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ABSTRACT 

 

 Flea-borne typhus (FBT) is a febrile rickettsial disease caused by the bacteria Rickettsia 

typhi. In the United States, rats, opossums, and cats act as reservoir hosts of R. typhi and can 

readily transmit the bacteria to feeding flea vectors (Xenopsylla cheopis and Ctenocephalides 

felis). Formerly referred to as murine typhus, FBT was historically among the most common 

vector-borne diseases in the U.S. before nationwide public health practices effectively controlled 

FBT through pest control. In recent years, however, reported cases of FBT have risen in 

California, Texas, and Hawai’i. Understanding the current epidemiology of FBT is becoming 

ever more important to interpret and respond to the changing trends in FBT. This dissertation 

aimed to contribute to the body of knowledge regarding FBT epidemiology and ecology in 

California. 

In Chapter 1, we characterized FBT epidemiology in California from 2011 to 2019 by 

reviewing incidence, clinical course, and exposure histories collected in surveillance reports. 

Eight spatiotemporal clusters and areas with persistent FBT transmission were highlighted in Los 

Angeles County and Orange County using SatScan. 

Chapter 2 used a Bayesian hierarchical zero-inflated Poisson model with a spatially 

conditional autoregressive random effect to assess the relationship between population-level 

socioeconomic and built environment variables and FBT surveillance reporting. As measured by 

the Healthy Places Index, census tracts with greater socioeconomic advantage were associated 

with higher rates of FBT surveillance reporting (IRR = 1.34; 95% CI [1.07, 1.69]). Census tract 

demographics, economic variables, housing characteristics, and land use were also discussed. 
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In Chapter 3, we constructed a novel mathematical transmission model of FBT using 

ordinary differential equations (ODEs) resembling the ecology of R. typhi in California. 

Sensitivity tests were performed using Latin hypercube sampling and partial rank correlation 

coefficients to identify parameters influential to human R. typhi infections. Sensitivity analyses 

highlighted human-opossum exposure and opossum-flea index as highly influential to the 

predicted proportion of humans infected in a population. Scenario analyses representing possible 

intervention activities were evaluated and discussed to demonstrate practical applications of the 

model. 

 The results of these chapters characterize the recent epidemiology of FBT in California, 

provide context for public health FBT surveillance practices, and present a mathematical 

framework to model R. typhi transmission. Together, these will improve our understanding of 

FBT epidemiology and ecology and inform local-level public health intervention activities.  
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INTRODUCTION: EPIDEMIOLOGY AND ECOLOGY OF FLEA-BORNE TYPHUS 

 

The pathogen: Rickettsia typhi  

In general, rickettsial diseases (rickettsiae) are described as genetically related obligate 

intracellular bacteria that infect an arthropod host for a period of their zoonotic cycle.1 

Rickettsiae bacteria belong to the genera Rickettsia, Ehrlichia, Orentia, Coxiella, Anaplasma, 

Neorickettsia, Neoerlichia, and Wolbachia in the order Rickettsiales.2 Rickettsia spp. belong to 

one of three groups: spotted fever group (SFG; e.g., Rickettsia rickettsii), typhus group (TGR; 

e.g., Rickettsia typhi and Rickettsia prowazekii), and scrub typhus group (STG; Orientia 

tsutsugamushi). A fourth group, transitional group rickettsiae (TRG), has been proposed as a 

taxonomic status for species designation but has not yet been recognized.   

Flea-borne rickettsioses are a grouping of rickettsiae that are maintained and vectored by 

flea species. The two diseases classified as flea-borne rickettsioses are flea-borne typhus (FBT) 

and flea-borne spotted fever (FBSF), caused by the bacteria R. typhi and R. felis, respectively.  

Rickettsia typhi is the causative agent of flea-borne typhus (FBT), a vector-borne human 

febrile disease, and the subject of this thesis. R. typhi is a member of the TGR rickettsiae and is 

closely related to R. prowazekii, the causative agent of louse-borne typhus (epidemic typhus). 

Historically, FBT has also been referred to as endemic typhus or murine typhus.  

Hosts, vectors, and transmission of R. typhi 

Rickettsia typhi is commonly observed in coastal, subtropic regions globally where 

capable mammal reservoirs and flea vectors are available. While many vertebrate host species 

have been documented with infection naturally or in laboratory settings, the most important 

components of the classical flea-borne typhus life cycle are commensal rat species, such as the 
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black rat (Rattus rattus) and the Norway rat (Rattus norvegicus).3 Rats and their fleas, 

particularly the oriental rat flea (Xenopsylla cheopis) maintain and vector FBT worldwide. This 

rat-flea-rat transmission cycle is considered truly commensal as neither the flea nor rat are 

harmed by R. typhi infection.  

Other peridomestic animals may also serve as competent reservoirs to R. typhi. Past FBT 

case series indicated an association with seropositive domestic cats and opossums in Los 

Angeles County, California.4 While fleas were not tested for R. typhi in the study, heavy 

infestations of the cat flea (Ctenocephalides felis) were observed on opossums and cats. C. felis 

is a competent vector of R. typhi in laboratory and natural settings.3,5 Further research in southern 

California and Texas confirmed the role of opossums and C. felis as an alternate FBT 

transmission cycle for FBT in the United States.6–9 

Two sylvatic cycles are often described in regions where opossums are present in 

endemic regions of the United States (e.g., southern Texas, Los Angeles and Orange Counties in 

California). The traditional rat-flea-rat cycle is colloquially named the “urban cycle” while the 

opossum-flea cycle is called the "suburban cycle”. The premise behind these designations is that 

transmission involving rats generally occurs in metropolitan environments while transmission 

involving opossums likely occur outside of densely urban areas.10 Even so, these cycles are not 

likely to be mutually exclusive despite generally specific host preferences among varying flea 

species. C. felis is an uncommonly cosmopolitan vector that will also feed on rat species if 

available. As such, the two cycles may overlap in environments where hosts and vectors coexist 

or share home ranges.  

In nature, transmission of R. typhi occurs when susceptive vertebrate hosts are inoculated 

with R. typhi through contaminated flea feces. This typically occurs at the site of the bite wound, 
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where fleas may shed R. typhi contaminated feces shortly after feeding. However, inoculation 

can also occur on different sites of exposed skin, respiratory tracts, conjunctivae (i.e., eye 

exposure), or other mucous membranes to a lesser extent. Once infected, the vertebrate host will 

maintain the rickettsia as it undergoes intracellular multiplication. The rickettsia eventually 

spread to the host’s blood stream where adult fleas may become infected after taking a blood 

meal. R. typhi is extremely efficient at evading host and vector immune responses. In fleas, only 

a few rickettsial organisms are need to result in infection.11 The rickettsia undergo significant 

intracellular multiplication again within the flea vector and, approximately 10 days (extrinsic 

incubation period) later, the flea will become infectious to naïve vertebrate hosts.3,12 Vertical 

(i.e., transovarial) transmission of R. typhi from fleas to their progeny is possible for X. cheopis, 

but uncharacterized for C. felis.  Furthermore, fleas remain infected for life and with uninhibited 

reproductive capacity and life span.13 

Humans are incidental hosts of R. typhi and cannot transmit the bacteria to fleas, 

vertebrate hosts, or other humans. Transmission also occurs through inoculation of infected flea 

feces to a bite wound or other mucous membranes. There is limited laboratory evidence that it is 

possible for an infectious flea bite alone to successfully transmit R. typhi to humans, but it is 

unlikely to occur in nature.14 

Clinical characteristics of flea-borne typhus 

 Disease is commonly characterized by headaches, fever, and body aches that develop 7-

14 days after inoculation. This febrile triad of symptoms may also be accompanied by rash, 

though it occurs in less than 50% of case-patients.15 Serological findings include 

thrombocytopenia, elevated liver enzymes (e.g., ALT, AST), and leukopenia. Prior case series 

note that complications may occur in approximately 25% of cases. Complications were less 
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common among children being noted in 15.3% in one review.15,16 Common FBT complications 

include pneumonia, central nervous system dysfunction (e.g., altered level of consciousness), 

acute kidney injury, and meningitis. 

Despite a significant proportion of cases with recorded complications, FBT mortality is 

low (0.4%).10,17 One contributing factor to this is availability of antibiotic treatment, specifically 

doxycycline, a common tetracycline antibiotic. There is no evidence of chronic FBT infection 

post-treatment.  

Taxonomy Considerations: R. felis, R. typhi, and Flea-borne Typhus 

Despite not belonging to the TGR, R. felis is often referenced in literature as the 

secondary agent of FBT. This taxonomical discrepancy is partially due to its shared flea vectors, 

reservoirs, and clinical signs. Cross-reactivity of serological antibody tests and failure to 

successfully isolate R. felis in samples from infected patients also hinder efforts to differentiating 

the two diseases worldwide for public health purposes.18 No human cases of flea-borne 

rickettsioses have been attributed to R. felis or FBSF in the United States to-date. In turn, it 

should be clarified that this dissertation recognizes R. typhi and R. felis (or other RFLOs) as two 

similar rickettsia that cause similar, but separate diseases. The subject of this dissertation is R. 

typhi and FBT. 

FBT history and epidemiology in the U.S.  

The first test to distinguish R. prowazekii and R. typhi was established in 1917 by Dr. 

Hermann Mooser who first isolated R. typhi from fleas on rats. Though, it is likely that FBT was 

a common, undiagnosed disease for at least a century before this. Cases of FBT in the United 

States peaked in 1944 when over 5,000 cases were reported nationally. The implementation of 

vector control programs decreased the number of cases in the U.S. through host removal (rodent 
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trapping) and dichlorodiphenyltrichloroethane (DDT) use in and around households.8,19 In the 

1950s, fewer than 100 cases were reported in the United States annually.8,10 The successful 

typhus control campaigns changed the epidemiology and ecology of FBT over the following 

forty years. During which, investigations into the persistence of FBT in parts of Texas would 

lead to identifying opossums and cats as key reservoirs.8 

Currently, FBT is considered a resurging disease with most human cases in the United 

States are reported from southern Texas, southern California, and Hawai’i.17 A total of 1,762 

TGR cases were reported to the Texas Department of State Health Services during 2003-2013. 

TGR was used as the disease classification instead of FBT at the time due the IFA test’s inability 

to differentiate between R. prowazekii and R. typhi. However, it is likely that very few of these 

cases were caused by R. prowazekii. Case counts ranged from 27 in 2003 to 222 in 2013, the 

majority of which peaked in June and July. Most cases occurred in southern Texas (e.g., Nueces 

County) but geographical expansion was also observed.20 Similar trends have been observed in 

southern California. From 1984 to 1994, 75 reports of FBT in Los Angeles County were 

reported.21 This is in stark contrast to the 479 cases of FBT were reported in Los Angeles County 

and 1,142 in Orange County during 2001-2015.22 Even more recently, 318 cases were reported in 

a two-year period from 2020 to 2021 despite using a stricter, more specific case definition. Of 

which, 209 cases were reported in 2021 alone making it the highest number of cases reported for 

a single year in recent history.  

Scope and Objectives of Thesis 

The objective of this dissertation is to assess the public health surveillance and ecology of 

FBT in California. More specifically, this dissertation aims to 1) characterize FBT epidemiology 

and disease surveillance in California, 2) assess socioeconomic and environmental variables 
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associated with FBT surveillance reporting in California , and 3) develop a mathematical model 

to study transmission dynamics of FBT. Together, these three chapters will incrementally 

improve our understanding of FBT epidemiology and surveillance with approaches that have not 

been used for this disease.   
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1. SURVEILLANCE OF FLEA-BORNE TYPHUS IN CALIFORNIA, 2011-2019 

 

 

Abstract 

Flea-borne typhus (FBT), formerly referred to as murine typhus, is an acute febrile 

disease in humans caused by the bacteria Rickettsia typhi. Currently, cases of flea-borne typhus 

are reported for public health surveillance purposes (i.e., to detect incidence and outbreaks) in a 

few U.S. states. In California, healthcare providers and testing laboratories are mandated to 

report to their respective local public health jurisdictions whenever R. typhi is detected in a 

patient, who then report cases to state health department. In this study, we characterize the 

epidemiology of flea-borne typhus cases in California from 2011 to 2019. A total of 881 cases 

were reported during this period, with most cases reported among residents of Los Angeles and 

Orange counties (97%). Demographics, animal exposures, and clinical courses for case patients 

were summarized. Additionally, spatiotemporal cluster analyses pointed to five areas in southern 

California with persistent FBT transmission.  
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Introduction 

Flea-borne typhus (FBT), formerly known as endemic typhus or murine typhus, is a 

febrile disease caused by Rickettsia typhi. The gram-negative, intracellular bacterium is a 

member of the typhus group rickettsiae and is closely related to epidemic typhus (R. 

prowazekii).23 Like other Rickettsia species, R. typhi relies on arthropods and mammalian hosts 

to maintain its life cycle. Rickettsia felis, a species in the spotted fever Rickettsia group, has also 

been suggested as an agent of FBT. However, R. felis has not been identified in human infections 

in California.  

