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Abstract 
Computational machine learning-based frameworks could be advantageous for the 
field of neuropathology for scalable analyses. A recent deep learning (DL) framework 
has shown promise in automating the process of visualizing and quantifying different 
types of Amyloid-β deposits as well as segmenting white matter (WM) from gray matter 
(GM) on digitized immunohistochemically stained slides. However, this framework has 
only been trained and evaluated on Amyloid-β-stained slides with minimal changes in 
pre-analytic variables. In the current study, we evaluated select pre-analytical variables 
including magnification, compression rate, and storage format using three digital slides 
scanners (Zeiss Axioscan Z1, Leica Aperio AT2, and Leica Aperio GT 450) on over 60 
whole slide images, in a cohort of 14 cases having a spectrum of Amyloid-β 
depositions.  We conducted statistical comparisons of pre-analytic variables with 
Repeated Measures Analysis of Variance evaluating the outputs of two DL frameworks 
for segmentation and object classification tasks. For both WM/GM segmentation and 
Amyloid-β plaque classification tasks, there were statistical differences with respect to 
scanner types (Ps < 0.05) and magnifications (Ps < 0.05). This pilot study, although 
presenting small numbers of cases, highlights the significance of pre-analytic variables 
that may alter performance of machine learning algorithms. 
 

 

 

 

 

 

 

 

 

 

 



 

Introduction  

Whole-slide imaging has become an increasingly popular modality to assess brain 
tissues. With the help of a digital slide scanner, ultra-high resolution whole slide images 
(WSIs) are generated to aid in preservation of tissue details (1). WSIs can be viewed and 
annotated through computer software (such as Aperio ImageScope, ZEN, and QuPath 
)(2).  The digitization of tissue information allows for application of computational 
approaches, which include but are not limited to machine learning (ML) and image 
processing that can aid with automated analyses of tissue. 
 
Many types of pathologies exist within the brain, of which define the neuropathologic 
classification of many neurodegenerative diseases (3). For example, Amyloid-β deposits, 
in the form of plaques, are a hallmark pathological feature of Alzheimer’s Disease (AD) 
(3). It is becoming advantageous to have more quantitative assessments of these 
pathologies for deeper phenotyping that is paving the way for precision medicine 
approaches for these devastating diseases (4-6). The quantification of pathologies, such 
as Amyloid-β plaques, can be a time-consuming task that has been automated through 
Convolutional Neural Networks (CNN) (7), a type of ML framework. Other Deep Learning 
(DL) studies in pathology applied similar techniques for WSI analysis (7-9). However, the 
performance of the aforementioned CNN models has not been fully demonstrated for 
WSIs scanned under variable conditions (i.e. magnifications, compression rates, etc.).  
 
Many promising DL-based studies in neuropathology utilize WSIs from a single scanner, 
with single WSI formatting settings (10-13). Such design choices lead to a study with little 
or no variation in pre-analytical variables such as image format, image compression rate, 
and scanner types. Despite displaying competitive performance, studies may not 
adequately assess generalizability; this lack of pre-analytical variable diversity could be 
a concern for the reported performance metrics (10-13). Research on organ tissues other 
than brain, has revealed a model trained with data from diverse settings, such as different 
scanners, outperform models trained with single-source WSIs (14). Although two WSIs 
from different scanners may look identical to a human evaluator, they may look distinct to 
the DL model due to the scanner, formatting applied to the scan, and/or the digital 
watermark left by preprocessing software. Different formatting settings or scanners 
introduce variables including but are not limited to compression standard, compression 
rate, storage format, and magnification. The pixel values such as µm/pixel, in each WSI 
may differ due to compression or other variables and yet display an identical image to the 
evaluator. Since DL models learn through backpropagation (15) and thus “see” the pixel 
values, not the overall picture like an expert, they may be affected by the change in these 
pre-analytic variables.  
 
Concerning the performance of DL frameworks when presented data with different pre-
analytical variables, few studies have tested and observed degradation in performance 
with different tissue areas and quantities (16-17), different scanners (18), and different 
class distributions (19). Another study has experimented with a single framework facing 
changes in storage format and architecture used (20). In real-world model deployment, 



data from different scanners or generated with different scanning formatting will likely be 
evaluated by the model, leading to a concern about the performance metrics displayed in 
studies that demonstrate no variance in pre-analytical variables. Studies that present the 
same pre-analytical variables in its training and testing data do not adequately test its 
model’s generalizability despite good reported performance metrics. Therefore, there 
may be many published DL models with good reported performance that can only 
replicate its good performance when fed data similar to their training set.  
 
