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Single Stock Dynamics on High-Frequency Data: From a
Compressed Coding Perspective
Hsieh Fushing1*, Shu-Chun Chen2, Chii-Ruey Hwang2

1 University of California Davis, Davis, California, United States of America, 2 Institute of Mathematics, Academia Sinica, Taipei, Taiwan

Abstract

High-frequency return, trading volume and transaction number are digitally coded via a nonparametric computing algorithm,
called hierarchical factor segmentation (HFS), and then are coupled together to reveal a single stock dynamics without global
state-space structural assumptions. The base-8 digital coding sequence, which is capable of revealing contrasting aggregation
against sparsity of extreme events, is further compressed into a shortened sequence of state transitions. This compressed
digital code sequence vividly demonstrates that the aggregation of large absolute returns is the primary driving force for
stimulating both the aggregations of large trading volumes and transaction numbers. The state of system-wise synchrony is
manifested with very frequent recurrence in the stock dynamics. And this data-driven dynamic mechanism is seen to
correspondingly vary as the global market transiting in and out of contraction-expansion cycles. These results not only
elaborate the stock dynamics of interest to a fuller extent, but also contradict some classical theories in finance. Overall this
version of stock dynamics is potentially more coherent and realistic, especially when the current financial market is increasingly
powered by high-frequency trading via computer algorithms, rather than by individual investors.
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Introduction

One Wall Street adage on asset returns says that ‘‘it takes

volume to move the price.’’

Underlying this adage is the classic theory which claims that

return volatility is generated from trading volume (see [1], and, for

review [2], [3] and the references therein). Later, this theory is

modified to assert that return volatility is indeed generated from

transaction number (see [4], and [5]). The supporting evidence is

based on a positive correlation between absolute price changes and

transaction number, and the absence of a significant correlation

increment by conditionally including trading volume. Ane and

Geman (2000) demonstrates further evidence supporting this

modification by showing that the normality of asset returns will be

revealed only along the transaction clock.

Specifically, consider the dynamic linear regression setup used

in [5]. Denote return, trading volume and transaction number of

one single stock at time t by a triplet (Yt,Vt,Tt), with Yt~ ln
Pt

Pt{1

computed from the stock price Pt. The absolute price change, also

called the s-volatility, is computed in the following fashion:

Yt~
X12

j~1

Yt{jzet, ð1Þ

while an estimate of the s-volatility at time t is computed as:

ŝst~

ffiffiffi
p

2

r
êetj j: ð2Þ

Then the employed dynamic linear regression model with 12-lags

is:

ŝst~azbDVtzcDTtz
X12

j~1

rj ŝst{jzgt: ð3Þ

The reported R2 values for this regression model on all data

analyzed in [5] are less than 0:25. Therefore, a natural question

arises: Can both theories be trustworthy while missing at least 75%

of the total sum-of-squares in a goodness-of-fit?

This low R2 value indicates that the above local linear

regression setup may have missed some very important perspec-

tives about the stock dynamics under study. It further implies that,

without thorough data exploration to gain as much empirical

understanding as possible about the stock dynamics, direct

modeling may have difficulty capturing the intricate dynamic

structures embedded within high-frequency data. To a great

degree this fact can be envisioned by looking at the three-

dimensional time series of a single stock, as shown in Figure 1

below. These series are full of versatile micro-structures that have

proven to be too difficult to model simultaneously. Hence the

question facing us now is: how we can properly explore a single

stock’s dynamics to obtain its intrinsic dynamic patterns as a basis

for modeling? This is the question that motivates this study.

As an analogy of the task facing us here, the stock dynamics are

like a teeming cauldron of phenomena present in the return,

trading volume and transaction number series and waiting for
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exploration, classification and analysis. We attempt to snatch out

of this cauldron some specific things which lend themselves to a

precise analysis. These things must preserve the essence of the

dynamic aspects of the stock’s complexity.

The complexity of high-frequency data mandates that the

original data be compressed into digital code sequences for easy

exploration. Ideally, this compression needs to achieve two aspects

of data summary. On one hand, the compressed version needs to

preserve the important dynamic signatures belonging to each

individual dimension of a stock. On the other hand, the coupled

version of the resultant code sequence must be simple enough to

make dynamic pattern recognition feasible and manageable.

