
UCLA
UCLA Electronic Theses and Dissertations

Title
Tomographic Laser Absorption Imaging of Combustion Gases in the Mid-wave Infrared

Permalink
https://escholarship.org/uc/item/92d0m1cc

Author
Wei, Chuyu

Publication Date
2020
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/92d0m1cc
https://escholarship.org
http://www.cdlib.org/


UNIVERSITY OF CALIFORNIA

Los Angeles

Tomographic Laser Absorption Imaging of Combustion Gases in the Mid-wave Infrared

A dissertation submitted in partial satisfaction

of the requirements for the degree

Doctor of Philosophy in Mechanical Engineering

by

Chuyu Wei

2020



© Copyright by

Chuyu Wei

2020



ABSTRACT OF THE DISSERTATION

Tomographic Laser Absorption Imaging of Combustion Gases in the Mid-wave Infrared

by

Chuyu Wei

Doctor of Philosophy in Mechanical Engineering

University of California, Los Angeles, 2020

Professor Raymond M. Spearrin, Chair

This dissertation describes advancements in mid-infrared laser absorption tomography for

spatio-temporal measurements of thermochemistry in reacting flows relevant to combustion

systems. Tunable laser absorption spectroscopy is combined with tomographic reconstruc-

tion techniques to resolve small diameter ( < 1 cm) non-uniform flow fields with steep

spatial gradients, leveraging emerging mid-wave infrared photonics. Multiple novel mea-

surement methods, hardware configurations, and image processing techniques were investi-

gated. Initially, a mid-infrared laser absorption tomography sensing method was developed

for quantitative measurement of CO and CO2 concentrations and temperature distributions

in turbulent premixed jet flames using a translation-stage-mounted optical system. This

sensing approach was used to examine effects of varying fuel structure on carbon oxidation

over a range of Reynolds number regimes. It was found that spatial and temporal resolution

is limited in this method due to the finite laser beam size (∼ 1 mm) and the slow mechani-

cal translation of the optical system. To address these limitations, a novel laser absorption

imaging (LAI) technique, that expands a single laser beam and replaces the detector with a

high-speed infrared camera, was introduced to achieve enhanced spatial and temporal reso-

lution for thermo-chemical imaging. As a demonstration of this new technique, distributions

of combustion species were imaged in both axisymmetric and non-axisymmetric flow fields

using linear tomography algorithms. For non-axisymetric flows, the limited view tomography

ii



problem often results in a blurring effect and artifacts in the reconstructed flow-field. In an

effort to address these issues, state-of-the-art deep learning neural networks were developed

and applied to solve the limited angle inversion. Initial results suggest that deep neural

networks have potential to more accurately predict flame structures with fewer projection

angles than linear tomography. This work provides a foundation for a new approach to

quantitative time-resolved 3D thermo-chemical imaging in high-temperature reacting flows.
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CHAPTER 1

Introduction

Laser absorption spectroscopy (LAS) provides a highly quantitative, calibration-free method

of measuring gas concentration and temperature using compact low-power semiconductor

lasers [1]. However, due to its line-of-sight (LOS) integration nature, LAS has mostly been

applied in relatively uniform laboratory environments such as shock tubes and gas cells or

to make path-averaged measurements on energy conversion devices [2]. To overcome this

limitation, laser absorption tomography (LAT) has been developed to reconstruct spatially

resolved species and temperature fields from LOS absorption measurements along various

projections using tomographic reconstruction techniques [3]. The aim of this work is to

advance the spatial-temporal capability of LAT by harnessing the latest mid-wave infrared

photonics, introducing uniquely compact optical arrangements, and developing novel and

robust data processing methods to enable new applications. Details about the motivations

and challenges for high-speed spatially-resolved gas diagnostics are discussed below, followed

by a review and comparison of various available imaging techniques. The introduction closes

with an overlook of the dissertation.

1.1 Background

1.1.1 Motivation for Imaging Combustion Flows

Combustion remains the primary source of energy production in usage today and is essential

to modern society. Our transportation system relies almost completely on combustion, and

over 60% of the electricity of the world is generated via this energy conversion process [4, 5].
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Moreover, combustion is widely used in heating, industrial processes and propulsion. This

dominance is believed to continue in the future for many decades and therefore combustion

remains a research field of vital importance. In order to improve energy conversion efficiency

and reduce the formation of pollutants, understanding and effective control of the com-

bustion process is essential. Most practical combustion devices involve turbulent reacting

flows. Understanding interactions between flow dynamics, chemical kinetics, and heat and

mass transfer in turbulent flames is of prime interest to the combustion community, both for

the development of more efficient engineering devices and the development and refinement

of numerical models [6]. Understanding the strong non-linear coupling of different mecha-

nisms with overlapping timescales remains a significant scientific challenge to date. Key to

understanding turbulent combustion relies on the ability to experimentally measure thermo-

chemical flow parameters such as temperature, mixture composition, pressure, and velocity

at high temporal and spatial resolution with high quantitative precision. These measure-

ments not only provide insights into the underlying chemical and physical phenomena, but

also serve as validation targets for increasing higher fidelity simulations of turbulent flames

with more detailed chemistry.

1.1.2 Challenges for Imaging Combustion Flows

In addition to difficulties for scientific understanding and modeling, the convoluted nature of

combustion flows also places challenges for optical imaging techniques. First and foremost,

characteristic timescales of chemical reactions is in the orders of magnitudes from millisec-

ond to microsecond [5]. Chemical kinetics are often coupled with other mechanisms such

as mass transport and radiation due to overlapping timescales [7, 8]. High-speed imaging

techniques are desired to untangle the intricate interactions between different mechanisms.

Secondly, flames are characterized by very thin (∼ 1 mm) reaction zones and steep gradients

of flow properties. In order to resolve these gradients, high spatial resolution is required

for imaging techniques. In addition, emission from high-temperature gases and environment

can saturate the detectors and interfere with the measured signal if not handled properly.
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Emission scales with increasing temperature and—for gaseous molecules—also with increas-

ing pressure, both of which are characteristic of combustion reactions [1]. Moreover, soot

formation in the combustion process results in emission from black body radiation, similar

to molecular emission. Additionally, soot can cause particle scattering and window fouling.

Finally, practical combustion devices often have limited optical access [3]. Ideally, imaging

techniques should be deployable with limited optical access, sparse view angles and minimum

modification to the combustion devices.

In summary, an ideal imaging technique for combustion flows should provide high-speed,

spatially-resolved, and quantitative gas property measurements in harsh environments with

minimum requirements for optical access. There are many measurement methods aimed at

addressing this ideal (or a portion thereof), with various strengths and weaknesses.

1.2 Thermo-chemical Imaging Techniques

Traditional intrusive measurement techniques such as thermocouples and gas chromatog-

raphy (using sampling probes) disturb the local flow field, often precluding definitive in-

terpretation of flow-field properties. As such, several non-intrusive optical measurement

techniques have been utilized to image flow-fields by exploiting emission, scattering, refrac-

tion, and absorption interactions. In this section, different optical imaging techniques will

be briefly reviewed, with emphasis on their advantages and disadvantages, as well as some

applications in combustion diagnostics.

1.2.1 Chemiluminescence

Chemiluminescence is electromagnetic radiation emitted by molecules when they radiatively

relax to a lower energy state from an excited energy state produced via chemical reactions.

Combustion diagnostics based on chemiluminescence are attractive for their simplicity and

non-intrusive nature (usually only requiring a camera and spectral filter). Common targeted

species are CH∗, OH∗, C∗2 and CO∗2 with chemiluminescence in the visible and ultraviolet [9].
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Chemiluminescence can provide information about conditions in the reaction zone, and has

been applied to measure equivalence ratio (φ) [10, 11], flame front locations [12], and spatial

heat release rate [10]. However, quantitative interpretation of chemiluminescence signals has

been based historically on heuristic arguments or empirical data and modeling with limited

conditions [9]. Additionally, optical calibration must be performed on a basis that is specific

to each experimental setup, posing challenges for measurements free of facility dependence.

Chemiluminescence measurements are inherently line-of-sight measurements, and tomog-

raphy must be performed to obtain 3-D measurements for highly non-uniform reacting flows.

As such, Computed Tomography of Chemiluminescence (CTC) has been developed to pro-

vide instantaneous 3-D information on flame geometry and excited species abundance. The

technique reconstructs the 3-D chemiluminescence intensity field using Computed Tomog-

raphy (CT) from multiple line-of-sight measurements of projected chemiluminescence im-

ages [13] and has been used to measure 3D chemiluminescence intensity field for both laminar

and turbulent flames [14–18]. Most recently, deep-learning based algorithms with high com-

putational efficiency have also been used for reconstructing chemiluminescene fields, showing

promise for rapid data processing and real-time flame monitoring [19].

1.2.2 Laser-induced fluorescence

Laser induced fluorescence (LIF) is spontaneous emission from atoms or molecules that have

been excited by laser radiation. Laser-induced fluorescence (LIF) is a two-step process:

absorption of the laser photon, followed by spontaneous emission. There are two typical

experimental arrangements of LIF: namely, planar laser-induced fluorescence (PLIF), and

volumetric laser-induced fluorescence (VLIF). In a PLIF setup, the beam from the laser is

passed through a system of lenses and/or mirrors to form a laser sheet, which is then used to

excite molecules in a plane inside a flow-field [20, 21] as shown in Figure 1.1. Fluorescence

from this plane is then recorded by a camera facing perpendicular to the laser sheet. In a

VLIF setup, volumetric measurements can either be achieved by sweeping the laser sheet

mechanically and recording fluorescence from successively excited planes [22], or by shaping
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the laser beam into a volume, record the volumetric emission with multiple cameras from

different view angles, and then combined with tomography algorithms to reconstruct 3D

field [23].

Figure 1.1: Schematic of a PLIF experiment to measure species concentration [1]

Laser-induced fluorescence can be used to measure different species including radicals or

atoms (OH,C2,CN,O,H), stable diatoms (O2, NO, CO, I2), and polyatomics (CO2, CH2O,

Acetone) [1]. Laser-induced fluorescence is attractive for combustion diagnostics, providing

an imaging tool with high spatial resolution to measure species-specific abundance, tem-

perature, and various spatial scalars in flames to reveal fluid dynamics. It can also be

used to approximate heat release zones (similar to chemiluminescence), usually by targeting

the hydroxyl radical and formaldehyde. However, PLIF and VLIF involve greater optical

complexity (than chemiluminescence) due to coupled setup and alignment of both the laser

sheet/volume and cameras. LIF signals depend on optical collection efficiency, and thus

require calibration for specific setups, which complicates quantitative species interpretation.

Moreover, tracer molecules can potentially influence combustion and LIF signals are weak at

elevated pressures due to collisional de-excitation (quenching). Despite these drawbacks, LIF
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is used extensively for examining spatial scalars in flames due to its high spatial resolution.

1.2.3 Rayleigh Scattering

Rayleigh scattering refers to the elastic scattering of electromagnetic radiation which occurs

when the electric fields of the radiation interact with the electric fields of gas molecules,

resulting scattered light with no shift in wavelength [24]. While for a molecule to absorb

light, the light must generally be at specific wavelength, Rayleigh scattering can occur at

almost any wavelength.

Rayleigh scattering offers a relatively simple method to measure molecular number den-

sity and temperature of in point or planar manner with necessary optical calibration as show

in Figure. However, these techniques do not provide species selectivity and reflect aggre-

gate results from gas molecules with different scattering cross-sections. In contrast to other

species-specific imaging techniques (Raman scattering and absorption-based tomography),

Rayleigh scattering readily provides temperature in the whole flow field. Therefore, Rayleigh

scattering has mostly been used for thermometry [25–27], and can be quantitative with an

estimation of gas composition [28–30].

Figure 1.2: Schematic of a light scattering experiment [1].
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1.2.4 Raman Scattering

While Rayleigh scattering techniques exploit the elastic scattering process, Raman scattering

exploits inelastic scattering with a transfer of energy between the molecule and scattered

photon. During the scattering process, if the molecule gains energy from the photon and is

excited to a higher vibrational energy state, then the scattered photon loses energy and its

wavelength increases, which is called Stokes Raman scattering. Alternatively, if the molecule

loses energy by relaxing to a lower vibrational level, the scattered photon gains energy,

resulting in a decrease in its wavelength, which is called Anti-Stokes Raman scattering.

Raman scattering provides access to species without intrinsic dipole moments. Commonly

targeted species include O2, N2, H2 and CO2. However, the cross-section for Raman scattering

is often 3 orders of magnitude smaller than Rayleigh scattering [1], and thus requires very

high power light sources.

Scattering techniques have been combined with PLIF to perform Raman-Rayleigh-LIF

measurements to charaterize flames [25, 31]. Raman-Rayleigh measurement yields absolute

data at a reference point, which anchors the scale of PLIF images. The combined results

provide simultaneous quantitative 2D measurements of temperature and species in turbulent

flames. However, the multi-technique setup can be quite complicated, expensive, and requires

considerable optical access.

1.2.5 Laser Absorption Tomography

Laser absorption spectroscopy (LAS) exploits resonance with discrete energy modes of gas

molecules to ascertain thermochemical properties of flow fields from light absorption. Laser

absorption tomography (LAT) is an imaging technique that involves reconstructing 2D or

3D distributions of gas properties from multiple line-of-sight laser absorption measurements.

By probing ro-vibrational transitions in the infrared, LAT provides access to many species

present in combustion reactions ranging from hydrocarbon fuels (CH4, C2H6), intermediates

(CO, CH2O) to combustion products (CO2, H2O), though with the exception of molecules
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without intrinsic dipole moments. Exploiting laser absorption, LAT offers a highly quantita-

tive, species-specific and calibration free optical imaging tool for combustion diagnosis, espe-

cially with recent advances in mid-infrared laser absorption diagnostics [2] (to be discussed

in Chapter 3). Infrared LAS also benefits from the ability to utilize compact, low-power

light sources due to the strong absorption interaction (relative to other spectroscopies).

Path-integrated laser absorption spectroscopy measurements can be modeled using Fred-

holm integral equation of the first kind. This is in the same mathematical form as X-ray

measurements in medical imaging, and therefore established computed tomography (CT)

can be applied to reconstruct spectral absorption and infer thermodynamic properties such

as species concentration and temperature. A typical LAT experimental setup often involves

translating a single LOS or flame mechanically [32, 33] or multiple lasers and detectors to

cover the region of interest [34, 35]. As a result, the temporal and spatial resolution is of-

ten limited with LAT. This is the primary weakness of LAT relative to other laser imaging

methods, and motivates the research described in this dissertation. As a summary, different

imaging techniques discussed above are compared in Table 1.1.

1.3 Overview of the dissertation

This dissertation presents developments and applications of laser absorption imaging systems

over the course of seven chapters. Following the introduction, Chapter 2 reviews the theory

and applications of laser absorption tomography and Chapter 3 reviews recent advancements

in mid-infrared laser absorption diagnostics. The dissertation continues with experimental

developments of multi-dimensional laser absorption systems combined with different tomo-

graphic reconstruction techniques. Chapter 4 demonstrates a mid-infrared LAT strategy for

quantitative 2D measurement of CO and CO2 concentrations and temperature distributions

in turbulent premixed jet flames. Chapter 5 then reports the application of the mid-infrared

LAT techniques to study the fuel effects on carbon oxidation in these turbulent premixed

jet flames. Chapter 6 then proposes a novel laser absorption imaging (LAI) technique that

expands a single laser beam and replaces the detector with a high-speed infrared camera
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to achieve enhanced spatial and temporal resolution. The first half of chapter 6 presents

the application of LAI on axisymmertric flows using a single projection angle. Tomographic

imaging of non-axisymmetric flows is more challenging—multiple projection angles are re-

quired toestimate the flow-field scalars, and the inversion problem is underdetermined and

ill-posed. The second half of Chapter 6 reports a rotation-stage-based multi-angle LAI

system for quantitative 3D measurement of CO and CO2 concentrations and temperature

distributions in laminar flames. Classical Tikhonov-regularized linear tomography is applied

to solve the limited-angle tomography problem. However, limited view angles often result

in a blurring effect and artifacts in the reconstructed flow-field, complicating applications

to flames—which have very thin (∼1 mm) reaction zones. Chapter 7 discusses the author’s

current work on implementing deep learning neural network to solve the inverse problem

and reduce blurring and artifacts. Finally, the dissertation closes with an outlook for future

work.
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CHAPTER 2

Background on Laser Absorption Tomography

2.1 Introduction

Tomography is a science that reconstructs an unknown spatial distribution of a quantity of

interest (the inverse problem) from a set of projection measurements (the forward problem).

In a laser absorption tomography measurement, we’re concerned with the attenuation of

light that depends on an unknown distribution of gas absorption coefficients. The forward

problem is governed by the well-known Beer-Lambert law through a nonuniform absorbing

medium as a function the ratio of incident light, I0, and the transmitted light, It [1] by

neglecting thermal emission at the measured frequency ν [cm−1]:

αν = −ln

(
It
I0

)
ν

=

∫ L

0

kνdl =

∫ L

0

Sj(T )PXabsϕνdl (2.1)

Spectral absorbance αν thus depends on total pressure P [atm], line-strength Sj [cm−2/atm]

for rovibrational transition j, mole fraction of absorbing species Xabs, lineshape function

ϕν [cm], and aggregate path length L [cm]. One can effectively eliminate the measurement

dependence on line shape ϕν by integrating over the wavenumber domain for each line j [1]:

Aj,proj =

∫ ∞
−∞

ανdν =

∫ L

0

Kjdl =

∫ L

0

Sj(T )PXabsdl (2.2)

where Kj(r) [cm−2] is integrated spectral absorption coefficient that directly relates to the

thermodynamic properties of the gas flow.

The inverse problem in LAT is aimed to estimate the spatial distribution of the ab-

sorbance coefficient kν or the integrated spectral absorption coefficient Kj and eventually
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determine spatially resolved gas properties such temperature and species mole fraction. How-

ever, the inverse problem is an ill-posed problem, meaning that the inversion is either un-

derdetermined, in which case an inifinite number of solutions may exist that match the

projection measurements; or unstable against small changes in the measurement data, such

that small amount of measurement noise can be amplified and distort the reconstruction re-

sults [3]. This chapter gives an overview of the different 1D and 2D tomographic algorithms

used in LAT and their applications in combustion diagnostics.

2.2 1D Laser Absorption Tomography

Axially-symmetric disctributions are frequently encountered in combustion applications. In

this case, flow variables are only a function of the radius from the center r and the projec-

tions along any arbitrary view angle are equivalent; thus given the name 1D tomography.

Under this assumption, a projection measurement from a single orientation is adequate to

reconstruct the flow field and thus greatly simplifies the experimental setup and required

optical access.

2.2.1 Abel Transform: Projection and Deconvolution

The geometry of the axisymmetric flame deconvolution problem is shown in Figure 2.1.

The projected absorbance area measurement is described by the well-known Abel integral

equation as a line-of-sight integration over the flame with radius R at a given distance from

the flame center y:

P (x) = 2

∫ R

x

f(r)r√
r2 − x2

dr (2.3)

where x is the abscissa coordinate of projected data and r is the radial coordinate of the

flow field. In the context of a LAT measurement, for example in Equation 2.2, P (y) is

the measured projected absorbance area Aj,proj(r) and f(r) is the radial distribution of the

integrated spectral absorption coefficient Kj(r).

An analytical solution for Equation 2.3 exists, and it is known as it is known as the Abel
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Figure 2.1: Axisymmetric flame deconvolution geometry [36].

inversion:

P (x) = − 1

π

∫ R

x

P ′(x)√
x2 − r2

dx (2.4)

where P ′(x) is the derivative of the projected data. However, direct implementation of

the analytical form of Abel inversion requires an analytical expression for the derivative of

the projected data P ′(x), which is usually unknown in practical applications. Instead, a

numerical implementation using finite difference approximations with discretized projection

values as shown in Figure 2.1 is more commonly used in practical applications.

Modern numerical algorithms for Abel inversions to reconstruct spatial fields f(r) include

the onion-peeling (OP) algorithm and the Abel two/three-point transform; these algorithms

have been thoroughly reviewed and compared in the work by Dasch [37]. For the OP algo-

rithm, the flow field in divided into N annular elements, with a width of ∆r = R/(N − 0.5),

and f(r) is assumed to be constant over each annular element as shown in Figure 2.1. Car-
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rying out the integral equation 2.3 over each annulus results in a matrix equation:

AOP
~f = ~P (2.5)

where ~f = [f0, f1, ...fN−1]T and ~P = [P0, P1, ...PN−1]T contain the radial field variables

evaluated at the center of the annular elements and discrete projected data, respectively,

and AOP is the onion-peeling projection matrix that contains geometric terms given in [37].

Unlike OP, the Abel three-point (ATP) transform fits the projection P (x) with a quadratic

function using 2 neighboring points, and then approximate the derivative of the projected

data P ′(x) over each annular element. Writing the analytical Abel inversion equation over

every annular element results in another matrix equation:

~f = DATP
~P (2.6)

where DATP = A−1ATP is the discrete representation of the Abel inversion [37]. For 1D

flame measurements, the ATP transform is preferred due to its easy implementation, high

computational efficiency and robustness against noise among the three methods [3, 37].

Unfortunately, these numerical methods do not address the ill-posed nature of Abel integral

equation and in practical applications, noises and perturbations in projection measurements

are inevitable, which can be amplified and cause large errors during the inversion process. A

common solution is to pretreat the projection measurements and smooth the data before the

deconvolution step. However, this limits the spatial resolution and is subject to users’ choices

of the smoothing window. Alternatively, Tikhonov regularized Abel inversion is proposed in

attempt to address the ill-posed nature of Abel integral equation [38] and will be discussed

in the next section.

2.2.2 Tikhonov Regularization

Tikhonov regularization is an efficient technique to mitigate the ill-posedness of the matrix

equation. In this method, the original matrix equation is augmented with an extra set of

equations that promotes smoothness of the solution:

λL0
~f = 0 (2.7)
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where λ is the regularization parameter that controls the level of regularization and L0 is a

discrete gradient operator that characterizes the smoothness of the solution:

L0 =



1 −1 0 . . . 0

0 1 −1 . . . 0

. . . . . .

0 0 . . . . . . −1

0 0 0 . . . 1


(2.8)

Combining Eq. 2.6 and Eq. 2.7, the radial distribution f(r) can be found from a least-squares

solution:

~fλ = arg min

∣∣∣∣∣∣
∣∣∣∣∣∣
 A

λL0

 ~f −
~P

0

∣∣∣∣∣∣
∣∣∣∣∣∣ (2.9)

where the projection matrix A can be either AOP or AATP. The regularization parameter

λ characterizes the relative importance of the accuracy and smoothness of the solution. A

proper choice of the regularization parameter λ is essential for good reconstruction results.

