Lawrence Berkeley National Laboratory

Lawrence Berkeley National Laboratory

Title

Radionuclide Air Emission Report for 2010, LBNL Report number LBNL-470E

Permalink

https://escholarship.org/uc/item/92d1n33h

Publication Date

2011-06-10

Radionuclide Air Emission Report for 2010

Prepared by: Environment, Health and Safety Division Environmental Services Group

May 25, 2011

Ernest Orlando Lawrence Berkeley National Laboratory Berkeley, CA 94720

U.S. Department of Energy Radionuclide Air Emission Report for 2010

(in compliance with 40 CFR 61, Subpart H)

Site Name: Ernest Orlando Lawrence Berkeley National Laboratory

Operation Office Information

Office: U.S. Department of Energy

Berkeley Site Office

Address: MS 90R1023

One Cyclotron Road Berkeley, CA 94720

Contact: Kim Abbott **Phone**: (510) 486-7909

Site Information

Operator: University of California

Address: MS 85B0198

One Cyclotron Road Berkeley, CA 94720

Contact: Linnea Wahl, CHP Phone: (510) 486-7623

Table of Contents

Prefac	ce	iv
Execu	utive Summary	v
Acror	nyms	vi
1.0 F	Facility Information	1
1	.1 Site Description	. 1
1	.2 Source Description	. 3
2.0 A	Air Emissions Data	7
2	2.1 Point Sources: Measured Emissions	. 9
2	2.2 Group Sources: Calculated Emissions	10
2	2.3 Nonpoint Sources: Diffuse Emissions	11
3.0 I	Oose Assessment	.12
3	3.1 Dose Model	12
3	3.2 Input Parameters	12
	3.2.1 Building-Specific Parameters	13
	3.2.2 Common Parameters	14
3	3.3 Compliance Assessment	14
	3.3.1 MEI Dose and Location	14
	3.3.2 Certification	16
4.0 A	Additional Information	17
4	1.1 Additions or Modifications	17
4	1.2 Unplanned Releases	17
4	1.3 Diffuse Emissions	17
5.0 S	Supplemental Information	18
5	5.1 Collective Dose Estimate	18
5	5.2 40 CFR 61 Subparts Q and T	18
5	5.3 Radon Emissions	18
5	5.4 Facility Compliance	18
6.0 F	References	19
Appe	ndix A Bevatron Diffuse Source	20
Apper	ndix B Meteorological Data	23
Appe	ndix C Population Data	.28

LIST OF TABLES

Table 1-1 Buildings Where Unsealed Radionuclide Use or Production is Authorized by Berkeley Lab	5
Table 2-1 EPA-Approved Radionuclide Emissions Measurement Approach	7
Table 2-2 Measurement Category of Sources	8
Table 2-3 Total Activity Emitted in 2010	9
Table 2-4 Stacks Where Radionuclide Emissions are Measured	10
Table 2-5 Sources for Which Radionuclide Emissions are Calculated	11
Table 3-1 Building-Specific Input Parameters	13
Table 3-2 Dose Assessment Results	15
LIST OF FIGURES	
Figure 1-1 San Francisco Bay Area Map	2
Figure 1-2 Vicinity Map	2
Figure 1-3 Berkeley Lab Buildings Where Radionuclides are Used or Produced	4

Preface

As a U.S. Department of Energy (DOE) facility whose operations involve the use of radionuclides, Berkeley Lab is subject to U.S. Environmental Protection Agency (EPA) radioactive air emission regulations in Code of Federal Regulations (CFR) Title 40, Part 61, National Emission Standards for Hazardous Air Pollutants (NESHAP) (EPA 1989a). Subpart H of this regulation (subsequently referred to as NESHAP) establishes standards for exposure of the public to radionuclides (other than radon) released from DOE facilities. This regulation limits the emission of radionuclides to ambient air from DOE facilities. Such emissions may not exceed amounts that would cause any member of the public to receive an effective dose equivalent (subsequently referred to as dose) of 10 mrem/yr (0.1 mSv/yr).

Under the NESHAP regulation, DOE facilities are required to submit an annual report each year. The NESHAP regulation specifies the content of the report and DOE provides further guidance (DOE 1994). This document is Berkeley Lab's annual report on radionuclide air emissions and meets the NESHAP requirements for reporting. This report can be found on the Laboratory's website at http://www.lbl.gov/ehs/esg/Reports/tableforreports.shtml.

Executive Summary

Berkeley Lab operates facilities where radionuclides are produced, handled, stored, and potentially emitted. These facilities are subject to the EPA radioactive air emission regulations in 40 CFR 61, Subpart H (EPA 1989a). Radionuclides may be emitted from stacks or vents on buildings where radionuclide production or use is authorized or they may be emitted as diffuse sources. In 2010, all Berkeley Lab sources were minor sources of radionuclides (sources resulting in a potential dose of less than 0.1 mrem/yr [0.001 mSv/yr]). These minor sources included more than 100 stack sources and one source of diffuse emissions. There were no unplanned emissions from the Berkeley Lab site. Emissions from minor sources (stacks and diffuse emissions) were measured by sampling or monitoring or were calculated based on quantities used, received for use, or produced during the year. Using measured and calculated emissions, and building-specific and common parameters, Laboratory personnel applied the EPA-approved computer codes, CAP88-PC and COMPLY, to calculate the effective dose equivalent to the maximally exposed individual (MEI).

The effective dose equivalent from all sources at the Berkeley Lab main site in 2010 was 7.3×10^{-3} mrem/yr (7.3×10^{-5} mSv/yr) to the MEI, well below the 10 mrem/yr (0.1 mSv/yr) dose standard. The location of this MEI is at the University of California (UC) Lawrence Hall of Science, a public science museum about 1500 ft (460 m) east of Berkeley Lab's Building 56. The estimated collective effective dose equivalent to persons living within 50 mi (80 km) of the Berkeley Lab main site was 1.5×10^{-1} person-rem (1.5×10^{-3} person-Sv) attributable to the Lab's airborne emissions in 2010.

The effective dose equivalent from all sources at Berkeley Lab operations at the Berkeley West Biocenter (Building 977 at 717 Potter Street, Berkeley) in 2010 was 2.3×10^{-4} mrem/yr (2.3×10^{-6} mSv/yr) to the MEI, well below the 10 mrem/yr (0.1 mSv/yr) dose standard. The location of this MEI is in the Berkeley West Biocenter's Potter Street building, about 98 ft (30 m) from the point where emissions from Berkeley Lab operations are released. The estimated collective effective dose equivalent to persons living within 50 mi (80 km) was 9.8×10^{-6} person-rem (9.8×10^{-8} person-Sv) attributable to the Lab's airborne emissions from Building 977 in 2010.

The effective dose equivalent from all sources at Berkeley Lab operations at the Joint BioEnergy Institute (Building 978 at 5885 Hollis Street, Emeryville) in 2010 was 1.7×10^{-5} mrem/yr $(1.7 \times 10^{-7} \text{ mSv/yr})$ to the MEI, well below the 10 mrem/yr (0.1 mSv/yr) dose standard. The location of this MEI is in the Joint BioEnergy Institute's Hollis Street building, about 62 ft (19 m) from the point where emissions from Berkeley Lab operations are released. The estimated collective effective dose equivalent to persons living within 50 mi (80 km) was 6.4×10^{-8} person-rem $(6.4 \times 10^{-10} \text{ person-Sv})$ attributable to the Lab's airborne emissions from Building 978 in 2010.

Acronyms

ALS Advanced Light Source

CAP88-PC EPA-approved dose calculation software

CFR Code of Federal Regulations

COMPLY EPA-approved dose calculation software

DOE U. S. Department of Energy

EPA U. S. Environmental Protection Agency

HEPA High-efficiency particulate air
JBEI Joint BioEnergy Institute
LHS Lawrence Hall of Science

LOASIS Lasers and Optical Accelerator Systems Integrated Studies

MEI Maximally exposed individual

NESHAP National Emission Standards for Hazardous Air Pollutants

TEDA Triethylene diamine

TEDA-DAC Triethylene-diamine-doped activated carbon

UC University of California

Facility Information

Lawrence Berkeley National Laboratory was founded by Ernest O. Lawrence in 1931. Lawrence received the 1939 Nobel Prize in physics for his invention of the cyclotron particle accelerator, and he is generally credited with the modern concept of interdisciplinary science, in which scientists, engineers, and technicians from different fields work together on complex scientific projects addressing national needs and programs. Lawrence's pioneering work established a great tradition of scientific inquiry and discovery at the Laboratory.