To achieve this data compression goal we propose the following

resolution: It is postulated that a latent binary state-space

trajectory governs the transitions of each high-frequency time

series in and out of its pertinent equilibrium state. Here the

equilibrium state is heuristically taken to be a temporal segment

containing a sparsity of some extreme event, while in contrast the

off-equilibrium state contains an aggregation of the extreme event.

The large absolute return is a natural choice for an extreme event

on the return dimension. This extreme event choice is employed

primarily due to the scale-invariance property of its recurrence

time process. The empirical evidence of such scale-invariance was

reported in Fushing et al. (2010), while the theoretical justifications

are recently established in [6,7].

For expositional simplicity, we term the off-equilibrium state on

the return series as volatility, while the equilibrium state is termed

non-volatility. We encode each state as 1 and 0, respectively.

Similarly, large values for trading volume and transaction number

are natural choices for extreme events for the other two

dimensions. In the same spirit of aggregation versus sparsity of

extreme events, volatility versus non-volatility is designated for the

two contrasting states on the dimensions of trading volume and

transaction number as well. Therefore, volatility is unified to

denote the manifestation of the collective effects of trading

strategies exerted on the three dimensions–return, trading volume

and transaction number–of a single stock. Specifically speaking,

the state of return volatility indicates the persistent heterogeneity

in perception regarding to a stock’s price among traders. The

trading volume volatility indicates the persistent occurrences of

large amounts of shares being traded. And the trading number

volatility indicates the persistent trading activities. Thus the notion

of volatility here bears the pertinent dynamic meaning and no

longer stands for a univariate quantity of absolute price changes, as

calculated via ŝst.

Throughout this paper we do not assume a priori knowledge

about the stochastic mechanism governing the two states’

transitions, such as a Markovian structure. Without such

assumptions, any likelihood-based statistical inference, such as

the maximum likelihood approach, is muted. Instead, we rely on

the computational technique for segmenting the extreme event’s

Figure 1. Three dimensions of IBM stock with volatility marked with color. The red marking denotes a positive price change between the
onset and offset of a marked segment, while the blue marking denotes a negative price change.
doi:10.1371/journal.pone.0085018.g001
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pattern of aggregation versus sparsity along each dimension of the

time series. Specifically, we decode the volatility and non-volatility

states by using a nonparametric computing algorithm, called

hierarchical factor segmentation (HFS). This algorithm is detailed

under a finance context in [8], while its original development with

regard to animal behavior is given in [9], and a wide-range of

successful applications are presented in [8,10,11,12,13,14]. This

HFS algorithm is independently applied to each of the three

dimensions to result in three 0–1 time series. These three binary

time series are coupled together, so that there are 23(~8)
combinatorial states computed along the discrete time axis

pertaining to the original 30 second temporal resolution of high-

frequency data. In this fashion we estimate the latent state-space

trajectory underlying the original single stock’s dynamic data with

a base-8 coding sequence of the same length.

We then compress the digital code sequence by simply

recording its sequence of transitions among the 8 states. That is,

by taking away the duration information of each state, the

compressed digital code sequence becomes much shorter than the

estimated digital sequence of the state-space trajectory. Through

this compressed digital sequence we can easily extract information

about which dimension’s volatility is leading the others, so that it

yields precise information regarding the roles of trading volume

and transaction number in the return’s volatility formation. In

summary, the chief merit of our computational approach using

such a compressed digital sequence is the capacity to manifest the

causal relationship among the three dimensions of stock dynamics.

In sharp contrast, the linear trend brought out by regression

analysis based on equation (3) is unidirectional. Hence it should

not bear the causal implication carried by the classic theory or the

Wall Street adage. We also indicate why the linear model equation

(3) produces such a low R2 value.

All coding algorithms, estimation of the state-space trajectory,

and the compression scheme are discussed and illustrated through

IBM stock from the year 2005 to the year 2009 in Section 2. We

evaluate the credibility of all computed dynamic patterns by

incorporating the information about state duration in Section 3.