The FBT transmission cycle revolves around the primary mammalian host (Rattus spp.) 

and arthropod vector, the rat flea (Xenopsylla cheopis). This cycle is often referred to as the 

urban cycle. In Texas and California, an additional cycle of transmission involves opossums 

(Didelphis virginiana) as a potential reservoir to R. typhi and the cat flea (Ctenocephalides felis) 

as the principal arthropod vector.4,6 This cycle is often referred to as the suburban cycle due to 

the ecological overlap between opossums, cats, and humans outside major city centers. Fleas 

may acquire the bacteria while feeding on rickettsemic hosts. The bacteria reside in the midgut 

epithelium of the flea, where they can be transmitted to humans or other hosts by introducing 

infected feces onto flea bite wounds or mucous membranes.18 

Most human infections are self-limiting and mild, characterized by non-specific 

symptoms, including fever, headache, myalgia, and rash. A review of typhus group rickettsioses 

surveillance in Texas noted that 59.6% of case patients were hospitalized from 2003 to 2013.20 

While the mortality rate of FBT is relatively low (0.4%), FBT may progress to severe disease in 

10-25% of cases.15,23,24 Clinical severity of FBT is associated with older age, delayed diagnosis, 

and conditions compromising hepatic, renal, pulmonary, or central nervous system functions.16,18 
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Complications have been reported to occur in 28% of cases.25 Complications may include shock, 

bronchiolitis, pneumonia, encephalitis, renal failure, and sepsis.16,24–26 

FBT occurs worldwide, particularly in tropical or subtropical coastal regions. Cases of 

FBT in the United States peaked in 1944 when over 5,000 cases were reported nationally. The 

implementation of vector control programs decreased the number of cases in the U.S. through 

host removal (rodent trapping) and dichlorodiphenyltrichloroethane (DDT) use in and around 

households.8,19 In the 1950s, fewer than 100 cases were reported in the United States annually.8,10 

Currently, most human cases in the United States are reported from Hawai'i, southern Texas, and 

southern California.17   

Flea-borne typhus is not nationally notifiable, though FBT cases in California have been 

reportable since 1916. Mandatory electronic laboratory reporting (ELR) of R. typhi-positive 

samples began in 2011.27,28 Reported cases in California have increased in recent years, 

particularly in southern California, where an endemic focus has emerged in a region within Los 

Angeles and Orange counties. For this study, data for FBT cases were captured using a single 

case definition from 2011 to 2019, facilitating a standardized collection of demographics, 

clinical, and laboratory information. This paper aims to summarize FBT surveillance data from 

this period to characterize the current epidemiology of the disease in California. Furthermore, 

this report outlines spatiotemporal clusters of FBT detected in Los Angeles County. Assessing 

these data may improve local public health response and highlight areas for improvement in FBT 

surveillance. 
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Materials and Methods 

Data sources 

The California Department of Public Health (CDPH) receives reports of notifiable 

disease incidence case report forms (CRFs) electronically through the California Reportable 

Disease Information Exchange (CalREDIE) or directly from local health jurisdictions (LHJ; i.e., 

county or city health departments). Most typhus cases are identified after case-patients seek 

medical care for their symptoms. Serologic assays detect immunoglobulin antibodies (i.e., IgG or 

IgM) or R. typhi DNA in a patient's serum. LHJs receive notifications from providers or 

laboratories of positive FBT case-patients. The LHJs collect case-patient information using an 

FBT-specific case report form. Reports include basic demographic information such as 

residence, place of work, race/ethnicity, age, and gender, as well as more detailed data describing 

the clinical course, diagnostic test results, possible exposures, and illness resolution. The CRF 

data are submitted electronically to CDPH directly or via CalREDIE. 

This report summarized surveillance data following the California surveillance case 

definition used between 2011 and 2019 to describe the epidemiology of reported cases. This 

surveillance case definition classified reports as confirmed, probable, or suspect. Briefly, 

confirmed cases must be clinically compatible (e.g., experienced fever, headache, myalgia, or 

rash) with laboratory confirmed evidence (i.e., IgM and IgG positive for R. typhi antigen by IFA 

≥ 1:128 without convalescent titer or positive RT-PCR).  Reactive acute convalescent antibody 

tests with a fourfold titer increase compared to the acute sample or detection of DNA for 

Rickettsia typhi or other Rickettsia sp. by RT-PCR, excluding R. rickettsii, the causative agent of 

Rocky Mountain Spotted Fever (RMSF) also serve as laboratory confirmed evidence with 

greater specificity. Probable cases have clinically compatible symptomatology and supportive 
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laboratory evidence (i.e., either IgM or IgG positive for R. typhi antigen by IFA ≥ 1:128 without 

convalescent titer or positive RT-PCR). Suspect cases lack clinical evidence of disease or are 

without documentation of disease course (e.g., clinical assessments not performed, or no medical 

records are available) and have supportive laboratory evidence. Only confirmed and probable 

reports were considered cases of FBT and analyzed in this study (Supplemental Table 1).  

Race and ethnicity were combined to form a new variable, race/ethnicity, to evaluate the 

demographics of reported cases. Hispanic or Latino ethnicity was collapsed into the race 

category. For example, if a person identified ethnicity as Hispanic or Latino and white race on 

their case report form (CRF), their race/ethnicity record was reflected as Hispanic or Latino. A 

person without indication of Hispanic or Latino ethnicity on their CRF was recorded as their race 

alone (e.g., non-Hispanic Asian was recorded as Asian).  

Animal exposures (e.g., fleas, opossums, rats, cats, dogs, etc.) were collected from fields 

on the CRF and supplemental forms. Frequencies of exposures were tabulated if the infected 

person reported the animal in or near their home residence or place of work. 

Some CRFs included supplemental hematology results. Thrombocytopenia was classified 

as a platelet count less than normal human platelet count range lower limit (< 150,000 platelets 

per microliter of blood), leukopenia as a reduction in white blood cell (WBC) count less than 

3.5/mcL. Elevated liver enzymes were classified if either aspartate transaminase (AST) levels 

exceeded 40 IU/L or alanine transaminase (ALT) levels were above conventionally accepted 

upper normal limits for adults, 40 IU/L.29–32 

County population and demographic data were retrieved from corresponding one-year 

American Community Survey (ACS) estimates. Racial/ethnic and gender composition of typhus 
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cases in Los Angeles County and Orange County were compared to their respective proportion 

of the county population using ACS population demographic estimates. County race and 

ethnicity estimates followed the same combination criteria as used in the FBT race/ethnicity 

variable combination. Cumulative incidence rates (i.e., reported cases per population) were 

calculated per 100,000 population at risk from 2011 through 2019 using the average estimated 

population for Los Angeles and Orange counties. 

Household addresses were mapped for cases reported from each jurisdiction, assuming 

these served as the primary exposure location. Records of FBT cases among persons 

experiencing homelessness (PEH) were reviewed to identify the location of their encampment by 

address or general location. Coordinates corresponding to the centroid of a given neighborhood 

were assigned to PEH if the individual acknowledged living in that area at the likely time of 

exposure (e.g., a PEH without an address acknowledging they lived in Central City East (“Skid 

Row”) would be assigned the coordinates corresponding to the centroid of Central City East, Los 

Angeles). Household addresses were included in the spatiotemporal cluster analysis if 1) location 

was obtainable, including latitude and longitude, 2) location could be geocoded to a census tract 

upon case record review if household addresses were not available, 3) location was within a 

census tract with a population greater than zero, and 4) date of episode was available in the case 

record.  

During the surveillance period, the population did not fluctuate greatly for Los Angeles 

and Orange counties. The total population in these counties increased by approximately 2.9% 

from 2010-2020, with an estimated average increase of 1% year-to-year from 2011 to 2019 33,34. 

Therefore, the 2017 ACS 5-year census tract population estimates were used to represent all 

years under study. Population data were downloaded from the 2017 ACS 5-year estimates for 
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each census tract in Los Angeles and Orange counties. County and census tract shapefiles for 

2017 were accessed using California Open Data Portal. California city shapefiles for 2017 

originate from the U.S. Census Bureaus’ TIGER/Line database and are publicly available from 

the United States Open Data portal.  

Spatiotemporal cluster analysis 

Case addresses were aggregated by census tracts to retrieve the number of cases per tract 

per month for the surveillance period. Census tracts were chosen as the unit of analysis due to 1) 

the availability of underlying population data for each census tract to standardize the raw count 

data; 2) the ability to create zero-count data, observations with zero cases, otherwise unavailable 

while using case-only FBT typhus data; and 3) maintenance of privacy for patients by not 

directly disclosing their location. To correctly model count data at the census tract level, a 

discrete Poisson model was used for the spatiotemporal cluster analysis. A maximum cluster 

radius of 2.3 kilometers was specified to provide practical value (i.e., development of prevention 

and intervention efforts in smaller localities) to identified clusters and determined by calculating 

the median area of cities in Los Angeles and Orange counties in square meters (Supplemental 

Table 2). Cluster centers were restricted from geographically overlapping. With case counts 

temporally aggregated to monthly case counts per census tract, the minimum temporal cluster 

size was set to 1 month and the default maximum temporal cluster size (50% of period under 

study) was used in SatScan. Relative risks for retrospective spatiotemporal clusters were 

calculated by estimating the risk within the cluster divided by the estimated risk outside the 

cluster conditioned on the cumulative number of cases observed in the specified time and 

space35. Spatiotemporal cluster analyses were conducted using SatScan v9.7. Maps and plots 

were created using ArcGIS Pro 2.7.0. 
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This study was considered exempt for human subjects review by the California Health 

and Human Services Agency’s Federal wide assurance #00000681; approval was obtained from 

the Office of Human Research Protections, Committee for the Protection of Human Subjects 

(Project: 2020-117).  

Results 

Surveillance summaries 

From 2011 to 2019, 881 cases of FBT were reported to CDPH; 529 (54.9%) met the case 

definition for confirmed and 352 (36.6%) were probable. The number of cases reported each year 

within the timeframe ranged from 47 in 2011 to a peak of 164 cases in 2018 (Figure 1). Cases 

were reported from 16 local health jurisdictions. Most cases were reported from Los Angeles 

County (n = 685, 77.8%) and Orange County (n = 169, 19.2%). The cumulative incidence rate 

was 6.82 cases per 100,000 in Los Angeles County and 5.38 cases per 100,000 in Orange County 

during the nine-year surveillance period. Sporadic cases were reported in other southern 

California counties, including San Diego (5), San Bernardino (4), and Riverside (1). Cases occur 

throughout the year, but approximately half (n = 439, 49.8%) occur during the summer months 

June through September (Figure 2). 

The distribution of clinical and laboratory findings was similar for both classifications 

and thus were combined in Tables 1 (demographics) and 2 (clinical and laboratory findings). 

Most cases were reported among males (n = 504, 57.2%). The median age among reported cases 

was 43 (0 – 93; Table 1). White (n = 374, 42.5%) and Hispanic or Latino (n = 291, 33.0%) race 

and ethnicity were most frequently reported. Forty-nine (5.6%) case patients identified as Asian, 

30 (3.4%) as Black or African American, 5 (0.6%) as Native Hawaiian or Pacific Islander, and 4 
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(0.5%) as American Indian or Alaskan Native. Race and ethnicity data were unknown for 128 

(14.5%) case-patients.  

A total of 733 (83.2%) case-patients reported receiving inpatient care. Among those with 

hospitalization admission and discharge dates available (n = 659, 74.8%), the median length of 

initial stay was 4 (range 0-84) days. Twenty-nine (3.29%) case-patients were readmitted for a 

median period of 3 (range 0-8) days following their initial hospitalization. The average time 

between the onset of symptoms and collection of positive antibody test was 12.6 (SD= 23.4) 

days. Reported clinically compatible signs and symptoms were fever (n = 865, 98.2%), headache 

(n = 651, 73.9%), myalgia (n = 494, 56.1%), and rash (n = 379, 43.0%). Other commonly 

reported symptoms included nausea or vomiting (n = 453, 51.4%) and cough (n = 314, 35.6%). 

Thrombocytopenia was reported in 194 (22.0%) case-patients, leukopenia in 227 (25.8%) case-

patients, and elevated liver enzymes (aspartate transaminase [AST] or alanine transaminase 

[ALT]) in 169 (19.2%) case-patients (Table 2).  

Of the self-reported animal exposures to cats, dogs, opossums, rodents, and fleas around 

the case patient's household or at the employment location, cat exposures were most frequently 

reported by case-patients (n = 466, 52.9%) throughout the surveillance period (Table 3). 

Exposures to dogs (n = 436, 49.5%), opossums (n = 333, 37.8%), rodents (n = 230, 26.1%), and 

fleas (n = 188, 21.3%) were also noted by cases. History of bug bites during the incubation 

period (within 14 days prior to the onset of symptoms) was recalled in 199 (22.6%) case-

patients.  
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Spatiotemporal clusters 

Out of all reported FBT cases reported in Los Angeles and Orange counties between 

2011 and 2019 (N = 854), 830 were included in the spatiotemporal clustering analysis. Twenty-

four cases were excluded from further analysis because of missing or unobtainable location data. 

There was a total of 8,057 census tracts analyzed from Los Angeles and Orange counties with a 

mean tract area (SD) of 50.08 km2 (416.99 km2) and a mean (SD) population of 4,858.97 

(2,234.59). Eight spatiotemporal clusters were detected (Figure 3). Most of these clusters were in 

communities in the City of Los Angeles (Table 4). Two geographically and temporally limited 

clusters with high relative risks were identified in Willowbrook (RR = 102.9; n = 11), a 

community in south central Los Angeles County, and San Gabriel Valley (RR = 232.37; n = 5). 

The combination of smaller temporal window and high RR in these clusters provide evidence of 

past outbreaks. On the other hand, the most cases reported in a single cluster were identified in 

Long Beach (RR = 7.54; n = 29) in a temporal window over four years long.  

Discussion 

FBT cases in California have reached the highest levels measured in decades. Los 

Angeles County reported 75 cases of FBT between 1984 and 1994.21 Between 2002 and 2010, 

185 cases of FBT were reported in California.36 The present study totaled 881 cases reported, 4.8 

times more than that of the previous nine-year period, with an average of 97.8 cases per year. 

