
UCLA
UCLA Electronic Theses and Dissertations

Title
Reinventing Datacenter System Stacks for Resource Harvesting

Permalink
https://escholarship.org/uc/item/92d6k84v

Author
Qiao, Yifan

Publication Date
2024

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/92d6k84v
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA

Los Angeles

Reinventing Datacenter System Stacks for Resource Harvesting

A dissertation submitted in partial satisfaction

of the requirements for the degree

Doctor of Philosophy in Computer Science

by

Yifan Qiao

2024

© Copyright by

Yifan Qiao

2024

ABSTRACT OF THE DISSERTATION

Reinventing Datacenter System Stacks for Resource Harvesting

by

Yifan Qiao

Doctor of Philosophy in Computer Science

University of California, Los Angeles, 2024

Professor Harry Guoqing Xu, Co-Chair

Professor Miryung Kim, Co-Chair

The rise of cloud computing and recent AI breakthroughs have radically expanded the demand

for datacenter hardware resources, including CPU, memory, and accelerators such as GPUs.

Despite the critical need to improve resource utilization and reduce operational cost, current

datacenter system stacks—comprising OSes and runtime systems—struggle to fully utilize

hardware resources due to high load variability and stringent performance requirements of

datacenter workloads, leading to substantial waste of compute and memory resources.

This dissertation demonstrates that it is feasible to safely and efficiently harvest stranded

datacenter resources, even when they are intermittently available and dispersed across servers.

Specifically, we identify two previously overlooked resource harvesting opportunities in today’s

data center system stacks. First, although datacenter applications often have varying and

potentially large resource demands, they typically include elastic components that can be

safely discarded under resource pressure, making them ideal for utilizing idle resources with

temporal availability. Existing operating systems and runtime systems, though, lack proper

interfaces for applications to convey such semantics and take advantage of idle resources.

ii

Second, while the availability of resources per server is unpredictable, combining stranded

resources across servers can offer better overall availability. However, this opportunity is

unavailable to many datacenter workloads that were designed for running on a single machine.

Driven by these insights, this dissertation rethinks the datacenter system stack and

introduces holistic designs for OS abstractions, the OS kernel, and application runtime

systems for resource harvesting. The contributions of this dissertation are fourfold.

First, we investigate how to harvest resources, especially memory which is inelastic and

hard to re-assign between applications, within a single server. We introduce Midas, an

OS memory abstraction that allows applications to use idle memory for storing their soft

state. Midas efficiently manages soft memory with a kernel-runtime co-design, achieving

near-optimal performance for four real-world datacenter applications and responding to

extreme memory pressure quickly enough to avoid running out of memory.

Second, we explore how to harvest resources across servers. We present Hermit, a

redesigned OS kernel paging/swap system that enables applications to harvest idle memory

on remote servers with full transparency and efficiency. Hermit allows any application to

harness remote memory without changing a single line of code, making it practical for legacy

real-world datacenter applications. It also achieves three orders of magnitude lower tail

latency and up to 1.87 times higher throughput for latency-critical and batch-processing

applications, respectively.

Third, built atop Hermit, Canvas is a resource isolation mechanism for the kernel swap

system that allows multiple applications to share remote memory without performance

interference. By segregating resource usages and access patterns of co-running applications,

Canvas further adaptively optimizes kernel swap for each application. Our evaluation and

performance study with a wide range of datacenter applications demonstrate that Canvas

reduces performance variation by a factor of 7 and improves their throughput by an average

of 3.5 times when multiple applications share remote memory.

Finally, we demonstrate that our insights can be generalized to accelerators and emerging

iii

AI workloads. We develop Concerto, a preemptive GPU runtime for large language model

serving that harnesses idle GPU resources for offline inference tasks. By opportunistically

batching offline inference tasks when online serving cannot fully saturate GPUs, Concerto

significantly increases GPU utilization by an average of 2.35 times. By reactively preempting

offline tasks upon online load bursts, Concerto reduces online serving latency by two orders

of magnitude.

Together, these systems form a new datacenter system stack that synergistically enhances

performance, resource utilization, and cost efficiency, offering a transformative approach to

modern datacenter management.

iv

The dissertation of Yifan Qiao is approved.

Adam Belay

Yuval Tamir

Miryung Kim, Committee Co-Chair

Harry Guoqing Xu, Committee Co-Chair

University of California, Los Angeles

2024

v

Dedicated to my family for their love and support

vi

TABLE OF CONTENTS

1 Introduction . 1

1.1 Challenges . 3

1.2 Insights . 5

1.3 Dissertation Statement . 6

1.4 Contributions . 7

1.5 Dissertation Organizations . 9

2 Background . 12

2.1 Characterizing Datacenter Workloads . 12

2.2 Existing Datacenter System Stacks for Resource Harvesting 15

2.2.1 Operating System Kernel Paging/Swap System 15

2.2.2 Resource-Harvesting Runtime Systems 18

3 Midas: A New OS Abstraction for Memory Harvesting 20

3.1 Introduction . 20

3.2 Motivation . 25

3.3 Midas Overview . 28

3.4 Design . 30

3.4.1 Soft Memory Abstraction . 30

3.4.2 Application-Integrated Runtime . 34

3.4.3 Global Soft Memory Coordinator . 39

3.4.4 Discussion . 41

vii

3.5 Implementation . 41

3.6 Programming with Midas . 43

3.6.1 Guidelines . 43

3.6.2 Application Case Studies . 44

3.7 Evaluation . 45

3.7.1 Coordinating Soft Memory . 46

3.7.2 Harvesting Available Idle Memory . 49

3.7.3 Reacting to Memory Pressure . 51

3.7.4 Design Drill-Down . 54

3.8 Related Work . 56

3.9 Summary . 58

4 Hermit: Transparent and Fast Remote Memory Harvesting 60

4.1 Introduction . 61

4.2 Understanding Existing Swap Systems . 66

4.2.1 The Life Cycle of Remote Memory Access 66

4.2.2 Root Causes of Inefficiencies . 67

4.3 Hermit Design . 71

4.3.1 Design Overview . 71

4.3.2 Reclaim Scheduling . 72

4.3.3 Adapt Swap-in to Fast Remote Memory 75

4.3.4 CPU-Efficient Page Reclamation . 76

4.4 Implementation . 77

4.5 Evaluation . 78

viii

4.5.1 Real-world Applications . 79

4.5.2 Tail Latency of Latency-Critical Applications 81

4.5.3 Throughput of Batch Applications 85

4.5.4 Design Drill-Down . 85

4.6 Related Work . 92

4.7 Summary . 94

5 Canvas: Isolated and Adaptive Remote Memory Harvesting 95

5.1 Introduction . 96

5.2 Motivating Performance Study . 100

5.3 Swap System Isolation . 105

5.4 Isolation-Enabled Swap Optimizations . 108

5.4.1 Adaptive Swap Entry Allocation . 108

5.4.2 Two-Tier Adaptive Prefetching . 111

5.4.3 Two-Dimensional RDMA Scheduling 115

5.5 Evaluation . 117

5.5.1 Basic Swap Systems . 120

5.5.2 Overall Performance . 121

5.5.3 Isolation Reduces Degradation and Variation 121

5.5.4 Effectiveness of Adaptive Optimizations 123

5.6 Related Work . 128

5.7 Summary . 129

6 Concerto: Harvesting GPUs for Large Language Model Serving 131

6.1 Introduction . 132

ix

6.2 Background . 136

6.2.1 Large Language Model Inference . 136

6.2.2 Characterizing LLM Serving . 136

6.2.3 Existing LLM Serving Systems . 138

6.3 Motivation . 139

6.4 Design . 142

6.4.1 Concerto Overview . 142

6.4.2 Unified Preemptive Scheduler . 143

6.4.3 Preemptible Worker . 147

6.4.4 Incremental Checkpointing . 148

6.4.5 SLO-aware Scheduling . 152

6.5 Implementation . 153

6.6 Evaluation . 154

6.6.1 Setup . 155

6.6.2 Overall Serving Performance . 156

6.6.3 Reacting to Load Bursts . 159

6.7 Discussion . 161

6.8 Related Work . 163

6.9 Summary . 164

7 Conclusion . 166

7.1 Future Directions . 167

x

LIST OF FIGURES

2.1 User traffic to ChatGPT within a campus [263] exposes high load variability at

both macro (2.1a) and micro (2.1b) time scales. 13

2.2 Stages that a swapped-in page undergoes in the Linux kernel’s paging/swap system. 16

3.1 The throughput of all three applications increases by caching more soft state, but

the benefit varies: SocialNet is 1.8× faster by caching 70% of its working set, while

HDSearch, in contrast, achieves a 3.3× throughput increase by caching 50% state. 26

3.2 SocialNet starts to swap when it caches excessive data and exhausts all available

memory at 𝑡 = 8min and it experiences a throughput collapse. 26

3.3 Statically provisioning the cache space for SocialNet is suboptimal. During

𝑡 =0min–5min, the cache is overprovisioned which wastes memory. After that, the

cache becomes underprovisioned which limits performance. 27

3.4 Midas enables developers to utilize soft memory easily and efficiently with three

major components: a familiar programming abstraction, an application-integrated

runtime, and a global soft-memory budget coordinator. 29

3.5 Midas organizes soft memory using a free segment list and a used segment list

(sorted by segment’s hotness, useful for Midas’s evacuator in §3.4.2.2). It employs

a log-structured allocator to serve memory allocation requests. Each object has a

10-byte header, which includes a liveness bit, an evacuating bit, hotness bits, an

object size field, and a reversed pointer field. 35

3.6 When co-running four applications with 20 GiB idle memory, Midas dynamically

coordinates their soft memory budgets and reaches an equilibrium in around 20

minutes. Overall, it harvests 19.6 GiB idle memory as soft memory and achieves

75.0% of the ideal throughput (measured by overprovisioning soft memory for all

applications regardless of the 20 GiB total budget constraint). 47

xi

3.7 Midas and Cliffhanger converge to different allocations of soft memory between

applications because of fundamental differences in their coordination policies. . . 49

3.8 With Midas, applications effectively harvest additional idle memory by scaling up

their soft memory usage, improving both throughput and tail latency. 50

3.9 Under moderate memory pressure (𝑡 = 5min-15min), Midas is able to reactively

scale down each application’s soft memory usage to avoid running out of memory

with moderate performance impact. 51

3.10 Midas is able to avoid out-of-memory killing even under extreme memory pressure

(𝑡 = 5min and 𝑡 = 10min). The victim application experiences brief throughput

collapses and tail latency spikes but quickly recovers to normal once the pressure

is finished. 52

3.11 Midas’s efficiency (𝑦-axis) as a function of data reconstruction cost normalized

to the ideal throughput of caching all soft state. Midas’s efficiency increases as

the reconstruction cost decreases, delivering >80% efficiency for applications with

<1024 µs/object reconstruction cost when caching 80% of soft state. 56

4.1 The life cycle of a remote memory page fault in Linux swap. 65

4.2 99th percentile latency with respect to offered load of Memcached on Fastswap

under 70% local memory. 68

4.3 Direct page reclamation ratio of Memcached on Fastswap under 70% local memory. 68

4.4 The life cycle of a remote memory page fault in Hermit. 72

4.5 Adaptive reclaim scheduler. 73

4.6 Hermit’s asynchronous page reclamation path. 76

xii

4.7 Hermit significantly outperforms Fastswap and Linux in terms of 99% latency

under the same fixed load and varying local memory ratio. Hermit enables

applications to operate in a more challenging regime of less local memory while

still maintaining < 500 µs 99% latency. 81

4.8 Hermit achieves significantly lower 99% latency than Fastswap and Linux under

the same fixed local memory ratio and varying load. For Memcached and Gdnsd,

Hermit achieves 99% latency close to the ideal local-only case. SocialNet is

more challenging due to its higher per-request memory footprint, but Hermit still

achieves 74% load capacity of the ideal case. 83

4.9 We measured the throughput of batch applications achieved by different swap

systems normalized to the ideal local-only setup. Hermit outperforms other

baselines. The number in the parenthesis shows the ideal execution time. 84

4.10 Hermit reduces the remote memory access latency in Memcached from 13.8

µs to 10.2 µs with two optimizations, i.e., bypassing deduplication and using

asynchronous I/O. 86

4.11 Hermit entirely eliminates direct reclamation for Memcached, thanks to its asyn-

chronous reclamation design. Fastswap fails to serve > 2.4 Mops load due to CPU

congestion. 86

4.12 Eliminating reverse mappings and enabling more batching makes reclamation 2.9×

more efficient. 87

4.13 Hermit’s feedback-directed asynchrony is indispensable for achieving superior

performance. Hermit considerably outperforms all Hermit∗s—the modified versions

that adopt Fastswap’s static scheduling policy for reclamation. 88

4.14 All three of Hermit’s optimizations work in tandem to improve Memcached’s

latency and throughput. Results are measured with 70% local memory. 89

xiii

4.15 All three of Hermit’s optimizations collectively improve Spark’s throughput. The

Y-axis shows the execution time normalized to the ideal local-only time (68.4s).

Results are measured under 20% local memory. 90

4.16 Hermit’s optimizations do not incur additional network usage during swap-ins/-

outs compared to Fastswap. 91

4.17 Hermit saves ∼30% CPU cycles under varying load compared with Fastswap,

which is the key enabler to achieve low 99th percentile latency under high load. 92

5.1 Slowdowns of co-running applications compared to running each individually. . 101

5.2 Prefetching contribution of Leap: the percentage of page faults served by Leap-

prefetched pages (%). 102

5.3 Swap entry allocation throughput when applications run individually (a) and

together (b). 103

5.4 RDMA swap-in bandwidth when applications run individually (a) and together (b). 103

5.5 Latency of prefetching and on-demand swapping. 104

5.6 FSM describing our page management when remote-memory pressure is detected. 110

5.7 Canvas’s two-tier prefetcher: App A is an array-based program while B is a modern

web application that uses reference-based data structures. The low-tier prefetcher

successfully prefetches pages for A, but not for B. Hence, Canvas forwards the

addresses up to B’s high-tier prefetcher. 113

5.8 Performance of different swap systems. 119

5.9 Performance of each program under 25% and 50% local memory when the three

native programs, Snappy (S), Memcached (M), and XGBoost (X), co-run with a

managed application. Canvas ran with all optimizations enabled. 120

xiv

5.10 Performance of native applications co-run with different managed applications

under 25% local memory; for Canvas, only isolation was enabled (i.e., without

adaptive optimizations). 121

5.11 Benefit of adaptive swap entry allocation. Compared are the times of the applica-

tion running individually on Linux 5.5, co-running on Canvas with adaptive entry

allocation disabled, and enabled. 123

5.12 Entry allocation comparison between the allocation algorithm in Canvas and

Linux 5.5 for Memcached under 25% local memory. The Y-axis in (b) is log-scaled.124

5.13 Horizontal scheduling effectiveness for GraphX-CC: (a) prefetching latency reduced,

and (b) prefetching contribution and accuracy improved. 127

6.1 User traffic to ChatGPT within a campus exposes high load variability at various

time scales. 140

6.2 99th-percentile TTFT and TPOT of online requests when co-located with offline

requests using a naïve priority-based scheduler. Note that the y-axis of TTFT is

displayed on a log scale. Due to severe interference, Naïve colocation ramps up

the 99th percentile latencies for online requests by one to two orders of magnitudes.141

6.3 Overall achitecture of Concerto. Concerto efficiently co-serves online and offline re-

quests with three major components: an SLO-aware scheduler, a set of preemptive

workers, and an incremental checkpointing mechanism. 142

6.4 Comparison between different preemption and resume strategies. (a) Resume by

recomputation achieves low preemption delay at the cost of additional computation.

(b) Resume by swapping reduces the recomputation cost but swapping out can

block the schedule of incoming online requests. (c) Incremental checkpointing

(IC) minimizes both preemption delay and resume cost. (d) IC + background

swap-in overlaps swap-in with prefill computation of the next batch and achieves

consistently high GPU utilization. 149

xv

6.5 Overall serving performance on real workloads. Concerto achieves consistently

low TTFT and TPOT that are comparable with Online-Only and below the SLO.

It also achieves 86% of the ideal offline serving throughput (measured by vLLM++

which eagerly batches offline requests regardless online latency constraints). . . . 157

6.6 Concerto incurs negligible impact on online TTFT and TPOT and always keeps

them below their SLO during ON phases. During the transition from the ON to

OFF phase, Concerto reactively detects and harvests additional idle resources

and achieves high offline throughput during the OFF phases. Even under extreme

resource pressure during the transition from the OFF to ON phase, Concerto

quickly scales down offline serving and prevents any spikes in online latency. . . 158

6.7 Overall serving performance under varying CVs and request rates. Concerto

consistently achieves low online latencies and enables a linear trade-off between

online throughput and offline throughput to keep maximized GPU utilization. It

also maintains high efficiency across a wide range of load burstiness levels. . . . 160

7.1 Overview of the proposed future resource harvesting system stack, comprising three

major components. This stack is designed to support a broad range of applications,

from traditional datacenter workloads to emerging AI workloads, while efficiently

managing heterogeneous hardware resources through unified abstractions and

flexible programming interfaces. 168

xvi

LIST OF TABLES

3.1 We ported four applications into Midas with low programming effort. All four

applications extensively use soft memory while their data reconstruction costs

vary drastically. 43

3.2 Midas’ soft pointer only adds moderate dereferencing cost compared to C++’s

ordinary smart pointer. 54

3.3 Midas’s cooperative reclamation reclaims memory at the throughput of 35 MiB/s-

313 MiB/s, depending on the live object ratio of soft memory. Midas’s direct

reclamation trades off reclamation quality for faster speed; it achieves a throughput

of 8269 MiB/s, exceeding the rate at which the Linux kernel can allocate memory. 55

4.1 Applications used in the evaluation. 79

5.1 Summary of major issues and Canvas’s solution. 105

5.2 Programs and their workloads. 118

5.3 Performance variations of three native applications when co-running with each

of the 11 managed applications under 25% local memory (Canvas / Linux 5.5 /

Fastswap). 122

5.4 Swap-out throughput w/ and w/o adaptive swap-entry allocation when native

programs co-run with Spark. 124

5.5 Prefetching contribution and accuracy when different Spark and Neo4j co-run

with native applications. 126

xvii

ACKNOWLEDGMENTS

Five years later, as I look back, I still remember clearly that distant afternoon when I started

my PhD at UCLA. That moment marked the beginning of an incredible journey, filled with

challenges, growth, and the unwavering support of many remarkable individuals who guided

me along the way.

First and foremost, I would like to express my deepest gratitude to my advisors, Harry

Xu and Miryung Kim. Their insightful guidance, encouragement, and patience have been

the cornerstone of my academic journey. I remember the first time I talked to Harry when I

was still an undergraduate, debating what to work on next. During that conversation, Harry

advised me, “Do not be trapped by what you have known. Always first find the most important

problem to work on, then keep learning to solve it.” From that moment, I felt my research

journey truly began. It turns out the advice was indeed true, and Harry has proven to be

an incredible advisor. Harry not only directed me toward the important problems but also

showed me how to transform seemingly wild ideas into concrete projects and accomplish

them with solid algorithms, designs, and implementations. His patience, leadership, and

integrity make him not only an exceptional advisor but also a mentor and a trusted friend to

his students.

I am also sincerely thankful to Miryung, who agreed to co-advise me at the start of my

PhD and has consistently supported me since. During my first visit to UCLA, Miryung shared

her advising philosophy—“Focus on the students, since graduating great students means you’ll

produce great research, while focusing on the research may or may not produce great students.”

This philosophy has been evident throughout my time under her guidance. Miryung is a

great advisor who spends tremendous time with students and always gives insightful advice

on research, career planning, and personal development. Harry and Miryung were not only

supportive during my entire PhD study but also generously gave me the freedom to pursue

my own research interests and collaborate with various groups. Their distinct and unique

xviii

qualities have collectively formed the role model I aspire to emulate. All of these led to five

papers across a wide range of topics, this PhD dissertation on resource harvesting systems,

and five wonderful years of research and life with the best advisors possible.

I would also like to extend my gratitude to my committee members, Adam Belay and

Yuval Tamir, for their valuable feedback, which has greatly helped me improve and complete

this dissertation. A special thanks to Adam, who not only collaborated with me on various

projects that contributed significantly to this dissertation but also hosted me for two summers

at MIT. Adam is a true expert in operating systems and I am always impressed by his unique

combination of comprehensive knowledge, deep insights, and creative innovations. Although

we worked together on only two papers, they turned out to be some of my best work. Thank

you, Adam, for introducing me to classic designs in operating systems and networks, unveiling

the complexities of advanced CPU features, and demonstrating how one can be a passionate

system researcher and a professional professor.

I have been very fortunate to be surrounded by such amazing people in the UCLA SOLAR

lab: Haoran Ma, Chenxi Wang, John Thorpe, Shi Liu, Shan Yu, Shu Anzai, Christian Navasca,

Jonathan Eyolfson, Arthi Padmanabhan, Pengzhan Zhao, Usama Hameed, Zhenting Zhu,

Jiyuan Wang, Qian Zhang, Jason Teoh, Ben Limpanukorn, Yaoxuan Wu, Eric Zitong Zhou,

Fabrice Harel-Canada, Burak Yetistiren, Hong Jin Kang, Yuanqi Li, Shen Teng, Gaohong

Liu, Ricky Fok, among many others. Thank you all for the countless enriching research

discussions, enjoyable gatherings, lasting friendships, and empathetic support we shared on

this academic path. The bond we have formed is beyond words, and I am confident it will

stand the test of time.

I would also like to express my gratitude to my undergraduate advisors. I am grateful

to Jidong Zhai for introducing me to the world of system research. From Jidong, I have

gained real experience in building and debugging high-performance systems and hardware

ranging from supercomputers to accelerators. I also want to thank Youyou Lu, who advised

me during my final undergraduate year and guided my thesis, which was nominated as an

xix

outstanding undergraduate thesis. From Youyou, I learned his deep insights into storage and

memory systems and how to present in a clear and elegant fashion. The skills and insights I

gained from Jidong and Youyou laid the foundation for my PhD journey and are reflected

throughout this dissertation.

I am thankful to all my friends for both research and non-research discussions: Yang

Wang, Shuyang Liu, Pradeep Dogga, Zeina Migeed, Sihao Liu, and Weitong Zhang at UCLA;

Zhenyuang Ruan, Gohar Chaudhry, Inho Cho, Josh Fried, Yun-Sheng Chang, Sanjit Bhat,

Ariel Szekely, Alexandra Henzinger, Derek Leung, and Upamanyu Sharma at MIT; Shen

Wang, Rui Yang, Yonger Xue, Xiaojun Hu, and Sijie Chen at the Ohio State University;

Yifan Qiao (yes, we have the same alphabetical name and, even more coincidentally, come

from the same hometown) and Xuandong Zhao at UCSB; Qibin Chen at CMU, and many

others—your support means a lot, and you know who you are. Your friendship has been a

constant source of strength, providing much-needed balance and perspective through the ups

and downs of PhD life.

Lastly, my heartfelt thanks go to my family for their unwavering support as I pursued

my PhD. Special thanks to my father, Xiangyang, my mother, Hongyun, and my brother,

Qifan, for their unconditional love and support throughout the past five years. I am eternally

grateful for their presence through all my highs and lows. I hope to have made you all proud.

“Let this be my last word, that I trust in

thy love.”

Rabindranath Tagore

xx

VITA

Graduate Student Researcher/Teaching Assistant 2019 - 2024
University of California, Los Angeles

M.S. in Computer Science 2019 - 2022
University of California, Los Angeles

B.S. in Computer Science and Technology 2015 - 2019
Tsinghua University

PUBLICATIONS

Yifan Qiao, Zhenyuan Ruan, Haoran Ma, Adam Belay, Miryung Kim, Harry Xu, “Harvesting

Idle Memory for Application-managed Soft State with Midas”, NSDI, 2024

Haoran Ma, Yifan Qiao, Shi Liu, Shan Yu, Yuanjiang Ni, Qingda Lu, Jiesheng Wu, Yiying

Zhang, Miryung Kim, Harry Xu, “DRust: Language-Guided Distributed Shared Memory

with Fine Granularity, Full Transparency, and Ultra Efficiency”, OSDI, 2024

Yifan Qiao, Chenxi Wang, Zhenyuan Ruan, Adam Belay, Qingda Lu, Yiying Zhang, Miryung

Kim, and Guoqing Harry Xu, “Hermit: Low-Latency, High-Throughput, and Transparent

Remote Memory via Feedback-Directed Asynchrony”, NSDI, 2023

Chenxi Wang, Yifan Qiao (co-first author), Haoran Ma, Shi Liu, Yiying Zhang, Wenguang

Chen, Ravi Netravali, Miryung Kim, Guoqing Harry Xu, “Canvas: Isolated and Adaptive

Swapping for Multi-Applications on Remote Memory”, NSDI, 2023

xxi

John Thorpe, Pengzhan Zhao, Jonathan Eyolfson, Yifan Qiao, Zhihao Jia, Minjia Zhang,

Ravi Netravali, Guoqing Harry Xu, “Bamboo: Making Preemptible Instances Resilient for

Affordable Training of Large DNNs”, NSDI, 2023

Chenxi Wang, Haoran Ma, Shi Liu, Yifan Qiao, Jonathan Eyolfson, Christian Navasca,

Shan Lu, Guoqing Harry Xu, “MemLiner: Lining up Tracing and Application for a Far-

Memory-Friendly Runtime”, OSDI, 2022, Best Paper Award

Haoran Ma, Shi Liu, Chenxi Wang, Yifan Qiao, Michael D Bond, Stephen M Blackburn,

Miryung Kim, Guoqing Harry Xu, “Mako: a low-pause, high-throughput evacuating collector

for memory-disaggregated datacenters”, PLDI, 2022

John Thorpe, Yifan Qiao (co-first author), Jonathan Eyolfson, Shen Teng, Guanzhou Hu,

Zhihao Jia, Jinliang Wei, Keval Vora, Ravi Netravali, Miryung Kim, and Guoqing Harry

Xu, “Dorylus: Affordable, Scalable, and Accurate GNN Training over Billion-Edge Graphs”,

OSDI, 2021

xxii

CHAPTER 1

Introduction

Over the past few decades, datacenters have greatly changed the landscape of computing. They

become the key infrastructure behind cloud computing [20], artificial intelligence [86, 189, 243],

and other services such as online shopping and social networks that affect our daily lives. As

a result, cloud providers have seen unprecedentedly rapid growth in their demand for servers

to build datacenters, incurring huge costs of server maintenance and energy. It is extremely

important to improve resource utilization for datacenters, as even small improvements could

be greatly amplified by the great number of servers in datacenters. It is estimated that even

1% utilization improvement could save around seven billion dollars and 140M kilowatt-hours

annually [42, 88, 104, 253]. Despite the huge potential cost savings and carbon footprint

reductions, improving resource utilization in datacenters remains a notoriously difficult

challenge. As reported by major cloud providers such as Google, Azure, Alibaba, and

Snowflake, the average CPU and memory utilization in their datacenters is only around

40–60% [78, 150, 246, 256]. The situation can be even worse for GPUs, whose utilization can

be as low as 20–50% [150, 264].

One of the major causes of resource inefficiency is rooted in the datacenter workloads, which

expose strict performance requirements and high load variability. For example, the load of

Google’s mail service can increase by more than two times during peak hours than in non-peak

hours [19]. It is also reported that ChatGPT [189] can experience two orders of magnitude

higher request rates during load bursts [263]. To avoid running out of resources during peak

hours, datacenter operators often have to overprovision resources for the application’s peak

usage, causing severe resource waste.

1

One promising solution to improve datacenter utilization is to harvest resources by

consolidating workloads and colocating another best-effort application using idle resources

left by the performance-critical application [16, 76, 78, 97, 194, 212, 217, 218, 225]. Unlike

performance-critical applications that have strict quality-of-service requirements and demand

for high availability, best-effort applications usually come with loose or no quality-of-service

requirement and can tolerate interruptions. Consequently, datacenter operators can run

best-effort applications at a lower priority when idle resources are available, and kill or shrink

them to free up resources when the server is overloaded. Typical examples of best-effort

applications include batch-processing applications such as Spark [274] and machine-learning

training frameworks such as PyTorch [197] and TensorFlow [9]. When the performance-critical

application encounters a load burst, a cluster manager can reactively reassign resources

to them by punishing and reclaiming resources from the best-effort applications. The

resource reclamation can be cooperative such as letting the best-effort applications themselves

checkpoint their states and exit, or done in an enforced manner such as leveraging the

operating system kernel to swap out best-effort applications to second-tier storage. Later,

when the load burst subsides, the victim application can resume by loading its checkpoint or

swapping in its data, ensuring the server operates at maximum utilization.

In this dissertation, we focus on two critical yet challenging resources to harvest in

datacenters: memory and GPUs, while leaving the discussion of other resources, such as CPU,

network, and storage, in future work (§7.1). We argue that memory and GPUs not only

power the most demanding modern workloads, such as web services, big data analytics, and

AI models, but also represent significant cost and energy challenges in datacenter operations.

First, many traditional datacenter applications, such as web services, big data analytics,

and machine learning systems, are in-memory workloads. To support them, datacenters

must continuously expand their memory capacity to satisfy increasing demands. Meanwhile,

with the slowing of Moore’s law and Dennard Scaling, hardware vendors face challenges in

improving DRAM storage density and reducing manufacturing costs per unit [132]. As a

2

result, memory has become a significant driver of hardware costs and energy consumption in

datacenters. The high cost of memory, coupled with its generally low utilization, suggests

substantial potential for harvesting memory. Yet, memory is difficult to harvest. Unlike

CPU cores, which can be overcommitted with multiple threads and reassigned between

processes, memory is inherently inelastic once allocated and holding application data, making

it challenging to reassign without disrupting application performance.

At the same time, recent advances in AI, particularly large language models, have spurred

significant demand for accelerators like GPUs. While GPUs continue to improve performance

to meet AI’s high computational demands, they come with steep hardware and energy costs.

High-end GPUs, such as the Nvidia H100 or AMD MI300X, can cost around $20,000 each,

and modern datacenters often need thousands of such GPUs. Despite the urge need to make

full use of GPUs, today’s datacenters still suffer from low GPU utilization. This is due to

the inherent challenges in harvesting GPU resources. GPU workloads typically have high

compute demands and large memory footprints, making it difficult to co-locate multiple

applications on the same device. Additionally, the lack of comprehensive virtualization and

resource-sharing support for GPUs limits opportunities for overcommitment and resource

reclamation, further reducing utilization efficiency.

1.1 Challenges

The fundamental challenge hindering the efficient harvesting of resources in existing sys-

tem stacks is the speed at which resources can be reassigned. While it is acceptable for

performance-critical applications to temporarily lend reserved but unused resources to the

other applications, these resources must be reclaimed quickly upon load bursts to avoid vio-

lating performance requirements or worse still out-of-resource killing. And given that load of

datacenter applications can ramp up quickly within seconds [76, 194, 204, 263], the underlying

system stacks, including the application runtime and the operating system, must reclaim

3

resources from the best-effort application and grant them to the demanding performance-

critical application at the same or even finer timescales (e.g., sub-second timescales). For

example, ChatGPT, a popular large-language-model-based chatbot running on GPUs, can

experience 10× load fluctuations in just a few seconds [263]. To serve all the requests, the

chatbot needs to allocate proportional GPU memory to store the per-request state commonly

referred to as the KV cache [193]. The underlying GPU runtime hence must repartition

the GPU and free up enough GPU memory fast enough (i.e., within seconds), or else the

incoming requests will be blocked and quickly queued up, leading to catastrophic tail latency

degradation. The situation can be even worse for traditional workloads and resources such as

memory. For example, microservices running on Linux can allocate 1 GiB memory within just

100 ms [208, 218], and they will get killed if the OS kernel cannot reclaim enough memory at

the same speed from best-effort applications before the server runs out of memory.

Unfortunately, such a strict speed requirement for reassigning resources is far beyond

the capability of existing datacenter system stacks, which can only reclaim resources at the

timescale of seconds or even minutes. Traditionally, the OS kernel leverages memory paging, a

classic idea that dates back to the 1960s, to swap overcommitted memory pages to secondary

storage to resolve memory pressure. However, due to the limited bandwidth of the storage

and software overheads of the kernel swap system, kernel paging is orders of magnitude slower

than the memory allocation speed. More recently, people have been investigating more flexible

resource harvesting techniques at the virtual machine (VM) level. Major cloud providers now

offer spot VMs [15, 87, 164], which co-locate with regular VMs but run at a low priority to

utilize vacant resources. Spot VMs are evicted under resource pressure to free up capacity.

However, preempting a spot VM is inefficient, as the best-effort applications running on

them may lose partially completed work, requiring them to restart the entire process. On the

other hand, alternative VM designs, such as resource-harvesting VMs [16, 78, 212, 283] and

deflatable VMs [225], support gracefully adjusting VMs’ resource usage, thereby avoiding

disruption to the best-effort applications running on them. Although these designs achieve

4

higher efficiency, they do so at the expense of slower resource reassignment, often taking

minutes to reconfigure a VM. This delay can be unsafe for performance-critical applications,

as they may run out of resources during the reassignment process.

In summary, existing resource harvesting techniques struggle to balance efficiency and

safety. This limitation stems from today’s datacenter system stacks, originally designed for

traditional applications with relatively static and stable loads, where resource reallocation was

a rare event. As modern datacenter applications become increasingly dynamic with highly

fluctuating loads, it is crucial to rethink the design principles of datacenter system stacks,

prioritizing resource reassignment speed in order to make resource harvesting practical.

This dissertation aims to answer the following question: can we harvest stranded resources

in datancenters with both efficiency and safety? With efficiency, the application should

be able to proportionally trade additional resources for better performance, rather than

being disruptively killed and wasting work it has already done. With safety, the application

should be able to rapidly release and return previously harvested resources, so that it can get

resources timely to preserve quality of service even under drastic load fluctuations.

1.2 Insights

This dissertation introduces a reinvented datacenter system stack based on two independent

yet complementary insights.

First, existing datacenter system stacks are mainly capable of managing resources for

applications’ static components, but they lack interfaces and mechanisms to support elastic

components—those that can benefit from additional resources when available but can be safely

discarded without disrupting the application. For instance, many applications use caches to

reduce disk or network traffic and improve performance [22, 30]. Caches are well-suited for

idle memory, as they can be discarded during memory pressure and later regenerated from

backend storage. By introducing appropriate abstractions and interfaces and mapping elastic

5

components to idle resources, we can efficiently utilize vacant resources when available and

safely release them under resource pressure.

Second, current datacenter system stacks primarily focus on reallocating resources within

a single server, overlooking the potential of utilizing idle resources across multiple servers.

With advancements in modern datacenter networks [137, 162, 219], it is now feasible to run

applications using resources distributed across several servers [12, 89, 224]. This opens up

a unique opportunity for applications to harvest remote resources and gradually shift their

resource usage to other servers under pressure, rather than abruptly disrupting execution.

Moreover, while resource availability on a single server can be unpredictable, aggregating

resources across a cluster could offer greater stability and capacity. Consequently, enabling

remote resource harvesting could significantly enhance overall resource utilization. However,

this opportunity is not available to many datacenter applications, because they are designed

to run on a single machine and require manual adaptation to function across multiple servers.

Additionally, even for applications for which distribution is possible, the high OS kernel

software overhead in cross-server communication can diminish the benefits of additional

resources. We propose that by redesigning the application runtime and OS kernel, we

can enable single-machine applications to transparently and efficiently utilize idle resources

distributed across servers.

1.3 Dissertation Statement

It is feasible to safely and efficiently harvest idle resources in datacenters, even if they are only

intermittently available and spread across servers. Specifically, this can be achieved with new

interfaces that allow applications to specify their elastic components, OS/runtime co-designs

that enable applications and the underlying operating system to co-manage idle resources, and

semantics-guided operating system designs that improve efficiency and practicality by allowing

applications to use idle resources on remote servers.

6

1.4 Contributions

This dissertation makes the following contributions:

OS Abstractions for efficient and safe local memory harvesting. We first identify

the semantics gap between the application soft state, which can benefit from additional

memory and be safely discarded, and the operating system kernel, which is in charge of

memory management but unaware of the most beneficial data to spend idle memory on.

To effectively manage and dynamically scale soft state, we propose soft memory, an elastic

virtual memory abstraction with unmap-and-reconstruct semantics that makes it possible for

applications to use idle memory to store whatever soft state they choose while guaranteeing

both safety and efficiency. We present Midas, a soft memory management system that

contains (1) a runtime that is linked to each application to manage soft memory objects

and (2) OS kernel support that coordinates soft memory allocation between applications

to maximize their performance. Our experiments with four real-world applications show

that Midas can efficiently and safely harvest idle memory to store applications’ soft state,

delivering near-optimal application performance and responding to extreme memory pressure

without running out of memory.

Transparent and Efficient OS kernel swapping for remote memory harvesting.

We then explore techniques that enable applications to scale out beyond a single machine

and harvest resources on remote servers. We identify the OS paging/swap system as a

viable approach to practical remote memory harvesting. However, its current design, which

originally targets slow hard drives, is ill-suited for today’s fast datacenter networks and

significantly hinders efficiency. We present Hermit, a redesigned swap system that overcomes

inefficiencies and offers applications a transparent and efficient way to harvest remote memory.

The core technique of Hermit is adaptive, feedback-directed asynchrony, which takes non-

urgent but time-consuming operations (e.g., swap-out, cgroup charge, I/O deduplication,

7

etc.) on the fault-handling path and executes them asynchronously. Additionally, Hermit

collects runtime feedback from applications and uses it to direct how asynchrony should be

performed—i.e., whether asynchronous operations should be enabled, the level of asynchrony,

and how asynchronous operations should be scheduled. An evaluation with a set of latency-

critical applications shows that Hermit delivers low-latency remote memory. For example, it

reduces the 99th percentile latency of Memcached by 99.7% from 36 ms to 91 µs. Running

Hermit over batch applications improves their overall throughput by up to 1.87×. These

results are achieved without changing a single line of user code, demonstrating the feasibility

of memory elasticity with transparent and efficient remote memory.

Isolated and adaptive remote memory harvesting for multi-applications. A critical

step towards the practical deployment of remote memory harvesting systems is ensuring

that multiple applications can share remote memory without interference. To address this

challenge, we propose Canvas, a redesigned swap system that fully isolates swap paths for

remote-memory applications. Canvas allows each application to possess its dedicated swap

partition, swap cache, prefetcher, and RDMA bandwidth. Swap isolation further lays a

foundation for adaptive optimization techniques based on each application’s own access

patterns and needs. We develop three such techniques: (1) adaptive swap entry allocation,

(2) semantics-aware prefetching, and (3) two-dimensional RDMA scheduling. A thorough

evaluation with a set of widely deployed applications demonstrates that Canvas minimizes

performance variation and dramatically reduces performance degradation.

Large language model runtime system for GPU harvesting. Recent breakthroughs

in artificial intelligence and large language models have significantly increased the demand for

GPUs and accelerated computing. To democratize these AI advancements for a broader range

of users and applications, it is crucial for datacenter system stacks to manage GPU resources

for AI workloads efficiently to achieve both high performance and optimal GPU utilization. To

address this need, we introduce Concerto, a large language model (LLM) runtime that harvests

8

stranded GPU resources for offline LLM inference tasks such as document summarization

and model evaluation. Unlike online inference tasks that are latency-critical, offline tasks

usually run in a batch-processing fashion with much looser latency requirements, making

them a good fit for stranded resources that are only available shortly. Concerto contains

(1) an execution engine that preempts offline tasks timely in response to online load bursts,

(2) an incremental checkpointing mechanism that minimizes the amount of recomputation

required by preemptions, and (3) a scheduler that adaptively batches offline tasks with online

tasks to maximize GPU utilization. Our evaluation demonstrates that Concerto not only

achieves consistently low online serving latency but also enables a linear trade-off between

online serving throughput and offline serving throughput without interference. As a result,

Concerto improves the average GPU utilization by 2.35× and reduces 99th percentile serving

latency by 98.8%.

1.5 Dissertation Organizations

We organize this dissertation as follows. Chapter 2 first sets the context for our contributions

with the necessary background on datacenter workloads and existing system stacks on

improving resource utilization. The rest of the dissertation consists of four parts.

• Part 1 deals with the memory inefficiency within a server due to the semantics gap

between the application soft state and the OS kernel memory management. Chapter 3

presents Midas, a new OS virtual memory abstraction, and how the abstraction enables

the coordination between the kernel and the runtime to harvest idle memory for

application-managed soft state.

• Part 2 includes the OS kernel redesign contributions of this dissertation, which enable

applications to harvest idle memory on remote servers transparently and efficiently.

Chapter 4 introduces Hermit, a redesigned OS kernel paging/swap system that allows

applications to transparently scale out by efficiently swapping data to idle memory on

9

remote servers, improving both application performance and overall resource utilization.

Based on Hermit, Chapter 5 then discusses Canvas, an extension to kernel swap system

that provides isolation support and adaptive optimizations for multi-application settings.

In consequence, Canvas enables co-running applications to share remote memory without

performance interference. More importantly, Canvas exploits the swap semantics of each

isolated application, so that it can automatically adapt the swap system to the specific

needs of each application to maximize hardware utilization and overall application

performance.

• Part 3 generalizes our methodology to harvest GPUs for AI workloads. Chapter 6

presents Concerto, a GPU runtime system that harvests idle GPU resources for offline

large language model serving. Concerto colocates and schedules online and offline

requests within the runtime and entirely eliminates the overheads associated with

cluster re-partitioning and GPU reassignment in lower-level system stacks. This design

enables Concerto to achieve low online latency, high offline throughput, and high GPU

utilization simultaneously.

• Part 4 describes future research directions and concludes the dissertation (Chapter 7).

Bibliograhpic Notes

Portions of this dissertation draw on work that I previously conducted and published with

the guidance of my advisors Guoqing Harry Xu and Miryung Kim, and the support of other

outstanding collaborators. Chapter 3 extends a conference paper published in NSDI ’24

with Zhenyuan Ruan, Haoran Ma, Adam Belay, Miryung Kim, and Guoqing Harry Xu [208].

Chapter 4 is based on a conference paper published in NSDI ’23 with Chenxi Wang, Zhenyuan

Ruan, Adam Belay, Qingda Lu, Yiying Zhang, Miryung Kim, Guoqing Harry Xu [207].

Chapter 5 is based on a conference paper published in NSDI ’23 with Chenxi Wang , Haoran

Ma, Shi Liu, Yiying Zhang, Wenguang Chen, Ravi Netravali, Miryung Kim, Guoqing Harry

10

Xu [260]. Note that Canvas was co-authored with Chenxi Wang.

11

CHAPTER 2

Background

2.1 Characterizing Datacenter Workloads

With the prevailing cloud computing paradigm, modern datacenter applications are evolv-

ing into increasingly complex forms, involving larger scales, more stringent performance

requirements, and heterogeneous resource demands. Typical examples of such applications

include web search engines, social networks, online shopping platforms, and emerging big data

analytics and machine learning frameworks. After years of widespread adoption, researchers

and practitioners have identified three major characteristics of contemporary datacenter

workloads, each posing unique challenges to datacenter system stack design.

Microsecond tail latency. Many datacenter applications, such as web search engines,

social networks, and AI-powered chatbots, are essentially large-scale distributed systems.

To ensure a smooth user experience, they must consistently perform well when serving

millions or billions of requests. These systems are extremely sensitive to tail latencies,

as even microsecond-scale outliers can significantly degrade service quality [64, 66]. The

evolution of datacenter applications toward microservice architectures has further intensified

this sensitivity. In microservice architectures, a single service could comprise dozens of or

even hundreds of microservices that are distributed across multiple servers in a complex

fan-in/fan-out pattern [54, 55, 80, 236]. Consequently, the overall response time of a user

request is dictated by the slowest-performing microservice [64]. In practice, these microservices

often have strict tail latency service-level objectives (SLOs), such as 99th or 99.9th percentile

12

(a) Load variation over 24 hours. (b) Load variation over 15 minutes.