By using the codewords’ frequencies and their proportion of

overlap among the three dimensions’ volatility states, we conclude

that our causal patterns are very meaningful and credible. At the

end we also investigate how our computed dynamic patterns vary

when the global stock market transitions into and out of

contraction and expansion cycles in Section 4. A collection of

related issues are briefly discussed in the last section.

Methods

Suppose that there is a binary state-space trajectory fSR
t g

n
t~1

underlying the return time series fYtgn
t~1 of length n, while

fSV
t g

n
t~1 underlies the trading volume time series fVtgn

t~1 and

fST
t g

n
t~1 underlies the transaction number time series fTtgn

t~1. All

state-space variables SR
t , SV

t and ST
t take the value 0 when in the

non-volatility state and the value 1 when in the volatility state.

Here the volatility state attempts to capture the extreme events’

aggregation pattern. In contrast, its immediate neighboring

segments are marked by non-volatility for the sparsity pattern.

Hence the task of estimating a binary state-space trajectory is

equivalent to performing pattern recognition by segmenting

aggregation versus sparsity for a chosen extreme event.

Here we employ a segmentation algorithm without a priori

knowledge about the stochastic mechanism of transitions between

the 0 and 1 states. This non-parametric computational approach is

called the hierarchical factor segmentation (HFS) algorithm. The

construction and applications of the HFS algorithm to high-

frequency asset price data are detailed in [8]. This algorithm is

applied independently on each dimension to respectively decode

fSR
t g

n
t~1, fSV

t g
n
t~1 and fST

t g
n
t~1. The three individual segmen-

tations are illustrated in Figure 1 with color-marked segments for

volatility.

The computed segments of non-volatility and volatility states

indeed bring out a very characteristic difference in stock dynamics.

As reported in [8], the return’s non-volatility state is characterized

by an equilibrium of transitions between positive and negative

returns, while the volatility state is characterized by an off-

equilibrium that is biased toward either the positive or negative

returns, depending on the price differences. Furthermore, from the

distributional aspect, the distribution of returns in the non-

volatility state are more concentrated around zero than that of

returns in the volatility state. Their standard deviation ratio is

nearly 1 to 2. From this perspective, we see that there is indeed a

segment-by-segment mixture within stock dynamics, but not the

point-by-point mixture as used in [1]. More descriptive and

dynamic differences are reported in [8].

As far as exploring stock dynamics is concerned, we focus only

on the volatility state in this paper. The reason for this is that, from

a conceptual driving-force perspective, when there is a manifes-

tation of volatility occurring on any one of the three dimensions at

any time point, it implies that large and small market participants

are collectively exerting their influence upon the stock dynamics of

interest through their trading strategies. Therefore, a volatility

state seems like an open window for peeking into the stock

dynamics. Specifically, we look for overlapping open windows on

different dimensions. When they overlap, they are connected due

to their manifestation of the same driving force. Their distinct

onset time points signal the causal aspects of the driving force on

the stock dynamics, in a fashion of one leading the other, or vise

versa. Furthermore, all causal types of association relationships are

represented in terms of codewords, as discussed in the next

subsection. Hence the proper association measurement can be

easily evaluated through the frequency. This paradigm explains

the chief merit and advantages of taking a compressed coding

approach for exploring stock dynamics.

Digital Coding via the HFS Algorithm and its
Compression

After applying the HFS algorithm independently and individ-

ually on the return, volume and trading number time series, we

encode the original high-frequency data into a digital code

sequence using the following coding scheme.

We embed fSR
t g

n
t~1, fSV

t g
n
t~1 and fST

t g
n
t~1 on the same

discrete temporal axis from 1 through n. At each time point, one of

the 23~8 combinatorial states of the three dimensions, say Ct, is

assigned using the formula:

Ct~1½SR
t ~1�z2:1½SV

t ~1�z4:1½ST
t ~1�: ð4Þ

Hence code Ct~0 indicates the simultaneous occurrence of

non-volatility states for the three dimensions. In contrast, code

Ct~7 indicates very distinctively the ‘‘synchrony’’ of volatility.