Our study seeks to provide a proof of concept in the neuropathology realm examining DL 
models’ potential prediction effects of different pre-analytic variables. Our study aims to 
test the generalizability capacity of two DL models, one for segmentation the other for 
classification, trained using WSIs from a single scanner by testing them on the same 
slides scanned with different scanners and scanner settings. By displaying and comparing 
the qualitative and quantitative outputs of two different DL tasks when applied to data with 
different pre-analytical variables, we aim to report and highlight effects by such variable 
changes.  
 

Methods 
 

I. Datasets 
 
We utilized WSI from a total of 14 cases from slides of formalin-fixed paraffin-embedded 
5µm sections of post-mortem human brain temporal cortex immunohistochemically 
stained with an antibody against Amyloid-β diluted 1:1600 (4G8, BioLegend ,formally 
Covance, San Diego, CA), all sections were subjected to standard procedures on 
automated machines, pretreatment included 10mins in 87% formic acid, and endogenous 
peroxidases were block with 3% Hydrogen Peroxide.  All antibody staining was conducted 
on an autostainer (DAKO AutostainerLink48, Agilent, Santa Clara, CA, USA) utilizing 
proper positive and negative control for each specific antibody. All staining was conducted 
using proper controls by the University of California Davis Histology Core, which is a 
Clinical Laboratory Improvement Amendments (CLIA) and College of American 
Pathologists (CAP) accredited laboratory that also operates under the best laboratory 
practices standards and meets all Federal, State of California and UC Davis guidelines 
and regulations. These stained slides were digitized to create six different WSIs datasets 
having different pre-analytic variables (see Figure 1 for schematic). In the following 
sections, we mention each of our datasets according to its pre-analytical variables. The 
names of the datasets reflect a formatting of Scanner-Magnification-Compression. To 
ensure fair performance through similar processing times for each WSI, all 40X WSIs 
were resized to 20X through PyVips package. Other than resizing, no pre-processing was 
done in any of the WSIs. No pre-processing was applied prior to feeding the WSIs to the 
model to avoid any digital watermarks generated by the image software such as 
ImageScope or ZEN. All scanners undergo routine servicing work once a year. The AT2 
scanner was purchased in 2016, the Zeiss Axio Z1 Scanner was purchased in 2019, and 
the GT450 was purchased in 2021. Our work selected the standard processing method 
for all scanners, which include but is not limited to standard automatic color profile and 



tissue detection. Tissue detection automatically crops the WSI to ensure reduced 
background. Color profile normalizes the pixel values for optimal monitor display. These 
effects of cropping and color profile can be observed in Supplemental Figure 1. 
 

A. AT2-20X 
A total of 14 slides from our cohort were scanned into JPEG-2000 compressed .svs files. 
The WSIs were digitized by Leica Aperio AT2 at 20X magnification. This dataset contains 
the same pre-analytical variables as the WSIs used for training of both Amyloid-β deposit 
detection and WM/GM segmentation.  
 

B. AT2-40X 
All 14 slides from our cohort scanned into JPEG-2000 compressed .svs files. The WSIs 
were digitized by Leica Aperio AT2 at 40X magnification. This dataset presents only one 
pre-analytical variable change, magnitude change, as the WSIs used for training of both 
evaluated DL frameworks. Case 11 displayed cover slip deahderance not seen in other 
datasets. 
 

C. GT450-40X 
A total of 14 slides from our cohort were scanned into JPEG-2000 compressed .svs files. 
The WSIs were digitized by Leica Aperio GT450 at 40X magnification. Despite having the 
same storage format, and compression standard, these WSIs came from a different Leica 
scan than the AT2.  
 
 

D. Axio-Z1-40X-45 
A total of 13 slides from our cohort were scanned into JPEG-XR compressed .czi files. 
The WSIs were digitized by Zeiss Axio Z1 scanner at 40X magnification. The JPEG-XR 
compression reduced the size of the file by 55%. 
 
 

E. Axio-Z1-40X-75 
A total of 13 slides from our cohort were scanned into JPEG-XR compressed .czi files. 
The WSIs were digitized by Zeiss Axio Z1 scanner at 40X magnification. The JPEG-XR 
compression reduced the size of the file by 25%.  
 