Figure 2.1: User traffic to ChatGPT within a campus [263] exposes high load variability at

both macro (2.1a) and micro (2.1b) time scales.

latency in microsecond timescale [26, 103, 157], to ensure consistently low end-to-end response

latency.

Meeting these stringent tail latency requirements requires not only high-performance

hardware but also highly efficient system stacks that operate at the same or even finer

timescale [26]. For instance, if the resource harvesting system exploits idle resources left by a

latency-critical application but fails to return them in time when needed, it can easily ramp

up the application’s tail latency by orders of magnitudes, leading to vast SLO violations that

hurt user experience and the reliability of the entire service.

High load variability. Real-world datacenter applications exhibit significant load vari-

ability and diurnal patterns [19, 22, 194] which pose new challenges for efficient resource

management. This variability arises from two primary factors. First, many datacenter

applications are interactive and user-facing, meaning their load depends heavily on user

activity. As a result, traffic peaks during busy hours and drops during off-peak periods.

For example, Figure 2.1a illustrates how user traffic to ChatGPT [189] fluctuates over a

24-hour period within a university campus [263]. As seen, the load during the afternoon

(between 𝑡 = 15h and 18h) is nearly two orders of magnitudes higher than during the late

night (between 𝑡 = 1h and 7h).

13

However, load variability is not confined to macro timescales; it is also intrinsic at micro

timescales, even within short time periods. Figure 2.1b zooms into a 15-minute window during

peak hours to highlight significant micro load bursts and fluctuations. At time 𝑡 = 5min and

𝑡 = 9min, the load surges and then drops by more than two times. Similar patterns also recur

frequently during time 𝑡 = 10min−15min, where multiple load bursts occur.

These high levels of load variability and frequent micro bursts create significant challenges

for datacenter resource management. System stacks must dynamically and quickly re-allocate

resources in real-time to accommodate sudden load changes to prevent resource contention

and maintain optimal application performance.

Heterogenous resource demands. Machine learning and artificial intelligence (AI)

applications [9, 189, 197, 213, 247] are rapidly emerging as some of the most popular and

resource-diverse workloads in datacenters. Unlike traditional workloads that primarily depend

on CPU, memory, network, and storage resources, AI workloads heavily leverage specialized

accelerators, such as GPUs, for their computational tasks. However, while CPUs and memory

can be managed directly by the operating system and are readily accessible to applications,

accelerators depend on vendor-specific drivers and runtimes. For instance, Nvidia GPUs rely

on specialized drivers and the CUDA runtime, compelling developers to manually implement

accelerated compute logic using CUDA libraries that are separate from their main application

logic.

Additionally, on the hardware side, next-generation datacenter networks and storage

devices [3, 36, 103, 133] are becoming increasingly configurable, offering internal channels

and tuning knobs that allow applications to customize hardware for maximum performance.

However, realizing the full potential of this type of configurable hardware requires a hardware-

software co-design approach, where the application is rewritten with specialized runtimes

and programming libraries such as DPDK [73] and SPDK [3].

In summary, the rise of AI workloads and the advent of configurable high-performance

14

hardware present significant challenges for efficient resource management. To fully exploit

these advancements, it is crucial for system stacks to manage heterogeneous applications and

hardware resources with flexibility and efficiency, ensuring that the full potential of both

software and hardware is unleashed.

2.2 Existing Datacenter System Stacks for Resource Harvesting

This section provides essential background on existing techniques for resource harvesting in

datacenter system stacks. We categorize these techniques based on the specific layer of the

system stack they operate within, as detailed in the following subsections.

2.2.1 Operating System Kernel Paging/Swap System

Historically, the OS kernel is designed to allow memory overcommitment with its virtual

memory abstraction and the paging/swap mechanism. Paging was designed to extend the

addressable memory space with a slow but large secondary storage (usually a mechanical

disk). Under memory pressure, the kernel pages out cold pages to disk and marks them as

absent from memory. Later, if a process accesses any of those pages, the memory management

unit (MMU) raises a page fault exception which transparently traps the control flow into

the kernel to page in the data and updates the corresponding page table entry (PTE). The

process can then resume its execution and access the page normally. Ideally, with the support

of paging, the OS kernel can support a best-effort application to run with limited physical

memory left unused by the performance-critical application, and it can swap out the data of

the best-effort application to return memory to the performance-critical application under

load bursts, thereby achieving high overall utilization.

Linux implements paging in its swap subsystem, and Figure 2.2 illustrates the detailed

stages when swapping in a page in Linux kernel. In Linux swap, the backend storage (e.g.,

local disks for local swapping, and network-attached storage for remote swapping) is mapped

15

Miss

I/O Read

Prefetching
End

cgroup
AccountingBegin

Lookup
Swap Cache

Hit

Otherwise

Update
Metadata Set PTESwap Out

(Entry Alloc)

Enough local memory

Use locks to serialize concurrent executions.

Demand disk bandwidth (in traditional use cases) or network bandwidth
(for network-attached storage and remote memory settings).

Figure 2.2: Stages that a swapped-in page undergoes in the Linux kernel’s paging/swap

system.

into the host server as a swap partition where application data will be swapped out. The

swap partition is split into a set of 4KB swap entries, each mapping to an actual remote

memory cell and has a unique entry ID. Upon a page fault, the kernel uses the swap entry ID

contained in the corresponding page table entry (PTE) to locate the swap entry that stores

the page.

The first step in handling the fault is to look up the swap cache, which serves as a

centralized component that prevents race conditions. It uses a set of radix trees to track the

information of swapped-in pages and ongoing swap-out requests at the granularity of a block

(e.g., 64MB) of swap entries. If a page can be found there, it gets mapped to a virtual page

and removed from the swap cache. Otherwise, the kernel needs to perform a demand swap-in.

Before fetching the page, the kernel first does cgroup accounting to inspect if there is

enough physical memory to swap in the page. If there is, the kernel issues an I/O read

request. As the demand swap occurs, the kernel prefetches a number of pages that will likely

be accessed in the future. This number depends on the swap history at the past few page

faults. For example, if the pages fetched follow a sequential or a strided pattern, the kernel

will use this pattern to fetch a few more pages. If no pattern is found, the kernel reduces the

number of prefetched pages until it stops prefetching completely. Once these demand and

16

prefetched pages arrive, they are placed into the swap cache. Their swap entries in remote

memory are then freed.

If cgroup accounting deems that local memory is insufficient for the new page, the kernel

must reclaim memory by evicting pages using the CLOCK algorithm [57]. Evicting a page

unmaps it and pushes it into the swap cache. When memory runs low, the kernel releases

existing pages from the swap cache to make room for newly fetched pages. Clean pages can

be removed right away and dirty pages must be written back. To write back a page, the swap

system must first allocate a swap entry using a free-list-based allocation algorithm. Then, an

I/O write request is generated and the page is written into the newly allocated swap entry.

Linux iteratively reclaims pages until the available memory rises above a low threshold.

Finally, Linux updates kernel metadata, including the page table entry (PTE) and the

swap entry to mark the finish of the swap-in. During the entire swap-in process, extensive

locking is needed for swap cache lookup, swap entry allocation, and metadata update—shared

allocation metadata (e.g., free list) must be protected when multiple applications/threads

request swap entries simultaneously.

The architecture of the OS kernel swap has remained relatively stable since its inception,

when disks were slow (10 ms, 200 MB/s). In the era of these slow disks, paging/swapping

was typically used as a last resort to prevent out-of-memory (OOM) killing rather than as

a viable way to harvest memory, as the swap rate is seriously limited by disk performance.

However, today’s advanced NVMe SSDs (20 µs, 8 GB/s) and fast datacenter networks (4

µs, 12 GB/s) offer significantly higher I/O throughput and bandwidth, which suggest the

potential to revive paging as a practical solution for memory harvesting. Nevertheless, the

design of today’s swap systems, which originally targeted slow, disk-based storage, is rendered

obsolete and incurs high software overheads. As will be discussed in Chapters 4 and 5, the

legacy swap system software stack now becomes a critical bottleneck when modern datacenter

applications attempt to leverage it for efficient memory harvesting, and we must redesign

the swap system to align with current hardware capabilities to make memory harvesting

17

practical.

2.2.2 Resource-Harvesting Runtime Systems

In addition to the OS kernel support, another line of work focuses on userspace runtime

techniques to scale out applications for better resource utilization.

Distributed Shared Memory

Distributed shared memory (DSM) is one type of pioneer work on distributing an application

to leverage available resources on remote servers. Its idea can be dated back to 1980s [38, 40,

41, 71, 138, 140, 165, 237], and there are still many active research efforts [34, 121, 153, 178,

223, 240, 261]. DSM runtimes provide applications with a unified, contiguous memory view,

allowing them to run with distributed compute and memory resources. However, despite

years of research efforts, DSM systems still struggle to achieve practical adoption due to

their high communication and coherence overheads that stem from the need to maintain

data consistency across distributed nodes. For example, a recent study [153] reported that

even a modern DSM system with a 40Gbps network will still incur a 77% coherence overhead

when accessing another server, which can slow down the application by 2.4×. Even worse,

due to the potentially exponential communication complexity of the number of servers, DSM

systems cannot scale to a large cluster, further hindering their adoption.

Resource-Disaggreged Runtimes

To mitigate extensive communication and synchronization costs, another line of work, ex-

emplified by resource-disaggregated runtimes, trades off transparency for efficiency. The

key idea behind resource disaggregation is to break the physical server boundary using fast

network interconnections such as RDMA [162] and CXL [61, 137]. While this approach

initially requires new datacenter architectures [69, 81], it can also be adapted to existing

18

datacenters by abstracting resources across servers into logical pools (e.g., logical memory

pools [14] and logical CPU pools). This adaption enables applications to run with logically

disaggregated resources, thereby improving resource utilization. To facilitate applications

to operate with resources scattered across multiple servers, many resource-disaggregated

programming frameworks and runtimes explicitly expose the physical separation of resources

to the application, requiring developers to write code that is aware of the disaggregated

architecture.

For example, memory-disaggregated programming frameworks like AIFM [216], Mira [95],

and Atlas [44] introduce remote-able pointers and data structures to facilitate remote-

memory-aware applications. Developers can use these programming primitives to rewrite

applications, allowing them to offload specific data to remote memory. These frameworks’

runtimes can then automatically manage data swapping to remote memory under pressure

and retrieve it upon pointer dereference.

Compute-disaggregated runtimes like Nu [218] and Zenix [96] provide another example,

decoupling processes into fine-grained components, such as Nu’s “proclets” or Zenix’s serverless

threads, with separate functions and data. These components can be offloaded to different

servers to utilize their available CPU cores and memory, and they interact with each other

via remote procedure calls (RPCs) to allow distributed application execution.

Through their primitives and abstractions, resource-disaggregated runtimes can capture

rich program semantics (e.g., data locality, access patterns, and shared data) and corre-

spondingly apply runtime-level optimizations such as caching, prefetching, and locality-aware

scheduling, thereby achieving higher efficiency than traditional DSM systems. However,

they sacrifice transparency and require significant porting efforts, which may make them

impractical for many legacy applications running in datacenters that were not originally

designed with disaggregation in mind.

19

CHAPTER 3

Midas: A New OS Abstraction for Memory Harvesting

As a first step toward building a resource-efficient datacenter system stack, we focus on

improving memory efficiency, which is critical since memory accounts for a substantial portion

of datacenter operating costs. However, harvesting memory is challenging because the OS

cannot easily reclaim or reassign memory once it has been granted and used for storing

application data.

To tackle this problem, we revisit the first insight discussed in Section 1.2, which highlights

that many datacenter applications possess elastic components that can utilize idle resources

with unpredictable availability. In this chapter, we focus on application soft state—data that

increases performance but is not required for correctness—as one concrete example of “elastic

application components”. To effectively manage and dynamically scale soft state, we introduce

soft memory, an elastic virtual memory abstraction with unmap-and-reconstrct semantics that

makes it possible for applications to use idle memory to store whatever soft state they choose

while guaranteeing both safety and efficiency. We present Midas, a soft memory management

system that implements this abstraction through an application-integrated runtime and a

global coordinator within the OS kernel, achieving near-optimal application performance and

memory efficiency.

3.1 Introduction

A wide range of applications can benefit from storing soft state in memory, including web

applications [222], databases [168], key-value stores [163], CDN services [37, 176], and model

20

serving frameworks [30]. Data is considered soft state when it is helpful for efficiency, but

discarding it does not impact correctness because it can easily be reconstructed if it is later

needed. For example, caches and memoization are both common forms of soft state. Soft

state enables applications to trade extra memory consumption for better performance, and

these gains generally increase with the amount of memory available [225, 241]. A significant

fraction of memory is left idle in today’s datacenters [150, 246], suggesting there is a large

untapped opportunity to improve overall efficiency by using idle memory to store soft state.

While spending memory on soft state can improve performance, it must not compete with

the need to store regular application data. For example, if too much memory is spent on

soft state, this could lead to swapping to disk or worse still, out-of-memory errors, which can

result in failures. Because of this, developers often limit their storage of soft state to a small

static amount, for fear that they may run out of memory. In other words, it is a challenge to

allocate enough soft state to consume all available idle memory, but to not go beyond the

point where it would cause performance issues or failures.

Existing OS abstractions for elastically responding to changes in available idle memory

are too limited. For example, the Linux Kernel maintains a page cache that automatically

fills idle memory but it can only be used to cache disk blocks. This constrains idle memory

to storing just a single type of soft state which may or may not provide the most utility for

applications.

An ideal abstraction would instead democratize access to idle memory so that each

application could choose how to best spend it (i.e., the type of soft state that is most

beneficial). For example, suppose an application does not rely much on local storage, but

frequently accesses objects stored in a key value store over the network. Instead of being

limited to the page cache, idle memory could be spent on caching the key-value store’s objects

locally, resulting in a much greater benefit.

This problem is further complicated in today’s multi-tenant cloud. It is common for each

server to run multiple applications, and they may come from different users and exhibit

21

dramatically different performance sensitivity to the amount of soft state. At the same

time, adding memory to one application can lead to reductions in the performance of others.

Consequently, determining how to dynamically balance the soft state needs of different

applications in a way that maximizes overall memory utility/performance is a challenge.

Insight. In this chapter, we aim to answer the following question: can we provide a new

virtual memory abstraction for soft state (herein referred to as “soft memory”) that developers

can use to coordinate with the kernel so that they can take full advantage of all available

memory? In other words, our goal is to no longer limit idle memory to the page cache, and

to instead allow its use to be customized by each application in a way that maximizes overall

utility.

Unlike existing systems that perform caching entirely in the user space [2, 30, 163], we

propose Midas, a system that coordinates with the kernel to dynamically provision soft memory

between applications. The advantage of this approach is two-fold. First, application developers

can program with the illusion of an “unlimited cache”, and are thus freed of the burden of

manually managing their soft state. To avoid running out of memory, the kernel responds to

memory pressure by rapidly unmapping soft memory pages. To transparently recover any lost

soft state, later accesses will automatically trigger the application to reconstruct the missing

soft state. Second, the kernel has global visibility of all applications, their memory usage, and

the amount of idle memory, making it possible to understand each application’s sensitivity

to memory size and automatically coordinate soft memory allocation between applications.

Midas also incorporates the page cache by treating it as another source of soft memory.

Challenges. Midas is a soft memory management system that achieves (1) programming

flexibility and (2) dynamic memory provisioning, with unmap-and-reconstruct semantics, to

guarantee both safety and efficiency. Realizing these benefits requires overcoming four major

challenges:

22

First, what interfaces shall we expose to developers? To improve usability, Midas provides

developers with a soft memory pointer abstraction (similar to C++ smart pointers) to access

soft memory easily and safely (see §3.4.1). Midas offers a set of high-level key-value store

APIs, which are similar to those of popular cache services (such as Memcached [163], Redis [2],

CacheLib [30], etc.), but enhanced to allow the exposure of more semantics to the runtime.

A critical interface we expose to developers is data structure reconstruction—developers not

only register soft memory objects but also specify their (re)construction logic, so soft state

can be transparently regenerated if it is later accessed after it was evicted.

Second, how shall soft memory be managed? Program data is allocated as objects on the

heap but the kernel cannot recognize them, as it is only aware of memory pages. As a result,

if we let the kernel manage soft memory alone, it could only reclaim space in coarse-grained

units without knowledge of what objects the space contains. For example, reclaiming hot

(i.e., frequently accessed) objects in a soft-state cache can lead to significant slowdowns. In

addition, it is undesirable to reclaim space from the programs that would benefit the most

from soft state when others need it less, but such performance sensitivity information is

invisible to the kernel.

To solve the problem, we propose a runtime library that can be linked into each application

to recognize object behaviors, letting the runtime and the kernel co-manage soft memory.

The Midas runtime offers a log-structured allocator [220] and a concurrent evacuator that

continuously identifies and compacts hot objects into a small soft memory space. This

information (of hot and cold regions) is shared with the kernel so that it can focus its

reclamation on regions with cold objects (see §3.4.2).

Third, how can we coordinate soft memory allocation between applications? The runtime

can only see each application’s individual behavior without any global knowledge of the

server’s available memory and other applications’ needs. Furthermore, the runtime can

only manage objects in user space, but cannot dynamically add/remove memory between

applications. To overcome this challenge, we propose a global coordinator inside the Linux

23

kernel. The coordinator periodically probes each application by communicating with the

runtime to request information regarding the application’s sensitivity to cache size. Cold

regions of soft memory from applications that are less sensitive to size changes will be

reclaimed and memory will be given to those that are more sensitive (and hence benefit more

from a larger cache) by the kernel (see §3.4.3).

Finally, how can the kernel quickly reclaim soft memory without disrupting a running

application? Since the kernel operates at page granularity, a natural idea is to swap out pages

that contain soft-state data. Unfortunately, swapping is disruptive—swapping out a page

blocks all incoming memory allocations and hence all threads of the application; frequently

swapping pages can introduce significant overheads that prevent applications from reaching

service-level agreements (SLA) [216] (see §3.2).

To maintain high efficiency, Midas instead uses the kernel to unmap pages directly (which

is much faster than swapping them to disk). When pages are unmapped, their underlying data

is lost—this is acceptable for soft state because it can be regenerated. Without coordination,

however, the kernel cannot distinguish soft state from application data, making unmapping

potentially unsafe.

To solve this problem, our runtime is designed in a way that is resilient to data loss. A

soft pointer-based interface detects data loss through segmentation faults that are triggered

by the runtime’s functions. These functions are carefully designed to capture faults and

transparently invoke a reconstruction interface to regenerate the needed data (see §3.4.2.3).

Compared to paging, Midas does not freeze the execution when shrinking soft memory,

resulting in less disruption to the application. Furthermore, reconstruction focuses on

recovering the individual objects that are needed and hence is much more fine-grained

and can be more efficient than swapping, which brings back entire pages. Reconstruction

may require more computation than paging (the amount of computation depends on exact

soft state data). Therefore, Midas provides a profiling tool that warns developers when

reconstruction incurs a high cost (discussed in §3.4.4).

24

Results. With Midas, one can easily allow applications to take advantage of soft state that

do not currently support it. It is also easy to port legacy code that uses an existing cache

system to use Midas instead. Our evaluation shows that Midas can efficiently and safely

harvest idle memory to store applications’ soft state and achieve near-optimal performance

while reacting to extreme memory pressure quickly enough to avoid running out of memory.

By effectively granting soft memory to the applications that benefit the most, Midas achieves

1.34× higher overall throughput than Cliffhanger (a state-of-the-art caching system). Midas

is available at https://github.com/uclasystem/midas.

3.2 Motivation

Many types of applications can benefit from soft state. For example, a web frontend

could cache content locally after loading it from a backend to reduce network traffic and

improve response times; a database could cache the results of user queries to reduce disk I/O

and improve throughput; and a data analytic or machine learning system could memoize

intermediate computation results to eliminate redundant computations.

To gain a high-level understanding of how much improvement can be achieved by storing

soft state, we experimented with three datacenter applications: SocialNet (from DeathStar-

Bench [80]), MongoDB [168], and HDSearch (from µSuite [236]). Each of these applications

are capable of using soft state. SocialNet [80] is a web forum built using microservices; it

employs Memcached and Redis to cache user data in its frontend services. MongoDB [168] is

a NoSQL database; it has a built-in, in-memory caching engine that caches recently queried

data. HDSearch is an image search service that memoizes the feature vectors of the images

in its corpus, generated by a GPU-based DNN.

Figure 3.1 shows the throughput of each application with varying amounts of soft state.

The 𝑥-axis represents the percentage of each application’s working set cached in memory, and

the 𝑦-axis shows the normalized throughput (to its performance without soft state). Soft

25

https://github.com/uclasystem/midas

20 40 60 80 100
Cached Working Set (%)

0

2

4

6

8

No
rm

al
iz
ed

Th
ro
ug

hp
ut

SocialNet
MongoDB
HDSearch

Figure 3.1: The throughput of all three applications increases by caching more soft state, but

the benefit varies: SocialNet is 1.8× faster by caching 70% of its working set, while HDSearch,

in contrast, achieves a 3.3× throughput increase by caching 50% state.

0 2 4 6 8 10 12
Time (minutes)

0

5

10

15

Th
ro
ug

hp
ut

(K
O
PS

)

1Figure 3.2: SocialNet starts to swap when it caches excessive data and exhausts all available

memory at 𝑡 = 8min and it experiences a throughput collapse.

state is helpful to all applications but the amount of benefit it provides varies. SocialNet is

the least sensitive to its soft state size; however, it still sees a 1.8× speedup by storing 70% of

its soft state. HDSearch, in contrast, is more sensitive to the soft state size—its throughput

increases by more than 3× with only 50% of its soft state.

Real-world datacenter applications can access a massive amount of data. For example,

a web forum like Twitter generates petabytes of new data every day [249]. Thus, blindly

storing soft state in memory without a proper limit can hurt application performance. An

example of this problem is shown in Figure 3.2. Storing soft state increases the throughput of

SocialNet up to a point. However, when idle memory becomes exhausted, the kernel begins

26

0

50

100

M
em

or
y

Us
ag

e
(%

)

0 5 10 15
Time (minutes)

5

10
Th

ro
ug

hp
ut

(K
O
PS

) Static
Optimal

1
Figure 3.3: Statically provisioning the cache space for SocialNet is suboptimal. During

𝑡 =0min–5min, the cache is overprovisioned which wastes memory. After that, the cache

becomes underprovisioned which limits performance.

to swap out pages (at 𝑡 = 8min), leading to a severe collapse in throughput.

A simple strawman solution is to statically provision a limited memory capacity for storing

soft state so that memory use does not grow unbounded. However, provisioning the right

capacity is extremely challenging in practice.

First, for each application, we must find its sweet spot of cache capacity; underprovisioning

limits performance while overprovisioning wastes memory. In addition, datacenter applications

often have phased behaviors and load variability [19, 22], making it impossible to have a

simple static configuration that is optimal at all times. For example, Figure 3.3 shows the

results of SocialNet when statically provisioning it with 4 GiB for storing soft state. It takes

about 5 minutes to fully fill this memory, leading to a suboptimal utilization during this

period. Performance increases with more usage until it exhausts the soft state limit. After

that, performance flattens out despite the possibility of higher throughput if additional soft

state memory were available (the optimal line).

Second, as shown by Figure 3.1, different applications gain different amounts of benefits

through caching. To achieve optimal overall performance with a limited amount of memory,

one must grant space correctly to the applications that benefit the most. For example, initially

27

MongoDB’s performance is most sensitive to the amount of soft state (the left side of Figure

3.1), and thus we should prioritize its need. However, the return diminishes quickly after

caching 30% of its state. To make the best use of the remaining memory, we should respond

by granting memory to HDSearch.

These problems call for a new system that can provide elastic access to soft state for

applications and dynamically coordinate usage among applications in response to each one’s

execution phase and sensitivity to soft state size. To be efficient, soft state should be able to

quickly scale up and down its capacity with little disruption. To be safe, the system should

be resilient to data loss caused by scaling down. To be responsive, the system should conduct

coordination among applications quickly. Finally, to be practical, the system should provide

familiar programming abstractions for developers to store and access soft state.

3.3 Midas Overview

As shown by Figure 3.4, Midas consists of three main components: a programming abstraction

for using soft memory (§3.4.1), an application-integrated runtime that manages soft-memory

objects (§3.4.2), and a global coordinator that arbitrates soft memory usage across different

applications (§3.4.3).

Midas provides programming abstractions that enable simple and efficient use of soft

memory through familiar APIs. At a low-level, programmers can interact with Midas through

soft memory pointers, an abstraction that provides object ownership similar to C++ smart

pointers. However, it differs in that underlying objects can be forcibly released when under

memory pressure, even if still in scope. If a released object is later accessed, a reconstructor

function is invoked to regenerate the missing object (e.g., by fetching it from a database over

the network).

Building upon soft memory pointers, Midas provides a higher-level library of familiar

STL-style soft data structures—including arrays, hash tables, and queues. These hide

28

Soft Data Structures (§4.1.2)
(array, hash table, queue, …)

Soft Memory Pointer (§4.1.1)

Midas Abstractions (§4.1)

Midas Runtime (§4.2)

Evacuator (§4.2.2)Log Allocator (§4.2.1)

Page-Fault-Resilient Functions (§4.2.3)

Soft Memory (pages)

Application

Process 1

…

Process N

Midas Global Coordinator (§4.3)

grant/revoke

manage objects

se
m

an
tic

s

Figure 3.4: Midas enables developers to utilize soft memory easily and efficiently with three

major components: a familiar programming abstraction, an application-integrated runtime,

and a global soft-memory budget coordinator.

the complexity of managing individual soft memory pointers, and can be used as drop-in

replacements for existing data structures. For example, a developer building a key-value

store similar to Memcached could use a soft hash table to store soft memory objects. Midas’s

high-level interface is generally sufficient for most use cases, but developers are free to build

their own custom soft data structures through use of soft memory pointers.

Midas manages soft memory objects through a runtime that is linked as a library with the

application. It serves as an allocator for soft memory objects. It works cooperatively with the

coordinator (discussed next) to determine the best memory to release (i.e., idle memory first,

then cold objects, and finally hot objects). To achieve this, the runtime provides a moving

allocator that embraces the idea of log-structured memory [220] to organize soft memory into

29

different segments. An evacuator thread scans and compacts logs to segregate hot objects,

cold objects, and dead objects. This helps both to coordinate which memory should be freed

and to reduce fragmentation.

However, the runtime is not trusted for correct operation. If it fails to respond quickly

enough or if memory pressure becomes too severe, pages will be unmapped in an uncoordinated

fashion to avoid swapping. In the event such forcible revocation happens, the runtime is

designed to safely tolerate page faults when accessing unmapped memory. To achieve this,

we developed a set of page-fault-resilient functions and used them as primitives to build our

runtime.

Midas’s global coordinator dynamically adjusts the soft memory budget among applications

to optimize their overall performance. It periodically probes the marginal utility of soft

memory for each application by granting a small amount of additional memory and observing

the effect on performance. Using this information, the coordinator can optimize the allocation

of soft memory by granting it to the applications that benefit the most. The coordinator

defines the global utility function as the weighted average of all applications’ performance

and employs a hill-climbing algorithm to approach the global optimal point. Midas allows

operators to specify the weight of each application to indicate relative significance, similar to

the nice interface of Linux.

3.4 Design

3.4.1 Soft Memory Abstraction

Soft memory is a new type of memory that can be revoked under memory pressure. In Midas,

soft memory is backed by physical pages that can be unilaterally unmapped and reclaimed

by the OS kernel. Accessing reclaimed soft memory will trigger a reconstruction event to

rebuild the missing data. Midas provides a smart-pointer-like API to enable developers to

easily use soft memory, hiding the complex details of soft memory allocation/deallocation,

30

1 template <typename T, typename ... ReconArgs >

2 class SoftMemPool {

3 SoftMemPool(std::function <T(ReconArgs ...)> reconstructor);

4 SoftUniquePtr <T, ReconArgs ...> new_unique ();

5 SoftSharedPtr <T, ReconArgs ...> new_shared ();

6 };

7

8 template <typename T, typename ... ReconArgs >

9 class SoftUniquePtr {

10 ~SoftUniquePtr ();

11 T read(ReconArgs ... args);

12 void write(T newval);

13 bool cmpxchg(const T &oldval , T newval);

14 };

Listing 3.1: Midas’s soft memory pool and unique pointer interface.

page-fault handling, and data reconstruction (§3.4.1.1). Furthermore, Midas offers high-level

data structure libraries as composable building blocks (§3.4.1.2).

3.4.1.1 Soft Memory Pointer

Listing 3.1 shows Midas’s soft memory pool and pointer interface. To use soft memory,

developers first need to create a soft memory pool which can later be used to allocate soft

memory pointers. The pool abstraction conceptually groups together soft pointers whose

objects can be reconstructed in a similar way. Midas exposes the pool as a C++ template

class whose parameters consist of two parts: T, which is the object type of soft pointers to

allocate, and ReconArgs, which are the types of arguments used for reconstructing a missing

object. Developers can initialize a pool with a reconstructor function and then allocate

31

pointers using new_unique (for soft unique pointers, similar to C++’s std::unique_ptr)

and new_shared (for shared pointers).

Soft memory pointers support automatic lifetime management through reference counting.

Developers can use its read API to get the value of the pointed object. In case the underlying

soft memory has been reclaimed, Midas will automatically reconstruct the missing object

using the reconstruction arguments passed into read (we will show a concrete example soon

in §3.4.1.2). Midas hides the raw reference and returns the value by copying. This is critical as

the underlying reference may become invalid any time when the soft memory gets reclaimed.

With copying, Midas restricts potential faulting sites to stay inside Midas’s internal code,

thereby freeing developers from handling complicated page faults in the application code. The

copying design incurs negligible performance overheads (only a few additional cache accesses).

write enables developers to update the object value. However, different from read, write

does not require reconstruction arguments as Midas can directly rebuild the object using the

new value. Soft pointers also support atomic operations like compare-and-exchange, enabling

developers to atomically update object values to support multi-threaded applications.

With its smart pointer design, Midas is able to capture rich application semantics for

effectively managing soft memory. For example, since all soft object accesses go through the

read/write API, Midas can accurately track the hotness information of each object which can

be leveraged by Midas runtime for making intelligent object placement and eviction decisions

(details in §3.4.2). Soft pointer’s automatic lifetime management enables cascading eviction,

improving the efficiency of using soft memory. For instance, in a web forum application, a

forum post object may contain a soft unique pointer to an attached picture. Under memory

pressure, Midas may decide to evict the post object in which case the reference count of

the picture pointer will automatically drop to zero and trigger evicting the dangling picture

object cascadingly.

32

1 template <typename T> class SoftArray {

2 SoftArray(size_t size , std::function <T(size_t)> reconstructor);

3 T read(size_t idx);

4 void write(size_t idx , T t);

5 bool cmpxchg(size_t idx , const T &oldval , T newval);

6 };

7

8 class BlockCache {

9 BlockCache(size_t sz) : array_(sz, [](size_t idx) {

10 return read_from_storage(idx); }) {}

11 Block read(size_t idx) { return array_.read(idx); }

12 void write(size_t idx , Block block) {

13 array_.write(idx , block);

14 write_to_storage(idx , block);

15 }

16 SoftArray <Block > array_;

17 };

Listing 3.2: Midas’s soft array interface and a simple user-level storage block cache (similar

to Linux’s page cache) built using soft array.

3.4.1.2 Soft Data Structures

To further reduce the programming effort of using soft memory, Midas offers high-level data

structures as convenient building blocks. Midas’s built-in data structures include soft arrays,

soft hash tables, and soft queues; developers can also easily build more based on the soft

pointer abstraction.

Listing 3.2 presents the interface of soft array (lines 1-6). Developers can create a soft

array by specifying its size and reconstructor (which rebuilds the array element of a given

33

index). Soft array supports standard read, write, and atomic operations by index. Under the

hood, a soft array is simply implemented via an ordinary array of soft pointers.

Lines 8-17 present a user-level storage block cache as a simple illustrative application,

similar to Linux’s page cache. BlockCache internally wraps a soft array whose elements are

storage blocks (line 16). This enables it to efficiently leverage idle memory to cache storage

blocks in a best-effort manner. For each block read request, it simply retrieves the result

from the soft array (line 11). Upon an element miss, the array automatically reconstructs

the element by reading the block back from the storage device (lines 13-14). For each block

write request, BlockCache updates both the cache in array and the data in storage.

3.4.2 Application-Integrated Runtime

Midas runtime is the key component that manages soft objects to enable efficient use of

soft memory. It includes a log-structured memory allocator that serves memory allocation

requests and organizes objects into a list of segments (§3.4.2.1), a concurrent evacuator that

constantly compacts hot objects and releases cold and dead objects (§3.4.2.2). Page faults can

happen in Midas runtime when the soft memory it is accessing gets reclaimed and unmapped

because of memory pressure. To ensure robustness, we carefully built the runtime using a set

of page-fault-resilient functions which are able to capture page faults and gracefully recover

from them (§3.4.2.3).

In Midas, the runtime as well as the soft memory it manages are linked directly into

each application’s address space. Compared to traditional cache services (e.g., Memcached)

that run in a separate process, our design offers several important advantages. First, it

provides direct and efficient soft memory accesses for applications, eliminating the inter-

process communication (IPC) overhead. Second, it enables our runtime to profile the

application and collect semantics, greatly facilitating semantics-aware optimizations. Third,

since each application has its own runtime, we can easily enforce soft memory isolation among

applications and adaptively customize the memory management policy of each application.

34

L E H Sz Ptr Data Soft Ptr
1b 1b 2b 48b28b

…Used segments
(sorted by hotness)

Free segments …

Figure 3.5: Midas organizes soft memory using a free segment list and a used segment

list (sorted by segment’s hotness, useful for Midas’s evacuator in §3.4.2.2). It employs a

log-structured allocator to serve memory allocation requests. Each object has a 10-byte

header, which includes a liveness bit, an evacuating bit, hotness bits, an object size field, and

a reversed pointer field.

3.4.2.1 Log-structured Soft Memory Allocator

Midas embraces the idea of log-structured memory [220] to manage soft memory; it reduces

memory fragmentation through compaction, thereby achieving higher efficiency in utilizing

soft memory.

Midas’s log-structured allocator organizes soft memory using a free segment list and a

used segment list, illustrated in Figure 3.5. Segments are the units for Midas to perform

evacuation to compact objects and reclaim space (details in §3.4.2.2). The total size of all

segments (used and free) equals the soft memory budget that the linked application receives

from the global coordinator (§3.4.3). For each memory allocation request, the allocator

allocates space from a free segment; if the current one is full, it will pop a new one from the

free list. Midas backs each segment using a 2 MiB huge page; this reduces TLB pressure and

page table walk cost. While small objects reside in only one segment (i.e., they do not cross

the segment boundary), big objects whose sizes are larger than 2 MiB span across multiple

segments. Since the free list does not provide any address contiguity guarantee for segments,

Midas breaks the big object into smaller pieces—each one fits into a single segment—and

35

chains them together using segment headers. The decomposition is transparent to application

developers; upon object read, Midas automatically reads all segregated pieces and stitches

them back. This is possible thanks to Midas’s pass-by-copy interface (§3.4.1).

Each allocated object has a 10-byte header inlined with its data, used for tracking the

object’s runtime information. This includes 1) a liveness bit, indicating whether the object

has been deallocated; 2) an evacuating bit, marked by the evacuator to synchronize evacuation

with object accesses; 3) hotness bits, a counter that will be incremented (or unchanged when

it has reached the maximum) each time the object gets accessed; 4) a size field, indicating

the total size of the object; 5) a reverse pointer field, used by the evacuator, if it moves the

object, to rewrite the soft pointer.

3.4.2.2 Soft Memory Evacuator

As the allocation goes on, the application may eventually deplete the free segment list. It is

the responsibility of Midas’s evacuator to constantly release cold and dead objects, ensuring

the best use of soft memory by only storing hot objects. In addition, the evacuator tracks

segments in order of hotness in a used list (see Figure 3.5), to simplify the design and improve

the speed of memory reclamation, in which the kernel forcibly unmaps application’s soft

memory pages under intense memory pressure (§3.4.3).

Midas’s background thread continuously monitors the free segment ratio and triggers

evacuation if it falls below a configurable threshold (our default value is 90%). The evacuation

mainly consists of three stages:

Scanning Stage. The evacuator first scans through all objects in the used segment list.

For each scanned object, it decrements the embedded hotness counter (similar to the CLOCK

algorithm [57]). The evacuator treats objects with a zero pre-scanning hotness value, in

addition to deallocated objects, as dead objects; they will be released in the compaction

stage. The evacuator calculates the live ratio of each segment (i.e., the percentage of live

36

bytes) during scanning, and then uses it to sort all scanned segments to decide their priority

for compaction. The segment with the lowest live ratio will be compacted first as it yields

the largest benefits (in terms of the reclaimed space).

Compaction Stage. The evacuator compacts one segment at a time. For each live object,

it first relies on the evacuation bit to synchronize with application threads to avoid data

race (similar to AIFM [216]). It then copies the object into a new segment and leverages

the reversed pointer field to rewrite the address of the corresponding soft pointer. After

evacuating all live objects, it moves the segment from the used list into the free list.

Sorting Stage. After compaction, the evacuator calculates the segment-level hotness value

for all segments in the used list, defined as
∑
∀𝑜𝑏 𝑗∈𝑠𝑒𝑔 𝑆𝐼𝑍𝐸 (𝑜𝑏 𝑗) · 𝐻𝑂𝑇𝑁𝐸𝑆𝑆(𝑜𝑏 𝑗). It finally

sorts the used list by segment-level hotness in ascending order.

3.4.2.3 Page-Fault-Resilient Functions

Midas runtime directly manipulates soft memory during allocation and evacuation. Since

the kernel may unmap soft pages to reclaim memory under pressure (details in §3.4.3), the

runtime has to be aware of page faults and be able to recover from them gracefully. We

carefully built the runtime to achieve this goal. First, we stored the important metadata

(e.g., the free and used segment lists) in normal memory instead of soft memory, therefore it

will not be lost under memory pressure. This is viable as the metadata only consumes little

memory (less than 10 MiB). Second, we introduced page-fault-resilient functions and used

them as primitives to build the runtime.

A page-fault-resilient function is able to capture any internal page fault that stems from

dereferencing unmapped soft memory and respond to it by reverting all side effects and

throwing a SoftMemUnmapped(fault_addr) exception to the caller. As a concrete example,

in Midas we internally implemented a page-fault-resilient memory copy function, which is

37

1 for each segment S to compact {

2 D = pick_destination_segment ();

3 for each object O in S {

4 try {

5 // A wrapper around our PF-resilient memcpy

6 copy_object_into(O, D);

7 } catch (SoftMemUnmapped &exception) {

8 if (exception.fault_addr belongs to O)

9 break; // Skip S as it has gone

10 else // It must belong to D

11 goto line2; // Pick a new D and restart

12 }

13 }

14 }

Listing 3.3: Midas implements its evacuator’s compaction code using a page-fault-resilient

memory copy function.

used to build the evacuator’s compaction code to withstand page faults (see Listing 3.3).

Page faults can happen when copying objects from the old segment into the new segment.

To deal with this case, Midas uses its resilient memory copy function (line 6) to capture and

handle the potential exception (lines 7-12).

Midas registers its own signal handler to facilitate capturing and handling all soft-

memory-related page faults. Additionally, a page-fault-resilient function satisfies the following

requirements to ensure resilience:

• It embeds a fault recovery code block for aborting the partial execution and rolling back

side effects. Midas runtime maintains a mapping from resilient functions to their recovery

blocks so that when page fault happens the handler can invoke the corresponding recovery

38

code.

• All of its inner non-resilient functions have to be inlined to prevent the control flow

from jumping out of its scope. Otherwise, the page fault handler is unable to find the

corresponding recovery code.

• It preserves its stack frame base pointer (by disabling the compiler optimization) so that

the fault handler can easily unwind its stack and throw an exception back to its caller.

3.4.3 Global Soft Memory Coordinator

Midas’s global coordinator is responsible for granting server’s idle memory to applications

as soft memory and coordinating the budget across applications to optimize the overall

performance.

3.4.3.1 Soft Memory Management Mechanism

The coordinator maps idle memory pages directly into an application’s address space as soft

memory segments. For each application, the coordinator dynamically maps or unmaps pages

to readjust its soft memory budget. To facilitate the management, the application’s runtime

shares its free segment list and used segment list with the coordinator.

To grant more soft memory to an application, the coordinator maps more pages to it and

inserts them into the free segment list. Similarly, to reclaim memory from an application, the

coordinator unmaps pages. The coordinator first tries to pop out and unmap the segments

from the free list; since they do not hold any useful live objects, unmapping them does not

incur any impact on the application’s performance. Meanwhile, the runtime strives to avoid

the exhaustion of the free list by triggering evacuation (§3.4.2.2).

The synergy between the runtime and the coordinator is able to handle moderate memory

pressure (i.e., the common case). However, under severe pressure, the evacuation may fall

behind, leading to an empty free segment list. To avoid depletion, the coordinator reacts by

39

unmapping used segments which may induce performance disruption in two folds. First, when

the application later tries to access an unmapped object, the runtime will experience a page

fault which incurs overhead. Second, the runtime has to spend additional time reconstructing

the missing object. To alleviate this issue, the coordinator prioritizes cold segments over hot

segments. Thanks to the evacuator, the segments in the used list have been ordered by their

hotness (§3.4.2.2). Therefore, the coordinator can realize prioritization by simply unmapping

segments based on their order in the list.

3.4.3.2 Coordination Policy

Midas continuously adjusts each application’s soft memory budget by solving the following

optimization problem:

maximize
𝑚

∑︁
∀𝑖∈𝐴𝑃𝑃𝑆

𝑤𝑖Γ𝑖 (𝑚𝑖) , subject to
∑︁

∀𝑖∈𝐴𝑃𝑃𝑆
𝑚𝑖 = 𝑀

For each application 𝑖, 𝑤𝑖 denotes its weight (which is either specified by the operator or

uses the default value 1) and Γ𝑖 denotes its performance utility when assigned soft memory

of size 𝑚𝑖. The server-wide overall utility is defined as the weighted sum of all application’s

utilities. 𝑀 denotes the server’s total idle memory.

By default, the coordinator estimates Γ𝑖 as −𝑅𝐶𝑂𝑆𝑇𝑖, where 𝑅𝐶𝑂𝑆𝑇𝑖 is the application’s

CPU usage spent on reconstructing missing objects. Midas’s runtime can easily collect this

per-application information and report it to the coordinator. Developers can also plug in the

real performance metric reported by applications—which already exists in many datacenter

applications [33]—for a more faithful Γ𝑖.

Midas solves the optimization problem using the hill climbing approach [221]. It periodi-

cally probes every application’s marginal utility benefit 𝜕Γ𝑖 (𝑚𝑖)
𝜕𝑚𝑖

by additionally assigning a

small portion of memory Δ𝑚𝑖
and monitoring the change of utility ΔΓ𝑖 . Midas regrants the

soft memory budget from the application with the lowest marginal utility benefit to the one

with the highest benefit.

40

In contrast, Cliffhanger (a recent cache service) [52] adopts a coordination policy that

optimizes for the overall cache hit rate, but this does not necessarily optimize the overall

performance. For example, caching objects that are frequently accessed may not be helpful if

they can be cheaply reconstructed. Midas avoids this issue by using both access frequency

and reconstruction cost as metrics for optimization.

3.4.4 Discussion

Though Midas is mainly designed for caching hot data and memoizing intermediate compu-

tation results, developers have the freedom to put any data into soft memory as long as it

is reconstructible. However, storing data that is expensive to reconstruct but infrequently

accessed can lead to performance issues. Midas provides a profiling tool that generates

runtime warnings if such cases are detected. In addition, Midas offers a debugging mode

where we validate the reconstruction logic by calling the user-defined reconstruction function

and comparing its result with the actual cached object using the object’s comparison operator.

Bugs are reported if these objects are not identical.

Midas also incorporates Linux’s page cache by simply treating it as another per-application

soft memory pool. For each application, Midas’s shim layer intercepts all POSIX file operations

and caches the file data using a soft hash table, whose keys are file inode numbers along with

block-aligned offsets and values are file blocks. The reconstructor rebuilds the missing block

by performing the actual file read.