In this work, we follow the “L-curve” criterion [36] to determine a proper regularization

parameter λ in a systematic manner. In this criterion, the norm of the smoothness term

||λL0
~f || are plotted versus the norm of the residual term ||Af̃ − P̃|| for different values of

λ and this usually results in a L-shape curve as shown in Figure 2.2. A small λ results in a

solution that explains the measurement data (including noises) very well but may be highly

oscillatory due to noise amplification (upper left part of the curve). A large λ promotes

a smooth solution that may not explain the measurement data very well (lower right part

of the curve). Therefore, an ideal value of λ lies on the corner of the L-curve. Tikhonov

regularization Abel inversion has been broadly applied in LAT experiments to retrieve flow

thermodynamic properties in axisymmetric flows [32, 33, 38? –44].
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Figure 2.2: Schematic for L-curve method: the corner of the curve corresponds to optimum

regularization. Figure adopted from [45].

2.3 2D Laser Absorption Tomography

In most practical applications, however, flow fields cannot be simplified with axially-symmetrical

assumptions, and two independent spatial variables are needed to describe the flow fields,

hence the term 2D tomography. In 2D tomography, the inversion problem is more challeng-

ing, as the number of unknowns increase geometrically and measurements with many view

angles are needed to resolve the flow fields. In addition to sensitivity to measurement noises

as in 1D tomography, 2D tomography problems in combustion applications often result in an

underdetermined system due to limited optical access. Different tomographic reconstruction

techniques in LAT have been reviewed in great detail in the review by Cai et al. [3] and are

briefly explained below.
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2.3.1 Analytical Technique: Filtered Back Projection

The forward problem in 2D tomography of a field variable f(x, y) is described by the Radon

transform, defined as:

p(θ, t) =

∫
l

f(x, y)dl (2.10)

where l is the integration path, p(θ, t) is the line-of-sight measurement at an inclination angle

of θ with respect to the x-axis and t is the axis of the projection data with the center aligned

with the origin of f(x, y) as shown in Figure 2.3. The Filtered Back Projection (FBP) is a

classical tomographic reconstruction method based on the analytical solution to the Radon

transform and is broadly used in medical imaging for X-ray computed tomography [46].

The FBP can be derived from the Fourier slice theorem, which states that the 1D Fourier

transform of a projection p(θ, t) is equal to the 2D Fourier transform of f(x, y), F (u, v),

evaluated at angle θ as shown in Figure 2.3. To perform the inversion, then, we can acquire

projections at many different angles over (0, π) to fill in the F (u, v) space and then do an

inverse 2D Fourier transform to reconstruct the field f(x, y). Cai et al. provided one single

equation that capture the entire operation [3]:

f(x, y) =

∫ π

0

∫ ∞
−∞

∫ ∞
−∞

p(θ, t)e−2πi·ωtdt︸ ︷︷ ︸
Fourier transform of a projection

|ω|e2πi·ωtdω

︸ ︷︷ ︸
Inverse Fourier transform

dθ

︸ ︷︷ ︸
Backprojection

(2.11)

where |ω| is a ramp filter used to deblur the reconstructed image. The FBP algorithm is

non-iterative and very computationally efficient. However, it only works well when a large

number of projection measurements are available to adequately sample the sinogram space

and therefore has been mostly applied in the environments with adequate optical access

where projections can be measured at arbitrary view angles [47–51].
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Figure 2.3: Illustration of the Fourier slice theorem and the filtered back-projection algo-

rithm [3].

2.3.2 Algebraic Reconstruction Techniques

In contrast to classical tomography algorithms that use analytical solutions, in Algebraic

Reconstruction Techniques (ART), the flow field is discretized into finite pixels as shown in

Figure 2.4 and the forward problem is formulated as a matrix-vector multiplication, which

is then solved iteratively. In Figure 2.4, the absorption length of the ith LOS (the red line)

passing through the jth pixel is labeled as Wij and the projection data of the ith LOS is

labeled as Pi. Writing Equation 2.11 for all the LOS yields a system of linear equations:

W ~f = ~P (2.12)

where ~f and ~P represent the projection data for all LOS and the field variable f(x, y)

evaluated at each pixel, respectively, both organized in vector forms. The matrix W is

called the ‘weight matrix’ with elements Wij weighting the contribution of the jth pixel fj

to the projection measurement Pi.
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The ART algortihm solves the matrix equation 2.12 iteratively with the following basic

form:

~f (k+1) = ~f (k) + β
Pi − ~wTi · ~f (k)

~wTi · ~wi
~wi (2.13)

where k is the current iteration, β is a relaxation parameter, Pi is the ith projection, and ~wi is

the ith row of W, arranged as a column vector. In each iteration, the difference between the

guessed value and the measured projection is calculated and used to update the pixels along

the LOS until a convergence criterion is met. However, the ART algorithm suffers from semi-

convergence [52]. ART approaches the true solution in early iterations but diverges away as

the iteration steps increase due to high-frequency contributions from noise. Therefore, it’s

difficult to determine a proper stopping criterion in practice. In addition, since only pixels

that transect the LOS will be updated, ART is usually used in LAT measurements with

relatively small number of pixels (typically 100–1000) and comparable number of projection

measurements [53–57]. Several variations of ART have also been developed, including the

simultaneous iterative reconstruction technique (SIRT) and the multiplicative ART (MART)

algorithms, each one with its own advantages in different applications. A comparison of these

algorithm in LAT can be found in [58].

Figure 2.4: Discrete formulation of the 2D LAT problem.
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2.3.3 Limited Angle Tomography and Regularization

LAT measurements often result in an ill-posed linear matrix equation. The problem is

ill-posed in two aspects for two distinct reasons: Firstly, for fully-determined or overdeter-

mined systems—where the number of measurements is equal to or greater than the number

of unknowns—the ill-posed nature is dictated by the noise amplification as discussed in

1D tomography previously. Secondly, for underdetermined systems—where the number of

measurements is less than the number of unknowns—the problem is ill-posed predominately

because an infinite number of solutions may exist. 2D LAT measurements typically result

in an underdetermined system because a large number of grid points are needed to resolve

complicated flow fields where fewer projection measurements can be made due to limited

optical access and/or high experiment cost. This is referred as the limited-angle tomography

problem. As such, regularization methods that incorporate additional information are often

used to achieve better solutions.

2.3.3.1 Tikhonov Regularization

As mentioned before, Tikhonov regularization has been widely used in 1D tomography to

dampen the instability of the inversion process [38]. For 2D limited-angle tomography,

Tikhonov regularization also serves as a priori information that the solution should be

smooth and non-negative in addition to dampening the noise amplification. Similarly to 1D

tomography, the underdetermined linear equation system 2.12 is augmented by an additional

set of equations λL~f = 0, where λ is the regularization parameter and L is the 2D version

of discrete Laplacian matrix that is used to enforce the smoothness condition:

Li,j =


1 i = j

−1/ni i neighbors j

0 otherwise

(2.14)
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where ni is the number of neighboring pixels around the ith pixel. The flow field then can

be reconstructed by solving the following optimization program:

~fλ = arg min

∣∣∣∣∣∣
∣∣∣∣∣∣
A

λL

 ~f −
~P

0

∣∣∣∣∣∣
∣∣∣∣∣∣ (2.15)

Again, the regularization parameter λ is essential for good reconstruction results. Simi-

larly to 1D tomography, λ can be determined by the L-curve method. Alternatively, Daun

et al. [59] proposed a criterion based on the singular values of the augmented matrix system.

In this criterion, the regularization parameter λ is chosen to yield a value that pads the

small singular values but does not overwhelm the large nontrivial singular values. Tikhonov

regularization has been successfully used in LAT to reconstruct 2D temperature and species

profiles in reacting flows, both based on simulation studies [59–61] and experimental stud-

ies [35, 62]. However, limited angle tomography with Tikhonov regularization often results in

a blurring effect and artifacts in the reconstructed flow-field [59, 62]. This motivates different

regularization methods, especially through Bayesian formulations, and will be discussed in

the next section.

2.3.3.2 Regularization via Bayesian Formulation

As shown for Tikhonov regularization in the previous section, incorporating prior informa-

tion helps address the ill-posed nature of the limited angle tomography problem to produce

unique and stable solutions. Recently, an alternative approach based on a Bayesian frame-

work has been demonstrated to more robustly incorporate various prior information in the

inversion process. In this framework, all quantities are treated as random variables with an

associated probability density function (PDF). These quantities are related through Bayes’

equation [61]:

π(f |P) =
π(P|f)πpr(f)

π(P)
∝ π(P|f)πpr(f) (2.16)

where the likelihood π(P|f) is the PDF for observing the measurement P given some can-

didate solution f ; the prior πpr(f) is the likelihood for candidate solutions f accounting all
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knowledge about the flow field, independent of the measurement data; the evidence π(P)

is a constant scalar that normalizes the numerator to conserve total probability; and the

posterior π(f |P) is the pdf of f subject to the measurement data in P. This can then be

solved via maximum a posteriori (MAP) estimation:

fMAP = argmax{π(f |P)} (2.17)

By customizing Equation 2.16, one can easily incorporate different prior information in

addition to smoothness and non-negativity as in Tikhonov regularization. This method has

shown promise in improving reconstruction quality, reducing artifacts, and helping design

beam arrangements in the tomography experiments [35, 61, 63]. More detailed discussions

on the theory and applications of the Bayesian framework inversion are can be found in [64].

2.3.4 Non-linear Absorption Tomography

The aforementioned tomographic reconstruction techniques are based on a linear set of equa-

tions, and thus are classified as linear tomography. Alternatively, the forward problem can

be recast as a set of non-linear equations with the temperature and the mole fraction fields

as objective functions to solve:

p(Lj, λi) =

∫
l

∑
k

S(λk, T (l)) ·X(l) · φ (λk − λi) · P · dl (2.18)

where p(Lj, λi) is the projection at location Lj and wavelength λi; l is the integration path;

S(λk, T (l)) is the temperature-dependent linestrength for a transition λi; X is the mole

fraction; P is the pressure; and φ is the lineshape function. The flow field is discretized in

a similar manner as in linear tomography shown in Figure 2.5 and Equation 2.18 can dis-

cretized accordingly. The temperature and the mole fraction field can then be reconstructed

spontaneously by minimizing the following cost function:

F (T rec, Xrec) =
J∑
j=1

I∑
i=1

[pm (Lj, λi)− pc (Lj, λi)]
2

pm (Lj, λi)
2 + γT ·RT (T rec) + γX ·RX (Xrec) (2.19)

where pm(Lj, λi) is the measured projection data; pc(Lj, λi) is the calculated projection based
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on the reconstructed temperature and mole fraction profiles (T rec, Xrec); I is the number of

measured spectral transitions; J is the number of discrete pixels to solve; γTRT (T rec) and

γXRX (Xrec) are regularization terms for temperature and concentration, respectively. More

details of the mathematical formulation can be found in [65, 66].

In this approach, additional information is provided by measuring more spectral tran-

sitions instead of more projection angles, and therefore the approach is also known as hy-

perspectral tomography. Hyperspectral tomography has been successfully applied to spon-

taneously retrieve 2D temperature and species concentration in different applications, in-

cluding in the canonical Hencken burner [67], in swirl flames [68], at the exhaust plane of

an aero-propulsion engine [34], and in a semiconductor process chamber [69]. Hyperspectral

tomography has also been used to retrieve 1D temperature and species concentration in

the cononical McKenna burner [70]. However, for the non-linear tomography problem, the

cost function F is usually non-convex, meaning that local minimums exist and the solution

might not converge to the global minimum. Therefore, heuristic techniques such as genetic

algorithms and simulated annealing are employed to identify the global minimum. These al-

gorithms can be difficult to implement, since their performance depends on problem-specific

heuristics, and they are often time-consuming to compute [3, 35].

Figure 2.5: The mathematical formulation of the non-linear tomography problem [67].
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2.3.5 Deep Learning Inversion

Most recently, deep learning methods are widely applied to image reconstruction and have

achieved impressive results in various image reconstruction tasks, especillay in medical imag-

ing, including low-dose denoising, sparse-view reconstruction, limited angle tomography and

artifact reduction. An excellent review can be found in the special issue of IEEE Transaction

on Medical Imaging [71]. Instead of solving the inverse problem directly through analytical

methods, the deep learning methods recast the image reconstruction task into a data-driven

problem. In this approach, a large library of known ground truth results are used as train-

ing dataset and deep neural networks are used to build connection between the projections

and reconstruction results. By learning the intricate features and representations from the

large amount of tomography data, high-fidelity reconstruction results can be achieved by

the deep neural networks. Recently, predictive models utilizing deep neural networks have

been applied for combustion flow imaging. However, these efforts have been focused on sim-

ulated flows [72] and emission measurements of real flows [19, 73, 74]. In this dissertation,

we present the first 3D laser absorption imaging of methane in a flame, evaluated both by

simulation and experiment (detailed in Chapter 7).
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CHAPTER 3

Advances in Mid-infrared Laser Absorption

Spectroscopy

3.1 Introduction

Laser absorption spectroscopy (LAS) plays an important role in combustion diagnostics due

to its quantitative, species-specific, calibration-free, and non-intrusive nature. LAS has been

widely used to diagnose and characterize different combustion systems, either through path-

averaged measurements or through LAT algorithms to image the flow fields. Historically,

these measurements have mostly been perfromed in the near-infrared (760–2500 nm) where

robust and affordable hardware are available due to the development of telecommunication

industry in the 1990s [2]. Recently, advancements in mid-infrared photonics, especially in

mid-infrared tunable, room-temperature semi-conductor lasers, have provided convenient

access to nearly the entire IR spectrum (0.8–16 µm), enabling unique sensing capabilities

and species-detectability.

In this chapter, the fundamentals of LAS will be discussed with an emphasis on the mid-

infrared spectrum of the combustion gases; specifically the fundamental vibrational bands of

hydrocarbon intermediates and carbon oxides are in this domain. Recent advancements in

mid-infrared hardware are then discussed, followed by a brief review on applications enabled

by these technologies. A more detailed review on this topic can be found in [2].
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3.2 Mid-infrared Spectrum of Combustion Gases

LAS exploits resonance with discrete energy modes of gas molecules to ascertain thermo-

chemical properties of flow fields from light absorption [1]. Molecules with dipole moments

will interact and absorb photons with energy equal to the spacing between two discrete en-

ergy states. The wavelengths at which molecules absorb are related to the energy spacing

by the Planck’s Law:

∆E = Eupper − Elower = hν (3.1)

Here ∆E is the energy of the photon associated with a molecular transition between two

quantum states, while ν is the frequency of the photon, and h is Planck’s constant. In the

infrared, this corresponds to the spacing between two ro-vibrational states; many combustion

gases absorb in this wavelength range as shown in Figure 3.1, with the intensity of various

IR absorption transitions for a few combustion species at 1500 K. It should be noted that the

fundamental vibrational bands at mid-IR wavelengths (2.5–12 µm) are orders of magnitude

stronger than the overtone and combination bands in the near-IR (0.75–2.5 µm), and provide

much greater species sensitivity at short optical path-lengths, making them suitable for

analyzing small-diameter flows in practical combustion applications.

Figure 3.1: Linestrengths of several molecular species of interest to combustion systems [2]
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3.3 Mid-infrared hardware

Many advances in diagnostic techniques often arise from advancements in photonics (e.g.,

light sourses and detectors). The current work is no exception. In this section, emerging

mid-IR hardware leveraged in the current work will be briefly discussed.

3.3.1 Lasers

First and perhaps most importantly, recent technical progress and commercial maturity in

room-temperature wavelength-tunable mid-infrared semi-conductor lasers (e.g., interband-

and quantum-cascade lasers) provide light sources for researchers to easily access the fun-

damental vibrational frequencies in the mid-infrared. Quantum cascade lasers (QCLs) are

semiconductor lasers that emit in the mid- to far-infrared (≈ 3.5–100 µm) wavelength range

with similar tuning capability and usability to room-temperature diode lasers. A QCL con-

sists of a periodic series of thin layers of varying material composition forming a superlattice,

which introduces a varying electric potential across the length of the device. Because the

position of the energy levels in the system is primarily determined by the layer thicknesses

and not the material, it is possible to tune the emission wavelength of QCLs over a wide

range in the same material system. The first demonstration of the quantum cascade laser

occurred at Bell Laboratories in 1994. Fabry-Perot (FP) quantum cascade lasers were first

commercialized in 1998, Distributed feedback (DFB) devices were first commercialized in

2004, and broadly-tunable external cavity quantum cascade lasers first commercialized in

2006. QCLs are now available for a wide range of wavelengths from multiple vendors (e.g.,

Alpes, Adtech, Daylight Solutions, Hamamatsu, Pranalytica) [2].

Interband cascade lasers (ICLs) use a layered heterogeneous band-structure to achieve

cascading of photon emission similar to QCLs. However, ICLs generate photons with in-

terband transitions, rather than the inter-subband transitions used in QCLs. The use of

interband transitions allows laser action in ICLs to be achieved at lower electrical input

powers than is possible with QCLs. The basic concept of an ICL was proposed by Rui Q.
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Yang in 1994 [75]. ICLs lasing in continuous wave (CW) mode at room temperature were

first demonstrated in 2008 at 3.75 µm [76]. Subsequent advancements in tuning response and

efficiency have enabled commercially available, compact, narrowband DFB ICL lasers that

fill a gap (3–4 µm) in the mid-wave infrared between conventional room-temperature diodes

and quantum-cascade lasers. This region is especially important to combustion due to the

very strong C H stretch vibrational mode common to all hydrocarbons near 3.4 µm [2].

3.3.2 Infrared Detectors and Cameras

Indium-antimonide (InSb) and mercury-cadmium-telluride (HgCdTe or MCT) are the most

common semiconductor materials used for mid-infrared detectors. These detectors are avail-

able in both photoconductive and photovoltaic operation modes. In the former, the electrical

resistance is influenced by the incident photons and, in the latter, current is generated by the

photoelectric effect. For these mid-IR materials, photovoltaic operation is typically preferred

due to its lower dark current. InSb photovoltaic detectors are sensitive from ∼1 to 5.5 µm

and must operate at cryogenic temperatures (∼80 K); they are typically packaged with a

dewar for liquid-nitrogen cooling. MCT detectors (photovoltaic or photoconductive), on the

other hand, can be sufficiently cooled thermo-electrically providing for a more portable and

less cumbersome package that can be mounted at any orientation, which is useful for engine

sensing applications. The amount of cadmium in the MCT alloy can be chosen to tune the

sensitive wavelength region within a broad range of (∼2–15 µm).

Recent developments in the infrared detector technology have also made possible the

development of high performance infrared cameras for use in a wide variety of thermal

imaging applications. These infrared cameras are now available with spectral sensitivity

in the shortwave, mid-wave and long-wave spectral bands or alternatively in two bands,

covering the whole infrared wavelength range of (∼1.5–12 µm). In addition, a variety of

camera resolutions are available as a result of mid-size and large-size detector arrays and

various pixel sizes. For example, Telops provides high-speed infrared cameras with 320 ×

256 pixel resolution and 640 × 512 pixel resolution. Also, camera features now include high
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frame rate imaging (up to 100 kHz), adjustable exposure time and event triggering enabling

the capture of temporal thermal events.

3.4 Summary

Recent advances in mid-infrared optical equipment have provided several new capabilities

for LAS sensing in combustion environments. Access to the fundamental vibrational bands

in the mid-infrared not only allows for new species-detectability but also more sensitive

detection at a shorter pathlengths compared to that in the near-infrared region. However,

these developments have rarely been leveraged in the development of LAT systems. In

this dissertation, emerging mid-infrared optical equipment is leveraged to design a novel

tomographic imaging system. Specifically, Chapter 4 and 5 demonstrates a translation-

stage-mounted laser-spectrometer systems that takes advantages of the compact and portable

mid-infrared lasers and detectors. Chapters 6 and 7 present a novel laser absorption imaging

system that utilize high-speed infrared camera to achieve enhanced spatial and temporal

resolution.
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CHAPTER 4

Mid-IR Laser Absorption Tomography of CO, CO2 in

Turbulent Premixed Jet Flames

The contents of this chapter have been published in the journal Applied Physics B: Lasers

& Optics under the full title ’Mid-infrared laser absorption tomography for quantitative

2D thermochemistry measurements in premixed jet flames’ [32].

4.1 Introduction

Most practical combustion devices involve turbulent reacting flows. Understanding inter-

actions between chemistry and fluid dynamics in turbulent flames is of prime interest to

the combustion community, both for the development of more efficient engineering devices

and the development and refinement of numerical models [6]. As computational power

increases and higher-fidelity simulations of turbulent flames with more detailed chemistry

become possible, it is necessary to provide measurements to inform and anchor these models

[77]. Specifically, quantitative measurements of the thermochemical structure (i.e. spatially-

resolved species and temperature) are needed to elucidate the coupled mechanisms.

Traditional intrusive measurement techniques such as thermocouples and gas chromatog-

raphy (using sampling probes) disturb the local flow field, often precluding definitive inter-

pretation. As such, several non-intrusive spectroscopic measurement techniques have been

utilized to study turbulent flames by exploiting emission, absorption, and scattering interac-

tions. For turbulent jet flames, which are the focus of this work, Rayleigh scattering has been

a common approach for thermometry [25–27], and can be quantitative with an estimation of
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gas composition [28–30]. Raman scattering methods have also been used for time-resolved

point measurements of species in such flames [78–80]; however, this approach does not read-

ily lend towards characterizing the structure of a flame unless many point measurements are

made [81, 82], which can be difficult to perform if the burner is immobile and the lasers

are large and cumbersome, which is often the case with high-powered light sources required

in scattering spectroscopies. Laser induced fluorescence (LIF) [79, 83–85] and chemilumi-

nescence [84, 86, 87] have also been used extensively for temperature and species-specific

imaging. However, these methods do not easily yield quantitative species measurements,

even with calibrations [1].

Although typically weak in spatial resolution capability (due to line-of-sight integration),

laser absorption spectroscopy (LAS) provides a highly quantitative, calibration-free method

of measuring major combustion species and temperature in harsh environments using com-

pact low-power semiconductor lasers [2]. Room-temperature interband cascade lasers (ICLs)

and quantum cascade lasers (QCLs) enable convenient access to the strong mid-infrared

(mid-IR) absorption bands of CO and CO2 centered near 4.7 and 4.3 µm, respectively, as

shown in Fig. 4.1. The fundamental vibrational bands at these mid-IR wavelengths are

orders of magnitude stronger than those in the near-IR, and provide much greater species

sensitivity at short optical path-lengths, making them suitable for analyzing small-diameter

flows in practical combustion applications. By carefully selecting the wavelength, it is possi-

ble to measure multiple absorption transitions of a single molecule with one laser, enabling

simultaneous calibration-free thermometry and species concentration measurements [89].