 

II. Evaluated Pipelines 
 
This study evaluated two pre-trained models (overall workflow is depicted in Figure 2). 
The first model, aimed at WM/GM segmentation (8), was trained on 20X JPEG-2000 
compressed svs slides digitized from Leica Aperio AT2. The second model, aimed at 
detecting Amyloid-β plaques (7), was trained on 20X JPEG-2000 compressed svs slides. 
We performed no tuning or additional training on any of the two models. The pre-analytic 
variables for the data used in the two pre-trained models displayed constant scanner 
(Aperio AT2), constant magnification (20X), consistent storage format (SVS), and 



constant compression standard (JPEG-2000), matching the pre-analytic variables from 
the AT2-20X dataset. 
 
Both models employed CNN-based DL. The Amyloid-β deposit detection was originally 
trained on a version of VGG (21). The WM/GM segmentation model was trained on a 
version of ResNet-18 (22). Both ResNet and VGG are commonly used CNN-based DL 
architectures. The pipeline used to generate both models' predictions were similar to the 
one described in (23). We patched each WSI in 256x256 segments and those patches 
were the input to both classification and segmentation models simultaneously as pictured 
in Figure 2. Although the input is the same, each model performs different tasks, while 
the ResNet performs patch-based segmentation, the VGG model performs classification 
and detection of Amyloid-β present in each patch.  
 
The ResNet-based WM/GM segmentation module outputs a heatmap with yellow, cyan, 
and black representing WM, GM and background respectively (as seen in Supplemental 
Figure 2). The model also outputs WM and GM size in um/pixel, which we use to calculate 
the WM/GM ratio. The VGG-based Amyloid-β deposit detection module outputs separate 
heatmaps based on each plaque classification (Cored and Diffuse) colored in red. 
Counts/area of each plaque classification were also generated by incorporating the 
WM/GM predictions. All code related to these processes are located in this GitHub 
(https://github.com/ucdrubinet/BrainSec). 
 
III. Registration 

 
Due to the distinct field-of-view (FOV) and automatic tissue detection present in each 
scanner, the output WSI files from different scanners (see supplemental Table 1 for 
additional details on each WSIs parameters) are not aligned and present different tissue 
sizes and aspect ratios despite being generated from the same slide. Automatic cropping 
caused loss of tissue area for select Zeiss scans (see supplemental figure 1 for example).  
 
Hence, to register the WSIs and ensure as much alignment and as little loss of tissue as 

possible, we employed a technique for re-stained histological whole slide image co-

registration (25). Aligning re-stained WSIs is similar to our task since the tissue borders 

are similar between re-stained slides. However, due to the difference in magnification in 

some WSIs, we also need to resize the 40X files into 20X to ensure similar tissue size. 

We achieved this by calculating the resizing factor that allowed for the height and width 

difference to be minimal when compared to the original AT2-20X WSI. Due to distinct 

aspect ratios from different scanners, the height and width from resized WSIs was not 

able to match the ones from the original AT2-20X WSI. This required an additional 

manual tuning step to the registration technique employed. All code related to these 

processes are located in this GitHub (https://github.com/smujiang/Re-

stained_WSIs_Registration).  

 
 
IV. Statistical Analysis 

https://github.com/ucdrubinet/BrainSec


 
Because all slides were scanned using each of the scanners, repeated measures analysis 
of variance (ANOVA) was used to compare differences in WM/GM segmentation and 
Amyloid-β core or diffuse plaque counts derived from the ML models across pre-analytic 
variables. Key factors of interest included scanner, magnification, and compression rate. 
Not all combinations of factors were considered, so separate analyses were conducted 
for each comparison of interest, including all relevant data. For example, when 
considering compression rate, only outcomes from the slides on the Zeiss Axioscan were 
included. All analyses were conducted using Python and a p-value less than 0.05 was 
considered statistically significant.  
 

 

Results 

I. Effects of Pre-Analytic Variables on the Amyloid-β Deposit Detection/Classification 
Model 
 
The Amyloid-β deposit detection with subsequent plaque classification outputs counts for 
cored and diffuse Amyloid-β plaques. .The module acquires these counts by detecting 
and then classifying all deposits located in the WSI. A comparison of these predictions 
for a single case can be seen in Figure 3. We observe a degree of disagreement in 
prediction between the different datasets for both diffuse as well as cored plaques. Figure 
3 shows a case example with heap maps and accompanying quantitative results for 
plaque counts in background, GM, and WM, and Figure 4 is a graphical representation of 
the quantitative results for cored and diffuse plaque counts and GM/WM ratios across all 
cases based on the pre-analytic variable. 
 
