non-conducting boundaries by quantifying the number of 

transitions per time interval. The results are presented for the LR model in Fig. 2A–D. The 

number of transitions observed in the simulations depends on the domain size and on n and 

no transitions are recorded above some critical value of n. Here, to increase accuracy, we 

only consider rates that are determined using at least 100 transitions in the simulation. As a 

consequence, rates are computed up to a certain maximum value of n. In addition, for 

increasing domain sizes, transitions for small n become increasingly rare. As a result, in 

large domains, the number of recorded transitions for small values of n may not reach 100. 

The rates corresponding to these values of n are therefore not included.

Examining the computed rates, we see that W−1 depends linearly on the number of spiral 

tips for all domain sizes (Fig. 2A). The remaining rates, however, show a more complex 

dependence on the number of tips, indicating the existence of non-trivial longrange 

interactions between spiral tips (Fig. 2B–D). As a result, the rate curves are not easily fit by 

simple power laws. Therefore, we employ a smoothing spline fit to the data to determine 

rates corresponding to transition events with less than the minimum number. Note that this 

interpolation takes into account the zero rate for either n = 1 (periodic boundary conditions) 

or n = 0 (non-conducting boundaries).

In addition, we compute the rates for the FK model. The results, presented in Fig. 3, show 

the same linear dependence of W−1 on the number of spiral tips, along with a more complex 

dependence of the other rates. We can also compute the W±2 rates for domains that contain 

periodic boundary conditions. The results of these simulations are shown in Fig. 4 for both 

models and are qualitatively similar to the results presented in Fig. 2 and 3. As a consistency 

check, we can use these rates to compute the distribution of termination times. As expected, 

this distribution is exponential and agrees well with the one computed using direct 

simulations (Fig. 1C).

Importantly, we find that at large A all rates collapse onto a single curve when plotted as a 

function of the density q = n/A. Specifically, the W±2 rates are found to scale with the area 

as W±2(n) ~ Aw±2(q) (Figs. 2F, 3F, and 4C, F), indicating that the birth and death rates only 

depend on the density and that tips are well-mixed. Furthermore, the W±1 rates scale with 

the perimeter L as W±1(n) ~ Lw±1(q) (Figs. 2E and 3E). Here, and in the following, we will 

take the continuum limit such that q and functions that depend on this variable are 

considered to be continuous. Note that this observed linear scaling of W−1 with L implies 

that the death rate is proportional with the length of the non-conducting boundary and that 

creating ablation lesions will increase this rate. Furthermore, such scaling is expected if 

single tips annihilate through simple collision processes and get created near the boundaries.

III. RESULTS USING TRANSITION RATES

Once the transition rates are determined, it is straightforward to compute the quasistationary 

distribution Pqs(n) using the transition matrix at minimal computational cost (Fig. 5A, B, D, 

and E) [27]. For small domains, this can be carried out using the rates obtained in the 

simulations while for larger domains, where the rates for small n cannot be computed 

Vidmar and Rappel Page 4

Phys Rev E. Author manuscript; available in PMC 2019 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



accurately, we can use the interpolated rates. As the domain size increases, the distribution 

shifts to larger values of n, and becomes more symmetric around its peak. Of course, the 

quasi-stationary distribution computed using the transition matrix agrees very well with the 

one determined using direction simulations. This agreement is shown for the largest domain 

size in Fig. 5A, B, D, and E (symbols) but is also valid for other domain sizes. The average 

number of tips, n, increases with system size and our simulations reveal that it depends 

linearly on the area of the computational domain for both boundary conditions (Fig. 5C and 

F).

For geometries that do not contain any non-conducting boundaries it is possible to derive 

closed-form solutions for the quasi-stationary distribution. In this case, n is always even and 

tips will be created and annihilated in pairs such that W±1 = 0. The quasi-stationary 

distribution can be obtained by setting the left hand side in Eq. 1 to zero, resulting in the 

recursion relationship

Pqs(n) = Pqs(0) ∏
j = 2

n
W+2(2 j − 2)/W−2(2 j) (4)

where Pqs(0) can be determined by the normalization condition ∑n = 0
∞ Pqs(n) = 1 [23].

The deterministic equation corresponding to the master equation can be found in a 

straightforward manner [23]:

dn
dt = 2W+2(n) − 2W−2(n) (5)

As a consequence, the deterministic stationary state is determined by W+2(n*) = W−2(n*). 

