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Abstract

It takes approximately one second for an adult
to respond to the problem “7 x 8” The results
of that second are well documented, and there
are a number of competing theories attempting
to explain the phenomena [Campbell & Graham
1985; Ashcroft 1987; Siegler 1988]. However.
there are few fully articulated models available
to test specific assumption [McCloskey, Harley,
& Sokol 1991]. This paper presents a connection-
ist account of mental multiplication which mod-
els adult reaction time and error patterns. The
phenomenon is viewed as spreading activation
between stimulus digits and target products. and
is implemented by a multilayered network aug-
mented with a version of the “cascade” equations
[McClelland 1979]. Simulations are performed to
mimic Campbell & Graham's [1985] experiments
measuring adults’ memory for single-digit multi-
plication. A surprisingly small number assump-
tions are needed to replicate the results found
in the psychological literature—fewer than some
(less explicit) theories presuppose.

Phenomena

When asked to recall answers to two digit multiplica-
tion problems “as quickly and accurately as possible”
[Campbell & Graham 1985]. both children and adults
exhibit well documented patterns of behaviour. In
general, response times (RTs) increase across the
multiplication tables: problems in the nine times ta-
ble tend to take longer to answer than problems in the
two times table. However. this “problem size effect”
has plenty of exceptions (e.g., the five times table is

*Thanks to Harry Barrow & David Young. Funded by the
SERC in conjunction with Integral Solutions Ltd. Simulations
were performed using a modified version of the McClelland &
Rumelhart [1988] bp program. and POPLOG POP-11.

much faster than its position would suggest—see fig-
ure 1). In addition, “tie” problems (2 x 2, 3 x 3 etc.)
are recalled relatively quickly. Campbell & Graham
[1985] found that adults under mild time pressure
make errors at the rate of 7.65 per cent, and 92.6 per
cent of those errors fall into the following five cate-
gories (after McCloskey et al. [1991]):

e Operand errors, for which the erroneous product is
correct for a problem that shares a digit (operand)
with the presented problem (e.g., 6 x 4 = 36, be-
cause the problem shares 4 with 9 x 4 = 36).

¢ Close operand errors. a subclass of operand errors,
where the erroneous product is also close in magni-
tude to the correct product. That is, for the prob-
lem a x b, the error will often be correct for the
problem (a+2)xborax (b+2)(e.g., 6 x 4 = 28).
This phenomenon is referred to as the “operand
distance effect”

e Frequent product errors, where the error is one of
the five products 12, 16, 18, 24 or 36.

e Table errors, where the erroneous product is the
correct answer to some problem in the range 2 x 2
to 9 x 9, but the problem does not share any digits
with the presented problem (e.g., 6 x 4=15).

e Operation errors, where the error to a x b is correct
for a + b.

Despite being drilled on the multiplication tables
at school, children and adults make these systematic
slips in recall. The problem is to produce a model
which has correctly learnt the multiplication tables,
yet can make slips when recalling answers. Given the
observations on the types of erroneous responses, and
the RT for correct responses, what assumptions must
be made to account for these phenomena? The model
presented here suggests that the initial skew in the
frequency and order of presentation of multiplication
facts [Campbell 1987, p. 118] is one of the important
factors.
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Figure 1: Plot of mean correct RT per multiplica-
tion table collapsed over operand order for mean RT
of: 60 adults [Campbell & Graham 1985, app. A); 26
children in grade 5, RT scaled down from a range of
1.19-2.97 seconds to fit graph [ibid. app. B]; 20 net-
works trained on skewed frequencies; and, the same
20 networks after continued training on uniform fre-
quencies. The RT for both networks has been scaled
by the same amount.

Architecture of the model

The structure of the network is shown in figure 2.
This architecture has evolved in a number of stages
since it was first used as a subnetwork in a sequen-
tial network for long addition (and later long mul-
tiplication). Initially the output layer was divided
into “tens” and “units”, and by adding a simple RT
measure it was found that the network produced a
prominent dip in the RT curve for the five times ta-
ble. This effect was increased by training sequentially
through the tables, but the network did not produce
the kinds of mistakes reported by Campbell & Gra-
ham [1985]. Changing the output layer to a repre-
sentation of products, and using a coarse encoding of
the input digits produced more realistic errors.