The Laboratory supports work in such diverse fields as chemistry, genomics, physical biosciences, nanoscience, life sciences, fundamental physics, accelerator physics and engineering, energy conservation technology, and materials science. Through its fundamental research in these fields, Berkeley Lab has achieved international recognition for its leadership and made numerous contributions to national programs. Berkeley Lab's research embraces the following concepts to align with the DOE mission:

- Explore the complexity of energy and matter
- Advance the science needed to attain abundant clean energy
- Understand energy impacts on our living planet
- Provide extraordinary tools for multidisciplinary research

1.1 Site Description

Berkeley Lab is located about 3 mi (5 km) east of San Francisco Bay (see Figure 1-1) on land owned by UC. The Laboratory's main site is situated on approximately 202 acres (82 hectares) of this land. University of California provides long-term land leases to the DOE for the buildings at the Laboratory.

The main site lies in the hills above the UC Berkeley campus, on the ridges and draws of Blackberry Canyon (which forms the western part of the site) and adjacent Strawberry Canyon (which forms the eastern part of the site). Elevations across the site range from 450 to 1,150 ft (135 to 350 m) above sea level. The western portion of the site is in Berkeley, with the eastern portion in Oakland (see Figure 1-2). The residential population of Berkeley is estimated at 103,000 and that of Oakland at 400,000 (MTC/ABAG 2000).

Berkeley Lab also leases space at two nearby, off-site buildings where biological research is conducted. The Berkeley West Biocenter (Building 977) is located at 717 Potter St. in Berkeley, and the Joint BioEnergy Institute (Building 978) is located at 5885 Hollis St. in Emeryville (see Figure 1-2). Elevations at these buildings range from 35 to 50 ft (11 to 15 m) above sea level. Emeryville is a small community between Berkeley and Oakland with a residential population of 6900 (MTC/ABAG 2000).

Adjacent land use consists of residential, institutional, and recreational areas. The area to the south and east of the Laboratory main site, which is UC land, is maintained largely in a natural state but includes

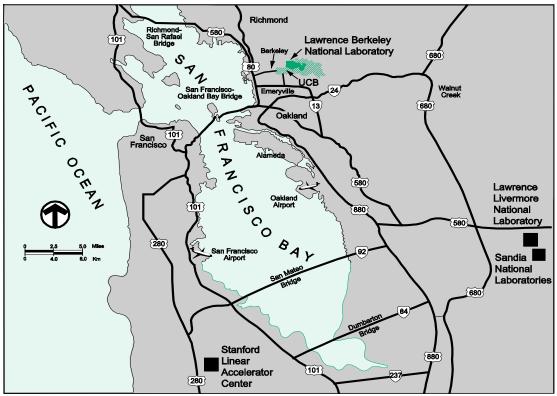


Figure 1-1 San Francisco Bay Area Map

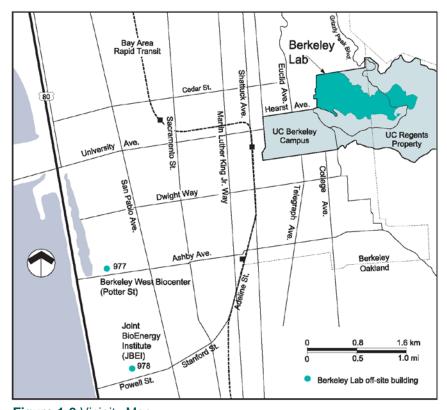


Figure 1-2 Vicinity Map

UC Berkeley's Strawberry Canyon Recreational Area and Botanical Garden. Northeast of the Laboratory are the university's Lawrence Hall of Science, Space Sciences Laboratory, and Mathematical Sciences

Research Institute. Berkeley Lab is bordered on the north by a residential neighborhood and on the west by the UC Berkeley campus, as well as by multiunit dwellings, student residence halls, and private homes. The area to the west of Berkeley Lab is highly urbanized.

The climate of the site is temperate, influenced by the moderating effects of nearby San Francisco Bay and the Pacific Ocean to the west, and on the east by the East Bay hills paralleling the eastern shore of this same bay. These physical barriers contribute significantly to the relatively warm, wet winters and cool, dry summers of the site. In 2010, precipitation totaled 37.1 in. (94.2 cm), absolute humidity averaged 8.0 g/m³, and ambient temperature averaged 54.7 °F (12.6 °C).

On-site wind patterns change little from one year to the next. The most prevalent wind pattern occurs during fair weather, with daytime westerly winds blowing off the bay, followed by lighter nighttime southeasterly drainage winds of the East Bay hills. The other predominant wind pattern is associated with storm systems passing through the region, which usually occur during the winter months. South-to-southeast winds in advance of each storm are followed by a shift to west or northwest winds after passage of the system.

Vegetation on the Berkeley Lab main site is a mixture of native plants, naturalized exotics, and ornamental species. The site was intensively grazed and farmed for approximately 150 years before the development of the Laboratory at this site in the 1930s. At the main site, the Laboratory manages vegetation in harmony with the local natural succession of native plant communities. Berkeley Lab also works to maintain a wooded and savanna character in the areas surrounding buildings and roads. Ornamental species are generally restricted to public spaces and courtyards and to areas adjacent to buildings. The site has no rare, threatened, or endangered species of plants.

Wildlife is abundant in the area surrounding the Berkeley Lab main site because the site is adjacent to open spaces managed by the East Bay Regional Park District and the university. Wildlife that frequents the site is typical of wildlife in disturbed (for example, previously grazed) areas that have a Mediterranean climate and are located in midlatitude California. More 120 species of birds, mammals, reptiles, and amphibians are thought to exist on the site. The most abundant large mammal is the Colombian black-tailed deer. The Berkeley Lab main site includes protected habitats for riparians, a threatened spider species, and a threatened snake species.

1.2 Source Description

Berkeley Lab operates facilities subject to the EPA's NESHAP regulations where radionuclides are produced, handled, stored, and potentially emitted (EPA 1989a). Figure 1-3 illustrates the Berkeley Lab general site configuration, including locations of buildings where radionuclides are used or produced and the Lawrence Hall of Science (or LHS, the location of the MEI). Radionuclides are also used at two offsite locations: Building 977 (the Berkeley West Biocenter) and Building 978 (the Joint BioEnergy Institute). These two locations are shown on Figure 1-2.

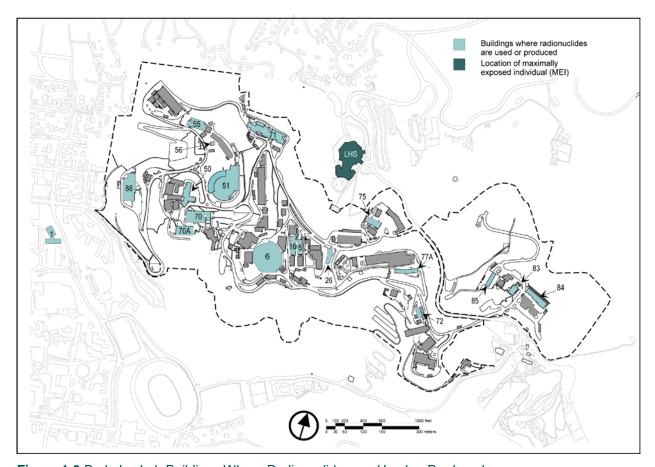


Figure 1-3 Berkeley Lab Buildings Where Radionuclides are Used or Produced

Researchers at the Lab use a wide variety of radionuclides in gas, liquid, and solid phases in their research programs. Work with radioactive material may be conducted on laboratory bench tops, in fumehoods, in gloveboxes, and/or under ultra-high vacuum. In addition, radioactive gases are a by-product of charged-particle accelerator operations in Buildings 6, 56, 71, and 88 include ¹¹C, ¹³N, ¹⁵O, ¹⁸F, and ³⁹Cl, which are short-lived radionuclides.

Radiochemical and radiobiological studies performed at Berkeley Lab typically use microcurie to tens of millicurie quantities of a variety of radionuclides. All use of radioactive material is conducted in accordance with a Berkeley Lab authorization or permit. An authorization or permit establishes the location of radioactive material areas (work areas where unsealed radioactive material is handled) and radioactive material storage areas (controlled areas where radioactive material is stored only, with no direct manipulation of the material), the required handling procedures, and appropriate work enclosures for each project.