The maximum value of the quasi-stationary distribution occurs for Pqs(n − 2)/Pqs(n) ≈ 1, 

corresponding to W+2(n − 2) = W−2(n). Therefore, for large values of A the stochastic 

average number can be well approximated by the deterministic average number, n ≈ n*. 

Furthermore, using our numerically found scaling, we obtain w+2(q*) = w−2(q*), where q* = 

n*/A. Hence, the average density is independent of the area and n*, and thus n, scale with A, 

consistent with the scaling found in the simulations (Fig. 5C and F). For domains that 

contain non-conducting boundaries, the ±1 rates are no longer zero and the corresponding 

deterministic equation reads

dn
dt = 2W+2(n) − 2W−2(n) + W+1(n) − W−1(n) . (6)

Using our obtained scaling, we have for the deterministic stationary state:

2w+2 q* − 2w−2 q* + w+1 q* / A − w−1 q* / A = 0

Vidmar and Rappel Page 5

Phys Rev E. Author manuscript; available in PMC 2019 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



For large areas, the last two terms can be neglected and the average number of tips will again 

scale linearly with the area.

IV. MEAN EPISODE DURATION

To find the mean episode duration τ in the direct simulations, we average the termination 

times Te obtained from each independent simulation. This computation becomes more and 

more time consuming as A increases since termination becomes less and less likely. As a 

consequence, the number of determined termination events we consider vary from 400 for 

small domains to less than 10 for the largest areas still amenable to direct simulations. Our 

results reveal that τ increases sharply as the domain size becomes larger, consistent with 

earlier computational studies [18]. More specifically, τ displays an exponential dependence 

on the size of the domain, both for periodic and non-conducting boundary conditions (red 

symbols, Fig. 6), a result that agrees with the earlier study by Qu [17].

Rather than using direct simulations to determine an average value for Te, it is 

straightforward to use the interpolated transitions rates and the resulting transition matrix to 

compute τ using simple matrix operations [27]. For this, we construct a transition matrix Q 
for all transient states n > 0, with elements Qij representing the probability of transitioning 

from state i to state j. The probability of reaching state j from state i in t steps is then given 

by the ijth entry of Qt. Summing this over all time results in the so-called fundamental matrix 

N = I + Q + Q2 + … = (I − Q)−1, where I is the identity matrix. Each element of the 

fundamental matrix Nij represents the mean duration our system will spend in state j given 

an initial state i, which can be used to determine the quasi-stationary distribution. Moreover 

the mean time to extinction τ is given by N e , where e  is a column vector of ones. The 

confidence intervals for τ are computed through bootstrapping as follows. First we resample 

each transition rate by drawing a value from a binomial distribution with probability equal to 

the original transition rate and using the number of recorded transitions from the direct 

simulation. We then proceed by interpolating these resampled transition rates and computing 

τ from these interpolated transition rates. This is computed for 1000 trials and the 

confidence interval is determined from the 5th to the 95th percentile of the resulting τ across 

all trials.

The resulting values for τ agree well with the direct numerical simulations (black symbols, 

Fig. 6). Importantly, using the transition matrix allows us to estimate the mean episode 

duration for system sizes where determination of mean episode duration with direct 

simulations is impossible. For example, directly simulating a single extinction event on a 

domain with area A = 225μm2 and non-conducting boundaries was found to take 

approximately 100 hours of CPU time. Estimating τ from this single event is not useful as 

the error is large and generating a suffcient amount of termination events is not practical. 

Furthermore, for other larger domain sizes our direct simulations failed to produce a single 

termination event, even after 7 days of CPU time. Using the interpolated transition rates 

computed from this single, non-terminating event, however, we are still able to use the 

transition matrix (Fig. 6) to predict the mean episode duration. Moreover, τ can already be 

estimated using only a fraction of the data, and thus simulation time, further demonstrating 

the power of the approach. This is shown in Fig. 7 where we plot τ as a function of the 
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fraction of computational data from a direct simulation of the LR model. Obviously, for 

larger fractions, the errors in the transition rates become smaller, resulting in smaller 

confidence intervals. Furthermore, the mean termination time converges as the fraction 

increases and can be reasonably well estimated from a small fraction of the entire dataset.