The current network is trained on all the problems

2 x 2 through 9 x 9 in a random order using back-
propagation. The two digits that comprise a prob-
lem are coarse encoded on the two sets of eight in-
put units, with the activation decaying exponentially
from the presented digit (e.g., when encoding “5”, the
input vector would contain 1.0 for the five unit, and
0.5 for the four and six units, and so on). For tie prob-
lems, an additional tie bit is set to 1.0. Without this,
the tie problems were consistently among the slowest
problems. The tie bit can be thought of as reflecting
the perceptual distinctiveness of tie problems. Acti-
vation flows through a hidden layer of ten units to
the output layer. There is one output unit per prod-
uct type plus a “don’t know” unit. The network is
trained to activate one output unit per problem (a
one-of-N encoding).

During training the presentation frequency of each
pattern is linearly skewed in favour of the smaller
problems (relative frequency of 1.0 for 2 x 2 to 0.1
for 9 x 9, based on correct product). Although small
problems do occur more frequently in textbooks,
there is no reason to believe this skew continues into
adulthood [McCloskey et al. 1991, p. 328]. Hence,
after training to an error criterion (total sum squared,
TSS) of 0.05 on the skewed training set (taking ap-
proximately 8 000 epochs), the network is trained for
a further 20 000 epochs with equal frequencies (reach-
ing a mean TSS of 0.005). At the end of training both
the “skewed” networks and “equalized” networks cor-
rectly solve all problems. An initial worry was that
the skew would lead the networks into a local min-
ima from which the task could not be completed. To
avoid this possibility, a low learning rate of 0.01 was
used during training (momentum was 0.9).

The skew was produced by storing the relative fre-
quency (between zero and one) of a problem alongside
the problem in the training set. When a problem was
presented to the network. the weight error derivative
was multiplied by the relative frequency value for that
pattern. (This can be thought of as providing each
input pattern with a different learning rate.) This
method allowed accurate control over the presenta-
tion frequencies, without duplicating entries in the
training set.

The “cascade” activation equation [McClelland &
Rumelhart 1988, p. 153] is used to simulate the spread
of activation in the network. Each unit’s activation
is allowed to build up over time:

neti(t) = k ) wyja;(t) + (1 — k) nety(t — 1),
j

where k is the cascade rate which determines the rate
with which activation builds up, w is the wsight ma-
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trix, and a;(t) is the activation of unit j at time t.
For the simulations described here, £ = 0.05. The
net; is passed through a logistic squashing function
to produce the activation value, a;. The response val-
ues are taken to be the normalized activation values
(the sum of the output layer activity is 1.0).

McClelland & Rumelhart [1988] point out that
the asymptotic activation of units under the cascade
equation is the same as that reached after a stan-
dard feed-forward pass. Hence, the network is trained
without the cascade equation (or with k£ = 1, if you
prefer), and then the equation is switched on to mon-
itor the network’s behaviour during recall.

At the start of cascade processing the initial state
of the network is the state that results from process-
ing an all-zeros input pattern. This gives a com-
mon starting point for all problems. The network
is trained to activate the “don’t know” unit for an
all-zeros input. Figure 3 is a time plot of output ac-
tivation using the cascade equations.

Simulations

Method

On each trial (presentation of a problem) the net-
work randomly selects a threshold between 0.4 and
0.9. Processing then starts from the all-zeros ( “don’t
know”) state, and proceeds until a product unit ex-
ceeds the threshold. The RT (number of cascade
steps) is recorded for a correct response, and erro-
neous responses are classified into the five categories
itemized above. The network is presented with each
of the 64 problems 50 times, and the mean correct
RT is recorded. This is repeated with 20 different
networks (different initial random weights).

Given enough time (usually no more than 50 cas-
cade steps), the network will produce the correct re-
sponse for all 64 problems. For example. figure 3
shows the response of a network to the problem 3 x 3.
After the “don’t know” unit has decayed, the unit
representing 27 becomes active until the network set-
tles into the correct state, 24. This is a demonstration
of the operand distance effect. but there is slight ac-
tivation of other products: 3 x 7 = 21, 2 x 8 = 16,
4%x8=232,3x3=9,and 2 x7 = 14.