By acquiring the quantitative results for cored /diffuse plaque counts and applying the 
ANOVA test, we can test whether the pre-analytical variables affect the target outcome 
(deposit counts). Table 1 shows magnification and scanner type are two pre-analytical 
variables with the most effect on our DL predictions. Results from Table 1 show similar 
effect observed in the case of the segmentation model, where magnification and scanner 
(GT450) are the pre-analytical variables with the most effect on DL predictions. 
 
 
II. Effects of Pre-Analytic Variables on the WM/GM Segmentation Model 

 
The WM/GM segmentation module yields WM/GM ratio as a quantitative measure that 
can be used in statistical analysis. We plotted the WM/GM ratios for the different datasets 
evaluated in Figure 4. When applying ANOVA test to those values, we can check whether 
the pre-analytical variables affect the target (WM/GM ratio). Table 1 summarizes our 
results; both magnification and scanner type (GT450) have significant effects on DL 
prediction outcomes. 
 



The WM/GM segmentation map also outputs a heatmap of the segmented WSI, in this 
heatmap we have GM predictions denoted as cyan, WM as yellow and background as 
black (Figure 3, supplemental figures 2, 4). This method of visualizing the results is a 
better indicator of stable performance, as that is the final product to be analyzed by the 
expert, as well as the map to be used for calculation of densities of deposits and structures 
seen in the WM/GM. As seen in Figure 4, changing scanners and magnification has an 
effect on our model's predictions. For case 7, when comparing the results from AT2-20X, 
Axio-Z1-40X-75, and Axio-Z1-40X-45, there are prediction disagreements between GM 
and WM close to the boundaries of GM and background (supplemental figure 2).  
 
 
III. Saliency Maps 

 
When analyzing heatmaps and quantitative scores acquired from the two DL frameworks, 
we can assess how the pre-analytical variables affect the outputs. However, this 
information only tells us how the final output was affected, but the effect on the prediction 
process of the DL frameworks is still unknown. Saliency maps allow us to tap into the 
blackbox nature of DL models and learn a bit about their prediction process, more 
specifically, how much the different locations in each image contributed to the final output. 
We employed Class Activation Mapping (CAM) (25), Grad-CAM (26) and Grad-CAM++ 
(27) as methods to acquire the saliency maps. By analyzing the saliency maps generated 
from each 256x256 patch, we can observe which areas of each patch contributed most 
to the final model output and how these areas may differ according to the pre-analytical 
variables. That is especially relevant for the WM/GM segmentation DL model, as there is 
no obvious single structure linked to the predictions such as an Amyloid-β plaque 
classification, as it relies on features such as texture of the tissue, as shown previously 
(23).  
 
The Grad-CAM presented in Figure 5 shows that despite the prediction outcome 
remaining constant as GM in all the cases shown, the areas that led the WM/GM 
frameworks to reach that conclusion were different. The Grad-CAM++ displays less 
differences, pointing towards a higher level of agreement that occurs when taking in 
consideration a more complex interpretability framework. The same effect is observed 
when the agreed predictions are WM, as seen in Figure 5. 
  
We are also able to see in supplemental figure 3 the difference remains when the final 
output disagrees. This patch is taken from the patch with high WM-GM prediction 
disagreement observed between AT2-20X and Axio-Z1 datasets in case 7 (seen in 
Supplemental Figure 2). Despite a level of overlap in the saliency map, the AT2-20X CAM 
covers a wider area than its Axio-Z1 counterparts. 

Discussion 

 
Recent studies utilizing ML/DL in pathology have been successful in displaying high 
prediction performance (7, 8, 9, 23). However, due to the blackbox nature of trained DL 
models, rigorous testing is needed since there is no guarantee a model trained with a set 



of data may have the same performance when applied to data with different pre-analytic 
variables. Furthermore, as other studies have shown feeding WSIs with different pre-
analytical variables may degrade performance (17), we must extend the rigorous testing 
to account for such differences. However, studies that include this generalizability test are 
limited (17-20). 
 