Code 1 indicates only volatility in the return; while code 6 is for

simultaneous volume and trading number volatilities, but lacks

volatility in the returns. Codes 3 and 5 indicate volatility of the

returns coupled with that of trading volume and transaction

number, respectively; codes 2 and 4 indicate individual volatility of

volume and trading number, respectively.

Single Stock Dynamics
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On the computed digital sequence fCtgn
t~1, each distinct code,

0 through 7, typically replicates itself before transiting to a

different code, as illustrated in Figure 2. Thus we can further

compress fCtgn
t~1 into a much shorter state transition sequence,

denoted by fct�gn�

t�~1, by deleting the repeated codes, that is, by

removing all the duration information from fCtgn
t~1. An

illustrated example of fct� gn�

t�~1 is given in the bottom panel of

Figure 2. Here n� becomes much smaller than n. A non-zero code

segment on fct�gn�

t�~1 typically means a code segment between two

successive 0 codes, such as code segment 15762 in Figure 2.

A digital code sequence fct� gn�

t�~1 computed from real data is

given in Figure 3. This code sequence gives a very concise

summary of what this stock has been through in the midst of the

recent recession. From the 10th code onward in the upper panel,

the code segment 4646764 states that the transaction number’s

volatility with code 4 leads and overlaps the trading volume’s

volatility to become code 6. Then the trading volume’s volatility is

Figure 3. A digital representation of IBM stock in the month of September 2008.
doi:10.1371/journal.pone.0085018.g003

Figure 2. Schematic coding illustration.
doi:10.1371/journal.pone.0085018.g002

Single Stock Dynamics
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lost, leaving the transaction number’s volatility alone. The

persistent transaction number’s volatility again leads and overlaps

with the trading volume’s volatility to become code 6, and

subsequently the return’s volatility is generated to enter a state of

synchrony of volatility. However the return’s volatility does not

last, so the trading volume’s disappears. Finally, the persistence of

the transaction number’s volatility also disappears as the stock’s

dynamics fall into the equilibrium. It is clear that the driving force

manifested through the transaction number’s volatility was very

persistent and strong during the time period giving rise to this code

segment. However, we do not need to distinguish whether the

driving force indeed primarily comes from a strategic model or a

completive model with multiple informed traders, or whether both

are the chief mechanisms underlying this stock’s dynamics.

We then see several code segments of 464, 264 or 462. These

are unsuccessful attempts at stimulating the return’s volatility.

From the 77th code onward to the end, the dynamic patterns on

the code sequence manifest very distinct changes. More of the

return’s volatility is present, so there are more code segments like

137, 157, and even 17. These dynamic patterns jointly point out

that it is more likely for the return’s volatility to stimulate the

volatility of both the transaction number and the trading volume

to achieve synchrony, than the other way around. In the middle

panel, we see two subsequences of code, 010101 . . .. This kind of

subsequence of code is not rare, that is, it is not uncommon to see

the presence of the return’s volatility unaccompanied by the other

two volatilities. It is very likely that this phenomenon contributes

significantly to the fact that the R2 value of the linear regression

model (3) is less than 25%. A collection of 60 monthly fct�gn�

t�~1

code sequences on IBM stock from 2005 to 2009 is established for

analysis purpose of this study.

Computed Dynamic Patterns
Before discussing the interesting and important dynamic patterns,

we give an overview of the composition of code segments on the

code sequence fct�gn�

t�~1. The bar plot of Figure 4 reveals that code

segments with length larger than 3, that is, that involve at least 3

non-zero code transitions, contain codes 1 and 7. This observation

points to two patterns. First, synchrony code 7 and return’s volatility

code 1 are highly associated within this particular month. Second, a

code segment that does not contain codes 1 or 7 does not last long,

that is, the volatilities of trading volume and transaction number are

likely to be failed attempts at stimulating return’s volatility. In

contrast, the single code 1 may have been undetected. The bottom

panel of Figure 4 shows that synchrony (code 7) is prevalent

throughout the code sequence fct�gn�

t�~1 as well as fCtgn
t~1 when

the duration length is considered. It has nearly half the prevalence of

the volatility of trading volume, or of transaction number.

Interestingly, codes 1 and 7 outnumber codes 2 and 4 in terms of

the numbers of code transitions and the code duration length.