V. SCALING RESULTS

We can also use our stochastic analysis of termination to determine the scaling of τ with the 

area. For periodic boundary conditions, it is possible to obtain an analytical expression for τ 
[23]:

τ n0 = ∑
k = 1

n0/2

ϕ(2(k − 1)) ∑
j = k

∞ 1
ϕ(2 j)W+2(2 j) (8)

where n0 is the initial number of spiral tips, ϕ(k) = ∏i = 1
k /2 W−2(2i)/W+2(2i). Using the 

numerically determined rates we find that τquickly converges as n0 becomes large and that 

τ(n) agrees well with the values obtained using the numerical methods. This is shown 

explicitly in Fig. 8 which plots the mean episode duration as a function of the initial number 

of tips for one particular domain size. We have verified that qualitatively similar results hold 

for other domain sizes.

To determine the scaling with the area we focus on the first term of this expression, 

τ(2) = ∑ j = 1
∞ ϕ(2 j)W+2(2 j) −1. We can write ϕ(2j) as

ln[ϕ(2 j)] = ∑
z = 1

j
ln

W−2(2z)
W+2(2z) ≈ − A

2 ∫
2/A

x
ln

w+2(s)
w−2(s)ds (9)

where we have used the fact that the transition rates scale with the area A and have defined s 
= 2z/A and x = 2j/A. As a result, the mean episode duration becomes

τ ≈ ∫
0

∞ exp A∫ 2/A
x ln

w+2(s)
w−2(s)ds

2w+2(x) dx . (10)

For large A, this integral will be sharply peaked around q*. Thus, τ has the following scaling 

behavior [36]:

τ exp A∫
2/A

q*
ln

w+2(s)
w−2(s)ds (11)
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and, as an immediate consequence of the observed scaling of the transition rates, we find 

that τ scales exponentially with the area, consistent with our direct numerical results (Fig. 

6).

We can also use approximation methods to determine the scaling of the mean episode 

duration by viewing the number of spiral tips as a stochastic population in a metastable state. 

This approach is particularly useful for domains containing non-conducting boundaries, for 

which it is no longer possible to derive an exact expression for τ. As long as A, equivalent to 

the total population size in models of population biology, is suffciently large, we can use a 

dissipative WKB approximation, pioneered by Kubo et al. [37]. In this approximation, the 

quasi-stationary distribution is assumed to obey Pqs(q) ~ e−AS(q) where S(q) is a function 

called the action. We can now use our obtained scaling Wr(n) = Ar/2wr(q), together with the 

assumed form of Pqs(q), and substitute them into the stationary form of Eq. 1. This equation 

is written in terms of the continuous rescaled variable q = n/A so that n − r → q − r/A [29]. 

For the periodic case, we take S(q) = S0(q) + O(A−1) while for absorbing boundaries, since 

the scaling of the ±1 rates goes as A while the ±2 rates go as A, we use S(q) = S0(q) + A
−1/2S1(q) + O(A−1). The resulting equation can then be expanded in terms of 1/A which 

yields, to O(1), a Hamilton-Jacobi equation

H(q, p) = ∑
r

Ar /2wr(q) erp − 1 = 0 (12)

where p(q) = ∂S/∂q is the fluctuation momentum [28, 29].

From the Hamiltonian H we can define the dynamics of p and q using dp
dt = − ∂H

∂q  and 

dq
dt = ∂H

∂ p . The non-trivial solution of H(q, pa(q)) = 0 corresponds to the activation trajectory 

in the q, p phase space [28–30, 37, 38]. This trajectory describes the most probable path 

along which the system evolves from the metastable state (q*, 0) to a point q in phase space. 

Since we are interested in extinction, we will consider the trajectory that connects (q*, 0) 

with [0, p(0)], the so-called “optimal” path to extinction [28]. This q, p phase space, along 

with the activation trajectory, is shown in Fig. 9 for periodic boundaries for both the LR and 

the FK model. The optimal path can be determined numerically but can also be determined 

using approximate closed-form relations. Specifically, for periodic boundary conditions, we 

find

S0 = ∫
q*

2/A
ln γ0dq, (13)

and γ0 = w − 2
w+2

. In Fig. 9, this corresponds to the area between the activation trajectory and 

the q axis, represented by the shaded part. Thus, we find that the mean episode duration 

scales as τ e
AS0, consistent with Eq. 11. For absorbing boundaries, we can solve for S1 

perturbatively, yielding
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S1 = ∫
q*