3.5 Implementation

Midas is implemented in C++ and includes bindings for C. Our implementation has 2,814

LOC for the soft memory abstraction (§3.4.1), 3,866 LOC for the runtime (§3.4.2), and 1,029

LOC for the global coordinator (§3.4.3).

Soft data structures store their metadata (e.g., a hash table’s bucket array that stores

41

indices) in normal memory and store their data payload (e.g., a hash table’s key-value pairs)

in soft memory using soft pointers.

The log-structure allocator enforces 16-byte alignment for allocated data to make it

GCC-compatible. The evacuator adopts a concurrent pauseless design similar to AIFM [216].

The evacuator ensures atomicity when evacuating or reconstructing large objects that span

across multiple soft memory segments. Midas registers its own SIGSEGV handler. For each

segmentation fault, the handler checks whether the faulting memory address belongs to a

soft memory region and whether the faulting program counter (PC) belongs to a page-fault-

resilient function; for faults that do not meet these conditions, the handler treats them as

unrecoverable exceptions and aborts the program. To facilitate the PC check, Midas leverages

a linker script to place all resilient functions into a separate code segment whose layout is

known at compile time.

During each application’s initialization, the runtime registers itself to the global coordinator

using ioctl and uses mmap to create a shared memory region for exposing information—

including its free segment list and used list (implemented as arrays) and the application’s

reconstruction cost (implemented as a counter)—to the coordinator.

We implemented the global coordinator as a user-space daemon (that runs the coordi-

nation policy) and a privileged kernel module (that executes the coordination decision by

mapping/unmapping pages to/from user processes directly). Every 5 seconds, the coordinator

probes the marginal utility of each application and makes a new adjustment to soft memory

budgets. It probes an application by either granting or revoking 64 MiB soft memory and

monitoring its performance change. In each adjustment, it regrants up to 256 MiB soft

memory from the application with the lowest marginal utility to the one with the highest

utility. To avoid oscillation, it refrains from granting more soft memory to the application

until it has consumed the additional memory offered in the previous round.

42

Applications
Abstractions

used

Porting

effort (LOC)

CPU

cores

Normal

mem. (GiB)

Peak soft

mem. (GiB)

Reconstruction

cost (µs/obj.)
Dataset

HDSearch [236] Soft hash table 36 12 1.7 13.6 1244.2 OpenImg [127], 1.9M images

WiredTiger [169] Soft pointer 332 12 3.7 21.3 20.6 Facebook USR [22], 50M KV

Storage Server [124] Soft array 29 4 1.1 20.4 10.5 multilate [108], 16 GiB disk

SocialNet [80]
Soft hash table

Soft queue
175 20 1.3 12.2 99.1–3227.7

Socfb-Penn94 [214],

41.5K nodes, 1.4M edges

Table 3.1: We ported four applications into Midas with low programming effort. All four

applications extensively use soft memory while their data reconstruction costs vary drastically.

3.6 Programming with Midas

We present general guidelines of programming with Midas (§3.6.1) followed by concrete

examples of porting four real applications (§3.6.2).

3.6.1 Guidelines

When is it safe to use soft memory? Developers can generally use soft memory to

store any application data that follows the unmap-and-reconstruct semantics. To support

evacuation, developers have to implement copy constructors for objects stored in soft memory.

When is it beneficial to use soft memory? Developers should generally consider using

soft memory when applications can opportunistically benefit from having additional memory.

Typical use cases include caching in web applications and memoization in data analytics

systems. They often have unknown marginal utility and unbounded memory footprint,

making them hard to handle efficiently through static provisioning. Midas can benefit them

by automatically rightsizing their soft memory budget and harvesting idle memory.

How to migrate from traditional cache services? Existing applications that employ

local cache services (e.g., Memcached [163] or Redis [2]) can directly use Midas as a drop-

43

in replacement. Existing applications that employ distributed cache services (e.g., AWS

ElastiCache [1]) can use Midas as a fast local cache tier to reduce the overhead of accessing

remote cache.

3.6.2 Application Case Studies

We ported four applications to Midas. They cover a range of CPU usage, normal and soft

memory usage, data reconstruction cost, and Midas’s abstraction usage (see Table 3.1).

HDSearch [236] is an image search service based on content similarity. For each query,

a feature extraction backend transforms the input image into a feature vector via a DNN

(running on GPU), and then caches the result along with a hash of the image (using Memcached

for memoization). To port this application, we replaced Memcached with our soft hash table,

which only involves 36 LOC changes. It has 1.7 GiB normal memory usage and 13.6 GiB

peak soft memory usage. Reconstructing KV pairs is expensive (1244.2 µs per object) as it

requires re-performing transformation on GPU.

WiredTiger [169] is a NoSQL key-value storage engine used by MongoDB [168]. It

persists all key-value pairs in storage indexed via an in-memory B+ tree. It has a built-in

in-memory caching engine that caches the data of B+ tree’s internal nodes and leaf nodes to

reduce expensive storage I/Os. To port WiredTiger, we implement its caching engine using

Midas’s soft memory pool and pointer abstractions; we created a soft memory pool with a

reconstruction method that wraps WiredTiger’s existing code for handling cache misses, and

replaced ordinary B+ tree pointers with soft memory pointers allocated from the pool. This

only involves 332 LOC changes. With our port, WiredTiger has 3.7 GiB normal memory

usage and 21.3 GiB peak soft memory usage. Reconstructing a tree node object requires

reading its content from the disk and rebuilding the index, which takes 20.6 µs.

Storage Service is an NVMe-based block storage service similar to Reflex [124]. It

exposes a standard block I/O interface using RPC to support accessing 4KiB storage blocks

remotely. Its original design uses SPDK [3] to communicate with the storage block device,

44

which bypasses Linux’s page cache. To port it, we cache the block data using a soft array,

similar to the BlockCache design in Listing 3.2. This requires adding 29 LOC. With our

port, it uses 1.1 GiB normal memory and 20.4 GiB peak soft memory. Reconstructing an

array element requires a block I/O which takes 8.5 µs to finish.

SocialNet is a twitter-like latency-critical web service from DeathStarBench [80]. It is

built using 12 microservices with sophisticated fan-out patterns and call dependencies. Its

original design uses Memcached/Redis to cache users’ data and memoize results of certain

queries, and employs pools to cache TCP connections/RPC sessions. Since each microservice

has its own binary and runs within its own process, Midas treats SocialNet as 12 different

applications. To port it, for each microservice, we replace its Memcached/Redis usage with

Midas’s soft hash table and connection pool with Midas’s soft queue; this involves 175 LOC

changes. With our port, it uses 1.3 GiB normal memory and 12.2 GiB peak soft memory. It

takes 99.1–3227.7 µs to reconstruct an object depending on its type; for example, it takes

only 99.1 µs to re-establish an RPC session but requires 3227.7 µs to re-fetch a user’s post.

3.7 Evaluation

Setup. We conducted experiments on one server that equips a 48-core Intel Xeon Gold

6252 CPU and 128 GiB memory. The server ran Ubuntu 20.04 with Linux 5.14. In line with

prior work [207], we enable hyperthreading, but disable dynamic CPU frequency scaling,

transparent huge pages, and kernel mitigations for transient execution attacks. For interactive

services (e.g., SocialNet), we use a separate server to generate load, which connects to the

application server via a 10 GbE network. For all four applications, we generated requests

with Zipfian distribution, consistent with the study of real datacenter workloads [30].

Our evaluation seeks to answer the following questions:

1. Can Midas judiciously coordinate soft memory among applications to optimize overall

performance? (§3.7.1)

45

2. Can Midas quickly and reactively harvest available idle memory to improve utilization

and performance? (§3.7.2)

3. Can Midas quickly react to memory pressure to avoid out-of-memory killing while

maintaining good performance? (§3.7.3 and §3.7.4)

4. How does the data reconstruction cost of an application affect its performance? (§3.7.4)

3.7.1 Coordinating Soft Memory

In this experiment, we investigated whether Midas can judiciously coordinate soft memory

usage among applications to optimize overall performance.

We provisioned the server with 20 GiB idle memory and co-ran all four applications (§3.6)

using Midas. Initially, all applications start with the same amount of soft memory (i.e., 5

GiB), but Midas will dynamically adjust it. SocialNet has 12 loosely-coupled microservices

and we start by evenly splitting the 5 GiB budget across them. We measured the overall

throughput (defined as the average of all applications’ throughput normalized to their ideal

throughput) and the soft memory usage. We compared Midas with three different baselines.

The first baseline overprovisions soft memory for each application to cache all of possible soft

state. This leads to a 67.5 GiB soft memory usage that is impossible to achieve under 20 GiB

idle memory; thus, this represents the ideal throughput. The second baseline limits itself to

the 20 GiB soft memory budget and statically partitions it across four applications in an even

manner (i.e., each application gets 5 GiB soft memory). The third baseline is Cliffhanger

[52]. Similar to Midas, it dynamically coordinates soft memory among applications. However,

it adopts a different coordination policy of maximizing the global cache hit rate as opposed

to maximizing the overall performance utility. As the original version of Cliffhanger only

supports Memcached, we emulated Cliffhanger by implementing its coordination policy atop

Midas.

A good result for Midas would show that it quickly reaches an equilibrium by judiciously

coordinating soft memory usage among applications and achieves good overall throughput

46

0

50

100

O
ve
ra
ll

Th
ro
ug

hp
ut

(%
)

Midas
Overprovisioning
Static Provisioning
Cliffhanger

0

2

4

6

So
ci
al
Ne

t
P9

9
La
te
nc
y

(m
s)

Midas
Overprovisioning
Static Provisioning
Cliffhanger

0 5 10 15 20 25 30 35
Time (minutes)

0

10

20

M
em

or
y

Us
ag

e
(G
iB
)

Idle
Midas
Static Provisioning
Cliffhanger

1
Figure 3.6: When co-running four applications with 20 GiB idle memory, Midas dynamically

coordinates their soft memory budgets and reaches an equilibrium in around 20 minutes.

Overall, it harvests 19.6 GiB idle memory as soft memory and achieves 75.0% of the ideal

throughput (measured by overprovisioning soft memory for all applications regardless of the

20 GiB total budget constraint).

close to the ideal throughput (of the overprovisioning baseline). In contrast, the overall

throughput of the static provisioning baseline should be suboptimal, as it equally treats all

applications and fails to prioritize the soft memory need of applications that can benefit the

most. On the contrary, Cliffhanger does coordinate soft memory among applications, but it

optimizes for the overall cache hit rate which does not guarantee optimal overall performance

(§3.4.3.2). Therefore, we expect Cliffhanger to achieve overall throughput better than the

static baseline but worse than Midas.

47

Figure 3.6 shows the results. The top figure presents the overall throughput of four

systems normalized to the ideal value. The bottom figure presents soft memory usage; we

leave out the usage of the overprovisioning baseline as it is much higher (67.5 GiB) than

the amount of idle memory (20 GiB). Midas’s overall throughput converges in around 20

minutes and achieves 75.0% of the ideal throughput by harvesting 98.0% idle memory. It also

reduces SocialNet’s 99th percentile latency by 58.4% from 5.5ms to 2.3ms. In contrast, the

static provisioning baseline only achieves 48.7% of the ideal throughput and fails to improve

SocialNet’s tail latency due to the lack of coordination. It also uses 3.1 GiB less soft memory

than Midas as some microservices of SocialNet fail to fully use their statically-provisioned

soft memory budgets due to small soft memory footprints. Cliffhanger uses a similar amount

of soft memory to Midas. Due to its coordination policy, it converges on the overall cache hit

rate (not shown due to the space constraint) but oscillates in terms of the overall throughput.

Therefore, it only achieves 56.0% throughput on average.

Figure 3.7 presents the per-application soft memory usage of Midas and Cliffhanger. For

each application, the gray line represents the soft memory budget it receives, while the

colorful line represents the amount of soft memory it uses. Because of the difference in their

coordination policies, Midas and Cliffhanger make very different allocations of soft memory

between applications except for the storage server. For example, since it is time-consuming

to reconstruct HDSearch’s objects (as it involves recomputing the feature vectors of images),

Midas scales up HDSearch’s soft memory to cache more objects. However, since HDSearch

has a relatively low request skewness (compared to other applications) and consequently a

lower cache utility (in terms of hit rate), Cliffhanger deprioritizes it by scaling down its soft

memory, significantly impacting its performance (and therefore the overall performance).

In summary, the experiment demonstrates that Midas can efficiently utilize available

memory as soft memory and judiciously coordinate soft memory among applications, achieving

high overall performance close to the ideal one that requires 3.4× more memory.

48

0

5

10

Midas Cliffhanger

0

5

10

0

5

10

0 5 10 15 20 25 30 350

5

10

0 5 10 15 20 25 30 35
Time (minutes)

M
em

or
y
Us

ag
e
(G
iB
)

HDSearch
WiredTiger

Storage Server
SocialNet

Granted

1
Figure 3.7: Midas and Cliffhanger converge to different allocations of soft memory between

applications because of fundamental differences in their coordination policies.

3.7.2 Harvesting Available Idle Memory

In this experiment, we investigated whether Midas can quickly and reactively harvest addi-

tional idle memory—whenever it is available—to improve memory utilization and application

performance.

We ran each of the four applications using Midas and dynamically added idle memory to

the server. A good result for Midas would show that it quickly detects any new idle memory

and reactively grants it to the application as additional soft memory to improve performance.

49

10

15

20
Th

ro
ug

hp
ut

(K
O
PS

)
Throughput

0 5 10 15 20 25 30
Time (minutes)

0

5

10

M
em

or
y

Us
ag

e
(G

iB
)

Idle
Soft

2

4

6

P9
9
La

te
nc

y
(m

s)

P99 Latency

1

(a) SocialNet.

0
5

10
15

Th
ro
ug

hp
ut

(K
O
PS

) Tput

0 10 20 30 40 50
Time (minutes)

0
5

10
15

M
em

or
y

Us
ag

e
(G

iB
)

Idle
Soft

1

(b) HDSearch.

0.3

0.4

0.5

Th
ro
ug

hp
ut

(M
O
PS

) Tput

0.0 2.5 5.0 7.5 10.0 12.5 15.0
Time (minutes)

0
5

10
15

M
em

or
y

Us
ag

e
(G

iB
)

Idle
Soft

(c) WiredTiger.

0.3

0.4

0.5

Th
ro
ug

hp
ut

(M
O
PS

) Tput

0.0 2.5 5.0 7.5 10.0 12.5 15.0
Time (minutes)

0
5

10
15

M
em

or
y

Us
ag

e
(G

iB
)

Idle
Soft

1

(d) Storage server.

Figure 3.8: With Midas, applications effectively harvest additional idle memory by scaling

up their soft memory usage, improving both throughput and tail latency.

Additionally, we expect that the marginal benefit decreases as the application uses more soft

memory and caches more hot items.

Figure 3.8 presents the results of all four applications. We focus on SocialNet (Figure 3.8a)

for detailed analysis, as the other applications demonstrate similar trends, leading to the

same conclusion. Initially, the server has 2 GiB idle memory (the dark gray line). With

Midas, SocialNet fully utilizes them as soft memory (the blue line) and achieves 13 MOPS

throughput (the pink line). At 𝑡 = 5min, we added 4 GiB more idle memory to the server.

Midas immediately detects this change and rapidly ramps up its soft memory usage; it only

takes around 3 minutes for SocialNet to reach a new steady state. Benefiting from more

soft memory, SocialNet’s throughput increases by 46% from 13 MOPS to 19 MOPS, and

its 99th percentile latency decreases by 27% from 5.5ms to 4ms (the light brown line). At

𝑡 = 15min, we again added 4 GiB more idle memory. This time we observed a reduced

50

10

15

20
Th

ro
ug

hp
ut

(K
O
PS

)
Throughput

0 5 10 15 20
Time (minutes)

0

5

10

M
em

or
y

Us
ag

e
(G

iB
)

Idle
Soft

2

4

6

P9
9
La

te
nc

y
(m

s)

P99 Latency

1

(a) SocialNet.

0
5

10
15
20

Th
ro
ug

hp
ut

(K
O
PS

) Tput

0 5 10 15 20
Time (minutes)

0
5

10
15

M
em

or
y

Us
ag

e
(G

iB
)

Idle
Soft

1

(b) HDSearch.

0.3

0.4

0.5

Th
ro
ug

hp
ut

(M
O
PS

) Tput

0 5 10 15 20
Time (minutes)

0
5

10
15

M
em

or
y

Us
ag

e
(G

iB
)

Idle
Soft

(c) WiredTiger.

0.3

0.4

0.5

Th
ro
ug

hp
ut

(M
O
PS

) Tput

0 5 10 15 20
Time (minutes)

0
5

10
15

M
em

or
y

Us
ag

e
(G

iB
)

Idle
Soft

1

(d) Storage server.

Figure 3.9: Under moderate memory pressure (𝑡 = 5min-15min), Midas is able to reactively

scale down each application’s soft memory usage to avoid running out of memory with

moderate performance impact.

marginal benefit as SocialNet has already cached most hot items; it takes 15 minutes to reach

a new equilibrium (i.e., 8.5 GiB soft memory usage) and yields a 43% improvement of 99th

percentile latency (from 4ms to 2.3ms).

In summary, these results highlight Midas can quickly detect idle memory and reactively

scale up its soft memory usage to improve memory utilization and application performance.

3.7.3 Reacting to Memory Pressure

In this experiment, we investigated whether Midas can quickly react to memory pressure to

avoid out-of-memory killing and studied its impact on application performance.

Similar to §3.7.2, we ran each of the four applications using Midas, but dynamically

51

10

15

20
Th

ro
ug

hp
ut

(K
O
PS

)
Throughput

0.0 2.5 5.0 7.5 10.0 12.5 15.0
Time (minutes)

0

5

10

M
em

or
y

Us
ag

e
(G

iB
)

Idle
Soft

2

4

6

P9
9
La

te
nc

y
(m

s)

P99 Latency

1

(a) SocialNet.

0
5

10
15
20

Th
ro
ug

hp
ut

(K
O
PS

) Tput

0.0 2.5 5.0 7.5 10.0 12.5 15.0
Time (minutes)

0
5

10
15

M
em

or
y

Us
ag

e
(G

iB
)

Idle
Soft

1

(b) HDSearch.

0.3

0.4

0.5

Th
ro
ug

hp
ut

(M
O
PS

) Tput

0.0 2.5 5.0 7.5 10.0 12.5 15.0
Time (minutes)

0
5

10
15

M
em

or
y

Us
ag

e
(G

iB
)

Idle
Soft

(c) WiredTiger.

0.3

0.4

0.5

Th
ro
ug

hp
ut

(M
O
PS

) Tput

0.0 2.5 5.0 7.5 10.0 12.5 15.0
Time (minutes)

0
5

10
15

M
em

or
y

Us
ag

e
(G

iB
)

Idle
Soft

1

(d) Storage server.

Figure 3.10: Midas is able to avoid out-of-memory killing even under extreme memory

pressure (𝑡 = 5min and 𝑡 = 10min). The victim application experiences brief throughput

collapses and tail latency spikes but quickly recovers to normal once the pressure is finished.

decreased the server’s idle memory with a colocated memory antagonist. We measured the

impact on the victim application’s soft memory usage and performance.

Under moderate memory pressure, ideally, Midas’s global coordinator should reactively

unmap free soft memory segments while Midas’s evacuator should be able to replenish them

(by evicting cold objects and evacuating hot objects) to match the coordinator’s unmapping

rate. A good result for Midas would show that the victim application’s throughput degrades

gradually and mildly as the pressure persists, since Midas prioritizes the eviction of cold and

dead objects over hot objects.

Under intense memory pressure, we expect the coordinator to also unmap the used soft

memory segments as the evacuator cannot keep up with the high unmapping rate. In this

52

case, the victim application may experience a sudden throughput collapse due to the loss of

hot objects. However, a good result for Midas would show that the victim application is still

able to operate without experiencing any out-of-memory killing. In addition, immediately

after the pressure is finished, the victim application’s performance should be able to recover

to normal by reconstructing back hotter objects and evicting colder objects.

Figure 3.9 presents the results under moderate memory pressure. Similarly, We focus

on SocialNet (Figure 3.9a) for detailed performance analysis, and the other applications

demonstrate similar trends. Initially, the server has 10 GiB soft memory. The application

uses around 9.6 GiB of it as soft memory and achieves around 20 MOPS throughput and

2.3ms 99th percentile latency. At 𝑡 = 5min, the memory antagonist starts to allocate 8 GiB

more memory at a moderate rate of 0.8 GiB/min, resulting in the decrease of idle memory

until 𝑡 = 15min. As shown by the bottom figure, Midas is able to reactively scale down

SocialNet’s soft memory usage through reclamation to avoid running out of memory. As

shown by the top figure, SocialNet’s throughput and 99th percentile latency remain unaffected

in the beginning, as Midas prioritizes the reclamation of cold soft memory. After running

below 5 GiB idle memory, SocialNet experiences a mild throughput drop and latency increase,

as Midas starts to reclaim hotter soft memory.

Figure 3.10a presents the results under intense memory pressure. In this case, the

antagonist allocates memory as fast as Linux permits (7 GiB/s), making it an extremely

challenging case to handle. Despite the high rate, Midas is still able to avoid out-of-memory

killing by rapidly scaling down SocialNet’s soft memory usage. In this case, Midas has to

unmap the used soft memory segments, inevitably causing brief throughput collapses and

latency spikes (at 𝑡 = 5min and 𝑡 = 10min). However, once the memory pressure is finished,

SocialNet’s throughput and latency quickly recovers to the normal level, consistent with the

numbers reported in Figure 3.8a and 3.9a.

In summary, these results demonstrate that Midas can always quickly react to memory

pressure to avoid out-of-memory killing while maintaining good application performance

53

[read|write] Average Median P90

Latency (cycles) read/write read/write read/write

C++ unique_ptr 367 / 199 382 / 176 510 / 332

SoftUniquePtr 400 / 393 370 / 368 516 / 500

(a) Small objects (32 B).

[read|write] Average Median P90

Latency (Mcycles) read/write read/write read/write

C++ unique_ptr 0.97 / 1.39 0.94 / 1.36 0.99 / 1.37

SoftUniquePtr 1.77 / 1.15 1.75 / 1.14 1.77 / 1.18

(b) Large objects (4 MiB).

Table 3.2: Midas’ soft pointer only adds moderate dereferencing cost compared to C++’s

ordinary smart pointer.

whenever it is possible.

3.7.4 Design Drill-Down

Soft Pointer Dereference Cost. We measured the latency of dereferencing a soft pointer

and compared it to the latency of dereferencing an ordinary C++ unique_ptr, when the

pointer and data pointed to are originally in memory (i.e., not in CPU’s cache). Table 3.2

shows the results of small objects (32 B) and large objects (4 MiB).

For small objects that fit into CPU’s cache line (Table 3.2a), Midas is able to deliver

comparable read latency as its extra object copying overhead is negligible. Midas achieves

higher write latency (< 200 cycles) as it has to additionally update the metadata in the

object header.

For large objects (Table 3.2b), Midas achieves ≈800K cycles (82%) higher read latency

54

Live Object Ratio 10% 30% 50% 70% 90%

Reclamation Cooperative 312.5 243.1 173.6 104.2 34.7

Tput. (MiB/s) Direct 8268.5

Table 3.3: Midas’s cooperative reclamation reclaims memory at the throughput of 35 MiB/s-

313 MiB/s, depending on the live object ratio of soft memory. Midas’s direct reclamation

trades off reclamation quality for faster speed; it achieves a throughput of 8269 MiB/s,

exceeding the rate at which the Linux kernel can allocate memory.

since now the additional object copying happens in memory (rather than in CPU’s cache).

However, Midas achieves lower write latency than unique_ptr thanks to its optimized memory

copy implementation.

Memory Reclamation Speed. We measured Midas’s memory reclamation throughput

using a synthetic microbenchmark. Under moderate memory pressure, the coordinator

reclaims memory with the cooperation from the runtime (Figure 3.9a); we refer to it as

cooperative reclamation. Under severe memory pressure, the coordinator directly unmaps soft

memory segments (Figure 3.10a); we refer to it as direct reclamation.

Table 3.3 presents the throughput of both reclamation methods. The speed of cooperative

reclamation depends on the live object ratio of soft memory; the lower the live ratio, the

easier to make room by compacting hot objects, thereby yielding faster reclamation speed.

It achieves a throughput of 313 MiB/s under 10% live ratio and 35 MiB/s under 90% live

ratio. To handle intense memory pressure, direct reclamation trades off reclamation quality

for faster reclamation speed; it achieves a significantly higher throughput of 8269 MiB/s,

unrelated to the live object ratio. This exceeds the rate at which the Linux kernel can allocate

memory (7-8 GiB/s measured in our machine), therefore Midas can always safely harvest

server’s idle memory without leading to OOM killing.

55

Performance Impact of Data Reconstruction. To examine the performance impact of

using soft memory, we conducted an experiment using a synthetic application; we measured

its performance with varying data reconstruction costs under different soft memory ratios

(i.e., the ratio of cached soft state). Intuitively, the cheaper the data reconstruction, the

lighter the performance impact it incurs.

0 1000 2000 3000 4000
Reconstruction Cost (μs/object)

0
25
50
75

100

Effi
ci
en

cy
(%

)

20% Soft Mem. 50% Soft Mem. 80% Soft Mem.

Figure 3.11: Midas’s efficiency (𝑦-axis) as a function of data reconstruction cost normalized to

the ideal throughput of caching all soft state. Midas’s efficiency increases as the reconstruction

cost decreases, delivering >80% efficiency for applications with <1024 µs/object reconstruction

cost when caching 80% of soft state.

Figure 3.11 shows the result. When the soft memory ratio is 20%, Midas is able to deliver

>80% efficiency when the reconstruction cost is <128 µs/object. When the soft memory ratio

is higher, Midas can tolerate a higher cost as reconstruction happens less frequently; thus, it

is able to provide >80% efficiency for applications with <256 µs/object reconstruction cost

under 50% memory ratio and <1024 µs/object under 80% memory. This suggests that Midas

can still achieve high performance with moderate data reconstruction costs.

3.8 Related Work

Resource Harvesting and Deflation. Datacenters today suffer from low resource uti-

lization [16, 78, 253]. To make use of vacant resources, major cloud providers now offer

spot VMs [15, 87, 164], which run at a low priority and get evicted under resource pressure.

56

Others propose new VM designs to gracefully adjust VMs’ resource usage. Harvest VM is a

new type of VM that grows and shrinks according to the amount of unallocated resources

at its underlying server, including CPU [16], memory [78], and storage [212]. Similarly,

deflatable VM [225] codesigns the hypervisor, VM, and the application to reclaim resources

from applications under memory pressure. These approaches focus on VMs only, and take

minutes to re-configure a VM to release resources.

Resource Disaggregation and Remote Memory. Resource disaggregation and remote

memory systems are another trending approach for improving utilization, thanks to faster

datacenter networking [81, 137, 162]. Their key idea is to break the server hardware boundary

with a fast network interconnection to exploit stranded resources on a remote server. Various

systems have established the viability of disaggregated storage [102, 124], accelerators [184,

254], and memory [12, 89, 224, 260]. While some provide remote memory transparently via

OS paging, it is also possible to use a library-based approach that modifies the application to

bypass the OS. AIFM [216] proposes remote-able data structures to build remote-memory-

aware applications. Semeru [258], Mako [152], and MemLiner [259] co-design the JVM with

the kernel to offer transparent remote memory for Java programs. Like Midas, these systems

adopt customized pointer formats for their remote-able objects. Unlike Midas, they do not

consider the unmap-and-reconstruct semantics and suffer from swapping or out-of-memory

killing under intense memory pressure. In Chapters 4 and 5, we will explore remote memory

systems in greater detail, providing comprehensive performance analyses and comparisons to

highlight these differences.

Cache Services. Improving cache performance is important to datacenter applications,

especially in a shared setting [31, 206]. Fairride [206] and RobinHood [31] provide fair and

latency-aware cache-sharing policies, and CliffHanger [52] uses a hill climbing method to

incrementally optimize cache allocation across applications. Memshare [53] further improves

the cache partitioning with a log-structured allocator for higher hit rates. However, existing

57

cache service systems still rely on static memory allocation, and cannot efficiently use idle

memory. CacheLib [30] provides a library-based approach for caching, but it again relies on

static provisioning and lacks global coordination, hindering its ability to manage memory

across multiple applications.

Cooperative Memory Revocation. In parallel with our work, researchers are also

exploring the benefits of soft state by managing it at the application level [77]. Midas instead

uses kernel coordination and unmap-and-reconstruct semantics, which enables it to reclaim

pages even if applications do not cooperate or are slow to respond. This makes it possible to

react to severe memory pressure without running out of memory.

3.9 Summary

In this chapter, we presented Midas, a system that efficiently and safely harvests idle memory

to store the soft state that is most beneficial to each application, improving both memory

utilization and application performance. Midas provides familiar high-level programming

abstractions and maximizes overall performance through coordination between an application-

integrated runtime and a global coordinator. Our evaluation demonstrates that Midas is

able to effectively use soft memory to achieve near-optimal performance and can respond to

extreme memory pressure fast enough to avoid running out of memory.

While the main focus of Midas is harvesting local memory within a server, the soft memory

abstraction is not restricted by the physical server boundaries. A promising direction for

future work (see §7.1) is to extend Midas across multiple servers, which allows applications

to benefit even more by harvesting idle memory in the entire cluster. However, to use

Midas across servers, developers must first rewrite the single-machine applications into their

distributed variants, which requires significant programming effort. In the next chapter, we

explore an alternative approach: leveraging the OS kernel’s paging and swap mechanisms,

58

but redesigning them for high performance, enabling applications to harness idle memory on

remote servers efficiently without code changes.

59

CHAPTER 4

Hermit: Transparent and Fast Remote Memory

Harvesting

In Chapter 3, we explored the use of Midas to exploit soft state semantics for local memory

harvesting. While Midas offers superior efficiency and flexibility, it is limited by the physical

boundaries of a single machine, preventing applications from scaling beyond a single server.

However, the large number of servers within a cluster, together with their potentially

imbalanced loads, suggests significant untapped opportunities to aggregate idle resources

across the cluster and use them to scale applications.

In this chapter, we revisit the second insight discussed in Section 1.2, that we can achieve

much higher aggregated resource availability and capacity if combining idle resources across

servers. To mitigate the potentially high programming efforts to port a single-machine

application to its distributed alternative, we piggyback on existing OS kernel swap systems,

which allow unmodified applications to transparently swap to idle memory on another server

to scale out. To overcome the high kernel software overheads, we rethink the OS kernel

swap system in the era of fast datacenter network, and redesign it with a novel technique

called adaptive, feedback-directed asynchrony. These efforts result in Hermit, a new kernel

swap system that takes non-urgent but time-consuming operations (e.g., swap-out, cgroup

charge, I/O deduplication, etc.) off the fault-handling path and executes them asynchronously.

Additionally, Hermit collects runtime feedback and uses it to direct how asynchrony should be

performed—i.e., whether asynchronous operations should be enabled, the level of asynchrony,

and how asynchronous operations should be scheduled. These contributions enable Hermit

60

to reduce the tail latency by three orders of magnitude and also substantial throughput

improvement for real datacenter applications without changing a single line of code.

4.1 Introduction

Techniques enabling datacenter applications to use remote memory [12, 36, 81, 89, 129, 158,

216, 224, 258] have gained traction due to their potential to break servers’ memory capacity

wall, thereby significantly improving datacenters’ resource utilization. Compared to clean-

slate techniques [36, 216] that provide new primitives for developers to efficiently manage

remote memory, swap-based techniques [12, 89, 161, 224, 258, 259] that piggyback on existing

paging/swap mechanisms in the OS kernel are more practical as they offer transparency,

allowing legacy code to run as is on a far-memory system.

The main drawback of swap-based remote access is the overhead incurred by the kernel’s

paging system. For example, when running Memcached using Fastswap [12], the current

state-of-the-art swapping system for Linux, a remote access takes an average of 14 µs, of

which only 9 µs are spent on network (RDMA) operations—the software-induced overhead

is above 50% ! This large fault-handling overhead significantly increases operation latency,

precluding the use of remote memory with latency-critical applications.

In addition, long remote-access time can further block subsequent instructions depen-

dent on these accesses, leading to substantial reductions in application throughput. For

example, the performance of garbage collection in a managed language runtime is highly

sensitive to memory access latency due to its pointer-chasing nature. Reductions in GC

performance can lead to delayed object creations, dramatically reducing the application’s

overall throughput [152, 258, 259].

The underlying reason for such high overhead is a mismatch in the design of today’s

swap-based paging systems, which originally targeted slow, disk-based storage, and modern

datacenter networks (e.g., 100-400 GbE) that can deliver pages much faster. For example,

61

through profiling, we reveal the following performance bottlenecks that persist in Linux

(§4.2):

• Page reclamation blocks the critical path: To make room to fault in new pages, the

OS must reclaim memory by swapping out cold pages. Linux is designed to handle this

asynchronously by swapping out pages in a separate thread. However, when Linux fails to

keep up with the demand for new pages, the page fault handler must block and wait for

reclamation to finish.

• Duplication checks are too conservative: Linux is designed to never make duplicate

I/O requests for the same page. Although this occasionally prevents wasted bandwidth,

it comes at a high cost in terms of synchronization overhead, such as during swap cache

lookup and insertion.

• Opportunities for batching are not exploited: Batching can be an effective opti-

mization when it does not harm page fault handling latency. For example, when Linux

performs page reclamation, it first selects a set of victim pages and then swaps out each

page individually. A better strategy would be to process victim pages in batches, reducing

the cost of TLB shootdowns, I/O writes, and cgroup accounting.

State of the Art. The conventional wisdom is that software overheads can be overcome

by bypassing the kernel [202, 216, 278]. This approach typically requires application-level

modifications or the use of custom APIs, making it impractical to deploy transparently across

all applications. Our aim is to answer the following question instead: Can we eliminate

performance bottlenecks in the kernel directly, allowing the benefits of fast remote memory to

be exposed to all applications transparently?

Recent work, such as Fastswap [12] and InfiniSwap [89], has made some progress in

optimizing the kernel’s swap subsystem, such as the use of RDMA to deliver remote pages

more efficiently. Fastswap, the current state-of-the-art, also modifies the Linux Kernel to

offload page reclamation to a dedicated core and executes it asynchronously. This increases

62

swap-out efficiency, and reduces the time that a page fault handler must block waiting for

reclamation to finish. However, Fastswap leaves other opportunities for asynchrony on the

table. In addition, a single, dedicated core is insufficient to accommodate changes in demand

for swap-out throughput under time-varying memory pressure, limiting the conditions where

Fastswap can perform well (§4.2).

Insights. This work builds on three insights, all centering around asynchrony. First,

asynchrony can be used to reduce the latency of page fault handling. For example, during a

page fault, the kernel first looks for the page in the swap cache. If the page is present, it will

be mapped at the faulting address and the kernel does not need to issue a fetch. However,

this check is protected by a lock, which incurs a non-trivial overhead. Instead, fetching a page

via RDMA, even if the page is already in the swap cache, is extremely fast: its only penalty

is slightly wasted network bandwidth (i.e., bandwidth is rarely saturated). By always issuing

the fetch asynchronously and overlapping it with the check, we can reduce the fault-handling

latency.

Second, only page faults handlings are latency critical, so it is safe to aggressively optimize

all other operations for throughput via batching. For instance, when TLB shootdowns

are batched, it reduces the number of interrupts that have to be sent across cores. As

another example, RDMA writes of multiple swapped-out dirty pages can be batched into a

single transfer. These opportunities are only possible because such operations are conducted

asynchronously; otherwise, batching would delay critical swap-in operations.

Third, to achieve optimal performance, the use of asynchrony (e.g., number of cores) must

be adjusted dynamically. For example, it is critical that swap-out throughput is perfectly

balanced with swap-in throughput. If swap-out throughput is too low, the page fault handler

will block and delay the application. If it is too high, it will leave a substantial portion of

local memory underutilized, impacting application performance. This is especially challenging

because the swapping rate depends on the workload, its inputs, and even the different phases

63

within its execution.

Hermit. This chapter presents Hermit, a new paging/swap system that exploits these

(previously-unknown) opportunities for asynchrony. Hermit employs feedback-directed asyn-

chrony as the major principle in the paging system design, simultaneously enabling full

code transparency (i.e., any legacy code can run as is), low remote access latency, and high

application throughput. Hermit employs different types of asynchrony to tackle the three

bottlenecks (i.e., blocked swap-ins, conservative checks, lack of batching), as elaborated

below:

First, page reclamation is moved into a set of reclaim threads, which eagerly evict (least-

recently used) pages and aggressively batch expensive operations involved in each swap-out

(§4.3.2). In particular, Hermit batches page unmapping, TLB shootdown, RDMA writes,

polling, and cgroup uncharging in swap-out threads, reducing the amounts of computation

involved in swap-outs and improving their throughput (§4.3.4).

Second, Hermit opportunistically bypasses the swap-in duplication check and issues I/O

read requests eagerly, delaying such checks to the synchronous PTE update stage. Since

only one thread can successfully update the PTE, all other competing threads will eventually

release their duplicate pages, guaranteeing safety (§4.3.3).

Third, inspired by optimistic locking [134], Hermit makes page I/O fully asynchronous

during swap-in to further reduce latency. We split the swap-in procedure into two components:

one that can still successfully run and is reversible even if there are concurrent updates,

and a second that may either abort or create irreversible side effects in the presence of

concurrent updates. Hermit moves the first component out of the critical section to overlap

it with the page I/O (details are in Figure 4.4). Hermit checks the validity before the critical

section finishes (i.e., whether concurrent updates have occurred) and if they have, reverts

the speculatively executed operations.

Finally, we create a feedback control system for each type of asynchronous operation, using

64

I/O Read

Issue
Prefetch Req. Update

MetadataB
eg

in Lookup
Swap Cache

Hit

Miss Page
Reclamation

Set
PTE

Wait Page
Conflict

En
d

Fastswap offloads reclamation to a dedicated core
Only write back dirty pages

Stage ①: 0.6 μs Stage ②: 2.8 μs Stage ③: 0.4 μs Stage ⑤: 9.1 μs Stage ⑥: 0.9 μsStage ④: 1180 μs

Otherwise

Enough free memory

Unmap
PTE

TLB
Shootdown

I/O
Write

Release Page
& Swap Cache

cgroup
UnchargeB

eg
in

En
d

Deduplicate
Swap-ins

cgroup
Accounting

0.2 μs

Until enough free memory

Figure 4.1: The life cycle of a remote memory page fault in Linux swap.

execution profiles to adjust whether and how asynchrony should be applied. In particular, we

use (1) page turnaround (i.e., time between a page’s swap-in and previous swap-out), (2) page-

in/-reclamation throughput, and (3) conflict rates (i.e., how often concurrent updates occur),

as metrics to adjust our asynchrony in dealing with reclamation timing, reclamation intensity,

eager swap-in, conservative checks, respectively. Hermit profiles and collects these signals

throughout the execution to dynamically adapt to the application’s changing behaviors.

Results. Hermit was implemented in Linux 5.14. We evaluated Hermit with a set of

real-world applications including both latency-critical (Memcached, SocialNet, and Gdnsd)

and batch-processing applications (Apache Spark, XGBoost, and Apache Cassandra). Our

evaluation on Memcached demonstrates that Hermit outperforms Fastswap [12] by 99.7% in

latency, reducing the 99th percentile latency from 36 ms to 91 µs. For batch processing

applications, Hermit improves throughput by up to 1.87× with a geometric mean of 1.24×.

Hermit also scales much better with the number of cores than Fastswap. These results

demonstrate that low tail latency and high throughput can be achieved at the same time

without bypassing kernel, making Hermit a practical solution for enabling remote memory.

Hermit is available at https://github.com/uclasystem/hermit.

65

https://github.com/uclasystem/hermit

4.2 Understanding Existing Swap Systems

Section 2.2.1 has provided a high-level overview of the kernel swap system. In this section,

we delve deeper by conducting a detailed performance study and breaking down the costs

associated with each stage when swapping in a page in the context of remote memory.

Following this analysis, we examine Memcached [163], a widely-used cloud cache service, to

identify and analyze the root causes of kernel swap inefficiencies in real-world scenarios.

4.2.1 The Life Cycle of Remote Memory Access

The legacy design of Linux swap imposes high overheads on accessing remote memory. To

better understand the root cause of its inefficiencies, we conducted a performance study by

running Memcached on Fastswap [12] (the state-of-the-art swap system). Figure 4.1 shows

the stages of a remote memory access and breaks down their costs. We discuss each stage in

more detail as follows:

1○ Lookup swap cache. The swap cache serves as a centralized component that prevents

race conditions. It tracks the information of swapped-in pages and ongoing swap-out requests.

First, the faulting page may have been fetched by another process or the OS prefetcher. By

looking up the swap cache, Linux detects this and jumps to stage 6○. Second, it is possible

that the faulting page is being swapped out by another process. In this case, naïvely fetching

the remote page will see the stale copy. With the swap cache, Linux detects the race and

cancels the ongoing swap-out. Looking up the swap cache takes an average of 0.6 µs.

2○ Deduplicate swap-ins. At the same time, there can be multiple threads swapping in

the same page. Linux guarantees that only one thread can succeed by synchronizing with

lock primitives. The remaining threads will be busy waiting until the page gets fetched. This

design saves I/O bandwidth but impacts latency and hurts scalability. This stage takes an

average of 2.8 µs.

66

3○ cgroup accounting. Before fetching the page, Linux must ensure that the current

process has sufficient free memory by performing cgroup accounting. For the lucky process

with enough memory, it jumps to stage 5○ directly. The accounting stage takes an average

of 0.4 µs. Otherwise, Linux must go through stage 4○ to reclaim pages to make room, as

elaborated below.

4○ Direct page reclamation. Linux iteratively reclaims pages until the size of the

available local memory is above the low-water mark. Linux swaps out a single page for each

iteration. Swap-out is expensive as it involves operations such as TLB shootdown, PTE

unmapping, etc. This stage exists only when the local memory runs low, but it is also the

longest one that takes an average of 1180 µs. To reduce direct reclamation, Fastswap performs

this stage asynchronously with a dedicated core.

5○ Fetch and prefetch page. Linux issues an I/O request to fetch the faulted page.

Meanwhile, it may issue multiple prefetching requests. This stage takes an average of 9.1 µs.

6○ Update metadata. Finally, Linux updates kernel metadata, including page table

entries (PTEs), swap entries, and page reverse mapping (rmap). This stage takes 0.9 µs.

4.2.2 Root Causes of Inefficiencies

To understand the bottleneck imposed by Fastswap’s single, dedicated reclamation core, we

ran several experiments with Memcached. Figure 4.2 shows Memcached’s 99th percentile

latency with respect to its offered load when running with 70% local memory. The baseline for

comparison is Memcached running locally (100% local memory without swapping), which is the

rightmost curve and achieves >4.4 Mops load throughput with good tail latency. Memcached

on Fastswap (the blue curve), however, can only offer ≈1 Mops load before the dedicated core

gets saturated and its latency increases dramatically. The reason is that Fastswap’s single

67

1 2 3 4
Offered load (Mops)

0
200
400
600
800

1000

99
%

La
te

nc
y

(μ
s) Fastswap

Fastswap∗
-2 cores
Fastswap∗
-4 cores
Fastswap∗
-8 cores
All local

Figure 4.2: 99th percentile latency with respect to offered load of Memcached on Fastswap

under 70% local memory.

dedicated core cannot keep up with the increasing demand for page reclamation. We then

modified Fastswap’s original implementation to offload page reclamation onto multiple cores,

denoted as Fastswap∗ in the figure, as a naïve strawman approach.

1 2
Offered load (Mops)

0

25

50

75

D
ire

ct
Re

cl
ai

m
R

at
io

(%
) Fastswap

Fastswap∗
-2 cores
Fastswap∗
-4 cores

Figure 4.3: Direct page reclamation ratio of Memcached on Fastswap under 70% local memory.