Reported cases show the specificity of FBT to the Los Angeles Basin in California, with a 

greater frequency of cases occurring during summer months. Considering that flea reproduction, 

feeding, and maturation are all increased during warm weather, it is reasonable to infer that the 

seasonality of FBT transmission is related to flea biology.37–40  
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Most demographic findings were similar to those of prior studies. More case-patients 

were male, which is consistent with prior FBT case series in Colombia (58%),41 Spain (55%),42 

Greece (57-61%),43–45 and Texas (55%).26,46 Interestingly, when considering only Los Angeles 

and Orange County cases, non-Hispanic white case-patients were overrepresented, and Hispanic 

or Latino case-patients were underrepresented when compared to the population distribution in 

Los Angeles and Orange counties (Figure 4). This contradicts race and ethnicity among TGR 

cases in Texas, in which 64% of TGR cases were Hispanic or Latino.20 In an ideal disease 

surveillance system, the demographics of disease reports (including non-cases) would reflect 

those of the population at risk. Discrepancies between observed and expected demographics 

among cases could then be tested to indicate high-risk groups. Unfortunately, we cannot make 

this comparison without comprehensive demographic data for suspect and non-cases. In the 

context of passive disease surveillance for FBT, it is difficult to describe disease risk due to 

unmeasured confounding in the surveillance system. For example, the underrepresentation of 

Hispanic or Latino persons among FBT cases may not necessarily point to a lower risk for this 

population but a lower likelihood of being tested and diagnosed with FBT. This inconsistency 

signals a potential gap in FBT surveillance that requires further investigation. 

The percentage of cases reporting fever, myalgia, and rash in our study was similar to 

that of prior studies.20 Prevalence of alanine or aspartate transaminase (ALT/AST) elevation 

were lower than previously reported.15 However, it is important to note that slight elevation in 

liver enzymes above normal levels may be transient and not indicate acute liver injury. Also, 

upper normal limits may also depend on various factors including age, sex, race or ethnicity, pre-

existing conditions, and location of testing laboratory.47–50 A higher proportion of case-patients 

in our study reported nausea or vomiting (51.4%), diarrhea (29.4%), and abdominal pain (31.6%) 
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than in prior studies (26.7%, 18.6%, and 18.8%, respectively).15 Thrombocytopenia (22.0%) was 

also less common than in a systematic review of FBT cases (42.2%).15 Clinical serological tests 

(e.g., platelet counts, white blood cell counts) were unavailable for a high proportion of case 

records (22%) in the current study. Hospitalization was reported for 83.2% of case-patients in the 

present study. The proportion hospitalized (83.2%) is higher than that reported for typhus group 

rickettsioses in Texas from 2003 to 2013 (59.6%) and in a case series of 29 patients in Germany 

(64%).20,51  

At least one animal exposure was recorded for most cases (99.1%). The reported 

exposures were consistent with animal exposures reported in Texas, except for a lower 

proportion of reported exposure to fleas in the present study.20 Animal exposure data collected 

via case-patient recall are problematic for elucidating the role of urban animals in FBT 

transmission cycles. These data are predicated on what the person sees, thus potentially 

underreporting animals that are more active at night, such as rodents and opossums. Domestic 

animals such as dogs and cats may also be overrepresented due to pet ownership. A limitation of 

the exposure data presented is that differentiates between free-roaming animals, pets owned by 

the case household, or pets belonging to others in the community. The surveillance data do not 

account for flea-control medication use, either. While the findings may direct general hypotheses 

on reservoirs and vectors, better characterization would be gained from on-the-ground ecological 

studies or standardized improvements in exposure data collection. 

Geographically and temporally smaller clusters with larger relative risks detected in 

SatScan are highly indicative of potential health hazards. Two resulting spatiotemporal clusters 

relate to outbreaks (e.g., five or more cases within one months to one year in a defined area) of 

flea-borne typhus determined by local health jurisdictions. The Willowbrook (cluster 1) and 
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downtown Los Angeles (cluster 8) clusters each included a time frame that fits with previously 

reported outbreaks in Los Angeles County.52  The extremely high relative risk estimates in the 

resulting spatiotemporal clusters are because these outbreaks were geographically confined and 

occurred over a relatively short time frame. Similarly, the San Gabriel Valley cluster (cluster 4) 

corresponds with a brief but well-documented outbreak in a mobile home park.53  

Long periods, such as periods extending multiple years, observed in most of the clusters 

(clusters 2, 3, and 5-7; Table 4) may reflect populations or areas with persistent FBT 

transmission rather than emerging health hazards. The Pasadena Public Health Department 

reports localized hotspots year-to-year and reported epidemic levels of FBT reported in 2018.54 

The resulting high RR and long temporal period in Cluster 3 is likely due to combining effects of 

FBT persistence in independent hotspots annually and outbreaks in 2018. Cluster 2 (i.e., Long 

Beach) had relatively low relative risk and higher number of cases in a period over four years 

long and may be attributed to FBT endemicity in the City of Long Beach.55 The remaining 

clusters (5-7) in communities within the City of Los Angeles have lower relative risks, fewer 

cases, and long temporal intervals. These may point to areas where cases are periodically 

reported or where risk is higher than expected. In other words, FBT cases arise from these areas 

frequently enough to suggest association with some underlying process, but elucidating specific 

reasons will require further research. 

The combination of significant high transmission areas in Pasadena and Long Beach and 

the absence of spatiotemporal clusters in Orange County despite a significant disease burden 

warrant further attention. Long Beach and Pasadena are two of three state-recognized city-level 

health jurisdictions in California. All other local health jurisdictions operate at the county level. 

It is worth considering whether these findings are driven by differential public health activities 
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improving knowledge and awareness of FBT  in high-risk locations, resulting in  differences in 

FBT surveillance ascertainment between each of the four jurisdictions included in the region. 

These data present potential biases and limitations. Because most cases are identified 

after seeking health care, the data captured here likely represent relatively severe infections of R. 

typhi. The discrepancy between lower rates of severe cases historically (10-25%) and the 

relatively high proportion of cases receiving inpatient care in the present data (83.2%) point to 

potential selection bias.15,23,24 The surveillance system's reliance on a person to seek out medical 

attention to receive adequate testing and subsequently being identified as a case may cause an 

underestimation in FBT cases, especially in the context of typically moderate clinical signs and 

symptoms of FBT. Furthermore, social and economic pressures such as income, health care 

access, and health insurance play a significant role in an individual's cost-benefit perception 

when considering seeking a health care provider. This is further supported by the 

overrepresentation of non-Hispanic white individuals and underrepresentation of Hispanic or 

Latino individuals in the present data, as health disparities in Hispanic or Latino communities 

may act as a barrier to being identified as a case.56 As such, it is warranted to evaluate 

socioeconomic variables in future reported FBT cases. While the association with summer 

months may indicate a change in animal or vector activity, it could be confounded by increased 

outdoor activity among people in the summer relative to the winter. In the spatiotemporal cluster 

analysis, using static population estimates for all census tracts in the study period corresponding 

to the 2017 5-year ACS estimates may not accurately measure the underlying population at risk. 

However, this issue may be nominal considering that the estimated population change from 2010 

to 2019 is estimated to be only 2.0% in the area where clusters were detected.33 Using FBT case 

count data by census tract may introduce aggregation bias by assuming all persons within a tract 
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are at equal risk and may not reflect reality when evaluated with more granularity or at the 

individual-level. Similarly, PEH are at considerably higher risk for exposure to FBT due to 

increased time spent outdoors, living conditions that attract rodents and free-roaming animals, 

and less access to flea-control for pets but may not be captured in census tract population 

estimates. This parallels findings for other vector-borne diseases such as bartonella.57,58 

Therefore, it is likely that the cluster including the downtown Los Angeles outbreak 

underestimates the relative risk of FBT among PEH and overestimates that of the general public 

in the area. Lastly, misclassification of cases may exist in the surveillance data. The ability to 

detect rickettsial disease immune response fluctuates during the time course of infection. 

Serological testing for antibody response (i.e., IgM and IgG) may not appear in detectable levels 

until 5-10 days after an individual presents symptoms.59 Therefore, a sample collected early in 

disease course (i.e., less than 14 days post-inoculation) from a truly infected individual may 

result in low antibody titers (i.e., IgM or IgG ≤ 1:64) that do not meet the case definition. 

Suspected cases with low initial titers should have a convalescent sample collected and tested 10-

20 days later or be tested by RT-PCR.59,60 

In 2020, the case definition for FBT in California was amended to align with other 

reporting states. This study aimed to characterize reported FBT case data in California using the 

preceding case definition active from 2011 to 2019. During this surveillance period, data show a 

substantial and concerning increase in reported FBT cases even while underestimating the true 

burden of disease. FBT is a significant vector-borne disease endemic to Los Angeles and Orange 

counties in California with sporadic outbreak potential. Additionally, a high percentage of severe 

cases observed warrant targeted health education and improvements in pest control particularly 

in areas identified with persistent localized risk. This information adds to the modern metadata 
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about FBT as research continues to show FBT is a potentially serious disease. FBT public health 

surveillance would greatly benefit from further research in host and vector ecology in this region 

of California. 
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Tables and Figures 

Figure 1: Reported FBT cases by year, California, 2011-2019. 
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Figure 2: Reported flea-borne typhus (FBT) cases by month, California, 2011-2019. 
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Figure 3: Human FBT spatiotemporal clusters detected, Los Angeles Basin, California, 2011-

2019. 
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Table 1: Sex and age of reported flea-borne typhus case-patients, California, 2011-2019. 

Demographics Case-patients  

(N = 881) 

Sex 

Female 

Male 

Unknown 

 

375 (42.6%) 

504 (57.2%) 

2 (0.2%) 

Age Group 

0-9 

10-19 

20-29 

30-39 

40-49 

50-59 

60-69 

70-79 

80+ 

Unknown 

 

43 (4.9%) 

96 (10.9%) 

108 (12.3%) 

123 (14.0%) 

169 (19.2%) 

169 (19.2%) 

105 (11.9%) 

55 (6.2%) 

7 (0.8%) 

6 (0.7%) 

Race/Ethnicity 

American Indian or Alaska Native (AIAN) 

Asian 

Black or African American 

Hispanic or Latino 

Native Hawaiian or other Pacific Islander (NHPI) 

White 

Unknown or Unspecified 

 

4 (0.5%) 

49 (5.6%) 

30 (3.4%) 

291 (33.0%) 

5 (0.6%) 

374 (42.5%) 

128 (14.5%) 
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Table 2: Clinical and laboratory findings among case-patients with clinically compatible 

symptoms to FBT, California, 2011-2019 

 Total Reported (%) 

(N = 881) 

Clinically Compatible Signs and Symptoms 

Fever  

Headache 

Myalgia 

Rash 

 

865 (98.2) 

651 (73.9) 

494 (56.1) 

379 (43.0)   

Other Signs and Symptoms 

Nausea or vomiting 

Cough 

Abdominal pain 

Diarrhea 

Non-specific arthralgias 

Eye pain 

Hypotension 

 

453 (51.4) 

314 (35.6) 

278 (31.6) 

259 (29.4) 

214 (24.3) 

125 (14.2) 

157 (17.8) 

Serology Results* 

Thrombocytopenia 

Leukopenia 

Elevated ALT or AST 

 

194 (22.0) 

227 (25.8) 

169 (19.2) 

*A high proportion of cases were missing data for thrombocytopenia (22.2%), leukopenia 

(21.8%), and elevated ALT or AST (66.9%) 

  



29 

 

Table 3: Self-reported animal exposures around household or employment location among 

FBT case-patients, California, 2011-2019 

Reported Exposure Total Reported  

(N = 881) 

Cats 466 (52.9%) 

Dogs 436 (49.5%) 

Opossums 333 (37.8%) 

Rodents 230 (26.1%) 

Fleas 188 (21.3%) 
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Table 4: Human FBT spatiotemporal clusters* detected, Los Angeles and Orange Counties, 

California, 2011-2019. 

Cluster Location RR (cases) p-value Period 

1 Willowbrook 102.9 (n = 11) < 0.0001 9/1/2018 – 11/30/2019 

2 Long Beach 7.54 (n = 29) < 0.0001 7/1/2015 – 10/31/2019 

3 Pasadena 21.76 (n = 16) < 0.0001 6/1/2016 – 2/28/2019 

4 San Gabriel Valley 232.37 (n = 5) 0.0009 3/1/2015 – 8/31/2015 

5 Silver Lake 8.76 (n = 16) 0.0042 7/1/2016 – 11/30/2019 

6 Cypress Park 10.71 (n = 14) 0.0042 12/1/2016 – 11/30/2019 

7 Alhambra 14.42 (n = 11) 0.013 9/1/2014 – 12/31/2018 

8 Downtown Los Angeles 14.94 (n = 10) 0.039 7/1/2017 – 11/30/2019 

*Cluster locations are generalized to major cities or prominent neighborhoods and may also 

include neighboring areas. Clusters are ordered by increasing p-value. For this study, 

exact p-values were not indicated if < 0.0001. 
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2. BAYESIAN POPULATION-BASED ASSESSMENT OF ASCERTAINMENT BIAS IN FLEA-BORNE TYPHUS 

SURVEILLANCE IN CALIFORNIA, 2011-2019 

 

 

Abstract 

Passive surveillance systems often introduce a great deal of uncertainty to any analysis. 

Prevalence estimates are likely inaccurate if derived without consideration for how data were 

ascertained. In California, public health disease surveillance data for flea-borne typhus (FBT) is 

generated by healthcare providers and laboratories who are responsible for notifying local health 

jurisdictions when the disease is detected. When accounting for the associations between 

socioeconomic factors, R. typhi reservoir host presence (e.g., rats), and healthcare-seeking 

behaviors, it is reasonable to consider whether these factors also lead to under-ascertainment of 

FBT surveillance and distorted estimations of incidence.  

This study aimed to explore population-level associations between SES factors and FBT 

surveillance reporting using a Bayesian hierarchical model including a spatially autocorrelated 

random effect. Census tract-level covariates were sourced from the American Community 

Survey and Healthy Places Index (HPI). Specifying a zero-inflated Poisson distribution to FBT 

surveillance report counts, we estimated spatially smoothed, census tract-level estimates of FBT 

surveillance report rates and attributed variability in report rates to census tract characteristics.  