<u>Table 1-1</u> identifies buildings at Berkeley Lab where use or production of unsealed radioactive material was authorized in 2010 and the radionuclides that were produced or authorized for use. Note that not all authorized radionuclides were used during the year.

Table 1-1 Buildings Where Unsealed Radionuclide Use or Production is Authorized by Berkeley Lab

Building	Building Name/Function	Radionuclides Authorized by Berkeley Lab
1	Donner Laboratory	C-14, H-3, P-32, U-238
5	Accelerator and Fusion Research	Activation products ^a
6	Advanced Light Source (ALS)	Activation products, Am-241, Am-243, Cm-243, Cm-246, Cm-248, Eu-152, Eu-154, H-3, I-129, Np-237, Pu-238, Pu-239, Pu-240, Pu-241, Pu-242, Sr-90, Tc-99, Th-232, U-233, U-235, U-238
16	Accelerator and Fusion Research	Activation products ^a
26	Radioanalytical Laboratory	Ac-227, alpha, Am-241, Am-243, beta-gamma, C-11, C-14, Cm-244, F-18, Fe-55, H-3, I-125, I-129, I-131, Np-237, P-32, Pb-210, Pu-238, Pu-239, Pu-242, S-35, Sr-90, Th-229, Th-230, Th-232, U-232, U-238
50	Physics Research	Ag-105, Ag-106m, Au-194, Be-7, Co-56, Co-57, Co-58, Co-60, Mn-52, Mn-54Na-22, Ni-57, Re-184m, Sc-46, Sc-48, Se-75, Ta-182, V-48, Zn-65
51	Former Bevatron Demolition Project	Alpha, beta-gamma
55	Center for Functional Imaging	Activation products, C-11, C-14, Ce-141, Co-55, Co-57, Cr-51, Cu-64, F-17, F-18, Ge-68, H-3, I-123, I-125, I-131, Nb-95, O-14, O-15, Ru-103, Sc-46, Sr-85, Tc-99m, Tl-201, U-238, Zr-89
56	Biomedical Isotope Facility	Activation products, a C-11, Co-55, Co-57, Cr-51, F-17, F-18, N-13, O-14, O-15, Zr-89
70	Environmental Energy Technology, Nuclear Science, and Earth Sciences Research	Activation products, alpha, Am-240, Am-241, Am-243, Ba-133, beta-gamma, Bi-207, Bk-249, Cf-249, Cf-252, Cm-243, Cm-244, Cm-248, Er-165, Er-169, Er-171, Es-253, Es-254, Eu-152, Fm-257, H-3, Hf-172, Hf-175, Hf-181, Ho-166, Ho-166m, I-129, K-40, Mn-54, Na-22, Nb-95, Ni-57, Np-237, Pb-212, Pu-238, Pu-239, Pu-242, Ra-226, Re-189, Rh-101, Sb-125, Sr-89, Sr-90, Ta-179, Ta-182, Tb-160, Tc-99, Th-228, Th-229, Th-230, Th-232, Tl-204, Tl-208, Tm-170, U-233, U-234, U-235, U-238, V-48, Y-90, Zr-88, Zr-95
70A	Nuclear, Chemical, and Life Sciences Research	Activation products, Am-241, Am-243, Ba-133, Bk-249, C-11, C-14, Cf-249, Cf-250, Cf-252, Cl-36, Cm-243, Cm-244, Cm-245, Cm-246, Cm-248, Co-60, Es-253, Es-254, Eu-152, Eu-154, Eu-155, Fe-59, fission products, H-3, Ho-166m, K-40, Ni-63, Ni-65, Np-237, Np-239, P-32, P-33, Pa-231, Pb-205, Pb-210, Pb-212, Pu-238, Pu-239, Pu-240, Pu-241, Pu-242, Pu-244, Ra-226, Ra-228, Ru-106, Sr-89, Sr-90, Tc-99, Th-228, Th-229, Th-230, Th-232, Tl-208, U-232, U-233, U-234, U-235, U-238
71	Lasers and Optical Accelerator Systems Integrated Studies (LOASIS)	Activation products ^a
72	Low-Background Facility	Ac-227, activation products, alpha, Am-241, Au-198, Be-7, Be-10, C-11, Cf-249, Cf-252, Co-56, Co-57, Co-58, Co-60, Cr-51, Cs-134, Cs-137, Eu-152, Eu-154, Fe-55, Fe-59, fission products, H-3, I-129, Mn-54, Na-22, Np-237, Np-239, P-32, Pa-231, Pa-233, Pu-238, Pu-239, Sb-124, Sc-46, Se-75, Sr-90, U-238, Zn-65

Building	Building Name/Function	Radionuclides Authorized by Berkeley Lab
75	Radioanalytical Laboratory	Ac-227, alpha, Am-241, Am-243, beta-gamma, C-11, C-14, Cm-244, F-18, Fe-55, H-3, I-125, I-129, I-131, Np-237, P-32, Pb-210, Pu-238, Pu-239, Pu-242, S-35, Sr-90, Th-229, Th-230, Th-232, U-232, U-238
77A	Physics Research	Ag-106m, Au-194, Co-56, Co-57, Co-58, Co-60, Mn-52, Na-22, Ni-57, Re-184m, Sc-48, Se-75, Ta-182, V-48, Zn-65, Be-7, Sc-46, Ag-105, Mn-54
83	Life Sciences Research	P-32
84	Life Sciences Research	H-3, P-32, S-35
85	Hazardous Waste Handling Facility	Alpha, beta-gamma, C-14, H-3
88	88-Inch Cyclotron	Ac-227, activation products, actinide tracers, alpha, Am-241, Au-198, Be-7, Be-10, beta-gamma, C-11, Cf-249, Cf-252, Cm-245, Cm-247, Cm-248, Co-56, Co-57, Co-58, Co-60, Cr-51, Cs-134, Cs-137, Eu-152, Eu-154, Fe-55, Fe-59, fission products, gamma tracers, Mn-54, Na-22, Np-237, Np-239, P-32, P-33, Pa-231, Pa-233, Pb-212, Pu-238, Pu-239, Pu-242, Pu-244, Sb-124, Sc-46, Se-75, Th-228, Th-229, Th-232, U-234, U-235, U-236, U-238, Zn-65
977	Berkeley West Biocenter (Potter Street Facility)	C-14, H-3, P-32
978	Joint BioEnergy Institute (JBEI)	C-14, Cd-109, H-3, P-32, S-35

^a Produced when materials such as air, water, and metals are activated by neutrons from accelerator or reactor operations

Air Emissions Data

At Berkeley Lab, radionuclides may be emitted from stacks or other exhaust points (such as vents) on the buildings where radionuclide use is authorized (see <u>Table 1-1</u>). Alternatively, radionuclides may be uniformly released from an area or emanate from a number of points randomly distributed over an area; this is a diffuse source.

If the radionuclides emitted from any type of source could result in a potential dose of 0.1 mrem/yr (0.001 mSv/yr) or more to a member of the public at an off-site point where there is a residence, school, business, or office, it is considered a major source, and the EPA requires the Lab to measure its emissions continuously. Berkeley Lab has no major sources.

If emitted radionuclides could result in a potential dose of less than 0.1 mrem/yr (0.001 mSv/yr), the source of the radionuclides is considered a minor source. The EPA requires the Lab to perform periodic confirmatory measurements on such sources. In 2010, all Berkeley Lab sources were minor sources of radionuclides. Emissions from minor sources were measured by real-time monitoring, continuous sampling with monthly analysis of the samples, or sampling for one month at a time four times a year; or were calculated based on quantities received, used, or produced during the year. The approach to measuring radionuclides from Berkeley Lab sources is summarized in Table 2-1, which EPA Region 9 approved in 2005 (Jordan 2005).

Among the minor sources at Berkeley Lab are a few stacks, or point sources, where the emissions are measured. There are many more radioactive material areas, or group sources, where emissions are calculated.