Our study’s AT2-20X dataset constitutes a fair baseline: it shares the same scanner, 
magnification, brain region, storage format, stain, and compression standard as the 
training data. Therefore, when performing tests on this subset of data, we expected the 
model to achieve the most accurate performance in both DL modules as there is no 
variance in pre-analytical variables. In the current publication, we have utilized the AT2-
20X in the training set, so we set it as the gold standard of performance for all other 
datasets.. By evaluating the DL frameworks on AT2-20X and then evaluating on other 
datasets with different pre-analytical variables, we investigated the effect pre-analytical 
variables on DL generalizability in WSIs and observed some level disagreement in both 
DL frameworks.  
 
In this pilot study, we demonstrate the detection of Amyloid-β plaques in brain WSI trained 
on 20X AT2 slides is affected by WSI magnification (40X) and GT450 scanner. We see a 
similar effect for both diffuse, and cored Amyloid-β plaques. In addition to the statistical 
analysis result, we can reliably observe an overall effect of pre-analytical variables on 
Amyloid-β plaque counts when observing heatmaps and counts per area. 
 
We also observed performance differences when our generalizability test was applied to 
WM/GM segmentation task. Our results revealed WSI magnification (40X) and scanner 
type (GT450) have an impact on predicted WM/GM ratio. Our observation of WM/GM 
segmentation heatmaps and saliency maps also displays unstable WM/GM predictions 
when applied to WSIs from GT450 scanner (see figure 5 for example). Some outlier 
WM/GM predicted heatmaps can be observed in Zeiss scanners having stark differences 
when compared to the AT2-20X heatmap (see supplemental figure 4). 
 
The outlier performance from GT450 expanded to all cases employed in this study. When 
analyzing the overall scan from the GT450 in comparison to other scanners, subjective 
observations denoted an increase in brightness and white tones. We hypothesized the 
different standard color profile applied to the scan (i.e. ICC profile) is responsible for the 
difference observed. Since scanning was done with default parameters, the difference in 
color profile may extend to the software version employed at the time of the scan. Studies 
argue a normalization step is required to match performance between scanners or 
different scanning protocols (31). In future works, we aim to examine how color 
normalization may alter results within the pre-analytic variable realm (32,33,34). 
Preliminary experiments show Reinhard normalization (32) as  a suitable intervention to 
address GT450 performance differences (see supplemental figure 5). 
 
 
Although this study contributes to the field, there are some limitations to consider. First 
there is the misalignment of digitalized tissue caused by different scanners’ field of view 



Due to such misalignment, we could not perfectly overlap the heatmap predictions. Such 
limitation prevented us from using our WM/GM annotated ground truth to reliably calculate 
Intersection over Union (IoU) or DICE coefficient between our WSIs digitized from the 
same slides. Both DICE coefficient and IoU have been used to compare ground truth and 
predictions on a pixel-by-pixel basis (35-36). This misaligning prevented automated tile 
comparison, as a human observer was required to fine-tune registration for each 
individual area compared. There is also the use of only 20x and 40x magnification; 
additional works with other magnifications such as 10x and 5x may be advantageous as 
file sizes may be smaller and easier to process.  Third, our study examined only a limited 
number of cases from a single brain bank. Due to the large file size of WSIs, especially 
at 40X magnitude, it becomes a time-consuming task to generate predictions for both 
WM/GM segmentation and Amyloid-β deposit assessment, approximately 6 hours per 
20X slide when employing a NVIDIA Tesla T4 GPU. In our study, we processed a total of 
65 slides, which account for almost 400 hours of GPU use. Lastly, we utilized the AT2-
20X as the gold standard to conduct comparisons in the current study.   To our knowledge, 
although checklists for machine learning algorithms in medical imaging have been 
proposed (34) there are no gold standards for pre-analytic variables for digital pathology 
when conducting machine learning algorithms.  The choice of using AT2-20X as gold 
standard is due to data of same pre-analytical variables being employed in training. This 
choice best matches the recommendations of item 7, regarding data sources, in previous 
works (37) as test data from AT2-20X matches the trained model best. Unlike other 
medical imaging fields such as Radiology that have standard file formats, there are many 
options given the vast array of available slide scanners and associated settings in the 
WSI realm.  This study highlights the importance of denoting scanner types, 
magnifications, as well as compression rates when conducting such workflows.  
 