Socioeconomic advantage, as measured by the HPI, had the largest effect (IRR = 1.34 

[1.07, 1.69], corresponding to a 34% increase in FBT surveillance reporting in more advantaged 

census tracts. The results herein suggest that FBT surveillance may be biased in its ascertainment 
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of surveillance data, which may be helpful to contextualizing and interpreting current trends in 

FBT epidemiology.  
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Introduction 

Nationwide, public health agencies systematically collect, analyze, and publish data 

regarding morbidity and mortality in their respective communities. Public health infectious 

disease surveillance is an essential element in the assessment of infectious disease epidemiology 

and often stimulates public health action and interventions. California is one of three states 

(Texas and Hawai’i) that captures cases of flea-borne typhus as part of its public health disease 

surveillance efforts. In California, public health disease surveillance data is generated by 

healthcare providers and laboratories who are responsible for notifying local health jurisdictions 

when any of the 90 reportable diseases and conditions are detected. In turn, epidemiological 

measurements (e.g., incidence, prevalence) heavily rely on reporting for infections of public 

health significance by health care providers or testing laboratories.  

Flea-borne typhus (FBT) is a vector-borne febrile disease caused by the bacteria 

Rickettsia typhi. Symptoms of FBT are non-specific, often characterized by fever and headache. 

Severe disease and complications occur, but most infections tend to be clinically mild to 

moderate and may self-resolve.1–4  R. typhi is primarily transmitted through infected flea feces 

and may cause infection when the mucous membranes of a vertebrate host are exposed of his 

bacteria.1,5,6 In the United States, rats, opossums, and cats are implicated as primary hosts of R. 

typhi and competent flea vectors.7,8 FBT can be detected in humans through serological testing 

for antibody response or DNA. Both are surveilled through electronic laboratory reporting (ELR) 

in California whenever an individual tests positive for R. typhi. Between 2011 and 2019, 881 

cases of FBT were reported in California, the majority of which were reported among residents 

in Los Angeles and Orange Counties.9,10 Almost all of these were reported among residents in 

Los Angeles and Orange Counties 
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Various factors may make an environment more suitable for flea-burdened peridomestic 

hosts. Rats, cats, and opossums will settle in or near households if conditions are suitable and 

may raise the chance of exposure.8 This has been described for rats, where environmental 

deprivation and economic disadvantage have downstream effects promoting urban rat 

populations.11–13 Historically, flea-borne typhus cases are associated with suboptimal living 

conditions due to a greater chance of coming in contact with peridomestic hosts, primarily rats 

and their flea ectoparasites. This has also been underscored in the context of persons 

experiencing homelessness more recently.14 Transient persons may be at a higher risk than the 

housed population, but it is not exclusive.  

Likewise, disparities in social and economic factors contribute to the under-ascertainment 

of infectious disease surveillance data. Following the definitions outlined by Gibbons et al., 

under-ascertainment is a feature of infectious disease surveillance underestimation, the number 

of infections in a population that have not been captured by disease surveillance systems, that 

may occur at the community-level when individuals do not seek healthcare and subsequently not 

captured in disease surveillance systems.15 In other words, under-ascertainment may occur 

because not all who contract a given disease will seek healthcare. Existing financial barriers may 

deter individuals from seeking healthcare. Another potential reason for under-ascertainment is 

that asymptomatic, mild, or self-limiting symptoms may not sufficiently raise the urgency for an 

individual to seek healthcare.16 Knowledge, attitudes, and perceptions related to health behaviors 

and intentions to seek healthcare also vary when considering age, sex, race and ethnicity. For 

example, a population-based study in France noted that children aged less than 15 years are more 

likely to seek healthcare for symptoms of gastroenteritis compared to adults.17  
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Understanding that socioeconomic factors are associated with host presence 

(consequently, exposure to R. typhi) and healthcare-seeking behaviors, it is reasonable to 

consider whether these factors also lead to under-ascertainment of FBT surveillance and 

distorted estimations of incidence. As such, this study aimed to assess population-level 

associations between SES factors and FBT surveillance reporting. Our guiding hypothesis is that 

lower socioeconomic status (SES) may be associated with higher risk of FBT, but lower 

likelihood of being measured through passive surveillance. We utilized a population-based 

Bayesian framework with spatially dependent random effects to measure associations. 

Additionally, we analyzed the relationship between census tract FBT reporting and the Healthy 

Places Index (HPI), a commonly used metric that characterizes census tract advantage by 

measuring factors pertaining to the social determinants of health (SDOH) in census tracts. This 

information may be useful to contextualize and improve FBT surveillance efforts in endemic 

regions in California. 

Methods 

Flea-borne typhus surveillance data, California 

The California Department of Public Health (CDPH) tracks surveillance data pertaining 

to notifiable diseases and conditions through the California Reportable Disease Information 

Exchange (CalREDIE). For FBT, diagnostic laboratories typically report results to CalREDIE 

through ELR after sample tests positive. Local health jurisdictions (i.e., county or city health 

departments) may also directly record disease incidences in the surveillance system after 

notification or receipt of a case report form from a health care provider. FBT diagnostic testing 

results reported through ELR are assigned a status corresponding to the FBT case definition 

summarized in Supplemental Table 1. Briefly, if an initial test meets the criteria for a probable or 
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confirmed FBT, then the local health jurisdiction will follow up with the provider and patient to 

collect more information regarding exposure history and clinical signs and symptoms. 

Laboratory reports that do not initially meet the laboratory requirements of the case definition are 

classified as non-cases and often do not receive additional investigation.  

Most FBT non-case reports do not contain basic demographic information or clinical 

information (e.g., symptom onset date, reason for testing). Fortunately, non-case reports contain 

residential addresses for individuals, enabling the use of a population-based approach to assess 

socioeconomic factor relationships with FBT reporting. Residence locations of individual FBT 

reports, whether they were classified as a case or non-case, were mapped and aggregated to 

census tracts. The total report count aggregated by census tract was established as the dependent 

variable in this analysis.  

Census tract selection 

More than 95% of FBT cases reported between 2011 and 2019 were among residents of 

Los Angeles County and Orange County. Consequently, we only included census tracts within 

these two counties for analysis. Five census tracts pertaining to the coastline (i.e., beaches and no 

population) were excluded. County and census tract TIGER/Line shapefiles were retrieved from 

the U.S. Census Bureau, Department of Commerce. Shapefiles were reduced to the desired 

census tracts using ArcGIS Pro 2.7.0. 

Census tract variables 

Census tract population and SDOH data were retrieved from the 2017 ACS 5-year 

Estimates.18 To select ACS variables, we adapted an approach outlined by Zhang et al. where the 

investigators selected variables representing three SDOH domains: “socioeconomic stability, 

https://catalog.data.gov/dataset/tiger-line-shapefile-2019-state-california-current-census-tract-state-based
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demographic characteristics of disadvantaged groups, housing and transportation”.19 In total, 

sixteen ACS variables were retrieved and standardized for their respective census tracts using the 

tidycensus package in R.20 

The U.S. National Land Cover Database (NLCD) measures 20 classifications of land-use 

types. Data are made available by the Multi-Resolution Land Characteristics Consortium. NLCD 

data are presented in 30-meter pixels, representing 900 square meters of a given land-use type 

per pixel. Census tract area by land-use type was extracted if a pixel’s center was within the 

census tract boundaries using ArcGIS Pro. Specific land-use type area was divided by the total 

land-use area extracted to give the proportion of area by land-use type in each census tract. In the 

study region, only the four levels of developed land were found in most census tracts, which are 

exclusively urban. Furthermore, we combined the middle two developed land types (i.e., low 

intensity and high intensity) since both are characteristic of standalone single-family homes 

(Supplemental Table 2). The resulting land-use variables were then standardized prior to 

analyzing. 

The Healthy Places Index (HPI), developed by the Public Health Alliance of Southern 

California, is a well-known and widely used metric of SDOH in the state. Many local health 

departments, including those in Los Angeles and Orange Counties, use the HPI as a tool to 

conduct needs assessments, prioritize funding and attention, and assess health equity. Briefly, the 

HPI is a standardized value summarizing eight domains related to SDOH: education, healthcare 

access, housing, neighborhood conditions, clean environment, social environment, and 

transportation. These domains source data from ACS, NLCD, U.S. Department of Agriculture, 

California Environmental Protection Agency, and U.S. Environmental Protection Agency. 

Higher HPI scored indicates greater census tract advantage. The HPI 2.0 iteration was selected as 
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its indicator data was sourced from 2011 to 2015 and best represents the surveillance period 

under study (2011-2019).  

Multivariable spatial model selection 

 Multivariable models were specified using queen’s adjacency to address spatial 

autocorrelation. Covariate selection was conducted by performing a backward stepwise 

elimination algorithm based on maximum likelihood function and a penalty that includes the 

least absolute shrinkage and selection operator (LASSO), minimax concave penalty (MCP) and 

smoothly clipped absolute deviation (SCAD). The algorithm is available in the mpath package in 

R.21,22  

Univariable and multivariable Bayesian spatial analysis 

Census tract shapefiles form non-overlapping spatial areal units in the form of a lattice. In 

most cases, data often exhibit similar values in areal units close together, a pattern known as 

spatial autocorrelation. The presence of spatial autocorrelation in observed FBT surveillance 

reports was assessed by the Moran I test in the R package spdep.23 To remedy spatial 

autocorrelation, a localized conditional autoregressive (CAR) prior was included as a spatially 

autocorrelated random effect in univariable Bayesian hierarchical models. The CAR priors were 

obtained using spatial adjacency and given the Besag-York-Mollié (BYM) random effect 

specification. The BYM model includes both spatial and independently structured error terms and 

determines the extent of spatial smoothing used. Spatial random effects require a spatial zero-one 

weight matrix of dimension J by J, where J is the number of census tracts in the study 

population. The spdep package was used to construct the weight matrix based on queen’s 

adjacency (i.e., any neighboring census tract with a shared edge or vertex). The resulting weight 
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matrix gives element [i, j] a value of one if census tract i and census tract j are adjacent to each 

other and zero if otherwise. Census tract FBT surveillance report counts were modeled using a 

zero-inflated Poisson distribution with the log-transformed census tract population size as the 

offset. The model structures (Equation 1) were used to estimate spatially smoothed, census tract-

level estimates of FBT surveillance report rates and attributed variability in report rates to census 

tract characteristics.  

______________________________________________________ 

[1]   𝑍𝐼𝑃(𝜇𝑖,  𝜔𝑖) {

ln(𝜇𝑖) = β𝑋𝑖 + ln(𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛𝑖) + 𝜑𝑖,

ln (
 𝜔𝑖

 1−𝜔𝑖
) = δ𝑋𝑖 + ln(𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛𝑖)

 

Equation 1: For each census tract i, Xi represents the ACS, land-

use, or HPI variable. β represents the corresponding regression 

coefficient in the Poisson process (i.e., mean) for variable Xi, while 

δ represents the coefficient for zero-inflation. In implementing the 

model, a binary random variable Zi (not shown) is sampled for 

each census tract i, where Zi = 1 if the census tract has 0 reports, 

and Zi = 0 if the census tract has 1 or more reports.24  

______________________________________________________ 

Model inference for the regression coefficients was based on credible intervals obtained 

from 30,000 Markov Chain Monte Carlo samples with 10,000 burn-in samples and thinned by 

every 10th sample. The CARBayes package in R was used for all model analyses.  

Ethics statement 
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This study was considered Exempt; approval was obtained from the Los Angeles County 

Ambulatory Care Network and Health Services Administration Institutional Review Board 

(Project No.: 2021-11-967) and the California Department of Health and Human Services, Office 

of Human Research Protections Committee for the Protection of Human Subjects (Project No.: 

2021-174).  

Results 

Between January 1, 2011 and December 31, 2019, a total of 1,805 FBT surveillance 

reports were generated by 2,923 census tracts in Orange County and Los Angeles County. When 

aggregated by census tract, the frequency of reports ranged from 0 to 11 per census tract (Figure 

1). Approximately 30.6% (n = 893) census tracts had any history of a FBT surveillance report 

(Table 1). The Moran I statistic was 0.261 (p < 0.001), indicating that the residuals contain 

substantial spatial autocorrelation for FBT surveillance reporting.  

Posterior estimates of FBT surveillance reporting rate ratios and 95% credible intervals 

from the univariable CAR models are presented in Table 2. The relationships between the 

covariates and FBT surveillance reporting are shown for the zero-inflation model (i.e., 

probability of observing a zero count) and the count model (i.e., log-linear model of report 

counts). Census tracts with a greater proportion of the population being 65 years or older (OR = 

0.47 [0.18, 0.89]) or with more health insurance coverage (OR = 0.63 [0.43, 0.94] were inversely 

associated with FBT surveillance reporting for the zero-inflation probability (i.e., lower 

probability of observing a zero count in a given census tract). However, in the count (i.e., 

Poisson) probability, health insurance coverage had a positive effect (IRR = 1.14 [1.01, 1.25]). 

Non-white race and ethnicity had a large positive effect (OR = 12.49 [1.31, 71.37]) for the zero-

inflation probability, albeit with a large credibility interval. Apartment density (IRR = 0.86 [0.77, 
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0.96]), overcrowding (IRR = 0.79 [0.70, 0.88]), and highly developed land use (IRR = 0.88 

[0.79, 0.99]) were negatively associated with FBT surveillance reporting in the count model.  

Conversely, higher proportions of single-family homes (IRR = 1.16 [1.03, 1.31]) were positively 

associated with reporting. 