Table 2-1 EPA-Approved Radionuclide Emissions Measurement Approach

Potential Dose (mrem/yr) ^a	Category	Requirements		
dose <u>></u> 10.0	Non-compliant	Reduction or relocation of source term and reevaluation prior to authorization.		
10.0 > dose ≥ 1.0	1	 Continuous sampling with weekly collection and analysis AND Real-time monitoring with alarming telemetry for short-lived (t_{1/2}< 100 h) radionuclides resulting in >10% of potential dose to the maximally exposed individual. 		
1.0 > dose <u>></u> 0.1	2	 Continuous sampling with monthly collection and analysis OR Real-time monitoring for short-lived (t_{1/2} < 100 h) radionuclides resulting in >10% of potential dose to the maximally exposed individual. 		
0.1 > dose <u>></u> 0.01	3	Periodic sampling 25% of the year.		
dose < 0.01	4	Potential dose evaluation before project starts and when annual radionuclide use limits (as authorized by internal Lab documents) are revised; no sampling or monitoring required.		

a 1 mrem = 0.01 mSv

Occasionally, activities at the Laboratory result in a diffuse source of radionuclide emissions. Diffuse sources are not actively ventilated and their emissions may be measured or calculated, depending on potential dose from those emissions (Table 2-1). In 2010, Berkeley Lab had one potential minor diffuse source, created during demolition of the former Bevatron, Building 51, which required breaking up concrete that had been part of the Bevatron accelerator structure. Although emissions were controlled by spraying water whenever there was visible dust, concrete rubbling could result in diffuse airborne emissions. Because the concrete came from an accelerator facility, very low levels of radionuclides have been measured in some of the concrete.

A single building may have all three types of sources: point (measured stacks [typically Category 3]), group (calculated emissions [Category 4]), and diffuse (calculated wide-area emissions [Category 3 or 4]) sources (<u>Table 2-2</u>). The total activity of each radionuclide from stack air measurements and calculations is shown in <u>Table 2-3</u>.

Table 2-2 Measurement Category of Sources

	Major Sources		Minor S	Sources	
Building	Category 1	Category 2	Category 3	Category 4	Total
1	0	0	0	6	6
5	0	0	0	1	1
6	0	0	0	12	12
16	0	0	0	1	1
26	0	0	0	3	3
50	0	0	0	1	1
51	0	0	0	3	3
55	0	0	0	11	11
56	0	0	2	0	2
70	0	0	0	11	11
70A	0	0	2	24	26
71	0	0	0	2	2
72	0	0	0	2	2
75	0	0	1	3	4
77A	0	0	0	1	1
83	0	0	0	2	2
84	0	0	0	7	7
85	0	0	2	1	3
88	0	0	3	13	16
977	0	0	0	6	6
978	0	0	0	2	2
Total	0	0	10	112	122

Table 2-3 Total Activity Emitted in 2010

Radio- nuclide	Activity (Ci/yr) ^a	Radio- nuclide	Activity (Ci/yr)	Radio- nuclide	Activity (Ci/yr)	Radio- nuclide	Activity (Ci/yr)
		Beta					
F-18	1.90E+00	(Sr-90)	3.50E-07	I-131	9.55E-10	Cs-134	1.77E-13
C-11	1.12E-02	Be-7	2.70E-07	Co-60	2.87E-10	Zn-65	1.59E-13
N-13	8.47E-04	Tc-99	2.56E-07	I-129	1.43E-10	Ba-133	1.40E-13
H-3	2.58E-04	Sb-125	2.50E-07	C-14	1.10E-10	Cm-244	5.00E-15
I-123	2.00E-04	Zr-95	2.50E-07	U-236	3.28E-11	Mn-54	9.57E-16
Tc-99m	1.94E-04	CI-38	1.70E-07	Th-232	2.50E-11	Co-56	8.20E-16
		Alpha					
Cu-64	5.99E-05	(Th-232)	9.98E-08	Am-241	6.61E-12	Co-57	5.49E-16
Ge-68	1.91E-05	Sr-90	6.61E-08	Ra-226	4.04E-12	V-48	3.40E-16
O-15	1.83E-05	Pu-242	2.20E-08	Hg-194	2.23E-12	Ac-227	2.00E-16
P-32	1.50E-05	Pu-239	1.96E-08	Bi-207	1.93E-12	U-234	6.00E-17
TI-201	8.00E-06	Ba-131	1.88E-08	Pb-210	1.50E-12	Pu-238	1.37E-17
U-238	6.68E-06	I-125	1.42E-08	Cf-249	8.39E-13	Na-22	1.00E-17
CI-39	2.10E-06	Np-237	5.20E-09	Th-230	2.73E-13	Cm-245	1.00E-18
Ar-41	5.00E-07	Eu-152	4.37E-09	Pb-202	1.96E-13	Cm-248	2.09E-08
Cs-137	4.98E-07	U-235	1.00E-09	Ag-108m	1.84E-13		
						Total	1.91 Ci/yr

 $a 1 Ci = 3.7 \times 10^{10} Bq$

2.1 Point Sources: Measured Emissions

In accordance with the EPA-approved approach (<u>Table 2-1</u>), Berkeley Lab measures emissions from stacks or other exhaust points if the potential dose from the sources could exceed 0.01 mrem/yr (0.0001 mSv/yr); these are Category 3 sources (recall that Berkeley Lab has no major [Category 1 or 2] sources). Additionally, Berkeley Lab may choose to measure emissions from stacks with less dose impact (Category 4) to ensure that those emissions are well understood. Thus stacks where emissions are measured include both Category 3 and Category 4 sources (<u>Table 2-4</u>).

At sampled stacks, a representative sample of the exhaust air passes through the appropriate collection medium (silica gel for ³H, sodium hydroxide solution for ¹⁴C, activated carbon for ¹²⁵I, and fiberglass filter for particulate alpha- and beta-emitting radionuclides). Each medium is changed out after a month, and the radionuclides collected on the media are analyzed at a commercial laboratory. At sites that are continuously monitored in real time, a sample of the exhaust air is passed through or over detectors that provide a nearly instantaneous measurement of positron-emitting radionuclides (at Buildings 56 and 88) or alpha-emitting radionuclides (at Building 70A). Real-time measurements are recorded and archived.

Many stacks and vents at Berkeley Lab have effluent controls; that is, a filter to collect particulates or gases before they are released to the atmosphere. For example, the measured stacks (point sources) on Building 70A have high-efficiency particulate air (HEPA) filters to prevent small particles from entering the atmosphere. Where effluent controls are in place, samples are collected downstream from the filter. Table 2-4 shows effluent controls on sampled and monitored stacks.

HEPA

> 99

> 99

Number of **Building** Stack Measurement **Emissions Efficiency Stacks** Identification Category Control (%) HEPA a > 99 1 55-128H 4 55 TEDA-DAC^b > 75 56-Accelerator 3 None c 56 2 NA 56-Glovebox 3 70-147A 4 **HEPA** 70 1 > 99 70A-1129P/RT 3 70A 2 **HEPA** > 99 70A-1129H 3 1 3 75 75-127H **HEPA** > 99 85-Fumehood 3 85 2 **HEPA**

3 3

3

3

Table 2-4 Stacks Where Radionuclide Emissions are Measured

88

3

85-Glovebox

88-135H

88-Cave0

88-RT

2.2 **Group Sources: Calculated Emissions**

In accordance with the EPA-approved approach (Table 2-1), Berkeley Lab calculates emissions from stacks or other exhaust points if the potential dose from the sources is less than 0.01 mrem/yr (0.0001 mSv/yr). These Category 4 sources (typically radioactive material areas where small amounts of radionuclides are authorized for use) are grouped by building, as shown in Table 2-5, to simplify reporting (DOE 1994). The amount of each radionuclide emitted is calculated by multiplying the entire quantity of that radionuclide received, used, or produced during the year by the appropriate EPA-specified release factor based on the radionuclide's physical state (provided in 40 CFR Part 61, Appendix D). This method provides a conservative, upper-bound estimate of the annual emissions.

Emissions are typically calculated assuming that all radionuclides received during the year are used in areas where stacks are not sampled or monitored. In fact, some received radionuclides may be emitted through sampled or monitored stacks. Emissions of these radionuclides are thus overestimated because they are accounted for as both calculated and measured emissions. For group sources there typically are no effluent controls because the emissions from these sources are very low activity.