Generalizability is a crucial challenge for deploying DL in real life pathology problems. 
Currently in the field there are studies seeking to perform Domain Adaptation (DA) 
techniques to address generalizability from diverse pre-analytical variables in ML 
frameworks (28-30). These efforts are important to advance the generalizability of 
frameworks in the field and address the unwanted effects we observe when varying pre-
analytical variables. Unlike normalization, DA does not need any additional preprocessing 
steps for generalization to many different scanners. The application of these DA 
techniques has also been shown in the WSI domain (30) and would be a great candidate 
to address the performance difference observed in this study. 

Acknowledgments 

The authors thank the families and participants of the University of California Davis 
Alzheimer’s Disease Research Centers (ADRC) for their generous donations as well as 
ADRC staff and faculty for their contributions. Resources for this study were funded in 
part by grants from the National Institute on Aging of the National Institutes of Health 
under Award Numbers R01AG062517, P30AG072972, and R01AG056519, and a 
research grant from the California Department Of Public Health (19-10611) with partial 
funding from the 2019 California Budget Act. The views and opinions expressed in this 
manuscript are those of the author and do not necessarily reflect the official policy or 
position of any public health agency of California or of the United States government. We 



also thank the UC Davis Health Department of Pathology and Laboratory medicine as 
well as the laboratory of Dr. Alexander “Sandy” Borowsky for the use of digital slide 
scanners. 

References 

1. Al-Janabi S, Huisman A, Van Diest PJ. Digital pathology: current status and future 
perspectives. Histopathology 2012;61:1-9 

2. Bankhead P, Loughrey MB, Fernandez JA, et al. QuPath: Open source software 
for digital pathology image analysis. Sci Rep 2017;7:16878 

3. Dugger BN, Dickson DW. Pathology of Neurodegenerative Diseases. Cold Spring 
Harb Perspect Biol 2017;9 

4. Shakir MN, Dugger BN. Advances in Deep Neuropathological Phenotyping of 
Alzheimer Disease: Past, Present, and Future. J Neuropathol Exp Neurol 2022;81:2-15 

5. McKenzie AT, Marx GA, Koenigsberg D, et al. Interpretable deep learning of 
myelin histopathology in age-related cognitive impairment. Acta Neuropathologica 
Communications 10.1 2022;1-17. 

6. Vizcarra JC, Gearing M, Keiser MJ, et al. Validation of machine learning models 
to detect amyloid pathologies across institutions. Acta neuropathologica 
communications 8.1 2020;1-13. 

7. Tang Z, Chuang KV, DeCarli C, et al. Interpretable classification of Alzheimer's 
disease pathologies with a convolutional neural network pipeline. Nat Commun 
2019;10:2173 

8. Lai Z, Guo R, Xu W, et al. Automated grey and white matter segmentation in 
digitized aβ human brain tissue slide images. 2020 IEEE International Conference on 
Multimedia & Expo Workshops (ICMEW). IEEE, 2020. 

9. Litjens G, Kooi T, Bejnordi B, et al. A survey on deep learning in medical image 
analysis. Medical image analysis 42 2017;60-88. 

10. Hekler A, Utikal JS, Enk AH, et al. Deep learning outperformed 11 pathologists in 
the classification of histopathological melanoma images. European Journal of 
Cancer 118 2019;91-96. 

11. Aresta G, Araujo T, Kwok S, et al. Bach: Grand challenge on breast cancer 
histology images. Medical image analysis 56 2019;122-139. 

12. Hsu WW, Guo JM, Pei L, et al. A weakly supervised deep learning-based method 
for glioma subtype classification using WSI and mpMRIs. Scientific Reports 12.1 2022;1-
12. 

13. Kiani A, Uyumazturk B, Rajpurkar P, et al. Impact of a deep learning assistant on 
the histopathologic classification of liver cancer. NPJ digital medicine 3.1 2020;1-8.  



14. Balkenhol MC, Tellez D, Vreuls W, et al. Deep learning assisted mitotic counting 
for breast cancer. Laboratory investigation 99.11 2019;1596-1606. 

15. LeCun Y, Boser B, Denker J, et al. Handwritten digit recognition with a back-
propagation network. Advances in neural information processing systems 1989;2 

16. Vali-Betts E, Krause KJ, Dubrovsky A, et al. Effects of image quantity and image 
source variation on machine learning histology differential diagnosis models. Journal of 
Pathology Informatics 12.1 2021;5. 