The Healthy Places Index and a few of its components were positively associated with 

FBT surveillance reporting in the count model. Overall, the HPI had the largest effect (IRR = 

1.34 [1.07, 1.69], corresponding to a 34% increase in FBT surveillance reporting in more 

advantaged census tracts. Sub-analysis of the HPI component scores resulted in similar positive 

associations for greater economic advantage (IRR = 1.24 [1.08, 1.44]), healthcare access (IRR = 

1.11 [1.00, 1.24]), and housing (IRR = 1.18 [1.03, 1.36]).  

The final zero-inflated Poisson multivariable model was fitted with seven covariates in 

the zero-inflation (i.e., logit) component and six in the count (i.e., Poisson) component (Table 3). 

The zero-inflation component of the model addresses the likelihood of having zero flea-borne 

typhus reports and the count component accounts for the populations (i.e., census tracts) with 

one or more FBT surveillance reports. Higher odds in the zero-inflation component coefficients 

are a positive association with a census tract not having any FBT surveillance reports. Therefore, 

at the census tract level, insurance coverage (OR = 0.40 [0.16, 0.72]) and highly developed land 

use (OR = 0.43 [0.13, 0.86]) were associated with history of FBT surveillance reporting. 

Conversely, more new housing (e.g., housing built after 2000) in a census tract was associated 

with no FBT reporting history (OR = 1.70 [0.13, 0.86)]. In the count component of the 

multivariable model, low (IRR = 1.07 [1.00, 1.16]) and moderate (IRR = 1.09 [1.01, 1.20]) 

development land-use were positively associated with higher frequency of FBT reporting. New 
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housing was associated with lower frequency of FBT reporting at the census tract level (IRR = 

0.86 [0.79, 0.94]).  

 The resulting fitted values from the spatial Bayesian multivariable zero-inflated Poisson 

model, being the posterior mean count of reports predicted or each census tract while adjusting 

for the given covariates, were compared to the observed number of reports in Los Angeles and 

Orange Counties from 2011 to 2019. Census tracts in these two counties that may have under-

ascertainment (teal color) or over-ascertainment (dark blue color) of FBT surveillance reports 

when compared to the predicted values (Figure 2).  

Discussion 

This study identifies population-level variables related to FBT surveillance reporting in 

FBT-endemic local health jurisdictions in California.  Directly assessing individual-level 

associations between socioeconomic status and FBT is difficult due to the heterogeneity in data 

availability between cases and non-cases of FBT. Furthermore, such a comparison may not be 

appropriate considering both cases and non-cases were likely tested due to exposure history, 

clinical course, or differential diagnoses noted by a healthcare provider. Therefore, non-cases 

may be more similar to cases, biasing estimates of risk factors towards the null.  

Interpreting the negative relationship between apartment density, overcrowding, and 

highly developed land use and FBT surveillance reporting in the model’s count component 

requires some considerations. These variables are typical for highly urbanized, metropolitan 

areas, associated with lower socioeconomic status and, consequently, potential barriers to health 

care access. The opposite trend in single-family homes also follows the same relationship. On the 

other hand, if we consider the ecology of FBT, these areas may provide differential habitat 

suitability for reservoirs of R. typhi resulting in varying risks of exposure. For example, densely 
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populated metropolitan areas may not feature large opossum populations, a highly implicated 

reservoir of disease, compared to less urban areas.25,26 Instead, urban communities may support 

large and dense rat populations. A rat parasitized with an R. typhi-infected flea may contaminate 

its burrow and create an endemic locus exponentially larger than that of opossums or cats within 

urban environments when considering the life cycles of rats (e.g., lifespan, habitat, reproduction). 

Improvements in animal surveillance locally would greatly supplement human surveillance. 

Furthermore, those data could determine whether the associations presented in this paper are 

artifacts of ascertainment bias or truly representative of exposure risk. 

We utilize the HPI to assess the relationship between social determinants of health and 

FBT surveillance reporting. This approach may be more accessible to local health jurisdictions 

interested in assessing other disease surveillance reporting. Recently, similar approaches using 

the HPI have been used to assess population-level risk factors for syphilis,27 tuberculosis,28 and 

preterm births among Black women.29 Here, we observed a positive association between the HPI 

and FBT surveillance reporting counts indicating that higher counts of FBT surveillance reports 

were associated with greater socioeconomic advantage. This finding supports our hypothesis that 

lower SES status may indeed result in fewer case reports. 

The conflicting direction of association between the two parts (zeros and count) of the 

zero-inflated Poisson model for health insurance coverage require further attention. It is 

interesting that the odds of no reports being observed (i.e., zero-inflation component) in a census 

tract is lower with greater health insurance coverage in the univariable and the adjusted 

multivariable models. Indeed, this relationship is likely driven by confounding factors at the 

population-level; particularly  when considering the unmeasured confounding in the univariable 
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models. Future studies should consider multi-level models if individual-level demographics are 

available for all FBT surveillance reports to explore this relationship further. 

Social determinants of health and disease have been at the core of public health for 

decades. The conditions of the environments in which individuals live, work, and socialize play a 

crucial role in morbidity and mortality for a wide range of conditions. Differences in 

socioeconomic conditions among individuals and communities have been related to disparities in 

health status.30 Often, investigations characterize the relationship between socioeconomic status, 

chronic conditions (e.g., Type-2 diabetes, cancer), and differences in health outcomes (e.g., 

morbidity or mortality rate).31–33 These relationships have also been explored in the context of 

infectious disease outcomes such as COVID-19 or influenza.34,35 Such assessments should also 

be extended to the systems public health entities use to measure infectious diseases. Some efforts 

to do so have been applied to COVID-19 responses with the aim of ensuring equitable access to 

testing,36 assessing disproportionate reporting of disease,37 or highlighting inequalities in access 

to non-pharmaceutical interventions.38 Similar attention is warranted for other reportable 

diseases or conditions that public health agencies measure.  

This assessment is not without limitations. The most important of which is that the data 

presented here are aggregated and analyzed on a population scale (i.e., census tracts) and may 

not be representative of an individual’s demographics. For example, an individual may have 

greater income than the median income of the census tract in which they reside. Additionally, an 

individual’s health-seeking behaviors may be driven by their knowledge, attitudes, or 

perceptions of febrile disease or FBT-related exposures. While individual perceptions of health-

related issues are often associated with socioeconomic factors, these subjective aspects driving 

health behaviors were only explored through population-level factors. Vector or animal 
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population distributions may be correlated with measured variables such as land use, potentially 

allowing unmeasured confounding in the analysis. Lastly, interpretation of under-ascertainment 

or over-ascertainment of FBT surveillance in census tracts displayed in Figure 2 are contingent 

on the degree to which FBT reporting represents the true pattern of R. typhi-tested samples in 

Los Angeles and Orange Counties. Surveillance data sourced through CalREDIE are the best 

available data to estimate under-ascertainment, but data on all R. typhi-tested samples from 

healthcare providers or laboratories would be a substantial improvement.  

Conclusions and Significance 

It is generally understood that passive surveillance systems tend to under-ascertain the 

true burden of a given disease.15 The guiding hypothesis of this study was that lower 

socioeconomic status may be associated with lower likelihood of being measured through 

passive surveillance for FBT. The population-level associations observed here suggest that FBT 

surveillance may be biased in its ascertainment of FBT surveillance data, particularly when 

considering health insurance coverage. As such, it is not appropriate to consider the current 

ascertainment of FBT cases as a comprehensive measurement of incidence or prevalence of FBT. 

Fortunately, differential ascertainment or under-ascertainment of disease reporting can be 

modeled to approximate prevalence of disease and provide risk estimates. Such models have 

been demonstrated for various infectious diseases, including COVID-19.39,40 The data and 

analysis presented here may be used to inform similar applications in FBT surveillance and 

provide context for determining risk factors for FBT. Two sources of information would greatly 

improve flea-borne typhus surveillance and lead to more accurate prevalence estimates; 1) 

inclusion of geographical animal surveillance data to characterize the populations at risk of 
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disease exposure, and 2) inclusion of all R. typhi-tested samples in the region to verify under-

ascertainment as characterized in this study and quantify underestimation of FBT surveillance.  
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Tables and Figures 

Figure 5: FBT surveillance report counts by census tract, 2011-2019 
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Figure 6: Comparison of predicted and observed flea-borne typhus reports in Los Angeles and 

Orange Counties, CA, 2011-2019. 
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Table 5: Characteristics of census tract surveillance counts and ACS, land-use, and HPI 

variables; Los Angeles and Orange Counties, CA. (N = 2,923) 

Variable Mean (SD) Median [Min., Max.] 

Hx any report n = 893  

Report frequency 0.55 (1.15) 0.00 [0.00, 11.00] 

Total populationǂ 4.59 (1.75) 4.40 [0.06, 24.04] 

Median household income†, $  6.33 [0.57, 25.00] 

Median age  36.50 [19.20, 76.20] 

Age: 0-14 years, % 0.13 (0.04) 0.13 [0.00, 0.29] 

Age: 65+ years, % 0.14 (0.07) 0.13 [0.00, 0.85] 

Racial minority, % 0.62 (0.31) 0.68 [0.02, 1.00] 

Living poverty, % 0.17 (0.13) 0.15 [0.00, 1.00] 

Insured, % 0.87 (0.08) 0.88 [0.45, 1.00] 

Disability, % 0.10 (0.04) 0.10 [0.00, 0.42] 

Unemployed, % 0.07 (0.03) 0.07 [0.00, 0.32] 

Rent burdened, % 0.58 (0.13) 0.07 [0.00, 0.32] 

Overcrowded housing, % 0.13 (0.12) 0.09 [0.00, 0.65] 

Housing units± 1.50 (0.65) 1.39 [0.02, 7.63] 

Apartments, % 0.37 (0.29) 0.32 [0.00, 1.00] 

Single-family homes, % 0.61 (0.29) 0.66 [0.00, 1.00] 

Mobile homes, % 0.02 (0.06) 0.00 [0.00, 0.87] 

Residences built before 2000, % 0.81 (0.18) 0.86 [0.03, 1.00] 

Open development, % 0.04 (0.07) 0.02 [0.00, 0.50] 

Moderately development, % 0.64 (0.23) 0.70 [0.00, 1.00] 

High development, % 0.24 (0.22) 0.18 [0.00, 0.99] 

   

ǂIn 1,000 person increments 

†In $10,000 increments 

±In increments of 1,000 
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Table 6: Posterior summary of zero-inflated Poisson univariable models of population-based Bayesian 

hierarchical spatial analysis 

 Zero-inflation posteriors Count posteriors 

 OR (95% CrI) IRR (95% CrI 

Demographics   

Age, 0-14 years 1.17 (0.66, 1.90) 0.95 (0.86, 1.05) 

Age, 65 years or older 0.47 (0.18, 0.89)* 1.08 (0.99, 1.18) 

Race and ethnicity   

Non-Hispanic white 0.14 (0.01, 0.97)* 1.23 (1.08, 1.47)* 

Racial minority 12.49 (1.31, 71.37)* 0.83 (0.73, 0.93)* 

Black or African American 1.50 (1.10, 1.93)* 0.99 (0.85, 1.17) 

Asian 0.39 (0.07, 1.01) 0.87 (0.79, 0.97)* 

Hispanic or Latino 1.08 (0.60, 1.78) 0.88 (0.78, 1.00)* 

Native American or Indigenous 0.82 (0.47, 1.27) 1.02 (0.94, 1.12) 

Native Hawaiian or Pacific Islander 0.86 (0.27, 1.29) 0.96 (0.87, 1.06) 

Multiple Race 0.86 (0.47, 1.60) 1.12 (1.00, 1.26) 

Economic Status       

Median income 0.63 (0.24, 1.60) 1.18 (1.07, 1.28) 

Poverty 0.70 (0.24, 1.40) 0.90 (0.81, 1.00) 

Health insurance coverage 0.63 (0.43, 0.94)* 1.14 (1.01, 1.25)* 

Disability status 0.68 (0.40, 1.07) 0.97 (0.89, 1.06) 

Unemployment 1.58 (0.97, 2.30) 1.02 (0.92, 1.13) 

Rent burden 0.82 (0.57, 1.18) 0.90 (0.82, 0.98) 

Housing Characteristics   

Total housing units 0.81 (0.47, 1.15) 0.99 (0.93, 1.07) 

Apartments 2.01 (0.72, 27.32) 0.86 (0.77, 0.96)* 

Single-family homes 0.31 (0.01, 5.19) 1.16 (1.03, 1.31)* 

Mobile homes 0.16 (0.00, 1.20) 0.99 (0.92, 1.08) 

Houses built pre-2000 0.91 (0.61, 1.39) 0.82 (0.75, 0.91) 

Overcrowding 0.96 (0.48, 1.52) 0.79 (0.70, 0.88)* 

Land Use   

Open developed space  0.00 (0.00, 0.00)  1.05 (0.96, 1.15) 

Moderately developed space  1.12 (0.66, 3.02)  1.05 (0.96, 1.15) 

Highly developed space  1.01 (0.46, 1.66)  0.88 (0.79, 0.99)* 

Healthy Places Index     

HPI  0.68 (0.24, 6.28)  1.34 (1.07, 1.69)* 

Economic  0.92 (0.50, 2.17)  1.24 (1.08, 1.44)* 

Education  0.82 (0.52, 1.53)  1.12 (0.99, 1.27) 

Healthcare access  0.73 (0.46, 1.51)  1.11 (1.00, 1.24)* 

Housing  1.03 (0.59, 2.02)  1.18 (1.03, 1.36)* 

Neighborhoods  0.69 (0.23, 1.82)  1.03 (0.81, 1.30) 

Environmental pollution  0.79 (0.33, 3.27)  0.86 (0.64, 1.16) 

Social  0.64 (0.36, 1.14)  1.07 (0.94, 1.22) 

Transportation  0.76 (0.16, 5.64)  0.88 (0.64, 1.22) 
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Table 7: Posterior summaries of zero-inflated Poisson multivariable models for population-based 

Bayesian hierarchical spatial analysis. 