The compactness and mobility of modern ICLs and QCLs readily enables spatially re-

solved measurements in flames, which can be combined with tomographic reconstruction

techniques [37, 38] to characterize non-uniform flows [40, 67, 90–94]. In this paper, we present

a stage-mounted multi-laser absorption system for quantitative measurement of species con-

centrations and temperature distributions in turbulent premixed jet flames.
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Figure 4.1: Absorption linestrengths for CO2 (top) and CO (bottom) from 1 to 5 µm com-

puted from the HITRAN database [88]; T = 1500 K. Fundamental vibrational bands νi

as well as combinations of these bands are labeled for each species. Accessible regions in

mid-infrared wavelengths due to the recent availability of mid-infrared ICLs and QCLs are

marked with a gray dashed box. Wavelengths specifically used in this study are marked with

darker lines.
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4.1.1 Theory of laser absorption spectroscopy

Laser absorption spectroscopy (LAS) exploits resonance with discrete energy modes of gas

molecules to ascertain thermochemical properties of flow fields from light absorption [1]. We

briefly review the fundamentals of LAS here in the context of the experiment to provide

reader assistance with the measurements that follow.

The Beer-Lambert law in Eq. 4.1 gives the spectral absorbance αν in a gas medium axially

symmetric about radius r [cm] for a specific frequency ν [cm−1] as a function the ratio of

incident light, I0, and the transmitted light, It [1]:

αν = − ln

(
It
I0

)
ν

=

∫ L(r)

0

PSj(T (r))Xabs(r)ϕνdl (4.1)

αν thus depends on total pressure P [atm], line-strength Sj [cm−2/atm] for rovibrational

transition j, mole fraction of absorbing species Xabs, lineshape function ϕν [cm], and aggre-

gate path length L(r) [cm]. For an integrated line-of-sight (LOS) absorption measurement

through a non-uniform medium (such as a flame) that is axially symmetric in r, the projected

integrated absorbance area Aj,proj(r) [cm−1] is expressed in Eq. 6.1,

Aj,proj(r) =

∫ ∞
−∞

ανdν =

∫ L(r)

0

Kj(r)dl

= P

∫ L(r)

0

Sj(T (r))Xabs(r)dl

(4.2)

where P is assumed constant throughout the medium. In this work, we attained Aj,proj(r)

by fitting a Voigt function to the measured αν for each line j, effectively negating the mea-

surement dependence on line shape ϕν [1]. To determine a radial profile of the integrated

spectral absorption coefficient, Kj(r) [cm−2], from radially resolved projected area measure-

ments Aj,proj(r), we use tomographic reconstruction methods discussed in greater detail in

Section 6.2.2.3. For multiple transitions j scanned, multiple Kj(r) can be determined, and

the ratio of two absorption coefficients reduces to a ratio of Sj(r), which is a function of T (r)

only, as shown in Eq. 5.3.

R(r) =
KA(r)

KB(r)
=
SA(T (r))

SB(T (r))
= f(T (r)) (4.3)
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Since Sj(T (r)) is a line-specific spectroscopic property, it is possible to infer the gas tem-

perature T (r) with the simultaneous measure of two lines at any location r [89]. After

temperature has been determined, Sj(T (r)) can be evaluated, and the mole fraction of the

absorbing species Xabs(r) can be obtained using Eq. 6.2 when the total pressure P is known.

More detail on these calculations as well as their uncertainties can be found in Appendix A.

Kj(r) = PSj(T (r))Xabs(r) (4.4)

4.2 Method

We employ a scanned-wavelength direct-absorption technique with a tunable quantum cas-

cade laser and an inter-band cascade laser to spectrally resolve transitions near the fun-

damental bands of CO and CO2 near 4.9 µm and 4.2 µm, respectively. Using mechanical

translation stages and tomographic reconstruction techniques, we provide radial profiles of

CO and CO2 mole fraction as well as gas temperature for two different turbulent flow con-

ditions in a piloted premixed jet flame burner.

4.2.1 Wavelength selection

For this and other combustion studies, specific wavelengths within each vibrational band of

both CO2 and CO were selected based on the isolation, strength, and temperature sensitivity

of the rovibrational lines, in addition to laser availability. We probe the P(0,31) and P(1,26)

lines of the fundamental band of CO, around 2008.53 cm−1 and 2006.78 cm−1, respectively, to

infer CO vibrational temperature and CO mole fraction. For CO2, we probe the R(0,58) line

at 2384.189 cm−1, as well as the doublet line pair R(1,105) and R(1,106) at 2384.327 cm−1

and 2384.331 cm−1, respectively to measure CO2 mole fraction and vibrational temperature.

Relevant spectroscopic parameters of the selected lines are shown in Tables 4.1 and 4.2, where

linestrength and lower-state energy values for CO and CO2 are taken from the HITEMP 2010

database [88]. Further details on line selection within these domains are described in previous
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Table 4.1: Spectroscopic parameters, targeted CO2 transitions

Line Wavelength Freq. E ′′ S (296 K)

(v′′, J ′′) [nm] [cm−1] [cm−1] [cm−2/atm]

R(0,58) 4,194.30 2384.189 1,333 7.78×10−1

R(1,105) 4,194.06 2384.327 4,998 2.51×10−8

R(1,106) 4,194.05 2384.331 5,087 1.65×10−8

Table 4.2: Spectroscopic parameters, targeted CO transitions

Line Wavelength Freq. E ′′ S (296 K)

(v′′, J ′′) [nm] [cm−1] [cm−1] [cm−2/atm]

P(1,26) 4,983 2006.78 3,478 5.20×10−6

P(0,31) 4,979 2008.53 1,901 6.62×10−3

studies [89, 95].

4.2.2 Laser absorption tomography system

As noted, the medium in which we attain the measurements is non-uniform, though it

is assumed to be axially-symmetric over a short time interval [86]. In this subsection, we

describe the system used to mechanically obtain spatial resolution for the LAS measurements.

Figure 4.2 shows the optical configuration around the piloted premixed jet flame burner at the

University of Southern California, as well as the directions of radial and vertical translation.

A stage-mounted two-laser system was developed to measure species profiles of CO and

CO2, respectively, as well as temperature in the radial and vertical directions to characterize

the time-averaged thermochemical structure of the flame. A distributed-feedback (DFB)

quantum cascade laser (QCL) with ≈ 50 mW output power was utilized as the single-mode

light source to resolve the selected CO lines and infer thermochemical properties of CO. An

interband cascade laser (ICL) with ≈ 5 mW output power is similarly used for probing the
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CO2 lines. The laser beams were aligned concentrically using flat mirrors and beam splitters

as shown in Fig. 4.2. Focusing mirrors (f= 200 mm) 400 mm apart were deployed on

optical rails attached to the stage to focus the concentric beams to approximately 0.5 mm in

diameter across the central jet. After reflection back towards the detectors, we used another

beam splitter in conjunction with bandpass spectral filters (4210 nm for CO2, 5000 nm for

CO) and focusing lenses to separate the different wavelengths onto independent detectors.

The lasers, mirrors, lenses, and detectors were all mounted on a ∼16 cm × 16 cm optical

breadboard on an automatic radial (horizontal) translation stage, which itself was mounted

on a manual vertical translation stage. The horizontal translation stage was controlled by a

stepper motor with a controllable linear translation resolution of 1.6 µm per motor step in

the r direction, as indicated in Fig. 4.2. The hand-cranked vertical translation stage had a

linear translation resolution of 1.27 mm in the x direction per lead screw revolution. Signals

from the stepper motor encoder were recorded alongside the the signals from the photovoltaic

detectors. Additionally, the stepper motor was operated with a stepping frequency that was

a sub-multiple (500 Hz) of the laser scan rate so that the r location of the laser beams could

be easily tracked.

4.2.3 Piloted premixed jet flame burner

A discussion of the operating characteristics of the University of Southern California burner

is presented here for ease of reader understanding in the sections that follow. The current

work utilized a modified Piloted Premixed Jet flame Burner (PPJB) design [26] as described

in greater detail in previous studies [86, 87]. The burner consists of a central jet tube of

inner diameter D = 5.84 mm surrounded by a pilot and outer coflow (Dcoflow = 400 mm)

in order to stabilize the high velocity central jet. A schematic of the configuration with the

laser absorption system is shown in Fig. 4.2. The pilot flame anchors the central jet to the

burner exit in order to prevent blowoff from the high shear present. The pilot flame is a

premixed C2H4/air flame stabilized beneath the jet flame with an equivalence ratio of φ=0.8

and an unburnt exit velocity of 0.75 m/s.
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Figure 4.2: Top-down schematic of the PPJB with optomechanical translation stage system.

The central jet is surrounded by a coflow H2/air flame. The lasers, optics, and detectors

are mounted to the same translational stages and move together while the burner remains

stationary.
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The coflow surrounds the pilot and jet flow, using hot products to thermally insulate

the jet. A pure H2/air flame at φ=0.51 was used to provide a surrounding temperature of

Tcoflow = 1500 K. This coflow flame composition was chosen to provide hot products without

carbon atoms present so as to provide zero concentration boundary conditions for the CO and

CO2 mole fraction reconstruction efforts. Experiments were performed at two jet Reynolds

numbers, Rejet ≡ ujetD/νvisc = 25,000 and 50,000, where Ujet is the bulk flow velocity and

νvisc is the kinematic viscosity at the burner exit. The coflow velocity does not change across

the Reynolds number conditions. The mixture composition of the central jet is C2H4/air at

φ=0.55 and an unburned mixture temperature of 298 K. As mentioned, over a modest time

interval (∼102 ms), the turbulent jet can generally be approximated as axially symmetric

and steady [86].

4.2.4 Experimental procedure

To determine the center of the jet (r = 0) for initial alignment, the laser beams were adjusted

in the r direction across the central jet tube using the automatic horizontal stage. Locations

where the detected light intensity decreased to ∼20% of the unblocked intensity due to

the obstruction of the jet tube were noted, and the location of the jet center was then

determined by radial symmetry. Both the CO and CO2 lasers were scanned at a frequency

of 1 kHz, and were recorded at a sample rate of 2 MHz, as shown in Fig. 4.3. For the

QCL, the targeted CO transitions could not be accessed with a single laser sweep at a given

laser operating temperature; therefore, the CO lines were measured by sequential horizontal

scans at different laser operating temperatures, at each height x above the jet exit. The

CO laser operating conditions were changed and stabilized in ∼30 s intervals between the

two horizontal scans. Since the experiment under investigation is quasi-steady [86], this

was considered an acceptable method to capture both CO transitions. The stepper motor

encoder signals from the automatic horizontal translation stage were also recorded at the

same frequency. The horizontal translation speed was 0.8 mm/s, resulting in two laser

scans per 1.6 µm step. To measure the baseline signal I0, background measurements were

38



taken with the lasers during an automatic horizontal translation while the H2/air co-flow of

the burner was on, but without any hydrocarbon fuels flowing, for every r position at the

minimum and maximum x locations for the flame. These background measurements with the

hot coflow gases account for incident effects from environmental thermal emission and water

absorption, as well as CO2 in the ambient air. No significant differences in absorption were

observed using either x location background measurement. As the burner was operating,

finely resolved horizontal scans in the r direction were made every 20 mm in height above

the burner exit. The system was translated as far as r = 32 mm to ensure zero concentration

boundary conditions for later reconstruction efforts, as detailed in Section 6.2.2.3. Once a

translation was completed for a given r-x combination, the horizontal stage was returned to

the r = 0 location and the vertical translation stage was adjusted in the x direction to a new

height above the jet exit. This process was repeated for several axial locations x along the

flame. For the case in which Re = 25,000, fewer x locations were scanned since the flame was

shorter. This simultaneous translation and data acquisition method was chosen to maximize

spatial data collection of the mean flow properties during the available test time.

4.3 Data Analysis

This section presents the methods we employed to interpret the measurements obtained in

the experiment into axial and radial profiles of temperature and species measurements. For

the results shown here, 105 direct-absorption scans (Fig. 4.3) associated with a horizon-

tal translation interval were averaged prior to the calculation of projected absorbance area

Aj,proj(r) via Eqs. 4.1 and 6.1. This procedure is done for each spatial interval throughout

the horizontal scan and allows for statistical analysis of the signals in the interval. We deter-

mine the 95% confidence interval of all of these signals, and use this information to process

the uncertainty in the rest of our results. The uncertainty analysis is presented in greater

detail in Appendix A.

39



0.5

1.0

[a
.u

.]

CO
2

R(0,58)

R(1,105) + R(1,106)

0.5

1.0

[a
.u

.]

CO

P(1,26)

0 0.5 1 1.5 2

Relative time [ms]

0.5

1.0

[a
.u

.]

P(0,31)

Figure 4.3: Example direct-absorption scans for selected CO2 and CO lines (It) with specific

transitions labeled. Gray lines indicate background signals (I0) with the C2H4/air jet flame

and pilot turned off but with the hot co-flow H2/air on.

4.3.1 Spectral line fitting

The measured absorbance spectra αν are least-squares fit for the target spectral lines in

Tables 4.1 and 4.2 using the Voigt line shape function [1] to obtain projected absorbance

areas Aj,proj(r), as shown in Figs. 4.4 and 4.5 for CO2 and CO, respectively. Aj,proj(r)

and collisional width νc were free parameters for the fitting process, and Doppler width νD

was assumed corresponding to the coflow temperature of 1500 K. It was noted that when

arbitrarily assuming the temperature (from 500 K to 1500 K) for the Doppler width, there

was no discernible difference for the integrated area results, which are used for tomographic

reconstruction.

Due to the large difference in linestrength between the targeted CO2 spectral lines, the

regular two-line fitting procedure is not robust enough for reliably simultaneously fitting the

R(0,58) line and the R(1,105) + R(1,106) doublet line without significantly biasing the fitting

of the R(1,105) + R(1,106) doublet line. For this reason, we adopted a sequential fitting
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Figure 4.4: Measured carbon dioxide absorption averaged from 105 laser scans (1 kHz) shown

as absorbance versus wavenumber for the R(0,58) line and the R(1,105) + R(1,106) doublet

line. 95% confidence interval of measured absorbance shown in gray. Top: Voigt fit of solely

the R(0,58) line. Middle: Voigt fit of the R(1,105) + R(1,106) doublet calculated from the

difference between the measured data and the R(0,58) fit. Bottom: Residuals from each of

the above Voigt fits. Variation in residuals from fitting within the bound of experimental

uncertainty are shown in gray.
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Figure 4.5: Top: Measured carbon monoxide absorption averaged from 105 laser scans

(1 kHz) shown as absorbance versus wavenumber for the P(1,26) and the P(0,31) lines. 95%

confidence interval of measured absorbance shown in gray. Bottom: Residuals from Voigt fit.

Variation in residuals from fitting within the bound of experimental uncertainty are shown

in gray.

routine in which the R(0,58) line was fit first for a specified data range (top of Fig. 4.4)

after confirming that this range did not bias the Aj,proj(r) results compared to successful

simultaneous fits with the R(1,105) + R(1,106) doublet line. This Voigt fit for the R(0,58)

line was then subtracted from the original measured spectral absorbance αν to generate a

residual measurement of only the R(1,105) + R(1,106) doublet line, (middle of Fig. 4.4). This

residual spectral absorbance was then fit to extract Aj,proj(r) from the R(1,105) + R(1,106)

doublet line. The final fractional residual (residual /maximum absorbance) resulting from

the Voigt fits of each line was typically less than 2% for CO2 lines (bottom of Fig. 4.4) and

less than 5% for CO lines (Fig. 4.5), confirming the general appropriateness of the Voigt line

shape model for this application.
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Figure 4.6: Projected integrated absorbance area, Aj,proj for the targeted lines in radial

translation space.

4.3.2 Filtering

Subsequent to fitting the absorbance measurements, radial profiles of projected absorbance

area, Aj,proj(r), are obtained for each height x above the jet exit. Figure 4.6 shows example

plots of Aj,proj(r) as a function of distance from the flame center r at x = 120 mm. Since

both the fitting residuals (bottom of Figs. 4.4 and 4.5) and the absorbance uncertainties

(Appendix A) are much less than the observed spatial variations in Aj,proj(r), the oscillations

in measured Aj,proj(r) are interpreted as primarily flow field variations due to the turbulence

rather than measurement noise. Here, we applied a Savitzky-Golay filter [96] which smooths

Aj,proj(r) with a 1st degree polynomial inside a smoothing window size of 15 points. These

smoothing parameters correspond to an effective spatial resolution of 0.55 mm, similar to the

diameter of the laser beam. The smoothed Aj,proj(r) profiles, intended to represent mean

values, are then used as inputs for tomographic reconstruction, detailed in the following

section.
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4.3.3 Tomographic reconstruction

Here, we briefly describe our approach to obtaining radial profiles of species and temperature

from our path-integrated measurements. Assuming the flame is axisymmetric and steady,

one-dimensional tomographic reconstruction can be applied. The projected absorbance area

measurement is described by the well-known Abel transform as a line-of-sight integration

over the flame with radius R at a given distance from the flame center y:

P (y) = 2

∫ R

y

f(r)r√
r2 − y2

dr (4.5)

where P (y) is the measured projected absorbance area Aj,proj(r) and f(r) is the radial

distribution of the integrated spectral absorption coefficient Kj(r).

In practice, Abel inversion is implemented numerically [38]. The flame region is divided

into equally spaced annular rings and the radial absorption coefficient distribution f(r) is ap-

proximated by a quadratic function near radius r using the Abel 3-point (ATP) method [37].

Writing Eq. 6.1 at each radius r gives rise to a system of linear equations represented by

AATP
~f = ~P (4.6)

where ~f = [f0, f1, ...fN−1]T and ~P = [P0, P1, ...PN−1]T contain the radial absorption coeffi-

cient values and projected absorbance area values, respectively.

In this work, the measured projected absorbance areas are deconvoluted using Tikhonov

regularized Abel inversion [38] to address the inherent ill-conditioned nature of the projection

matrix AATP. In this method, an additional set of equations are imposed on the solution:

λL0
~f = 0 (4.7)

where λ is the regularization parameter that controls the level of regularization and L0 is a
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discrete gradient operator that characterizes the smoothness of the solution:

L0 =



1 −1 0 . . . 0

0 1 −1 . . . 0

. . . . . .

0 0 . . . . . . −1

0 0 0 . . . 1


(4.8)

The regularization parameter λ characterizes the relative importance of the accuracy and

smoothness of the solution. A suitable regularization parameter is determined from the L-

curve method [97] to be λ ≈ 1 based on the work of Daun et al. [38] and is used for all

reconstructions. Combining Eq. 4.6 and Eq. 4.7, the radial distribution f(r) can be found

from a least-squares solution:

~fλ = arg min

∣∣∣∣∣∣
∣∣∣∣∣∣
 ~AATP

λ ~L0

 ~f −
~P

0

∣∣∣∣∣∣
∣∣∣∣∣∣ (4.9)

Using the procedure discussed above, projected absorbance areas Aj,proj(r) for measured

spectral lines are Abel-inverted using Tikhonov regularization to reconstruct radially-resolved

integrated spectral absorption coefficients Kj(r). Examples of these reconstructions are

shown in Fig. 4.7. From these reconstructed absorption coefficients, temperature is calculated

from the ratio of two lines at each radial position, and mole fraction is then calculated from

one absorption coefficient of each species [1].

4.4 Results

Some example results from the jet flame experiments are plotted in the figures that follow.

We first present radially-resolved mole fraction measurements at two different heights (x)

above the jet exit for both turbulent flow conditions. Then, we present the temperature

measurements for the same planes and flow conditions. Finally, we present some composite

two-dimensional images comprising the mole fraction and temperature measurements for

sections of both flames. For the results shown, we use the convention of plotting distances
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Figure 4.7: Abel-inverted absorption coefficient, Kj(r) for the same lines as in Fig. 4.6 in

radial translation space.

in terms of jet diameter D; radial distance is plotted as r/D and axial distance is plotted as

x/D.

4.4.1 Mole fraction results

The radial profiles of mole fractions for CO2 and CO are shown for two different heights

above the jet exit for the two different turbulent flow conditions in Fig. 4.8. For the lower

plane of 40 mm (x/D = 6.85) in the Re = 50,000 case, the absorbance in the R(1,105) +

R(1,106) doublet line—which is typically only observed above ∼1000 K due to the high lower-

state energy—was too weak to independently determine the temperature of the local CO2

molecules. In this case, the CO temperature (and associated uncertainty in temperature)

was assumed to calculate mole fraction for both species.

At the lower height of 40 mm (x/D = 6.85), CO and CO2 are concentrated at a radial

distance corresponding to the diameter of the jet D for both turbulent flow conditions. At

the higher plane of 120 mm (x/D = 20.5), both the CO and the CO2 diffuse in both the
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indicate uncertainty.
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positive and negative radial directions. However, while the overall mole fractions of CO are

similar at the chosen heights, the CO2 mole fractions are much higher for the case in which

the Reynolds number is 25,000 than for the case in which it is 50,000. This could either

indicate greater entrainment of the outer co-flow, or more likely less complete oxidation of

the fuel associated with the higher jet velocity (at higher Re) and finite rate kinetics. The

temperature results that follow—along with the two dimensional images—support the latter.

For both species, typical mole fraction uncertainty is ±6%.

4.4.2 Temperature results

The radial profiles of temperatures for CO2 and CO are shown for the same distinct heights

above the jet exit for the two different turbulent flow conditions in Figs. 4.9 and 4.10. As

previously mentioned, for the lower plane of 40 mm (x/D = 6.85) in the Re = 50,000

case, the absorbance in the R(1,105) + R(1,106) doublet line was too weak to independently

determine the temperature of the local CO2 molecules and so this is not shown. Additionally,

the regions in which the concentrations of CO2 and/or CO were too low to reliably determine

temperature are also not plotted.
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Figure 4.9: Radial profiles of CO2 and CO temperature calculated from Abel-inverted ab-

sorption coefficients for Re = 50,000 (left) and 25,000 (right) at x = 120 mm. Gray dashed

lines indicate H2/air co-flow temperature of 1500 K.
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Figure 4.10: Radial profiles of CO2 and CO temperature calculated from Abel-inverted

absorption coefficients for Re = 50,000 (left) and 25,000 (right) at x = 40 mm. Gray dashed

lines indicate H2/air co-flow temperature of 1500 K.

The temperature results from regions in which both CO2 and CO are present in the flow

show good agreement within experimental uncertainty. At the higher plane of x = 120 mm

(x/D = 20.5) shown in Fig. 4.9, the species in the core flow have a high enough temperature

and concentration for reliable temperature measurements. The radial temperatures appear

generally lower for the Re = 50,000 case than they are for the Re = 25,000 case. For the lower

plane of x = 40 mm (x/D = 6.85) shown in Fig. 4.10, the difference is less clear due to the

absence of high-temperature CO2 in the Re = 50,000 case. However, this is consistent with a

lesser degree of oxidation for this plane in the Re = 50,000 case. In all cases, the temperature

of the molecules approaches that of the H2/air co-flow (1500 K) as r/D increases. For the

profiles shown here, typical CO temperature uncertainty is approximately ±80 K, while the

uncertainty for CO2 temperature is higher around ±130 K. Appendix A provides greater

detail on uncertainty analysis.