With a high threshold the networks will reliably
produce the correct response to a problem. How-
ever, early in processing erroneous products are ac-
tive (e.g., 27 in figure 3), and with a low threshold
these errors are reported. Note that this is rather
different to previous connectionist (Brain-state-in-a-
box, BSB) model of mental arithmetic [Viscuso 1989;
Anderson, Spoehr, & Bennett 1991]. The full details

of the BSB model have not yet been published, and
only small scale simulations have been performed.
In essence, the model is an auto-associator that set-
tles into attractor states representing the answer to
the presented problem. However, this means that
the model, as presented, simply lacks the ability to
correctly answer some problems, or fails to respond
at all. This runs against the notion that slips are
one-off run-time errors, rather than permanent dis-
abilities. McCloskey et al. [1991] comment that the
Viscuso, Anderson, & Spoehr [1989] “proposal has
several limitations and cannot be considered a well-
articulated model”, but add that “the [neural net] ap-
proach probably merits further exploration” [p. 395).

"Don't know" unit
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Figure 2

Results

The mean RTs plotted in figure 1 show some of
the basic features of the problem size effect. For
the skewed networks the RT correlates r = 0.36
(p = 0.0018) with adult RT [Campbell & Graham
1985]. This falls to r = 0.19 (p = 0.063) after sub-
stantial training on the equalized patterns. Note that
the RTs have reduced and flattened out for the equal-
1zed network, which is just what is expected after con-
tinued practice [Campbell & Graham 1985. p. 349).
The obvious feature of the RT plot is the drop in RT
for the nine times table. Children in grades 3 to 5
respond faster to 9x than 8x problems [Campbell &
Graham 1985], but this levels out for adults.

The inclusion of a ties unit is necessary to en-
sure that ties are among the fastest problems. Im-
plicit in this is an assumption that there is some-
thing perceptual about ties which results in a flagged
encoding—perhaps the effect of being taught the no-
tion of “same” and “different”. The RTs of 6 (out
of 8) of the tie problems were below the mean RT
for their table, increasing to 7 ties for the equalized
networks (6 x 6 remaining above the mean for the six
times table).

Table 1 shows the error percentages of the net-
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Networks Adults
Skewed Equalized

Operand errors 90.04 86.51 79.1
Close operand errors 78.98 73.75 76.8*
Frequent product erfors 27.76 23.68 30.6
Table errors 9.74 13.49 13.5
Operation error 3.98 3.22 1.7
Error frequency 14.10 18.64 7.65

= Approximate percentage.

tPercentage of operand errors.

Table 1: Percentage breakdown of errors. Figures are mean values from twenty different networks, and
mean values from sixty adult subjects [Campbell & Graham 1985, app. A]. Note that the model has not
been trained on addition facts, so the frequency of operation errors is coincidental.
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Figure 3: Response of the output units over 40 time
steps for the problem 3 x 8. Output units represent-
ing products over 32 are not shown on this graph.

works compared to those of adults. Both sets of net-
works have error distributions that are similar to that
of adults, and there is little difference between the
skewed and equalized networks.

It should be noted that human subjects sometimes
respond with a number that is not a correct prod-
uct for any of the problems 2x2 to 9x9 (e.g.,
2 x 3 = 5). The current network cannot produce non-
table errors. However, Campbell & Graham [1985] re-
port that only 7.4 per cent of errors are of this kind.
(An account of non-table errors might begin by aug-
menting the network with a tens and units read-out
layer.)

A further point of interest is the correlation be-
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Figure 4: Hidden unit activation for one network.
Each large rectangle represents one hidden unit.
Withir ~ach rectangle, the size of the smaller rect-
angles represents the activation of the hidden unit to
a particular problem. Each large square mimics the
multiplication table (top-left for 2 x 2, and bottom-
right for 9 x 9). For example, unit 22 responds to
problems in the three and four times tables.
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tween problem error rate and correct RT. Campbell
(1987, p. 110] reports a correlation of 0.93 for adults.
For the skewed and equalized networks r = 0.74 and
r = 0.76 respectively. It is not obvious that any
model would necessarily predict that slower problems
produce more errors.

Analysis

RT depends on the net input to a unit, and this can
be increased by having some large (or many small)
weights. Although there is no easy way to determine
why certain weights develop. some of the factors in-
volved can be described.

The presentation frequency of a problem and prod-
uct should have a strong effect on the weights:
those problems seen more often should develop larger
weights. Simulations with networks trained only
on patterns with equal presentation frequencies have
demonstrated that the frequency of presentation is
important. Typically these networks produce high-
frequency products as errors. and have poor correla-
tions to human RT.

Frequency does not explain why the five times table
should be faster than the four times table. “Product
uniqueness” may explain why: none of the products
in the five times table occur outside the context of
five (unlike the two times table, where the products
12, 16 and 18 occur in other tables). Hence, the error
signals for the fives products are not diluted through
differing hidden representation for different problems.
The same is true of the seven times table, but for a
lower presentation frequency.