Zero-inflation model coefficients 

Variable OR (95% CrI) 

Total population 0.57 (0.23, 1.39) 

Insurance coverage % 0.40 (0.16, 0.72)* 

Unemployment % 1.49 (0.99, 2.44) 

Age, 0-17 years % 1.35 (0.79, 2.48) 

Housing units 0.98 (0.20, 2.48) 

New housing % 1.70 (1.01, 3.46)* 

Land use – high % 0.43 (0.13, 0.86)* 

Count model coefficients (Poisson) 

Variable IRR (95% CrI) 

Median income 1.05 (0.94, 1.16) 

Rent burden % 0.97 (0.89, 1.16) 

Housing units 0.96 (0.89, 1.03) 

New housing % 0.86 (0.79, 0.94)* 

Land use – low % 1.07 (1.00, 1.16)* 

Land use – mod. % 1.09 (1.01, 1.20)* 
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3. DETERMINING INFLUENTIAL PARAMETERS IN FLEA-BORNE TYPHUS TRANSMISSION DYNAMICS IN 

CALIFORNIA: PARAMETER SENSITIVITY AND QUALITATIVE ANALYSIS 

 

 

Abstract 

Flea-borne typhus (FBT), also known as endemic or murine typhus, is a vector-borne 

disease caused by the bacterium Rickettsia typhi. This disease has resurged in the past two 

decades in the United States associated with changing reservoir host ecologies. We elected to 

explore the nuanced ecology of FBT using compartmental mathematical models, which are often 

employed to express complex disease systems and refine epidemiological questions. This study 

proposes a novel stochastic, continuous time model using ordinary differential equations (ODEs) 

based on the known ecology of FBT in the United States. Using literature specific to California, 

sensitivity analyses were performed using Latin hypercube sampling and partial ranked 

correlation coefficients to highlight parameters’ quantitative and qualitative influence on FBT 

infections in humans. The two parameters with the greatest influence on FBT in humans were 

Ctenocephalides felis-Didelphis virginiana contact rates and opossum-human contact rates. 

These results may be used to inform control and intervention campaigns for FBT. Additionally, 

this model provides a framework for future research that would greatly improve understanding of 

FBT ecology. 
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Introduction 

Flea-borne typhus (FBT) is a vector-borne human febrile disease caused by Rickettsia 

typhi. Although FBT transmission is typically associated with the rat flea (Xenopsylla cheopis), 

the cat flea (Ctenocephalides felis) also serves as a competent vector. Fleas can become infected 

with R. typhi after feeding on infected reservoirs such as rats (Rattus spp.), opossums (Didelphis 

virginianus), and cats (Felis catus).22 R. typhi multiplies in the epithelial cells of an infected 

flea’s midgut and is shed in the flea’s feces while feeding.18,89,90 R. typhi is primarily maintained 

through horizontal transmission from fleas to hosts via inoculation of infected flea feces to an 

open bite wound or mucosal membranes. Transovarial transmission has been demonstrated 

among X. cheopis as R. typhi may also infect reproductive organs and foregut tissues of the 

flea91. Flea longevity is not affected by R. typhi infection and a flea can therefore sustain the 

infection for the duration of its life.18,23 Similar to other vertebrate hosts, humans become 

infected when open wounds or mucosal surfaces are exposed to contaminated flea feces. 

Sylvatic cycles of FBT in the continental United States (i.e., Texas and California) 

feature complicated transmission dynamics with two vectors and three hosts. Currently most 

public health interventions are reactive to new FBT outbreaks, but there is great interest among 

local health jurisdictions for a proactive, preventative approach. Mathematical models have 

increasingly been used in epidemiologic literature to inform public health decision making.92 The 

complex ecology of FBT has historically been a hurdle to modeling FBT, however, even simple 

models could represent an improvement over the diagrammatic presentations of host-vector 

relationships that currently exist. Modeling can be a cheap and quick way for us to evaluate the 

dynamic ecology and transmission dynamics of FBT.  
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The present study aimed to develop a novel mathematical model for FBT using a system 

of ODEs and identify key parameters using sensitivity analysis to target for intervention 

strategies and allocation of resources. Scenario analyses are also provided as example 

applications for the proposed FBT mathematical model and may prove useful to vector control 

agencies in FBT endemic regions.  

Methods 

We propose a stochastic continuous-time model consisting of 22 compartments with 

consideration for humans, reservoir host species (rats, cats, opossums), and two primary flea 

vector species in the United States (rat flea, cat flea; Figure 7). Humans are incidental dead-end 

hosts in the model, meaning that infected humans are unable to infect fleas, reservoir hosts, or 

other humans. Because the ecologies of fleas, their hosts, and FBT differ among environments, 

we prioritized literature regarding FBT ecology in California.  Each of the ODEs below follow 

notation and parameter inputs as outlined in Table 8. The resulting model represents the reported 

FBT ecology in the United States using parameters specific to California.18,93  

Modeling flea species 

The cat flea (C. felis) maintains R. typhi the entirety of its life without reproductive or 

other vital consequences12 and parasitizes all hosts included in this model. As such, the ODEs 

corresponding to C. felis are as follows: 

𝑑𝑆𝑐𝑓(𝑡)

𝑑𝑡
= μ𝑐𝑓 − 𝑆𝑐𝑓𝜑ℎ𝑐(𝑎𝑐𝑟𝐼𝑟𝑎𝑡 + 𝑎𝑐𝑜𝐼𝑜𝑝𝑜 + 𝑎𝑐𝑐𝐼𝑐𝑎𝑡) − μ𝑐𝑓𝑆𝑐𝑓  

𝑑𝐸𝑐𝑓(𝑡)

𝑑𝑡
= 𝑆𝑐𝑓𝜑ℎ𝑐(𝑎𝑐𝑟𝐼𝑟𝑎𝑡 + 𝑎𝑐𝑜𝐼𝑜𝑝𝑜 + 𝑎𝑐𝑐𝐼𝑐𝑎𝑡) − 𝜆𝑐𝑓𝐸𝑐𝑓 − μ𝑐𝑓𝐸𝑐𝑓      

𝑑𝐼𝑐𝑓(𝑡)

𝑑𝑡
= 𝜆𝑐𝑓𝐸𝑐𝑓 − μ𝑐𝑓𝐼𝑐𝑓   
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The rat flea (X. cheopis) is considered the primary vector of FBT and typically parasitizes 

rat species. This flea also maintains R. typhi for the entirety of its lifespan. Unlike other 

competent vectors, it has limited transovarial transmission of R. typhi its progeny91. The ODEs 

for X. cheopis are as follows: 

𝑑𝑆𝑥𝑐(𝑡)

𝑑𝑡
= (1 − 𝜏𝑥𝑐)μ𝑥𝑐 − 𝑆𝑥𝑐𝜑ℎ𝑥(𝑎𝑥𝑟𝐼𝑟𝑎𝑡 + 𝑎𝑥𝑜𝐼𝑜𝑝𝑜 + 𝑎𝑥𝑐𝐼𝑐𝑎𝑡) − μ𝑥𝑐𝑆𝑥𝑐  

𝑑𝐸𝑥𝑐(𝑡)

𝑑𝑡
= 𝑆𝑥𝑐𝜑ℎ𝑥(𝑎𝑥𝑟𝐼𝑟𝑎𝑡 + 𝑎𝑥𝑜𝐼𝑜𝑝𝑜 + 𝑎𝑥𝑐𝐼𝑐𝑎𝑡) + (𝜏𝑥𝑐)μ𝑥𝑐 − 𝜆𝑥𝑐𝐸𝑥𝑐 − μ𝑥𝑐𝐸𝑥𝑐    

𝑑𝐼𝑥𝑐(𝑡)

𝑑𝑡
= 𝜆𝑥𝑐𝐸𝑥𝑐 − μ𝑓𝐼𝑥𝑐   

The ODEs for both flea species allow flexibility for fleas to feed on various hosts (rats, 

opossums, or cats) despite flea-specific host preferences. This allows the model to be malleable 

to different contexts where fleas may parasitize hosts at varying rates in various habitats [See 

further explanation in Parameter Input Selection].  The key difference between the two flea ODE 

systems is the allowance for vertical transmission among rat fleas, modeled as (𝜏𝑥𝑐)μ𝑥𝑐, where 

the probability of vertical transmission is multiplied by the birth rate. In turn, the proportion of X. 

cheopis births not resulting in transovarial transmission is given as  (1 − 𝜏𝑥𝑐)μ𝑥𝑐. 

Modeling host species 

Rats, especially black rats (R. Rattus), are the primary hosts of FBT worldwide.  In the 

U.S., the brown rat (R. norvegicus) may also serve as a reservoir for R. typhi6,8. For this model, 

both species were assumed to play an equal role in FBT transmission and combine both into a 

single system of ODEs. We also assume that the brown rat is similar to the black rat in that they 

are only rickettsemic and can transmit to fleas for a limited period of time11. 

𝑑𝑆𝑟𝑎𝑡(𝑡)

𝑑𝑡
= μ𝑟 − (𝜑𝑟𝑥𝑎𝑥𝑟𝑆𝑟𝑎𝑡𝐼𝑥𝑐 + 𝜑𝑟𝑐𝑎𝑐𝑟𝑆𝑟𝑎𝑡𝐼𝑐𝑓) − μ𝑟𝑆𝑟𝑎𝑡  

𝑑𝐸𝑟𝑎𝑡(𝑡)

𝑑𝑡
= (𝜑𝑟𝑥𝑎𝑥𝑟𝑆𝑟𝑎𝑡𝐼𝑥𝑐 + 𝜑𝑟𝑐𝑎𝑐𝑟𝑆𝑟𝑎𝑡𝐼𝑐𝑓) − μ𝑟𝐸𝑟𝑎𝑡 − 𝜆𝑟𝐸𝑟𝑎𝑡      
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𝑑𝐼𝑟𝑎𝑡(𝑡)

𝑑𝑡
= 𝜆𝑟𝐸𝑟𝑎𝑡 − μ𝑟𝐼𝑟𝑎𝑡 − 𝛾𝑟𝐼𝑟  

𝑑𝑅𝑟𝑎𝑡(𝑡)

𝑑𝑡
= 𝛾𝑟𝐼𝑟 − μ𝑟𝑅𝑟𝑎𝑡   

Molecular assays have demonstrated R. typhi DNA in opossums for up to four weeks94 

but this may represent detection of non-viable nucleic acids of rickettsiae, and these hosts may 

not be able to infect a naïve flea for the entirety of that period.94 For this paper, it was 

conservatively assumed that the upper limit of infectivity for an opossum is 21 days. It is 

unknown how long cats remain rickettsemic after becoming infected with R. typhi. Cats were 

assumed to follow the same maximum recovery period as opossums (21 days, permitting the 

ODEs for cats and opossums to be structurally the same and represented as: 

𝑑𝑆𝑐𝑎𝑡(𝑡)

𝑑𝑡
= μ𝑐 − (𝜑𝑐𝑥𝑎𝑥𝑐𝑆𝑐𝑎𝑡𝐼𝑥𝑐 + 𝜑𝑐𝑐𝑎𝑐𝑐𝑆𝑐𝑎𝑡𝐼𝑐𝑓) − μ𝑐𝑆𝑐𝑎𝑡  

𝑑𝐸𝑐𝑎𝑡(𝑡)

𝑑𝑡
= (𝜑𝑐𝑥𝑎𝑥𝑐𝑆𝑐𝑎𝑡𝐼𝑥𝑐 + 𝜑𝑐𝑐𝑎𝑐𝑐𝑆𝑐𝑎𝑡𝐼𝑐𝑓) − μ𝑐𝐸𝑐𝑎𝑡 − 𝜆𝑐𝐸𝑐𝑎𝑡      

𝑑𝐼𝑐𝑎𝑡(𝑡)

𝑑𝑡
= 𝜆𝑐𝐸𝑐𝑎𝑡 − μ𝑐𝐼𝑐𝑎𝑡 − 𝛾𝑐𝐼𝑐  

𝑑𝑅𝑐𝑎𝑡(𝑡)

𝑑𝑡
= 𝛾𝑐𝐼𝑐 − μ𝑐𝑅𝑐𝑎𝑡   

 

𝑑𝑆𝑜𝑝𝑜(𝑡)

𝑑𝑡
= μ𝑜 − (𝜑𝑜𝑥𝑎𝑥𝑜𝑆𝑜𝑝𝑜𝐼𝑥𝑐 + 𝜑𝑜𝑐𝑎𝑐𝑜𝑆𝑜𝑝𝑜𝐼𝑐𝑓) − μ𝑜𝑆𝑜𝑝𝑜  

𝑑𝐸𝑜𝑝𝑜(𝑡)

𝑑𝑡
= (𝜑𝑜𝑥𝑎𝑥𝑜𝑆𝑜𝑝𝑜𝐼𝑥𝑐 + 𝜑𝑜𝑐𝑎𝑐𝑜𝑆𝑜𝑝𝑜𝐼𝑐𝑓) − μ𝑜𝐸𝑜𝑝𝑜 − 𝜆𝑜𝐸𝑜𝑝𝑜      

𝑑𝐼𝑜𝑝𝑜(𝑡)

𝑑𝑡
= 𝜆𝑜𝐸𝑜𝑝𝑜 − μ𝑜𝐼𝑜𝑝𝑜 − 𝛾𝑜𝐼𝑜   

𝑑𝑅𝑜𝑝𝑜(𝑡)

𝑑𝑡
= 𝛾𝑜𝐼𝑜 − μ𝑜𝑅𝑜𝑝𝑜   

Modeling humans as dead-end hosts 

Humans enter the FBT transmission cycle as dead-end, incidental hosts of R. typhi. While 

the two flea species in the model can feed on humans, X. cheopis and C. felis are commonly 
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found attached or in the nests of hosts.95 Therefore, human infections are modeled as 1) 

infrequent, but direct contact between fleas and humans, and 2) contact with fleas through direct 

human contact with a rickettsemic rat, cat, or opossum that is carrying infectious fleas of either 

species. Humans cannot transmit R. typhi back to fleas and therefore are not included in the 

previously mentioned ODEs for hosts and fleas. 