4.4.3 Two dimensional thermochemistry

In this section, we assemble the results for all planes into two-dimensional images of mole

fraction and temperature for CO and CO2 in Figs. 4.11 through 4.14 to reveal more about
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the thermochemical structure of these flames than is possible with one-dimensional radial

profiles.
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Figure 4.11: Reconstructed two-dimensional mole fraction profile for species CO2 (left) and

CO (right) as a function of r/D and x/D on a C2H4/air jet flame. Re = 50,000.
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Figure 4.12: Reconstructed mole fraction profile for species CO2 (left) and CO (right) on a

C2H4/air jet flame. Re = 25,000.
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and CO (right) as a function of r/D and x/D on a C2H4/air jet flame. Re = 50,000.
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Figure 4.14: Reconstructed temperature profile (Kelvin) for CO2 (left) and CO (right) on a

C2H4/air jet flame. Re = 25,000.

In Figs. 4.11 and 4.12, the mole fractions of CO2 and CO are shown back-to-back. Both

figures are plotted with the same mole fraction color scale and so are directly comparable

with one another. Similarly, in Figs. 4.13 and 4.14, the temperatures of CO2 and CO are

plotted with the same temperature color scale. In all cases the bounds of the plots are such

as to maximize the view of thermochemical CO2 and CO gradients. We again note that for

the lowest three x/D planes shown in the temperature reconstruction in Fig. 4.12, the mole

fraction of CO2 is not measurable in the core flow due to weak absorbance in the R(1,105) +

R(1,106) doublet pair in these regions. We also note again that we do not plot temperature

in regions where the absorbance of one or more of the targeted spectral lines of a species is

too weak (app. SNR < 5) to reliably determine temperature. Additionally, we only plot a

subset of the x/D planes for the Re = 25,000 case, and so these plots have fewer vertical

planes.

For the mole fraction images in Figs. 4.11 and 4.12, a hollow region in the core of the flame

is apparent in both cases in the lower planes (particularly for CO), suggesting that fuel/air
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mixture in this region has yet to oxidize to either CO and CO2. In the Re = 50,000 case,

CO concentrations are higher in the upper planes of the flame in the core region, indicating

poorer oxidation of the fuel at the tip of the flame than in the Re = 25,000 case. Both

CO2 and CO increase near the center of the jet as x/D increases, though only in the Re =

50,000 case does the CO substantially increase away from the center of the flame, as shown

in Fig. 4.11. The overall mole fractions of CO are larger in the Re = 50,000 case in Fig. 4.11

than in the Re = 25,000 case in Fig. 4.12, while the opposite is true for the mole fractions

of CO2. In the Re = 50,000 case, there is higher shear present than in the Re = 25,000 case

due to a higher velocity and momentum ratio, resulting in greater entrainment rates with

the coflow. This could increase the size of the mixing layer, causing a larger turbulent mass

diffusivity as the jet velocity increases and transporting the CO away from the central axis

of the flame.

In the temperature images in Figs. 4.13 and 4.14, the temperature is seen to generally

be lower near the core of the flame as expected, though exact core temperatures cannot be

reliably determined at the lower x/D planes. The temperatures in the Re = 25,000 case are

generally higher for given r/D near the core of the flow than they are in the Re = 50,000

case. Along with the CO and CO2 mole fraction results, this corresponds to more complete

oxidation in these regions for the Re = 25,000 case and possibly less entrainment as well.

4.5 Conclusions

Our results demonstrate that mid-infrared laser absorption tomography, probing the funda-

mental vibrational bands of CO and CO2, can obtain quantitative, spatially-resolved ther-

mochemical data in small-diameter (sub-cm) turbulent flames. These measurements can

be made calibration-free and without knowledge of balance gas composition. Species pro-

files are fully resolved radially and, with CO and CO2 in combination, spatially quantify in

two dimensions an important terminal reaction in hydrocarbon fuel combustion. Although

temperature measurements are only reported for certain regions of the flame (i.e. partially

resolved), future analysis may provide expanded measurements since additional lines besides
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the R(0,58) and R(1,105) + R(1,106) doublet were accessible with the same laser, as shown

in Fig. 4.3.

Both the measurements of mole fraction and temperature as presented in Figs. 4.11

through 4.14 show sensitivity to chemical kinetic progress and turbulent flow conditions

(Reynolds number). Accordingly, the sensing strategy presented in this paper may be used

to help develop and/or constrain turbulent combustion fluid dynamic models with detailed

chemical mechanisms. To the authors’ knowledge, these are the first quantitative 2D species

measurements of CO and CO2 in the canonical piloted premixed jet burner.
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CHAPTER 5

Application of Mid-IR Laser Absorption Tomography:

Examining Fuel Effects on Carbon Oxidation in

Turbulent Premixed Jet Flames

The contents of this chapter have been submitted to the journal Combustion and Flame

under the full title ’ Carbon oxidation in turbulent premixed jet flames: a comparative

experimental and numerical study of ethylene, n-heptane, and toluene’.

5.1 Introduction

Turbulent combustion has been the focus of extensive research efforts over the last several

decades, with particular attention devoted to the investigation of hydrogen and light hydro-

carbon fuels such as methane [98, 99]. Although these studies provide valuable knowledge

about highly turbulent flames in the thin and broken reaction zone regimes, relatively few

investigations assessed the importance of finite-rate chemistry in the context of fuel specific

effects, particularly those caused by the variety of functional groups encountered in practical

fuels. Considering that many energy conversion devices rely on turbulent combustion of liq-

uid fuels comprising numerous high molecular weight components, the investigation of fuel

effects is of particular importance.

Unlike lighter fuels, heavy hydrocarbons are susceptible to thermal decomposition within

the preheat zone of a flame [100–102]. In particular, at high-turbulence intensities, small-

scale eddies penetrate the preheat zone and modify its thermal structure [98, 103, 104].

Therefore, for heavy liquid fuels, the local flame structure could exhibit substantially dif-
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ferent extinction and propagation behaviors compared to small-hydrocarbon fuels which are

resistant to decomposition [105]. These phenomena especially depend on the mixture of

smaller molecular fragments created from heavy fuel pyrolysis, which are eventually trans-

ported to the reaction zone [106]. Additionally, the diffusivities of heavy fuels and the

products of their decomposition are substantially different than those of lighter fuels. Ex-

perimental investigations provide evidence that preferential diffusion effects—which could

be enhanced for heavy-hydrocarbon fuels—affect the local flame structure and its overall

response to hydrodynamics [105, 107, 108].

Recent developments in canonical burner designs, namely, the Hi-Pilot configuration

developed by Driscoll and coworkers [109] and the Piloted Premixed Jet Burner (PPJB)

developed by Dunn et al. [26, 84], have allowed the study of premixed jet flames in high

Reynolds (Re) and Karlovitz (Ka) regimes of turbulence. Investigations with a similar

PPJB at USC [86, 87, 110], shown in Fig. 5.1, have examined highly turbulent lean and near-

stoichiometric premixed jet flames to explore fuel effects within the thin and broken reaction

zones. Carbone et al. [87] captured time-averaged and instantaneous CH* chemiluminescence

as well as the behavior of the mean and fluctuating velocity components for a wide range

of C1–C8 jet flames at Re of 12,500 and 25,000. The authors observed qualitative and

quantitative deviation between flames of methane and other liquid fuels, and explored the

potential of scaling parameters such as the laminar flame speed (SL) and the adiabatic flame

temperature (Tad) to scale the flame observables. Only SL showed reasonable success in

scaling the flame heights derived from CH* chemiluminescence. Paxton et al. [111] used

the PPJB with an ignited coflow to study the effects of heat loss on flames in the broken

reaction zones regime. Although the flame heights were shown to scale reasonably well with

SL, the differences between various fuels were not entirely suppressed in the broken reaction

zones regime, where heat loss has been found to significantly affect the jet reactivity. These

differences become more prominent at higher Re and less pronounced for stronger burning

flames.

Evidently, accurate and sufficiently resolved experimental measurements of thermochem-
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Figure 5.1: Cross-section of the piloted premixed jet burner (PPJB) used for this study along

with a chemiluminesence image of a representative flame depicting the radial and axial axes.

All measurements are in mm [86].

ical properties in reacting flows help distinguish physical behaviors of different fuels allowing

for comparison with high-fidelity models, particularly for high Re and Ka number flames

in the thin and broken reaction zones regimes. As such, several non-intrusive optically-

based measurement techniques have been utilized to study turbulent flames. These include

Rayleigh scattering [26–28, 112], Raman scattering [26, 78, 113], laser-induced fluorescence

(LIF) [84, 85] and chemiluminescence [86, 87]. With the exception of Raman scattering,

these spectroscopic methods are generally not well-suited for quantitative species detection

without extensive calibration. Moreover, relatively weak Raman interactions pose practi-

cal difficulties due to the size and power of the required light sources. In contrast, laser

absorption spectroscopy (LAS) provides for a calibration-free quantitative method to dis-

cern gas properties using compact low-power light sources [2]. Though traditionally limited

in non-uniform flows due to the line-of-sight nature of the technique, the integration of

tomographic methods has expanded applicability [3]. Recently, laser absorption tomogra-
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phy (LAT) was demonstrated to provide two-dimensional temperature and mole fraction

measurements of CO and CO2 in turbulent premixed jet flames using mid-infrared semi-

conductor lasers [32]. This method—employed in the present work—is suitable for small

diameter (∼1 cm) axially-symmetric reacting flows and utilizes tomographic reconstruction

techniques [37, 38] to extract time-averaged radial thermochemical profiles from spatially-

resolved line-of-sight absorption measurements.

In this study, the thermochemical structure of turbulent jet flames of ethylene, n-heptane,

and toluene, was experimentally and computationally examined using a piloted premixed

jet flame burner. This canonical experimental configuration is widely used for turbulent

combustion model validation [84, 86, 113–116]; this represents an opportunity for comparing

quantitative LAT measurements with numerical models, specifically large-eddy simulations

(LES). The measurements in this study provide spatially-resolved profiles of CO, CO2, and

temperature, targeting regions of carbon oxidation. These carbon oxides are chosen for their

roles as critical combustion intermediates and products and their relevance in determining a

boundary of heat release associated with the kinetically slow oxidation of CO to CO2. The

novel experimental dataset is accompanied by a series of large-eddy simulations using finite-

rate chemistry models to examine the predictive accuracy of current models in capturing

fuel effects in these flames.

The remainder of the manuscript has the following structure: The burner configuration,

operating conditions, experimental techniques and simulations methods are presented in

Sec. 5.2. The results and comparisons between experiments and simulations are discussed in

Sec. 5.3. The manuscript concludes with a summary of the major findings.

5.2 Experimental Setup and Methods

5.2.1 Piloted premixed jet burner (PPJB)

For this study, a modified PPJB burner [26] was utilized; the design, dimensions, and fuel

delivery system of the burner are described in detail in previous studies [86, 87, 111]. The
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burner consists of a central jet tube with a diameter of D = 5.84 mm and a pilot and outer

co-flow to stabilize the high-velocity central jet. A schematic of the burner configuration is

shown in Fig. 5.1 along with a flame image depicting the axial (x) and radial (r) direction.

Experiments were performed at a single jet Reynolds number, Rejet ≡ UjetD/ν = 50,000,

where Ujet is the bulk flow velocity and ν is the kinematic viscosity at the burner exit. The

jet flames were ethylene (C2H4)-air, n-heptane (n-C7H16)-air, and toluene (C6H5CH3)-air

mixtures at lean fuel-air molar equivalence ratios corresponding to SL = 20 cm/s. All flows

had an unburned mixture temperature of 298 K.

The pilot flame is a premixed C2H4-air flame with a temperature of 1780 K. The coflow

surrounds the pilot and jet flames and is used to thermally insulate the jet. The coflow

used a premixed hydrogen-air flame at a global equivalence ratio of φ = 0.51 to provide a

temperature of Tcoflow = 1500 K. This co-flow mixture is used to provide boundary conditions

largely free of carbon atoms to minimize interference for the LAT technique probing the

central jet flame [32]. The coflow and pilot flows had an unburnt velocity of 0.75 m/s. The

flame is assumed axisymmetric over the time interval (500 ms) in which LAT measurements

(Described in Section 5.2.2) are taken, averaged, and reported in this study.

Table 5.1 provides a summary of the conditions investigated. SL as well as the lami-

anr flame thickness (δf ), the flame time (τf ), and adiabatic flame temperature (Tad) were

calculated in Premix [117]. The flame height (Hfl) was calculated using time-averaged line-

of-sight CH* chemiluminescence data. Hfl is defined as the position along the centerline of

the jet at which the CH* intensity drops to 25% of its maximum value [87]. The turbulent

Reynolds number Ret ≡ u′Lint/ν where u′ is the turbulent intensity measured previously

from PIV data [111]. The integral length scale (Lint) was calculated at the radial location

where u′x reaches its maximum value in the shear layer using the two-point correlations de-

scribed by Carbone et al [87] such that Lint=5.6 ±0.4mm [26]. It should be noted that u′

does not depend on φ while Lint shows a minor dependence on φ and fuel type [86, 87].

The Karlovitz number (Ka) is defined as Ka ≡ τf
τη

, where τη is the Kolomogorov time scale

determined as in previous studies [86, 87]. As characterized by the high u′ and Ka, these
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Table 5.1: Estimated key turbulence characteristics for the performed experiments. All

values were calculated based on the kinematic viscosity of the unburned mixture, but the

turbulent properties of the flow Lint and u′ were measured in the shear layer at x/D=15.

Fuel φ ujet Rejet SL
u′

SL

Lint

δf
Ka Da = τt

τf
Ret Tad Hfl

(m/s) (cm/s) (K) (mm)

C2H4 0.55 133 50000 20 80 9.41 639 0.117 5483 1706 196

n-C7H16 0.65 133 50000 20 80 9.81 636 0.118 5483 1804 216

C6H5CH3 0.70 133 50000 20 80 9.46 662 0.112 5483 1931 230

flames are expected to fall in the thin reaction zone/regime with broadened preheat layer

regime.

5.2.2 Laser absorption tomography

Laser absorption tomography is a spatially-resolved diagnostic technique based on inversion

of species-specific absorption projected along a multitude of optical lines-of-sight. LAT is

thoroughly detailed in the literature and prior work [3, 32, 39, 40, 42, 118], but we provide

a brief overview here for context and nomenclature. For a non-uniform gas medium axially-

symmetric in r [cm], the Beer-Lambert law integrated over wavenumber ν [cm−1]—or the

projected absorbance area Aj,proj(r) [cm−1]—can be expressed for each line-of-sight and

related to thermodynamic gas properties as [39]:

Aj,proj(r) =

∞∫
−∞

− ln

(
It
I0

)
ν

dν =

∞∫
−∞

ανdν =

L(r)∫
0

Kj(r)dl (5.1)

where αν is the spectral absorbance, I0 is incident intensity, and It is transmitted intensity.

L(r) [cm] is the aggregate path length at radial position r. Integrating specific transitions

in the spectral domain eliminates dependence on line-shape and composition. The thermo-

chemical properties of interest are embedded in the radially-resolved absorption coefficient

Kj(r) [cm−2] [32],

Kj(r) = PSj(T (r))Xabs(r) (5.2)
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where the total pressure P [atm] is assumed constant (1 atm), Sj(T (r)) [cm−2/atm] is the

linestrength of transition j at temperature T (r) [K], and Xabs(r) is the mole fraction of the

absorbing species. To obtain the radial distribution of Kj(r) [cm−2], a Tikhonov-regularized

Abel inversion scheme [32, 37, 38] is implemented on Aj,proj(r) measurements with regulariza-

tion parameters determined by the L-curve method [119]. For multiple spectral transitions

j, multiple Kj(r) can be determined, and the ratio of two absorption coefficients reduces to

a ratio of Sj(r), which is a function of T (r) only, as shown in Eq. 5.3.

R(r) =
KA(r)

KB(r)
=
SA(T (r))

SB(T (r))
= f(T (r)) (5.3)

Sj(T ) can be calculated using information readily available in spectral databases (See A), so

gas temperature T (r) can be determined with the simultaneous measure of two transitions

at any location r [32, 39]. Once temperature is known, mole fraction Xabs(r) can be directly

calculated from measured Kj(r) of either transition through Eq. 5.2. In this study, we

implement this strategy at multiple measurement planes of a turbulent jet flame to construct

two-dimensional images of temperature and gas composition [32].

A scanned-wavelength direct-absorption method was employed with a tunable quantum

cascade laser (QCL) and a tunable interband cascade laser (ICL) to spectrally resolve select

ro-vibrational transitions in the fundamental vibrational bands of CO and CO2 near 4.9 and

4.2 µm, respectively. The compact lasers and detectors were mounted to a 150×150 mm2

optical breadboard fixed to a dual horizontal and vertical translation stage as shown in

Fig. 5.2, to characterize the time-averaged thermochemical structure of the flames. The con-

centric laser beams were focused to beam diameters of ∼0.5 mm. During the measurement,

the optomechanical assembly translates horizontally via an automatic translation stage, and

the encoder signals of its stepper motor are used to resolve the spatial location of the mea-

surements in time. A manual vertical stage translates the entire assembly to repeat the

measurements at different heights downstream of the jet exit. Overall, the spatial resolution

in the radial direction was 0.5 mm and the resolution in the vertical direction was 20 mm.

Since the thermochemical gradients in the flames are much lower in the vertical direction

than the in the radial direction, a sparse vertical resolution was deemed acceptable for the
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Figure 5.2: Top-down schematic of PPJB facility with optomechanical translation stage

system. The central jet is surrounded by a co-flow H2/air flame. The lasers, optics, and

detectors are mounted and move together while the burner remains stationary.

purposes of this comparative study.

It is important to note that two ro-vibrational transitions must be sufficiently resolved

for any given species to determine gas temperature and subsequently mole fraction. For

each species, two ro-vibrational transitions B(v′′, J ′′), are targeted, where B indicates the

branch (R, P, or Q), while v′′ and J ′′ indicate the lower-state vibration and rotation quantum

numbers, respectively [1]. We target the P(0,31) and P(1,26) lines of CO and the R(0,58) line

and R(1,105+106) doublet line of CO2 [32]. Although the reconstructions of Kj(r) are valid

within their uncertainties for all r, regions of the flow with very low absorption coefficient

(signal-to-noise ratio < 5) are less reliable for quantitative interpretation and are not plotted.

For the targeted wavelengths in this study, this typically corresponds to regions of the flow

that are either much below ∼1000 K or with a mole fraction less than ∼5·10−4. Further

details regarding the measurement uncertainty are available in A, while more information

about the wavelength selection and temperature sensitivity is available in previous work [32].
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5.2.3 Large-Eddy Simulations

The measurements are complimented by large-eddy simulations. For this, a finite-rate com-

bustion model using reduced chemical models is utilized for the simulation of all three fuels.

The turbulent reacting flow field is described as solution to Favre-filtered conservation equa-

tions for mass, momentum, total energy, and species, taking the following form:

∂tρ+∇ · (ρũ) = 0 , (5.4a)

∂t(ρũ) +∇ · (ρũũ) = −∇p+∇ · τ v+t , (5.4b)

∂t(ρẽ) +∇ · (ρũẽ) = −∇ · (ũp) +∇ · (τ v · ũ)−∇ · qv+t , (5.4c)

∂t(ρỸk) +∇ · (ρũỸk) = −∇ · jk, v+t + ω̇k , (5.4d)

where ρ is the density, u is the velocity vector, p is the pressure, e is the specific total

energy, τ is the stress tensor, q is the heat flux, and Yk, jk, and ω̇k are the mass fraction,

diffusion flux, and chemical source term for species k, and the species equations are solved

for k = 1, . . . , NS − 1 where NS is the number of species. Subscripts v and t denote viscous

and turbulent quantities, respectively.

For the subgrid-scale turbulence-chemistry interaction, the dynamic thickened-flame model [120]

is employed, and the Vreman model [121] is used to represent the turbulent subgrid stresses.

A sensitivity study was performed and a maximal thickening factor of 3 was found to be

adequate for the current choice of mesh resolution. The source term of CO is used as a

sensor—the maximum net production rate of CO in a free flame simulation corresponding

to each fuel is used as the activation threshold.

The equations for mass, momentum, energy, and species are discretized using a finite-

volume formulation with a sensor-based hybrid scheme for the convective flux [122, 123]. In

this hybrid method, a high-order central scheme is combined with a second-order essentially

non-oscillatory scheme. A second-order Strang-splitting scheme [124] is applied to separate

the convection, diffusion, and reaction operators. A strong stability preserving 3rd-order

Runge-Kutta (SSP-RK3) scheme [125] is used for time integration of non-stiff operators.

The reaction chemistry is integrated using a semi-implicit Rosenbrock-Krylov scheme [126],

63



which is 4th-order accurate in time and has linear cost with respect to the number of species.

All chemical kinetic mechanisms employed in these simulations are DRG reduced [127]

and validated against calculations [128] of 1D laminar flames with SL, temperature profiles,

and major species profiles as reduction targets. For C2H4, a DRG reduced model based on

USC Mech II [129] was used. For both n-C7H16 and C6H5CH3, reduced-order models are

based on JetSurF 2.0 [130]. Due to solution stiffness, the n-C7H16 and C6H5CH3 models

were modified by removing several of the smallest timescale reactions.

The size of the three-dimensional computational domain is 0.35 m × 0.26 m × 2π in

the axial, radial, and azimuthal directions, respectively. The grid uses 401 non-uniformly

distributed points in axial direction, concentrated in the vicinity of the injection plane to

ensure sufficient resolution of the turbulent scales. The radial direction is discretized with

125 points, clustered in the shear layers between the different streams, whereas 160 points

are used for the circumferential resolution. At the inlet of the jet stream, a turbulent

velocity profile is applied, with turbulent fluctuations prescribed to match the experimentally

measured velocity field. For the co-flow and pilot streams, the velocity corresponding to the

burnt products along with the adiabatic chemical equilibrium temperature and composition

is prescribed.

The LES computations provide spatially-resolved instantaneous thermochemical proper-

ties (temperature, mole fractions, reaction rates) for the different flames under investigation.

Representative instantaneous flow-fields for CO and CO2 obtained from these simulations

for the three different fuels are shown in Fig. 5.3. Fuel-specific effects are immediately no-

table from the instantaneous images; regions of the flows exhibit local CO and CO2 mole

fraction levels which are highest for the (C2H4)-air flame, next-highest for the (n-C7H16)-air

flame, and lowest for the (C6H5CH3)-air flame. For adequate comparison with the experi-

mental laser absorption tomography measurements—which represent time- and azimuthally-

averaged thermochemistry—the simulations are run for five convective flow-through times

and statistical flow-field results are obtained by averaging both in time and about the az-

imuthal direction.
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Figure 5.3: Instantaneous (non-time-averaged) LES predictions of CO and CO2 mole fraction

for the flame conditions shown in Table 5.1.
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5.3 Results and Discussion

5.3.1 Comparative two-dimensional thermochemistry

Experimental and numerical results from all planes are assembled into two-dimensional im-

ages of mole fraction for CO and CO2 in Figs. 5.4 and 5.5 to distinguish and compare the

thermochemical structure amongst the different fuels.
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Figure 5.4: Two-dimensional CO mole fraction for each fuel from both experimental results

(left sides) and LES predictions (right sides).