Using more dedicated cores can indeed help reduce the direct reclamation ratio, as shown

in Figure 4.3. With 4 dedicated cores, Fastswap∗ is able to eliminate direct page reclamation,

thus providing the highest throughput among all Fastswap variants. However, Fastswap

uses static core provisioning, which is insufficient in practice due to the phased behaviors

and shifts in load that occur within datacenter applications. First, the number of required

dedicated cores depends on the application’s working set, the available local memory, and

the swap-in intensity, making it impossible for a statically determined number to work

68

universally for different applications or even different phases of the same application. Second,

over-provisioning dedicated cores does not always lead to greater end-to-end performance;

in many cases, using more cores only shifts the bottleneck from page reclamation to the

application itself, as more dedicated cores for reclamation imply fewer available cores for

application threads. As shown in Figure 4.2, increasing the number of dedicated cores in

Fastswap from 1 to 4 (Fastswap∗-4 cores) improves performance, but further allocating

cores degrades performance (Fastswap∗-8 cores). Furthermore, although Fastswap∗-4 cores

eliminates direct page reclamation (i.e., reducing latency), it still loses ∼45% performance

(i.e., reducing throughput). The performance loss is due to three major kinds of inefficiencies

induced by Linux swap, as elaborated below.

Swap-out blocks swap-in. As explained earlier, Memcached experiences high memory

access latency when running short of local memory, as it has to reclaim pages. Page

reclamation is expensive as it requires finding victim pages and unmapping them, followed by

a number of expensive operations for consistency such as TLB shootdown. This significantly

impacts its tail latency, leading to violations of the service-level agreement (SLA).

Fastswap tackles this issue by allocating a dedicated core to reclaim pages asynchronously

in the background. However, as discussed earlier, it is nearly impossible to statically identify

the optimal number of cores due to load variability.

Unoptimized for fast I/O. Linux swap was designed for slow secondary storage like

hard-disk drives whose performance is two to three orders of magnitude lower than today’s

remote memory in both bandwidth and latency. Since disk bandwidth is often the bottleneck,

Linux applies aggressive optimizations in its page fault handling path to reduce I/O traffic

(stage 2○). While they were effective in the era of slow disks, these optimizations become

irrelevant in the context of remote memory whose bandwidth is close to the bandwidth of main

memory. Even worse, the outdated optimization generates an adversarial performance impact;

it prolongs remote memory access latency, hurting scalability (e.g., due to synchronization).

69

For latency-critical applications like Memcached, prolonged remote memory accesses can

significantly increase the time for serving incoming requests, imposing super-linear effects

on tail latency. Modeled by queueing theory [66], for instance, 10% longer service time can

potentially double the 99th percentile latency, leading to vast SLA violations.

Additionally, since the disk latency (ms-scale) is significantly higher than the CPU time in

page fault handling (µs-scale), Linux adopts a serial-execution model for simplicity. As shown

in Figure 4.1, the I/O read stage is executed separately from other stages; after issuing the

I/O read request, Linux either busy waits for the I/O response or re-schedules the faulting

thread (which hurts latency of fast I/O requests), relinquishing the opportunity of overlapping

the waiting period with other stages.

Unoptimized for CPU overhead. Linux swap is a mechanism aimed at avoiding OOM

killing. Inherently, treating swapping as a rare event, it was designed to optimize for

responsiveness, not for CPU efficiency. For example, during page reclamation (stage 4○),

Linux swaps out only one page at a time, under the assumption that by releasing the space

more timely it can unblock the OOM process sooner. Unfortunately, this amplifies the CPU

usage as it must invoke expensive operations such as TLB shootdown for every reclaimed page.

While overhead is acceptable when swapping is rare, it grows significantly in the scenario of

remote memory (which is swapping-intensive). In the case of Memcached, 12.6% of the total

CPU time is spent on reclaiming pages, not on application tasks. To make matters worse,

Linux swap heavily relies on locks to synchronize page reclamation and scales poorly. Hence,

the overhead will further increase with the number of concurrent swapping operations.

Key takeaway. Linux swap imposes high overheads to remote memory access primarily

due to the above three issues. Fastswap, the state-of-the-art swap system, partially tackles the

first issue, but neglects the last two. For the first issue, Fastswap uses statically provisioned

cores to run swap-out tasks; as shown in Figure 4.2, static core provisioning cannot adapt to

dynamic load changes, leading to either insufficient or wasted CPU resources.

70

4.3 Hermit Design

4.3.1 Design Overview

To overcome the aforementioned inefficiencies, we developed Hermit, a new swap system

based on the principle of feedback-directed asynchrony. Our key insight is that asynchrony

should be used aggressively (to overlap nonurgent and urgent operations to reduce latency),

but this must be done in a controlled manner—whenever asynchrony cannot bring benefits,

we should switch back to the conventional synchronous design. Figure 4.4 illustrates Hermit’s

design.

First, Hermit optimizes tail latency of accessing remote memory by moving page reclama-

tion from the critical path into the background (§4.3.2). Instead of following the design of

Fastswap, which statically reserves a certain number of dedicated cores, Hermit relies on a

reclaim scheduler to dynamically schedule reclaim threads. The scheduler leverages feedback

from cgroup counters to determine the right timing and the appropriate number of cores for

reclamation.

Second, the swap-in path of Hermit was designed with fast remote memory in mind

(§4.3.3)—for remote memory, it is reasonable to trade off network usage for end-to-end

performance as modern datacenter network offers abundant bandwidth (100-400 Gbps). In

the common case, Hermit detects idle network bandwidth and opportunistically bypasses

swap-in duplication checks (stage 2○ in §4.2) to improve scalability and reduce latency. This

bypassing has a consequence: in the (rare) case that multiple threads are fetching the same

page at the same time, they will all transfer the same page over the network. Note that

this will not lead to correctness issues because only one copy will be mapped by the PTE

in the last stage, and any other requests will abort and release their page. However, it may

potentially waste some network bandwidth when duplicate pages are requested. Therefore,

instead of bypassing blindly, we use the conflict rate (in the last stage) as a control signal to

determine whether it is beneficial to enable bypassing. To further optimize the critical-path

71

latency, Hermit also overlaps the I/O read stage with other swap-in operations (e.g., cgroup

accounting, metadata updating, etc.).

Finally, we structured Hermit to operate in a swap-intensive environment to match the

reality of using remote memory (§4.3.4). Hermit carefully optimizes the CPU usage of page

reclamation so that more CPU resources are available for applications. Enabled by Hermit’s

reclaim scheduler, which reduces the “urgency” of reclamation tasks, Hermit opportunistically

handles reclamation requests in batches to amortize the overhead. In addition, Hermit

bypasses the expensive reverse mapping operation when swapping out a private page (which is

common). As a result, Hermit not only reduces the remote access latency but also significantly

improves the application’s throughput.

I/O Read

Miss

Reclaim
Scheduler

Issue
Prefetch Req.

cgroup
Accounting

Update
Metadata

Use the reclaim scheduler for asynchronous reclamation
Skip these steps unless Hermit detects a high conflict rate

End

Check &
Set PTE

Rollback

Conflict

Success

Deduplicate
Swap-ins

Wait Page

Begin

Lookup
Swap Cache

Hit Conflict

Stage ①: 0.6 μs Stage ②: 9.1 μs

0.4 μs 0.2 μs 0.4 μs

Stage ③: 0.5 μs

Figure 4.4: The life cycle of a remote memory page fault in Hermit.

4.3.2 Reclaim Scheduling

In Linux swap, the direct page reclamation in the swap-in path significantly impacts the tail

latency of accessing the remote memory. To reduce tail latency, Hermit moves reclamation

off the critical path into background threads; the reclaim scheduler monitors the free memory

size and proactively starts reclamation before memory exhaustion. The scheduler uses the

72

application’s swap throughput as a feedback signal to auto-tune the number of reclaim

threads.

Designing such a scheduler is challenging because it must determine both the right timing

and the appropriate amount of CPU resources for reclamation. (1) As for the timing, if

the scheduler starts reclamation too early, a substantial portion of local memory would be

underutilized, impacting application performance; on the flip side, if the scheduler starts

reclamation too late, the application would exhaust the local memory and suffer from direct

reclamation. (2) As for CPU resources, under-provisioning cores for reclamation (i.e., the

case of Fastswap) make it unable to keep up with the local memory consumption rate, leading

to memory exhaustion, while over-provisioning cores is also undesired as it contends with the

application and reduces its performance.

Dynamically
adjusted

Local Memory Usage

C

or
es

 fo
r

R
ec

la
m

at
io

n Max # Cores

High-Water
Mark

Limit0
1

Low-Water
Mark

Figure 4.5: Adaptive reclaim scheduler.

Figure 4.4 shows the design of the reclaim scheduler, which leverages counters from cgroup

to schedule reclamation. Since the timing for reclamation is critical to performance, our

reclaim scheduler has to be very reactive to free memory size changes (in µs-level). Instead of

using a dedicated core to poll the memory usage which waste CPU cycles, Hermit adopts

a decentralized reclaim scheduler; it inlines the scheduler code into the cgroup charging, an

indispensable step for swap-ins. This design enables us to discover any sudden change in the

free memory size with only a few CPU cycles.

Hermit’s scheduling policy follows the conventional wisdom of random early detection

73

[72] to gradually increase its asynchronous reclaim throughput. Specifically, Hermit starts

asynchronous reclamation when application’s memory budget is running low, but Hermit will

only enable a small number of reclaim threads first and gradually increase the number of

reclaim threads after observing constantly increasing memory usage. The intention of the

design is to handle a burst of swap-ins within the memory limit with as few reclaim threads

as possible, and thus minimizing asynchronous reclamation’s interference to the application.

On the other hand, when the application is about to run out of memory, Hermit must

unleash the full power of asynchronous reclaim threads to match the reclaim throughput

to swap-in throughput to avoid direct reclamation, offering the application maximum swap

performance. Figure 4.5 depicts Hermit’s adaptive scheduling policy, which determines the

number of cores for page reclamation given the application’s current local memory usage. The

curve can be divided into three phases, marked by the low-water mark and the high-water

mark to differentiate the urgency of asynchronous reclamation.

When the application does not swap intensively and its local memory usage is below the

low-water mark, the number of reclamation cores is zero, indicating that the asynchronous

page reclamation is disabled now to let application threads have all CPU cores. When the

application’s local memory usage is between the low-water mark and the high-water mark, it

indicates that the application is under memory pressure, and the scheduler will assign one

core for asynchronous reclamation to relieve the memory pressure with minimal compute to

minimize its interference to application’s threads.

Finally, when the application hits the high-water mark, it indicates that the application

is about to run out of memory. Page reclamation is an urgent task now to prevent the

application from triggering direct page reclamation. As such, the reclaim scheduler must

assign more cores for reclamation to match the reclaim throughput with application’s swap-

in throughput. As Figure 4.5 shows, during this phase, the number of cores assigned for

reclamation is proportional to the local memory usage, reaching the maximum value when

the local memory usage equals the memory limit.

74

Hermit leverages the kernel’s runtime statistics to auto-tune the low and high memory

watermarks, as elaborated below.

High memory watermark. Hermit dynamically adjusts the high memory watermark

based on the application’s current swap intensity. We define swap intensity as the overall

swap-in throughput divided by the per-core page reclamation throughput, representing the

number of cores needed for reclamation to match the swap-in speed. Intuitively, when

the swap intensity increases, we should lower the high-water mark to start ramping up

reclamation earlier; and when the swap intensity decreases, we should raise the high-water

mark accordingly. Hermit sets the high-water mark as MEM_LIMIT −𝛼 ·SWAP_INTENSITY ,

where 𝛼 = 128 works well in practice.

Low memory watermark. Initially, Hermit sets the low-water mark to be the same

as the high-water mark. Then it gradually probes its optimal value based on the average

page turnaround time (APT), defined as the average duration for swapped-out pages to

remain untouched. When APT does not increase, Hermit attempts to lower the low-water

mark, as now it can potentially start reclamation earlier without impacting the application

performance. However, when APT increases, Hermit immediately raises back the low-water

mark to revert the negative impact on the application performance.

4.3.3 Adapt Swap-in to Fast Remote Memory

As shown in Figure 4.4, Hermit re-architects the swap-in path for the fast remote memory

with two main innovations.

Eager swap-in. Hermit opportunistically bypasses the swap-in duplication check to min-

imize latency. As such, it is now possible that multiple threads issue swap-in requests for

the same page. To ensure that only one of them will succeed, Hermit synchronizes them

75

in the final stage (updating PTE) using a fine-grained lock. All other failed threads will

release their swapped-in pages—CPU cycles consumed by them are wasted and considered as

penalty. Hermit collects the conflict rate and the penalty as feedback to reassess whether it

is still beneficial to enable eager swap-in and disable it if it impacts performance.

Asynchronous I/O. Hermit further shortens the critical path of swap-ins by overlapping

the I/O read with other operations, for example, cgroup charging. If later the cgroup check

shows no memory, Hermit discards the I/O read response and updates the failure counter.

Hermit falls back into synchronous I/O when the failure ratio is high. This happens very

rarely in practice thanks to Hermit’s asynchronous reclamation (§4.3.2).

4.3.4 CPU-Efficient Page Reclamation

Unmap
PTE

Unmap
PTE …

Batched I/O Write

Release Page
& Swap Cache

Release Page
& Swap Cache…

Batched
cgroup
Uncharge

Batched
TLB

Shootdown

Begin End

Eliminate reverse mapping overhead for private pages
Batch operations to save compute
Only write back dirty pages

Figure 4.6: Hermit’s asynchronous page reclamation path.

As shown in Figure 4.6, Hermit carefully optimizes the CPU overheads of page reclamation

to minimize its performance impact to applications.

Batched reclamation. As illustrated in §4.2, Linux’s page reclamation is mainly designed

for slow disk devices where swapping occurs infrequently—it trades off CPU efficiency for

responsiveness by only swapping out one page at a time. However, Hermit overcomes the

responsiveness loss with its asynchronous reclamation design, which relaxes the responsiveness

76

requirement of page reclamation, thereby creating opportunities for batching. As depicted in

Figure 4.6, Hermit batches expensive operations, including TLB shootdowns, I/O writes, and

cgroup accountings—to amortize their overheads in the asynchronous page reclamation path.

Reverse mapping elimination. To avoid race conditions during reclamation, Linux has

to ensure that the page is immutable before writing it back to remote memory. Linux achieves

this goal by using rmap (reverse page mapping) to identify and unmap all the virtual pages

mapped to the reclaimed physical page. rmap walk is expensive as it involves several memory

accesses and lock synchronizations. A key observation in Hermit is that most reclaimed

pages are private pages (i.e., only referenced by one virtual page). For private pages, Hermit

eliminates the expensive rmap walk by inlining the virtual page address into the physical page

metadata in Linux. This approach trades a tiny portion of local memory (0.2% in the worst

case) for better performance.

4.4 Implementation

We implemented Hermit atop Linux 5.14. We added or modified 9704 lines of kernel code,

mainly re-implementing Linux’s swap-in and swap-out code paths.

We built our RDMA-based swap backend atop Fastswap’s implementation. The original

Fastswap uses Linux’s frontswap interface which only supports blocking I/O. We extended it

with an asynchronous I/O interface to enable asynchronous batched I/O writes during page

reclamation.

For the swap-in path, we stored the feedback signals swap_stats, used by Hermit to

decide whether to bypass the swap-in deduplication, in Linux’s process context mm_struct.

swap_stats contains two atomic counters representing the numbers of successful and aborted

swap-ins respectively. The page fault handler reads and updates swap_stats when swapping

in the page.

77

For the swap-out path, we implemented per-cgroup reclaim threads as Linux kernel threads.

We stored the feedback signals swap_ctrl, used by Hermit to decide the swap-out timing, in

Linux’s memory cgroup mem_cgroup. swap_ctrl contains two counters representing the total

number of charged pages and reclaimed pages. Hermit updates swap_ctrl during cgroup

charging and page reclamation. The reclaim scheduler reads swap_ctrl periodically (per 128

charges in our implementation) to calculate the swap intensity for updating the high-water

mark. We use Linux’s existing mechanism of tracking the page re-fault distance to calculate

the average page turnaround (APT) for updating the low-water mark. Hermit batches 32

pages per NUMA node for its asynchronous page reclamation to keep low amortized overheads

while ensuring most reclamations can finish timely (within 1 ms). To batch reclamation while

ensuring consistency, we carefully ordered the operations (see Figure 4.6). Hermit first selects

and unmaps a batch of pages, and then issues a single TLB flush before writing all dirty pages

to remote memory. After which, Hermit rechecks each page to ensure it remains untouched

and free it. Otherwise, the page must have been faulted on and re-mapped into the process’

page table, so Hermit skips freeing this page and returns it back to the application. To bypass

the rmap walk, we stored the virtual address of private pages using a global array. We did

not directly embed the virtual address into Linux’s per-page metadata to avoid breaking its

cache alignment.

4.5 Evaluation

Our evaluation seeks to answer the following questions:

1. Can Hermit maintain low tail latency (§4.5.2) and high throughput (§4.5.3) while

delivering remote memory?

2. How does Hermit’s performance compare to standard Linux and Fastswap [12]? (§4.5.2-

§4.5.3)

3. What contributes to Hermit’s better performance? (§4.5.4)

78

Setup. We ran experiments in a cluster with one CPU server and one memory server,

connected by a 100 GbE network. Each server equips a 24-core AMD 7402P CPU and

128 GB memory. Both Hermit and Fastswap ran on Ubuntu 20.04 with Linux 5.14. For

latency-critical applications, we generated load from another server, which connects to the

CPU server via a 25 GbE network. We followed common practices to tune these servers for

low latency [194], including disabling CPU frequency scaling, machine-check exceptions, and

transparent hugepages. We also disabled OS security mitigations as recent CPUs have fixed

these vulnerabilities. We enabled hyperthreading as it improves the performance of remote

memory systems.

Methodology. We compared Hermit with the ideal system that only uses local memory

and the state-of-the-art kernel-based remote memory system, Fastswap [12]. To enable a fair

comparison, we also ported Fastswap to Linux 5.14, the same kernel version that Hermit uses.

4.5.1 Real-world Applications

We used six real-world datacenter applications for evaluation, as shown in Table 4.1.

Category Application Dataset Size

Memcached [163] Facebook’s USR [22] like 32M KVs

Latency-Critical SocialNet [80] Socfb-Penn94 [214] 41.5K nodes, 1.4M edges

Gdnsd [82] Custom 75M sites

Batch-Processing

Spark [274] Wikipedia EN [126] 188M points

XGBoost [48] HIGGS [24] 21M instances

Cassandra [18] YCSB [56] 20M records

Table 4.1: Applications used in the evaluation.

79

Latency-critical applications. Memcached [163] is a popular in-memory key-value store.

It only performs a hash table lookup for each request, leading to a small per-request memory

footprint. It has low compute intensity and poor spatial locality. We followed Facebook’s USR

distribution to generate load with 99.8% GET and 0.2% PUT [22]. SocialNet (a part of the

DeathStarBench [80]) is a twitter-like interactive web application built with microservices. It

has a fan-out pattern in which each client request is served by multiple microservice instances.

This leads to a larger per-request memory footprint than Memcached. It has medium

compute intensity and poor spatial locality. We rewrote DeathStarBench’s python-based load

generator using C++ to increase its throughput. Gdnsd is an authoritative-only DNS server.

It performs a tree lookup for each DNS query. It has a small per-request memory footprint

and low compute intensity. Different from previous applications, Gdnsd has good spatial

locality. We generated queries with random domain names for evaluation. For all three

applications, we generated requests with keys followed Zipf distribution using the skewness

parameter 𝑠 = 0.99, to be consistent with the standard YCSB benchmark suite [56].

Batch applications. Apache Spark [274] is a big data analytics engine. We used the

logistic regression model from its official example suite for evaluation, in which Spark trains

the model iteratively by scanning the dataset to update the model parameters. It has high

compute intensity and a large memory footprint. XGBoost is a gradient boosting library

for machine learning. We ran binary classification for evaluation. It initializes a group of

decision trees and trains them iteratively by splitting the tree leaves with input data. It has

dynamic parallelism and a medium memory footprint. Apache Cassandra [18] is a large-scale

NoSQL database. It uses a storage structure similar to a log-structured merge tree, which has

medium compute intensity and good spatial locality. Different from other batch applications,

it also periodically persists in-memory data to disk. We used YCSB [56] as its workload for

evaluation. Both Spark and Cassandra are Java-based and run atop OpenJDK-11. Java’s

garbage collection makes them more memory intensive. XGBoost is a native C++ application.

80

50 60 70 80 90 100
Local memory (%)

0

100

200

300

400

500
99

%
La

te
nc

y
(μ

s)

60 70 80 90 100
Local memory (%)

0

200

400

600

800

1000
Linux Fastswap Hermit All local

50 60 70 80 90 100
Local memory (%)

0

100

200

300

400

500

(a) Memcached (2 Mops) (b) SocialNet (0.75 Mops) (c) Gdnsd (4 Mops)

Figure 4.7: Hermit significantly outperforms Fastswap and Linux in terms of 99% latency

under the same fixed load and varying local memory ratio. Hermit enables applications to

operate in a more challenging regime of less local memory while still maintaining < 500 µs

99% latency.

4.5.2 Tail Latency of Latency-Critical Applications

To better quantify the tail latency overhead introduced by Hermit, we use low-latency

applications enabled by Shenango (a recent datacenter library OS) [194], for evaluation. With

Shenango’s low-latency threading runtime and network stack, these applications achieve

sub-millisecond tail latency, making it an extremely challenging case for swap systems. We

also rerun the same applications with their vanilla (Linux-based) versions. Following previous

studies [64, 118, 278], we primarily focus on applications’ 99th percentile latency in our

evaluation. A more detailed evaluation, including the results of other percentiles such as

median and 99.9th, can be found in the original paper [207].

We first ran applications with a fixed load (50% of load capacity measured with only using

local memory) and varying local memory ratios. We measured the application performance

on Linux, Fastswap, Hermit, and the ideal setup that only uses local memory (see Figure 4.7).

The original Linux does not have an RDMA-based swap backend. To enable a fair comparison,

we extended it to use Fastswap’s RDMA backend. On Figure 4.7, the X-axis shows the ratio

of the local memory provisioned; the Y-axis shows the 99th percentile latency achieved by

81

Linux, Fastswap, Hermit, and the ideal setup.

Intuitively, both Fastswap and Hermit achieve ideal performance when only using local

memory. When we decrease the local memory ratio, latency increases as remote accesses

become more frequent. However, Hermit’s latency increases slower than Fastswap, revealing

it is more tolerant to remote accesses. This is because Hermit’s overhead of accessing remote

memory is lower, thanks to its shorter swap-in path and its reclaim scheduler that eliminates

direct reclamation (§4.5.4.1). As Hermit adaptively changes the number of reclaim threads

to match the reclamation rate with the swap-in rate, it can result in competition for CPU

resources if the local memory ratio is small enough. Eventually, both systems encounter a

“hockey-stick” when they cannot handle the excessive remote memory accesses. Compared to

Fastswap, Hermit enables applications to operate in a more challenging regime of less local

memory while still maintaining < 500 µs 99th percentile latency.

Specifically, the low compute intensity of Memcached and Gdnsd aligns with Hermit’s

optimizations well; they only require a few CPU cores for serving load, leaving the rest of

the cores for reclamation. Moreover, thanks to their small per-request memory footprints,

they only require a small number of reclaim threads. For Memcached, Hermit has to rely

on more than four reclaim threads to keep up with frequent swap-ins when Memcached

runs under < 60% local memory ratio. The CPU contention gets more severe when local

memory gets smaller, and the system reaches 70% CPU utilization under 58% local memory

ratio. Afterward, Hermit’s reclaim threads can heavily interfere and block Memcached’s

threads, thus ramping up the tail latency. Similarly, Gdnsd on Hermit used ∼72% CPU

cycles when running under 56% local memory ratio, and the system can no longer maintain

low 99th percentile latency afterward. Fastswap’s single dedicated core fails to keep up with

the increasing page reclamation demand when local memory ratio is lower than 76% and 82%

for Memcached and Gdnsd, respectively, which ramps up their 99th percentile latency. To

conclude, Hermit pushes the operating regime in terms of local memory ratio from 75% (i.e.,

Fastswap) to 55% for Memcached, and from 80% to 55% for Gdnsd. Gdnsd has a slightly

82

1 2 3 4
Offered load (Mops)

0

100

200

300

400

500
99

%
La

te
nc

y
(μ

s)

0.5 1.0 1.5
Offered load (Mops)

0

200

400

600

800

1000
Linux Fastswap Hermit All local

2 4 6 8
Offered load (Mops)

0

100

200

300

400

500

(a) Memcached (b) SocialNet (c) Gdnsd

Figure 4.8: Hermit achieves significantly lower 99% latency than Fastswap and Linux under

the same fixed local memory ratio and varying load. For Memcached and Gdnsd, Hermit

achieves 99% latency close to the ideal local-only case. SocialNet is more challenging due to

its higher per-request memory footprint, but Hermit still achieves 74% load capacity of the

ideal case.

better result due to its better spatial locality. SocialNet is a more challenging application

that has a higher compute intensity and a larger per-request memory footprint. It requires

more reclaim threads which compete with application threads more heavily under low local

memory ratios. The system used 70% of its CPU resources under 65% local memory ratio,

and saturated all CPU cores under 60% local memory ratio. Hermit pushes its regime from

75% local memory ratio to 65%. In summary, Hermit enables applications to store an average

of 20% more working set in remote memory without breaking the tail latency target, thereby

harnessing stranded memory resources more efficiently.

Next, we fixed the local memory ratio to 70% and measured the tail latency of applications

with varying load (see Figure 4.8). Under low load, both Fastswap and Hermit encounter

higher latency than the local-only case due to additional remote memory accesses. Hermit

delivers lower latency than Fastswap due to the cheaper remote accesses it offers. For

Memcached and Gdnsd whose per-request memory footprint is smaller, Hermit reduces 99th

percentile latency by 3–9 µs, whereas for SocialNet, Hermit reduces latency by 43–86 µs.

Under high load, the latency gap becomes wider because of the CPU contention between

83

20 40 60 80 1000.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

Th
ro

ug
hp

ut

All local Linux Fastswap Hermit

20 40 60 80 100
Local memory (%)

20 40 60 80 100

(a) Spark (68.4s) (b) XGBoost (42.2s) (c) Cassandra (72.6s)

Figure 4.9: We measured the throughput of batch applications achieved by different swap

systems normalized to the ideal local-only setup. Hermit outperforms other baselines. The

number in the parenthesis shows the ideal execution time.

application and asynchronous reclaim threads. In this case, application threads access remote

memory intensively, therefore triggering memory reclamation frequently. The asynchronous

reclaim threads impact application performance by contending CPU resources. Hermit

experiences lower performance degradation because of its asynchronous and more CPU-

efficient design of memory reclamation (§4.5.4.2). By eliminating blocking induced by direct

reclamation and shifting more CPU resources from reclamation to application, Hermit handles

higher load than Fastswap under the same local memory ratio while still maintaining < 500

µs 99th percentile latency. Hermit improves the load capacity by 3.2× (from 1.1 Mops to 3.5

Mops) for Memcached, and 1.7× (from 4.0 Mops to 6.8 Mops) for Gdnsd. Notably, compared

to the ideal local-only case, Hermit enables these applications to enjoy the benefit of remote

memory with only an average of 20% decrease in their load capacity. It is more challenging

to handle SocialNet well due to its larger per-request memory footprint and higher compute

intensity. As a result, the number of reclaim threads needed increases quickly with the load,

deteriorating the contention with application threads. Even though, Hermit still improves

SocialNet’s capacity by 1.5× (from 0.75 Mops to 1.15 Mops).

84

4.5.3 Throughput of Batch Applications

In this section, we evaluate the throughput of batch applications under varying local memory

ratios (see Figure 4.9). Hermit outperforms both Fastswap and Linux. It only requires

45%–70% local memory to achieve at least 80% of the ideal throughput for all applications.

In contrast, Fastswap (i.e. the better baseline) has to use an average of 20% more local

memory to achieve the same throughput. Even under the extremely challenging case of 20%

local memory, Hermit is still able to preserve 40%–60% of applications’ ideal throughput.

This leads to 1.23×–1.87× improvement over Fastswap.

When Spark runs atop Fastswap, its throughput drops significantly when running with <

40% local memory. Our profiling reveals that swapping becomes extremely frequent in this

case, triggering the scalability bottleneck in kernel’s page reclamation path. Hermit does

not suffer from the same issue due to two reasons. First, Hermit significantly reduces the

direct reclamation ratio by performing reclamation asynchronously and timely. Therefore, it

confines reclamation into a small number of reclaim threads rather than all the application

threads (in direct reclamation). Second, Hermit’s CPU-efficient reclamation design reduces

the number of threads needed, further alleviating the scalability issue.

4.5.4 Design Drill-Down

We now evaluate specific aspects of Hermit’s design to understand their individual contribu-

tions to overall performance.

4.5.4.1 Remote Memory Access Latency

Hermit reduces remote memory access latency by shortening the critical path of swap-ins.

Figure 4.10 breaks down the improvements brought by specific optimizations, including bypass-

ing deduplication and using asynchronous I/O. The results are measured using Memcached.

Without Hermit’s optimizations, the original Linux spends 2.8 µs on swap-in deduplication.

85

0 5 10 15
Time (μs; mean)

Linux Swap

+Bypass
Dedup

+Async. I/O

Lookup Swap Cache
Dedup. Swap-ins
cgroup Accounting
I/O Read
Update Metadata &
Set PTE

Figure 4.10: Hermit reduces the remote memory access latency in Memcached from 13.8 µs

to 10.2 µs with two optimizations, i.e., bypassing deduplication and using asynchronous I/O.

1 2 3 4
Offered load (Mops)

0

25

50

75

D
ire

ct
Re

cl
ai

m
R

at
io

(%
) Fastswap

Hermit

Figure 4.11: Hermit entirely eliminates direct reclamation for Memcached, thanks to its

asynchronous reclamation design. Fastswap fails to serve > 2.4 Mops load due to CPU

congestion.

Hermit eliminates this overhead entirely by opportunistically bypassing the deduplication, see

Figure 4.11. After enabling asynchronous I/O, Hermit further overlaps I/O read with other

swap-in operations (e.g., cgroup accounting and metadata updating), reducing the swap-in

latency by another 0.9 µs. With both optimizations turned on, Hermit reduces the page

fault handling latency by 35%, from 13.8 µs to 10.2 µs. The RDMA backend spends 9 µs on

performing a 4KiB-page I/O. This indicates that Hermit reduces the overhead of the swap

system by a factor of four, from 4.8 µs to only 1.2 µs.

86

Linux
Swap

+rmap
Elimination

+Batched
TLB

+Batched
Accounting

+Batched
I/O

0K

100K

200K

Re
cl

ai
m

Th
ro

ug
hp

ut
(#

pa
ge

s/
s)

Figure 4.12: Eliminating reverse mappings and enabling more batching makes reclamation

2.9× more efficient.

4.5.4.2 Page Reclamation Efficiency

To demonstrate Hermit’s improvements on page reclamation efficiency, we ran Memcached

and measured the per-thread reclamation throughput, see Figure 4.12. As shown by the

leftmost bar, the original Linux achieves 77K pages/s reclamation throughput. Hermit’s

rmap elimination optimization effectively improves the throughput by 37%, as most of pages

are private in Memcached. Batching TLB shootdowns and cgroup accountings amoritizes

their overheads and brings an additional 27% and 3% improvement, respectively. Finally,

Hermit batches I/O writes for dirty pages and overlaps them with the page release phase.

This significantly reduces the time wasted on polling for the write completion, generating a

75% further improvement. Our further profiling reveals that Hermit reduces the per-page

overhead of rmap by 59% from 1.70 µs to 0.69 µs, TLB shootdown by 92% from 2.45 µs to

0.20 µs, and I/O writes by 88% from 6.47 µs to 0.76 µs. To summarize, Hermit improves

the single-thread page reclamation throughput from 77K pages/s to 221K pages/s, making

reclamation 2.9× more efficient.

4.5.4.3 Effectiveness of Feedback-directed Asynchrony

To demonstrate the importance of Hermit’s feedback-directed asynchrony, we modified

Hermit’s reclaim scheduler to use Fastswap’s static scheduling policy. The new version

87

1 2 3 4
Offered load (Mops)

0
100
200
300
400
500

99
%

La
te

nc
y

(μ
s) Fastswap

Hermit*-1 thread
Hermit*-2 threads
Hermit*-4 threads
Hermit
All Local

Figure 4.13: Hermit’s feedback-directed asynchrony is indispensable for achieving superior

performance. Hermit considerably outperforms all Hermit∗s—the modified versions that adopt

Fastswap’s static scheduling policy for reclamation.

Hermit∗ uses a fixed number of reclaim threads and starts reclamation only when the free

local memory size falls below 8 MiB. Figure 4.13 shows the results of Memcached.

Hermit consistently outperforms all variants of Hermit∗, regardless of the number of

reclaim threads statically configured. Our further profiling reveals that the memory pressure

during Memcached’s execution varies over time. In most cases, it only requires ≤2 reclaim

threads to mitigate the pressure. However, upon sudden bursts of requests, it needs up to 4

threads to fully keep up with the demand. Hermit’s reclaim scheduler dynamically adjusts

the number of reclaim threads to adapt to the changes in demand, thereby achieving superior

performance to its static counterparts.

4.5.4.4 Breaking Down End-to-End Speedup

We evaluated the individual contribution of each of the three optimizations (§4.5.4.1-§4.5.4.3)

to the overall application performance.

For latency-critical applications, we used Memcached as the representative. We re-

ran Memcached with the same configuration as Figure 4.8 (a) with optimizations enabled

incrementally. Figure 4.14 reports the results. Linux even fails to handle low load of 0.5 Mops

under 70% local memory, as it frequently triggers direct reclamation which can easily prolong

Memcached’s 99th percentile latency by hundreds of microseconds. Fastswap outperforms

88

1 2 3 4
Offered load (Mops)

0
100
200
300
400
500

99
%

La
te

nc
y

(μ
s) Linux

Fastswap
+ Feedback-
Directed Async.
+ Efficient
Reclamation
+ Fast Swap-in
All Local

Figure 4.14: All three of Hermit’s optimizations work in tandem to improve Memcached’s

latency and throughput. Results are measured with 70% local memory.

Linux by offloading reclamation to a dedicated core. However, the application quickly

saturates the core’s reclamation capacity once the load reaches 1.1 Mops, and starts to trigger

direct reclamation again (see Figure 4.11). This prevents Fastswap from maintaining low

99th percentile latency afterward.

With the reclaim scheduler (§4.3.2), Hermit can handle a much higher load, 2.5 Mops,

before the latency starts to spike. This is because Hermit’s reclaim scheduler proactively and

timely starts asynchronous reclamation, eliminating the blocking caused by direct reclamation.

Optimizations in the reclamation path (§4.3.4) reduce the amount of CPU resources required.

This alleviates the contention between reclaim threads and application threads, adding

0.4 Mops to the load capacity. Finally, optimizations in the swap-in path (§4.3.3) make

remote memory accesses faster and reduce the per-request processing time, thereby enabling

Memcached to achieve higher load with the same amount of compute. Putting them all

together, Hermit helps Memcached reach 3.5 Mops using 70% local memory while maintaining

99th percentile latency under 250 µs.

For batch applications, we used Spark as the representative and re-ran it under 20%

local memory with the same configuration as Figure 4.9(a). Figure 4.15 breaks down the

performance improvements. Our reclaim scheduler again improves the application throughput

by a large margin (31%) due to the following reasons. First, batch applications usually follow

89

Linux
Swap

+ Reclaim
Scheduler

+ Efficient
Reclamation

+ Fast
Swap-in

1

2

3

4

N
or

m
al

iz
ed

Ex
ec

ut
io

n
Ti

m
e All local

Figure 4.15: All three of Hermit’s optimizations collectively improve Spark’s throughput.

The Y-axis shows the execution time normalized to the ideal local-only time (68.4s). Results

are measured under 20% local memory.

the epochal hypothesis [182], whose compute and memory behaviors vary during an epoch

but repeat across epochs. Asynchronous reclamation unleashes the hidden parallelism by

speculatively reclaiming pages, making it possible for reclaim threads to efficiently harness

idle compute resources in each epoch. Second, Linux swap frequently triggers massive direct

reclamations instantaneously, causing severe lock contentions between page faults handlings

(swap-in) and reclamation. Hermit avoids the burst of reclamation and greatly alleviates the

contention by reclaiming asynchronously and proactively. Further, optimizations on the page

reclamation path and the swap-in path collectively improve the swap efficiency: they yield

an additional 10% and 4% throughput improvement, respectively.

4.5.4.5 Resource Consumption of Swap Operations

Network Bandwidth. Hermit performs swap operations eagerly to improve performance.

It opportunistically bypasses swap-in deduplication to reduce swap-in latency (§4.3.3) and

proactively schedules asynchronous reclaim threads to avoid direct reclamation (§4.3.2). These

optimizations offer performance benefits potentially at the cost of additional network usage.

For example, Hermit might swap in the same page several times in the presence of concurrent

page faults. To confirm that Hermit does not incur excessive network traffic, we measure the

90

0.3 0.6 0.8 1.1 1.5 2.1 3.4 3.6
Offered load (Mops)

(a) Swap-in.

0

500

1000

1500

B
an

dw
id

th
(M

B
/s

)

0.3 0.6 0.8 1.1 1.5 2.1 3.4 3.6
Offered load (Mops)

(b) Swap-out.

Fastswap-Async
Fastswap-Direct

Hermit-Async
Hermit-Direct

Figure 4.16: Hermit’s optimizations do not incur additional network usage during swap-ins/-

outs compared to Fastswap.

network bandwidth used for swap-ins and swap-outs, and compare it with Fastswap’s usage.

Figure 4.16 shows the results when running Memcached. The X-axis shows the offered

load while the Y-axis shows the average network bandwidth. The error bar quantifies the

bandwidth fluctuation during the application’s execution. With higher offered load, both

Fastswap and Hermit use more network bandwidth as Memcached swaps memory more

frequently. The bandwidth usage in swap-outs is lower than in swap-in as clean pages do not

need to be written back during reclamation.

For swap-in, Hermit incurs similar network bandwidth usage compared to Fastswap. This

is consistent with our further investigation which reveals that the conflict rate (i.e. the ratio

of concurrent page faults that swap in the same page) is less than 0.07%. Therefore, Hermit’s

swap-in optimization barely introduces any extra network overhead in practice.

For swap-out, we break down the total bandwidth consumption into the usage of asyn-

chronous swap-out and direct swap-out. Hermit is able to constantly perform asynchronous

reclamation without using additional network bandwidth compared to Fastswap. This makes

sense as Hermit’s optimizations to reclamation timing and efficiency do not inflate the number

of reclaimed pages.

91

0.3 0.6 0.9 1.3 1.7 2.1 2.5 2.9 3.4 3.6
Offered load (Mops)

0

50

100

C
PU

U
sa

ge
(%

)

Fastswap Hermit

Figure 4.17: Hermit saves ∼30% CPU cycles under varying load compared with Fastswap,

which is the key enabler to achieve low 99th percentile latency under high load.

CPU Cycles. We also profiled the CPU usage of applications running on Fastswap and

Hermit, revealing that Hermit can serve much higher load with the same amount of CPU

resources. Figure 4.17 depicts the total CPU usage of Memcached and Hermit’s reclaim

threads under 70% local memory ratio and varying load. When increasing load, both Fastswap

and Hermit use more CPU cycles as Memcached swaps more frequently. We observed that

Memcached fails to use > 70% CPU cycles due to its internal lock contention on hot slabs

under skewed workloads. Even though Hermit can spawn more reclaim threads than Fastswap

(when needed), it uses 20%–30% fewer CPU resources overall, thanks to its feedback-directed

asynchrony and more effective use of batching. Therefore, Hermit is able to offer 32% higher

load capacity for Memcached compared to Fastswap.

4.6 Related Work

In addition to the related work covered in §2.2, we categorize the subsequent related work by

specific topics.

Kernel-based Remote Memory. To provide transparency to existing applications, the

kernel-based approach leverages OS paging to access and manage remote memory. Most

92

kernel-based systems build upon Linux, including Hermit. Infiniswap [89] is an early work

that integrates Linux’s swap subsystem with an RDMA-based block device backend. Later,

Fastswap [12] leverages the lightweight frontswap interface to reduce overhead and offloads

page reclamation to a dedicated core. Leap [158] improves Linux’s prefetcher to achieve a

higher local memory hit rate. The ongoing advances of Linux’s virtual memory subsystem in

the kernel community also benefit Linux-based remote memory. These include, but are not

limited to multi-generational LRU [74], speculative page faults [134], maple-tree-based VMAs

[100], and DAMON-based proactive page reclamation [196]. Finally, other kernel-based work

like LegoOS [224] builds new OS, hoping for better performance with its clean-slate approach.

Library-based Remote Memory. The library-based approach bypasses OS to reduce

the kernel overhead and overcome the granularity restriction imposed by paging. It trades

application transparency for performance; application developers often have to significantly

rewrite their code using the new remote memory APIs. FaRM [68] and KVDirect [135]

expose remote memory with an external key-value store interface which mismatches with

the construction of existing applications. Distributed shared memory (e.g., [139, 179]), on

the other hand, provides an object-oriented interface that is more user-friendly. AIFM [216]

proposes remote-able data structures to capture rich application semantics, but requires

programmers to re-write the code with its APIs. Semeru [258], Mako [152], and MemLiner [259]

are JVM-based remote memory runtimes, offering transparency for Java applications by

co-designing the JVM and the kernel.

Hardware-accelerated Remote Memory. Another type of work proposes novel hardware

designs, thereby unlocking new opportunities for optimizing remote memory. Hermit focuses

on the software layer and benefits from the advance of the underlying hardware. PBerry

[35] and Kona [36] overcome the granularity restriction of paging and enable cache-line-level

remote memory access. Clio [94], StRoM [235], and RMC [13] reduce the expensive network

traffic by offloading tasks into the customized hardware of the memory server. Finally,

93

the emerging CXL bus [137] is promising to lower the bar of accessing remote memory by

delivering performance close to local DRAM.

4.7 Summary

In this chapter, we present Hermit, a re-architected swap system that leverages the novel

technique of adaptive, feedback-directed asynchrony. Our evaluation shows that Hermit

significantly outperforms Fastswap (the state-of-the-art swap system) in real datacenter

applications; it reduces the 99th percentile tail latency by 99.7% and improves the through-

put by 1.24×. Hermit defies the conventional wisdom about kernel-based remote memory,

demonstrating that it is possible to achieve both full transparency and high performance

simultaneously.

The success of Hermit also unveils a deeper challenge in today’s multi-tenant cloud

environments, where servers often colocate multiple applications. However, because the

kernel swap system is shared globally by all applications running on a server, it can introduce

resource contention and performance interference when multiple applications share remote

memory. In the next chapter, we quantify the interference effect and address this challenge

by introducing a comprehensive swap isolation and fair share mechanism.

94

CHAPTER 5

Canvas: Isolated and Adaptive Remote Memory

Harvesting

In Chapter 4, we illustrated how Hermit enables an application to scale out and harvest idle

resources on a remote server. However, in the real production environment, it is common

for multiple applications to co-locate on the same server [106, 282]. Consequently, these

applications can share remote memory, including the swap system code path, the network,

the local swap cache, and other swap resources. Unfortunately, today’s OS kernel swap

system is not well prepared for such resource-sharing scenarios, as it focuses on the efficiency

of a single application setting only, overlooking the need to isolate co-running applications,

leading to significant performance interference when applications share remote memory.

In this chapter, we first perform a detailed performance study to understand the sources

of this performance interference, and quantify their performance impact on co-running

applications. Based on these findings, we introduce Canvas, an isolation mechanism for the

OS kernel swap system that holistically isolates swap resources (e.g., swap partition, swap

cache, prefetcher, and RDMA bandwidth) for each application. Furthermore, because swap

isolation segregates each application’s access patterns and needs, it enables the OS kernel

to capture per-application semantics and adaptively optimize the swap system for optimal

efficiency. Specifically, Canvas incorporates three such optimizations: (1) adaptive swap

entry allocation, (2) semantics-aware prefetching, and (3) two-dimensional RDMA scheduling.