𝑑𝑆ℎ(𝑡)

𝑑𝑡
= μℎ − {𝜑ℎ𝑎𝑓ℎ𝑆ℎ(𝐼𝑥𝑐 + 𝐼𝑐𝑓) + 𝜑ℎ𝑆ℎ[𝑎𝑟ℎ𝐼𝑟𝑎𝑡(𝑎𝑥𝑟𝐼𝑥𝑐 + 𝑎𝑐𝑟𝐼𝑐𝑓) + 𝑎𝑐ℎ𝐼𝑐𝑎𝑡(𝑎𝑥𝑐𝐼𝑥𝑐 + 𝑎𝑐𝑐𝐼𝑐𝑓) +

𝑎𝑜ℎ𝐼𝑜𝑝𝑜(𝑎𝑥𝑜𝐼𝑥𝑐 + 𝑎𝑐𝑜𝐼𝑐𝑓)]} − μℎ𝑆ℎ  

 

𝑑𝐸ℎ(𝑡)

𝑑𝑡
= {𝜑ℎ𝑎𝑓ℎ𝑆ℎ(𝐼𝑥𝑐 + 𝐼𝑐𝑓) + 𝜑ℎ𝑆ℎ[𝑎𝑟ℎ𝐼𝑟𝑎𝑡(𝑎𝑥𝑟𝐼𝑥𝑐 + 𝑎𝑐𝑟𝐼𝑐𝑓) + 𝑎𝑐ℎ𝐼𝑐𝑎𝑡(𝑎𝑥𝑐𝐼𝑥𝑐 + 𝑎𝑐𝑐𝐼𝑐𝑓) +

𝑎𝑜ℎ𝐼𝑜𝑝𝑜(𝑎𝑥𝑜𝐼𝑥𝑐 + 𝑎𝑐𝑜𝐼𝑐𝑓)]} − 𝜆ℎ𝐸ℎ − μℎ𝐸ℎ      

𝑑𝐼ℎ(𝑡)

𝑑𝑡
= 𝜆ℎ𝐸ℎ − μℎ𝐼ℎ − 𝛾ℎ𝐼ℎ  

𝑑𝑅ℎ(𝑡)

𝑑𝑡
= 𝛾ℎ𝐼ℎ − μℎ𝑅ℎ  

Parameter input selection 

Lacking data, we assumed that the latency period, or intrinsic incubation period, of R. 

typhi in cats and opossums was equal to that of rats (7 days). To-date transmission probabilities 

from C. felis to opossums and cats have not been studied in lab settings and were assumed to be 

equal to those of X. cheopis (approximately 50%). Birth and death rates were assumed to be in 

equilibrium based on average lifespan for all species included in the model (Table 8). 

Contact rates between hosts and fleas were determined through literature of the average 

flea index for each flea species on each host. While the ODEs allowed each flea to contact and 

potentially infect each host species, in the literature C. felis was commonly not found on rats, 

effectively producing a nil index, and therefore contact rate, between the two species. Therefore, 
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the term in the ODE for C. felis or rat infection by these two species contacting would equal 0 

(i.e., if  𝑎𝑐𝑟 = 0 , then 𝜑𝑟𝑐𝑎𝑐𝑟𝑆𝑟𝑎𝑡𝐼𝑐𝑓 = 0). 

Contact rates between humans and fleas or humans and FBT reservoir hosts were 

calculated using surveillance data collected in California from 2011-2019 by the California 

Department of Public Health (Table 8). These values were obtained from case investigations 

where people with FBT acknowledged whether they had exposure to these species during the 

suspected exposure window (i.e., 7-14 days prior to onset of symptoms). These exposure 

proportions were converted to rates by dividing by the total population in Los Angeles and 

Orange Counties, then scaled to the contacts per day. These counties were selected as they 

represent the endemic foci of FBT in California, reporting over 95% of all cases between 2011 

and 2019. In other words, the contact rate between humans, fleas, and hosts was represented as 

the number of contacts per day divided by the sum of the human population size.   

Sensitivity analysis 

Although there are limited data and studies to inform certain parameter input values, we 

relied on stochastic sensitivity analysis to explore a broad range of possible values and outcomes. 

Due to lack of data, a uniform distribution was considered for all model parameters. The lower 

and upper bounds of the 36 model parameters were sourced from prior studies on FBT 

(Supplemental Table 1), some of which have only limited data. Latin Hypercube Sampling 

(LHS) and partial rank correlation coefficients (PRCC) were applied to the model parameters to 

carry out sensitivity analyses in order to measure the relative influence of parameters on 

variation in model outcomes. LHS is a stratified Monte Carlo sampling method that randomly 

draws one sample from N equal intervals from a given parameter’s range. PRCC is then 

combined with LHS to evaluate the parameter space by measuring a nonlinear, but monotonic, 
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relationship between a parameter of interest and the model output. PRCC values fall between -1 

and +1, with values close to the bounds indicating that a parameter has strong influence on the 

model output96.  Therefore, a small change in highly influential parameters will likely produce a 

significant change in the model outcome. 

Models were analyzed for parameter value sets and sensitivity of FBT infections were 

quantified with PRCCs.  The PRCC values for the 36 parameters in the model system are 

presented using 1000 runs of Latin hypercube sampling and 2000 bootstrap replicates to retrieve 

confidence intervals. All analyses were conducted in R using the lhs package97. Code and data 

used can be found on GitHub or in the Supplementary Files. 

Scenario analysis 

 Five scenarios representing possible prevention or intervention activities were evaluated 

to demonstrate potential applications of this model. First, we consider a hypothetical human 

vaccine for R. typhi that reduces R. typhi transmission probability in humans by 25% (Scenario 

1). In reality, an effective vaccine against R. typhi is not available as of yet, as killed rickettsial 

vaccines offer incomplete protection and live-attenuated vaccines may revert to virulence98. 

Next, we evaluate intervention activities which local health jurisdictions may implement such as 

health education practices improving knowledge and awareness of FBT exposure risks or pest 

control in and around households. While intervention activities may have varying impacts across 

populations, we assume that they reduce human contact rates with fleas, opossums, rodents, and 

cats (Scenarios 2-5, respectively) by 25% for our scenario analyses. All scenarios were compared 

to the baseline model in which no parameters were changed from their initial inputs 

(Supplemental Table 1). 
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Results 

The model outcome (predicted FBT-infected human population) was sensitive to all 

human-host interfacing parameters (i.e., cat-human contact rate, opossum-human contact rate, 

and rat-human contact rate) with cat-human contact and opossum-human contact exhibiting the 

highest recorded PRCCs (Figure 8). To a lesser degree, human FBT was also positively sensitive 

to the X. cheopis-rat contact rate. Time-to-resolution of R. typhi rickettsemia in opossums were 

most influential in the opposite direction. Parameters most influential in the model, with PRCC 

values in the range ±0.75 to ±0.99, are indicated with two asterisks (*). Moderately influential 

parameters, with PRCCs between ±0.50 to ±0.74, were assigned a single asterisk (Table 9). 

Of the scenarios representing prevention and intervention activities, Scenario 1 

(hypothetical vaccine with 25% reduction in transmission probability) and Scenario 3 (25% 

reduction in human-opossum contact) yielded an average reduction of 0.57% and 0.49%, 

respectively, in infected human population proportion compared to the baseline model (1.15%). 

Scenarios 2 (human-flea contact reduction; 0.10%), 4 (human-rodent contact reduction; 0.20%), 

and 5 (human-cat contact reduction; 0.07%) also reduced the infected population proportion but 

to a less notable degree (Figure 9). 

Discussion 

This model describes the transmission of FBT in the U.S within sylvatic cycles of two 

flea and three vertebrate host species, and spreading to humans through incidental spillover. 

Sensitivity analyses of the contact rates between humans, hosts, and fleas documented that 

contact between opossums and C. felis was the most significant parameter for FBT transmission, 

likely due to the high flea burden on opossums relative to the other hosts. Consequently, human-

opossum and human-flea contact were also highly influential in the model. Unsurprisingly, X. 
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cheopis contact with rats also was an influential parameter given that this is the typical and 

primary epidemiological cycle of R. typhi.  

In our first scenario (a hypothetical vaccine that reduces that transmission probability of 

R. typhi in humans by 25%), model results indicate effective reduction in the proportion of 

infected humans assuming absolute uptake in the vaccine. Such a vaccine does not currently 

exist, though historical FBT immunization campaigns were conducted in 1944 and 1946 

although with little available information about the vaccine used.99 More recently, R. typhi 

vaccine proof-of-principle studies have been reported with encouraging early results.100 When a 

vaccine becomes available, Scenario 1 could be extended to account for its actual efficacy and 

uptake to better predict risk. Scenario 3, an intervention reducing opossum and human contact by 

25%, had similarly beneficial results as Scenario 1 compared to the base model. Because 

opossums have particularly high flea burdens, reducing contact between humans and opossums 

has a strong impact on reducing the contact of humans and fleas. Scenarios 2, 4, and 5 each 

evaluated a 25% reduction in human contact with fleas, rodents, and cats, respectively. Each 

produced smaller epidemic curves compared to the base model but to a lesser degree compared 

to Scenarios 1 and 3. Scenarios 4 and 5 likely produced smaller effects because of relatively low 

flea burdens on these hosts compared to opossums. These scenarios provide simplified example 

applications of the FBT transmission model. Applied epidemiologists should consider local 

ecology and prevention and intervention activities when interpreting simulated scenarios. 

There are several considerations that may influence the structure and interpretation of this 

model. First, other flea species may be vector-competent for R. typhi but have limited vectorial 

capacity in California, such as Leptopsylla segnis, the European mouse flea. Despite its 

colloquial name, this species preferentially infests rats. Because it is similarly if not more vector-
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competent for R. typhi than X. cheopis, it may play a role in FBT ecology wherever present, 

although it is not implicated as a vector for FBT to humans.39 The assumption that transmission 

probability from fleas to hosts was 50% was based on a study finding 50% of rats seroconverting 

when exposed to less than 1 plaque-forming unit in lab settings.101 Transmission from fleas to 

some hosts may be much higher than 50%, as R. typhi may evade some immune responses. The 

model does not account for some intricacies of flea and host biology including non-zero 

probability of transmission via flea bite, host immune response to recurrent exposure to R. typhi, 

varying host preference and behavior among fleas depending on age and sex, and the potential 

for asymptomatic infections among humans.12–14,39,102,103 Lastly, while improbable, the 

assumption that cats do not remain rickettsemic and infectious for the entirety of their lives may 

not hold true.  

The limitations in parameter estimates from prior literature outline areas for future 

research that would improve the current model. The present model assumes that there is 

homogeneous mixing, where all host species have identical rates of disease-causing contacts. In 

reality, there is spatial fragmentation and high heterogeneity in FBT transmission between flea 

vectors, intermediate hosts, and humans that alter disease ecology and risk. For example, one 

study noted significant variation in flea abundance and diversity among black rats in Los 

Angeles County across different sampling sites.104 Given that X. cheopis was not collected on 

any rats in this study, our model may be best utilized with species-specific initial values for hosts 

and vectors derived from local measurements. Likewise, while this model is useful for 

identifying parameters influential in FBT infections in humans, it should not be used for 

predicting number of FBT infections unless applied to smaller, confined geographical areas 

where assumptions of homogeneous mixing hold.105 Homogeneous-mixing compartment models 
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can be effectively modified for a few classes of non-homogeneous networks.105 Alternatively, an 

agent-based model can be adapted to capture heterogeneous attributes across individuals and 

their respective interaction networks in localized settings. 

Conclusions and Significance 

The presented model for FBT transmission dynamics highlights several parameters 

influencing FBT risk in humans. Most notable of these were C. felis-opossum contact rates and 

opossum-human contact rates. This model and complementing scenario analyses may be 

informative to applied epidemiologists interested in planning control or intervention methods for 

FBT and could be adapted to their location-specific needs. For example, population sizes were 

not specified in the models to predict the number of infections due to heterogeneous human 

population size geographically and unknown host population sizes. Local health jurisdictions can 

easily model local flea-borne typhus transmission and solve for the basic reproduction number 

(R0) wherever these data are available.  Additionally, this model provides a framework for future 

research that would greatly improve understanding of FBT ecology. 
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Tables and Figures 

Figure 7: Conceptual model of flea-borne typhus ecology, California. 
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Table 8: Flea-borne typhus ordinary differential equation symbol notation, corresponding 

parameter notation, and descriptions. 