These observed patterns are nearly universal among the 60

months of IBM stock from 2005 to 2009. Putting together these

observations, we can conclude that neither the volatility of trading

volume nor that of transaction number is likely to take the leading

role in stimulating the return’s volatility.

On the contrary, the return’s volatility may have taken the

leading role to stimulate the other two volatilities, and to

frequently arrive at synchrony of the stock’s dynamics. Specifically,

based on the compressed digital code sequence fct�gn�

t�~1, we can

compute the prevalence of the dynamic pattern that can be

expressed in terms of codewords of various order, such as 13 or

137. The order-2 codeword 13 means that the return’s volatility

leads and overlaps with that of the trading volume, and codeword

Figure 4. Prevalence of code 7 and code 1 and 7 in a code sequence of IBM stock, September 2008. Composition of codes 1 and 7 within
the code-segment bar partitioned fct� gn�

t�~1 by all codes 0. The bottom row records the total duration lengths for each of the 8 codes on fCtgn
t~1.

doi:10.1371/journal.pone.0085018.g004
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137 means that the dynamic pattern 13 propagates synchrony of

the stock dynamics. First, the prevalence of the collection of order-

2 codewords can be easily evaluated and summarized into a code-

to-code transition matrix, as illustrated in Fig. 5(a).

Beyond indicating the transition probability, it is emphasized

once again that the proportion of code transitions in each row is

also causally informative. For instance, in the panel for June 2006,

we see the following: On one hand, the return’s volatility (code 1)

is more likely to stimulate the transaction number’s volatility (code

4) into codeword 15, with a rate of 21=46, than to stimulate the

trading volume’s volatility (code 2) into codeword 13, with a rate of

11=46. On the other hand, the volatilities of trading volume and

transaction number are more likely to stimulate each other into

codewords 26 and 46, respectively, than to lead the return’s

volatility into codewords 23 or 45. Similar dynamic patterns are

also seen in the panel for September 2008. These patterns are not

universal among all 60 monthly analyses on IBM stock from 2005

through 2009. The summarized ratios for six order-2 codewords

are given in Figure 5(b). These dynamic patterns together provide

considerable strong evidence to contradict the Wall Street adage

and the corresponding theories in finance.

Additional important dynamic pattern information is seen

throughout the five-year analysis of order-3 codewords leading to

code 7, as reported in Figure 6. Both tables reveal that the return’s

volatility constantly takes the role of leading the volatilities of the

other two dimensions toward synchrony throughout the five years of

IBM stock dynamics. Specifically, the sum of the relative frequencies

of codewords 137 and 157 is larger than 50% for years 2008 and

2009. Further interesting observations are also visible. First, by

comparing the sum of the relative frequencies of codeword 237 and

267 with that of codewords 457 and 467, we see that the trading

volume’s volatility has at least as much potential to generate

synchrony as the transaction number’s volatility. Second, by

comparing the sum of the relative frequencies of codewords 237

Figure 5. Code transition matrices and monthly proportions. (a) Upper (matrix) panel: Two transition matrices for compressed digital code
sequences computed based on monthly IBM stock for June 2006 and September 2008, with a 30 sec. sampling rate; (b)Lower (time series)panel:
Comparing monthly proportions of order-2 codewords from 2005 through 2009:13, 15, 23, 26, 45, 46.
doi:10.1371/journal.pone.0085018.g005
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and 457 (less than 25%) with that of codewords 267 and 467 (larger

than 29%), we conclude that the trading volume’s volatility and the

transaction number’s volatility are likely to stimulate each other,

and then to together stimulate the return’s volatility.

By summarizing all the aforementioned observations, we can

conclude that the old Wall street adage and the classical theories

about taking the trading volume or the transaction number to

move the asset return or price are true only for a very limited

percentage. For the major percentage, the stock dynamics operate

in the reverse direction: It takes the return to stimulate the

volatilities of the trading volume and transaction number. Then

they both prolong the return’s volatility. This conclusion is more in

line with another Wall Street adage among traders: ‘‘(return’s)

volatility is equal to profit.’’ This revised version of finance

‘‘theory’’ might be even more coherent with the current high-

frequency trading performed by computer algorithms.