For the CO mole fraction images shown in Fig. 5.4, a hollow region in the core of the

jet flame is apparent for all fuels studied, and this region is longer for the (n-C7H16)-air and

66



(C6H5CH3)-air jet flames. This indicates that n-C7H16 and C6H5CH3 in their correspond-

ing flames take longer to initiate carbon oxidation. These hollow regions appear larger in

the measurements than in the LES predictions, especially in the (n-C7H16)-air flame. The

measured and LES-predicted peak locations of CO are in good agreement throughout the

flames, although less CO is observed in the experiments than predicted for the (C2H4)-air

and (n-C7H16)-air flames.

More information is gleaned from looking at the CO2 mole fraction image in Fig. 5.5.

We note that for the lowest vertical planes, the mole fraction of CO2 is not experimentally
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Figure 5.5: Two-dimensional CO2 mole fraction for each fuel from both experimental results

(left sides) and LES predictions (right sides).
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resolvable in the flow due to weak absorbance in the R(1,105+106) doublet pair in these

regions. CO2 forms most appreciably near the core regions of the flames at locations of x/D

beyond which the mole fraction of CO has begun to decrease in the axial direction, consistent

with continued carbon oxidation in the flame. The trends in experimental CO2 mole fraction

profiles amongst the fuels are well-captured by the LES predictions, with both (n-C7H16)-air

and (C6H5CH3)-air flames forming CO2 most appreciably at larger x/D than the (C2H4)-air

flame. For the (n-C7H16)-air flame, experimentally measured CO2 mole fraction is observed to

increase in the core of the flame suddenly in the highest x/D plane measured, resembling the

corresponding CO2 image from the instantaneous LES predictions shown in Fig. 5.3, while

the averaged LES predictions show a more gradual increase. Conversely, in the (C6H5CH3)-

air flame, the concentration of CO2 in the core of the flame is generally underpredicted.

Although all tested fuels in their respective equivalence ratios have the same Su, the ther-

mochemical structures of the flames are distinguished from one another readily, highlighting

the effects of fuel chemistry in turbulent jet flames. As with the instantaneous LES predic-

tions shown in Fig. 5.3, the measurements and averaged LES predictions of the (C2H4)-air

flame show the highest concentrations of both CO and CO2, although the ordering is less

immediately apparent with regards to the (n-C7H16)-air flame and (C6H5CH3)-air flame.

The alkene C2H4 provides a shorter flame than the normal alkane n-C7H16 and the aromatic

C6H5CH3, which have wider flame brushes and a wider and taller core region without CO or

CO2, indicating slower overall oxidation and increased diffusion of fuel or fuel fragments in

the flame.

5.3.2 Single plane analysis

To better characterize the agreements and disagreements between the LES predictions and

experimental measurements while considering experimental uncertainties, radial profiles ob-

tained for specific x/D planes above the burner are examined in more detail. Details regard-

ing the calculation of measurement uncertainties can be found in A. Representative radial

profiles of mole fractions for CO and CO2 are shown for two different heights above the
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jet exit for the ethylene-air jet flame in Fig. 5.6. For the lower plane shown of 100 mm
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Figure 5.6: Radial profiles of CO and CO2 mole fraction obtained from LAT measurements

alongside predicted results from simulations.

(x/D = 17.1), CO and CO2 are concentrated at a radial distance within two jet diameters,

with CO concentrated closer to D. Notably, there is a lower concentration of both CO and

CO2 in the core of the flame. For the higher plane measured at 160 mm (x/D = 27.4),

CO and CO2 are more concentrated at the core of the flow, with peak CO mole fraction

occurring at the centerline. CO2 is formed toward larger r/D. For both planes, there is

much more CO2 than CO, indicating relatively fast oxidation of CO to CO2 as it is formed.

The averaged LES prediction captures the spatial extent of both species, despite nominally

over-predicting peak concentrations in the lower plane.

Representative radial profiles of temperatures determined from both CO and CO2 laser

absorption tomography measurements are similarly shown for the same planes of the same

(C2H4)-air jet flame in Fig. 5.7. The LAT temperature results from regions in which both CO

and CO2 are present in the flow generally show good agreement within experimental uncer-

tainty, although regions of the flow with low species concentration have greater uncertainty

due to lower spectral absorbance [32]. At the lower plane of 100 mm (x/D = 17.1), the
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Figure 5.7: Temperature profiles obtained from CO and CO2 LAT measurements and corre-

sponding simulation predictions. The co-flow temperature is indicated with a dashed black

line.

temperature increases toward the co-flow temperature of 1500 K. The core of the flow has a

much lower temperature, just above 1000 K. At the higher plane of 160 mm (x/D = 27.4),

the measured temperature peaks near approximately the jet diameter (r/D ≈ 1), although

the average LES predicted temperature is nominally higher. The core of the flow has a

higher temperature (T ≈ 1300 K) than in the lower plane, which is still lower than the

coflow temperature of 1500 K. The averaged LES model accurately predicts the radial tem-

perature distribution within experimental uncertainty for both planes, although in the lower

plane (x/D = 17.1) the simulation nominally over-predicts the gas temperature. The aver-

aged simulation results are consistent with the mole fraction results shown in Fig. 5.6, which

shows an overprediction of oxidation rate closer to the jet exit.

Additional representative radial profiles of CO and CO2 mole fractions are shown for

the n-heptane-air jet flame in Fig. 5.8. For the lower plane of 100 mm (x/D = 17.1), CO

and CO2 are concentrated largely within two jet diameters, as with the (C2H4)-air jet flame.

In contrast, the overall concentrations (measured and predicted) of both species are much

lower than in the (C2H4)-air jet flame for x/D = 17.1. The radial extent of both species
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Figure 5.8: Radial profiles of CO and CO2 mole fraction obtained from LAT measurements

alongside predicted results from simulations.

is larger than predicted by the LES modeling, and the peak values are over-predicted. For

the higher plane shown of 220 mm (x/D = 37.7), the averaged LES predictions are in much

better agreement with experimental observations; the peak concentrations of CO and CO2

agree within experimental uncertainty, though a slight underprediction of CO concentration

is noted at larger r/D.

Representative radial profiles of CO and CO2 mole fractions are shown for the toluene-air

jet flame in Fig. 5.9. The toluene-air jet flame is generally observed to have a wider flame

brush than the other flames, indicated by the larger radial spread of both CO and CO2. For

the lower plane of 120 mm (x/D = 20.5) shown, CO and CO2 mole fractions are lower in the

core of the flame, and peak near approximately the jet diameter (r/D ≈ 1). Experimental

uncertainty for CO2 mole fraction is larger in this core region, owing to significant variation

in both CO2 absorption coefficients KR(0,58) and KR(1,105+106) in the core of the flow at the

lower planes for this jet flame. The averaged LES predictions for CO generally agree within

experimental uncertainty in both planes shown, while CO2 is underpredicted. For the higher

plane of 160 mm (x/D = 27.4), the distribution of CO and CO2 increases slightly to larger
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Figure 5.9: Radial profiles of CO and CO2 mole fraction obtained from LAT measurements

alongside predicted results from simulations.

r/D, and the experimental uncertainties are smaller relative to those in the lower plane.

Despite nominally underpredicting the CO2 mole fraction, the averaged LES predictions

capture the shapes of the profiles well.

Notable fuel-specific trends predicted by LES are observed in the experimental measure-

ments. The top of Fig. 5.10 shows experimental and computational radial profiles of CO and

CO2 mole fraction at a significantly downstream location (x/D = 34.2). The averaged LES

predictions of peak CO mole fraction are all nominally in agreement with the experimental

measurements, with the exception of those of the (n-C7H16)-air flame. With that exception,

the fuel ordering in peak CO and CO2 concentration and behavior with increasing radial

direction amongst the fuels are in agreement. The (C2H4)-air flame has the highest peak

levels of CO of the fuels, and the steeper gradients in concentration indicate a thinner re-

action zone with more rapid oxidation than the other fuel-air mixtures in these conditions,

which is observed in Figs. 5.4 and 5.5. The bottom of Fig. 5.10 shows a similar plot for

CO2 mole fraction. For CO2 mole fraction, the averaged LES predictions and experimental

measurements are in better agreement for both the (C2H4)-air and (C6H5CH3)-air flames,
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Figure 5.10: Comparative computational (left) and experimental (right) radial profiles of

CO and CO2 mole fractions at x/D = 34.2.

both nominally and qualitatively. However, the results show more disagreement for the flame

fueled by the alkane n-C7H16. Specifically, the reaction zone of the (n-C7H16)-air flame is

concentrated near r/D = 2 rather than closer to the centerline. Both results suggest that the

n-C7H16 in the flame is oxidizing at a lower rate than predicted by the averaged simulations,

providing for a taller flame.

5.3.3 Thermochemical state-space analysis

An analysis of the thermochemical state-space representation of the experimental and nu-

merical results is conducted by examining correlations between XCO, XCO2
and temperature.

Figure 5.11 compares instantaneous and averaged scatter data from the LES calculations of

the three different flames with measurements. These scatter data are extracted along three

axial planes for x/D = {15, 25, 35}. In general, it can be seen that major differences are

confined to the upstream region of the flames that are represented by strong turbulence/-
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Figure 5.11: Comparison of XCO − T and XCO2
− T correlation data at different axial

locations for flames fueled by C2H4 (top row), n-C7H16 (middle row), and C6H5CH3 (bottom

row). Light-colored points indicate instantaneous LES data, open markers indicate time-

and azimuthally-averaged LES data, and filled markers with error bars indicate experimental

data. Some data points have been omitted for reader clarity.
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chemistry coupling. The agreement between simulations and experiments improves with

increasing downstream distance as the flame approaches thermochemical equilibrium. This

is evident by the narrowing of the temperature scattering and the consumption of CO. Gen-

erally, XCO is overpredicted at lower values of T , and is in agreement within uncertainty at

higher values of T . While averaged CO-mole fraction profiles are overpredicted for (C2H4)-

air and (C6H5CH3)-air flames, the opposite trend is observed for the normal alkane fuel.

The CO2 peak value increases for the large hydrocarbon fuels, showing the highest CO2-

emissions as a consequence of the overall stoichiometry. Interestingly, the experimental CO2

measurements in the (C6H5CH3)-air flame are in better agreement with the instantaneous

LES scatter data than with the averaged LES data at larger x/D. While predictions of

CO − T scatter for the (C2H4)-air and (C6H5CH3)-air flames are in good agreement with

experimental data throughout the flame, the CO-formation is consistently overpredicted for

the (n-C7H16)-air flame on the fuel-rich side, which we primarily attribute to discrepancies

in the turbulent mixing. Further measurements of the hydrodynamic flow-field are necessary

to confirm this. The largest disagreements in thermochemical state-space exhibited by the

fuel (n-C7H16) may also be partially attributed to a deficiency of the chemical model at

low temperatures. The present results are consistent with quantitative species time-histories

(CH2O, OH, CO2, H2O) measured in previous shock tube oxidation experiments [131], which

demonstrated that the oxidation rates of n-C7H16 during low-temperature staged ignition are

overpredicted by state-of-the-art chemical models.

5.4 Conclusions

In this study, quantitative spatially-resolved profiles of carbon monoxide, carbon dioxide,

and temperature were obtained via mid-infrared laser absorption tomography in turbulent

premixed jet flames of different fuels (ethylene, n-heptane, and toluene). The chosen fuels en-

compass a diverse sample of molecular structures encountered in practical energy conversion

devices: alkenes, normal alkanes, and aromatics. The novel dataset of 2D thermochemical

measurements—which defines a heat release boundary associated with the kinetically-slow
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CO to CO2 conversion—was directly compared with results of turbulent combustion sim-

ulations using LES methods. Fuel-specific effects are noted in both the multi-dimensional

measurements and the modeling results; specifically, wider and taller flame brushes for the

heavier molecular weight fuels are observed, indicating larger overall reaction zones for these

flames despite normalization by flame speed. The LES predictions for all flames show gen-

erally good quantitative agreement with measurements, with larger discrepancies observed

in upstream regions of the flames for the larger-molecular-weight fuels examined, namely

n-heptane and toluene. A thermochemical state-space analysis was conducted, revealing po-

tential discrepancies in the turbulent mixing and residual deficiencies in the low-temperature

chemical model, representing opportunities for further investigation. More broadly, the

coupled experimental and numerical investigation, united by quantitative thermochemical

scalars, demonstrates a uniquely powerful approach to advance turbulent combustion models

for a wide range of fuels and operating conditions.
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CHAPTER 6

Tomographic Laser Absorption Imaging of Combustion

Flows

The contents of this chapter have been published in the journal Optics Express under the

full title ’Tomographic laser absorption imaging of combustion species and temperature in

the mid-wave infrared’ [39]. Portions of this chapter’s content include ongoing work under the

full tile ’3D tomographic laser absorption imaging of temperature, CO and CO2 in laminar

flames using masked Tikhonov regularization’.

6.1 Background

Chapter 4 demonstrated that classical LAT has addressed some of the line-of-sight limitations

of LAS by applying tomographic reconstruction techniques, but usually at the expense of

slow measurement sampling by mechanical translation of the beam (Figure 6.1a) or optical

arrangement complexity that scales with the multiplicity in requisite projections, or lines of

sight (Figure 6.1b). The complexity of multi-projection fast-LAT has generally constrained

practical application of the technique to the near-infrared where robust and inexpensive fiber

optics and lasers are available, but detectable combustion species are few (e.g. H2O) at the

pathlength scales of most flames (∼cm). Conventional LAT methods are also constrained in

spatial resolution by beam size (∼mm), and less suitable for small-diameter flows in practical

combustion applications.

In the current work, an alternative approach, laser absorption imaging (LAI), is proposed

that is practical for mid-infrared optical equipment (i.e. access to combustion intermediates)
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and will enhance spatial resolution over traditional LAT by imaging flow-fields that are

backlit with tunable mid-wave infrared laser radiation. The LAI method involves a single

beam expansion and replacement of the detector with a high-speed camera, as compared

schematically in Figure 6.1 to the moving line-of-sight approach and multi-projection laser

absorption tomography technique. For LAI, spatial resolution is not determined by beam

size, but by pixel size, and temporal resolution is constrained by the camera frame rate. Using

recently developed high-speed IR cameras, it is possible that high speed and high spatial

resolution sensing can be achieved via LAI with a straightforward optical arrangement. In

the first half of this chapter, we present the first application of LAI in an axisymmetric

Bunsen flame to measure 2D CO, CO2 and C2H6 concentrations and temperature with a

spatial resolution of 0.05 mm. In the second half of this chapter, LAI is extended to non-

axisymmetric flows and 3D tomographic imaging of CO concentrations and temperature

are presented for flow-fields involved a spatial convolution of two small-scale (<cm) laminar

Bunsen-style flames.

Figure 6.1: Spatially-resolved laser absorption measurement techniques: (a) translating

line-of-sight, (b) multi-line-of-sight tomography, (c) laser absorption imaging

78



6.2 LAI for Axisymmetric Flows

6.2.1 Introduction

Tomographic absorption spectroscopy (TAS) has become an important optical approach to

study high-temperature gas dynamics and reactive flows, including turbulent and laminar

flames [3]. Laser absorption provides for a relatively straightforward, quantitative relation-

ship to gas properties. In addition, calibration-free absorption techniques that exploit rapid

laser tunability enable application to harsh combustion flows that often convolute other imag-

ing techniques [2]. Advancements in TAS over the past decade, including several novel opti-

cal arrangements, have yielded significant improvement in spatial and temporal resolution.

These advancements have mostly been confined to the near-infrared wavelength domain,

where a multiplicity in laser beams and detectors comes at moderate cost and complexity,

but the accessible combustion species are few (e.g. H2O) at the pathlength scales (∼cm)

of most flames [55, 67, 92, 94, 132, 133]. By contrast, the mid-wave infrared provides for

sensitive absorption spectroscopy of numerous gas species including fuels, intermediates, and

products of combustion at their fundamental vibrational frequencies/wavelengths. However,

optical methods for tomographic absorption spectroscopy in the mid-infrared have remained

relatively rudimentary (e.g. mechanically translating line-of-sight) [32, 40, 91, 93, 134], lim-

iting spatial and temporal data collection rates and utility in combustion studies. In this

paper, we describe a novel tomographic laser absorption imaging method using mid-wave

infrared optics and a high-speed camera that significantly enhances spatio-temporal data

bandwidth (i.e. mapping a 2D flow-field in seconds vs. minutes or hours) and enables quan-

titative analysis of several combustion species and temperature in small-diameter flames

utilized for fundamental combustion investigations.
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Figure 6.2: (Left) Arrangement of lasers, mirrors, Bunsen-style flame, and IR camera.

(Right) Normalized beam profiles measured by IR camera for 200-by-2 pixel regions of in-

terest.

6.2.2 Method

6.2.2.1 Optical setup

The optical arrangement for tomographic laser absorption imaging (LAI) involves one or

more high-speed infrared cameras that image a flow-field backlit with tunable mid-wave

infrared laser radiation. The simplest configuration, suitable for tomography of axisymmetric

flows, includes a single laser and camera, shown in Fig. 6.2. The laser beam is expanded

with a concave lens, similar to the fan beam method [55, 92, 133], and recollimated with

a convex lens to pass through the flow of interest (at a size large enough to capture the

entire width or half-width of the absorbing medium) and spectrally filtered to isolate the

laser radiation. The enlarged beam (d ≈ 20 mm) is then focused onto a 2D focal plane

array comprising many detector pixels that effectively represent unique optical lines of sight

from the collimated source sampled simultaneously. In this work, we use a high-speed IR

camera (Telops TS-IR-MW) with a 640-by-512 pixel CCD array and mercury-cadmium-

telluride (MCT) photodetector. The maximum frame rate of the camera is 107 kHz, which

requires a significant reduction in the number of active pixels and integration time. For the

experiments reported here, the frame size is set to 200-by-2 pixels, capturing a transverse

slice of an axisymmetric flow, and the frame rate is 40 kHz with an exposure time of 3 µs.
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The corresponding beam intensity profiles for the different lasers used in this study are shown

in the right of Fig. 6.2. Each beam exhibited some diffraction patterns as imaged, but a

relatively stable near-Gaussian section could be attained.

For demonstration of the LAI method, three tunable narrow linewidth mid-infrared lasers

were used to measure absorption profiles of C2H6, CO, and CO2, respectively, in the radial

and vertical directions to characterize the thermochemical structure of a laboratory Bunsen-

style C2H6-air flame, pictured in Fig. 6.3. For each experiment, only one laser and bandpass

filter combination is used at a time. The burner is mounted on a vertical translation stage

controlled by a stepper motor with a linear translation of 5 mm/sec (5 µm per step) to

provide vertical resolution. The partially premixed flame was controlled via thermal-based

mass flow controllers (MKS MFC GE50A) with flow rates of 179 sccm C2H6 and 1391 sccm

air, corresponding to a fuel-rich mixture with a fuel-air equivalence ratio of φ = 2.14 and exit

velocity of 2.66 m/s. The exit of the stainless steel burner is 3.7 mm in diameter, resulting

in a laminar jet Reynolds number of ≈ 230. Upon leaving the burner, the premixed gases

entrain and mix with ambient air, producing a stable, reproducible flame with no flashback

risk.

6.2.2.2 Mid-IR laser absorption spectroscopy

A scanned-wavelength direction absorption technique is utilized to spectrally-resolve select

rovibrational lines of the target species [1]. For CO2, we utilize an interband cascade laser

(ICL) with ≈ 5 mW output power near 4.19 µm to probe the R(0,58) line at 2384.189 cm−1,

as well as the doublet line pair R(1,105) and R(1,106) at 2384.327 cm−1 and 2384.331 cm−1,

respectively, to measure CO2 mole fraction and vibrational temperature [89]. For CO, we

use a quantum cascade laser (QCL) centered near 4.97 µm with ≈ 50 mW output to probe

the P(0,31) and P(1,26) lines at 2008.53 cm−1 and 2006.78 cm−1, to similarly recover mole

fraction and temperature [95]. For C2H6, we use an ICL near 3.34 µm with ≈ 1 mW output

power to scan over a collection of lines near 2996.9 cm−1 comprising the RQ3 branch of the

ν7 C-H stretch band [135].
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Figure 6.3: (Left) Example 200-by-2 pixel region of interest on flame. (Top) Background

signals (I0) without flame (gray) and absorbance signals (It) with the flame (color) for

different pixels (10 laser scans averaged). (Bottom) Example linecenter transmission for

each species.

The lasers are injection-current scanned across specified wavenumber (ν) ranges at 400 Hz,

corresponding to 100 data points per laser scan period on each pixel (at the 40 kHz camera

frame rate). The burner is continuously translated vertically during the data acquisition.

Example intensity scans for pixels corresponding to different radial locations in the flame are

shown in Fig. 6.3. For each pixel, we performed a running time-average of 10 scans during

the vertical translation, resulting in an effective vertical resolution of ∼0.125 mm. Stage

translation involved 240,000 frames collected in 6 seconds, resulting in a 366 MB data file.

The high-speed IR camera (Telops TS-IR-MW) is equipped with a 1 GB buffer memory. For

each laser setup, five separate flame measurements (or vertical passes) were taken, increasing

the total sample size to 50 scans per vertical interval and facilitating uncertainty analysis.

For a non-uniform gas medium axially-symmetric in r [cm], the Beer-Lambert law inte-

grated over ν—or the projected integrated absorbance area Aj,proj(r) [cm−1]—is expressed

for each line-of-sight or pixel in Eq. 6.1 [3],

Aj,proj(r) =

∫ ∞
−∞

ανdν =

∫ ∞
−∞
− ln

(
It
I0

)
ν

dν =

∫ L(r)

0

Kj(r)dl (6.1)
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Figure 6.4: Absorbance αν , Voigt fits, and residuals for transitions corresponding to (Left)

C2H6, (Middle) CO, and (Right) CO2. Absorbance measurements are averaged from 10 laser

scans, and shaded regions indicate uncertainty corresponding to 95% confidence intervals.

where αν is spectral absorbance, I0 is incident intensity (measured or inferred without the

flame), and It is transmitted intensity (measured with the flame). L(r) [cm] is the aggregate

path length at radial position r from the axis of symmetry. Individual pixel measurements

of αν for each rovibrational transition j of interest, along with associated measurement

uncertainties, are shown in Fig. 6.4. As indicated, 20 to 30 data points are sampled over the

spectral domain for each transition. We attain Aj,proj(r) by fitting a Voigt function to the

measured αν profile for each line j [1]. Although the projected absorbance lineshapes are

not expected to perfectly reflect a Voigt profile, the residuals after fitting proved sufficiently

low (∼2%) to justify the convenience of this approach for recovering areas.