17. Jang HJ, Song IH, Lee SH. Generalizability of deep learning system for the 
pathologic diagnosis of various cancers. Applied Sciences 11.2 2021;808. 

18. Yan W, Huang L, Xia L, et al. MRI manufacturer shift and adaptation: increasing 
the generalizability of deep learning segmentation for MR images acquired with different 
scanners. Radiology: Artificial Intelligence 2.4 2020. 

19. Sathitratanacheewin S, Sunanta P, Pongpirul K. Deep learning for automated 
classification of tuberculosis-related chest X-Ray: dataset distribution shift limits 
diagnostic performance generalizability. Heliyon 6.8 2020; e04614. 

20. Jones AD, Graff JP, Darrow M, et al. Impact of pre‐analytical variables on deep 
learning accuracy in histopathology. Histopathology 75.1 2019;39-53. 

21. Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image 
recognition.  arXiv preprint arXiv:1409.1556 2014. 

22. He K, Zhang X, Ren S, et al. Deep residual learning for image recognition. 
Proceedings of the IEEE conference on computer vision and pattern recognition. 2016. 

23. Lai Z, Oliveira LC, Guo R, et al. BrainSec: Automated Brain Tissue Segmentation 
Pipeline for Scalable Neuropathological Analysis. IEEE Access 10 2022;49064-49079. 

24. Jiang J, Larson NB, Prodduturi N, et al. Robust hierarchical density estimation and 
regression for re-stained histological whole slide image co-registration. Plos one 14.7 
2019; e0220074. 

25. Zhou B, Khosla A, Lapedriza A, et al. Learning deep features for discriminative 
localization Proceedings of the IEEE conference on computer vision and pattern 
recognition. 2016. 

26. Selvaraju RR, Cogswell M, Das A,  et al. Grad-cam: Visual explanations from deep 
networks via gradient-based localization. Proceedings of the IEEE international 
conference on computer vision. 2017. 

27. Chattopadhay A, Sarkar A, Howlader P, et al. Grad-cam++: Generalized gradient-
based visual explanations for deep convolutional networks. 2018 IEEE winter conference 
on applications of computer vision (WACV). IEEE, 2018. 

28. Breen J, Zucker K, Orsi NM, et al. Assessing domain adaptation techniques for 
mitosis detection in multi-scanner breast cancer histopathology images. International 



Conference on Medical Image Computing and Computer-Assisted Intervention. Springer, 
Cham, 2021.  

29. Aviles J, Talou GD, Camara O, et al. Domain Adaptation for Automatic Aorta 
Segmentation of 4D Flow Magnetic Resonance Imaging Data from Multiple Vendor 
Scanners. International Conference on Functional Imaging and Modeling of the Heart. 
Springer, Cham, 2021. 

30. Panfilov E, Tiulpin A, Klein S, et al. Improving robustness of deep learning based 
knee mri segmentation: Mixup and adversarial domain adaptation. Proceedings of the 
IEEE/CVF International Conference on Computer Vision Workshops. 2019.  

31. Khan AM, Rajpoot N, Treanor D, et al. A nonlinear mapping approach to stain 
normalization in digital histopathology images using image-specific color deconvolution. 
IEEE transactions on Biomedical Engineering 61.6 2014;1729-1738. 

32. Reinhard E, Adhikhmin M, Gooch B, et al. Color transfer between images. IEEE 
Computer graphics and applications 21.5 2001;34-41. 

33. Roy S, Panda S, Jangid M. Modified Reinhard Algorithm for Color Normalization 
of Colorectal Cancer Histopathology Images. 2021 29th European Signal Processing 
Conference (EUSIPCO). IEEE, 2021.  

34. Vahadane A, Peng T, Sethi A, et al. Structure-preserving color normalization and 
sparse stain separation for histological images IEEE transactions on medical 
imaging 35.8 2016; 1962-1971. 

35. Rahman MA, Wang Y. Optimizing intersection-over-union in deep neural networks 
for image segmentation. InInternational symposium on visual computing  International 
symposium on visual computing. Springer, Cham, 2016. 

36. Zou KH, Warfield SK, Bharatha A, et al. Statistical validation of image 
segmentation quality based on a spatial overlap index1: scientific reports Academic 
radiology 11.2 2004;178-189. 