With its isolation mechanism, Canvas minimizes performance interference between co-running

applications; with its adaptive optimizations, Canvas further enhances performance for each

95

individual application beyond the isolation benefits.

5.1 Introduction

A typical swap system in the OS uses a swap partition and swap cache for applications to

swap data between memory and external storage. The swap partition is a storage-backed swap

space. The swap cache is an intermediate buffer between the local memory and storage—it

caches unmapped pages that were just swapped in or are about to be swapped out. Upon a

page fault, the OS looks up the swap cache; a cache miss would trigger a demand swap and a

number of prefetching swaps. Swaps are served by RDMA and all fetched pages are initially

placed in the swap cache. The demand page is then mapped to a virtual page and moved out

of the swap cache, completing the fault handling process.

Problems. Current swap systems run multiple applications over shared swap resources (i.e.,

swap partition, RDMA, etc.). This design works for disk-based swapping where disk access is

slow—each application can allow only a tiny number of pages to be swapped to maintain an

acceptable overhead. This assumption, however, no longer holds under far memory because

an application can place more data in far memory than local memory and yet still be efficient,

thanks to RDMA’s low latency and high bandwidth.

As such, applications have orders-of-magnitude more swap requests under far memory

than disks. Millions of swap requests from different applications go through the same

shared data path in a short period of time, leading to severe performance interference. Our

experiments show that, with the same amounts of CPU and local-memory resources, co-

running applications leads up to a 6× slowdown, an overhead unacceptable for any real-world

deployment.

State of the Art. Interference is a known problem in datacenter applications and a large

body of work exists on isolation of CPU [28, 50, 141], I/O [91, 234], network bandwidth [25,

96

83, 113, 173, 203, 232] and processing [122]. Most of these techniques build on Linux’s cgroup

mechanism, which focuses on isolation of traditional resources such as CPU and memory, not

swap resources such as remote memory usage and RDMA. Prior swap optimizations such as

Infiniswap [89] and Fastswap [12] focus on reducing remote access latency, overlooking the

impact of swap interference in realistic settings. Justitia [284] isolates RDMA bandwidth

between applications, but does not eliminate other types of interference such as locking and

swap cache usage.

Contribution #1: Interference Study (§5.2). We conducted a systematic study with

a set of widely-deployed applications on Linux. Our results reveal three major performance

problems:

• Severe lock contention: Since all applications share a single swap partition, extensive

locking is needed for swap entry allocation (needed by every swap-out), reducing throughput

and precluding full utilization of RDMA’s bandwidth. Our experience shows that in windows

of frequent remote accesses, applications can spend 70% of the windows’ time on swap

entry allocation.

• Uncontrolled use of swap resources (e.g., RDMA): The use of the shared RDMA

bandwidth is often dominated by the pages fetched for applications with many threads

simultaneously performing frequent remote accesses. For example, aggressively (pre)fetching

pages to fulfill one application’s needs can disproportionally reduce other applications’

bandwidth usage. Further, even within one application, prefetching competes for resources

with demand swaps, leading to either prolonged fault handling or delayed prefetching that

fails to bring back pages in time.

• Reduced prefetching effectiveness: Applications use the same prefetcher, prefetching

data based on low-level (sequential or strided) access patterns across applications. However,

modern applications exhibit far more diverse access patterns, making it hard for prefetching

to be effective across the board. For example, co-running Spark and native applications

97

reduces Leap [158]’s prefetching contribution by 3.19×.

These results highlight two main problems. First, interference is caused by sharing a

combination of swap resources including the swap partition/cache, and RDMA (bandwidth

and SRAM on RNIC). Although recent kernel versions added support [105] for charging

prefetched pages into cgroup, resolving interference requires a holistic approach that can

isolate all these resources. Furthermore, interference stems not only from resource racing, but

also from fundamental limitations with the current design of the swap system. For instance,

reducing interference between prefetching and demand swapping requires understanding

whether a prefetching request can come back in time. If not, it should be dropped to give

resources to demand requests, which are on the critical path. This, in turn, requires a redesign

of the kernel’s fault handling logic.

Second, cloud applications exhibit highly diverse behaviors and resource profiles. For

example, applications with a great number of threads are more sensitive to locking than

single-threaded applications. Furthermore, managed applications such as Spark often make

heavy use of reference-based data structures while native applications are often dominated

by large arrays. The application-agnostic nature of the swap system makes it hard for a

one-size-fits-all policy (e.g., a global prefetcher) to work well for diverse applications. Effective

per-application policies dictates (1) holistic swap isolation and (2) understanding application

semantics, which is currently inaccessible in the kernel.

Contribution #2: Holistic Swap Isolation (§5.3). To solve the first problem, we

develop Canvas, a fully-isolated swap system, which enables each application to have its

dedicated swap partition, swap cache, and RDMA usage. In doing so, Canvas can charge

each application’s cgroup for the usage of all kinds of swap resources, preventing certain

applications from aggressively invading others’ resources.

98

Contribution #3: Isolation-Enabled Adaptive Optimizations (§5.4). To solve the

second problem, we develop a set of adaptive optimizations that can tailor their policies

and strategies to application-specific swap behaviors and resource needs. Our adaptive

optimizations bring a further boost on top of the isolation-provided benefits, making co-

running applications even outperform their individual runs.

(1) Adaptive Swap Entry Allocation (§5.4.1) Separating swap partitions reduces

lock contention at swap entry allocations to a certain degree, but the contention can still

be heavy for multi-threaded applications. For example, Spark creates many threads to fully

utilize cores and these threads need synchronizations before obtaining swap entries. The

synchronization overhead increases dramatically with the number of cores (§5.5.4.1), creating

a scalability bottleneck. We develop an adaptive swap entry allocator that dynamically

balances between the degree of lock contention (i.e., time) and the amount of swap space

needed (i.e., space) based on each application’s memory behaviors.

(2) Adaptive Two-tier Prefetching (§5.4.2) Current kernel prefetchers build on

low-level access patterns (e.g., sequential or strided). Although such patterns are useful for

applications with large array usages, many cloud applications are written in high-level, man-

aged languages such as Java or Python; their accesses come from multiple threads or exhibit

pointer-chasing behavior as opposed to sequential or strided patterns. As effective prefetching

is paramount to remote-memory performance, Canvas employs a two-tier prefetching design.

Our kernel-tier prefetcher prefetches data for each application into its private swap cache

based on low-level patterns. Once this prefetcher cannot effectively prefetch data, Canvas

adaptively forwards the faulty address up to the application tier via a modified userfaultfd

interface, enabling customized prefetching logic at the level of reference-based or thread-based

access patterns.

(3) Adaptive RDMA Scheduling (§5.4.3) Isolating RDMA bandwidth alone for

each application is insufficient. As there could be many more prefetching requests than

demand swap requests, naïvely sending all to RDMA delays demand requests, increasing

99

fault-handling latency. On the other hand, naïvely delaying prefetching requests (as in

Fastswap [12]) reduces their timeliness, making prefetched pages useless. We built a two-

dimensional RDMA scheduler, which schedules packets not only between applications but

also between prefetching and demand requests for each application.

Results. Our evaluation (§5.5) with a set of 14 widely-deployed applications (including

Spark [274], Cassandra [18], Neo4j [180], Memcached [163], XGBoost [47, 48], Snappy [85], etc.)

demonstrates that Canvas improves the overall application performance by up to 6.2× (average

3.5×) and reduces applications’ performance variation (i.e., standard deviation) by 7×, from

an overall of 1.72 to 0.23. Canvas improves the overall RDMA bandwidth utilization by 2.8×

for co-run applications. Canvas is available at https://github.com/uclasystem/canvas.

5.2 Motivating Performance Study

To understand the impact of interference, we conducted a study with a set of widely-

deployed applications including Apache Spark [274], Neo4j [180], XGBoost [48] (i.e., a

popular ML library), Snappy [85] (i.e., Google’s fast compressor/decompressor), as well as

Memcached [163]. Spark and Neo4j are managed applications running on the JVM, while

the other three are native applications. They cover a spectrum of cloud workloads from

data storage through analytics to ML. In addition, they include both batch jobs (such as

Spark) and latency-sensitive jobs (such as Memcached). Co-running them represents a typical

scenario in a modern datacenter where operators fill left-over cores unused by latency-sensitive

tasks with batch-processing applications to improve CPU utilization [27]. For example, in a

Microsoft Bing cluster, batch jobs are colocated with latency-sensitive services on over 90,000

servers [106]. Google also reported that 60% of machines in their compute cluster co-run at

least five jobs [282].

We ran these programs, individually vs. together, on a machine with two Xeon(R) Gold

100

https://github.com/uclasystem/canvas

Snappy (S)
Memcached (M)

XGBoost (X) Spark Neo4j
0.0

2.5

5.0

N
or

m
al

iz
ed

Sl
ow

do
w

n S+M+X+Spark
S+M+X+Neo4j

Figure 5.1: Slowdowns of co-running applications compared to running each individually.

6252 processors, running Linux 5.5. Another machine with two Xeon(R) CPU E5-2640 v3

processors and 128GB memory was used for remote memory. Each machine was equipped

with a 40 Gbps Mellanox ConnectX-3 InfiniBand adapter and inter-connected by one Mellanox

100 Gbps InfiniBand switch. Using cgroup, the same amounts of CPU and local memory

resources were given to each application throughout the experiments. RDMA bandwidth was

not saturated for both application individual runs and co-runs. The amount of local memory

configured for each application was 25% of its working set.

Performance Interference and Degradation. To understand the overall performance

degradation and how it changes with different applications, we used two managed applications:

Spark and Neo4j. Figure 5.1 reports each application’s performance degradation when co-

running with other applications compared to running alone. The blue/orange bars show the

slowdowns when the three native applications co-run with Spark/Neo4j. Clearly, co-running

applications significantly reduces each application’s performance. We observed an overall

3.9/2.2× slowdown when native applications co-run with Spark/Neo4j. Spark persists a

large RDD in memory and keeps swapping in/out different parts of the RDD, while Neo4j is

a graph database and holds much of its graph data in local memory and thus does not swap

as much as Spark.

Another observation is that the impact of interference differs significantly for different

applications. Applications that generate high swap throughputs aggressively invade swap

101

Spark-LR
Spark-KM

Spark-TC
Snappy (S)

Memcached (M)
XGBoost (X)

SLR+S+M+X

SKM+S+M+X
STC+S+M+X

0

50

100

Pr
ef

et
ch

C
on

tr
ib

ut
io

n
(%

)

Figure 5.2: Prefetching contribution of Leap: the percentage of page faults served by Leap-

prefetched pages (%).

and RDMA resources of other applications. In our experiments, Memcached, XGBoost, and

Spark all need frequent swaps. However, Spark runs many more threads (> 90 application

and runtime threads) than Memcached (4 threads) and XGBoost (16 threads), resulting in

a much higher swap throughput. As such, Spark takes disproportionally more resources,

leading to severe degradation for Memcached and XGBoost.

Reduced Prefetching Effectiveness. Sharing the same prefetching policy reduces the

prefetching effectiveness when multiple applications co-run. Figure 5.2 reports prefetching

contribution—the percentage of page faults served by prefetched pages—the higher the

better; if a prefetched page is never used, prefetching it would only incur overhead. We used

Leap [158] as our prefetcher. The left six bars report such percentages for the applications

running individually. When applications co-run, the rightmost three bars report the average

percentages across applications. As shown, co-running dramatically reduces the contribution.

Note that Leap [158] uses a majority-vote algorithm to identify patterns across multiple

applications. However, when applications that exhibit drastically different behaviors co-run,

Leap cannot adapt its prefetching mechanism and policy to each application. Furthermore,

Leap is an aggressive prefetcher—even if Leap does not find any pattern, it always prefetches

a number of contiguous pages. However, aggressive prefetching for applications such as Spark

with garbage collection (GC) is ineffective—e.g., prefetching for a GC thread has zero benefit

102

and only incurs overhead. Detailed evaluation of prefetching can be found in §5.5.4.

200 300 400
Elapsed Time (s)

0K

200K

400K

#(
A

llo
c.

En
tr

ie
s)

/s

200 300 400
Elapsed Time (s)

Snappy
XGBoost

Spark
Total

(a) Running individually. (b) Co-running.

Figure 5.3: Swap entry allocation throughput when applications run individually (a) and

together (b).

200 300 400
Elapsed Time (s)

0

1000

2000

3000

Sw
ap

-in
BW

(M
B/

s)

200 300 400
Elapsed Time (s)

Snappy
XGBoost
Spark
Total

(a) Running individually. (b) Co-running.

Figure 5.4: RDMA swap-in bandwidth when applications run individually (a) and together

(b).

Lock Contention. We observed severe lock contention in the swap system when applications

co-run, particularly at swap entry allocation associated with each swap-out.

We experimented with Spark (Logistic Regression), XGBoost, and Snappy. Our results

show that in windows of frequent remote accesses, co-running applications can spend up to

70% of the window time on obtaining swap entries. Lock contention leads to significantly

103

0%

20%

40%

60%

80%

100%

0 60 120 180 240 300 360 420 480Ac
cu

m
ul

at
ed

 P
er

ce
nt

ag
e

RDMA Load Latency (us)
Async Prefetching Sync On-Demand

Figure 5.5: Latency of prefetching and on-demand swapping.

reduced swap-entry allocation throughput, reported in Figure 5.3. The total lines in Fig-

ure 5.3(a) and (b) show the total throughput (i.e., the sum of each application’s allocation

throughput). The co-running throughput (b) is drastically reduced compared to the individual

run’s throughput (a) (i.e., ∼450Kps to ∼200Kps).

Reduced RDMA Utilization. Figure 5.4 compares the RDMA read bandwidth (for

swap-ins) when applications run individually and together. Similarly, the total line represents

the sum of each application’s RDMA bandwidth. The total RDMA utilization is constantly

below ∼1000MBps in Figure 5.4(b), which is 3.28× lower than that in Figure 5.4(a) due to

various issues (e.g., locking, reduced prefetching, etc.). The RDMA write bandwidth degrades

by an overall of 2.80×.

Demand v.s. Prefetching Interference. Optimizations such as Fastswap [12] improve

swap performance by dividing the RDMA queue pairs (QP) into sync and async. The

high-priority synchronous QP is used for demand swaps, while the low priority async QP

is used for prefetching requests. This separation reduces head-of-line blocking incurred by

prefetching. However, when applications co-run, this design adds a delay for prefetching.

Figure 5.5 depicts the CDF of the latency of RDMA packets from demand and prefetching

requests, when the four applications co-run on Leap. As shown, 99% of the on-demand

104

requests are served within 40µs. However, the latency of 36.9% of prefetching requests is

longer than 512µs and it can reach up to 52ms! Long latency renders prefetched pages useless

because prefetching is meant to load pages to be used soon. Our profiling shows that among

the prefetched pages that are actually accessed by the application, 90% are accessed within

70µs, indicating that ∼70% of the pages prefetched return too late. A late prefetch of a page

would subsequently block a demand request of the page when it is accessed by the application.

This problem motivates our two-dimensional RDMA scheduling (§5.4.3).

Problem Description Performance Impact Canvas’s Solution

Unlimited use of swap Apps generating higher swap thruput Holistic isolation of swap system and RDMA

RDMA resources use disproportionately more resources isolation and scheduling (§5.3, §5.4.3)

Lock contention at swap
Reduced swap-out throughput

(1) Swap parti. isolation (§5.3);

entry allocation (2) adaptive entry alloc. (§5.4.1)

Single low-level prefetcher Increased fault-handling latency Two-tier adaptive prefetching (§5.4.2)

prefetching v.s. demand interfere Increased fault-handling latency Two-dimensional RDMA scheduling (§5.4.3)

Table 5.1: Summary of major issues and Canvas’s solution.

Takeaway. The root cause of performance degradation is that multiple applications, whose

resource needs and swap behaviors are widely apart, all run on a global swap system with

the same allocator and prefetcher. Table 5.1 summarizes these problems, their performance

impact, and our solutions.

5.3 Swap System Isolation

Canvas extends cgroup for users to specify size constraints for swap partition, swap cache,

and RDMA bandwidth. We discuss the kernel support to enforce these new constraints,

laying a foundation for adaptive optimizations in §5.4.

105

Swap Partition Isolation. In Linux, remote memory is managed via a swap partition

interface, shared by all applications. If there are multiple available swap partitions, they

are used in a sequential manner according to their priorities. As a result, data of different

applications are mixed and stored in arbitrary locations.

Canvas separates remote memory of each cgroup to isolate capacity and performance. The

user creates a cgroup to set a size limit of remote memory for an application. Canvas allocates

remote memory in a demand-driven manner—upon a pressure in local memory, Canvas

allocates remote memory and registers it as a RDMA buffer. Canvas enables per-cgroup swap

partitions by creating a swap partition interface and attaching it to each cgroup. For each

cgroup, a separate swap-entry manager is used for allocating and freeing swap entries. Swap

entry allocation can now be charged to the cgroup, which controls how much remote memory

each application can use. Our adaptive swap entry allocation algorithm is discussed in §5.4.1.

Canvas explicitly enables a private swap cache for each cgroup (a default value of 32MB),

whose size is charged to the memory budget specified in the cgroup. As a result, the size of

an application’s swap cache changes in response to its own memory usage, without affecting

other applications.

For each demand swap-in, Canvas first checks the mapcount of the page, which indicates

how many processes this page has been mapped to before. If the page belongs only to one

process, it is placed in its private swap cache. Otherwise, it has to be placed in a global swap

cache (discussed shortly). To release pages (e.g., when the application’s working set increases,

pushing the boundary of the swap cache), Canvas scans the swap cache’s page list, releasing

a batch of pages to shrink the cache.

RDMA Bandwidth Isolation. For each cgroup, Canvas isolates RDMA bandwidth with

a set of virtual RDMA queue pairs (VQPs) and a centralized packet scheduler. Users can

set the swap-in/swap-out RDMA bandwidth of a cgroup with our extended interface. Our

RDMA scheduler works in two dimensions. The first dimension schedules packets across

106

applications, while the second dimension schedules on a per-application basis—each cgroup

has its sub-scheduler that schedules packets that belong to the cgroup between demand

swapping and prefetching.

VQPs are high-level interfaces, implemented with lock-free linked lists. Each cgroup

pushes its requests to the head of its VQP, while the scheduler pops requests from their tails.

At the low level, our scheduler maintains three physical queue pairs (PQP) per core, for

demand swap-in, prefetching, and swap-out, respectively. The scheduler polls all VQPs and

forwards packets to the corresponding PQPs, using a two-dimensional scheduling algorithm

(see §5.4.3).

Handling of Shared Pages. Processes can share pages due to shared libraries or memory

regions. These pages cannot go to any private swap cache. Canvas maintains a global swap

partition and cache for shared pages. When a page is evicted and ummapped, Canvas checks

its mapcount and adds it to the global swap cache if the page is shared between different

processes. All pages in the global swap cache will be eventually swapped out to the global

partition using the original lock-based allocation algorithm. Conversely, pages swapped in

(and prefetched) from the global swap partition are all placed into the global swap cache. For

typical cloud applications such as Spark, Cassandra and Neo4j, the number of shared pages

is much smaller than process-private pages, using locks in a normal way would not incur a

large overhead. We cannot charge applications’ cgroups for pages in the global swap cache,

because which process(es) share these pages is unknown before they get mapped into processes’

address spaces. Canvas allows users to create a special cgroup, named cgroup-shared, to

limit the size of the global swap cache/partition.

One limitation of our cgroup-based approach is that cgroup can only partition resources

statically while applications’ resource usage may change from time to time and static

partitioning could lead to resource underutilization. However, the focus of this chapter is

to ensure isolation and future work could incorporate max-min fair allocation to improve

107

resource utilization.

5.4 Isolation-Enabled Swap Optimizations

On top of the isolated swap system, we develop three optimizations, which dynamically adapt

their strategies to each application’s resource patterns and semantics.

5.4.1 Adaptive Swap Entry Allocation

As discussed in §5.2, swap entry allocation suffers from severe lock contention under frequent

remote accesses—allocation is needed at every swap-out. To further motivate, we use a simple

experiment by running Memcached alone on remote memory with different core numbers. As

the number of cores increases, the average entry allocation time grows super-linearly—it grows

from 10µs under 16 cores quickly to 130µs under 48 cores due to increased lock contention (see

Figure 5.12). Creating a per-application swap partition mitigates the problem to a certain

degree. However, applications like Spark run more than 90 threads; frequent swaps in these

threads can still incur significant locking overhead.

To further reduce contention, we develop a novel swap entry allocator that adapts

allocation strategies in response to each application’s own memory access/usage. Our first

idea is to enable a one-to-one mapping between pages and swap entries. At the first time

a page is swapped out, we allocate a new swap entry using the original (lock-protected)

algorithm. Once the entry is allocated, Canvas writes the entry ID into the page metadata

(i.e., struct page). This ID remains on the page throughout its life span. As a result,

subsequent swap-outs of the page can write data directly into the entry corresponding to this

ID. We pay the locking overhead only once for each page at its first swap-out.

This approach requires a swap entry to be reserved for each page. For example, if the

local memory size is S and the remote memory allocation is 3S, with one-to-one mapping the

remote memory allocation would be 4S (i.e., each page residing in local memory also has a

108

remote page, resulting in a 33% overhead). However, this overhead may not be necessary.

For example, modern applications exhibit strong epochal behaviors. Under the original

allocator, swap entries for pages accessed in one epoch can be reused for those in another

epoch. Under this approach, however, all pages in all epochs must have their dedicated swap

entries throughout the execution, which can lead to an order-of-magnitude increase in remote

memory usage.

Our key insight is: we should trade off space for time if an application has much available

swap space, but time for space when its space limit is about to be reached. As such, when

the remote memory usage is about to reach the limit specified in cgroup (i.e., 75% in our

experiments), Canvas starts removing reservations to save space. The next question is which

pages we should consider first as our candidates for reservation removal. Our idea is that we

should first consider “hot pages” that always stay in local memory and are rarely swapped.

This is because hot pages (i.e., data on such pages are frequently accessed) are likely to stay

in local memory for a long time; hence, locking overhead is less relevant for them. On the

contrary, “cold” pages whose accesses are spotty are more likely to be swapped in/out and

hence swap efficiency is critical. Here “hot” and “cold” pages are relatively defined as they are

specific to execution stages—a cold page swapped out in a previous stage can be swapped in

and become hot in a new stage.

To this end, we develop an adaptive allocator. Canvas starts an execution by reserving

swap entries for all pages to minimize lock contention. Reservation removal begins when

remote-memory pressure is detected. Canvas adaptively removes reservations for hot pages.

We detect hot pages for each application by periodically scanning the application’s LRU

active list—pages recently accessed are close to the head of the active list. Each scan identifies

a set of pages from the head of the list; a page is considered “hot” if it appears in a consecutive

number of sets recently identified.

Removing the reservation for a hot page can be done by (1) removing the entry ID from

the page metadata and (2) freeing its reserved swap entry in remote memory, adding the

109

1

3

2

Init: newly
allocated Page

Hot Page

Cold Page

4Swapped-out Page

swap-in

swap-out
allocate swap-entry

Cold Page
with swap-entry

lock-free
swap-out

5

!"#$%#&' ())#**+
"#,-.# */(01#&'"2

Figure 5.6: FSM describing our page management when remote-memory pressure is detected.

entry back to the free list. Once a hot page becomes cold and gets evicted, it does not have

a reservation any more, and hence, it goes through the original (lock-protected) allocation

algorithm to obtain an entry. In this case, the page receives a new swap entry and remembers

this new ID in its metadata.

Figure 5.6 shows the page state machine, which describes the page handling logic. A cold

page (to be evicted) can be in one of the two states: state 2 and state 5. A page comes to

state 2 if it is (1) a brand new page that has never been swapped out or (2) previously a hot

page but has not been accessed for long. Once it reaches state 2, the page does not have a

reserved swap entry ID and hence, swapping out this page goes through the normal allocation

path. In the case of swap-in (state 5), the swap entry ID is already remembered on the page.

The next swap-out will directly use this entry and be lock-free. If the page becomes hot (from

state 5 to 3), Canvas removes the entry ID and releases the entry reservation. The entry is

then added back to the free list.

Performance Analysis. To understand the performance of the adaptive entry allocation

algorithm, let us consider the following two scenarios. In the first scenario, the application

performs uniformly random accesses. As a result, Canvas cannot clearly distinguish hot/cold

pages, and thus randomly cancels their reservations. However, due to the random process,

when a page is swapped out, it has a certain probability of still possessing a reserved swap

entry (depending on the ratio of remaining reservations) and hence Canvas can still improve

110

the allocation performance.

In the second scenario, the application follows a repetitive pattern of accessing a page a

few times (making it hot) and then moving on to accessing another page; it will not come

back to the page in a long while. Under our allocation algorithm, every page will be identified

as a hot page, leading to the cancellation of its reservation. However, each page will be

swapped out when it is cold enough; at each swap-out, the page has to go through the original

allocation algorithm. This is the worst-case scenario, and even in this case, Canvas has the

same (worst-case) performance as the original Linux allocator, which allocates an entry at

each swap-out.

Some of the recent patches submitted to the Linux community also attempt to reduce

lock contention for swap entry allocation.

5.4.2 Two-Tier Adaptive Prefetching

Problems with Current Prefetchers. Current prefetchers all focus on low-level (stream-

ing or strided) access patterns. While such patterns exist widely in native array-based

programs, applications written in high-level languages such as Python and Java are domi-

nated by reference-based data structures—operations over such data structures involve large

amounts of pointer chasing, making it hard for current prefetchers to identify clear patterns.

Furthermore, cloud applications such as Spark are heavily multi-threaded. Modern

language runtimes, such as the JVM, run an additional set of auxiliary threads, e.g., for GC

or JIT compilation. How these user-level threads map to kernel threads is often implemented

differently in different runtimes. Consequently, kernel prefetchers such as Leap [158] cannot

distinguish patterns from different threads.

To develop an adaptive prefetcher, Canvas employs a two-tier design, illustrated in

Figure 5.7. At the low (kernel) tier, Canvas uses an existing kernel prefetcher that prefetches

data for each application into its own private swap cache (unless data comes from the

111

global swap partition). A kernel prefetcher is extremely efficient and can already cover a

range of (array-based) applications. For applications whose accesses are too complex for

the kernel prefetcher to handle, we forward the addresses up to the application level, letting

the application/runtime analyze semantic access patterns at the level of threads, references,

arrays, etc.

Prefetching Logic. In Canvas, we adopt the sync/async separation design in Fastswap [12],

which prevents head-of-line blocking. As stated earlier, we use three PQPs per core, one

for swap-out, one for (sync) demand swap-in, and one for (async) prefetching. Canvas polls

for completions of critical (demand) operations, while configuring interrupt completions for

asynchronous prefetches.

Canvas determines whether to use an application-tier prefetcher based on how successful

kernel-tier prefetching is. If the number of pages prefetched for an application is lower than a

threshold at the most recent N (=3 in our evaluation) faults consecutively, Canvas starts

forwarding the faulting addresses up to the application-tier prefetcher (discussed shortly)

although the kernel-tier prefetcher is still used as the first-line prefetcher.

Canvas stops forwarding whenever the kernel-tier prefetcher becomes effective again. Our

key insight is: the kernel-tier prefetcher is efficient without needing additional compute

resources (as it uses the same core as the faulting thread), while the application-tier prefetcher

needs extra compute resources to run. As such, we disable application-tier prefetchers as long

as the kernel-tier prefetcher is effective. To pass a faulting address to the application, we

modify the kernel’s userfaultfd interface, allowing applications to handle faults at the user

space. Our modification makes the kernel forward the faulting address only if the kernel’s

prefetcher continuously fails to prefetch pages.

Runtime Support for Application-tier Prefetching. A major challenge is how to

develop application-tier prefetchers. On the one hand, application-tier prefetchers should

112

Low‐tier
Prefetcher

Low‐tier
Prefetcher

App A

…
forward via
userfaultfd

High‐tier
Prefetcher

for(i = 0; i < 1000; i++)
{ b = a[i]; … }

User u = session.getUser();
Account a =
u.getAccount();
Balance b = a.getBalance();
…

App B

User space

Kernel
major fault major fault

demand swap prefetching demand swap

asyn.
prefetching

Swap Partition

Figure 5.7: Canvas’s two-tier prefetcher: App A is an array-based program while B is a

modern web application that uses reference-based data structures. The low-tier prefetcher

successfully prefetches pages for A, but not for B. Hence, Canvas forwards the addresses up

to B’s high-tier prefetcher.

conduct prefetching based on application semantics, of which the kernel is unaware. On

the other hand, application developers may not be familiar with a low-level activity like

prefetching; understanding memory access patterns and developing prefetchers can be a

daunting task for them.

Our insight is: applications that benefit from application-tier prefetching are mostly

written in high-level languages and run on a managed runtime such as the JVM. Inspired by

previous work on using language runtime to solve memory efficiency problems for data analytics

applications [155, 177, 181–183], Canvas currently supports application-tier prefetching for

the JVM as a platform. However its support could be easily extended to other managed

runtimes for high-level languages like Go and C#. Leveraging language runtime solves both

problems discussed above—it has access to semantic information such as how objects are

connected and the number of application threads; furthermore, the burden of developing an

application-tier prefetcher is shifted from application developers to runtime developers. Thus,

it is not necessary to supply a custom application-tier prefetcher per application, but define

it once for each language runtime.

In this work, we develop an application-tier prefetcher in Oracle’s OpenJDK as a proof-

113

of-concept. It works for all (Java, Scala, Python, etc.) programs that run on the JVM. Our

JVM-based prefetcher considers two semantic patterns : (1) reference-based (i.e., accessing an

object brings in pages containing objects referenced by this object) and (2) thread-based (i.e.,

accesses from different application threads are separately analyzed to find patterns).

For (1), we modify the JVM to add support that can quickly find, from a faulting address,

the object in which the address falls. We use write barrier, a piece of code instrumented

by the JVM at each object field write, as well as the garbage collector to record references

between pages. For example, for each write of the form a.f=b, if the objects referenced by 𝑎

and 𝑏 are on different page groups, we record an edge on a summary graph where each node

represents a consecutive group of pages and each edge represents references between groups.

During prefetching, we traverse the graph from the node that represents the accessed page

and prefetch pages that can be reached within 3 hops. The traversal does not follow cycles

and its overhead is negligible. This approach is suitable for applications that store a large

amount of data in memory, such as Spark and Cassandra.

For (2), we leverage the JVM’s user-kernel thread map. For each faulting address, Canvas

additionally forwards the thread information (i.e., pid) to the JVM, which consults the map

to filter out non-application (e.g., GC, compilation, etc.) threads and segregate addresses

based on Java threads (as opposed to kernel threads). Segregated addresses allow us to

analyze (sequential/strided) patterns on a per-thread basis (using Leap’s majority-vote

algorithm [158]). Once patterns are found, the prefetcher sends the prefetching requests to

the kernel via async_prefetch.

For native programs that directly use kernel threads (e.g., pthread), the thread information

is straightforward and immediately visible to Canvas. We can easily segregate addresses

accessed from different threads and analyze patterns based upon addresses from each individual

thread.

114

Policy. To improve effectiveness, the JVM uses a search tree to record information about

large arrays. Upon the allocation of an array whose size exceeds a threshold (i.e., 1MB in

our experiments), the JVM records its starting address and size into the tree. The JVM

runs a daemon prefetching thread. Once receiving a sequence of faulting addresses, we

determine which semantic pattern to use based on how many application threads are running

and whether the faulting addresses fall into a large array. If there are many threads and

the faulting addresses fall into arrays, the JVM uses (2) to find per-thread patterns. If

either condition does not hold, the JVM uses (1) to prefetch based on references. For native

applications, we only enable (2), as we observed that our native programs do not use many

deep data structures.

5.4.3 Two-Dimensional RDMA Scheduling

To provide predictable performance for applications sharing RDMA resources, our RDMA

scheduling algorithm should provide four properties: (1) weighted fair bandwidth sharing [32,

67] across applications; (2) high overall utilization; (3) treating demand and prefetching

requests with different priorities; and (4) timely handling of prefetching requests.

Canvas performs two-dimensional scheduling by extending existing techniques. Canvas

uses max-min fair scheduling to assign bandwidth across applications, and priority-based

scheduling with timeliness to schedule prefetching and demand requests within each applica-

tion. Although these scheduling techniques are not new themselves, Canvas combines them

in a unique way to solve the interference problem. Canvas maintains three PQPs on each

core, respectively, for swap-outs, demand swap-ins, and prefetching swap-ins. Swap-outs are

only subject to fair scheduling while swap-ins are subject to both fair and priority-based

scheduling.

Vertical: Fair Scheduling. Under max-min fairness, each application receives a fair share

of bandwidth. If there is extra bandwidth, we give it to the applications in the reverse

115

order of their bandwidth demand until bandwidth is saturated. The high overall utilization

of bandwidth is achieved by redistributing unconsumed bandwidth proportionally to the

weights of unsatisfied applications. Canvas implements weighted fair queuing with virtual

clock [67, 195, 279].

Horizontal: Priority Scheduling with Timeliness. Within each cgroup, Canvas sched-

ules demand requests with a higher priority than prefetching requests. However, this could

lead to long latency for prefetching requests. To bound the latency of prefetching, our sched-

uler employs a history-based heuristic algorithm to identify and drop outdated prefetching

requests. In particular, Canvas maintains the timeliness distribution of prefetched pages per

cgroup. Timeliness is a metric that measures the time between a page being prefetched and

accessed. We attach a timestamp to each request when pushing it into a VQP. The scheduler

maintains packets statistics on-the-fly to estimate the round-trip latency and arrival time

of each prefetching request. Requests are dropped if the estimated arrival time exceeds the

estimated timeliness threshold.

Special care must be taken to drop prefetching requests. Before issuing a prefetching

request, the kernel creates a page in the swap cache and sets up its corresponding PTE. The

page is left in a locked state until its data comes back. However, a thread that accesses an

address falling into the page may find this locked page in the swap cache and block on it.

Dropping prefetching requests may cause the thread to hang. To solve the problem, we detect

threads that block on prefetching requests for too long and generate new demand requests for

them.

We rely on a per-entry timestamp to efficiently detect threads that block on prefetching

requests. In Canvas, we attach a timestamp field to the swap entry metadata. Canvas’s

scheduler records the timestamp every time it enqueues a prefetching request into VQP. If

another thread faults on the same page later, it will retrieve the same swap entry from the

PTE. If the swap entry contains a timestamp, the faulting thread knows that a prefetching

116

request has already been issued. Next, the faulting thread calculates the time elapsed since the

timestamp, and compares it with a timeout threshold (maintained by the RDMA scheduler

based on page-fetching latencies). If it exceeds the timeout threshold, the faulting thread

drops the prefetching request. The drop operation is elaborated below:

Before issuing each (demand or prefetching) request, the kernel first allocates a physical

page in the swap cache and locks the page until the request returns. Upon the return of the

data, the data is written into the page; the page is unlocked and mapped into the page table.

In order to safely drop a request, we add another field valid in the swap entry metadata,

indicating whether the prefetching request on the go is valid. Once a faulting thread identifies

a delayed prefetching request (by using the timestamp as discussed above), it sets the valid

field in the swap entry to false and then creates a new physical page in the swap cache. The

thread goes ahead and issues another (demand) I/O request based on this new page. When

the delayed prefetching request returns, it checks the valid field and discards itself once it

sees the false value. The field is then set back to true.

When a demand request is issued, Canvas clears the timestamp field in its corresponding

swap entry. If a thread faults on the same page, it will block on the request instead of issuing

a new one due to the empty timestamp (indicating that the request on the go is a demand

one).

5.5 Evaluation

We implemented the isolation support and adaptive optimizations of Canvas in Linux 5.5,

while the application-tier prefetcher was implemented in OpenJDK 12.

Setup. We included a variety of cloud applications in our experiments, including managed

(Java) applications such as Spark [274], Cassandra [18] (a NoSQL database), Neo4j [180]

(a graph database), as well as three native applications: XGBoost [48], Snappy [85], and

117

Application Workload Dataset Size / (|𝐸 |, |𝑉 |)

Managed

Cassandra 5M read, 5M insert YCSB[56] 10M records

Neo4j PageRank Baidu[126] (17M, 2M)

Spark PageRank (SPR) Wikipedia[126] (57M, 1.5M)

KMeans (SKM) Wikipedia[126] 188M points

Logistic Regression (SLR) Wikipedia[126] 188M points

Skewed Groupby (SSG) synthetic 256K records

Triangle Counting (STC) synthetic (1.5M, 384K)

MLlib Bayes Classifiers (MBC) KDD [43] 1.5M instances

GraphX Connected Components (GCC) Wikipedia[126] (188M, 9M)

PageRank (GPR) Wikipedia[126] (188M, 9M)

Single Src. Shortest Path (GSP) synthetic 2M vertices

Native

XGBoost Binary Classification HIGGS[24] 22M instances

Snappy Compression enwik9 [156] 16GB

Memcached 45M gets, 5M sets YCSB[56] 10M records

Table 5.2: Programs and their workloads.

Memcached [163]. Spark, Cassandra, Neo4j, Memcached, and XGBoost are multi-threaded

while Snappy is single-threaded. The Spark applications span popular libraries such as

GraphX and MLlib.

We co-ran different combinations of programs. The same application in different com-

binations receives the same amount of local (CPU and memory) resources. To simplify

performance analysis, we let each combination of applications co-run contain one managed

(Spark, Cassandra, or Neo4j) application and the three native programs, which consume

less resources. These experiments were conducted on two machines, one used to execute

applications and a second to provide remote memory. The configurations of these machines

was reported earlier in §5.2. We carefully configured Linux with the following configuration to

achieve the best performance for Linux: (1) SSD-like swap model, (2) per-VMA prefetching

118

Snappy
Memcached

XGBoost Spark
0

250

500

750

El
ap

se
d

Ti
m

e
(s

)

Snappy
Memcached

XGBoost Spark

Infiniswap Leap Fastswap Canvas-swap

(a) 25% local memory. (b) 50% local memory.

Figure 5.8: Performance of different swap systems.

policy, and (3) cluster-based swap entry allocation. We disabled hyper-threads, CPU C-states,

dynamic CPU frequency scaling, transparent huge pages, and the kernel’s mitigation for

speculation attacks.

For each combination, we limited the amounts of CPU resources for the managed applica-

tion, XGBoost, Memcached, and Snappy to be 24, 16, 4, and 1 core(s). For local memory,

we used two ratios: 50% and 25%, meaning each application has 50/25% of its working set

locally. When using Canvas, we additionally limited the sizes of swap partitions in such a

way that for each application the total size of its swap partition and assigned local memory is

slightly larger than its working set. In doing so, each application has just enough (local and

remote) memory to run and reservation cancellation (§5.4.1) is triggered in all executions.

The swap cache size for each application starts at 32MB and changes dynamically. The

global swap cache size (configured by cgroup-share) was also set to 32MB. Canvas uses

max-min fair scheduling to assign bandwidth across applications, and their initial weights are

proportional to their swap partition assignments. We ran each application 10 times. Their

average execution times (with error bars) are reported in all experiments throughput this

section.

119

S M X Spark-LR
0

1000

2000

3000
El

ap
se

d
Ti

m
e

(s
)

S M X Spark-KM S M X Cassandra S M X Neo4j

Individual on Linux 5.5 Co-run on Linux 5.5 Co-run on FastSwap Co-run on Canvas

(a) 25% local memory.

S M X Spark-LR
0

500

1000

1500

El
ap

se
d

Ti
m

e
(s

)

S M X Spark-KM S M X Cassandra S M X Neo4j

(b) 50% local memory.

Figure 5.9: Performance of each program under 25% and 50% local memory when the three

native programs, Snappy (S), Memcached (M), and XGBoost (X), co-run with a managed

application. Canvas ran with all optimizations enabled.

5.5.1 Basic Swap Systems

We used Fastswap [12] as our underlying swap system, with a small amount of code changes

to port Fastswap (originally built against Linux 4.11) to Linux 5.5. We first compared

the performance of each individual application running on basic swap systems including

Infiniswap [89], Infiniswap with Leap [158], the original Fastswap [12], and Canvas’s ported

Fastswap (without isolation and optimizations). We could not run LegoOS [224] as it does

not support network-related system calls, which are required for applications such as Spark.

LegoOS implements swaps with RPCs as opposed to paging, but our idea (i.e., isolation and

adaptive swapping) is applicable to this approach as well.

We ran Infiniswap and Leap on Linux 4.4, and Fastswap on Linux 4.11 to align with their

original setup. The results are reported in Figure 5.8. Infiniswap hung on XGBoost and

Spark, and its corresponding bars are thus not reported. Since Canvas-swap was built off

Fastswap, they have similar performance.

120

S M X Spark-LR
0

1000

2000

3000
El

ap
se

d
Ti

m
e

(s
)

S M X Spark-KM S M X Cassandra S M X Neo4j

Individual on Linux 5.5 Co-run on Linux 5.5 Co-run on FastSwap Co-run on Canvas Isolation

(a) Co-run with Spark-LR. (b) Co-run with Spark-KM. (c) Co-run with Cassandra. (d) Co-run with Neo4j.

Figure 5.10: Performance of native applications co-run with different managed applications

under 25% local memory; for Canvas, only isolation was enabled (i.e., without adaptive

optimizations).

5.5.2 Overall Performance

Next, we demonstrate the overall performance when applications co-run together under

Canvas. Each experiment ran the same set of three native programs with one managed

application: Spark-LR, Spark-KM, Cassandra, or Neo4j. The results for the 25% and 50%

local memory configurations are reported in Figure 5.9(a) and (b), respectively.

The four bars in each group represent an application’s performance when running alone

on Linux 5.5, co-running with other applications on Linux 5.5, co-running on the original

Fastswap, and co-running on Canvas (with all optimizations enabled). Across all experiments,

Canvas improves applications’ co-run performance by up to 6.2× (average 3.5×) and up to

3.8× (average 1.9×) under the two memory configurations. Canvas enables Spark and Neo4j

to even outperform their individual runs due to the optimizations that could also improve

single-application performance.

5.5.3 Isolation Reduces Degradation and Variation

This experiment measures the effectiveness of isolation alone. We used a variant of Canvas

with the isolated swap system and RDMA bandwidth (i.e., vertical scheduling between

applications) but without our swap-entry optimization, two-tier prefetcher, and horizontal

121

Table 5.3: Performance variations of three native applications when co-running with each of

the 11 managed applications under 25% local memory (Canvas / Linux 5.5 / Fastswap).

Program Mean Min Max 𝝈

Snappy 1.07 1.28 1.23 1.03 1.10 1.08 1.23 1.69 1.46 0.07 0.20 0.14

Memcached 1.45 3.24 3.76 1.30 1.48 2.05 1.91 6.05 8.17 0.20 1.82 2.14

XGBoost 1.05 3.17 2.81 1.01 1.38 1.91 1.13 6.13 4.76 0.04 1.59 1.11

Overall 1.21 2.56 2.60 1.01 1.10 1.08 1.91 6.13 8.17 0.23 1.64 1.72

RDMA scheduling.

Degradation Reduction. We ran the same set of experiments under 25% local memory.

As shown in Figure 5.10, isolation reduces the running time by up to 5.2×, with an average of

2.5×. Isolation is particularly useful for applications that do not have many threads but need

to frequently access remote memory, such as Memcached, which has 4 threads and cannot

compete for resources with managed applications such as Spark and Cassandra, which have

more than 90 (application and runtime) threads. As such, its performance is improved by

3.3× with dedicated swap resources. Isolation improves the average RDMA utilization by

2.8× from 692MB/s to 1908MB/s, making the peak bandwidth reach 4494MB/s.