The nine times table has the largest range of all the
tables. This seems to give the table a RT advantage
because many hidden units respond to the nine times
table: the nine times table is the third "most en-
coded” problem (typically five hidden units respond
to the nine times table: seven for the two times tables;
six to the three times). This is because the hidden
units respond to a range of input problems. For ex-
ample, figure 4 shows that unit 26 responds to small
products; unit 23 to medium products; and unit 24
responds to larger products.

The hidden units’ preference for responding to
bands of inputs explains the mechanism behind the
operand distance effect. Hidden units’ activities
change smoothly during the course of processing, but
at differing rates. This change affects groups of re-
lated products, and due to the overlap in encoding
(e.g., between unit 23 and 24 in figure 3), some hidden
units may force incorrect products to exceed thresh-
old.

Discussion

Apart from the training frequency skew, the other
main assumption of the model is the coarse coding of
the input pattern. The importance of this assumption
has been demonstrated by simulations using a one-of-
N input encoding (the same encoding that was used
for the outputs). The results of those simulations
produced comparable RT correlations, but poor er-
ror distributions. The assumption is that the coarse
encoding is due to general knowledge of number (per-
haps from counting).

This study has focused on mean adult performance
on the problems 2 x 2 to 9 x 9 because these prob-
lems have detailed published results. There are per-
sistent statements in the literature that zero and one
times tables are governed by procedural rules (e.g.,
Campbell & Graham [1985, p. 341]; Miller, Permut-
ter, & Keating [1984, p. 51]; Stazyk, Ashcraft, &
Hamann [1982, p. 334]). The motivation for this
seems to stem from the fact that it is easy to produce
answers for the zero and one tables. Initial experi-
ments with the architecture confirm what is expected
of backpropagation when the zero and one times ta-
bles are included in the training set. The zero table
is by far the fastest and least prone to error, followed
by the one times table. This is consistent with RTs
reported by Miller et al. [1984]. On this basis there
is no reason to assume that there is a separate mech-
anism for the zero and one tables.

Some of the assumptions posed by other models
may be accounted for by differences in methodol-
ogy. For example, in models that assume direct links
(no hidden units) between stimulus digits and target
products there must be additional information for the
model to be capable of producing the correct answer.
There must be either: different (token) answer nodes
for each problem (e.g., multiple copies of the “12”
node for 2 x 6 and 3 x 4 as used by Ashcroft [1987]);
or input nodes representing whole problems (e.g. a
“3 x 4” input node as in Campbell & Graham [1985]);
or both [Siegler 1988].

However, other assumptions were not found to be
needed in this model. For example, there was no need
for explicitly learning incorrect associations, as sug-
gested by both Siegler [1988] and Campbell & Gra-
ham [1985]. Nor was there need for connections be-
tween product units (Campbell & Graham [1985] and
Ashcroft [1987]), nor connections from general “mag-
nitude” units as used by Campbell & Graham [1985].
These models have been criticised by McCloskey et al.
[1991] for not specifying the rationale for these addi-
tional connections.

Of course, there are a number of shortcomings to
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the model presented here. There is no empirical ev-
idence to suggest that adults are exposed to a skew
in the frequency of multiplication problems, and this
was modelled by further training the skewed networks
on equal frequency problems. Although the RTs for
the equalized networks diverge from the adult RTs,
they retain the basic features of the problem size ef-
fect and error distributions. One conclusion that can
be drawn from this is that it is quite possible for the
effect of training on skewed problems to continue to
be felt even after a significant period of training on
non-skewed problems.

As it stands the model makes no attempt to ac-
count for a number of important aspects of arith-
metic. Future directions for this work could focus
on: modelling single digit addition; the role of back-
up (counting) procedures: error priming; and the
model’s position in long (multi-digit) arithmetic pro-
cedures.

The backpropagation cascade model presented here
has detailed the spread of activation. response se-
lection, training regime and minimal assumptions
needed to replicate results on adult performance.
This has been done in the context of attempting to
mimic the experiments performed by Campbell &
Graham [1985], and hence the results are of a statis-
tical nature. The explicitness of the model is one of
its strong points, and as McCloskey et al. [1991] point
out it is now time to “shift from a demonstration of
the framework’s basic merit to the hammering out of
detailed, fully elaborated models” [p. 394]. This has
been an attempt to do just that.
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