37. Mongan J, Moy L, Kahn Jr CE. Checklist for artificial intelligence in medical 
imaging (CLAIM): a guide for authors and reviewers. Radiology. Artificial Intelligence 2.2 
2020. 

 

 

Figure legends 

 

Figure 1: Schematic representation of pre-analytical variables evaluated. Variables linked 
by arrows are nested, for example, all Zeiss Axioscan Z1 data employed will be of CZI 
storage format. 

 



Figure 2: CNN-based DL pipeline employed in this study. The approach for prediction is 
patch-based, therefore WSI must be patched prior to analysis. The different blue and 
green segmented circled on the grided images in the top figure (light orange box) panel 
refer to the different resolutions (1536 x 1536, and 256 x 256, respectively) patched by 
the framework. There are two DL modules responsible for predictions (lower figure panel- 
light blue box), a WM/GM segmentation and an Amyloid-β deposit detection with 
subsequent classification module which operate on the 256x256 pixel resolution. For 
heatmaps in the bottom left corner of the figure, white matter (WM) is represented in 
yellow, grey matter (GM) as cyan, background as plaque and plaques at orange. (figure 
adapted from (23)).  

 

Figure 3: Schematic of heatmaps of GM/WM segmentation and plaques counts for case 
4.  Top panel- GM/WM cored plaque heatmap (left) and counts by area based on select 
pre-analytic variables (right). Bottom panel, GM/WM diffuse plaque heatmap (left) and 
counts by area based on select pre-analytic variables (right). A zoomed-in area (not the 
WSI) of case 4 was chosen to aid in visualization. For heatmaps, plaques are depicted in 
orange, background as black, White matter (WM) as yellow, and Grey Matter (GM) as 
cyan.  

 

Figure 4: WM/GM ratio, cored, and diffuse plaque (A), Cored plaque (B) counts and 
WM/GM ratio (C) for each case by pre-analytic variable. Cases with none/low likelihood 
AD (5, 6, 8, 10, 11, 14) typically had low numbers of core plaques, while cases with high 
likelihood AD (1, 3, 4, 12, 13) had higher counts. More information on the demographics 
of cases located in Supplemental Table 2. Further details on case 6 for GM/WM ratio is 
located within supplemental figure 4. 

 

Figure 5: Grad-CAM and Grad-CAM++ of agreed predictions of Grey matter (GM) and 
White matter (WM). All datasets agreed on the tile’s prediction and got the correct 
prediction.  

 

Supplemental Figure 1: Example of differential alignments, sizes, and aspect ratios using 
the WSI from Case 1. Comparing to the AT2-20x, the GT450-40X has changes in pixel 
intensities, theorized to be caused by different color profile (i.e. ICC profile);  the Axio-Z1-
40X-75 had cropping of the tissue section with larger aspect ratios theorized to be caused 
by automatic tissue detection. 

 

Supplemental Figure 2: Heatmap of WM/GM predictions for the different datasets 
equivalent of case 7. Original AT2-20X WSI included for reference. 

 



Supplemental Figure 3: CAM of disagreed predictions of GM. The tiles were taken from 
case 7, which has its WM/GM predictions present in Supplemental Figure 2. Tiles and 
saliency maps from the original AT2-20X dataset, which correctly predicted GM as GM 
are included. Tiles and saliency maps from Axio-Z1-40X-75 and Axio-Z1-40X-45 are 
included, the output for these two was WM, an incorrect prediction.  

 

Supplemental Figure 4: Case 6 WSI from AT2-20X and heatmap predictions from Axio-
Z1-40X-75, Axio-Z1-40X-45, and AT2-20X.  

 

Supplemental Figure 5: Plots of cored and diffuse plaque counts on GT450 before and 
after Reinhard (32) normalization was applied (using a AT2 WSI as reference slide). We 
compare results withAT2-20X for reference. 



Statistical Analysis Values 

 Axio-Z1-40X-45 

Vs. 

Axio-Z1-40X-75 

AT2-20X 

Vs. 

Axio-Z1-40X-75 

AT2-20X 

Vs. 

GT450-40X 

AT2-20X 

Vs. 

AT2-40X 

Cored Count 0.4024 0.0738 0.0078 0.0160 

Diffuse Count 0.2272 0.4290 0.0073 0.0705 

WM/GM Ratio 0.0853 0.2475 0.0005 0.0013 

 

Table 1: P-values for ANOVA tests 

Table 1
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