Variation Reduction. One significant impact of interference is performance varia-

tion—the same application has drastically different performance when co-running with

different applications (as shown in Figure 5.1). To demonstrate our benefits, we co-ran the

three native applications with each of the eleven managed applications listed in Table 5.2,

which cover a wide spectrum of computation and memory access behaviors. Table 5.3 reports

various statistics of their performance including the mean, minimum, maximum, and standard

deviation of their slowdowns (compared to their individual runs). Clearly, the performance

of the three programs is much more stable (indicated by a small 𝜎) under Canvas than

Linux—variations are reduced by 7× overall.

122

Spark-LR
Spark-KM

Cassandra Neo4j
0

500

El
ap

se
d

Ti
m

e
(s

)

Individual on Linux 5.5
Co-run with Isolation Only
Co-run with Isolation +
Adaptive Entry Allocator

Figure 5.11: Benefit of adaptive swap entry allocation. Compared are the times of the

application running individually on Linux 5.5, co-running on Canvas with adaptive entry

allocation disabled, and enabled.

5.5.4 Effectiveness of Adaptive Optimizations

This subsection evaluates the benefit of each swap optimization on top of the isolated swap

system by turning it on/off.

5.5.4.1 Adaptive Swap Entry Allocator

Isolation already reduces lock contention at swap entry allocation because each process

has its own swap entry manager. However, for multi-threaded applications such as Spark

and Cassandra, their processing threads still have to go through the locking process. In

this subsection, we focus on managed applications due to their extensive use of threads.

Figure 5.11 shows the performance of Spark LR, Spark KM, Cassandra, and Neo4j when

they each co-run with the other three native programs. On average, our adaptive allocation

enables an additional boost of 1.50× for Spark LR, 1.77× for Spark KM, 1.31× for Cassandra,

and 1.28× for Neo4j.

Table 5.4 reports the swap-out throughput when the native applications co-run with Spark.

As shown, isolation improves the throughput by 1.67× while adaptive allocation provides an

additional boost of 1.51×. This benefit is obtained after applying all optimizations in Linux

5.5.

123

Table 5.4: Swap-out throughput w/ and w/o adaptive swap-entry allocation when native

programs co-run with Spark.

Throughput (KPages/s) Linux 5.5 Canvas w/o adaptive allocation Canvas w/ adaptive allocation

Avg. Spark apps 98 164 295

Avg. all apps 185 309 468

8 16 24 32 48
#(cores)

0K

500K

#(
Pa

ge
s/

En
tr

ie
s)

/s

Linux-5.5 Swap-out Rate
Canvas Swap-out Rate
Canvas Entry Alloc. Rate

8 16 24 32 48
#(cores)

100

101

102

Pe
r-

en
tr

y
A

llo
c.

Ti
m

e
(u

s)

Linux 5.5 Canvas

(a) Swap-out and entry alloc rates. (b) Per-entry alloc time.

Figure 5.12: Entry allocation comparison between the allocation algorithm in Canvas and

Linux 5.5 for Memcached under 25% local memory. The Y-axis in (b) is log-scaled.

Effectiveness of Entry Reservation. We compared our adaptive allocation algorithm

with the original allocator in Linux 5.5 by running Memcached with varying (8 – 48) cores

under 25% local memory. As shown in Figure 5.12(a), for Canvas, (1) the swap-out rate

increases with the core number (showing good scalability) and (2) the swap entry allocation

rate remains low. This is due to Canvas’s entry reservation algorithm that effectively reuses a

significant number of swap entries for page swap-outs. On the contrary, in Linux, the swap-out

rate (which is the same as its entry allocation rate) decreases when more cores are used. This

is because each entry allocation takes significantly longer, reducing the swap-out throughput.

A comparison of per-entry allocation time can be seen in Figure 5.12(b). Interested readers

can refer to our original paper [260], which also compares the allocation algorithm between

Canvas, Linux 5.5, and Linux 5.14.

124

5.5.4.2 Prefetching Effectiveness

Our baseline is the kernel’s default prefetcher on the isolated swap system with adaptive

swap allocator enabled. Since application-tier prefetching is designed primarily for high-level

languages, here we focus on managed programs.

Time. We compare the running time for three Spark applications LR, KM, TC, and Neo4j,

between the kernel’s prefetcher over Canvas’s isolated swap system and Canvas’s two-tier

prefetcher, when each managed application co-runs with the three native applications under

the 25% local memory configuration. Application-tier prefetching brings 33%, 17%, 19%,

and 8% additional performance benefits on top of the kernel prefetching with the isolated

swap system. All the four managed applications benefit from the thread-level pattern analysis

while the managed applications have seen 5-9% contributions from using the reference-based

pattern. The thread-level pattern analysis we added for native programs brings a 5% and

11% improvement for Memcached and XGBoost.

We have also run Leap [158], a prefetcher that aggressively prefetches a number of

contiguous pages if it cannot find any pattern. This approach may work for native applications

because these applications access arrays; hence, the contiguous pages aggressively prefetched

are likely to be useful for array accesses. However, it works poorly for high-level language

applications such as Spark and Neo4j, which use deep data structures and run graph-traversal

GC tasks (which exhibit neither sequential nor strided patterns). Aggressively prefetching

useless pages wastes the RDMA bandwidth and the swap cache. Leap slows down our

managed applications by 1.4×, compared to the kernel’s default prefetcher.

Prefetching Contribution and Accuracy. Table 5.5 compares prefetching contribution

and accuracy for the four managed applications when each of them co-runs with the same

three native applications. Contribution is defined as a ratio between the number of page

faults hitting on the swap cache and the total number of page faults (including both cache

125

Table 5.5: Prefetching contribution and accuracy when different Spark and Neo4j co-run with

native applications.

Contribution Spark-LR Spark-KM Spark-TC Neo4j

Leap 23.4% 25.8% 42.2% 67.0%

Kernel 63.3% 68.0% 65.9% 41.1%

Canvas Two-tier 79.2% 79.3% 75.3% 45.0%

Accuracy Spark-LR Spark-KM Spark-TC Neo4j

Leap 16.8% 17.2% 35.9% 6.1%

Kernel 95.6% 96.4% 93.9% 80.4%

Canvas Two-tier 94.3% 94.8% 94.9% 87.1%

hits and demand swap-ins). Accuracy is defined as a ratio between the number of page faults

hitting on the swap cache and the total number of prefetches. Clearly, contribution has a

strong correlation with performance while accuracy measures the pattern recognition ability

of a prefetcher. For example, for a conservative prefetcher that prefetches pages only if a

pattern can be clearly identified, it can have a high accuracy (i.e., prefetched pages are all

useful) but a low contribution (i.e., the number of prefetches is small).

Here we report prefetching contribution and accuracy for three prefetchers: Leap (on our

isolated swap system), the kernel prefetcher (also on our isolated swap system), and Canvas’s

two-tier prefetcher. Among the three prefetchers, for all but Neo4j, Leap has the lowest

accuracy and contribution because it is an aggressive prefetcher. Leap keeps prefetching pages

even when it cannot detect any patterns, which greatly reduces the prefetching accuracy.

Second, due to the limited swap cache, the useless pages prefetched can cause previously

prefetched pages to be released before they are accessed, hurting contribution. The kernel

prefetcher and Canvas have comparable accuracy because the kernel prefetcher is much more

conservative than Leap. It stops prefetching when no clear pattern can be observed. However,

126

0 50 100 150
Round-trip Latency (us)

50%

60%

70%

80%

90%

100%

A
cc

um
ul

at
ed

Pe
rc

en
ta

ge
Demand w/o
horizon. scheduling
Prefetching w/o
horizon. scheduling
Demand w/
horizon. scheduling
Prefetching w/
horizon. scheduling

Without horizontal scheduling

Contribution: 52.1%

Accuracy: 46.9%

With horizontal scheduling

Contribution: 62.8%

Accuracy: 52.4%

(a) Latency CDF. (b) Prefetching effectiveness.

Figure 5.13: Horizontal scheduling effectiveness for GraphX-CC: (a) prefetching latency

reduced, and (b) prefetching contribution and accuracy improved.

Linux has lower contribution than our two-tier prefetcher since Canvas prefetches more useful

pages using semantics.

5.5.4.3 RDMA Scheduling

We evaluate our two-dimensional RDMA scheduling. For the vertical dimension, we use

the weighted min-max ratio (WMMR) min(𝑥𝑖/𝑤𝑖)
max(𝑥𝑖/𝑤𝑖) [234] as our bandwidth fairness metric (the

closer to 1, the better), where 𝑥𝑖 is the bandwidth consumption of the application 𝑖, and 𝑤𝑖

is its weight. We set the weight proportionally to the average bandwidth of each application

when running individually. Our vertical scheduling achieves an overall of 0.88 WMMR.

The horizontal dimension (i.e., priority scheduling with timeliness) is our focus here

because interference between prefetching and demand swapping is a unique challenge we

overcome in this work. We ran GraphX Connected Components (GraphX-CC) with the three

native applications. Figure 5.13 compares the latency of sync vs. async swap-in requests with

and without the horizontal scheduling of RDMA.

As shown, our scheduler does not incur overhead for the synchronous, demand requests

127

but reduces the (90th percentile) latency of the asynchronous prefetching requests by ∼5%.

Note that these results were obtained with Canvas’s two-tier prefetcher enabled, which

already generates precise prefetching requests. With the Leap prefetcher, the (90th percentile)

latency reduction can be as high as 9×. To understand how the latency reduction improves

prefetching effectiveness, we have also compared the prefetching contribution and accuracy

with and without the horizontal scheduling, as shown in Figure 5.13(b). Due to the high

timeliness requirement of prefetching requests, even 5% latency reduction can lead to noticeable

improvements in prefetching—e.g., the contribution/accuracy of GraphX-CC increases by

10.7% and 5.5% on top of the two-tier prefetcher—which ultimately translate to a 7-12%

overall improvement.

5.6 Related Work

In addition to the resource disaggregation and remote memory work discussed in §2.2 and

§4.6, Canvas is also related to other areas of research, as outlined below.

Resource Isolation. Interference exists in a wide variety of settings [65, 149, 281] and

resource isolation is crucial for delivering reliable performance for user workloads. There is

a large body of work on isolation of various kinds of resources including compute time [28,

50, 141], processor caches [79, 120, 262], memory bandwidth [107, 146, 147, 154, 270], I/O

bandwidth [91, 151, 159, 234, 244, 257, 271], network bandwidth [25, 83, 92, 113, 173, 203, 232],

congestion control [60, 98], as well as CPU involved in network processing [122]. Techniques

such as IX [29] and MTCP [112] isolate data-plane and application processing at the core

granularity.

Prefetching. Prefetching has been extensively studied, in the design of hardware cache [93,

167, 250, 251, 286], compilers [70, 125, 131, 200, 211, 245], as well as operating systems [158,

255]. Detecting spatial patterns [160] is a common way to prefetch data. For example, various

128

hardware techniques [109, 117, 231] have been developed to identify patterns (i.e., sequential

or stride) in addresses accessed. Leap [158] is a kernel prefetcher designed specifically for

applications using remote memory. Swap interference can reduce the effectiveness of any

existing prefetchers, let alone that none of them consider complex (semantic) patterns. Early

work such as [39, 199] proposes application-level prefetching for efficient file operations on

slow disks. Our prefetcher is, however, designed for a new setting where applications trigger

page faults frequently and read pages from fast remote memory, with much tighter latency

budgets.

RDMA Optimizations. There is a body of recent work on RDMA scheduling [210, 227]

and scalability improvement [49, 118, 119, 248, 284]. These techniques focus more on

scalability when RDMA NICs are shared among multiple clients.

5.7 Summary

We observed that swap resources must be isolated when multiple applications use remote

memory simultaneously. As such, Canvas isolates swap cache, swap partition, and RDMA

bandwidth to prevent applications from invading each other’s resources. Now that resource

accounting is done separately for applications, Canvas offers three optimizations that adapt

kernel operations such as swap-entry allocation, prefetching, and RDMA scheduling to each

application’s resource usage, providing additional performance boosts.

Canvas concludes our exploration of memory harvesting techniques. Along with Midas

and Hermit, Canvas forms a comprehensive solution for applications to efficiently and safely

harvest memory, whether it is local or remote, shared or not. These systems provide a

solid foundation for distributed memory management, opening opportunities for higher-level

resource-harvesting programming frameworks (discussed in §7.1). However, their capabilities

are limited to resources managed directly by the OS, such as CPU and memory. Given the

129

growing popularity of AI and GPU-driven applications, where specialized runtimes bypass the

OS to access GPUs, current resource harvesting systems fall short. In the next chapter, we

overcome this limitation by applying our insights to harvest GPU resources for AI workloads.

130

CHAPTER 6

Concerto: Harvesting GPUs for Large Language Model

Serving

The rise of large language models (LLMs) and recent AI breakthroughs have significantly

reshaped datacenter workloads, increasing the demand for accelerators like GPUs alongside

traditional resources such as CPU and memory. Given the high operational costs of GPUs,

optimizing their utilization has become increasingly critical. Although managing GPU

resources differs greatly from managing traditional resources, we argue that our earlier

insights remain applicable and effective for harvesting idle GPU resources.

In this chapter, we revisit the first insight from Section 1.2, identifying offline inference

tasks—such as document summarization and information extraction—as the elastic component

of LLM serving. To efficiently harness idle GPU resources, we introduce Concerto, a

preemptive GPU runtime designed for large language model serving that co-locates online and

offline inference tasks. Concerto uniquely leverages available GPU resources left unused by

online tasks to opportunistically batch offline inference, thereby maximizing GPU utilization.

During online load bursts, it reactively preempts offline tasks, ensuring low latency for online

serving. Through this approach, Concerto simultaneously achieves high throughput, low

latency, and optimal GPU utilization for large language model serving.

131

6.1 Introduction

Large language models (LLMs) such as ChatGPT [189], LLaMA [247], and GPT-4 [190] have

emerged as transformative tools across a wide spectrum of application domains. LLM-powered

services, e.g., interactive chatbot [51, 189, 242], programming assistant [84, 110, 215], and

document summarization tools [170, 175], have already shown promises to businesses and end

consumers [101] and are expected to create increasing impact in all aspects of human lives.

However, the superior abilities of LLMs come with high computational and memory

demands to serve LLM inference requests. User requests to LLMs are served by running

model inferences on GPUs, which can be significantly more expensive than typical web

requests. To make matters worse, many LLM services such as chatbots are hosted online,

requiring low response latency for user experience. To meet the strict latency service level

objectives (SLOs), operators often need to overprovision GPUs to the LLM service, causing

significant resource waste.

The tension between low tail latency and high resource utilization is further exaggerated

by the bursty load patterns commonly exhibited in LLM workloads. LLM load varies not

only over long timescales of hours, but also over timescales as short as a few seconds. For

example, a recent study [263] reported that the load to ChatGPT can increase by 3× within

one minute. As a result, the service provider must provision GPUs to the peak user load to

prevent vast latency SLO violations under load bursts.

A parallel trend is that LLM-based applications are evolving into compound AI sys-

tems [275], which involve retrieval-augmented generation (RAG) [201, 280], tool usage [130,

191], SQL-based data analytics [148], etc. Other than simply using LLMs to reply to online

user requests, compound AI systems often use LLMs for offline batch inference, which has

loose latency requirements but desires high generation throughput in a best-effort manner1.

1For brevity, herein we refer to latency-critical requests as online, and best-effort requests that are latency
insensitive as offline.

132

While many recent LLM serving systems are aimed at optimizing the inference effi-

ciency [10, 99, 128, 198, 272, 285], they operate under the assumption that the workload

follows a constant request rate and latency requirement and hence may fall short when dealing

with real-world workloads, which are bursty and heterogeneous (i.e., with both online and

offline requests and drastically different SLOs). As a result, to deploy these systems, today’s

datacenter operators must use separate clusters for serving online and offline requests, and

overprovision GPUs for online serving to meet latency SLOs [209].

The conventional wisdom to reduce resource waste is to dynamically repartition the

cluster in response to the load variation of online requests [46, 142]. However, it requires

a priori knowledge of the online load variation patterns, which are often hard to predict.

Allocation based on inaccurate load estimation can either be too conservative (still resulting

in overprovisioning) or too relaxed (leading to SLO violations). In addition, re-allocating

GPUs across different jobs is a complicated task that involves tearing down an existing

process, cleaning up GPU resources, launching a new process with adjusted parameters, and

setting up GPUs for serving. These operations are often time-consuming and take seconds to

minutes to finish, preventing the system from rapidly reacting to load bursts and preserving

tight latency SLOs.

Insights. The key question we ask in this chapter is: instead of partitioning the cluster

and serving online and offline requests separately, can we co-serve them with the same set of

GPUs? In other words, our goal is no longer to adapt GPU allocation to online load variation,

but instead to adapt offline serving throughput to the available GPU resources. In doing so,

we can maximize the GPU utilization while shifting the need for GPU reallocation to offline

serving, which can tolerate relatively high response latency.

To achieve this goal, we developed Concerto, a unified LLM serving system that serves

online and offline requests simultaneously and dynamically coordinates GPU resources between

them. Concerto frees the service provider from the burden of manually allocating and adjusting

133

GPUs for online serving. Instead, it achieves high GPU utilization by opportunistically

scheduling offline requests whenever GPU compute resources and memory are available.

To avoid resource contention that may break the latency SLO of online serving, Concerto

proactively preempts offline requests and rapidly reclaims resources in response to online load

bursts. Concerto recovers preempted requests after online requests are handled.

Challenges. The idea of co-locating latency-critical jobs with best-effort jobs has been

widely studied in traditional cloud workload scheduling [46, 76, 194]. However, to realize its

benefits in LLM serving, Concerto needs to overcome several unique challenges.

First, how can the system quickly free up resources taken by offline serving in response

to online load bursts? Since LLM inference is iterative, a natural idea is to preempt offline

requests after a generation iteration. However, the online request rate is highly unpredictable

and they come with a tight latency requirement (usually in milliseconds). Serving a large

batch of offline requests, even for a single iteration, may block incoming online requests for

seconds.

To solve this problem, Concerto preempts running offline requests at the (fine) granu-

larity of model layers. We found that the layer granularity strikes a good balance between

responsiveness and execution efficiency. On the one hand, for different LLMs their layer sizes

are generally small and do not vary much, allowing Concerto to discard partial results and

reclaim occupied GPU resources much faster than finishing an entire iteration. On the other

hand, compared to choosing a finer granularity such as CUDA kernels [97], instrumenting a

model on a per-layer basis is lightweight, incurring only negligible overhead (see §6.4.3).

Second, how can the system minimize the recomputation cost? While the system can

react to online load bursts with preemption, it discards the intermediate states (i.e., KV

cache) of the preempted offline requests. Consequently, it requires expensive recomputation

to recover the lost KV cache once the preempted requests are resumed. A natural idea is to

swap out the KV cache to host memory. Unfortunately, the size of the KV cache can grow

134

unbounded, and swapping a large amount of data may, again, block incoming online requests.

Our insight is that LLM inference is stateless, and the KV cache remains unchanged once

generated. Leveraging this property, Concerto incrementally checkpoints the KV cache of

offline requests to the host memory per generation iteration. Since one token is generated per

request, the total amount of data to be written to the host memory is small and bounded.

Concerto further makes checkpointing asynchronous by overlapping it with the computation

(see §6.4.4).

Finally, how can the system preserve the latency SLO for running online requests?

While batching offline requests improves GPU utilization, the batch size must be adjusted

dynamically to ensure that online requests in the same batch can meet the latency SLO. This

is, however, challenging because the inference latency is the result of many factors including

the batch size, the total number of tokens, the phase of each request (i.e., prefill or decode),

etc. To overcome this challenge, Concerto uses a profiler and a SLO-aware scheduler. The

profiler runs offline and collects the execution time of different input batch sizes and input

lengths for requests in different stages. The scheduler adaptively changes the number of

offline requests and tokens based upon the profiling results and the number of online tokens

(see §6.4.5).

Results. We evaluated Concerto with two real-world datasets and synthetic workloads. Our

results demonstrate that Concerto achieves comparable latency and throughput to vLLM [128]

(a state-of-the-art LLM serving system), but can trade off online inference throughput for

offline inference throughput in a linear fashion when the online request rate is lower than

the peak load. With GPUs harvested for offline requests, Concerto achieves 2.35× higher

throughput than vLLM with the same 99th percentile latency, and outperforms existing

co-serving systems by 84× in terms of serving latency.

135

6.2 Background

6.2.1 Large Language Model Inference

Today’s LLMs typically generate outputs following the autoregressive process—they take a

sequence of tokens as input, and repeatedly predict the next token given the input sequence

and all the previously generated tokens. This process involves two distinct phases: prefill

and decode. An LLM inference starts with the prefill phase that deals with a new input

sequence and generates the first output token. Thanks to the modern model architecture

such as Transformer [252], an LLM can process all input tokens in parallel, making the

prefill phase compute-bound. After the prefill phase, the LLM enters the decode phase

that sequentially generates subsequent tokens. Because each decode iteration generates only

one token, it is less compute-intensive and typically bounded by the GPU memory bandwidth

due to the need to load model weights.

Each token during the inference has its own intermediate state, represented by a series of

key vectors and value vectors. As token states remain unchanged throughout the inference

process, the inference engine [185, 186, 193] caches them in GPU memory (also known as

KV cache) to avoid recomputation in each decode step. However, due to the large size of

KV vectors and the excessive number of tokens in a batch, the KV cache can consume a

significant amount of GPU memory.

6.2.2 Characterizing LLM Serving

The rise of compound AI systems and LLM agents dictates that LLMs be used for various

demands and in different forms. Generally, LLM serving can be categorized into two types:

online serving which generates responses to user inputs in real-time, and offline serving which

processes user inputs and generates outputs in a batch. Typical scenarios for offline serving

including document summarization [115], LLM benchmarking and evaluation [143], data

wrangling [174], and LLM-enhanced data analytics [148]. However, online and offline serving

136

expose drastically different characteristics, as elaborated below.

Online serving is mostly suitable for latency-critical requests. Unlike traditional cloud

services that take constant processing time, a request to an LLM may lead to a sequence of

tokens generated in multiple steps. Therefore, the serving latency is measured on a per-token

basis. Moreover, because LLM inference consists of two distinct phases, an LLM’s serving

latency is defined by two metrics: time to first token (TTFT), which is the duration of

the prefill phase, and time per output token (TPOT), which is the execution time of each

decode phase. It is important for an online LLM serving system to optimize both TTFT and

TPOT to reduce the end-to-end request latency, and the service often requires tight SLOs

for TTFT and TPOT to provide a smooth user experience. For example, an online chatbot

may set its 99th percentile TTFT SLO to 1.25 seconds and 99th percentile TPOT SLO to

100 milliseconds to exceed typical human reading speed [172, 205].

In contrast, offline serving is a better fit for best-effort requests that are insensitive to

response latency. Users usually submit a batch of offline requests as a batch processing job,

while the serving system processes offline requests in a best-effort manner for maximized

hardware efficiency. Because offline requests often come from a large corpus or request pool,

the first-order metric for offline serving is throughput, which measures how many tokens are

generated per second.

The different service-level performance objectives between online and offline serving poses

challenges to LLM serving systems. To overcome the tension between low response latency

(TTFT and TPOT) and high generation throughput, today’s LLM serving systems usually

adopt different configurations and designs for different serving scenarios, typically requiring

the service provider to set up separate clusters for online and offline serving. Next, we will

discuss how existing systems optimize LLM serving and why they fall short in achieving high

GPU utilization.

137

6.2.3 Existing LLM Serving Systems

A large body of system optimizations have been proposed to serve LLMs with low latency

and high throughput since the launch of ChatGPT.

Throughput-Oriented Optimizations. Orca [272] is one of the pioneer LLM serving

systems that employ continuous batching to improve inference throughput. It adds incoming

requests directly into existing running batches, achieving higher throughput with a larger

batch size. However, because new requests are in their prefill phase while running requests

are in their decode phase, Orca sacrifices TPOT due to the larger batch size and additional

prefill computation. In this same direction, vLLM [128] further enlarges the batch size by

reducing the KV cache fragmentation and hence the GPU memory consumption.

Latency-Oriented Optimizations. Recently, more systems have been proposed to opti-

mize LLM inference latency. Among them, Sarathi-Serve [10] and Deepspeed-FastGen [99]

piggyback on the continuous batching strategy, but break the prefill phase of incoming

requests into small, fixed-size chunks (chunked-prefill), and only add one chunk into the

running batch in each step. This limits the cost of additional prefill-phase computation in

each generation step, thereby improving TPOT. However, as a new request is broken into

many small chunks and processed in multiple steps, this line of work often leads to sacrificed

TTFT.

Another line of work moves away from continuous batching scheduling, as exemplified

by DistServe [285] and Splitwise [198]. Instead, they duplicate the model and disaggregate

the prefill and the decode computation onto different GPUs. Specifically, new requests

are sent to a dedicated cluster for the prefill computation, and the generated token and

KV cache are populated to another dedicated cluster that performs the decode computation.

Llumnix [238] is another recent work that migrates KV caches between servers to reduce load

imbalance. These systems achieve low TTFT and TPOT at the cost of more GPUs. Due

138

to the additional data transfer of KV caches between servers, they also lead to suboptimal

throughput.

Limitations of Existing Techniques. Existing LLM serving systems suffer from two

major limitations. First, they trade off between latency and throughput, and hence are only

applicable for either online or offline serving. Second, they can neither determine how many

GPUs should be provisioned, nor adaptively change the number of GPUs during serving. In

fact, because they target only one type of incoming requests, they often assume a constant

request arrival rate and reserve enough GPUs in advance.

Unfortunately, these problems are more pronounced when serving real-world inference

workloads, which can contain both online and offline requests with high load variation. Such

a challenge makes it hard to provision the right amount of GPU resources a priori.

6.3 Motivation

In this section, we first demonstrate how real-world LLM load can vary over time and

why existing serving systems fall short of achieving high GPU utilization. We then use an

experiment to quantitatively demonstrate why simply co-locating online serving with offline

serving cannot solve the problem.

Online Load Burstiness. Real-world LLM workloads often expose diurnal patterns and

high load variability, as backed by a recent study [263] which collects user traffic to ChatGPT

for two months within a campus. Figure 6.1a shows the load variation within a day. Despite

the average load being as low as 1050 tokens per second, there is a clear contrast between

peak hours and non-peak hours. The load can achieve more than 3743 tokens per second in

the afternoon, while in the morning the service only experiences little traffic. In addition,

there are unpredictable load bursts within an hour, during which the request rate can ramp

up multiple times in a short period. Figure 6.1b further provides a closer examination of

139

0 3 6 9 12 15 18 21 24
Time (hours)

0

2000

4000

Re
qu

es
t R

at
e

(to
ke

ns
/s

ec
on

d)

(a) load variation over 24 hours.

0 5 10 15
Time (minutes)

0

2000

4000

6000

Re
qu

es
t R

at
e

(to
ke

ns
/s

ec
on

d)

(b) Load variation over 15 minutes.

Figure 6.1: User traffic to ChatGPT within a campus exposes high load variability at various

time scales.

one such burst in a 15-minute window. As shown, the load still fluctuates drastically at the

minute timescale, and the request rate increases by 3× in the tenth minute.

Due to such high load variability, service operators must reserve resources for peak demand

to avoid violating latency SLOs. However, since the peak inference load can be multiple

times higher than the average load, overprovisioning can lead to significant resource waste.

Naïve colocation hurts online serving latency. A simple strawman approach is to

extend today’s online serving systems to allow users to submit requests with priorities. Users

may assign online requests a high priority and offline requests a low priority. The scheduler

should incorporate the priority information and schedule online requests first to preserve low

latency. Since none of the existing systems support co-serving online and offline requests,

we implemented a priority-based scheduler atop vLLM [128] (details in §6.6.1) and used it

140

Online
Only

Naïve
Colocation

100

102

104

P9
9

On
lin

e
TT

FT
 (m

s)

1254

74842

Online
Only

Naïve
Colocation

100

200

300

P9
9

On
lin

e
TP

OT
 (m

s)

98

310

Figure 6.2: 99th-percentile TTFT and TPOT of online requests when co-located with offline

requests using a naïve priority-based scheduler. Note that the y-axis of TTFT is displayed

on a log scale. Due to severe interference, Naïve colocation ramps up the 99th percentile

latencies for online requests by one to two orders of magnitudes.

to serve Llama-2 7B on one Nvidia A100 GPU. We replayed the trace in Figure 6.1 and

collected the 99th-percentile TTFT and TPOT for online requests. These results are reported

in Figure 6.2.

While co-serving offline and online requests has indeed improved GPU utilization, it could

significantly impact online serving latency—P99 TTFT increases by 59.6× and P99 TPOT

increases by 3.16×. There are two reasons for the latency increase. First, once offline requests

are scheduled, they are batched together with online requests and cannot be preempted

selectively. Therefore, incoming online requests must wait until they are served, leading to

significantly increased queueing delays. Second, the scheduler tends to pack enough offline

requests to make full use of GPU memory, which can lead to large batch sizes that take

longer to finish, and hence a further increased inference latency.

These problems call for a new system that can harvest available GPU resources for offline

serving on-the-fly and dynamically adjust the amount of resources allocated to different types

of requests to preserve online serving SLOs.

141

Prompt

Real-Time Streaming API Batch Process API

Online API Server Offline Request Pool

SLO-aware
Scheduler (§4.2, §4.5)

Optional:
latency objective

Preemptible Worker 1 (§4.3) Preempt. Worker N

Host DRAM

Incremental Checkpointing (§4.4)

Checkpointed
KV Cache Blocks

Interconnection
(PCIe, NVLink, etc.)

Asynchronous

Figure 6.3: Overall achitecture of Concerto. Concerto efficiently co-serves online and offline

requests with three major components: an SLO-aware scheduler, a set of preemptive workers,

and an incremental checkpointing mechanism.

6.4 Design

6.4.1 Concerto Overview

Concerto is an LLM serving system designed to co-serve online and offline requests. Figure 6.3

shows its overall architecture. At its frontend, Concerto provides similar APIs to other

LLM serving systems. For online requests, it uses a real-time streaming API that returns

outputs once each token is generated. For offline requests, it adopts an interface similar to

OpenAI’s Batch API [192], which takes a batch of requests from a pool and returns responses

asynchronously.

142

Concerto relies on its backend to schedule and execute inference jobs, which consists of

three major components. The scheduler runs as a daemon thread and continuously fetches

and schedules offline requests. Upon the arrival of an online request, the scheduler reactively

preempts offline requests and immediately schedules the incoming online request (§6.4.2).

The scheduler leverages a set of workers to host the LLM and serve the scheduled batch.

A model can span multiple GPUs, where each GPU is managed by one worker. Concerto

supports both tensor and pipeline parallelism for high efficiency and flexibility (§6.4.3). To

quickly recover preempted requests with minimized recomputation costs, Concerto leverages

host memory and incrementally checkpoints KV caches during its execution (§6.4.4). Finally,

because Concerto can schedule both online and offline requests in the same batch, it adopts

an SLO-aware policy to adaptively adjust the batch size to preserve online TTFT and

TPOT latency objectives while maximizing the offline serving throughput as well as hardware

efficiency (§6.4.5).

6.4.2 Unified Preemptive Scheduler

Concerto’s scheduler is the key component that serves both online and offline requests in

a unified fashion. As with previous LLM serving schedulers [128, 272], Concerto adopts

continuous batching in its scheduler. To prevent long prefills from interfering decode iterations,

Concerto also adopts chunked prefill [10, 99] that partitions and computes long prefills into

small chunks over multiple iterations and limits the batch size per iteration.

The overall scheduling logic is shown in Algorithm 1. It maintains two separate queues for

online and offline requests, and continuously monitors the online queue for incoming requests.

In each scheduling step, it first calculates a budget batch size given the latency objectives for

TTFT and TPOT (Line 8). The budget limits both the number of tokens and the number

of requests in a batch. The detailed policies are elaborated in §6.4.5. The scheduler then

checks and schedules incoming online requests within the budget allowance (Lines 9-13). To

prevent previously scheduled offline requests from blocking incoming online requests, the

143

Algorithm 1: The unified scheduling logic for online/offline requests. Concerto

prioritizes online requests, and only schedules offline requests when remaining GPU

resources permit.
Input: time to first token (TTFT) objective 𝑡𝑇𝑇𝐹𝑇 , time per output token (TPOT)

objective 𝑡𝑇𝑃𝑂𝑇 .

1 Global 𝑄on (online request queue), 𝑄off (offline request queue), 𝑄out (output queue)

2 Global 𝑡sched (time when last batch gets scheduled)

3 Function UnifiedSchedule(𝑄on):

4 Initialize token budget 𝜏 ← Inf

5 Initialize current scheduled batch 𝐵← ∅

6 Initialize new online requests has_new_online← False

7 while True do

8 𝜏 ← calc_budget(𝑡TTFT, 𝑡TPOT) - 𝐵.num_tokens()

9 if !𝑄on.is_empty() then

10 𝜏off ← 𝐵.num_offline_tokens()

11 𝐵on, 𝜏 ← SchedChunkedPrefill (𝑄on, 𝜏 + 𝜏off)

12 𝐵← 𝐵
⋃

𝐵on

13 has_new_online← True

14 𝐵, 𝜏 ← PreemptOverBudgetOffline (𝐵, 𝜏)

15 if 𝐵.has_online_requests() then

16 𝐵off, 𝜏 ← SchedChunkedPrefill (𝑄off, 𝜏)

17 else

18 𝐵off, 𝜏
′ ← SchedChunkedPrefill (𝑄off, Inf)

19 𝐵← 𝐵
⋃

𝐵off

20 𝑡sched ← time.now()

21 𝐵, 𝐵finished ← exec_batch(𝐵)

22 𝑄out.append(𝐵finished)

144

Algorithm 2: Concerto iteratively preempts offline requests when GPU is under

compute pressure (over_budget()) or memory pressure.

1 Function PreemptOverBudgetOffline (𝐵, 𝜏):

2 for 𝑅 in 𝐵.offline_reqs() do

3 if not 𝜏.over_budget() and gpu_memory_sufficient() then

4 break

5 PreemptScheduling (𝑅)

6 𝐵← 𝐵 \ {𝑅}

7 𝜏 ← 𝜏 − 𝑅.num_tokens()

8 return 𝐵, 𝜏

scheduler excludes offline tokens from the budget first (Line 10-11), and then reactively

preempts offline requests if the budget is over-saturated (Line 14). This preemption continues

until all scheduled requests can fit into the budget (Lines 2-8). After accommodating all

online requests, the scheduler opportunistically schedules offline requests using the remaining

budget (Line 15-16). The detailed scheduling policies (i.e., ScheduleChunkedPrefill) to

maintain online latency SLOs and manage GPU memory usage will be discussed shortly in

§6.4.5.

Offline Batching Mode. Due to the diurnal load patterns, a model may not receive any

new online requests periodically during non-peak hours. During such periods, the scheduler

switches to the offline batching mode for maximizing offline serving throughput (Line 17-18

in Algorithm 1). Because offline requests come with only loose or no latency requirements,

the scheduler ignores the budget limit and sets the largest batch size that can saturate GPU

compute or memory capacity.

145

Algorithm 3: Preemptive scheduling logic: the arrival of an online request triggers

a callback function and preempts running workers if necessary to meet the TTFT

objective.
Input: Incoming online request 𝑜.

1 Global 𝑄on (online request queue)

2 Global 𝑡sched (time when last batch gets scheduled)

3 Function OnRecvOnlineRequest(𝑜):

4 Initialize current time 𝑡𝑐𝑢𝑟𝑟 ← time.now()

5 𝑄on.append(𝑜)

6 𝐵← Worker.get_curr_batch()

7 𝑡exec ← Profiler.estimate_exec_time(𝑄𝑜𝑛

⋃
𝐵)

8 𝑡est ← Profiler.estimate_exec_time(𝐵)

9 𝑡remain ← 𝑡est − (𝑡curr − 𝑡sched)

10 if 𝑡remain + 𝑡exec > 𝑡TTFT then

11 break

12 𝐵victim ← ∅

13 for 𝑅 in 𝐵.offline_reqs() do

14 𝐵← 𝐵 \ {𝑅}

15 𝐵victim ← 𝐵victim ∪ {𝑅}

16 𝑡exec ← Profiler.estimate_exec_time(𝑄on
⋃

𝐵)

17 𝑡est ← Profiler.estimate_exec_time(𝐵)

18 𝑡remain ← 𝑡𝑒𝑠𝑡 − (𝑡curr − 𝑡sched)

19 if 𝑡remain + 𝑡exec ≤ 𝑡TTFT then

20 break

21 PreemptRunning (𝐵victim)

Preemption. Concerto can preempt offline requests at two potential points: during schedul-

ing or model execution. First, in each scheduling step, the scheduler needs to preempt sched-

146

uled offline requests to make room for incoming online requests or free up GPU memory under

memory pressure. Similar to prior systems such as vLLM [128], preempting a request during

scheduling can be done by either discarding-and-recomputing or swapping to host memory,

and it is implemented in the PreemptScheduling function at Line 5 in Algorithm 2.

However, in the worst case where incoming online requests are about to exceed their

TTFT objectives, Concerto must deal with the urgent case and preempt offline requests even

if they are in a running batch to schedule new requests in a timely fashion. To this end,

Concerto scheduler invokes an asynchronous handler upon the arrival of new online requests,

as shown in Algorithm 3. The handler first pushes the incoming online request into the online

request queue, and then leverages the profiler (discussed shortly in §6.4.5) to estimate the

queuing delay and the execution time (Lines 7-9). If the estimated serving time exceeds the

TTFT objective, the scheduler signals the worker to preempt offline requests in the current

running batch until it can meet the TTFT objective (Lines 10-21).

6.4.3 Preemptible Worker

To host the model on GPUs and execute inference requests, Concerto leverages a set of

workers to manage GPUs. Concerto supports both tensor and pipeline parallelism in the

Megatron-LM fashion [233]. Additionally, Concerto’s workers support preempting offline

requests in a running batch (i.e., PreemptRunning in Algorithm 3 Line 21). But unlike

previous work [97] that instruments and preempts running GPU kernels, Concerto worker

preempts LLM inference at the granularity of model layers, which strikes a balance between

responsiveness and runtime costs.

A unique challenge here is that we must synchronize all workers before preemption, because

workers in the same tensor parallel group perform collective communication operations—simply

preempting one worker would hang the other involved workers and hence the entire program.

Therefore, Concerto must synchronize all workers in the same tensor parallel group before

preemption. However, it is important to preempt at the right temporal granularity—if it is

147

too coarse-grained, the system may not be able to react to load bursts timely; but if it is too

fine-grained (e.g., per GPU kernel as in previous work [97]), synchronization can incur high

runtime overheads and harm overall efficiency.

To overcome this challenge, Concerto chooses to preempt at the granularity of model

layers for two reasons. First, while their architecture and size may vary drastically, LLMs

all consist of many layers, and the execution time for each layer is much shorter than the

end-to-end inference latency; as such, preemption can be made responsive. Second, one LLM

layer still consists of many GPU kernels and collective operations, and hence, preemption

(including additional cross-worker synchronization) only incurs negligible runtime overheads.

Concerto uses a master worker for the cross-worker synchronization. When the scheduler

decides to preempt the current batch, it signals the master worker and specifies a victim set

of offline requests to be preempted. The master worker then synchronizes all workers with a

barrier after finishing its current model layer and broadcasts the preemption signal as well as

the victim set. Upon receiving the signal, all workers discard all requests in the victim set

before continuing the execution of the next layer.

To further amortize the cost when the layer execution time is too short, a Concerto

worker can also adjust the preemption granularity by batching multiple layers before the

synchronization barrier.

6.4.4 Incremental Checkpointing

While preemption helps Concerto achieve low scheduling delay for online requests, it comes

with a cost to recompute the discarded KV cache for victim offline requests that are preempted

during scheduling or execution. Therefore, we must minimize the recomputation cost to fully

unleash the GPU compute power for meaningful work.

A strawman approach applied by existing serving systems such as vLLM [128] is to swap

out KV caches of victim requests to host memory, as shown in Figure 6.4(b). However,

148

IC

Time
Offline Prefill D1 D2 D3

Swap out Swap in

Online Recompute

Time
Offline Prefill D1 D2 D3Online

IC
Time

Offline Prefill D1 D2 D3Online

IC

Preemption

Swap in

Blocking

(c) Incremental Checkpointing (IC)

(b) Resume by Swapping

(a) Resume by Recomputation

Wasted compute

Resume

Online serving (prefill/decode) Offline prefill phase

Offline decode phaseIC Incremental Checkpointing

ICIC
Time

Offline Prefill D1 D2 D1’&3Online

IC Prefetch

(d) IC + Background Prefetching

Offline Prefill’

Idle

Idle

Figure 6.4: Comparison between different preemption and resume strategies. (a) Resume

by recomputation achieves low preemption delay at the cost of additional computation.

(b) Resume by swapping reduces the recomputation cost but swapping out can block the

schedule of incoming online requests. (c) Incremental checkpointing (IC) minimizes both

preemption delay and resume cost. (d) IC + background swap-in overlaps swap-in with prefill

computation of the next batch and achieves consistently high GPU utilization.

swapping out by itself still takes time and blocks the scheduling of incoming online requests.

To make matters worse, the amount of data to be swapped out increases proportionally to

the number of tokens in offline requests, but the interconnection bandwidth between GPUs

and host memory is limited. For example, Nvidia A100 connects with the host DRAM with

PCIe 4.0x16, which offers only 32 GBps bandwidth. Swapping out all KV caches for offline

149

requests can easily take dozens or even thousands of milliseconds, which still significantly

blocks incoming online requests. Besides, to resume serving victim requests, the GPU must

swap in evicted KV cache blocks before continuing the computation, which leaves GPU

compute units idle and hurts overall serving throughput.

Incremental Checkpointing. To overcome these challenges, we propose a novel asyn-

chronous checkpointing and resuming mechanism. Firstly, instead of swapping KV caches

out at the last minute when preemption happens, Concerto worker adopts a checkpointing

mechanism that runs asynchronously and incrementally in the background. As shown in

Figure 6.4(c), Concerto asynchronously checkpoints KV caches of offline requests after each

generation iteration. Because modern LLMs follow the auto-regressive nature and generate

tokens iteratively, workers can also incrementally checkpoint KV caches per iteration. As a

result, the PCIe traffic is amortized over multiple iterations. Besides, because checkpointing

has no data dependency with follow-up computation, it can be done asynchronously in the

background and overlapped with computation. As a result, it incurs only negligible runtime

overhead.

Concerto manages GPU memory similar to vLLM [128] by reserving GPU memory ahead

of time and virtually mapping KV cache blocks to physical GPU memory. But unlike

swapping which frees KV caches right after they are swapped out, checkpointing keeps KV

caches in GPU memory until incoming online requests are scheduled. Discarding KV caches

in Concerto is as fast and lightweight as freeing victim KV cache blocks and remapping new

ones virtually, which finishes at microseconds timescale.

Background Prefetching. Secondly, because offline requests do not have strict latency

constraints, they offer Concerto workers a unique opportunity to re-order requests and overlap

swap-in with computation. As shown in Figure 6.4(d), instead of waiting for victim requests

to be swapped in, Concerto worker launches a new offline batch and runs for its prefill phase,

and meanwhile prefetches KV cache blocks in the background. Afterward, the worker will

150

merge the new batch with prefetched requests and run their decode phase together. For

long sequences that need to swap in a large amount of KV blocks to resume, Concerto will

also split the swap-in phase over multiple steps to avoid long swap-in delays. In doing so,

Concerto keeps device-host I/O for offline requests entirely in the background and eliminates

idle GPU cycles.

Adaptive Checkpointing Policy. However, blindly applying the checkpointing technique

will excessively use host memory and interconnection bandwidth, potentially causing resource

contention when online requests also need swapping. Furthermore, checkpointing is only

necessary under GPU resource pressure when offline requests are likely to be preempted. In

other cases, it can be avoided to reduce runtime overhead. Inspired by the asynchronous

swap system design in the OS kernel [207] and the conventional wisdom of random early

detection [72], Concerto adaptively controls the checkpointing rate based on GPU memory

pressure to limit resources used by checkpointing. Specifically, Concerto starts checkpointing

when available GPU memory is running low (by default the threshold is set to 50%). but it

will only checkpoint a small number of offline requests first and gradually increase the number

of offline requests to checkpoint after observing constantly increasing memory usage. In most

cases when online load bursts are not intensive, preempting checkpointed offline requests will

make enough room to schedule incoming online requests and buy some additional time to

checkpoint the remaining offline requests.