^a High-efficiency particulate air filter

^b Triethylene-diamine-doped activated carbon trap

^c Radionuclides emitted from accelerators are short-lived, gaseous, activation products, for which emission control is impractical

Table 2-5 Sources for Which Radionuclide Emissions are Calculated

Building	Number of Radioactive Material Areas	Emissions Control	Efficiency (%)
1	6	None	NA ^a
5	1	None	NA
6	12	None	NA
16	1	None	NA
26	3	None	NA
50	1	None	NA
51	3	None	NA
55	11	HEPA ^b None	> 99 NA
70	11	HEPA None	> 99 NA
70A	26	HEPA None	> 99 NA
71	2	None	NA
72	2	None	NA
75	4	HEPA None	> 99 NA
77A	1	None	NA
83	2	None	NA
84	7	None	NA
88	16	HEPA	> 99
977	6	None	NA
978	2	None	NA

^a Not applicable

2.3 Nonpoint Sources: Diffuse Emissions

In 2010, Berkeley Lab had one potential minor diffuse source, created during demolition of the former Bevatron, Building 51, which required breaking up concrete that had been part of the Bevatron accelerator structure. Although emissions were controlled by spraying water whenever there was visible dust, concrete rubbling could result in diffuse airborne emissions. Because the concrete came from an accelerator facility, very low levels of radionuclides have been measured in some of the concrete. The possible airborne emissions from these activities were estimated using methods described in the EPA document, *Methods for Estimating Fugitive Air Emissions of Radionuclides from Diffuse Sources at DOE Facilities* (EPA 2004), with concurrence from EPA Region 9 (Appendix A).

^b High-efficiency particulate air filter

Dose Assessment

3.1 Dose Model

To comply with NESHAP regulations and DOE guidance, the EPA-approved atmospheric dispersion and radiation dose calculation computer code, CAP88-PC, Versions 2.1.1 and 3.0, was used to calculate the dose at various distances and from various release points (EPA 2006). For buildings 1, 977, and 978, where the nearest member of the public was much less than 328 ft (100 m) from the source, the EPA-approved dose model COMPLY was used for that location; CAP88-PC was used for doses at all other distances from the building. Doses to members of the public nearest each building were compared, and the location where the dose was greatest was determined to be the Laboratory MEI.

Dose from emissions from individual Laboratory buildings was calculated. For all buildings on the main site, including Building 1, these individual doses were then summed. (Although Building 1 is located outside of Berkeley Lab's main perimeter and could be considered a separate facility since it is not on the same contiguous site as other main site buildings [see Figure 1-3], Building 1 is located on the adjacent UC Berkeley campus and is within walking distance of the main Berkeley Lab site.) For Buildings 977 (the Berkeley West Biocenter) and 978 (the Joint BioEnergy Institute), doses were evaluated separately from other Laboratory buildings and from each other. Buildings 977 and 978 are located about 3 mi (5 km) west and southwest of the main Laboratory site (see Figure 1-2). Annual radioactive air emissions from these off-site buildings and the associated dose to each nearest member of the public are much less than the highest building emissions and doses at the main Berkeley Lab site.

3.2 Input Parameters

Input parameters to CAP88-PC and COMPLY include the emissions discussed in Section 2, and building-specific and common parameters, discussed below. To estimate dose, CAP88-PC, Version 3, provides a library of 825 radionuclides, which includes data for all of the radionuclides listed in <u>Table 2-3</u> except ²⁴⁸Cm. For this radionuclide, Version 2.1.1 of CAP88-PC was used. (Note that the dose from ²⁴⁸Cm to the sitewide MEI is very low—about 0.6% of the total dose from all radionuclides.)

In addition, when calculating dose from particulate alpha- and beta-emitting radionuclides, Berkeley Lab assigns gross alpha and gross beta measurements to the high-hazard alpha-emitting radionuclide, ²³²Th, and the high-hazard beta-emitting radionuclide, ⁹⁰Sr, respectively. The use of the high-hazard radionuclides ²³²Th and ⁹⁰Sr to represent alpha and beta emissions provides an upper-bound estimate of the dose.

3.2.1 Building-Specific Parameters

For dose assessment, some Berkeley Lab buildings can be combined because they are near each other and similar operations are performed there (<u>DOE 1994</u>). For combined buildings and buildings with many unsampled stacks, average stack height and conservative stack diameter (0.1 m), exit velocity (0 m/s), and receptor distance (from nearest edge of building) values are typically used (<u>Table 3-1</u>). These values overestimate the impact of air emissions on a nearby person and are chosen to ensure that stack emissions are not underestimated.

For Buildings 56 and 85, where radionuclide use can be correlated to specific stacks (such as glovebox or fumehood stacks), the actual stack diameter and exit velocity are used and modeled separately. The input parameters that vary with building are shown in <u>Table 3-1</u>.

For Buildings 50 and 77A, authorized radionuclides are in the form of activated components, which are fixed and not readily dispersed into the air. Because airborne radionuclides are unlikely to be released from these buildings, no releases were modeled.

Table 3-1 Building-Specific Input Parameters

Building Number	Stack Height (m) ^a	Stack Diameter (m)	Exit Velocity (m/s)	Nearest Member of Public	MEI Location	Farm Location ^b
1	18	0.1	0	10 m ESE	990 m ENE	4200 m N
5/6/16	9	0.1	0	350 m NNE	370 m NNE	3200 m N
26	8	0.1	0	250 m N	250 m N	3200 m N
51 (diffuse)	0	6362 m ²	0	400 m NNW	410 m ENE	3200 m N
55/56 Accelerator stack Glovebox stack General stacks	16 16 12	0.3 0.46 0.1	3.39 1.96 0	250 m NNW 250 m NNW 250 m NNW	460 m E 460 m E 460 m E	3200 m N 3200 m N 3200 m N
70/70A	16	0.1	0	270 m WSW	530 m ENE	3200 m N
71	13	0.1	0	190 m NNW	310 m ESE	3200 m N
72	3	0.1	0	230 m SSW	500 m NW	3200 m N
75	7.4	0.35	8.75	110 m NW	110 m NW	3200 m N
83/84	7	0.1	0	160 m SSE	690 m WNW	3200 m N
85 Glovebox stack Fumehood stack General stacks	16 16 16	0.23 0.46 0.1	7.14 6.70 0	210 m SSE 210 m SSE 210 m SSE	570 m WNW 570 m WNW 570 m WNW	3200 m N 3200 m N 3200 m N
88	13	0.1	0	110 m W	690 m ENE	3200 m N
977	16	0.1	0	30 m N	30 m N	8200 m N
978	28	0.26	0	19 m E	19 m E	8200 m N

^a 1 m = 3.281 ft

^b Approximate distance to Wildcat Canyon Regional Preserve where cattle graze

For Buildings 977 and 978, which are off the main Berkeley Lab site and are shared by LBNL employees and members of the public, the distance to the MEI is the shortest distance from the release point on the building roof to the location of the nearest member of the public in the building (measured along the building surfaces). This is the method required by the COMPLY software (EPA 1989b).

3.2.2 Common Parameters

The input parameters that are common among Berkeley Lab sources include meteorological data and agricultural data. Meteorological data were compiled from on-site data for 2010. Berkeley Lab collects this data from a 66-ft (20-m) tower located in the central portion of the Laboratory. Site-specific values for annual precipitation (37.1 in. [94.2 cm]), average ambient temperature (54.7 °F [12.6 °C]), and average absolute humidity (8.0 g/m³) were used. The default value for lid (mixing) height, 3300 ft (1000 m), was chosen. The 2010 wind data are provided in Appendix B.

Agricultural data were obtained from the California Department of Food and Agriculture and the urban scenario was chosen (Wahl 2004). The values include the following.

- Vegetables, fraction home-produced: 0.076
- Vegetables, fraction from assessment area: 0.924
- Milk, fraction from assessment area: 1
- Meat, fraction home-produced: 0.008
- Meat, fraction from assessment area: 0.992
- Beef cattle density: 1.9 per km²
- Milk cattle density: 4.0 per km²
- Land fraction cultivated for vegetable crops: 4.6%

3.3 Compliance Assessment

3.3.1 MEI Dose and Location

Doses from Berkeley Lab's airborne emissions are well below the 10 mrem/yr (0.1 mSv/yr) NESHAP dose standard. As shown in Table 3-2, the sum of calculated doses from all sources at Berkeley Lab main site in 2010 was 7.3×10^{-3} mrem/yr (7.3×10^{-5} mSv/yr) to the MEI. The location of this hypothetical person is the UC Lawrence Hall of Science, about 1500 ft (460 m) east of Buildings 55 and 56. The calculated doses from sources at the offsite Buildings 977 and 978 to the nearest member of the public working in the same building (the building-specific MEI) were much less: 2.3×10^{-4} mrem/yr (2.3×10^{-6} mSv/yr) and 1.7×10^{-5} mrem/yr (1.7×10^{-7} mSv/yr), respectively.