At the end of this section, we also report two complimentary

pattern information of stock’s dynamics: One is about overall price

changes between on-set and off-set of a synchrony; the other is

about the rate of synchrony deformation. Six scenarios of

synchrony are considered in Figure 7. Six kernel smoothed

densities of absolute changes between prices at onset and offset of

code-7 segments are reported in the upper panel of Fig. 7, while

the corresponding distributional characteristics are reported in the

lower panel of Fig. 7. The common characteristic feature of the six

densities is its extended long tail. This long tail phenomenon

indicates that code-7 captures many instances of large up or down

movements of stock prices.

Furthermore, in Figure 8, we see that the dynamic pattern of

synchrony deformation is primarily due to loss of the volatilities of

trading volume and transaction number. The sum of the

percentages for codewords 71, 73 and 75 is always more than

60%. It goes as high as 80%, especially during the two consecutive

years 2008 and 2009. Both years are during the computer trading

era at the New York Stock Exchange. This dynamic pattern

implies that trading behavior has undergone a drastic change, and

has consequently affected the stock dynamics significantly.

Analysis

In this section we develop a new way of evaluating the causal

association for a binary time series. This version can be easily

extended into a multivariate setting. It is understood that an order-

2 codeword based on fct�gn�

t�~1, like any one of those considered in

the previous section, corresponds to an overlap of two HFS-

computed segments on two different dimensions of the stock

dynamics. For instance, the codeword 13 based on fct�gn�

t�~1

means that the return’s volatility segment overlaps with the trading

volume’s volatility segment. Likewise for codeword 31. By

collecting all the overlapping subsegments of two kinds of

volatilities, we may compute the relative proportion of one

subsegment’s overlap with respect to the total length of either one

of the volatility segments. These overlap proportions are

correspondingly estimating the 6 conditional probabilities:

Pr½SR
t ~1jST

t ~1�, Pr½SR
t ~1jSV

t ~1�, Pr½ST
t ~1jSR

t ~1�,

Pr½ST
t ~1jSV

t ~1�, Pr½SV
t ~1jSR

t ~1�, Pr½SV
t ~1jST

t ~1�:

The collection of 60 3|3 monthly overlap proportion matrices

from the years 2005 to 2009 is constructed and summarized below.

These overlap matrices reflect an asymmetric binary relation-

ship. This asymmetry is informative in the conditional sense. For

instance, consider an averaged overlap matrix for the month

January over the years 2005 through 2009, as given in Figure 9.

When standing on an HFS-computed segment of the continuum

of the return’s volatility, we can find that 45.5% of the time points

are also coded with the trading volume’s volatility, and 38% with

the transaction number’s volatility. In the reverse direction, 52.6%

of the time points encoded with the trading volume’s volatility are

also encoded with return’s volatility, while 59.4% of the time

points encoded with the transaction number’s volatility are also

encoded by the return’s volatility. These overlap percentages can

rise significantly higher when we only consider code segments on

fct�gn�

t�~1 that are longer than or equal to three. It is interesting to

see that the overlap proportion for trading volume relative to

transaction number is 83.9%, while it is 60.9% in the reverse

direction.

In fact, we observe that the 60 overlapping matrices vary

considerably from month-to-month as well as from year-to-year.

The range is as wide as 20% to 100%. However, cases with around

20% overlap are not typical, while cases going beyond 80% are

common, especially for the volatilities of transaction number and

trading number in the years 2008 and 2009. These and other

patterns are contained in the trajectories of overlap proportions

shown in Figure 10. We further observe that both overlap

relationships of the volatilities for trading volume and transaction

number with respect to the return’s volatility are nearly equal

throughout the five-year period. The two proportions are signifi-

cantly higher than 50% for the entire year of 2009. A similar

relationship in the reverse direction from return’s volatility to either

trading volume’s volatility or transaction number’s volatility is not

very different. The significant differences are found between the

trajectory of the trading volume to the return and the trading

volume to the transaction number. A similar difference is also found

between the transaction number to the return and the transaction

number to the trading volume. These significant differences confirm

this fact: the potential of the trading volume and the transaction

Figure 6. Relative yearly prevalence of order-3 code segments ending with code 7 from years 2005 to 2009. Table on the left reports
yearly frequencies, while table on the right reports the relative frequencies among the six code segments.
doi:10.1371/journal.pone.0085018.g006
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number to mutually stimulate each other is much higher than for

either one of these two to stimulate the return.