Finally, incremental checkpointing can also help online serving to accommodate swap-

ping/preemption caused by continuous batching. With the continuous batching policy, the

scheduler will eagerly add new requests to the batch to enlarge the batch size when GPU

memory permits, but this may consume all GPU memory when requests in the batch generate

long output sequences and keep allocating memory for KV caches. In such scenarios, the

scheduler will have to swap or preempt online requests to make room. Concerto will also

incrementally checkpoint online requests under GPU memory pressure, thereby eliminating

151

the cost of swapping out or recomputation for online requests as well.

6.4.5 SLO-aware Scheduling

The last challenge that Concerto must address is to determine the right batch size (i.e., the

number of offline requests and tokens) to compute and the right set of KV cache blocks to

checkpoint/prefetch for each inference iteration. (1) As for the batch size, if the scheduler

batches too few offline requests, a substantial portion of GPU compute resources and memory

bandwidth would be underutilized and lead to suboptimal overall serving throughput; on the

flip side, if the scheduler batches too many offline requests, they will saturate the GPU and

increase the inference computation time and hence online serving latencies, resulting in SLO

violations. To make matters more complicated, the model execution time depends on not

only the batch size but also the context lengths of each request due to the non-linear compute

complexity of the attention kernel (𝑂 (𝑛2) for prefill phase and 𝑂 (𝑛) for decode phase where

𝑛 is the context length)2. Therefore, the scheduler must also decide the number of offline

tokens that can be batched and processed together with online tokens while meeting the SLO.

(2) As for the KV cache blocks to checkpoint/prefetch, swapping too many blocks, even if in

the background, will exhaust the PCIe bandwidth and GPU streaming multiprocessors (SMs)

resources and block the computation kernel, while checkpointing too few blocks will make it

unable to keep up with the GPU memory consumption rate, leading to memory exhaustion

and triggering swap that blocks incoming online requests.

To tackle this challenge, Concerto adopts an SLO-aware scheduler to collect the model

execution profiles with an offline profiler and dynamically adjust the batch size and the

degree of background swapping leveraging the collected information and SLOs specified by

the users. To flexibly batch varying numbers of offline tokens into each batch, Concerto

leverages chunked prefill [10] to break offline sequences if necessary.

2Chunked prefill alleviates this effect by splitting long sequences into smaller chunks, but its performance
is still prone to prefix lengths due to repeated KV cache access [10].

152

Profiler. Concerto’s performance and concrete scheduling policy are highly dependent

on the model itself and the hardware configurations, including specific GPU models, the

parallelization strategy, PCIe bandwidth, etc.. To quantify the performance impact, Concerto

will first run its profiler in the offline phase to profile the model prefill and decode computation

time with different numbers of tokens, as well as the swap latency with respect to the number

of KV cache blocks. The profiled results will be saved locally and automatically loaded when

launching a Concerto server.

SLO-aware Policy. Concerto then leverages the profiled information to schedule offline

requests. For each scheduled online batch, it queries the profiler with the latency SLO (TPOT

for batches containing decode phase requests, TTFT otherwise) to get the maximum number

of tokens that can be processed. It then schedules just enough offline tokens to fulfill the

batch. Similarly, it uses the SLO to decide the maximum number of KV cache blocks that

can be swapped in the background, and defers the extra blocks to the next round. In most

cases where swapping a block is faster than computation, or offline tokens only take a small

portion of the batch size, this policy is memory-safe and can always checkpoint KV cache

blocks faster than the GPU memory consumption. Under the extreme case where a huge

amount of KV cache blocks need to be checkpointed, Concerto will prioritize online latency

SLO attainment and fall back to discard excessive KV cache blocks and recompute them

later.

6.5 Implementation

We have implemented Concerto atop vLLM 0.4.2 [128] with 4165 lines of code. Concerto

leverages Ray [171] to distribute the model to multiple GPUs, but it additionally supports a

Python multiprocessing backend that communicates via shared memory to eliminate Ray’s

high inter-process communication (IPC) cost when running with multiple GPUs on a single

node.

153

To support layer-wise preemption, Concerto instruments the model to add a preemption

safepoint between layers, inspired by the design of managed language runtimes [5]. The

safepoint contains a small piece of code that synchronizes all workers and then checks the

preempted flag, which is a variable shared by the scheduler and all workers. If the worker

detects preempted is set, it will abort the following layers and return directly.

Because Concerto now co-serves online requests and offline requests with a unified runtime,

it does not need to reallocate GPU memory between two types of requests anymore. Instead,

it leverages vLLM’s paged KV cache management and reallocates only virtual KV cache

blocks. To support asynchronous checkpointing, Concerto keeps track of the mapping between

each GPU KV block and its CPU KV block that contains the corresponding checkpoint.

Such mapping is recorded in an extension field of the virtual page table and can be queried

and updated by Concerto scheduler.

Concerto also comes with a built-in load generator that can generate precisely timed

request patterns following the gamma distribution. The load generator can be configured

with various parameters including the request rate, burstiness (i.e., skewness of the gamma

distribution), and request lengths.

6.6 Evaluation

Our evaluation aims to answer the following questions:

1. Can Concerto judiciously coordinate GPU resources between online and offline serving to

optimize overall performance? (§6.6.2)

2. Can Concerto quickly and reactively harvest available idle GPU resources to improve

offline serving throughput? (§6.6.3.1)

3. Can Concerto quickly and reactively react to online load bursts and maintain low latency?

(§6.6.3.1 and §6.6.3.2)

154

6.6.1 Setup

Environment. We conducted experiments on one server that equips a 48-core CPU, 340GB

GB memory, and four NVIDIA A100-40G GPUs connected with 600 GBps fully-meshed

NVLink. The server ran Ubuntu 22.04 and CUDA 12.1. To reduce latency jitter, we

disabled dynamic voltage and frequency scaling (DVFS) of GPUs [6, 239] and Python garbage

collector [7].

Baselines. We compared Concerto with vLLM [128], a state-of-the-art LLM serving system.

We also enabled chunked-prefill in vLLM to ensure a fair comparison. Because the original

vLLM cannot co-serve online requests and offline requests, we evaluated it by only feeding

online requests (referred to as Online-Only), which provides the optimal online serving latency

but zero offline serving throughput. To enhance its performance, we also extended vLLM’s

online serving frontend with a batch process API, so that it can also take batched offline

requests while serving online requests. We additionally implemented a priority scheduler that

prioritizes online requests over offline ones, and we refer to this enhanced baseline as vLLM++.

Models. We chose the Llama [247] model family, one of the representative open-source LLM

series. Specifically, we tested the Llama-2 7B model on a single A100 GPU. All experiments

use FP16 precision and tensor parallelism to align with our baselines.

Real Workloads. To model the bursty load patterns of online requests, we evaluated

Concerto and the other baseline systems with a real-world load trace BurstGPT [263], which

collects user requests to ChatGPT [189] and GPT-4 [190] in a university campus and is

representative for online workloads. To adapt the campus-wide trace to our evaluation setting

that consists of a relatively small number of GPUs, we sample the trace following the previous

practice [230] as follows: given the duration 𝐷 and request rate 𝑅, we sample 𝑅 × 𝐷 requests

from the original trace, and re-scale the real-time stamps to [0, 𝐷]. We set 𝑅 as the maximal

155

request rate that can be served within latency SLOs. For offline workloads, we evaluated the

document summarization task with the LongBench [23] datasets.

Synthetic Workloads. To demonstrate Concerto’s capability in reacting to different

request rates and different degrees of load burstiness and SLO tightness, we also leverage

Concerto’s load generator to generate synthetic workloads with configurable parameters

(details in §6.6.3).

Metrics. Since online serving targets low latency and offline serving targets high throughput,

we adopt different metrics when evaluating their service quality. For online serving, we measure

each request’s 99th percentile TTFT and TPOT, respectively. For offline serving, we measure

the throughput by counting the number of generated tokens per second.

6.6.2 Overall Serving Performance

In this section, we evaluated Concerto with real-world workloads and compared its end-to-end

performance against the baselines. We used the same trace reported in Figure 6.1b as the

online load. We first ran the original vLLM with only online loads to collect its 99th percentile

TTFT and TPOT, and then set them as the SLO targets for all systems (1500ms for TTFT

and 110ms for TPOT).

A good result for Concerto would show that it quickly detects any GPU underutilization

and judiciously batches offline requests to harvest available GPU resources to achieve good

offline throughput while still keeping online serving latency lower than the SLO. In contrast,

Online-Only should achieve the optimal online serving latency but fails to harvest idle GPU

resources for offline serving. On the contrary, vLLM++ does batch offline requests together with

online ones, but it optimizes for the overall serving throughput and does not guarantee online

latency. Therefore, we expect vLLM++ to achieve high offline throughput but also experience

drastically fluctuating TTFT and TPOT during load bursts.

156

103

105
P9

9
O
nl
in
e

TT
FT

(m
s)

102

103

P9
9
O
nl
in
e

TP
O
T
(m

s)

0 200 400 600 800
Time (s)

(a) Online-Only.

0

5

10

15

O
ve

ra
ll
Tp

ut
(K
To
ke

ns
/s
)

0 200 400 600 800
Time (s)

(b) vLLM++.

0 200 400 600 800
Time (s)

(c) Concerto.

1

Figure 6.5: Overall serving performance on real workloads. Concerto achieves consistently low

TTFT and TPOT that are comparable with Online-Only and below the SLO. It also achieves

86% of the ideal offline serving throughput (measured by vLLM++ which eagerly batches offline

requests regardless online latency constraints).

Figure 6.5 presents the results. The top two figures present 99th percentile TTFT

and TPOT of all three systems. The bottom figure shows the offline serving throughput.

Intuitively, Online-Only achieves optimal TTFT and TPOT. However, when the request rate

is low (during time 𝑡 = 240s-620s), it cannot batch enough requests per inference iteration,

leading to overly low latency but GPU underutilization. On average, it achieves an overall

serving throughput of 1999 tokens/s. Concerto maintains low online TTFT and TPOT that

are close to ideal ones and consistently lower than SLOs, and it offers 3702 tokens/s overall

throughput by harvesting available GPU resources for offline serving. vLLM++ is also able

to batch offline requests and achieves 4308 tokens/s throughput, but due to the frequent

swapping, it ramps up the 99th percentile TTFT and TPOT by 84× (83825ms) and 25×

(2523ms), respectively.

In summary, the experiment demonstrates that Concerto can efficiently utilize available

GPU resources for offline serving with negligible impact on online serving latency. As a result,

157

103

P9
9
O
nl
in
e

TT
FT

(m
s)

102

P9
9
O
nl
in
e

TP
O
T
(m

s)

0

2

4

6

O
nl
in
e
Tp

ut
(K
To
ke
ns
/s
)

0 180 360 540 720 900
Time (s)

0

2

4

6

O
ffl
in
e
Tp

ut
(K
To
ke
ns
/s
)

Online-Only
vLLM++
Concerto

1
Figure 6.6: Concerto incurs negligible impact on online TTFT and TPOT and always keeps

them below their SLO during ON phases. During the transition from the ON to OFF

phase, Concerto reactively detects and harvests additional idle resources and achieves high

offline throughput during the OFF phases. Even under extreme resource pressure during

the transition from the OFF to ON phase, Concerto quickly scales down offline serving and

prevents any spikes in online latency.

it achieves 2.35× higher overall throughput compared to Online-Only and 98.8% lower online

serving latency compared to vLLM++.

158

6.6.3 Reacting to Load Bursts

In this section, we conducted a set of experiments to investigate whether Concerto can

reactively harvest idle GPU resources—whenever they are available—for offline serving, while

still quickly reacting to resource pressure to avoid interfering with online serving performance.

For experiments in this section, we set the request input length to 1024 and the output length

to 128 as representative values for online loads [263, 285].

6.6.3.1 ON/OFF Staged Load Patterns

In many real-world settings, LLMs do not always receive requests from clients. Instead, they

may remain idle for a while (“OFF” phases), and experience high load occasionally (“ON”

phases) [230]. To evaluate whether Concerto can react quickly enough to intense resource

pressure when online bursts arrive, we synthesized a staged online load by dynamically

changing the load between the system’s max capacity and zero, as shown as the blue line

in Figure 6.6. A good result for Concerto will show that it can quickly react to changes in

resource availability and keep both low online tail latency and high GPU utilization.

Figure 6.6 presents the results. Initially, the system ran in the “ON” stage at its maximum

capacity. At 𝑡 = 180s, the system switched to the “OFF” stage with no online request until

𝑡 = 360s, where the system started another round of the “ON” stage. Note that such resource

pressure is extremely hard to handle because the load can spike instantly. Despite sharp

changes between the “ON” and “OFF” stages, Concerto is still able to keep the 99th percentile

TTFT and TPOT under 350ms and 90ms, respectively, and avoid SLO violations. Besides, it

quickly and reactively regrants GPUs to offline serving at millisecond-scale when detecting

idle GPU resources, thereby greatly improving GPU utilization and achieving an offline

throughput of 6000 tokens/s during the “OFF” stages. vLLM++, in contrast, overly batches

offline requests even in the “ON” stages, leading to 1.4× to 11× higher 99th percentile TTFT

and TPOT and vast SLO violations.

159

103

104

P9
9
O
nl
in
e

TT
FT
(m
s)

0

25

50

75

100
P9
9
O
nl
in
e

TP
O
T
(m
s)

2 4 6
(a) CV (2 Reqs/s)

0

2

4

O
ffl
in
e
Tp
ut

(K
To
ke
ns
/s
)

2 4 6
(b) Req Rate (Reqs/s) (CV=1)

Online-Only
vLLM++
Concerto

Figure 6.7: Overall serving performance under varying CVs and request rates. Concerto

consistently achieves low online latencies and enables a linear trade-off between online

throughput and offline throughput to keep maximized GPU utilization. It also maintains

high efficiency across a wide range of load burstiness levels.

These results show that Concerto can quickly harvest idle GPU resources for offline serving

and free them under pressure. Consequently, the online load neither runs out of resources

nor slows down, and it only experiences negligible tail latency increases. This also means

Concerto can keep GPUs at maximum utilization without any risk of interfering with online

serving.

6.6.3.2 Robustness to Changing Load Burstiness

In reality, clients’ behavior may have constantly changing load patterns [230, 263]. To this

end, we further investigate the robustness of Concerto under varying load burstiness and

160

request rates. Following previous studies [142, 263], we constructed a synthetic load following

the Gamma process with an average rate of 2 requests per second and a coefficient of variation

(CV) of 1. Here CV measures the load burstiness, and larger CV values mean that the load

is more bursty. We evaluate how the online 99th percentile latencies change when fixing

one factor and varying the other. As modeled by the queueing theory [66], we expect the

queueing delay of requests will increase superlinearly as the CV or the request rate increases,

but Concerto should be able to react to uncertain resource pressure and keep tail latencies

comparable to the ideal ones.

Figure 6.7 presents 99th percentile online TTFTs, 99th percentile online TPOTs, and

offline throughputs achieved by all three systems under varying CVs (left column) and varying

request rates (right column), respectively. Intuitively, online TTFT increases when the load

becomes more bursty and heavier for all systems. However, Concerto is robust to bursty

loads and high request rates. It achieves low TTFTs that are close (within 25%) to the

ideal latencies offered by Online-Only. vLLM++, in contrast, severely hurts online TTFTs

with a minimum value of 4980ms. Such high 99th percentile TTFTs also mean vLLM++ can

hardly satisfy latency SLOs. Moreover, although Concerto typically batches fewer requests

than vLLM++ to keep latencies low, it can still outperform vLLM++ in terms of offline serving

throughput, and this is because Concerto overlaps checkpointing and swap-ins for offline

requests and eliminates I/O stalls on GPUs.

In summary, these results illustrate that Concerto can always quickly react to intense

resource pressure and avoid violating online latency SLOs, and it remains robust performance

under varying request rates and load burstiness.

6.7 Discussion

Compatibility with Disaggregated LLM Serving Architectures. In latency-sensitive

scenarios, users may have stringent TTFT and TPOT requirements. Therefore, many ongoing

161

research efforts have proposed disaggregated architectures for LLM serving [198, 285] that use

separate GPUs for prefill computation and decode computation to reduce inference. Concerto’s

design is orthogonal and compatible with these disaggregated architectures. Specifically,

Concerto can be integrated separately in the prefill cluster scheduler and the decode cluster

scheduler in a disaggregated architecture. Furthermore, Concerto’s offline serving interfaces

expose more semantics to reduce the KV cache transfer cost between prefill clusters and

decode clusters. For example, Concerto can not only checkpoint to local DRAM but also

asynchronously checkpoint offline KV cache from the prefill cluster to the GPU memory or

DRAM in decode clusters. We leave these optimizations as future work.

Long-Context Scenarios. Improving LLMs’ ability to process long contexts and long

outputs has gained significant attraction [136, 145, 267]. Concerto is compatible with sequence

parallelism and optimizations such as RingAttention [145] and StreamLLM [267] remain valid,

in which case Concerto will partition both online and offline requests among all sequence

parallel workers for load balancing.

Support for Multiple Models. While the main design goal of Concerto is to co-serve

online and offline requests within a model to reuse the model weights, it can also be generalized

to serve multiple models. For example, in practice, many models can share model weights but

adapt to different tasks with parameter-efficient fine-tuning (PEFT) [45, 229, 266]. Concerto

can seamlessly support them and flexibly co-serve online and offline requests for different

fine-tuned models. For LLMs that do not share weights, Concerto can also serve them by

co-locating multiple LLMs onto the same set of GPUs and routing requests to the target

LLM.

162

6.8 Related Work

Model Serving Systems. Other than specialized LLM serving systems discussed in §6.2.3,

many other systems target serving more general ML models. Triton [187], TorchServe [197,

243], TensorFlow Serving [9, 86] are three representative serving systems ready for production.

Clipper [58], InferLine [59], and Clockwork [90] serve general neural networks by batching

and scheduling requests. Reef [97] and Shepherd [277] proposed to co-locate models on

the same GPU and preempt GPU compute kernels for scheduling. AlpaServe [142], on the

other hand, leverages model parallelism for statistical multiplexing. However, these systems

overlook the huge model size and the autoregressive nature of LLM inference, hence only

achieving suboptimal LLM serving performance.

Offline LLM Serving. As offline inference has gained increasing traction, many systems

are specifically optimized for offline LLM serving. DeepSpeed ZeRO-Inference [17] and

FlexGen [228] proposed to offload model weights and KV caches to host memory to serve

LLMs on small commodity GPUs. Their design does not fit online serving due to the

long swapping latency, but they can also benefit from Concerto’s incremental checkpointing

mechanism for further performance improvement. S3 [116] optimized for high generation

throughput by predicting the output sequence length and minimizing memory waste. Concerto

is orthogonal to these optimizations and can further benefit from them for higher offline

serving throughput.

Optimized LLM Algorithms. Another line of work focuses on optimizing the efficiency

of LLM algorithms/kernels. FlashAttention [62, 63] improves the memory I/O efficiency with

a redesigned attention kernel. GPTQ [75], AWQ [144], and SqueezeLLM [123] quantize and

compress the model weights and KV caches to reduce GPU memory consumption. Some

other work aims to improve compute and memory efficiency with optimized transformer

architectures. MQA [226] and GQA [11] modify the attention kernel to reduce the KV cache

163

size. Mixture-of-expert models [21, 114, 166] make weight parameters sparse and hence

reduce the model size. Concerto is orthogonal to these optimizations on algorithms and

architectures, while Concerto can further improve GPU utilization beyond their benefits.

Deep Learning Schedulers. GPU clusters today suffer from low resource utilization [111,

264, 269]. To improve GPU utilization, many deep learning schedulers are proposed for

better model placement, job migration, and GPU sharing [264, 265, 268, 269, 273]. Concerto

focuses on sharing GPU resources between online and offline serving, and it is orthogonal

to cluster-level schedulers. However, Concerto could benefit from advances in underlying

scheduling policies and hardware support.

Workload Co-location. Co-locating latency-critical applications with batch applications

is a widely adopted approach to improve resource utilization in datacenters. For instance,

Parties [46] partitions resources such as CPU cache and memory resources across microservices

to preserve their SLOs. Operating systems such as ZygOS [204], Shenango [194], and

Caladan [76] proposed to preempt batch jobs and reallocate CPU cores to latency-critical

jobs to improve CPU utilization. However, existing workload co-location solutions primarily

target traditional hardware resources and workloads, rather than emerging GPUs and AI

workloads. In contrast, Concerto shares the concept of colocating workloads and preemption

to improve resource utilization but is specifically optimized for LLM serving on GPUs.

6.9 Summary

In this chapter, we present Concerto, a unified LLM serving system that serves both online

and offline inference with near-optimal efficiency and GPU utilization. Concerto achieves

these benefits through its preemptive worker, novel incremental checkpointing mechanism,

and adaptive scheduler, which opportunistically schedules offline requests when possible,

and timely preempts them before they can impact online serving latency. Concerto proves

164

that it is possible to maintain low latency, high throughput, and high GPU utilization

simultaneously.

165

CHAPTER 7

Conclusion

Today’s datacenters struggle with low resource utilization, primarily due to a mismatch

between the modern applications they host—characterized by high load variability and strict

performance requirements—and outdated system stacks that fail to efficiently harness idle

resources. In this dissertation, we present a vision and a comprehensive, four-part approach

to redesigning datacenter operating systems and runtime systems, significantly improving

their efficiency and safety for resource harvesting.

Our redesigned datacenter system stacks are grounded in two key insights. First, although

datacenter applications often exhibit variable and large resource demands, many include

elastic components that can utilize idle resources with intermittent availability. Second,

aggregating resources across servers can form a more stable and sufficient resource pool, even

when resource availability per server is unpredictable.

Based on these insights, this dissertation introduces four resource harvesting systems.

First, Chapter 3 presents Midas, a soft memory management system that harvests memory

within a server. To bridge the semantics gap between the application and the operating

system, we propose soft memory, a new OS memory abstraction for application-managed soft

state. Soft memory captures the essential unmap-and-reconstruct semantics, enabling the

runtime and the OS kernel to co-manage idle memory with guaranteed safety and efficiency.

Expanding beyond a single server, Chapters 4 and 5 explore systems that enable applica-

tions to harness idle memory on a remote server. In particular, Chapter 4 introduces Hermit,

a fully asynchronous OS kernel swap system for remote memory that allows applications to

166

transparently and efficiently scale out by swapping their data to remote memory. Further,

Chapter 5 presents Canvas, which enhances the OS kernel swap system with isolation support

and adaptive applications. Canvas enables multiple applications to share remote memory

simultaneously without performance interference, moving a step closer to the practical

deployment of remote memory.

Lastly, we extend these insights to encompass emerging datacenter hardware and workloads,

exemplified by GPUs and large language models. Chapter 6 presents Concerto, a preemptive

GPU runtime designed for large language model serving, which effectively harvests idle GPU

resources for offline inference tasks.

Collectively, these systems form a holistic system stack for resource harvesting, demon-

strating the feasibility of safely and efficiently utilizing all available resources in datacenters,

including both traditional resources like memory and accelerators like GPUs, within and

across servers. This dissertation not only addresses the pressing issue of resource under-

utilization in datacenters but also lays the foundation for more adaptive, resource-efficient

infrastructures in the future.

7.1 Future Directions

Looking ahead, we believe that the full potential of resource harvesting can be realized

through more comprehensive system stack support, building upon the foundations laid in this

dissertation. In this section, we outline several promising directions for future work that will

push the boundaries of what is possible in datacenter resource management. As illustrated

in Figure 7.1, these directions include building accelerator-centric system stacks for AI/ML

workloads, developing programming frameworks for resource harvesting, and abstracting

heterogeneous and distributed hardware resources as unified services.

167

① Accelerators-Centric System
Stacks for AI and ML

LLM Agent
Compound AI

Systems

CPU Memory Network

GPU TPUAccelerators

Applications

② Resource Harvesting
Programming Frameworks

③ Resource Harvesting as a Service

Chatbot

Server

Hardware
Resources

Server

Hardware
Resources

Server

Web ServiceData Analytics

Social Networks

Proposed Future Resource
Harvesting System Stack

Figure 7.1: Overview of the proposed future resource harvesting system stack, comprising

three major components. This stack is designed to support a broad range of applications,

from traditional datacenter workloads to emerging AI workloads, while efficiently managing

heterogeneous hardware resources through unified abstractions and flexible programming

interfaces.

Accelerator-Centric System Stacks for AI and ML. GPUs and other accelerators are

evolving into the new central processing units in datacenters, powering numerous deep-learning

and AI workloads. Meanwhile, emerging AI applications such as AI agents are not only growing

in scale but also in complexity. These applications start to integrate with multiple ML models

and other software tools, each with diverse resource demands [130, 148, 191, 201, 275, 280].

However, due to the lack of comprehensive operating system support for GPUs, AI applications

today can only leverage vendor-specific drivers and runtimes, such as CUDA [188], to use

GPUs, which only offer primitive support for resource management. For instance, these

drivers and runtimes do not support distributing tasks over multiple GPUs, nor flexibly

scheduling multiple tasks onto and time-sharing a single GPU. As a result, they have to

build their own runtime systems and manage resources manually in a coarse granularity,

suffering from unnecessary complexity and inefficiency that could have been avoided with

better system stack support.

To address this, we propose that, akin to how traditional operating systems virtualize

168

CPU cores and physical memory, we should introduce similar abstractions to accelerator

resources. Our proposed system stack will abstract physical resources, allowing applications

to interact with high-level interfaces rather than dealing with hardware details directly. This

system will offer enhanced scheduling support, enabling multiple applications to share the

same GPU, and provide autoscaling capabilities to quickly launch or migrate jobs across

GPUs, potentially across different servers.

From the user’s perspective, the benefit of having an OS and runtime can be further

amplified because they can build applications easier with high-level interfaces. For example,

we propose to build new programming frameworks that encapsulate low-level abstractions we

just mentioned for developers to build AI applications that are distributed and heterogeneous

and may have multiple components that use both CPUs and GPUs.

Resource Harvesting Programming Frameworks. Today’s datacenter applications are

constructed upon layers of abstractions, encompassing programming languages, application

runtimes, VMs and the OS kernel, and hardware. While this paradigm reduces programming

effort, it often sacrifices efficiency because abstractions conceal application semantics, thereby

limiting opportunities to customize the underlying systems. This inefficiency can be addressed

through a holistic design spanning multiple system layers, particularly through co-designing

programming languages and systems to reshape future cloud applications with semantics-aware

system support. For instance, Golang’s reliance on coroutines naturally segments programs

into finer-grained pieces [4], offering opportunities for distributed scheduling optimization to

improve scalability and resource efficiency. Similarly, Rust’s ownership memory model [8, 153],

which ensures exclusive write access to shared memory objects, can be harnessed for efficient

data distribution and sharing and providing applications with a distributed shared memory

without incurring expensive coherence and synchronization overheads. By leveraging the

hidden semantics of existing language abstractions and introducing new abstractions (as

demonstrated in Canvas and Midas), we can build a new programming framework that

169

empowers developers to write applications as logical monoliths while offloading deployment

tasks to the runtime, which can automatically distribute applications across servers with high

scalability, resource efficiency, and fault resilience.

Resource Harvesting as a Service. Microservice-based applications demand extensive

caching, often involving complex dependencies between cached objects [276]. For example,

in a Twitter-like web application, the frontend service might cache user posts for quicker

timeline rendering, with each post potentially containing several media objects cached by

different microservices [80]. The typical approach—serializing these objects along with their

dependencies into a key-value cache—results in memory waste due to object duplication and

complicates cache coherence when multiple copies of the same object exist.

While soft memory pointers in Midas allow developers to nest soft pointers to express

dependencies between objects, it currently manages soft objects on a per-process and per-

server basis, hindering its adoption in distributed microservices. To overcome this limitation,

we propose developing a distributed cache service that allows processes to harvest idle memory

from any server for storing soft objects, acquire cross-server soft pointers, and share soft

objects efficiently. Achieving this goal will require a co-design of the application runtime and

OS kernel. The kernel will expose shared soft memory with a new virtual memory abstraction,

manage the application’s permission for safety, and leverage remote memory support for

cross-server accesses, while the application runtime will coordinate with the kernel for cache

entry allocation and eviction. It will also provide high-level APIs like pass-by-reference

RPCs to facilitate microservices in using the cache service and harvesting available compute

resources on remote servers.

170

Bibliography

[1] Amazon elasticache. https://aws.amazon.com/elasticache/, 2023.

[2] The redis database. https://redis.com/, 2023.

[3] Storage performance development kit. https://spdk.io, 2023.

[4] Goroutines. https://go.dev/tour/concurrency/1, 2024. URL https://go.dev/

tour/concurrency/1.

[5] HotSpot Glossary of Terms: Safepoint. https://openjdk.org/groups/hotspot/docs/

HotSpotGlossary.html, 2024. URL https://openjdk.org/groups/hotspot/docs/

HotSpotGlossary.html.

[6] System Management Interface SMI. https://developer.download.nvidia.com/

compute / DCGM / docs / nvidia - smi - 367.38.pdf, 2024. URL https : / /

developer.download.nvidia.com/compute/DCGM/docs/nvidia-smi-367.38.pdf.

[7] gc—Garbage Collector interface. https://docs.python.org/3/library/gc.html, 2024.

URL https://docs.python.org/3/library/gc.html.

[8] Rust onwership model. https://doc.rust-lang.org/book/ch04-00-understanding-

ownership.html, 2024. URL https : / / doc.rust - lang.org / book / ch04 - 00 -

understanding-ownership.html.

[9] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey Dean,

Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, et al. Tensorflow:

a system for large-scale machine learning. In OSDI, volume 16, pages 265–283, 2016.

[10] Amey Agrawal, Nitin Kedia, Ashish Panwar, Jayashree Mohan, Nipun Kwatra, Bhar-

gav S. Gulavani, Alexey Tumanov, and Ramachandran Ramjee. Taming throughput-

latency tradeoff in llm inference with sarathi-serve, 2024.

171

https://aws.amazon.com/elasticache/
https://redis.com/
https://spdk.io
https://go.dev/tour/concurrency/1
https://go.dev/tour/concurrency/1
https://go.dev/tour/concurrency/1
https://openjdk.org/groups/hotspot/docs/HotSpotGlossary.html
https://openjdk.org/groups/hotspot/docs/HotSpotGlossary.html
https://openjdk.org/groups/hotspot/docs/HotSpotGlossary.html
https://openjdk.org/groups/hotspot/docs/HotSpotGlossary.html
https://developer.download.nvidia.com/compute/DCGM/docs/nvidia-smi-367.38.pdf
https://developer.download.nvidia.com/compute/DCGM/docs/nvidia-smi-367.38.pdf
https://developer.download.nvidia.com/compute/DCGM/docs/nvidia-smi-367.38.pdf
https://developer.download.nvidia.com/compute/DCGM/docs/nvidia-smi-367.38.pdf
https://docs.python.org/3/library/gc.html
https://docs.python.org/3/library/gc.html
https://doc.rust-lang.org/book/ch04-00-understanding-ownership.html
https://doc.rust-lang.org/book/ch04-00-understanding-ownership.html
https://doc.rust-lang.org/book/ch04-00-understanding-ownership.html
https://doc.rust-lang.org/book/ch04-00-understanding-ownership.html

[11] Joshua Ainslie, James Lee-Thorp, Michiel de Jong, Yury Zemlyanskiy, Federico Lebrón,

and Sumit Sanghai. Gqa: Training generalized multi-query transformer models from

multi-head checkpoints, 2023.

[12] Emmanuel Amaro, Christopher Branner-Augmon, Zhihong Luo, Amy Ousterhout,

Marcos K. Aguilera, Aurojit Panda, Sylvia Ratnasamy, and Scott Shenker. Can far

memory improve job throughput? In EuroSys, 2020.

[13] Emmanuel Amaro, Zhihong Luo, Amy Ousterhout, Arvind Krishnamurthy, Aurojit

Panda, Sylvia Ratnasamy, and Scott Shenker. Remote memory calls. In Proceedings of

the 19th ACM Workshop on Hot Topics in Networks, HotNets ’20, page 38–44, New

York, NY, USA, 2020. Association for Computing Machinery. ISBN 9781450381451.

doi: 10.1145/3422604.3425923. URL https://doi.org/10.1145/3422604.3425923.

[14] Emmanuel Amaro, Stephanie Wang, Aurojit Panda, and Marcos K. Aguilera. Logical

memory pools: Flexible and local disaggregated memory. In Proceedings of the 22nd

ACM Workshop on Hot Topics in Networks, HotNets ’23, page 25–32, New York,

NY, USA, 2023. Association for Computing Machinery. ISBN 9798400704154. doi:

10.1145/3626111.3628201. URL https://doi.org/10.1145/3626111.3628201.

[15] Amazon Elastic Compute Cloud. Amazon ec2 spot instances. https://aws.amazon.com/

ec2/spot, 2022.

[16] Pradeep Ambati, Inigo Goiri, Felipe Frujeri, Alper Gun, Ke Wang, Brian Dolan, Brian

Corell, Sekhar Pasupuleti, Thomas Moscibroda, Sameh Elnikety, Marcus Fontoura, and

Ricardo Bianchini. Providing SLOs for Resource-Harvesting VMs in cloud platforms.

In 14th USENIX Symposium on Operating Systems Design and Implementation (OSDI

20), pages 735–751. USENIX Association, November 2020. ISBN 978-1-939133-19-9.

URL https://www.usenix.org/conference/osdi20/presentation/ambati.

[17] Reza Yazdani Aminabadi, Samyam Rajbhandari, Minjia Zhang, Ammar Ahmad Awan,

172

https://doi.org/10.1145/3422604.3425923
https://doi.org/10.1145/3626111.3628201
https://aws.amazon.com/ec2/spot
https://aws.amazon.com/ec2/spot
https://www.usenix.org/conference/osdi20/presentation/ambati

Cheng Li, Du Li, Elton Zheng, Jeff Rasley, Shaden Smith, Olatunji Ruwase, and

Yuxiong He. Deepspeed inference: Enabling efficient inference of transformer models at

unprecedented scale, 2022. URL https://arxiv.org/abs/2207.00032.

[18] Apache Cassandra. An open source nosql database. https://cassandra.apache.org,

2021.

[19] Dan Ardelean, Amer Diwan, and Chandra Erdman. Performance analysis of cloud appli-

cations. In 15th USENIX Symposium on Networked Systems Design and Implementation

(NSDI 18), pages 405–417, Renton, WA, April 2018. USENIX Association. ISBN 978-

1-939133-01-4. URL https://www.usenix.org/conference/nsdi18/presentation/

ardelean.

[20] Michael Armbrust, Armando Fox, Rean Griffith, Anthony D. Joseph, Randy H. Katz,

Andrew Konwinski, Gunho Lee, David A. Patterson, Ariel Rabkin, Ion Stoica, and

Matei Zaharia. Above the clouds: A berkeley view of cloud computing. Technical

Report UCB/EECS-2009-28, Feb 2009. URL http://www2.eecs.berkeley.edu/Pubs/

TechRpts/2009/EECS-2009-28.html.

[21] Mikel Artetxe, Shruti Bhosale, Naman Goyal, Todor Mihaylov, Myle Ott, Sam Shleifer,

Xi Victoria Lin, Jingfei Du, Srinivasan Iyer, Ramakanth Pasunuru, Giri Ananthara-

man, Xian Li, Shuohui Chen, Halil Akin, Mandeep Baines, Louis Martin, Xing Zhou,

Punit Singh Koura, Brian O’Horo, Jeff Wang, Luke Zettlemoyer, Mona Diab, Zornitsa

Kozareva, and Ves Stoyanov. Efficient large scale language modeling with mixtures of

experts, 2022.

[22] Berk Atikoglu, Yuehai Xu, Eitan Frachtenberg, Song Jiang, and Mike Paleczny. Work-

load analysis of a large-scale key-value store. In Proceedings of the 12th ACM SIGMET-

RICS/PERFORMANCE Joint International Conference on Measurement and Modeling

of Computer Systems, SIGMETRICS ’12, page 53–64, New York, NY, USA, 2012. Asso-

173

https://arxiv.org/abs/2207.00032
https://cassandra.apache.org
https://www.usenix.org/conference/nsdi18/presentation/ardelean
https://www.usenix.org/conference/nsdi18/presentation/ardelean
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2009/EECS-2009-28.html
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2009/EECS-2009-28.html

ciation for Computing Machinery. ISBN 9781450310970. doi: 10.1145/2254756.2254766.

URL https://doi.org/10.1145/2254756.2254766.

[23] Yushi Bai, Xin Lv, Jiajie Zhang, Hongchang Lyu, Jiankai Tang, Zhidian Huang,

Zhengxiao Du, Xiao Liu, Aohan Zeng, Lei Hou, Yuxiao Dong, Jie Tang, and Juanzi Li.

Longbench: A bilingual, multitask benchmark for long context understanding, 2024.

URL https://arxiv.org/abs/2308.14508.

[24] Pierre Baldi, Peter Sadowski, and Daniel Whiteson. Searching for exotic particles in

high-energy physics with deep learning. Nature communications, 5(1):1–9, 2014.

[25] Hitesh Ballani, Paolo Costa, Thomas Karagiannis, and Ant Rowstron. Towards

predictable datacenter networks. In SIGCOMM, pages 242–253, 2011.

[26] Luiz Barroso, Mike Marty, David Patterson, and Parthasarathy Ranganathan. Attack

of the killer microseconds. Commun. ACM, 60(4):48–54, 2017.

[27] Luiz André Barroso, Urs Hölzle, and Parthasarathy Ranganathan. The Datacenter as

a Computer: Designing Warehouse-Scale Machines, Third Edition. Synthesis Lectures

on Computer Architecture, 2018.

[28] Davide B. Bartolini, Filippo Sironi, Donatella Sciuto, and Marco D. Santambrogio.

Automated fine-grained cpu provisioning for virtual machines. ACM Trans. Archit.

Code Optim., 11(3), July 2014.

[29] Adam Belay, George Prekas, Ana Klimovic, Samuel Grossman, Christos Kozyrakis, and

Edouard Bugnion. IX: A protected dataplane operating system for high throughput

and low latency. In OSDI, pages 49–65, 2014.

[30] Benjamin Berg, Daniel S. Berger, Sara McAllister, Isaac Grosof, Sathya Gunasekar,

Jimmy Lu, Michael Uhlar, Jim Carrig, Nathan Beckmann, Mor Harchol-Balter, and

Gregory R. Ganger. The CacheLib caching engine: Design and experiences at scale. In

174

https://doi.org/10.1145/2254756.2254766
https://arxiv.org/abs/2308.14508

14th USENIX Symposium on Operating Systems Design and Implementation (OSDI

20), pages 753–768. USENIX Association, November 2020. ISBN 978-1-939133-19-9.

URL https://www.usenix.org/conference/osdi20/presentation/berg.

[31] Daniel S. Berger, Benjamin Berg, Timothy Zhu, Siddhartha Sen, and Mor Harchol-

Balter. RobinHood: Tail latency aware caching – dynamic reallocation from Cache-

Rich to Cache-Poor. In 13th USENIX Symposium on Operating Systems Design and

Implementation (OSDI 18), pages 195–212, Carlsbad, CA, October 2018. USENIX

Association. ISBN 978-1-939133-08-3. URL https://www.usenix.org/conference/

osdi18/presentation/berger.

[32] Dimitri Bertsekas and Robert Gallager. Data Networks (2nd Ed.). Prentice-Hall, Inc.,

USA, 1992. ISBN 0132009161.

[33] Betsy Beyer, Chris Jones, Jennifer Petoff, and Niall Richard Murphy. Site reliability

engineering: How Google runs production systems. " O’Reilly Media, Inc.", 2016.

[34] Qingchao Cai, Wentian Guo, Hao Zhang, Divyakant Agrawal, Gang Chen, Beng Chin

Ooi, Kian-Lee Tan, Yong Meng Teo, and Sheng Wang. Efficient distributed memory

management with rdma and caching. Proceedings of the VLDB Endowment, 11(11):

1604–1617, 2018.

[35] Irina Calciu, Ivan Puddu, Aasheesh Kolli, Andreas Nowatzyk, Jayneel Gandhi, Onur

Mutlu, and Pratap Subrahmanyam. Project pberry: Fpga acceleration for remote

memory. In HotOS, HotOS ’19, pages 127–135, New York, NY, USA, 2019. Association

for Computing Machinery. ISBN 9781450367271.

[36] Irina Calciu, M. Talha Imran, Ivan Puddu, Sanidhya Kashyap, Hasan Al Maruf, Onur

Mutlu, and Aasheesh Kolli. Rethinking Software Runtimes for Disaggregated Memory,

page 79–92. Association for Computing Machinery, New York, NY, USA, 2021. ISBN

9781450383172. URL https://doi.org/10.1145/3445814.3446713.

175

https://www.usenix.org/conference/osdi20/presentation/berg
https://www.usenix.org/conference/osdi18/presentation/berger
https://www.usenix.org/conference/osdi18/presentation/berger
https://doi.org/10.1145/3445814.3446713

[37] Matt Calder, Ryan Gao, Manuel Schröder, Ryan Stewart, Jitendra Padhye, Ratul

Mahajan, Ganesh Ananthanarayanan, and Ethan Katz-Bassett. Odin: Microsoft’s

scalable Fault-Tolerant CDN measurement system. In 15th USENIX Symposium on

Networked Systems Design and Implementation (NSDI 18), pages 501–517, Renton,

WA, April 2018. USENIX Association. ISBN 978-1-939133-01-4. URL https://

www.usenix.org/conference/nsdi18/presentation/calder.

[38] Roy Campbell, Garry Johnston, and Vincent Russo. Choices (class hierarchical open

interface for custom embedded systems). ACM SIGOPS Operating Systems Review, 21

(3):9–17, 1987.

[39] Pei Cao, Edward W. Felten, Anna R. Karlin, and Kai Li. Implementation and

performance of integrated application-controlled file caching, prefetching, and disk

scheduling. ACM Trans. Comput. Syst., 14(4):311–343, November 1996.

[40] John B Carter, John K Bennett, and Willy Zwaenepoel. Implementation and perfor-

mance of munin. ACM SIGOPS Operating Systems Review, 25(5):152–164, 1991.

[41] John B Carter, John K Bennett, and Willy Zwaenepoel. Techniques for reducing

consistency-related communication in distributed shared-memory systems. ACM Trans-

actions on Computer Systems (TOCS), 13(3):205–243, 1995.

[42] CBRE. North america data center trends h2 2021. https://www.cbre.com/insights/

reports/north-america-data-center-trends-h2-2021, 2022.

[43] Chih-Chung Chang and Chih-Jen Lin. Libsvm data: Classification. https://

www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets, 2012.

[44] Lei Chen, Shi Liu, Chenxi Wang, Haoran Ma, Yifan Qiao, Zhe Wang, Chenggang Wu,

Youyou Lu, Xiaobing Feng, Huimin Cui, Shan Lu, and Harry Xu. A tale of two paths:

Toward a hybrid data plane for efficient Far-Memory applications. In 18th USENIX

Symposium on Operating Systems Design and Implementation (OSDI 24), pages 77–95,

176

https://www.usenix.org/conference/nsdi18/presentation/calder
https://www.usenix.org/conference/nsdi18/presentation/calder
https://www.cbre.com/insights/reports/north-america-data-center-trends-h2-2021
https://www.cbre.com/insights/reports/north-america-data-center-trends-h2-2021
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets

Santa Clara, CA, July 2024. USENIX Association. ISBN 978-1-939133-40-3. URL

https://www.usenix.org/conference/osdi24/presentation/chen-lei.

[45] Lequn Chen, Zihao Ye, Yongji Wu, Danyang Zhuo, Luis Ceze, and Arvind Krishna-

murthy. Punica: Multi-tenant lora serving, 2023.