Generally, the noise level on individual camera pixels after the moderate averaging was

similar to that observed using conventional photovoltaic detectors [32], yielding similar pre-

cision, but uncertainties associated with baseline fitting were larger in some cases. For a

signal-to-noise ratio (SNR) criteria of SNR ≥ 5, this corresponded to a typical minimum

measurable and acceptable αν of ∼0.01 for all transitions j. For the interband cascade

lasers, a measured baseline signal was used to capture the ambient absorption along the

beam path and non-linearity in laser output. However, for the quantum cascade laser (prob-

ing CO), temporal fluctuations in intensity scan-to-scan—attributed to unsteady diffraction
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internal to the camera—precluded the use of a measured empirical baseline I0 signal, instead

requiring a baseline fitting scheme on the measured It that added measurement uncertainty.

Various polynomial fits on the non-absorbing regions of the scan were attempted. As can be

seen in Fig. 6.4, the Voigt fit of the P(1,26) line is more strongly influenced by the baseline

fitting choice than that of the P(0,31) line, partly owing to its lower αν . The mean values

of a 3rd order polynomial baseline fit yielded more consistent Aj,proj(r) and so were used

for all data reported in this study while the baseline fitting variation was incorporated into

the measurement uncertainty. For CO2, we attain Aj,proj(r) for the R(1,105) + R(1,106)

doublet line by employing a sequential Voigt fitting scheme in which a fit of the R(0,58)

line is subtracted from the overall measurement as shown in Fig. 6.4. Notably, ambient CO2

was measured in the baseline I0 signal (mostly along the ∼80 cm optical path outside of the

flame). This background CO2 absorbance varied little (∼1%) between the flame on or off

condition and was determined to contribute less than ±400 ppm of error to the mole fraction

results. Further details on the sequential fitting procedure and ambient CO2 uncertainty are

documented in previous work [32].

Images constructed from measured Aj,proj(r) of selected transitions during burner trans-

lation are shown in Fig. 6.5, highlighting the spatial resolution capability of the tech-

nique. These line-of-sight measurements of Aj,proj(r) have a horizontal pixel resolution of

50 µm/pixel, which was determined by placing a calibration card of known dimensions in

the imaging plane and measuring the number of pixels that reported a blocked transmission

intensity of less than 20%. It can be noted that the images demonstrate moderate streak-like

discontinuities along the vertical direction, which we attribute to residual diffraction effects.

These mild artefacts in the raw data generally do not propagate to the reconstructions of

temperature and mole fraction due to the regularization methods employed (to be further

discussed). Recalling Eq. 6.1, the thermochemical properties of interest are embedded in the

radially-resolved absorption coefficient Kj(r) [cm−2], given by Eq. 6.2,

Kj(r) = PSj(T (r))Xabs(r) (6.2)

where total pressure P [atm] is assumed constant, Sj(T (r)) [cm−2/atm] is the linestrength
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Figure 6.5: (Far Left) Photograph of flame with the IR-imaged region outlined. (Right)

Projected absorbance areas Aj,proj for selected rovibrational transitions of C2H6, CO, and

CO2.

of transition j at temperature T (r) [K], and Xabs(r) is the mole fraction of the absorbing

species.

6.2.2.3 Tomographic reconstruction and thermometry

Assuming the flame is axisymmetric and steady, 1D classical absorption tomography can be

applied to each transverse slice of the flame using a numerically integrated Abel transform

method, and we can determine radial profiles of Kj(r) from Aj,proj(r) [3, 32, 40]. To do

this, the flame region is divided into equally spaced annular rings and the radial absorption

coefficient distribution is approximated by a quadratic function near radius r using the Abel

3-point (ATP) method [37]. The measured Aj,proj(r) (Fig. 6.6) are smoothed and decon-

voluted using Tikhonov regularized Abel inversion to address the inherent ill-conditioned

nature of the projection matrix. A suitable regularization parameter is determined from

the L-curve method following Daun et al. [38] to be λ ≈ 1 and is used for all reconstruc-
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tions. Since this process uses information from neighboring pixels, it reduces the effective

tomographic resolution [3, 136].
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Mole fractions of the species, where a uniform temperature of 400 K is assumed to estimate

XC2H6
.

We scan multiple transitions j and thus can determine multiple Kj(r), shown in Fig. 6.6.

Then, using established two-line thermometry methods [1, 32], we infer gas temperature

T (r) from a ratio of line-strengths Sj(T (r)) (available in the HITRAN database [88] for the

lines of interest), and obtain Xabs(r) per Eq. 2. Here, we treat the integrated collection

of C2H6 transitions as a single line j and approximate XC2H6
using a constant temperature

assumption based on a thermocouple measurement in the core and the pseudo line-list of

spectral parameters from Harrison [135]. Although the uncertainties in temperature and mole

fraction varied depending on flame location, CO and CO2 temperatures could be typically

determined within ±350 K and ±130 K, respectively, while mole fractions for each species

could be typically determined within ±10% and ±6%, respectively. These uncertainties,

including those shown in Fig. 6.6, are calculated using derivations available in our previous

work [32].
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6.2.3 Results

The radial profiles depicted in Fig. 6.6 demonstrate the ability of LAI to spatially resolve

mole fraction of fuels, intermediates, and products of combustion, as well as gas temperature

in an axisymmetric flame. Generally, the range of scalar values observed are consistent with

that expected over the range of equivalence ratios in the partially premixed C2H6-air flame.

Peak temperatures are in the range of 2200–2400 K (Tad,max = 2370 K). Mass flow readings

correspond to an inlet XC2H6
of 0.114, which agrees well with the tomographic estimate

shown in Fig. 6.6. For CO and CO2, vibrational temperature is shown in regions where

the ratio of line intensities could reliably be measured (SNR >5). The aforementioned

baseline uncertainty and low absorbance of the P(1,26) CO line in many regions of the flame

(αν∼0.01–0.02) resulted in relatively large uncertainties in CO temperature relative to CO2

temperature, and potentially a systematic bias yielding somewhat lower CO temperatures.

The spatial evolution of these temperatures and species mole fractions can be inspected

by assembling the transverse slices along the vertical axis, such as in Fig. 6.6, to produce

two-dimensional reconstructed images of the flame.

Images of temperature and mole fraction from both CO and CO2 measurements are

shown in Fig. 6.7. For each species, mole fraction and temperature is shown for heights z

that include radial measurements that extend to the ambient boundary condition (i.e. zero

absorption after correcting for ambient concentrations), a requirement for performing 1D

classical absorption tomography. This primarily affects CO2, which rapidly diffuses out of

the available pixel window at z > 20 mm. The temperature is lower in the core of the

flame and generally peaks just beyond the radius of the burner, which corresponds to the

interface of CO to CO2 terminal oxidation. As the height above the burner z increases, T

also increases, corresponding with an increase in CO2 concentration seen in the mole fraction

images. CO concentration is largely confined to a region between the initial oxidation of C2H6

and terminal oxidation to CO2, providing a good indicator of the reaction zone. At larger

z, some unsteadiness in the flame becomes more apparent with entrainment of ambient

air, precluding reliable reconstruction efforts without an increase in sample size of flame
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Figure 6.7: Reconstructed temperature [K] (left) and mole fraction (right) images for CO

and CO2. Images have been reflected about the axis of symmetry for reader clarity.

experiments. For the heights imaged, there is little CO2 diffusion into the core of the flame,

though CO2 monotonically diffuses outward radially as z increases.

6.2.4 Discussion and conclusions

The aforementioned results demonstrate tomographic laser absorption imaging (LAI) as an

effective technique for quantitative spatially-resolved measurements of multiple species and

temperature in axisymmetric reacting flows. LAI provides a superior combination of spatial

resolution and data collection bandwidth compared to previous laser absorption tomography

techniques utilized in the mid-wave infrared. The effective spatial resolution for line-of-sight

absorbance is ∼50 µm in the horizontal direction and ∼125 µm in the vertical direction,

representing approximately an order of magnitude improvement over tomographic techniques

for which laser beam size is the limiting factor in spatial resolution [32, 91, 93, 94, 134].

Utilizing the LAI setup described in this paper, 2D mapping of an axisymmetric steady

flame on the centimeter scale can be completed in less than 10 seconds for a particular

laser setup. Compared to tomography techniques utilizing multiple mechanical translation
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stages on similarly-sized flames, this represents a ∼200-fold reduction in data collection

time [32]. As such, for quasi-steady flame studies requiring many repeated measurements for

statistically significant conclusions or high mass flux experiments that require large amounts

of fuel, LAI provides an enabling new method to quantitatively and efficiently characterize

fluid-chemistry interactions.

6.3 LAI for Non-axisymmetric Flows

6.3.1 Introduction

Tomographic absorption spectroscopy (TAS) is a powerful non-intrusive diagnostic method to

spatially-resolve thermochemistry in reacting flows [3]. Recent advances in mid-wave infrared

lasers have enabled TAS at the fundamental vibrational frequencies of many combustion

species of interest, facilitating high-sensitivity detection [33, 91, 93] and enabling quantitative

investigations of small-diameter (<1 cm) flames [32, 39, 40, 42]. Laser absorption imaging

(LAI) is a complimentary method designed to capture scenes backlit with tunable laser

radiation at very high spatial resolution using high-speed infrared cameras to yield spatio-

temporally rich datasets [39, 42, 137]. A representative LAI optical setup is shown in Fig. 6.8.

The technique has been successfully coupled with 1D tomography for quantitative imaging

of axisymmetric flow-field thermochemistry at sub-100 µm spatial resolution [39, 42].

Tomographic imaging of non-axisymmetric flows poses more difficulties—multiple projec-

tion angles are needed to estimate the flow-field scalars, and the inversion problem is usually

underdetermined [3, 59]. In recent years, research efforts to perform absorption tomogra-

phy in these combustion flows have yielded several approaches to the inversion problem,

including both linear [35, 55, 92, 94, 133, 138] and non-linear [67, 69, 139] methods utilizing

several novel optical arrangements with many lines of sight. However, these methods are

mostly done in a 2D manner, measuring a cross section of the flow field or stacking 2D cross

sections to form the so-called 2.5D or qusi-3D measurements [94]. As sensing methods be-

come more data-rich—LAI readily yields thousands of simultaneously-sampled lines of sight
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Figure 6.8: Optical setup for this work, showing alignment with QCL and ICL. Inset flame

shows transmission near the P(0,20) line of CO.

in the form of 2D images [137]—tomographic reconstruction techniques with 3D capability

are needed for resolving the 3D nature of reacting flows.

In this study, we extend LAI to 3D non-axisymmetric flows using linear tomography and

demonstrate—to the authors’ knowledge—the first application of a 3D masked Tikhonov

regularization method to experimental absorption imaging, obtaining quantitative species

and temperature fields in a doublet laminar flame configuration. We first present the de-

velopment of the physical optical setup for multi-projection linear tomography, and then

describe both the 2D and the 3D masked Tikhonov regularization method for linear tomog-

raphy as applied to flame imaging. Resulting images of CO and CO2 mole fraction and

temperature are compared between the two reconstruction approaches with various numbers

of projection measurements. The paper concludes with a demonstration of the utility of 3D

masked Tikhonov regularization in better resolving the spatial gradients in the flow field as

compared to standard Abel inversion results of a single flame.
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6.3.2 Methods

6.3.2.1 Experimental Setup

The experimental configuration for this study is adapted from previous demonstrations of

LAI [39, 137], and utilizes a high-speed infrared camera (Telops FAST-M3K) to image a

flowfield backlit with tunable laser radiation in the mid-wave infrared, as shown in Fig. 6.8. A

distributed feedback (DFB) quantum cascade laser (QCL) near 4.85 µm is used to spectrally

scan across the P(0,20) and P(1,14) rovibrational transitions of CO [134]. An interband

cascade laser (ICL) near 4.19 µm is similarly used to scan across the R(0,58) line and

R(1,105) + R(1,106) doublet lines of CO2 [89]. The beam is horizontally expanded with

a cylindrical lens and re-collimated with a concave mirror, then pitched through the flow-

field comprising two Bunsen-style flames, each with flame brushes approximately 3 mm in

diameter. The beams are spectrally isolated with bandpass filters (4860 ± 96 nm (CO) and

4210 ± 120 nm (CO2)), and a plano-convex lens focuses the expanded beam onto the detector

array of the camera. The beam is captured in the camera detector subwindow of size 128×24

with a frame rate of 40 kHz and integration time of 5 µs. Both lasers are injection-current

tuned using a sawtooth waveform at 400 Hz, resulting in 100 points per scan for subsequent

spectral fitting. For each projection angle measurement (Section 6.3.2.2), data is collected

and averaged over 1 second (400-scan average), an interval over which the flames are assumed

steady. Spatial resolution was evaluated by imaging a wire mesh with known dimensions

backlit with laser radiation [42], and was determined to be approximately 70 µm per pixel

in the horizontal direction.

For 3D tomographic LAI, we utilize the tunable lasers to measure absorption profiles

of CO and CO2 in quasi-steady partially-premixed Bunsen-style flames. The dual flame

assembly is mounted on a rotation stage and vertical translation stage to capture of multiple

projection angles and heights for the tomographic reconstruction, as shown in Fig. 6.9. Two

different fuels in oxygen-enriched air are utilized to assess differences amongst multiple flow

conditions: ethane (C2H6) and ethylene (C2H4). The reactant flows are controlled by mass
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flow controllers (MKS MFC GE50A) with overall flow rates of 128 sccm C2H4/C2H6, 79 sccm

N2, and 101 sccm O2, corresponding to an equivalence ratio of φ = 4.43± 0.07 for C2H6, and

φ = 3.80± 0.07 for C2H4. After the tubing is split to the two burners, one flow is measured

with a rotameter to ensure equal flow through each burner. The exit velocity of each flow is

0.41 m/s and the jet exits of the stainless steel burners are 1.6 mm in diameter, providing a

laminar jet Reynolds number of ∼44.

6.3.2.2 Laser absorption tomography

The linear tomographic reconstruction process in two dimensions is described by Fig. 6.11.

The equations of LAT are thoroughly detailed in the literature [3, 35, 67, 92, 94, 133, 138,

140], but we provide a brief overview here for context and nomenclature. For a non-uniform

gas medium, the Beer-Lambert law integrated over wavenumber ν [cm−1]—or the projected

absorbance area Aj,proj [cm−1]—can be expressed for each line-of-sight with pathlength L [cm]
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Figure 6.10: Discrete formulation of the tomographic LAI problem.

and related to thermodynamic gas properties in Eq. 6.3 [2],

Aj,proj =

∞∫
−∞

α(ν)dν =

∞∫
−∞

− ln

(
It
I0

)
ν

dν

=

∫ L

0

Kjdl =

∫ L

0

PSj(T )Xabsdl

(6.3)

where α(ν) is spectral absorbance, I0 is incident intensity, and It is transmitted intensity. L

[cm] is the aggregate path length along the line-of-sight. The thermochemical properties of

interest are embedded in the spatially-resolved absorption coefficient Kj [cm−2], where total

pressure P [atm] is assumed 1 atm, Sj(T ) [cm−2/atm] is the linestrength of transition j at

temperature T [K], and Xabs is the mole fraction.

6.3.2.3 2D Tikhonov Regularization

For 2D tomographic LAI, Eq. 6.3 applies to each camera pixel, resulting in 2D images for

Aj,proj; given multiple projection angles, each horizontal row of pixels can be treated inde-
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pendently for subsequent reconstruction, as shown in Fig. 6.11. In this study, the forward

projection process is modeled as a linear parallel-beam tomography problem and is formu-

lated in a discrete format as shown in Fig. 6.10, where the flow field is discretized into a

100 × 100 rectangular grid probed by 128 parallel lines of sight from 6 projection angles.

Writing Eq. 6.3 for all 6× 128 lines of sight yields a system of linear equations:

W2DKj = Aj,proj (6.4)

where Aj,proj and Kj represent the projection sinogram and 2D field of the absorption

coefficients, respectively, both in vector form. W2D is the 2D projection weight matrix,

where W2Dij represents the absorption length for the ith beam passing through the jth pixel.

Due to limited-angle measurements, matrix W2D is rank-deficient (and inherently ill-posed),

which is typically addressed with Tikhonov regularization [3, 35, 59]. In this approach, the

rank-deficient matrix equation is augmented by a second set of equations, λL = 0, where λ

is the regularization parameter and L is the discrete Laplacian matrix that is used to enforce

the smoothness condition:

Li,j =


1 i = j

−1/ni i neibors j

0 otherwise

(6.5)

To obtain spatially-resolved thermochemical profiles for a horizontal plane—such as that

marked by dashed lines in Fig. 6.9—we use 2D Tikhonov regularization and determine the

distribution of Kj by finding a least-squares solution to the combined set of equations:

Kj,λ = arg min

∣∣∣∣∣∣
∣∣∣∣∣∣
W2D

λL

Kj −

Aj,proj

0

∣∣∣∣∣∣
∣∣∣∣∣∣ (6.6)

Examples of these reconstructions are shown in Fig. 6.11. Noteworthy in the resulting

reconstructions of Kj are streaks associated with the limited number of projection angles

used [59]. The influence of projection angle number on the results is detailed in Section 6.3.3.

Spatially-resolved temperature is obtained from the ratios of Kj using established two-line

thermometry techniques [1]. Once temperature is known, mole fraction can be directly
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Figure 6.11: Representative linear tomography results for various horizontal planes from

different flames. Left: Aj,proj sinograms of the spectral lines using the six projection angles

shown in Fig. 6.9. Right: Reconstructed Kj for the same lines.

calculated from measured Kj of either transition through Eq. 6.3, and some representative

results are shown in Fig. 6.12. The procedure can be repeated for every horizontal plane

recorded in the flow. For the rich flames in this study, CO2 diffuses rapidly out of view of

the camera, precluding accurate tomographic reconstruction in higher planes. Rather than

sacrifice spatial resolution by zooming out to capture more of the CO2, we capture the region

closest to the burner exits for a limited number of heights, and focus our analysis on CO, a

strong indicator of the flames’ reaction zones.

6.3.2.4 3D Tikhonov Regularization

For 3D Tikhonov regularization, the flow field is treated as a 3-dimensional space instead of

independent planes as in the aforementioned 2D tomography. In this case, the flow field is
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Figure 6.12: Results of linear tomographic reconstruction for temperature, CO, and CO2

from various flames investigated in this study.

discretized into a 100× 100× 36 cubic voxels probed by 128× 36 parallel lines of sight from

6 projection angles. Similar, the 3D field of Kj can be found by a least-squares solution to

the combined set of equations:

Kj,λ = arg min

∣∣∣∣∣∣
∣∣∣∣∣∣
W3D

λL

Kj −

Aj,proj

0

∣∣∣∣∣∣
∣∣∣∣∣∣ (6.7)

In the 3D case, Aj,proj contains all 6× 128× 36 projection measurements and Kj represent

3D field with 100×100×36 discrete absorption coefficients, respectively, both in vector form.

W3D is the 3D projection weight matrix, where W3D,ij represents the absorption length for

the ith beam passing through the jth pixel. L is the discrete 3D Laplacian matrix that

shares a similar form to the 2D Laplacian matrix in Eq. 6.5 except for the value of ni. In

3D regularization, ni = 6 as every voxel in the 3D space neighbors 6 other voxels while in

2D regularization ni = 4 as each pixel in the 2D space is only surrounded by neighboring 4

pixels. 3D distribution of temperature and mole fraction can then be determined from the

ratios Kj using two-line thermometry techniques for each voxel.

6.3.2.5 3D mask

In 3D parallel-beam tomography, the reconstruction volume is in the shape of a cuboid which

is often larger than the studied flow. It is then desired to define a tighter working volume

by defining a mask indicating the active voxels and the ones which are fixed during the
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optimization. In this approach, 2D masks are defined by the user (by setting a threshold

value) on the projected absorption area images and backprojected into a 3D mask as shown

in Fig. 6.13. Absorption area data below the threshold associated with nonvalid rays, and the

corresponding rows of the weight matrix W3D, are deleted from the optimization process 6.7.

This process is not only useful for reducing the computing cost. but also helps to confined the

artifacts in the reconstructed volumes as demonstrated in a previous work on background-

oriented schlieren (BOS) measurements [141]. Reconstruction results with the masked 3D

Tikhonov regularization are shown in Fig. 6.14 in comparison with the unmasked results.

Figure 6.13: Schematic showing the masked region in one plane of the reconstruction volume

and 2 orthogonal projection measurements. The white dash lines indicates the back-projec-

tion path from the 2 projection measurements. The black region shows the masked region

after accounting for all 6 projections.
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6.3.3 Results

6.3.3.1 3D tomographic laser absorption imaging

3D tomographic imaging of CO mole fraction and temperature in a C2H4 flame are shown in

Fig. 6.14 using the 3 methods discussed in section 6.3.2.2. Firstly, 2D Tikhonov regularization

is used to reconstructed 2D fields of temperature and mole fraction corresponding to different

rows of pixels and then assembled into 3D images as shown on the left of Fig. 6.14. 3D

Tikhonov regularization is also applied to reconstruct the whole 3D fields of temperature

and mole fraction spontaneously as shown in the middle of Fig. 6.14. Lastly, a masked 3D

Tikhonov regularization based on a threshold absorption area value of 0.002 cm−1 is applied

to further constrain the reconstruction volume for 3D Tikhonov regularization with results

shown on the right of Fig. 6.14. Neither the temperature nor the mole fraction are resolved

in regions with very low absorbance. These regions are not plotted for clarity. Specific x-z,

y-z, and x-y planes have been highlighted to display internal flame structure.
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Figure 6.14: Three-dimensional tomographic reconstructions of CO mole fraction (top) and

temperature (bottom) generated from 2D regularization (no mask) (left), 3D regularization

(no mask) and 3D regularization (with mask) (right).

6.3.3.2 Influence of number of projection angles

In many applications of tomography in reacting flows, increasing the number of projection

angles generally improves the resolution of voids and peaks in both temperature and mole

fraction fields while also reducing the number of streak-like artifacts generated [44, 59]. In

this section, the effect of number of projection angles is studied based on 2D Tikhonov reg-

ularization. As a benchmark, an Abel inversion was applied to a projection measurement

of an isolated single flame to reconstruct the radial temperature and mole fraction profiles

assuming steady, axi-symmetric conditions. These reference profiles were expanded to two

dimensions and compared to those generated by linear tomography using both six and eleven

projection angles in Fig. 6.15. Eleven projection angles were found to reduce the differences

between the linear tomographic reconstruction result and the reference reconstruction as well
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Figure 6.15: Comparison of reconstruction accuracy for mole fraction (top row) and tem-

perature (bottom row) of the z = 2.72 mm horizontal plane of an C2H4 flame with 1D Abel

inversion as a reference (left).
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Figure 6.16: One-dimensional radial profiles of temperature (left) and CO mole fraction

(right) generated from different number of projection angles compared to reference profiles

generated from the Abel transform.

as better resolve high spatial gradients (including depth of the inner core void) within the

flame compared to the result using six projection angles. In both cases, however, the rela-

tively limited number of projection angles caused asymmetry and artifacts in the generated
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2D cross-section images.