In summary, these high overlap patterns strongly indicate that

there is a closely intertwined relationship among the state of

volatility for the three dimensions of stock dynamics. These close

bonds among the three dimensions of a single stock explain the

information revealed in Figure 6, in which we see that at least half

of the synchrony is formed when the return’s volatility stimulates

the volatilities of both the trading volume and the transaction

number. Another third of the synchrony is formed in a reverse

fashion: the return’s volatility is jointly stimulated by the volatilities

of the trading volume and the transaction number.

Results

Nowadays financial information is disseminated through the

Internet at a rate of at least sub-seconds. Hence it is reasonable to

imagine that all driving forces should act on stock dynamics at the

same temporal scale. Indeed, traders and investors who make

decisions using computer algorithms are capable of taking action at

the sub-second or even the millisecond temporal scale. Consequently,

the pertinent question arises: On what kind of temporal block should

we carry out high-frequency data exploration for stock dynamics?

Since the logical requirement for exploring stock dynamics is,

‘‘We want to examine the trees, but also see the forest,’’ the

significance of the above natural question rests in the balance

between the global market pattern scale and the microstructure

scale. The dynamic patterns we have computed and discussed up

to this point should be taken as microstructure patterns at the daily

or hourly scales, or even the minute scale. As for the global market

pattern, we consider the contraction-expansion cycle, closely

related to the business cycle in the overall financial market. We

derive the contraction-expansion cycle as follows.

In Figure 11, we see that the S&P500 index has a very steady

trend, with two dips corresponding to two recessions: one in 2001

and the recent one starting from the end of 2007, as announced by

Figure 7. The distribution of price difference (segment: 7) of triple codes: 137, 157, 237, 267, 457 and 467.
doi:10.1371/journal.pone.0085018.g007
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the Business Cycle Dating Committee (BCDC) in the National

Bureau of Economic Research (NBER). This S&P500 index

trajectory does not reveal any ‘‘regularity’’ type of global pattern.

However, if we transform the S&P500 index, say ISP500
t , into a

monthly year-to-year trajectory using the formula:

iSP500
t ~{ log ISP500

t { log ISP500
t{12

� �
ð5Þ

with discrete t denoting the month in a year. The trajectory of

iSP500
t is observed to have some sort of cyclic regularity, as shown

in Figure 12. It is essential to note that almost all recessions of the

business cycle declared by the BCDC reside on the tips of

recurrent spikes, due to the negativity of the transformed index.

This pattern strongly and reliably indicates that every spike of

iSP500
t reveals a contraction period, and each valley an expansion

period, in the stock market.

This regularity is brought out by the monthly data. Therefore a

natural answer to the above question must be that a month is a

suitable temporal block for exploring stock dynamics within high-

frequency data. This is why all our analyses are done month-by-

month throughout the 2005 to 2009 period.

In Figure 13, we further dissect the period from March of 2007 to

October of 2009 into seven temporal segments. Each temporal

segment bears significantly-different contraction and expansion

global market patterns. We then look into the frequency of order-3

codewords leading to synchrony, as reported in Figure 14. The most

vivid dynamic pattern is the nearly 50% synchronization of volatility

during the period from August 2008 to April 2009, coinciding with

the deepest point of the most recent recession. This is denoted by

codeword 157, since the return volatility stimulates transaction’s

volatility and then trading number’s volatility. A similar pattern is

also seen in the next temporal segment, from May 2009 to July 2009,

with slightly less synchronization–but still an equally significant

level–when combining the two codewords 137 and 157. In contrast,

during the beginning of the recession from December 2007 to June

2008, the occurrences of synchrony are much more frequent than in

Figure 8. The frequency table of codewords after achieving code 7.
doi:10.1371/journal.pone.0085018.g008