Although no one actually lives at the MEI locations, the EPA-approved software calculates the dose assuming a person resides there 24 hours a day for the entire year, eats meat and vegetables grown nearby (see the agricultural parameters in <u>Section 3.2.2</u>), and drinks water from local wells contaminated with deposited airborne radionuclides. Thus the calculated dose to this hypothetical person, the MEI, is greater

Table 3-2 Dose Assessment Results

Building	Primary Radionuclides Contributing to MEI Dose ^a	Dose to MEI (mrem/yr) ^b	Percent of Total Dose (%)
1	None	0	< 0.1
5/6/16	None	5.8E-7	< 0.1
26	None	0	< 0.1
51 (diffuse)	None	8.0E-7	< 0.1
55/56	F-18, Tc-99 ^m , Ge-68, Te-123	5.8E-3	80.4
70/70A	Th-230, Ra-226, Pb-210, Po-210, U-234, U-238	1.4E-3	18.9
71	None	8.3E-8	< 0.1
72	None	0	< 0.1
75	None	9.6E-6	0.1
83/84	None	5.6E-6	< 0.1
85	None	1.3E-6	< 0.1
88	None	3.6E-5	0.5
Total (Main Si	te)	7.3E-3	100
977	P-32	2.3E-4	100
978	P-32, H-3	1.7E-5	100

^a Radionuclides that contribute more than 1% of the potential dose to the MEI from this source

than the dose to an actual member of the public visiting the Hall of Science or working in Buildings 977 or 978.

Fluorine-18 emitted from Building 56 stacks accounts for about 65% of the dose to the Berkeley Lab main site MEI. Another 10% of the dose is due to ^{99m}Tc and its decay products used in Building 55 laboratories.

Annual ¹⁸F emissions from Building 56 stacks are overestimated because false-positive results occur when ¹⁸F adsorbs onto the real-time detectors. These false positive measurements are included in the calculation of annual ¹⁸F emissions. As a result, the calculated dose represents an upper-bound estimate of dose from ¹⁸F.

The CAP88-PC and COMPLY codes were validated by performing sample assessments. The output of each sample assessment was compared to output provided in the users' guides (<u>EPA 2007</u>, EPA 1989b). The two outputs are identical, indicating that the code performed as intended.

^b Dose from all radionuclides emitted; 1 mrem = 0.01 mSv

3.3.2 Certification

I certify under penalty of law that I have personally examined and am familiar with the information submitted herein, and based on my inquiry of those individuals immediately responsible for obtaining the information, I believe that the submitted information is true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment (see 18 U.S.C. 1001).

Certified By:

Date:

5-25-11

Douglas M. Fleming, Division Director Environment, Health and Safety Division

Lawrence Berkeley National Lab

Date:

6/2/2011

Aundra Richards, Site Manager Department of Energy

Lawrence Berkeley Site Office

Additional Information

4.1 Additions or Modifications

There was no facility construction or modification (fabrication, erection, or installation) in 2010 relevant to the NESHAP regulation. Other changes in work authorized noted in this report include

- break-up of concrete at the site of Building 51 (the old Bevatron) in preparation for transportation;
- transfer of neutron generator operations from Building 52 to Buildings 5, 16, and 71; and
- termination of life sciences research in Building 74.

4.2 Unplanned Releases

There were no unplanned releases in 2010 from the Berkeley Lab site.

4.3 Diffuse Emissions

In 2010, Berkeley Lab had one potential minor diffuse source, created during demolition of the former Bevatron, Building 51, which required breaking up concrete that had been part of the Bevatron accelerator structure. Although emissions were controlled by spraying water whenever there was visible dust, concrete rubbling could result in diffuse airborne emissions. Because the concrete came from an accelerator facility, very low levels of radionuclides have been measured in some of the concrete. The possible airborne emissions from these activities were estimated using methods described in the EPA document, *Methods for Estimating Fugitive Air Emissions of Radionuclides from Diffuse Sources at DOE Facilities* (EPA 2004), with concurrence from EPA Region 9 (Appendix A). The calculated dose from this diffuse source was very low, 8.0×10^{-7} mrem/y, which is about 0.01% of the total dose to the Laboratory main site MEI.

Supplemental Information

5.1 Collective Dose Estimate

Collective population dose is calculated as the average radiation dose to a person in a specified area, multiplied by the number of people in that area. In accordance with DOE and EPA guidance documents, all radionuclides potentially emitted from the main Laboratory site in 2010 (shown in <u>Table 2-3</u>) were assumed to be released from a hypothetical, centrally located stack that is 52 ft (16 m) high, is 1 ft (0.3 m) in diameter, and has an exit velocity of 13.5 ft/s (4.1 m/s) (<u>Wahl 2003</u>). Radionuclides potentially emitted from Building 977 were assumed to be released from the building stack, which is 52 ft (16 m) high, is conservatively assumed to be 0.3 ft (0.1 m) in diameter, and has a conservatively assumed exit velocity of 0 ft/s (0 m/s). Radionuclides potentially emitted from Building 978 were assumed to be released from the building stack, which is 92 ft (28 m) high, is 0.85 ft (0.26 m) in diameter, and has a conservatively assumed exit velocity of 0 ft/s (0 m/s).

The total population within 50 mi (80 km) of the main Laboratory site is approximately 6,615,000 based on the LandScan Global Population Database (<u>Dobson and Bright 2002</u>; <u>Gallegos 2002</u>). The same population was assumed to be appropriate for Buildings 977 and 978, since they are relatively close to (within 3 mi [5 km] of) the main Laboratory site. The population file is provided in <u>Appendix C</u>. The estimated collective dose to persons living within 50 mi (80 km) of the main Berkeley Lab site is 1.5×10^{-1} person-rem (1.5×10^{-3} person-Sv) attributable to Berkeley Lab airborne emissions in 2010. The collective doses from Building 977 and 978 are 9.8×10^{-6} person-rem (9.8×10^{-8} person-Sv) and 6.4×10^{-8} person-rem (6.4×10^{-10} person-Sv), respectively.

5.2 40 CFR 61 Subparts Q and T

Subparts Q and T of 40 CFR 61 are not applicable to Berkeley Lab, as the Laboratory does not operate a storage and disposal facility for radium-containing material or uranium mill tailings.

5.3 Radon Emissions

The Laboratory does not process, manage, or possess 232 U or 232 Th in quantities that could produce 220 Rn emissions having an impact ≥ 0.1 mrem/yr (0.001 mSv/yr) or $\geq 10\%$ of the nonradon dose to the public. The Laboratory does not maintain nondisposal or nonstorage sources of 222 Rn emissions in quantities having an impact ≥ 0.1 mrem/yr (0.001 mSv/yr) or $\geq 10\%$ of the nonradon dose to the public.

5.4 Facility Compliance

In 2010, no release points produced emissions having an impact ≥ 0.1 mrem/yr (0.001 mSv/yr) and no sources were subject to continuous monitoring requirements. Periodic confirmatory measurements were conducted in accordance with the EPA-approved measurement approach (<u>Table 2-1</u>).

References

DOE 1994: U.S. Department of Energy, "Calendar Year 1993 Radionuclide Air Emissions Annual Reports for DOE Sites," memo to DOE site offices providing guidance for report preparation (March 22, 1994).

Dobson and Bright 2002: Dobson, J. E., and E. A. Bright, *Landscan Global Population 1998 Database*, www.ornl.gov/gist/projects/LandScan/landscan_doc.htm (August 2002).

EPA 1989a: U.S. Environmental Protection Agency, National Emission Standards for Emissions of Radionuclides Other Than Radon From Department of Energy Facilities, 40 CFR Part 61, Subpart H (1989, as amended).

EPA 1989b: U.S. Environmental Protection Agency, *Users Guide for the COMPLY Code*, EPA 520/1-89/2003 (October 1989).

EPA 2004: US Environmental Protection Agency, *Methods for Estimating Fugitive Air Emissions of Radionuclides from Diffuse Sources at DOE Facilities*, Final Report, Eastern Research Group, Inc. (September 3, 2004).

EPA 2006: U.S. Environmental Protection Agency, National Emission Standards for Hazardous Air Pollutants (Radionuclides), Availability of Updated Compliance Model, Federal Register, Vol. 71, No. 34, p. 8854 (February 21, 2006).

EPA 2007: U.S. Environmental Protection Agency, *CAP88-PC Version 3.0 User Guide*, Trinity Engineering Associates, Inc. (December 2007).

Gallegos 2002: Gallegos, G., "Estimating Populations for Collective Dose Calculations," *Health Physics*, Volume 83, Number 2, pages 283–286 (August 2002).