6.3.3.3 Influence of reconstruction methods

In this section, the 3 methods discussed in section 6.3.2.2 will be further examined by looking

at specific 2D and 1D slices. The introduction of 3D regularization not only promotes the

smoothness in the vertical direction as shown in the middle of Fig. 6.14, but also improves

the resolution of voids and peaks in both temperature and mole fraction as compared to the

Abel inverted results in Fig. 6.18. Moreover, by introducing the 3D mask, the artifacts are

confined within a smaller spatial region compared to the unmasked regularization methods

(2D and 3D) as shown in Fig. 6.14 and Fig. 6.17. As a result, the spatial gradient is further

improved —illustrated in Fig. 6.14 and Fig. 6.17 and in more detail in Fig. 6.18—is that the

3D masked Tikhonov regularization using only 6 projection angles resolves the temperature

gradient close the the benchmark Abel inversion results.
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Figure 6.17: Two-dimensional tomographic reconstructions of CO mole fraction (top) and

temperature (bottom) generated from 2D regularization (no mask) (left), 3D regularization

(no mask) and 3D regularization (with mask) (right).
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Figure 6.18: One-dimensional radial profiles of temperature (left) and CO mole fraction

(right) generated from 3 linear tomography methods compared to reference profiles generated

from the Abel transform.

6.3.4 Conclusions and future work

This work demonstrates the first expansion of the laser absorption imaging (LAI) method to

three dimensions, applied to a small-scale dual-flame burner. Simultaneous 2D line-of-sight

image capture of the convoluted flow-field across multiple projection angles facilitates 3D

reconstruction of mole fraction and temperature fields of the two flames. Reconstructions

based on an aggregate 50,688 lines of sight were first performed using linear tomographic

methods, highlighting 3D capability of LAI while illuminating challenges associated with the

limited-angle tomography. 2D Tikhonov regularization is first applied to form 3D images

of temperature and mole fraction by stacking independent cross-section images. Increasing

the number of projection has been shown to better resolve the gradient in the flames. 3D

Tikhonov regularization has also been applied to enforce connection between vertical planes

and promote smoothness in both the horizontal and vertical directions. Finally, a 3D mask is

imposed on the flow field volume to further constrain the reconstruction. The introduction of

the 3D mask further improve the results in resolving spatial gradients and reducing streak-like

artifacts. Based on a benchmark using Abel inversion, the 3D masked Tikhonov regulariza-

tion using 6 projection angles shows a similar performs to the 2D Tikhonov regularization
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using 11 angles. The use of the 3D masked Tikhonov regularization may reduce the number

of high-speed IR cameras required and increases the practicality of utilizing time-resolved

3D tomographic LAI for investigations of unsteady, convoluted flame structures.
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CHAPTER 7

Laser Absorption Imaging Assisted by Deep Learning:

Current and Future Research Directions

The contents of this chapter have been published in the journal Optics Letters under

the full title ’Deep neural network inversion for 3D laser absorption imaging of methane in

reacting flows’ [62].

7.1 Current Research: Deep Neural Network Inversion

7.1.1 Introduction

Mid-infrared laser absorption imaging of methane in flames is performed with a learning-

based approach to the limited view-angle inversion problem. A deep neural network is trained

with a spectral absorbance model and Radon transform based on superimposed Gaussian

field distributions. Prediction capability of the neural network is compared to linear to-

mography methods at varying number of view angles for simulated fields representative of a

flame pair. Experimental 3D imaging is demonstrated on a methane-oxygen laminar flame

doublet (<cm) backlit with tunable radiation from an interband cascade laser near 3.16 µm.

Spectrally-resolved data at each pixel provides for species-specific projected absorbance. 2D

images were collected at 6 different projection angles on a high-speed infrared camera, yield-

ing an aggregate of 27,648 unique lines of sight capturing the scene with a pixel resolution

of approximately 70 µm. Mole fraction measurements are inferred from the predicted ab-

sorption coefficient images using an estimated temperature field, showing consistency with

expected values from reactant flow rates. To the authors’ knowledge, this work represents
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the first 3D imaging of methane in a reacting flow.

Methane (CH4) is an important molecule in combustion chemistry, representing the pri-

mary fuel component of natural gas and a key intermediate in the oxidation of larger hydro-

carbons. Accordingly, quantitative imaging of methane in flame environments is desired to

discern the competitive physics of chemical kinetics with mass and heat transport, particu-

larly in the early pyrolysis steps. Some optical methods have shown potential for imaging

methane in high-temperature reacting flows, albeit with somewhat constrained applicability.

Point and line measurements of CH4 in flames have been performed with Raman scattering

techniques [79]. 2D tomographic measurements have also been conducted via near-infrared

diode laser absorption in a semi-conductor process chamber [69]. Here, we present a novel

mid-infrared optical method for three-dimensional imaging of methane in high-temperature

flame environments.

Advances in mid-wave infrared photonics have enabled tomographic absorption spec-

troscopy [3] at the fundamental vibrational frequencies of many important combustion

species, providing for sensitive thermochemical measurements in small-scale reacting flows

using compact low-power light sources [91, 93]. Laser absorption imaging (LAI) is a com-

plimentary optical method developed to capture scenes backlit with tunable laser radiation

at very high spatial resolution using high-speed infrared cameras [39, 42, 137]. A represen-

tative optical arrangement, used in this work, is shown in Fig. 6.8. Recently, LAI has been

successfully coupled with 1D tomography for quantitative imaging of axisymmetric flow-field

thermochemistry at sub-100 µm spatial resolution [39, 42].

Tomographic imaging of non-axisymmetric flows presents more challenges—multiple pro-

jection angles are required to estimate the flow-field scalars, and the inversion problem is

underdetermined [3, 59]. Limited view angles often result in a blurring effect and artifacts in

the reconstructed flow-field, complicating applications to flames—thermochemical structures

characterized by very thin (∼1 mm) reaction zones. Laser absorption tomography efforts

in combustion flows have demonstrated different approaches to the inversion problem, in-

cluding both linear [35, 92, 94, 133] and non-linear [67, 69, 139] methods utilizing various
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Figure 7.1: Optical setup for this work, showing ICL alignment and transmission image.

Inset projected absorbance images of CH4 shown with respective angle of the Bunsen-style

flames.

optical arrangements. Increasingly complex and dense configurations of laser beams (or lines

of sight) require computationally efficient image processing methods. Recently, predictive

models utilizing neural networks have shown promise to more efficiently solve the inversion

problem with limited information, and have been applied to both simulated flows [72] and

emission measurements of real flows [19, 73, 74].

Here, we combine a deep neural network inversion with LAI to achieve high-resolution

3D imaging of methane in a non-axisymmetric high-temperature flow field. We compare the

deep neural network inversion to linear tomography, assessing performance with regards to

accuracy and computational cost, via both simulation and experiment.

7.1.2 Methods

With any tomographic absorption spectroscopy method, the analytical problem reduces to

inverting line-of-sight integrated (or projected) absorption data [3, 59]. For a non-uniform

gas medium, the Beer-Lambert law integrated over wavenumber ν [cm−1]—or the projected
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absorbance area Aj,proj [cm−1]—can be expressed for each line-of-sight in Eq. 6.3:

Aj,proj =

∞∫
−∞

α(ν)dν =

∞∫
−∞

− ln

(
It
I0

)
ν

dν

=

∫ L

0

Kjdl =

∫ L

0

PSj(T )Xabsdl

(7.1)

where α(ν) is spectral absorbance, I0 is incident light intensity, and It is transmitted light

intensity. L [cm] is the aggregate path length along the line-of-sight. Thermochemical

properties of the non-uniform medium are embedded in the spatially-resolved absorption

coefficient Kj [cm−2], where total pressure P [atm] is assumed 1 atm, Sj(T ) [cm−2/atm] is the

linestrength of rovibrational transition j at temperature T [K], and Xabs is the mole fraction.

For tomographic LAI, Eq. 7.1 applies to each camera pixel, wherein spectrally-resolved

absorbance can be integrated to yield 2D images of Aj,proj, representative examples of which

are depicted in the insets of Fig. 6.8 for different viewing angles. With multiple projection

angles, each horizontal row of pixels in each 2D image can be treated independently for

subsequent reconstruction of the flow-field scalar Kj. For the experimental setup depicted

in Fig. 6.8, we target a collection of rovibrational transitions comprising the R(15) manifold

of the v3 asymmetric stretch band of methane near 3.16 µm. The linestrengths for these

transitions do not vary more than 10% for temperatures between 450 and 750 K [142],

enabling quantitative inference of mole fraction from Kj in the preheat zone.

In this study, we utilize a deep neural network to perform the inversion of line-of-sight

integrated absorption measurements Aj,proj to solve for Kj, and compare its reconstruction

performance with linear 2D tomography methods. The training dataset consists of 2D fields

of the methane absorption coefficientKj, represented as superimposed Gaussian distributions

as shown in the top of Fig. 7.6. The simulations included 5,000 variations in intensity, size,

and relative locations of the Gaussians. The corresponding projected absorbance areas Aj,proj

are subsequently calculated utilizing Radon transforms to represent the measurement data

at each angle with appropriate pixel density reflecting the LAI experimental setup. Gaussian

noise (3%) was applied to the input, enabling the network to learn robust inversion from

potentially corrupted measurements. The neural network architecture is adapted from a
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Figure 7.2: Visual representation of deep learning-assisted 2D tomography. Top: Forward

model of absorption coefficient Kj to projected absorbance Aj,proj. Bottom: Inversion process

predicting Kj from Aj,proj measurements.

unified deep learning framework shown to efficiently reconstruct a variety of imaging fields,

including magnetic resonance imaging and X-ray computed tomography [143]. As illustrated

in Fig. 7.6, the input layer FC1 takes a measured sinogram of Aj,proj (6 × 64) of the CH4

rovibrational transition, reshapes it into a 1 × 384 vector and then fully connects it to a

1 × 4096 dimensional hidden layer FC2 with a hyperbolic tangent activation. This hidden

layer FC2 is fully connected to another hidden layer FC3 with hyperbolic tangent activation,

and is reshaped to a 64×64 matrix for convolutional processing. The convolutional layers C1

and C2 convolve 64 filters of 5×5 with stride 1 followed by rectifier nonlinearities. The final
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output layer deconvolves the C2 layer with 64 filters of 7× 7 with stride 1, representing the

reconstructed Kj field. The loss function minimized during training is an L2 mean squared

loss between the network output and the labeled Kj fields. The RMSprop algorithm is

used with minibatches of size 50, learning rate 0.001, momentum 0.0, and decay 0.9. The

network was trained for 100 epochs (typically 20–30 mins) on the Tensorflow deep learning

framework using an 8 GB NVIDIA RTX 2080 graphics card. Via the training process, an

effective inversion operator is learned to predict spatially-resolved 2D Kj. This bypasses the

numerical inversion of Aj,proj to Kj obtained through conventional tomography methods.

7.1.3 Numerical Validation

To assess the predictive accuracy of the deep learning inversion method on a flame pair, the

approach is applied to reconstruct reference simulations of representative 2D Kj fields using

various numbers of projection angles, as shown in Fig. 7.3. These reference 2D Kj fields and

Figure 7.3: Comparison of linear tomography (LT) and deep learning (DL) reconstruction

methods with two representative test cases (Ground Truth) ofKj fields. Dashed lines indicate

cross-sections examined further in Fig. 7.5.

their associated Aj,proj projections are not part of the original training set, and so serve as an

independent reconstruction assessment. Tikhonov-regularized linear 2D tomography is also

applied to the reference fields. The regularization parameter λ and the smoothing matrix
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L are chosen according to a previous study [59], yielding a value of λ that pads the small

singular values but does not overwhelm the large non-trivial singular values. An aggregate

root-mean-square error (RSME) was used as a comparative metric, calculated as the square

root of the averaged squared differences between a reconstructed image and its corresponding

“ground truth” image.

As expected, utilizing a greater number of projection angles was shown to improve the

resolution of peaks and valleys in the reconstructed Kj fields for both methods. The deep

learning approach is shown to predict the steep spatial gradients with equal or greater ac-

curacy (as measured by RMS error) than linear tomographic methods while concurrently

reducing the required number of projections, even in the cases where the Kj fields overlap.

Nonphysical absorption artifacts are also observed in the linear tomographic reconstructions

outside of the simulated reaction zones, a common consequence of the underdetermined in-

version [59]. Notably, the linear tomographic methods show increasing reconstruction error

when the pixel density per flame structure is reduced, as in the smaller flames in the bottom

row of Fig. 7.3. The neural network inversion appears less sensitive to the pixel density,

showing a typical reduction in RMSE by a factor of ∼4–6 relative to corresponding linear to-

mographic solutions. We can observe for the experimentally-relevant test case (bottom row),

the learning-based approach utilizing 3 projection angles has a RSME only 10% greater than

the linear tomographic approach utilizing 12 projection angles.

7.1.4 Experimental Results

With the deep learning approach tested via simulation, the neural network inversion was

utilized for measurements of the flame doublets shown in Fig. 6.8. A distributed feedback

(DFB) interband cascade laser (ICL) near 3.16 µm is used to spectrally scan across the CH4

R(15) manifold. The beam is expanded twice; first with a concave lens, and again horizontally

with a cylindrical lens. The expanding beam is re-collimated with a concave mirror, then

pitched through the flow-field comprising two Bunsen-style flames, each with flame brushes

approximately 3 mm in diameter. The beam is spectrally isolated with a bandpass filter
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(Spectrogon, 3160 ± 60 nm), and a plano-convex lens focuses the expanded beam onto the

detector array of the camera. The beam is captured in the camera detector subwindow of size

64×48 with a frame rate of 40 kHz and integration time of 5 µs. The laser is injection-current

tuned using a sawtooth waveform at 400 Hz, resulting in 100 points per scan for both I0 and

It for each pixel. The spectrally-resolved absorbance α(ν) is determined using Eq. 6.3 and

is subsequently fitted using the Voigt lineshape model to obtain the projected absorbance

area Aj,proj. For each projection angle measurement, data are collected and averaged over

1 second (400-scan average), an interval over which the flames are assumed steady. Spatial

resolution was evaluated by imaging a wire mesh with known dimensions backlit with laser

radiation [42], and was determined to be approximately 70 µm per pixel in the horizontal

direction.

The flame pair is mounted on a rotational stage to image the flow-field from a vari-

ety of angles, as shown in Fig. 6.8. The partially premixed flames were controlled via

thermally-based mass flow controllers (MKS MFC GE50A) with combined reactant flow

rates of 150 sccm CH4 and 100 sccm O2. This corresponds to a fuel-rich mixture with a mo-

lar fuel-air equivalence ratio of φ ≈ 3. After the flows are split to the two burners, one flow

is measured with a rotameter to ensure equal flow through each burner. The exit velocity of

each flow is 0.33 m/s and the jet exits of the stainless steel burners are 1.6 mm in diameter,

providing a laminar jet Reynolds number of ∼36.

For each horizontal row of pixels in the measured 2D Aj,proj images, the learning-based

inversion operator is applied to predict the Kj field distribution for the R(15) manifold of

CH4. Assembling the predictions for each horizontal row, a 3D field of Kj is obtained, as

shown in Fig. 7.4. Learning-based predictions utilizing six projection angles of 2D Aj,proj

images are shown alongside corresponding results obtained using 2D linear tomography. The

images are self-consistent in reconstruction of the twin flames, exhibiting similar heights,

widths, and magnitudes. However, the flames diverge in magnitude and diameter when

comparing the deep learning and linear tomography results. Steeper spatial gradients of

Kj are resolved within the reacting flow utilizing the learning-based approach, and this is
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Figure 7.4: Photograph of flames and 3D Kj fields reconstructed from six projection angles

using the learning-based approach described by Fig. 7.6 (left) and linear 2D tomography

(right). Dashed lines indicate cross-sections examined further in Fig. 7.5.

seen more clearly in the 2D cross-sections in the top of Fig. 7.4. As in the simulations, the

learning-based approach also mitigates image artifacts and angular asymmetry around the

flame observed in the results of the linear tomographic method.

Reconstruction performance of both the linear tomography and neural network inversion

is examined in further detail with 1D profiles shown in Fig. 7.5. The left of Fig. 7.5 com-

pares 1D cross-sectional profiles of Kj reconstructions obtained from both linear tomography

and deep learning in relation to the “ground truth” for the simulated Kj field indicated in

Fig. 7.3. The uncertainty shown associated with each reconstruction is calculated by per-

forming the reconstructions with different flow-field orientations [44]. Though a ”ground

truth” for the reconstructed Kj fields determined from the experimental measurements is

unknown, an analogous comparison can be made for the experimental Kj fields at the base

of the flames nearest the burner surface, indicated by Fig. 7.4. Given an independently
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measured or estimated temperature field, Eq. 6.3 can be used to obtain a mole fraction

field for CH4. The right of Fig. 7.5 shows the resulting 1D profiles of CH4 mole fraction

assuming a uniform temperature of 450 K (based on a thermocouple measurement at burner

exit). While the temperature in this plane is certainly not uniform, the CH4 absorption

line strength exhibits relative insensitivity to temperature—Error bars capture a possible

temperature range between 400 K and 750 K. While the edges of the fuel distribution may

be hotter, this simplified analysis provides clear indication that the mole fraction at the core

of the flame (XCH4
≈ 0.59) is more closely estimated by the neural network inversion, even

with only 3 imaging angles.

Lastly, it should be noted that the learning-based approach reduces computational load

considerably compared to linear tomography with Tikhonov regularization. Although the

neural network requires a 20–30 min training process as mentioned, once the networks are es-

tablished, the reconstructions are more computationally efficient: On an Intel(R) Core(TM)

i7-9700K 3.60 GHz CPU, the neural network completed reconstructions in 0.35 s while linear
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Figure 7.5: 1D profiles of simulated Kj noted in Fig. 7.3 (left) and CH4 mole fraction

calculated with experimental Kj shown in Fig. 7.4 using temperature measured at burner

exit (right).
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tomography took ∼40 s.

7.1.5 Conclusion

A deep learning approach to the inversion problem for absorption tomography was coupled

with a high-resolution LAI configuration for 3D species imaging, and evaluated by simulation

and experiment. To the authors’ knowledge, the experimental effort represents the first 3D

imaging of methane in a flame, attaining a spatial resolution on the order of 70 µm.

7.2 Future Research on LAI

7.2.1 Physics-Trained Deep Neural Network Inversion

The current work of this dissertation demonstrates that deep learning inversion has potentials

to more accurately resolve flame structure with fewer projection angles than linear tomog-

raphy. However, the perform of the deep neural network strongly depends on the draining

dataset. Extension of this method to more complex flame structures may require more so-

phisticated simulations to generate appropriate training data. While the distribution of the

fuel structures can be well-approximated by purely mathematical Gaussian distributions,

turbulent flow structures and intermediate or product fields likely require more physical

representations.

Here we describe a physics-trained deep neural network approach to the inversion prob-

lem, depicted in Fig. 7.6, that takes advantage of our prior knowledge of combustion physics,

the experiment, spectroscopic models, and our knowledge of the forward projection process.

In this approach, temperature and concentration field data are generated utilizing the re-

sults of 1D opposed-flow flame simulations in Cantera. Approximately 3500 flames are

produced by varying fuel-side (C2H6/O2-enriched air) and oxidizer-side (ambient air) mass

flux rates, CO and CO2 fuel-side concentration, and fuel-side equivalence ratio using a 3 mm

domain. 5000 training examples and 1000 validation examples are generated by randomly

choosing the 1D calculations and projecting species and temperature profiles into two axi-
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Figure 7.6: Visual representation of deep learning-assisted 2D tomography. Top: Training

dataset development from Cantera-simulated thermochemical profiles to spectral simulations.

Bottom: Process of predicting thermochemical profiles from measurements.

symmetric flows on a grid with estimated center locations allowing ±0.4 mm variation in

both x and y, as shown in the top left of Fig. 7.6. Spectral simulations are performed in

each grid cell to simulate Kj fields, after which a forward projection using Eq. 6.4 is applied

to calculate path-integrated line-of-sight projections Aj,proj, depicted as sinograms in the top

right of Fig. 7.6. The Cantera-generated data are used as a labeled dataset to train the

neural network. The design of the convolutional neural network (CNN) architecture used

in this study is adapted from the works of others [19, 72]. As illustrated in the bottom of

Fig. 7.6, the input to the neural network comprises 2 sinograms (6 × 128) from each CO
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spectral transition. The first convolutional layer C1 convolves 8 filters of 3 × 3 with stride

1 followed by a rectifier nonlinearity, a batch normalization layer BN1, and a max pooling

layer with filters of 2 × 2. The second convolutional layer C2 similarly convolves 14 filters

of 2 × 2 with stride 1 followed by a rectifier nonlinearity, a batch normalization layer BN2,

and a max pooling layer with filters of 2 × 2. After a flatten layer and a fully connected

layer FC, an output vector of size 20000×1 is obtained, which can easily be reshaped as two

100× 100 2D profiles of temperature and CO mole fraction, respectively. The loss function

minimized during training was a simple mean squared loss between the network output and

target normalized temperature and CO mole fraction values. The RMSprop algorithm is

used with minibatches of size 50, learning rate 0.001, momentum 0.0, and decay 0.9. The

network was trained for 100 epochs (typically 20–30 mins) on the Tensorflow deep learning

framework using an 8 GB NVIDIA RTX 2080 graphics card.

After the training process finishes, an effective inversion operator with physical priors

on combustion chemistry and flame symmetry is learned, and can be applied to new path-

integrated measurements to reconstruct the temperature and concentration fields. This

effectively bypasses the inversion of Aj,proj to Kj obtained through Eq. 6.6, as well as the

two-line thermometry, and directly results in thermochemical profiles of the flow-field.

Representative mole fraction results of the physics-based deep learning implementation

on measurements from C2H4 flames are shown in Fig. 7.7 using both six and three projection

angles. As with the linear tomography results, high spatial gradients are resolved within

the flames, and the magnitudes closely resemble those of the reference profile. Additionally,

this approach mitigated image artifacts and angular asymmetry around the flame associated

with limited numbers of projection angles in linear tomographic methods. A noteworthy

advantage—illustrated in Fig. 7.7 and in more detail in Fig. 7.8—is that even when the

number of projection angles is reduced from six to three, the 3D reconstruction still retains

the majority of the CO mole fraction structure within the flames and closely predicts ref-

erence magnitudes, albeit with some inaccuracies. Fig. 7.8 compares 1D radial profiles of

temperature and CO mole fraction for a single flame in the flow, obtained from both lin-
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Figure 7.7: Left: Deep learning-assisted tomographic reconstructions of CO mole fraction

using six and three projection angles. Right: three-dimensional results utilizing three pro-

jection angles.

ear tomography and deep learning in relation to the reference profiles discussed previously.