2/A γ0w+1 − w−1 γ0 − 1
2γ0 w+2 − w−2

dq . (14)

Using our formulation, we can now compute the mean episode duration for any system size 

once the rates for a single domain A are determined. Specifically, after computing for this 

particular domain both S0 and S1 and the corresponding mean episode duration τ , we can 

find τ as a function of the system size using:

τ(A) ≈ τe
(A − A)S0 + ( A − A)S1 . (15)

This scaling law for τ agrees well with the values of τ computed from the master equation, 

especially for larger values of A (Fig. 6), justifying the WKB approximation. For these 

larger domain sizes, the factors S0 and S1 converge, making the estimate from Eq. 15 to be 

more accurate, as shown in Fig. 10A. This is consistent with the obtained quasi-stationary 

distributions which become more symmetric around their peak value for larger domain size 

(Fig. 5), rendering the WKB approximation more accurate. Furthermore, as is the case for τ 
(Fig. 7), both S0 and S1 can be estimated using the interpolated rates and only a fraction of 

the direct simulation data (Fig. 10B). Thus, accurate estimates for arbitrary domain sizes do 

not require simulating actual termination events. Finally, the exponential scaling of τ with 

system size A reveals that, even though spiral wave driven fibrillation will always terminate, 

its mean episode duration depends critically on the size of the heart. Of course, this result is 

valid as long as the specifics of the model do not change. Other factors, including changes in 

electrophysiological parameters, can have an effect of mean termination duration. For large 

values of A, τ can be large while for very small values of A as found, for example, in 

rodents, the mean episode duration will be well below 1 s. These findings are fully 

consistent with the well-established critical mass hypothesis which posits that fibrillation 

only occurs in hearts of a minimum size [17, 19, 20].

VI. SUMMARY

In summary, we present a statistical approach to quantify spiral wave dynamics in spatially 

extended domains. This approach recasts the problem into a master equation, after which 

statistical physics methods can be employed. Our approach is valid for any model exhibiting 

SDC. Key in this approach are the transition rates, which were computed numerically from a 

limited set of direct simulations. Using a dissipative WKB approach, we find that the mean 

episode duration of SDC can be computed in minimal computational time. In addition, we 

show that this duration depends exponentially on domain size.

Our results should be generally applicable to any system exhibiting SDC. Here we have used 

electrophysiological models, motivated by the spiral wave dynamics observed during 

fibrillation when the heart’s electrical activity becomes disorganized [12, 39–41]. Clearly, 

our fibrillation model is an idealized and simplified version of the clinical reality since the 
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heart is a heterogeneous 3D object. Nevertheless, it is intriguing to note that the exponential 

dependence of the mean episode duration is consistent with the critical mass hypothesis 

which states that fibrillation requires a minimal organ size [17, 19]. Furthermore, some of 

the simplifications of the current model might be overcome by future extensions. First, our 

approach should also be applicable to more complex, realistic geometries. Geometry data are 

routinely obtained in patients and electrophysiological models can be readily implemented 

using computational tools. This should allow us to compute rate equations in realistic 

geometries, after which we can use the same approach as detailed here. This extension might 

also be used to study the effect of different surgically created lesion sets and 

pharmacological interventions on the termination time and has the potential to be an 

important step towards determining optimal therapeutic interventions aimed at minimizing 

the duration of fibrillation episodes. Second, we may be able to extend the model to include 

tissue in-homogeneities. As long as the spiral wave is not trapped, one should be able to 

compute the creation and annihilation rates as carried out in this study. Third, the approach 

can be extended to include tissue with a non-zero thickness, appropriate for the ventricles 

and possibly for atrial tissue. To extend our approach to this type of problem we will need to 

track spiral wave tips on both surfaces. In addition, it would be interesting to further study 

the dependence of the rates on the number of tips. If, for example, rational functions for 

these rates can be derived, it should be possible to obtain analytical expressions for τ. 