Jordan 2005: Jordan, D., "Request for Approval for LBNL to Revise Its Radionuclide NESHAP Monitoring Approach," memo from EPA Region 9 to R. Pauer, LBNL, documenting approval of monitoring approach (April 5, 2005).

MTC/ABAG 2000: Metropolitan Transportation Commission/Association of Bay Area Governments, *Bay Area Census*, 2000 census data website, http://www.bayareacensus.ca.gov/cities/cities.htm (accessed April 21, 2011).

Wahl 2003: Wahl, L., "Annual Calculation of Collective Dose from Airborne Radionuclides," memo ES-03-037 to file documenting stack parameters for collective dose calculations (October 9, 2003).

Wahl 2004: Wahl, L., "Agricultural Data Used in CAP88-PC," memo ES-05-003 to file documenting source of agricultural values used for collective dose calculations (October 26, 2004).

Appendix A

Bevatron Diffuse Source

Letter Requesting EPA Concurrence with Bevatron Diffuse Source Approach

From: Rosenblum.Shelly@epamail.epa.gov < Rosenblum.Shelly@epamail.epa.gov >

Fri, Apr 15, 2011 at 9:14 PM

To: lewahl@lbl.gov

Dear Ms. Wahl:

Thank you for informing me of this action. I concur with the use of the attached method for analyzing the emissions from the removal of concrete from the demolition of the Bevatron Acclerator site.

sincerely, Shelly Rosenblum

-----Linnea Wahl < lewahl@lbl.gov wrote: -----

To: Shelly Rosenblum/R9/USEPA/US@EPA From: Linnea Wahl < lewahl@lbl.gov>

Date: 04/15/2011 06:05PM

Cc: "Abbott, Kim" < Kim.Abbott@bso.science.doe.gov>, Ronald Pauer < ropauer@lbl.gov>, Douglas Fleming < dmfleming@lbl.gov>, Suzie Kim < suziehkim@lbl.gov>

Subject: Letter Requesting EPA Concurrence with Bevatron Diffuse Source Approach [Quoted text hidden]

[attachment "EPADiifuseSourceRequest.pdf" removed by Shelly Rosenblum/R9/USEPA/US]

Environmental Services Group Environment, Health & Safety Division

ES-11-056

April 15, 2011

Mr. Shelly Rosenblum U.S. Environmental Protection Agency, Region 9 75 Hawthorne Street San Francisco, CA, 94105

Dear Mr. Rosenblum,

In 2010, Lawrence Berkeley National Laboratory (LBNL) conducted demolition activities at the site of the former Bevatron, Building 51, which included breaking up concrete that had been part of the Bevatron accelerator structure. Although emissions were controlled by spraying water whenever there was visible dust, concrete rubbling could result in diffuse airborne emissions. Because the concrete came from an accelerator facility, very low levels of radionuclides have been measured in some of the concrete.

To account for dose to the public from these diffuse airborne emissions, we propose first to conservatively estimate the source term (in curies/year) by multiplying the maximum activity of each radionuclide (60 Co, 152 Eu, and 3 H) measured in the concrete, the total quantity of concrete broken up or shipped during the year, and the Environmental Protection Agency's (EPA's) air pollutant emission factor. Use of the EPA's emission factor is recommended in "Methods for Estimating Fugitive Air Emissions of Radionuclides from Diffuse Sources at DOE Facilities." Table ES-1 in this document recommends using the "AP-42 aggregate handling emission factor" for diffuse source emissions from demolition activities. The appropriate AP-42 emission factor for concrete rubbling with dust suppression is 0.0006 kilograms of total particulate matter per megagram of concrete processed (controlled tertiary crushing).²

Using the calculated source term, we will then model the dose to the maximally exposed individual as a ground-level area source using the EPA-approved CAP88-PC dose calculation software. Other model input will include on-site meteorological data from the reporting year (as is used for all LBNL sources of airborne radionuclides).

Preliminary dose estimates indicate that using this approach, the dose to the maximally exposed individual will be inconsequential: on the order of 1 nanorem/year. This will not significantly affect the total dose to the maximally exposed individual from Berkeley Lab operations, which was 0.007 millirem/year in 2009.

The EPA document describing methods for estimating fugitive air emissions indicates that LBNL should provide its methodology for assessing diffuse sources to EPA Region 9 for review (p. xiii). This memo documents LBNL's submission to EPA for review.

Do you concur with this approach to determining diffuse airborne emissions from demolition operations at the site of the former Bevatron? If so, this is the method we will use in reporting the 2010 and future years' annual radionuclide air emissions from the Building 51 Bevatron demolition under the National Emissions Standards for Hazardous Air Pollutants (NESHAP).

We look forward to your response, if at all possible, by May 1. Please do not hesitate to contact me (510-486-7614) or Linnea Wahl (510-486-7623) if you have any questions.

Sincerely,

Limes L. Wall

for

Ron Pauer

LBNL Environmental Services Group Leader

References

- 1. U.S. Environmental Protection Agency, "Methods for Estimating Fugitive Air Emissions of Radionuclides from Diffuse Sources at DOE Facilities," September 3, 2004 (http://www.epa.gov/radiation/neshaps/pubs.html, accessed 4/14/11).
- 2. U.S. Environmental Protection Agency, "Compilation of Air Pollutant Emission Factors, Volume I, Stationary Point and Area Sources," AP-42, 5th edition, January 1995 (http://www.epa.gov/ttnchie1/ap42/, accessed 4/14/11).

Cc: Kim Abbott, DOE Berkeley Site Office
Doug Fleming, LBNL Environment, Health, and Safety Division
Linnea Wahl, LBNL Environmental Services Group
ESG files

Appendix B Meteorological Data

Wind	Stability	2010 Average Wind Frequency at Given Speed					
Direction	Category	1-3 knots	4-6 knots	7-10 knots	11-16 knots	17- 21 knots	> 21 knots
N	А	0.00091	0.00069	0.00000	0.00000	0.00000	0.00000
NNE	Α	0.00057	0.00023	0.00000	0.00000	0.00000	0.00000
NE	Α	0.00171	0.00091	0.00000	0.00000	0.00000	0.00000
ENE	Α	0.00103	0.00103	0.00000	0.00000	0.00000	0.00000
Е	Α	0.00069	0.00080	0.00000	0.00000	0.00000	0.00000
ESE	Α	0.00126	0.00023	0.00000	0.00000	0.00000	0.00000
SE	Α	0.00103	0.00023	0.00000	0.00000	0.00000	0.00000
SSE	Α	0.00137	0.00297	0.00000	0.00000	0.00000	0.00000
S	Α	0.00411	0.00263	0.00000	0.00000	0.00000	0.00000
SSW	Α	0.00331	0.00263	0.00000	0.00000	0.00000	0.00000
SW	Α	0.00423	0.00126	0.00000	0.00000	0.00000	0.00000
WSW	Α	0.00377	0.00091	0.00000	0.00000	0.00000	0.00000
W	Α	0.00468	0.00046	0.00000	0.00000	0.00000	0.00000
WNW	Α	0.00217	0.00011	0.00000	0.00000	0.00000	0.00000
NW	Α	0.00171	0.00148	0.00000	0.00000	0.00000	0.00000
NNW	Α	0.00126	0.00080	0.00000	0.00000	0.00000	0.00000
N	В	0.00011	0.00046	0.00011	0.00000	0.00000	0.00000
NNE	В	0.00000	0.00011	0.00000	0.00000	0.00000	0.00000
NE	В	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000
ENE	В	0.00023	0.00080	0.00011	0.00000	0.00000	0.00000