Figure 9. Overlap matrix of the month January crossing years
2005 to 2009.
doi:10.1371/journal.pone.0085018.g009

Figure 10. Comparing monthly overlap proportions among the volatilities of return, trading volume and transaction number of
IBM stock from 2005 through 2009: a) for all code segments; b)for all code segments longer than or equal to 3.
doi:10.1371/journal.pone.0085018.g010
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Figure 11. S&P500 Index from 1950 to 2009 marked with BCDC’s recession.
doi:10.1371/journal.pone.0085018.g011

Figure 12. Monthly year-to-year S & P500.
doi:10.1371/journal.pone.0085018.g012
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all other temporal segments. In the same temporal segment and in

the one that follows from July 2008 to September 2009, we see the

frequency of codeword 467 is unusually high when compared with

the rest of the temporal segments. This clearly indicates that trading

strategies may have been implemented to create volatility of the

transaction number in order to bring out the trading volume’s

volatility and subsequently to generate the return’s volatility. The

discovery of these non-stationary dynamic patterns confirms that a

month is the right temporal block.

Discussion

In this paper we employ the HFS algorithm to encode a single

stock’s dynamics into a compressed digital code sequence of base

8. This digital code sequence facilitates many realistic dynamic

patterns that characterize the stock’s underlying mechanism,

which reveals fundamentally different characteristics from what

are prescribed by current popular theories in finance. The major

findings are: 1) The primary driving force of stock dynamics is the

return’s volatility, which is responsible for stimulating volatilities in

the trading volume and the transaction number dimensions; 2)

The secondary driving force is the combined, but not individual,

volatilities of the trading volume and the transaction number,

which is capable of stimulating the return’s volatility; 3) A single

stock’s dynamic patterns can vary as the market goes into and out

of the contraction-expansion cycle. These findings should broaden

our understanding of a single stock’s dynamics. We once again

Figure 13. S&P500 Index (months of years) from 2004 to 2009.
doi:10.1371/journal.pone.0085018.g013

Figure 14. Frequency table of triple codes: 137, 157, 237, 267, 457 and 467 in different locality of contraction-expansion cycle.
doi:10.1371/journal.pone.0085018.g014
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emphasize the necessity of embedding all computed dynamic

patterns onto the market’s global trends in order to extract and

confirm their realistic essence. The contraction-expansion cycle is

one especially important global trend, since it depicts the non-

stationarity in the financial market that influences as well as

coordinates the flow of all involved dynamic patterns underlying

every single stock’s dynamics.

In this paper we also demonstrate that the computational

approach using the HFS algorithm is rather promising for

exploring stock dynamics in depth. Our computed dynamic

patterns are very credible, since they indicate a very high overlap

proportion between the involved volatilities of the three stock

dimensions. The overlap proportion matrix also provides a new

way for evaluating the association between two time series. This

association measurement should be more proper for evaluating

dynamic patterns computed from high-frequency time series than

that based on correlation.

In our future research, we will study how to construct a stock

dynamics model that is consistent with the explored and computed

dynamic patterns. We hope this research can ideally lead to the

construction of a platform for accommodating a mechanism for

pricing, like the Black-Scholes model [15].

At the end, we briefly discuss the potential impact of high-

frequency trading via computer algorithms on stock dynamics.

The algorithmic trading is very far away from what is done on the

floor or what is screen-based [16]. It can place many orders, and at

the same time cancel many orders, to thus jump ahead of all

traders using traditional instruments. The ask-bid spread can be so

small that we start to wonder how much truth still resides in the

old understandings in finance, such as: 1) Trading is generated due

to asymmetric information received by traders; 2) The size of

trades reflects the extent of disagreement among traders about a

security’s value.

It is very likely that there is still some truth left nowadays, given

that a handful of high-frequency trading firms accounted for an

estimated 70% of the overall trading volume on the U.S. equities

markets in 2009 [16]. That is, several computer algorithms

together are responsible for the whole stock dynamic, to an

overwhelmingly large degree. Its fundamental setting has shifted to

the interacting relationships among a handful of computer

algorithms. Hence we intuitively suspect that stock dynamics

may have undergone many drastic changes during the era of

computer algorithmic trading.
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