Finally, it would be interesting to compare scaling of fibrillation in healthy and diseased 

hearts by simulating appropriate electrophysiological models.
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FIG. 1. Direct numerical simulations provide statistics of spiral tip dynamics.
A: Snapshot of a simulation of the LR model in a 7.5×7.5 cm computational domain with 

periodic boundary conditions. The voltage is represented using a color code with red (blue) 

corresponding to depolarized (repolarized) tissue. The location of the tips of counter- and 

clockwise rotation spiral waves are shown in black and white, respectively. (scale bar: 1cm) 

B: Typical time trace of the number of spiral tip pairs. For this particular simulation, spiral 

tips spontaneously extinguished after 8.3 s. C: Distribution of termination times for the 

direct simulations (symbols, computed using 400 termination events) and the master 

equation (solid line, computed using 10000 termination events).
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FIG. 2. Transition rates for the LR model computed using direct simulations and non-conducting 
boundaries.
A-D: The birth and death rates for n → n − 1 (A), n → n − 2 (B), n → n+1 (C), n → n + 2 

(D) computed in a square geometry of various sizes. Error bars represent standard deviation. 

E: The W±1 rates, normalized by the perimeter of the domain, as a function of the density of 

tips, q = n/A. F: The W±2 rates, normalized by the area of the domain, as a function of the 

density of tips.
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FIG. 3. Transition rates for the FK model computed using direct simulations and non-conducting 
boundaries.
A-D:The birth and death rates for n → n − 1 (A), n → n − 2 (B), n → n + 1 (C), n → n + 2 

(D) computed in a square geometry of various sizes. Error bars represent standard deviation. 

E: The W±1 rates, normalized by the perimeter of the domain, as a function of the density of 

tips, q = n/A. F: The W±2 rates, normalized by the area of the domain, as a function of the 

density of tips.
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FIG. 4. Transition rates for the LR (A-C) and FK model (D-F) computed using direct simulations 
with periodic boundary conditions.
A, B and D, E: The birth and death rates for n → n − 2 (A, D), n → n + 2 (B, E) computed 

in a square geometry of various sizes with absorbing boundaries. Error bars represent 

standard deviation. C and F. The W±2 rates, normalized by the area of the domain, as a 

function of the density of tips.
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FIG. 5. Dependence of spiral tip dynamics on the domain size for LR model (A-C) and the FK 
model (D-F)
. A, B and D, E: The quasi-stationary distribution for periodic (A, D) and non-conducting 

boundary conditions (B, E) using different domain sizes as computed using the transition 

matrix. The symbols show the quasi-stationary distribution as computed using the direct 

simulations. C, F: The average number of tips as a function of the area of the computational 

domain, computed using direct simulations (symbols) and using the master equation 

approach (line). The dashed curves are straight lines.
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FIG. 6. Termination times as a function of the system size for the LR model (upper row) and FK 
model (lower row).
Red symbols show τ as a function of the area of the computational domain from direct 

simulations using domains with periodic boundary conditions (left column) and non-

conducting boundaries (right column). Also shown are the results from the master equation 

approach (black symbols) and from the closed-form expression obtained using the WKB 

analysis (solid line). The red square represents the result of a single termination event 

computed using direct simulations while the solid red circle represents the computed time 

for a single computation that did not result in a termination.
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FIG. 7. Accuracy of the master equation approach.
The mean episode duration computed using the master equation as a function of the fraction 

of computational data obtained using direct simulations of the LR model. Data segments of 

size indicated by fraction were started at random positions. Results are shown for A = 

225cm2 for the non-conducting case and for A = 189.0625cm2 for the periodic case. The 

error bars are determined using bootstrapping and represent the 5% and 95% confidence 

interval.
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FIG. 8. Analytical formula for periodic boundary conditions.
Mean episode duration τ as computed using the analytical formula in the main text as a 

function of the initial number of tips, n0. Symbol corresponds to the result from direct 

simulations (n ≈ 9). Results are shown for the LR, using a domain of size 7.5cm×7.5cm.
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FIG. 9. WKB approach to spiral tip dynamics.
Phase portrait of the Hamiltonian dynamics in q, p space for periodic boundary conditions in 

the LR and FK model, showing the activation trajectory of the WKB Hamiltonian (red line). 

The shaded area represents the exponential factor S0.
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FIG. 10. WKB parameters as a function of area size for the LR model
A: The exponential coefficients S0 and S1 as a function of domain size for periodic and non-

conducting boundaries. B: The exponential factors S0 and S1, rescaled by their value 

computed at the largest computational data set, as a function of the fraction of computational 

data obtained using direct simulations. Data segments of size indicated by fraction were 

started at random positions. Shown are the results for A = 225cm2 for the non-conducting 

case and for A = 189.0625cm2 for the periodic case.
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