Wind	Stability		2010	Average Wind Fre	equency at Given Sp	peed	
Direction	Category	1-3 knots	4-6 knots	7-10 knots	11-16 knots	17- 21 knots	> 21 knots
Е	В	0.00023	0.00011	0.00034	0.00000	0.00000	0.00000
ESE	В	0.00046	0.00023	0.00011	0.00000	0.00000	0.00000
SE	В	0.00160	0.00320	0.00080	0.00000	0.00000	0.00000
SSE	В	0.00720	0.00685	0.00069	0.00000	0.00000	0.00000
S	В	0.00548	0.00514	0.00069	0.00000	0.00000	0.00000
SSW	В	0.00640	0.00297	0.00046	0.00000	0.00000	0.00000
SW	В	0.00640	0.00662	0.00034	0.00000	0.00000	0.00000
WSW	В	0.00571	0.00708	0.00069	0.00000	0.00000	0.00000
W	В	0.00742	0.00560	0.00000	0.00000 0.00000		0.00000
WNW	В	0.00217	0.00171	0.00034 0.00000		0.00000	0.00000
NW	В	0.00103	0.00148	0.00023	0.00000	0.00000 0.00000	
NNW	В	0.00069	0.00069	0.00023	0.00000	0.00000	0.00000
N	С	0.00046	0.00000	0.00000	0.00000	0.00000	0.00000
NNE	С	0.00011	0.00000	0.00000	0.00000	0.00000	0.00000
NE	С	0.00011	0.00011	0.00000	0.00000	0.00000	0.00000
ENE	С	0.00046	0.00046	0.00023	0.00023	0.00000	0.00000
Е	С	0.00034	0.00057	0.00057	0.00034	0.00000	0.00000
ESE	С	0.00057	0.00057	0.00034	0.00011	0.00000	0.00000
SE	С	0.00423	0.00640	0.00640	0.00091	0.00000	0.00000
SSE	С	0.00605	0.00046	0.00080	0.00000	0.00000	0.00000
S	С	0.00354	0.00148	0.00023	0.00000	0.00000	0.00000
SSW	С	0.00217	0.00023	0.00011	0.00000	0.00000	0.00000
SW	С	0.00274	0.00126	0.00000	0.00000	0.00000	0.00000
WSW	С	0.00731	0.01736	0.00503	0.00046	0.00000	0.00000

Wind	Stability		2010	Average Wind Fre	equency at Given S _l	peed	
Direction	Category	1-3 knots	4-6 knots	7-10 knots	11-16 knots	17- 21 knots	> 21 knots
W	С	0.01382	0.03130	0.01622	0.00103	0.00000	0.00000
WNW	С	0.01176	0.01485	0.00194	0.00023	0.00000	0.00000
NW	С	0.00148	0.00308	0.00148	0.00034	0.00000	0.00000
NNW	С	0.00034	0.00057	0.00023	0.00000	0.00000	0.00000
N	D	0.00114	0.00274	0.00171	0.00000	0.00000	0.00000
NNE	D	0.00034	0.00000	0.00011	0.00000	0.00000	0.00000
NE	D	0.00046	0.00011	0.00011	0.00000	0.00000	0.00000
ENE	D	0.00103	0.00046	0.00286	0.00091	0.00000	0.00000
Е	D	0.00514	0.00148	0.00148	0.00114	0.00011	0.00000
ESE	D	0.00742	0.01279	0.01314	0.00286	0.00000	0.00000
SE	D	0.00845	0.00959	0.01976	0.01108	0.00148	0.00000
SSE	D	0.00263	0.00000	0.00114	0.00023	0.00000	0.00000
S	D	0.00343	0.00000	0.00023	0.00000	0.00000	0.00000
SSW	D	0.00263	0.00000	0.00011	0.00000	0.00000	0.00000
SW	D	0.00434	0.00000	0.00000	0.00000	0.00000	0.00000
WSW	D	0.00857	0.00228	0.00194	0.00000	0.00000	0.00000
W	D	0.02045	0.01188	0.00800	0.00091	0.00000	0.00000
WNW	D	0.02010	0.01599	0.01108	0.00194	0.00000	0.00000
NW	D	0.01085	0.01062	0.00286	0.00011	0.00000	0.00000
NNW	D	0.00263	0.01131	0.00617	0.00000	0.00000	0.00000
N	Е	0.00251	0.00217	0.00011	0.00000	0.00000	0.00000
NNE	Е	0.00080	0.00057	0.00000	0.00000	0.00000	0.00000
NE	Е	0.00114	0.00000	0.00000	0.00000	0.00000	0.00000
ENE	Е	0.00183	0.00011	0.00000	0.00000	0.00000	0.00000
Е	E	0.00411	0.00080	0.00000	0.00000	0.00000	0.00000

Wind	Stability		2010 Average Wind Frequency at Given Speed					
Direction	Category	1-3 knots	4-6 knots	7-10 knots	11-16 knots	17- 21 knots	> 21 knots	
ESE	E	0.00891	0.00297	0.00126	0.00000	0.00000	0.00000	
SE	E	0.00959	0.00674	0.00034	0.00000	0.00000	0.00000	
SSE	E	0.00240	0.00023	0.00057	0.00000	0.00000	0.00000	
S	Е	0.00034	0.00000	0.00000	0.00000	0.00000	0.00000	
SSW	E	0.00080	0.00000	0.00000	0.00000	0.00000	0.00000	
SW	Е	0.00126	0.00011	0.00011	0.00000	0.00000	0.00000	
WSW	E	0.00160	0.00286	0.00034	0.00000	0.00000	0.00000	
W	Е	0.00468	0.00925	0.00011	0.00000	0.00000	0.00000	
WNW	E	0.00720	0.00377	0.00000	0.00000	0.00000	0.00000	
NW	E	0.00697	0.00457	0.00000	0.00000	0.00000	0.00000	
NNW	E	0.00480	0.00834	0.00126	0.00000	0.00000	0.00000	
N	F	0.01062	0.00183	0.00000	0.00000	0.00000	0.00000	
NNE	F	0.00948	0.00126	0.00000	0.00000	0.00000	0.00000	
NE	F	0.00605	0.00103	0.00000	0.00000	0.00000	0.00000	
ENE	F	0.00857	0.00080	0.00000	0.00000	0.00000	0.00000	
Е	F	0.01279	0.00160	0.00011	0.00000	0.00000	0.00000	
ESE	F	0.01885	0.00080	0.00000	0.00000	0.00000	0.00000	
SE	F	0.02890	0.00925	0.00000	0.00000	0.00000	0.00000	
SSE	F	0.02730	0.00571	0.00103	0.00000	0.00000	0.00000	
S	F	0.01690	0.00354	0.00000	0.00000	0.00000	0.00000	
SSW	F	0.01176	0.00297	0.00000	0.00000	0.00000	0.00000	
SW	F	0.01176	0.00251	0.00011	0.00000	0.00000	0.00000	
WSW	F	0.01576	0.00617	0.00000	0.00000	0.00000	0.00000	
W	F	0.01325	0.00354	0.00000	0.00000	0.00000	0.00000	
WNW	F	0.02090	0.00034	0.00000	0.00000	0.00000	0.00000	

Wind Direction	Stability Category	2010 Average Wind Frequency at Given Speed								
		1-3 knots	4-6 knots	7-10 knots	11-16 knots	17- 21 knots	> 21 knots			
NW	F	0.02170	0.00114	0.00000	0.00000	0.00000	0.00000			
NNW	F	0.02616	0.00366	0.00000	0.00000	0.00000	0.00000			

Appendix C
Population Data

Direction	Population at Given Distance from Center of Berkeley Lab												
	0.5 km	1 km	2 km	3 km	4 km	5 km	10 km	20 km	30 km	40 km	50 km	60 km	80 km
N	0	0	419	0	0	0	359	30398	98105	32491	68070	24776	1797
NNW	0	0	808	2443	2430	2793	2484	52319	0	993	11808	26337	116202
NW	0	2291	1278	1627	3649	3453	36003	78123	1753	43472	15539	61782	148052
WNW	0	0	3813	6632	7002	7163	22596	15684	91680	35109	2452	2444	987
W	0	0	0	6789	6941	3885	14	6636	45790	1780	588	0	0
WSW	0	0	4181	2416	7039	2982	24	158141	158570	0	0	0	0
SW	0	4530	4402	2967	7448	8834	5707	123614	429877	77558	8	0	0
SSW	0	0	3345	1553	8699	5591	51318	12682	26539	143163	20902	1540	218
S	0	0	2912	2404	6515	2818	107157	64082	0	120732	209651	39481	6338
SSE	0	1270	1096	716	3089	3224	41486	188837	171923	161075	158439	272632	1153570
SE	0	0	0	1122	796	1867	11308	12453	74898	49162	77674	9220	45859
ESE	0	0	51	189	0	0	4648	11966	64845	64822	69656	8301	38140
Е	0	0	0	19	130	37	8755	61557	15866	2791	21010	12024	42996
ENE	0	0	40	2	98	1982	6467	76620	121897	96518	87328	10455	12356
NE	0	0	0	0	22	17	908	46933	19832	6565	727	1675	1447
NNE	346	0	0	0	0	6	19	5603	28838	7625	99040	93357	42715