# Symbol Parameter Description Range Source 

1 𝑎𝑐𝑐 a_cc Contact rate between C. felis and cats. Uni(3, 11) 93 

2 𝑎𝑐ℎ a_ch 
Contact rate between cats and 

humans. 
Uni(0, 9) 

Calculated† 

3 𝑎𝑐𝑜 a_co 
Contact rate between C. felis and 

opossums. 
Uni(2, 144) 

93,106 

4 𝑎𝑐𝑟 a_cr Contact rate between C. felis and rats. Uni(0, 21) 4,93,107 

5 𝑎𝑓ℎ a_fh 
Contact rate between fleas and 

humans.  
Uni(0, 0.0000145) 

Calculated† 

6 𝑎𝑜ℎ a_oh 
Contact rate between opossums and 

humans.  
Uni(0, 0.0000256) 

Calculated† 

7 𝑎𝑟ℎ a_rh Contact rate between rats and humans. Uni(0, 0.0000177) Calculated† 

8 𝑎𝑥𝑐 a_xc 
Contact rate between X. cheopis and 

cats. 
Uni(0, 0) 

9,93 

9 𝑎𝑥𝑜 a_xo 
Contact rate between X. cheopis and 

opossums. 
Uni(0, 5) 

93 

10 𝑎𝑥𝑟 a_xr 
Contact rate between X. cheopis and 

rats. 
Uni(0, 32.5) 

93,108,109 

11 𝜑𝑐𝑐 b_cc 
Transmission probability from C. felis 

to cats. 
Uni(0.012, 0.910) 

101 

12 𝜑𝑐𝑥 b_cx 
Transmission probability from X. 

cheopis to cats. 
Uni(0.012, 0.910) 

101 

13 𝜑ℎ b_h Transmission probability to humans Uni(0.012, 0.910) Assumed101 

14 𝜑ℎ𝑐 b_hc 
Transmission probability from 

infected host to C. felis. 
Uni(0.5, 1) 

Assumed12,110§ 

15 𝜑ℎ𝑥 b_hx 
Transmission probability from 

infected host to X. cheopis. 
Uni(0.5, 1) 

Assumed12,110§ 

16 𝜑𝑜𝑐 b_oc 
Transmission probability from C. felis 

to opossums. 
Uni(0.012, 0.910) 

Assumed101 

17 𝜑𝑜𝑥 b_ox 
Transmission probability from X. 

cheopis to opossums. 
Uni(0.012, 0.910) 

Assumed101 

18 𝜑𝑟𝑐 b_rc 
Transmission probability from C. felis 

to rats. 
Uni(0.012, 0.910) 

Assumed101 

19 𝜑𝑟𝑥 b_rx 
Transmission probability from X. 

cheopis to rats. 
Uni(0.012, 0.910) 

Assumed101 

20 𝜆𝑐 l_c Latency period for cats Uni(0.071, 0.143) Assumed94 

21 𝜆𝑐𝑓 l_cf Latency period for C. felis Uni(0.111, 0.167) 12 

22 𝜆ℎ l_h Latency period for humans Uni(0.071, 0.143) 111 

23 𝜆𝑜 l_o Latency period for opossums Uni(0.143, 0.250) 94 

24 𝜆𝑟 l_r Latency period for rats Uni(0.071, 0.143) 112 

25 𝜆𝑥𝑐 l_xc Latency period for X. cheopis Uni(0.1, 0.143) 91,113 

26 𝜇𝑐 mu_c Birth/mortality rate for cats Uni(0.0005, 0.0014)  

27 𝜇𝑐𝑓 mu_cf Birth/mortality rate for C. felis Uni(0.01, 0.04) 114 

28 𝜇ℎ mu_h Birth/mortality rate for humans Uni(3.42E-05, 3.68E-05)  

29 𝜇𝑜 mu_o Birth/mortality rate for opossums Uni(9.13E-05, 2.74E-03) 106 
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30 𝜇𝑟 mu_r Birth/mortality rate for rats Uni(0.0014, 0.0027) 115 

31 𝜇𝑥𝑐 mu_xc Birth/mortality rate for X. cheopis Uni(0.010, 0.024) 116 

32 𝛾ℎ r_h Recovery period in humans Uni(0.1, 0.05) 117,118 

33 𝛾𝑟 r_r Recovery period in rats Uni(0.025, 0.1) 112 

34 𝛾𝑜 r_o Recovery period in opossums Uni(0.0476, 0.143) 94 

35 𝛾𝑐 r_c Recovery period in cats Uni(0.0476, 0.143) Assumed94 

36 𝜏𝑥𝑐 t_xc 
Vertical transmission probability in X. 

cheopis 
Uni(0.02, 0.04) 

14 

†Calculated based on surveillance data collected in California from 2011-2019 by the California Department of Public 

Health  
§Transmission probability of R. typhi from an infected host to a naïve flea has not been quantified but are assumed to be 

high considering exception immune evasion among Rickettsiae and high infection rates among fleas in laboratory 

settings. Unknown parameter values were assumed to be equal to values derived from similar research (e.g., latency 

period for cats is assumed to be equal to that of opossums).  
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Table 9: Partial rank correlation coefficient (PRCC) between predicted proportion of population 

infected and each model parameter. 

# Symbol Parameter PRCC CI 

1 𝑎𝑐𝑐 a_cc 0.116 (0.009, 0.220) 

2 𝑎𝑐ℎ a_ch 0.213 (0.120, 0.323) 

3 𝑎𝑐𝑜 a_co 0.768** (0.721, 0.821) 

4 𝑎𝑐𝑟 a_cr 0.210 (0.097, 0.326) 

5 𝑎𝑓ℎ a_fh 0.449 (0.342, 0.539) 

6 𝑎𝑜ℎ a_oh 0.798** (0.758, 0.845) 

7 𝑎𝑟ℎ a_rh 0.513* (0.439, 0.596) 

8 𝑎𝑥𝑐 a_xc 0.003 (-0.148, 0.119) 

9 𝑎𝑥𝑜 a_xo 0.077 (-0.031, 0.184) 

10 𝑎𝑥𝑟 a_xr 0.354 (0.252, 0.453) 

11 𝜑𝑐𝑐 b_cc 0.032 (-0.084, 0.149) 

12 𝜑𝑐𝑥 b_cx 0.023 (-0.089, 0.146) 

13 𝜑ℎ b_h 0.603* (0.535, 0.671) 

14 𝜑ℎ𝑐 b_hc 0.028 (-0.079, 0.138) 

15 𝜑ℎ𝑥 b_hx -0.036 (-0.158, 0.074) 

16 𝜑𝑜𝑐 b_oc -0.006 (-0.110, 0.123) 

17 𝜑𝑜𝑥 b_ox 0.027 (-0.086, 0.120) 

18 𝜑𝑟𝑐 b_rc -0.005 (-0.115, 0.114) 

19 𝜑𝑟𝑥 b_rx -0.022 (-0.131, 0.096) 

20 𝜆𝑐 l_c 0.000 (-0.104, 0.106) 

21 𝜆𝑐𝑓 l_cf 0.016 (-0.095, 0.128) 

22 𝜆ℎ l_h -0.006 (-0.116, 0.102) 

23 𝜆𝑜 l_o 0.008 (-0.112, 0.108) 

24 𝜆𝑟 l_r 0.034 (-0.074, 0.147) 

25 𝜆𝑥𝑐 l_xc 0.012 (-0.102, 0.116) 

26 𝜇𝑐 mu_c -0.022 (-0.135, 0.084) 

27 𝜇𝑐𝑓 mu_cf -0.173 (-0.285, -0.066) 

28 𝜇ℎ mu_h -0.010 (-0.131, 0.114) 

29 𝜇𝑜 mu_o 0.203 (0.081, 0.318) 

30 𝜇𝑟 mu_r 0.112 (0.000, 0.205) 

31 𝜇𝑥𝑐 mu_xc -0.025 (-0.125, 0.089) 

32 𝛾ℎ r_h 0.002 (-0.101, 0.123) 

33 𝛾𝑟 r_r -0.375 (-0.476, -0.283) 

34 𝛾𝑜 r_o -0.522* (-0.619, -0.447) 

35 𝛾𝑐 r_c -0.158 (-0.289, -0.050) 

36 𝜏𝑥𝑐 t_xc -0.052 (-0.155, 0.063) 
**Highly influential parameter to infected humans (±0.75 to ±0.99) 

*Moderately influential parameter ( ±0.50 to ±0.74) 
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Figure 8: Partial rank correlation coefficients of model parameters. 
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Figure 9: Results of five stochastic scenario analyses compared to the original (base) model with 

no parameter changes. 
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CLOSING REMARKS 

The chapters proposed attempt to incrementally improve our understanding of FBT 

epidemiology with approaches that have not been used for this disease. In Chapter 1, we 

characterized more recent trends in flea-borne typhus in California and pointed to areas with 

concerning trends in flea-borne typhus reporting. In noticing that our surveillance could be 

biased in its data ascertainment, we then evaluated the potential factors to which that 

ascertainment may be related in Chapter 2. Altogether, we highlighted some potentially high 

transmission or persistent reporting areas in Southern California while also noting communities 

that may be underrepresented or missed in surveillance data ascertainment. Lastly, in Chapter 3, 

we developed a mathematical model and evaluated the variables most influential to causing 

human infections in flea-borne typhus ecology while also testing some practical scenarios that 

may reduce the number of cases showing that limiting exposure to opossums, generally, may be 

the most effective route for preventing FBT cases. 

This data may inform and guide active surveillance approaches in the future. For 

example, cases or reports from these areas may be given higher priority in investigations to not 

miss additional cases. The mathematical model may also be applied in these areas using locally 

generated data to prioritize active surveillance efforts, predict risk, and tailor prevention or 

intervention efforts. 

Future flea-borne typhus and R. typhi research should consider further characterizations 

of Rickettsia typhi prevalence in reservoirs and vectors in different areas of southern California. 

Some semblances of host or sentinel surveillance would be useful in generating these data and 

complementing human typhus surveillance data. Such efforts should also consider sampling and 

testing for other competent flea vectors such as Leptopsylla segnis. Although L. segnis is not 

considered a primary vector for R. typhi, the species has demonstrated a higher rate of 
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transmission than X. cheopis in laboratory settings. L. segnis has often been disregarded as a 

vector of concern due to its sessile behavior (e.g., fewer hosts and mostly fixed position) and 

lower likelihood to bite humans relative to C. felis and X. cheopis.110 However, the same 

behavior among L. segnis could theoretically promote dense viable patches of infected flea feces 

on hosts after significant period of time leading to hyperendemic loci of R. typhi among densely 

populated host populations or nests, such as rats.110,119 Such a phenomenon may partly explain 

persistence of R. typhi in sylvatic cycles. Nonetheless, steps to characterize fleas and host 

ecology in natural settings would surely improve our understanding of transmission dynamics. 

It is also worth considering future findings in flea-borne rickettsioses, specifically 

Rickettsia felis. R. felis was first identified in colonized C. felis fleas in 1990 but not officially 

recognized until 2001. Rickettsia felis is the causative agent of flea-borne spotted fever, a disease 

clinical and ecologically similar to flea-borne typhus. The bacteria are commonly found in 

opossums, cats, and cat fleas. The significance of Rickettsia felis in flea-borne rickettsia 

epidemiology and ecology is indeterminate due to the paradox of R. felis and C. felis ubiquity on 

every continent excluding Antarctica, despite low case incidence.120–126 One study compared R. 

felis positivity in flea pools between endemic and non-endemic regions in California and 

concluded that risk of FBT between endemic and non-endemic areas may not be due to 

differential exposure to R. felis.127 This is further confounded due to cross-reactivity of 

serological antibody tests and timing of sample collection for isolation and sequencing. 

Similarly, due to indiscriminate testing of the bacteria, R. felis may represent a cluster of R. felis-

like variants with widely ranging pathogenicity to fleas, hosts, and humans.128 Furthermore, there 

is limited evidence that interspecific competition between R. felis and R. typhi exists due to 

absence of coinfection of both rickettsia in individual fleas.129 However, C. felis has 

demonstrated the ability to be coinfected in laboratory settings at lower rates than being solely 
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infected with R. felis.130 The relationship between R. felis and R. typhi warrants further 

investigation to understand flea-borne rickettsioses and flea-borne diseases, broadly. 

Assessments of flea-borne typhus risk factors and R. typhi ecology would drastically change if R. 

felis and RFLOs prove to have varying, or even limited, pathogenicity to humans and 

interspecific competition with R. typhi. 
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SUPPLEMENTAL MATERIALS 

Supplemental Table 1: California Flea-borne Typhus Case Classification (2011) 

 

Clinical Criteria* 

Yes No 

L
ab

o
ra

to
ry

 C
ri

te
ri

a 

Serological evidence in paired acute 

and convalescent serum specimens of 

a four-fold or greater change in IgG-

specific antibody titer reactive with 

Rickettsia typhi or other Rickettsiaǂ 

species antigen by indirect 

immunofluorescence assay (IFA). 

Confirmed Suspected 

Serologic evidence in a single serum 

specimen of elevated IgM or IgG 

antibody reactive to R. typhi or other 

Rickettsiaǂ species antigen by IFA. 

Titers must be ≥ 1:128 

Probable+ Suspected 

Detection of R. typhi or other 

Rickettsia species DNA in a clinical 

specimen via amplification of a 

specific target by PCR assay 

Confirmed Suspected 

Detection of R. typhi or other 

Rickettsiaǂ species antigen in tissue or 

skin lesion biopsy or autopsy 

specimen by immunohistochemistry 

(IHC) 

Confirmed Suspected 

Isolation of R. typhi or other 

Rickettsia speciesǂ from a clinical 

specimen in cell culture. 

Confirmed Suspected 

*fever ≥ 100.4 °F and at least one of the following: headache, myalgia, or rash. 

ǂ Cases with the recovery of R. rickettsii DNA by PCR, detection of R. rickettsii antigen by IHC, or isolation of R. rickettsii by culture should 

be reported as spotted fever rickettsiosis 

+Can be considered confirmed if epi-linked to an existing confirmed case. 
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Supplemental Table 2: National Land Cover Database developed space classification 

descriptions. 

Supplemental Table 2  

Variable NLCD Description 

Developed, Open Space Areas most commonly include large-lot single-family housing 

units, parks, golf courses, and vegetation planted in developed 

settings for recreation, erosion control, or aesthetic purposes.  

Developed, Low Intensity Areas most commonly include single-family housing units. 

Impervious surfaces account for 20% to 49% percent of total 

cover. 

Developed, Medium 

Intensity 

Areas most commonly include single-family housing units. 

Impervious surfaces account for 50% to 79% of the total cover. 

Developed High Intensity Examples include apartment complexes, row houses and 

commercial/industrial. Impervious surfaces account for 80% to 

100% of the total cover. 

 

 

 

 