While both methods produce generally similar temperature profiles with the same number

of projections, the implementation of deep learning enables improved reconstruction of CO

mole fraction profiles with six projection angles. The CNN method was also able to predict

thermochemical profiles beyond the domain contrained by the analytical solution. Further-

more, it was found that a set of opposed-flow flame simulations utilizing C2H6 as the fuel

was a generalized enough training set to be used for all flames in this study, demonstrating

adaptive capability of the neural network.

Lastly, it should be noted that CNN provides a considerable computational advantage

over linear tomography with Tikhonov regularization. Although CNN requires a 20–30 min

training process as mentioned, once the networks are established the subsequent reconstruc-

tions are computationally efficient. When implemented on an Intel(R) Core(TM) i7-9700K

3.60 GHz CPU, CNN completed reconstructions of all pixel rows in ∼1 s while linear tomog-

raphy took ∼400 s.
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Figure 7.8: One-dimensional radial profiles of temperature (top) and CO mole fraction (bot-

tom) generated from linear tomography (left) and deep learning (right) compared to reference

profiles generated from the Abel transform.

7.2.2 Time-resolved 3D LAI

Most of the work in this dissertation for LAI has been focused on steady flows due to

the number of camera available and the frame rate of the infrared cameras. However, the

tomographic reconstruction methods developed in this dissertation are directly applicable

for multi-camera measurements. In a recent work by the author, laser absorption imag-

ing is expanded in temporal resolution capability to kHz measurement rates by coupling

sparsely-sampled wavelength-scanning and digital image post-processing for diffraction cor-

rection [137]. This work combined with the tomographic reconstruction techniques presented

in this dissertation set the foundation for future time-resolved 3D tomographic imaging re-

search.
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Figure 7.7: (left to right) Sequential images of C2H6
RQ3 line-of-sight absorbance areas [cm−1]

captured at 2 kHz.
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APPENDIX A

Uncertainty Analysis

In this work, we report values of species concentration and temperature, but it is important

to note the uncertainty in these values due to factors associated with the LAT measurement

technique. We follow the uncertainty analysis presented in previous work [32], with added

analysis in this work to account for uncertainty associated with tomographic reconstruc-

tion [38]. For Eqs. 6.3 and 5.2 as well as those in this section (unless otherwise noted),

we follow the Taylor Series Method (TSM) of uncertainty propagation [144], in which the

uncertainty of a variable r, ∆r, is given by:

(∆r)2 =

(
∂r

∂x1

∆x1

)2

+

(
∂r

∂x2

∆x2

)2

+ · · · (A.1)

where xi are dependent variables and ∆xi are their respective uncertainties. As indicated by

Eq. 5.2, mole fraction of an absorbing species Xabs(r) depends on linestrength Sj(T (r)) and

reconstructed absorption coefficient Kj(r). In turn, Sj(T (r)) depends on temperature T (r),

which—for the two-line thermometry techniques employed here—depends on R(r), which is

also dependent on Kj(r). Here, discuss the propagation of uncertainty from initial intensity

measurements It and I0 through these equations to obtain uncertainty in T (r) and Xabs(r).

The systematic error in It and I0 is assumed to be the same because the same system

is used to measure both signals; thus the only uncertainty considered for each of these

signals is the random uncertainty among all the scans averaged within a spatial segment

dr (in this case, the distance associated with 105 direct-absorption scans). For each spatial

segment, the standard deviations of both the incident background I0 and the absorbance

signals It are calculated, which are both used to determine the 95% confidence interval of

the signals, represented by ∆I0 and ∆It. To obtain the variation specifically in absorbance,
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∆αν , we subtract ∆I0 from ∆It and use the resulting value as a bounds on absorbance signal,

It ± (∆It −∆I0). We then calculate the resulting variation in αν , ∆αν , by propagating the

uncertainty in the Beer-Lambert law [1]. In turn, ∆Aj,proj(r) is calculated by propagating

the uncertainty ∆αν in Eq. 6.3, generating an upper and lower bound on Aj,proj(r). This

process occurs for each spatial interval dr across the radius of the burner r.

The uncertainty in Kj(r), ∆Kj(r), is determined numerically via tomographic recon-

struction of the upper and lower bounds of Aj,proj(r). Also included in ∆Kj(r) is the

uncertainty associated with the location of the centerline assumed in the Abel inversion

(r = 0.0±0.5 mm), which significantly effects the reconstructed mole fraction values in the

core relative to the edges of the flow [38]. Applying Eq. A.1 to the ratio of the two absorption

coefficients Kj(r), we can calculate the uncertainty in R(r), ∆R(r):(
∆R(r)

R(r)

)2

=

(
∆KA(r)

KA(r)

)2

+

(
∆KB(r)

KB(r)

)2

(A.2)

In the results presented in this study, the ratio R(r) is used to determine temperature T (r)

by correlating R(r) to simulations of R(T ) = SA(T )/SB(T ) created using Eq. A.5, which is

shown later. An explicit expression revealing the uncertainty dependencies in temperature

can be derived via the following analytical expression for temperature T (r):

T (r) =
hc
kB

(E ′′B − E ′′A)

ln (R(r)) + ln
(
SB(T0)
SA(T0)

)
+ hc

kB

(E′′
B−E

′′
A)

T0

(A.3)

Here, h [J·s] is the Planck constant, c [cm/s] is the speed of light, kB [J/K] is the Boltzmann

constant, and E ′′j [cm−1] is the lower-state energy for the two lines A and B. Since T (r) is a

function of R(r), there is an associated uncertainty in temperature, ∆T (r). Using Eq. A.1

on Eq. A.3, ∆T (r) is given by:

∆T (r)2

T (r)2
=

(∆R(r)/R(r))2(
ln (R(r)) + ln

(
SB(T0)
SA(T0)

)
+ hc

kB

(E′′
B−E

′′
A)

T0

)2 (A.4)

When the mole fraction Xabs(r) of the species approaches zero, both absorption coefficients

Kj(r) will also approach zero, and R(r) will become highly sensitive to noise or error in

either reconstruction of Kj(r). This can lead to unreasonably high or low temperatures in
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regions where the signal-to-noise ratio of Kj(r) is low (SNR < 5), and so we do not include

those regions in the plots shown. As mentioned, Sj(T (r)) is function of T (r) [1]:

Sj(T ) = Sj(T0)
Q(T0)

Q(T )

T0

T
exp

[
−
hcE ′′j
kB

(
1

T
− 1

T0

)][
1− exp

(
−hcν0,j

kBT

)][
1− exp

(
−hcν0,j

kBT0

)]−1

(A.5)

where it is understood that T is T (r). Q is the partition function for the internal energy

modes of the molecule. Therefore, ∆T (r) (from the uncertainty in ∆R(r)) affects Sj(T (r))

that is used to calculate mole fraction. The following expression can be obtained for the

uncertainty in linestrength due to uncertainty in observed temperature, ∆T (r):

∆S2
j,T (T ) = S2

j (T )∆T 2

(
−∂Q(T )/∂T

Q(T )
− 1

T
+
hcE ′′j
kBT 2

+
hcν0,j

kBT 2

(
exp (−hcν0,j/kBT )

1− exp (−hcν0,j/kBT )

))2

(A.6)

Additionally, the HITRAN database reports inherent uncertainty in Sj(T0), which we refer

to here as ∆Sj(T0). Thus, the total uncertainty in linestrength can be calculated:

∆S2
j (T ) = ∆S2

j,T (T ) + ∆S2
j (T0) (A.7)

Now, mole fraction is given by:

Xabs(r) =
Kj(r)

Sj(T (r))P
(A.8)

Utilizing Eq. A.1, the uncertainty in mole fraction, excluding uncertainty in total pressure

P , is: (
∆Xabs(r)

Xabs(r)

)2

=

(
∆Kj(r)

Kj(r)

)2

+

(
∆Sj(T (r))

Sj(T (r))

)2

(A.9)

Thus, the uncertainties in ∆Kj(r) and ∆Sj(T (r)) are accounted for.
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APPENDIX B

Laser Absorption Imaging: Practical Issues

This appendix is intended to cover a number of practical issues with mid-infrared laser

absorption imaging that are mostly omitted from the preceding chapters. As mentioned be-

fore, the current dissertation presents the first application of the high-speed infrared camera

in laser absorption tomography measurements. While infrared cameras have mostly been

utilized to measure emissions (incoherent light) from the scene, the application to image

coherent laser beam for combustion diagnostics in the current work poses unique issues and

challenges. Some of these challenges include: camera pixel saturation, diffraction induced

noises, and beam collimation. A few of the issues and some practical solutions are discussed

here.

B.1 Camera Parameters

Most infrared cameras are designed to highly sensitive to infrared radiations. Collimated

laser beam often contains much higher power than ambient emissions and therefore laser

light needs to be attenuated before imaged by the camera pixels. In addition, parameters

such as integration time and frame rate should be chosen carefully. This section discusses

some important camera parameters and their determination during the laser absorption

measurements.
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B.1.1 Integration and Transfer Time

The exposure/integration time represents the time during which the camera sensor ac-

cumulates charges, induced by incident photons coming from the scene. The integration

time can be preset manually or can be automatically adjusted by the camera software. A

higher integration time will increase the signal level but may saturate the camera pixel and

smear the transient process. The transfer time designates the time needed by the sensor

electronics to read the pixels of the sensor array.

B.1.2 Frame Rate

The frame rate is the frequency (rate) at which consecutive images (frames) are recorded

(sampled). The attainable detector frame rate is dependent on the integration time and

the transfer time (or readout time). Figure B.1 shows the relative relations between the

integration time, transfer time, and frame rate.

Figure B.1: Image acquisition terminology
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B.1.3 Window Size

The window size defines the number of pixels activated during the acquisition and the

aspect ratio of the image. Frame rate, window size, and exposure time are three parameters

that influence each other since they must globally respect the limits of the camera data

throughput capabilities. If a parameter is restricted from reaching the desired value, one or

the two others must be decreased before trying to set parameters again (to lower the data

throughput). Some typical values for these parameters for a Telops FAST-M3K camera is

shown in B.1.

Table B.1: Selected Telops FAST-M3K image capture options

Width [px] Height [px] Max framerate [kHz]

64 4 95.2

64 32 44.9

64 64 28.0

128 128 10.8

320 256 3.1

B.2 Diffraction Artifacts

One main challenge associated with performing mid-IR LAI with coherent laser light is the

diffraction-induced Airy-disk patterns as shown in Figure B.2. Spatial diffraction effects

such as these are often caused by stray particles in the path of the beam, circular apertures

cutting the enlarged beam, or other sources that are difficult to isolate in an optical system.

Pronounced oscillations in signal intensity caused by the wavelength-dependent diffraction

is often observed as schematically shown in the bottom of Figure B.2 [42, 137]. These

oscillations, if not handled properly, will eventually lead to spatially dependent errors in the

measured gas properties.

Several methods, both through optical design and digital postprocessing, haven been ap-
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Figure B.2: Top: Image of coherent laser light with Airy-disks. Bottom: Single-pixel

time-history illustrating how diffraction-induced oscillations vary in time.

plied and proven efficient in metigating diffraction-induced noises. One approach to avoiding

these diffraction-induced image artifacts is to destroy the coherence in the laser light by re-

flecting the beam off spinning diffusers [42]. This optical solution successfully eliminated

diffraction patterns at the cost of added intensity noise, that required averaging and reduced

temporal resolution (∼Hz). Alternatively, the diffraction-induced image artifacts can be

filtered out in the Fourier domain through digital postprocessing without sacrificing tempo-

ral resolution but at a cost of reduced spatial resolution [137]. Lastly, it is also observed

that beam shaping using cylindrical optics not only produces a uniformly distributed signal

intensities across the camera pixels but also helps reduce the diffraction artifacts.
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B.3 Beam Collimation

In this dissertation, the line-of-sight measurements are modeled as parallel-beam tomography

problem and therefore the expended laser beam should be collimated when imaged into

camera pixel array to minimize modeling error. In the LAI systems, the laser beam, even

though is collimated coming out the laser, can become uncollimated after beam expension. It

is then important to make sure the beam is collimated during the optical alignment process.

To check the beam collimation, one can image a calibration grid in the focal plane as shown

in Figure B.3. If the image is not distorted when moving the mesh away from the focal plane

(along the direction of the line-of-sight), the laser beam is collimated.

Figure B.3: Image of a calibration mesh backlit with infrared laser light.
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APPENDIX C

Sample Data Processing Codes

This appendix provides some example codes used in the dissertation, including Matlab func-

tions for generating 2D and 3D regularization matrices, 3D mask and Python codes for deep

neural network inversion. For flexible tomographic reconstruction, more open source tool-

boxes are available, such as TomoPy, the ASTRA toolbox, and TIGRE. Prof. Per Christian

Hansen from Technical University of Denmark developed a series of Matlab softwares for

regularization of discrete ill-posed problems, such as AIR Tools II, IR Tools and TVReg.

C.1 Generate Laplacian differential operator for 2D grid

The goal in this section is to generate a sparse matrix for the discrete gradient operator used

in Tikhonov regularization for a 2D grid:

∂u

∂x
+
∂u

∂y
= f(x, y) (C.1)

The Laplacian operator using first order standard differences results in:(
4ui,j − ui−1,j − ui+1,j − ui,j−1 − ui,j+1

4h

)
= fi,j (C.2)

where h is the grid size.

This can be wiritten in the form of Lu = f , where the matrix L can be generated using

the following Matlab function:
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Figure C.1: 2D grid points.
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1 f unc t i on L2 = L2D(nx , ny )

2 % generate spar s e matrix f o r 2D Laplac ian matrix

3 % based on the code by Nasser M. Abbas

4 % INPUT:

5 % nx : Number o f i n t e r n a l g r i d po int along x−a x i s .

6 % ny : Number o f i n t e r n a l g r i d po int along y−a x i s .

7 % Hence , the re are N = nx∗ny gr id po in t s

8 % OUTPUT:

9 % A: the 2D d i s c r e t e Laplac ian operator

10 %

11 % Chuyu Wei May, 2020

12

13 ex = ones (nx , 1 ) ;

14 Lx = spd iags ( [ ex −2∗ex ex ] , [−1 0 1 ] , nx , nx ) ;

15 ey = ones (ny , 1 ) ;

16 Ly = spd iags ( [ ey −2∗ey ey ] , [−1 0 1 ] , ny , ny ) ;

17

18 Ix = speye ( nx ) ;

19 Iy = speye ( ny ) ;

20 L2 = − ( kron ( Iy , Lx)+kron (Ly , Ix ) ) /4 ;

21

22 end
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C.2 Generate Laplacian differential operator for 3D grid

The goal in this section is to generate a sparse matrix for the discrete gradient operator for

a 3D grid:
∂u

∂
+
∂u

∂y
+
∂u

∂z
= f(x, y, z) (C.3)

To form a matrix operator, the equation can be rearranged as following:

1

6h
(6Ui,j,k − Ui−1,j,k − Ui+1,j,k − Ui,j−1,k − Ui,j+1,k − Ui,k,k−1 − Ui,j,k+1) = fi,j,k (C.4)

where h is the grid size.

This can be wiritten in the form of Lu = f , where the matrix L can be generated using

the following Matlab function:

Figure C.2: 3D grid points.
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1 f unc t i on L3 = L3D(nx , ny , nz )

2 % generate 3D spar s e matrix f o r 3D Laplac ian matrix i

3 % based on the code by Nasser M. Abbas

4 % INPUT:

5 % nx : Number o f i n t e r n a l g r i d po int along x−a x i s .

6 % ny : Number o f i n t e r n a l g r i d po int along y−a x i s .

7 % nz : Number o f i n t e r n a l g r i d po int along z−a x i s .

8 % Hence , the re are N = nx∗ny∗nz g r id po in t s

9 % OUTPUT:

10 % A: the 3D d i s c r e t e Laplac ian operator

11 %

12 % Chuyu Wei May, 2020

13 ex = ones (nx , 1 ) ;

14 Lx = spd iags ( [ ex −3∗ex ex ] , [−1 0 1 ] , nx , nx ) ;

15 ey = ones (ny , 1 ) ;

16 Ly = spd iags ( [ ey −3∗ey ey ] , [−1 0 1 ] , ny , ny ) ;

17

18 Ix = speye ( nx ) ;

19 Iy = speye ( ny ) ;

20 L2 = kron ( Iy , Lx)+kron (Ly , Ix ) ;

21

22 N = nx∗ny∗nz ;

23 e = ones (N, 1 ) ;

24 L = spd iags ( [ e e ] , [−nx∗ny nx∗ny ] ,N,N) ;

25 I z = speye ( nz ) ;

26

27 L3 = − ( kron ( Iz , L2)+L) /6 ;

28 end
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C.3 3D Mask

The code in this section is to imposed a 3D mask in the reconstruction volume:

1 % generate 3D mask in the r e c o n s t r u c t i o n volume

2 %

3 % Chuyu Wei May, 2020

4 % load p r o j e c t i o n data

5 load ( ’ . / Aproj C2H4 ’ ) % conta in s data Aproj

6

7 % Inputs

8 nx = 100 ;

9 ny = 100 ;

10 nz = 36 ; % gr id s i z e

11 theta = [ 0 : 3 0 : 1 5 0 ] ; % view ang l e s f o r p r o j e c t i o n

12 p = 128 ; % number o f p i x e l s in the p r o j e c t i o n

13

14 % get 2D weight matrix from too lbox AIRTools

15 W 2D = para l l e l t omo (nx , theta , p) ;

16 % 3D weight matrix

17 I z = speye ( nz ) ;

18 W 3D = kron ( Iz , A 6P 2D ) ;

19

20

21

22 % d e f i n e a th r e sho ld to mask the p r o j e c t i o n images

23 th r e sho ld = 0 . 0 0 0 2 ;

24

25 % mask i n d i c e s

26 idx mask = f i n d ( Aproj<=thre sho ld ) ;
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27

28 % f i n d ray t r a c e s ( rows in W 3D) that c o n t r i b u t e s to masked

p r o j e c t i o n s

29 W 3D nonvalid = W 3D( idx mask , : ) ;

30 % i f a p i x e l i s not c o n s t r i b u t i n g to the nonval id rays , keep the

i n d i c e s

31 sum( W 3D nonvalid ) ;

32 idx K = f i n d ( ans==0) ;

33 % i n d i c e s o f p r o j e c t i o n s above th r e sho ld

34 idx A = f i n d ( Aproj>th r e sho ld ) ;

35

36 % masked ( truncated weight matrix )

37 W 3D valid = W 3D( idx A , idx K ) ;
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C.4 Deep Neural Network Inversion Training

The Python code provided in this section is used to train the deep neural network presented

in [62]

1 ”””

2 Deep l e a r n i n g i n v e r s i o n f o r 3D CH4 Imaging

3 @author : Chuyu Wei

4 ”””

5 from f u t u r e import abso lute import , d i v i s i o n , p r i n t f u n c t i o n ,

u n i c o d e l i t e r a l s

6

7 # TensorFlow and t f . keras

8 import t en so r f l ow as t f

9

10 from keras import models

11 from keras import l a y e r s

12 from keras import r e g u l a r i z e r s

13 from keras . l a y e r s import Conv2D , Conv2DTranspose

14 from keras . op t im i z e r s import RMSprop

15 from random import randrange

16

17 # Helper l i b r a r i e s

18 import numpy as np

19 import matp lo t l i b . pyplot as p l t

20 import s c ipy . i o

21 from sc ipy . i o import loadmat

22

23 c o n f i g = t f . Conf igProto ( )

24 c o n f i g . gpu opt ions . a l low growth = True
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25 s e s s = t f . S e s s i on ( c o n f i g=c o n f i g )

26

27 # Load matlab f i l e s

28 # Training data

29 T r a i n i n g f i l e = ’ TrainingDataAreas . mat ’ ;

30 Tra in ing data = sc ipy . i o . loadmat ( T r a i n i n g f i l e ) ;

31

32 # Build the model

33 # Setup the l a y e r s

34 model = models . S equent i a l ( )

35 model . add ( l a y e r s . F lat ten ( input shape =(6 ,N, 1 ) ) )

36 model . add ( l a y e r s . Dense (2∗6∗N) )

37 model . add ( l a y e r s . Act ivat ion ( ’ tanh ’ ) )

38 model . add ( l a y e r s . Dense (1∗6∗N) )

39 model . add ( l a y e r s . Act ivat ion ( ’ tanh ’ ) )

40 model . add ( l a y e r s . Dense (N∗N) )

41 model . add ( l a y e r s . Act ivat ion ( ’ tanh ’ ) )

42 model . add ( l a y e r s . Reshape ( (N,N, 1 ) ) )

43 model . add ( l a y e r s . Conv2D( f i l t e r s =64, k e r n e l s i z e =(5 ,5) , s t r i d e s

=(1 ,1) , a c t i v a t i o n = ’ r e l u ’ ) )

44 model . add ( l a y e r s . Conv2D( f i l t e r s =64, k e r n e l s i z e =(5 ,5) , s t r i d e s

=(1 ,1) , a c t i v a t i o n = ’ r e l u ’ ) )

45 model . add ( l a y e r s . Conv2DTranspose ( f i l t e r s =1, k e r n e l s i z e =(9 ,9) ,

s t r i d e s =(1 ,1) , a c t i v a t i o n=’ r e l u ’ , k e r n e l r e g u l a r i z e r=

r e g u l a r i z e r s . l 2 ( 0 . 0 0 1 ) ) )

46

47
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48 model . compi le ( l o s s=’ mean squared error ’ , opt imize r=’adam ’ , met r i c s

=[ ’ mean squared error ’ ] )

49

50 model . summary ( )

51

52 # Train the model

53 h i s t o r y = model . f i t ( X train 2D , Y train 2D , v a l i d a t i o n s p l i t =0.3 ,

epochs =100 , b a t c h s i z e =50, s h u f f l e= True )

54

55 # Plot t r a i n i n g & v a l i d a t i o n l o s s va lue s

56 p l t . p l o t ( h i s t o r y . h i s t o r y [ ’ l o s s ’ ] )

57 p l t . p l o t ( h i s t o r y . h i s t o r y [ ’ v a l l o s s ’ ] )

58 p l t . t i t l e ( ’ Model l o s s ’ )

59 p l t . y l a b e l ( ’ Loss ’ )

60 p l t . x l a b e l ( ’ Epoch ’ )

61 p l t . l egend ( [ ’ Train ’ , ’ Test ’ ] , l o c=’ upper l e f t ’ )

62 p l t . show ( )
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