[46] Shuang Chen, Christina Delimitrou, and José F. Martínez. Parties: Qos-aware resource

partitioning for multiple interactive services. In Proceedings of the Twenty-Fourth

International Conference on Architectural Support for Programming Languages and

Operating Systems, ASPLOS ’19, page 107–120, New York, NY, USA, 2019. Association

for Computing Machinery. ISBN 9781450362405. doi: 10.1145/3297858.3304005. URL

https://doi.org/10.1145/3297858.3304005.

[47] Tianqi Chen and Carlos Guestrin. XGBoost: A scalable tree boosting system. In KDD,

pages 785–794, 2016.

[48] Tianqi Chen and Carlos Guestrin. extreme gradient boosting for applied machine

learning. https://xgboost.readthedocs.io/en/latest/, 2021.

[49] Youmin Chen, Youyou Lu, and Jiwu Shu. Scalable RDMA RPC on reliable connection

with efficient resource sharing. In EuroSys, 2019.

[50] Ludmila Cherkasova, Diwaker Gupta, and Amin Vahdat. Comparison of the three cpu

schedulers in xen. SIGMETRICS Perform. Eval. Rev., 35(2):42–51, 2007.

[51] Wei-Lin Chiang, Lianmin Zheng, Ying Sheng, Anastasios Nikolas Angelopoulos, Tianle

Li, Dacheng Li, Hao Zhang, Banghua Zhu, Michael Jordan, Joseph E. Gonzalez, and

Ion Stoica. Chatbot arena: An open platform for evaluating llms by human preference,

2024.

[52] Asaf Cidon, Assaf Eisenman, Mohammad Alizadeh, and Sachin Katti. Cliffhanger:

Scaling performance cliffs in web memory caches. In 13th USENIX Symposium on

177

https://www.usenix.org/conference/osdi24/presentation/chen-lei
https://doi.org/10.1145/3297858.3304005

Networked Systems Design and Implementation (NSDI 16), pages 379–392, Santa Clara,

CA, March 2016. USENIX Association. ISBN 978-1-931971-29-4. URL https://

www.usenix.org/conference/nsdi16/technical-sessions/presentation/cidon.

[53] Asaf Cidon, Daniel Rushton, Stephen M. Rumble, and Ryan Stutsman. Memshare: a

dynamic multi-tenant key-value cache. In 2017 USENIX Annual Technical Conference

(USENIX ATC 17), pages 321–334, Santa Clara, CA, July 2017. USENIX Associa-

tion. ISBN 978-1-931971-38-6. URL https://www.usenix.org/conference/atc17/

technical-sessions/presentation/cidon.

[54] Adrian Cockroft. The Evolution of Microservices. https://www.slideshare.net/

slideshow/evolution- of- microservices- craft- conference/61466608, 2024.

URL https://www.slideshare.net/slideshow/evolution- of- microservices-

craft-conference/61466608.

[55] Adrian Cockroft. Microservice Workshop: Why, What, and How to Get There. https:

//www.slideshare.net/slideshow/microservices-workshop-craft-conference/

61466758, 2024. URL https://www.slideshare.net/slideshow/microservices-

workshop-craft-conference/61466758.

[56] Brian F. Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan, and Russell

Sears. Benchmarking cloud serving systems with ycsb. In Proceedings of the 1st

ACM Symposium on Cloud Computing, SoCC ’10, page 143–154, New York, NY, USA,

2010. Association for Computing Machinery. ISBN 9781450300360. doi: 10.1145/

1807128.1807152. URL https://doi.org/10.1145/1807128.1807152.

[57] F.J. Corbató. A Paging Experiment With the MULTICS System. Project MAC. Mas-

sachusetts Institute of Technology, 1968. URL https://books.google.com/books?id=

5wDQNwAACAAJ.

[58] Daniel Crankshaw, Xin Wang, Guilio Zhou, Michael J. Franklin, Joseph E. Gonzalez,

178

https://www.usenix.org/conference/nsdi16/technical-sessions/presentation/cidon
https://www.usenix.org/conference/nsdi16/technical-sessions/presentation/cidon
https://www.usenix.org/conference/atc17/technical-sessions/presentation/cidon
https://www.usenix.org/conference/atc17/technical-sessions/presentation/cidon
https://www.slideshare.net/slideshow/evolution-of-microservices-craft-conference/61466608
https://www.slideshare.net/slideshow/evolution-of-microservices-craft-conference/61466608
https://www.slideshare.net/slideshow/evolution-of-microservices-craft-conference/61466608
https://www.slideshare.net/slideshow/evolution-of-microservices-craft-conference/61466608
https://www.slideshare.net/slideshow/microservices-workshop-craft-conference/61466758
https://www.slideshare.net/slideshow/microservices-workshop-craft-conference/61466758
https://www.slideshare.net/slideshow/microservices-workshop-craft-conference/61466758
https://www.slideshare.net/slideshow/microservices-workshop-craft-conference/61466758
https://www.slideshare.net/slideshow/microservices-workshop-craft-conference/61466758
https://doi.org/10.1145/1807128.1807152
https://books.google.com/books?id=5wDQNwAACAAJ
https://books.google.com/books?id=5wDQNwAACAAJ

and Ion Stoica. Clipper: A Low-Latency online prediction serving system. In 14th

USENIX Symposium on Networked Systems Design and Implementation (NSDI 17),

pages 613–627, Boston, MA, March 2017. USENIX Association. ISBN 978-1-931971-

37-9. URL https://www.usenix.org/conference/nsdi17/technical-sessions/

presentation/crankshaw.

[59] Daniel Crankshaw, Gur-Eyal Sela, Xiangxi Mo, Corey Zumar, Ion Stoica, Joseph

Gonzalez, and Alexey Tumanov. Inferline: latency-aware provisioning and scaling for

prediction serving pipelines. In Proceedings of the 11th ACM Symposium on Cloud

Computing, SoCC ’20, page 477–491, New York, NY, USA, 2020. Association for

Computing Machinery. ISBN 9781450381376. doi: 10.1145/3419111.3421285. URL

https://doi.org/10.1145/3419111.3421285.

[60] Bryce Cronkite-Ratcliff, Aran Bergman, Shay Vargaftik, Madhusudhan Ravi, Nick

McKeown, Ittai Abraham, and Isaac Keslassy. Virtualized congestion control. In

SIGCOMM, pages 230–243, 2016.

[61] cxl. Compute express link 3.0. https://computeexpresslink.org/wp-content/

uploads/2024/02/CXL-3.0-Specification.pdf, 2022.

[62] Tri Dao. FlashAttention-2: Faster attention with better parallelism and work partition-

ing. In International Conference on Learning Representations (ICLR), 2024.

[63] Tri Dao, Daniel Y. Fu, Stefano Ermon, Atri Rudra, and Christopher Ré. FlashAttention:

Fast and memory-efficient exact attention with IO-awareness. In Advances in Neural

Information Processing Systems (NeurIPS), 2022.

[64] Jeffrey Dean and Luiz André Barroso. The tail at scale. Communications of the ACM,

56:74–80, 2013. URL http://cacm.acm.org/magazines/2013/2/160173-the-tail-

at-scale/fulltext.

179

https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/crankshaw
https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/crankshaw
https://doi.org/10.1145/3419111.3421285
https://computeexpresslink.org/wp-content/uploads/2024/02/CXL-3.0-Specification.pdf
https://computeexpresslink.org/wp-content/uploads/2024/02/CXL-3.0-Specification.pdf
http://cacm.acm.org/magazines/2013/2/160173-the-tail-at-scale/fulltext
http://cacm.acm.org/magazines/2013/2/160173-the-tail-at-scale/fulltext

[65] Christina Delimitrou and Christos Kozyrakis. Bolt: I know what you did last summer...

in the cloud. In ASPLOS, pages 599–613, 2017.

[66] Christina Delimitrou and Christos Kozyrakis. Amdahl’s law for tail latency. Commun.

ACM, 61(8):65–72, jul 2018. ISSN 0001-0782. doi: 10.1145/3232559. URL https:

//doi.org/10.1145/3232559.

[67] A. Demers, S. Keshav, and S. Shenker. Analysis and simulation of a fair queueing

algorithm. SIGCOMM Comput. Commun. Rev., 19(4):1–12, August 1989. ISSN

0146-4833. doi: 10.1145/75247.75248. URL https://doi.org/10.1145/75247.75248.

[68] Aleksandar Dragojević, Dushyanth Narayanan, Miguel Castro, and Orion Hodson.

FaRM: Fast remote memory. In NSDI, pages 401–414, 2014.

[69] Facebook and Intel. Facebook and intel collaborate on future data center rack tech-

nologies. http://goo.gl/6h2Ut, 2013.

[70] Michael Ferdman, Cansu Kaynak, and Babak Falsafi. Proactive instruction fetch. In

MICRO, pages 152–162, 2011.

[71] Brett D Fleisch. Distributed shared memory in a loosely coupled distributed system.

ACM SIGCOMM Computer Communication Review, 17(5):317–327, 1987.

[72] S. Floyd and V. Jacobson. Random early detection gateways for congestion avoidance.

IEEE/ACM Transactions on Networking, 1(4):397–413, 1993. doi: 10.1109/90.251892.

[73] Linux Foundation. Data plane development kit (DPDK). http://www.dpdk.org, 2015.

URL http://www.dpdk.org.

[74] The OCP Foundation. Multi-generational lru: the next generation. https://lwn.net/

Articles/856931/.

[75] Elias Frantar, Saleh Ashkboos, Torsten Hoefler, and Dan Alistarh. Gptq: Accurate

post-training quantization for generative pre-trained transformers, 2023.

180

https://doi.org/10.1145/3232559
https://doi.org/10.1145/3232559
https://doi.org/10.1145/75247.75248
http://www.dpdk.org
http://www.dpdk.org
https://lwn.net/Articles/856931/
https://lwn.net/Articles/856931/

[76] Joshua Fried, Zhenyuan Ruan, Amy Ousterhout, and Adam Belay. Caladan: Mitigating

interference at microsecond timescales. In OSDI. USENIX Association, 2020. URL

https://www.usenix.org/conference/osdi20/presentation/fried.

[77] Megan Frisella, Shirley Loayza Sanchez, and Malte Schwarzkopf. Towards increased

datacenter efficiency with soft memory. In Proceedings of the 19th Workshop on

Hot Topics in Operating Systems, HOTOS ’23, page 127–134, New York, NY, USA,

2023. Association for Computing Machinery. ISBN 9798400701955. doi: 10.1145/

3593856.3595902. URL https://doi.org/10.1145/3593856.3595902.

[78] Alexander Fuerst, Stanko Novaković, Íñigo Goiri, Gohar Irfan Chaudhry, Prateek

Sharma, Kapil Arya, Kevin Broas, Eugene Bak, Mehmet Iyigun, and Ricardo Bian-

chini. Memory-harvesting vms in cloud platforms. In Proceedings of the 27th ACM

International Conference on Architectural Support for Programming Languages and

Operating Systems, ASPLOS ’22, page 583–594, New York, NY, USA, 2022. Association

for Computing Machinery. ISBN 9781450392051. doi: 10.1145/3503222.3507725. URL

https://doi.org/10.1145/3503222.3507725.

[79] Liran Funaro, Orna Agmon Ben-Yehuda, and Assaf Schuster. Ginseng: Market-driven

LLC allocation. In USENIX ATC, pages 295–308, 2016.

[80] Yu Gan, Yanqi Zhang, Dailun Cheng, Ankitha Shetty, Priyal Rathi, Nayan Katarki,

Ariana Bruno, Justin Hu, Brian Ritchken, Brendon Jackson, et al. An open-source

benchmark suite for microservices and their hardware-software implications for cloud

& edge systems. In Proceedings of the Twenty-Fourth International Conference on

Architectural Support for Programming Languages and Operating Systems, pages 3–18,

2019.

[81] Peter X. Gao, Akshay Narayan, Sagar Karandikar, Joao Carreira, Sangjin Han, Rachit

Agarwal, Sylvia Ratnasamy, and Scott Shenker. Network requirements for resource

disaggregation. In OSDI, pages 249–264, 2016.

181

https://www.usenix.org/conference/osdi20/presentation/fried
https://doi.org/10.1145/3593856.3595902
https://doi.org/10.1145/3503222.3507725

[82] gdnsd. An authoritative-only dns server. https://gdnsd.org/.

[83] Ali Ghodsi, Matei Zaharia, Benjamin Hindman, Andy Konwinski, Scott Shenker, and

Ion Stoica. Dominant resource fairness: Fair allocation of multiple resource types. In

NSDI, pages 323–336, 2011.

[84] GitHub. Github copilot - write code faster. https://copilot.github.com/, 2021.

[85] Google. Google’s fast compressor/decompressor. https://github.com/google/snappy,

2020.

[86] Google. Tensorflow serving is a flexible, high-performance serving system for machine

learning models. https://www.tensorflow.org/tfx/guide/serving, 2024.

[87] Google Cloud. Preemptible vm instances. https://cloud.google.com/compute/docs/

instances/preemptible, 2022.

[88] Grand View Research Inc. Servers market share. https : / /

www.grandviewresearch.com/industry-analysis/server-market, 2022.

[89] Juncheng Gu, Youngmoon Lee, Yiwen Zhang, Mosharaf Chowdhury, and Kang G. Shin.

Efficient memory disaggregation with infiniswap. In NSDI, pages 649–667, 2017.

[90] Arpan Gujarati, Reza Karimi, Safya Alzayat, Wei Hao, Antoine Kaufmann, Ymir

Vigfusson, and Jonathan Mace. Serving DNNs like clockwork: Performance pre-

dictability from the bottom up. In 14th USENIX Symposium on Operating Systems

Design and Implementation (OSDI 20), pages 443–462. USENIX Association, November

2020. ISBN 978-1-939133-19-9. URL https://www.usenix.org/conference/osdi20/

presentation/gujarati.

[91] Ajay Gulati, Arif Merchant, and Peter J. Varman. MClock: Handling throughput

variability for hypervisor IO scheduling. In OSDI, pages 437–450, 2010.

182

https://gdnsd.org/
https://copilot.github.com/
https://www.tensorflow.org/tfx/guide/serving
https://cloud.google.com/compute/docs/instances/preemptible
https://cloud.google.com/compute/docs/instances/preemptible
https://www.grandviewresearch.com/industry-analysis/server-market
https://www.grandviewresearch.com/industry-analysis/server-market
https://www.usenix.org/conference/osdi20/presentation/gujarati
https://www.usenix.org/conference/osdi20/presentation/gujarati

[92] Chuanxiong Guo, Guohan Lu, Helen J. Wang, Shuang Yang, Chao Kong, Peng Sun,

Wenfei Wu, and Yongguang Zhang. SecondNet: A data center network virtualization

architecture with bandwidth guarantees. In Co-NEXT, 2010.

[93] Yao Guo. Compiler-Assisted Hardware-Based Data Prefetching for Next Generation

Processors. PhD thesis, University of Massachusetts Amherst, 2007.

[94] Zhiyuan Guo, Yizhou Shan, Xuhao Luo, Yutong Huang, and Yiying Zhang. Clio:

A hardware-software co-designed disaggregated memory system. In Proceedings of

the 27th ACM International Conference on Architectural Support for Programming

Languages and Operating Systems, ASPLOS 2022, page 417–433, New York, NY, USA,

2022. Association for Computing Machinery. ISBN 9781450392051. doi: 10.1145/

3503222.3507762. URL https://doi.org/10.1145/3503222.3507762.

[95] Zhiyuan Guo, Zijian He, and Yiying Zhang. Mira: A program-behavior-guided far

memory system. In Proceedings of the 29th Symposium on Operating Systems Principles,

SOSP ’23, page 692–708, New York, NY, USA, 2023. Association for Computing

Machinery. ISBN 9798400702297. doi: 10.1145/3600006.3613157. URL https://

doi.org/10.1145/3600006.3613157.

[96] Zhiyuan Guo, Zachary Blanco, Junda Chen, Jinmou Li, Zerui Wei, Bili Dong, Ishaan

Pota, Mohammad Shahrad, Harry Xu, and Yiying Zhang. Zenix: Efficient execution of

bulky serverless applications, 2024. URL https://arxiv.org/abs/2206.13444.

[97] Mingcong Han, Hanze Zhang, Rong Chen, and Haibo Chen. Microsecond-scale pre-

emption for concurrent GPU-accelerated DNN inferences. In 16th USENIX Sym-

posium on Operating Systems Design and Implementation (OSDI 22), pages 539–

558, Carlsbad, CA, July 2022. USENIX Association. ISBN 978-1-939133-28-1. URL

https://www.usenix.org/conference/osdi22/presentation/han.

[98] Keqiang He, Eric Rozner, Kanak Agarwal, Yu (Jason) Gu, Wes Felter, John Carter,

183

https://doi.org/10.1145/3503222.3507762
https://doi.org/10.1145/3600006.3613157
https://doi.org/10.1145/3600006.3613157
https://arxiv.org/abs/2206.13444
https://www.usenix.org/conference/osdi22/presentation/han

and Aditya Akella. AC/DC TCP: Virtual congestion control enforcement for datacenter

networks. In SIGCOMM, pages 244–257, 2016.

[99] Connor Holmes, Masahiro Tanaka, Michael Wyatt, Ammar Ahmad Awan, Jeff Rasley,

Samyam Rajbhandari, Reza Yazdani Aminabadi, Heyang Qin, Arash Bakhtiari, Lev

Kurilenko, and Yuxiong He. Deepspeed-fastgen: High-throughput text generation for

llms via mii and deepspeed-inference, 2024.

[100] Liam Howlett and Matthew Wilcox. Introducing maple trees. https://lwn.net/

Articles/845507/.

[101] Krystal Hu. Chatgpt sets record for fastest-growing user base. https://

www.reuters.com/technology/chatgpt- sets- record- fastest- growing- user-

base-analyst-note-2023-02-01/, 2023.

[102] Jaehyun Hwang, Qizhe Cai, Ao Tang, and Rachit Agarwal. TCP ≈ RDMA: CPU-efficient

remote storage access with i10. In 17th USENIX Symposium on Networked Systems

Design and Implementation (NSDI 20), pages 127–140, Santa Clara, CA, February

2020. USENIX Association. ISBN 978-1-939133-13-7. URL https://www.usenix.org/

conference/nsdi20/presentation/hwang.

[103] Stephen Ibanez, Alex Mallery, Serhat Arslan, Theo Jepsen, Muhammad Shahbaz,

Changhoon Kim, and Nick McKeown. The nanopu: A nanosecond network stack

for datacenters. In 15th USENIX Symposium on Operating Systems Design and

Implementation (OSDI 21), pages 239–256. USENIX Association, July 2021. ISBN 978-

1-939133-22-9. URL https://www.usenix.org/conference/osdi21/presentation/

ibanez.

[104] IDC Corporate. Servers market share. https://www.idc.com/promo/servers, 2022.

[105] Intel. Memcontrol: Charge swap-in pages to cgroup. https://github.com/torvalds/

linux/commit/4c6355b25e8bb83c, 2020.

184

https://lwn.net/Articles/845507/
https://lwn.net/Articles/845507/
https://www.reuters.com/technology/chatgpt-sets-record-fastest-growing-user-base-analyst-note-2023-02-01/
https://www.reuters.com/technology/chatgpt-sets-record-fastest-growing-user-base-analyst-note-2023-02-01/
https://www.reuters.com/technology/chatgpt-sets-record-fastest-growing-user-base-analyst-note-2023-02-01/
https://www.usenix.org/conference/nsdi20/presentation/hwang
https://www.usenix.org/conference/nsdi20/presentation/hwang
https://www.usenix.org/conference/osdi21/presentation/ibanez
https://www.usenix.org/conference/osdi21/presentation/ibanez
https://www.idc.com/promo/servers
https://github.com/torvalds/linux/commit/4c6355b25e8bb83c
https://github.com/torvalds/linux/commit/4c6355b25e8bb83c

[106] Calin Iorgulescu, Reza Azimi, Youngjin Kwon, Sameh Elnikety, Manoj Syamala, Vivek

Narasayya, Herodotos Herodotou, Paulo Tomita, Alex Chen, Jack Zhang, and Junhua

Wang. PerfIso: Performance isolation for commercial Latency-Sensitive services. In

USENIX ATC, pages 519–532, 2018.

[107] Ravi Iyer, Li Zhao, Fei Guo, Ramesh Illikkal, Srihari Makineni, Don Newell, Yan Solihin,

Lisa Hsu, and Steve Reinhardt. QoS policies and architecture for cache/memory in

CMP platforms. In SIGMETRICS, pages 25–36, 2007.

[108] Jacob Leverich. Mutilate: High-performance memcached load generator. https:

//github.com/leverich/mutilate, 2023.

[109] Akanksha Jain and Calvin Lin. Linearizing irregular memory accesses for improved

correlated prefetching. In MICRO, pages 247–259, 2013.

[110] Naman Jain, Tianjun Zhang, Wei-Lin Chiang, Joseph E. Gonzalez, Koushik Sen, and

Ion Stoica. Llm-assisted code cleaning for training accurate code generators, 2023.

[111] Myeongjae Jeon, Shivaram Venkataraman, Amar Phanishayee, Junjie Qian, Wencong

Xiao, and Fan Yang. Analysis of Large-Scale Multi-Tenant GPU clusters for DNN

training workloads. In 2019 USENIX Annual Technical Conference (USENIX ATC 19),

pages 947–960, Renton, WA, July 2019. USENIX Association. ISBN 978-1-939133-03-8.

URL https://www.usenix.org/conference/atc19/presentation/jeon.

[112] Eun Young Jeong, Shinae Woo, Muhammad Jamshed, Haewon Jeong, Sunghwan Ihm,

Dongsu Han, and KyoungSoo Park. MTCP: A highly scalable user-level TCP stack for

multicore systems. In NSDI, pages 489–502, 2014.

[113] Vimalkumar Jeyakumar, Mohammad Alizadeh, David Mazières, Balaji Prabhakar, and

Changhoon Kim. EyeQ: Practical network performance isolation for the multi-tenant

cloud. In HotCloud, 2012.

185

https://github.com/leverich/mutilate
https://github.com/leverich/mutilate
https://www.usenix.org/conference/atc19/presentation/jeon

[114] Albert Q. Jiang, Alexandre Sablayrolles, Antoine Roux, Arthur Mensch, Blanche Savary,

Chris Bamford, Devendra Singh Chaplot, Diego de las Casas, Emma Bou Hanna, Florian

Bressand, Gianna Lengyel, Guillaume Bour, Guillaume Lample, Lélio Renard Lavaud,

Lucile Saulnier, Marie-Anne Lachaux, Pierre Stock, Sandeep Subramanian, Sophia

Yang, Szymon Antoniak, Teven Le Scao, Théophile Gervet, Thibaut Lavril, Thomas

Wang, Timothée Lacroix, and William El Sayed. Mixtral of experts, 2024.

[115] Hanlei Jin, Yang Zhang, Dan Meng, Jun Wang, and Jinghua Tan. A comprehensive

survey on process-oriented automatic text summarization with exploration of llm-based

methods, 2024. URL https://arxiv.org/abs/2403.02901.

[116] Yunho Jin, Chun-Feng Wu, David Brooks, and Gu-Yeon Wei. S3: increasing gpu

utilization during generative inference for higher throughput. In Proceedings of the 37th

International Conference on Neural Information Processing Systems, NIPS ’23, Red

Hook, NY, USA, 2024. Curran Associates Inc.

[117] Doug Joseph and Dirk Grunwald. Prefetching using markov predictors. In ISCA, pages

252–263, 1997.

[118] Anuj Kalia, Michael Kaminsky, and David G. Andersen. FaSST: Fast, scalable and

simple distributed transactions with two-sided (RDMA) datagram RPCs. In OSDI,

pages 185–201, 2016.

[119] Anuj Kalia, Michael Kaminsky, and David G. Andersen. Design guidelines for high

performance RDMA systems. In USENIX ATC, pages 437–450, 2016.

[120] Harshad Kasture and Daniel Sanchez. Ubik: Efficient cache sharing with strict qos for

latency-critical workloads. In ASPLOS, pages 729–742, 2014.

[121] Stefanos Kaxiras, David Klaftenegger, Magnus Norgren, Alberto Ros, and Konstantinos

Sagonas. Turning centralized coherence and distributed critical-section execution on

their head: A new approach for scalable distributed shared memory. In Proceedings

186

https://arxiv.org/abs/2403.02901

of the 24th International Symposium on High-Performance Parallel and Distributed

Computing, pages 3–14, 2015.

[122] Junaid Khalid, Eric Rozner, Wesley Felter, Cong Xu, Karthick Rajamani, Alexandre

Ferreira, and Aditya Akella. Iron: Isolating network-based cpu in container environments.

In NSDI, pages 313–328, 2018.

[123] Sehoon Kim, Coleman Hooper, Amir Gholami, Zhen Dong, Xiuyu Li, Sheng Shen,

Michael W. Mahoney, and Kurt Keutzer. Squeezellm: Dense-and-sparse quantization,

2024.

[124] Ana Klimovic, Heiner Litz, and Christos Kozyrakis. ReFlex: Remote flash ≈ local flash.

In ASPLOS, pages 345–359, 2017.

[125] A. Kolli, A. Saidi, and T. F. Wenisch. RDIP: Return-address-stack directed instruction

prefetching. In MICRO, pages 260–271, 2013.

[126] Jérôme Kunegis. Wikipedia networks data. http://konect.uni-koblenz.de/

networks/, 2020.

[127] Alina Kuznetsova, Hassan Rom, Neil Alldrin, Jasper Uijlings, Ivan Krasin, Jordi Pont-

Tuset, Shahab Kamali, Stefan Popov, Matteo Malloci, Alexander Kolesnikov, Tom

Duerig, and Vittorio Ferrari. The open images dataset v4: Unified image classification,

object detection, and visual relationship detection at scale. IJCV, 2020.

[128] Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao

Yu, Joseph Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management

for large language model serving with pagedattention. In Proceedings of the 29th

Symposium on Operating Systems Principles, SOSP ’23, page 611–626, New York,

NY, USA, 2023. Association for Computing Machinery. ISBN 9798400702297. doi:

10.1145/3600006.3613165. URL https://doi.org/10.1145/3600006.3613165.

187

http://konect.uni-koblenz.de/networks/
http://konect.uni-koblenz.de/networks/
https://doi.org/10.1145/3600006.3613165

[129] Andres Lagar-Cavilla, Junwhan Ahn, Suleiman Souhlal, Neha Agarwal, Radoslaw

Burny, Shakeel Butt, Jichuan Chang, Ashwin Chaugule, Nan Deng, Junaid Shahid,

Greg Thelen, Kamil Adam Yurtsever, Yu Zhao, and Parthasarathy Ranganathan.

Software-defined far memory in warehouse-scale computers. In ASPLOS, pages 317–330,

2019.

[130] LangChain. Langchain: Build context-aware reasoning application. https://

python.langchain.com/, 2024.

[131] Chris Lattner and Vikram Adve. Automatic pool allocation: improving performance

by controlling data structure layout in the heap. In PLDI, pages 129–142, 2005.

[132] Seok-Hee Lee. Technology scaling challenges and opportunities of memory devices. In

2016 IEEE International Electron Devices Meeting (IEDM), pages 1.1.1–1.1.8, 2016.

doi: 10.1109/IEDM.2016.7838026.

[133] Sergey Legtchenko, Hugh Williams, Kaveh Razavi, Austin Donnelly, Richard Black, An-

drew Douglas, Nathanaël Cheriere, Daniel Fryer, Kai Mast, Angela Demke Brown, Ana

Klimovic, Andy Slowey, and Antony Rowstron. Understanding rack-scale disaggregated

storage. In HotStorage, 2017.

[134] Michel Lespinasse. Speculative page faults. https://lwn.net/Articles/851853/.

[135] Bojie Li, Zhenyuan Ruan, Wencong Xiao, Yuanwei Lu, Yongqiang Xiong, Andrew

Putnam, Enhong Chen, and Lintao Zhang. Kv-direct: High-performance in-memory key-

value store with programmable nic. In Proceedings of the 26th Symposium on Operating

Systems Principles, SOSP ’17, page 137–152, New York, NY, USA, 2017. Association

for Computing Machinery. ISBN 9781450350853. doi: 10.1145/3132747.3132756. URL

https://doi.org/10.1145/3132747.3132756.

[136] Dacheng Li, Rulin Shao, Anze Xie, Eric P. Xing, Xuezhe Ma, Ion Stoica, Joseph E.

188

https://python.langchain.com/
https://python.langchain.com/
https://lwn.net/Articles/851853/
https://doi.org/10.1145/3132747.3132756

Gonzalez, and Hao Zhang. Distflashattn: Distributed memory-efficient attention for

long-context llms training, 2024. URL https://arxiv.org/abs/2310.03294.

[137] Huaicheng Li, Daniel S. Berger, Stanko Novakovic, Lisa Hsu, Dan Ernst, Pantea

Zardoshti, Monish Shah, Ishwar Agarwal, Mark D. Hill, Marcus Fontoura, and Ricardo

Bianchini. First-generation memory disaggregation for cloud platforms, 2022. URL

https://arxiv.org/abs/2203.00241.

[138] Kai Li. Ivy: A shared virtual memory system for parallel computing. ICPP (2), 88:94,

1988.

[139] Kai Li and Paul Hudak. Memory coherence in shared virtual memory systems. ACM

Trans. Comput. Syst., 7(4):321–359, November 1989. ISSN 0734-2071.

[140] Kai Li and Paul Hudak. Memory coherence in shared virtual memory systems. ACM

Transactions on Computer Systems (TOCS), 7(4):321–359, 1989.

[141] Tong Li, Dan Baumberger, and Scott Hahn. Efficient and scalable multiprocessor fair

scheduling using distributed weighted round-robin. In PPoPP, pages 65–74, 2009.

[142] Zhuohan Li, Lianmin Zheng, Yinmin Zhong, Vincent Liu, Ying Sheng, Xin Jin, Yanping

Huang, Zhifeng Chen, Hao Zhang, Joseph E. Gonzalez, and Ion Stoica. AlpaServe:

Statistical multiplexing with model parallelism for deep learning serving. In 17th

USENIX Symposium on Operating Systems Design and Implementation (OSDI 23),

pages 663–679, Boston, MA, July 2023. USENIX Association. ISBN 978-1-939133-34-2.

URL https://www.usenix.org/conference/osdi23/presentation/li-zhouhan.

[143] Percy Liang, Rishi Bommasani, Tony Lee, Dimitris Tsipras, Dilara Soylu, Michihiro

Yasunaga, Yian Zhang, Deepak Narayanan, Yuhuai Wu, Ananya Kumar, Benjamin

Newman, Binhang Yuan, Bobby Yan, Ce Zhang, Christian Cosgrove, Christopher D.

Manning, Christopher Ré, Diana Acosta-Navas, Drew A. Hudson, Eric Zelikman, Esin

Durmus, Faisal Ladhak, Frieda Rong, Hongyu Ren, Huaxiu Yao, Jue Wang, Keshav

189

https://arxiv.org/abs/2310.03294
https://arxiv.org/abs/2203.00241
https://www.usenix.org/conference/osdi23/presentation/li-zhouhan

Santhanam, Laurel Orr, Lucia Zheng, Mert Yuksekgonul, Mirac Suzgun, Nathan Kim,

Neel Guha, Niladri Chatterji, Omar Khattab, Peter Henderson, Qian Huang, Ryan Chi,

Sang Michael Xie, Shibani Santurkar, Surya Ganguli, Tatsunori Hashimoto, Thomas

Icard, Tianyi Zhang, Vishrav Chaudhary, William Wang, Xuechen Li, Yifan Mai,

Yuhui Zhang, and Yuta Koreeda. Holistic evaluation of language models, 2023. URL

https://arxiv.org/abs/2211.09110.

[144] Ji Lin, Jiaming Tang, Haotian Tang, Shang Yang, Wei-Ming Chen, Wei-Chen Wang,

Guangxuan Xiao, Xingyu Dang, Chuang Gan, and Song Han. Awq: Activation-aware

weight quantization for llm compression and acceleration, 2024.

[145] Hao Liu, Matei Zaharia, and Pieter Abbeel. Ring attention with blockwise transformers

for near-infinite context, 2023. URL https://arxiv.org/abs/2310.01889.

[146] Lei Liu, Zehan Cui, Mingjie Xing, Yungang Bao, Mingyu Chen, and Chengyong Wu. A

software memory partition approach for eliminating bank-level interference in multicore

systems. In PACT, pages 367–376, 2012.

[147] Lei Liu, Yong Li, Zehan Cui, Yungang Bao, Mingyu Chen, and Chengyong Wu. Going

vertical in memory management: Handling multiplicity by multi-policy. In ISCA, pages

169–180, 2014.

[148] Shu Liu, Asim Biswal, Audrey Cheng, Xiangxi Mo, Shiyi Cao, Joseph E. Gonzalez, Ion

Stoica, and Matei Zaharia. Optimizing llm queries in relational workloads, 2024.

[149] David Lo, Liqun Cheng, Rama Govindaraju, Parthasarathy Ranganathan, and Christos

Kozyrakis. Improving resource efficiency at scale with heracles. ACM Trans. Comput.

Syst., 34(2), 2016.

[150] C. Lu, K. Ye, G. Xu, C. Xu, and T. Bai. Imbalance in the cloud: An analysis on

Alibaba cluster trace. In Big Data, pages 2884 – 2892, 2017.

190

https://arxiv.org/abs/2211.09110
https://arxiv.org/abs/2310.01889

[151] Lanyue Lu, Yupu Zhang, Thanh Do, Samer Al-Kiswany, Andrea C. Arpaci-Dusseau,

and Remzi H. Arpaci-Dusseau. Physical disentanglement in a container-based file

system. In OSDI, pages 81–96, 2014.

[152] Haoran Ma, Shi Liu, Chenxi Wang, Yifan Qiao, Michael D. Bond, Stephen M. Blackburn,

Miryung Kim, and Guoqing Harry Xu. Mako: A low-pause, high-throughput evacuating

collector for memory-disaggregated datacenters. In PLDI, 2022.

[153] Haoran Ma, Yifan Qiao, Shi Liu, Shan Yu, Yuanjiang Ni, Qingda Lu, Jiesheng Wu,

Yiying Zhang, Miryung Kim, and Harry Xu. DRust: Language-Guided distributed

shared memory with fine granularity, full transparency, and ultra efficiency. In 18th

USENIX Symposium on Operating Systems Design and Implementation (OSDI 24),

pages 97–115, Santa Clara, CA, July 2024. USENIX Association. ISBN 978-1-939133-40-

3. URL https://www.usenix.org/conference/osdi24/presentation/ma-haoran.

[154] Jiuyue Ma, Xiufeng Sui, Ninghui Sun, Yupeng Li, Zihao Yu, Bowen Huang, Tianni Xu,

Zhicheng Yao, Yun Chen, Haibin Wang, Lixin Zhang, and Yungang Bao. Supporting

differentiated services in computers via programmable architecture for resourcing-on-

demand (PARD). In ASPLOS, pages 131–143, 2015.

[155] Martin Maas, Krste Asanović, Tim Harris, and John Kubiatowicz. Taurus: A holistic

language runtime system for coordinating distributed managed-language applications.

In ASPLOS, pages 457–471, 2016.

[156] Matt Mahoney. Large Text Compression Benchmark. URL http://mattmahoney.net/

dc/text.html.

[157] Michael Marty, Marc de Kruijf, Jacob Adriaens, Christopher Alfeld, Sean Bauer, Carlo

Contavalli, Michael Dalton, Nandita Dukkipati, William C. Evans, Steve Gribble,

Nicholas Kidd, Roman Kononov, Gautam Kumar, Carl Mauer, Emily Musick, Lena

Olson, Erik Rubow, Michael Ryan, Kevin Springborn, Paul Turner, Valas Valancius,

191

https://www.usenix.org/conference/osdi24/presentation/ma-haoran
http://mattmahoney.net/dc/text.html
http://mattmahoney.net/dc/text.html

Xi Wang, and Amin Vahdat. Snap: a microkernel approach to host networking. In

Proceedings of the 27th ACM Symposium on Operating Systems Principles, SOSP ’19,

page 399–413, New York, NY, USA, 2019. Association for Computing Machinery. ISBN

9781450368735. doi: 10.1145/3341301.3359657. URL https://doi.org/10.1145/

3341301.3359657.

[158] Hasan Al Maruf and Mosharaf Chowdhury. Effectively prefetching remote memory

with Leap. In USENIX ATC, pages 843–857, 2020.

[159] John C. McCullough, John Dunagan, Alec Wolman, and Alex C. Snoeren. Stout: An

adaptive interface to scalable cloud storage. In USENIX ATC, 2010.

[160] Marshall K. McKusick, William N. Joy, Samuel J. Leffler, and Robert S. Fabry. A fast

file system for UNIX. ACM Trans. Comput. Syst., 2(3):181–197, 1984.

[161] Mellanox. NVMe over fabrics. http://community.mellanox.com/s/article/what-

is-nvme-over-fabrics-x.

[162] Mellanox. RDMA aware programming manual (rev. 1.7).

https://www.mellanox.com/related-docs/prod_software/RDMA_Aware_Programming

_user_manual.pdf.

[163] Memcached. A distributed memory object caching system. http://memcached.org,

2022.

[164] Microsoft Azure. Azure spot virtual machines. https://azure.microsoft.com/en-

us/pricing/spot, 2022.

[165] Ronald G Minnich and David J Farber. The mether system: Distributed shared memory

for sunos 4.0. Technical Reports (CIS), page 332, 1993.

[166] Mistral AI. Mixtral-8x22b: Cheaper, better, faster, stronger. https://mistral.ai/

news/mixtral-8x22b/, 2024.

192

https://doi.org/10.1145/3341301.3359657
https://doi.org/10.1145/3341301.3359657
http://community.mellanox.com/s/article/what-is-nvme-over-fabrics-x
http://community.mellanox.com/s/article/what-is-nvme-over-fabrics-x
http://memcached.org
https://azure.microsoft.com/en-us/pricing/spot
https://azure.microsoft.com/en-us/pricing/spot
https://mistral.ai/news/mixtral-8x22b/
https://mistral.ai/news/mixtral-8x22b/

[167] Sparsh Mittal. A survey of recent prefetching techniques for processor caches. ACM

Comput. Surv., 49(2), 2016.

[168] MongoDB. https://www.mongodb.com/, 2022.

[169] MongoDB. Wiredtiger storage engine. https://www.mongodb.com/docs/manual/core/

wiredtiger/, 2023.

[170] Moonshot AI. AI Assistant with Memory. https://www.perplexity.ai/, 2024.

[171] Philipp Moritz, Robert Nishihara, Stephanie Wang, Alexey Tumanov, Richard Liaw,

Eric Liang, Melih Elibol, Zongheng Yang, William Paul, Michael I. Jordan, and Ion

Stoica. Ray: A distributed framework for emerging AI applications. In 13th USENIX

Symposium on Operating Systems Design and Implementation (OSDI 18), pages 561–

577, Carlsbad, CA, October 2018. USENIX Association. ISBN 978-1-939133-08-3. URL

https://www.usenix.org/conference/osdi18/presentation/moritz.

[172] Mosaic AI Research. Llm inference performance engineering: Best practices.

https://www.databricks.com/blog/llm-inference-performance-engineering-

best-practices, 2024.

[173] Yogesh Mundada, Anirudh Ramachandran, and Nick Feamster. Silverline: Data and

network isolation for cloud services. In HotCloud, 2011.

[174] Avanika Narayan, Ines Chami, Laurel Orr, Simran Arora, and Christopher Ré. Can foun-

dation models wrangle your data?, 2022. URL https://arxiv.org/abs/2205.09911.

[175] Shashi Narayan, Shay B. Cohen, and Mirella Lapata. Don’t give me the details, just

the summary! topic-aware convolutional neural networks for extreme summarization.

ArXiv, abs/1808.08745, 2018. URL https://api.semanticscholar.org/CorpusID:

215768182.

193

https://www.mongodb.com/
https://www.mongodb.com/docs/manual/core/wiredtiger/
https://www.mongodb.com/docs/manual/core/wiredtiger/
https://www.perplexity.ai/
https://www.usenix.org/conference/osdi18/presentation/moritz
https://www.databricks.com/blog/llm-inference-performance-engineering-best-practices
https://www.databricks.com/blog/llm-inference-performance-engineering-best-practices
https://arxiv.org/abs/2205.09911
https://api.semanticscholar.org/CorpusID:215768182
https://api.semanticscholar.org/CorpusID:215768182

[176] Usama Naseer and Theophilus A. Benson. Configanator: A data-driven approach to im-

proving CDN performance. In 19th USENIX Symposium on Networked Systems Design

and Implementation (NSDI 22), pages 1135–1158, Renton, WA, April 2022. USENIX

Association. ISBN 978-1-939133-27-4. URL https://www.usenix.org/conference/

nsdi22/presentation/naseer.

[177] Christian Navasca, Cheng Cai, Khanh Nguyen, Brian Demsky, Shan Lu, Miryung

Kim, and Guoqing Harry Xu. Gerenuk: Thin computation over big native data using

speculative program transformation. In SOSP, pages 538–553, 2019.

[178] Jacob Nelson, Brandon Holt, Brandon Myers, Preston Briggs, Luis Ceze, Simon Kahan,

and Mark Oskin. {Latency-Tolerant} software distributed shared memory. In 2015

USENIX Annual Technical Conference (USENIX ATC 15), pages 291–305, 2015.

[179] Jacob Nelson, Brandon Holt, Brandon Myers, Preston Briggs, Luis Ceze, Simon Kahan,

and Mark Oskin. Latency-tolerant software distributed shared memory. In USENIX

ATC, pages 291–305, 2015.

[180] Neo4j. Neo4j graph data platform. https://neo4j.com, 2021.

[181] Khanh Nguyen, Kai Wang, Yingyi Bu, Lu Fang, Jianfei Hu, and Guoqing Xu. Facade:

A compiler and runtime for (almost) object-bounded big data applications. In ASPLOS,

pages 675–690, 2015.

[182] Khanh Nguyen, Lu Fang, Guoqing Xu, Brian Demsky, Shan Lu, Sanazsadat Alamian,

and Onur Mutlu. Yak: A high-performance big-data-friendly garbage collector. In

OSDI, pages 349–365, 2016.

[183] Khanh Nguyen, Lu Fang, Christian Navasca, Guoqing Xu, Brian Demsky, and Shan

Lu. Skyway: Connecting managed heaps in distributed big data systems. In ASPLOS,

pages 56–69, 2018.

194

https://www.usenix.org/conference/nsdi22/presentation/naseer
https://www.usenix.org/conference/nsdi22/presentation/naseer
https://neo4j.com

[184] Nvidia. Virtual gpu (vgpu) | nvidia. https://www.nvidia.com/en-us/data-center/

virtual-solutions/.

[185] NVIDIA. Fastertransformer: Transformer related optimization, including bert, gpt.

https://github.com/NVIDIA/FasterTransformer, 2024.

[186] NVIDIA. Tensorrt-llm: A tensorrt toolbox for optimized large language model inference.

https://github.com/NVIDIA/TensorRT-LLM, 2024.

[187] NVIDIA. Nvidia triton inference server. https://developer.nvidia.com/triton-

inference-server, 2024.

[188] NVIDIA, Péter Vingelmann, and Frank H.P. Fitzek. Cuda, release: 10.2.89, 2020. URL

https://developer.nvidia.com/cuda-toolkit.

[189] OpenAI. Chatgpt: Conversational language model. https://chat.openai.com, 2023.

[190] OpenAI. Gpt-4 technical report, 2023.

[191] OpenAI. Introducing the gpt store. https://openai.com/index/introducing-the-

gpt-store/, 2024.

[192] OpenAI. Batch api. https://platform.openai.com/docs/guides/batch/batch-api,

2024.

[193] Myle Ott, Sergey Edunov, Alexei Baevski, Angela Fan, Sam Gross, Nathan Ng, David

Grangier, and Michael Auli. fairseq: A fast, extensible toolkit for sequence modeling,

2019.

[194] Amy Ousterhout, Joshua Fried, Jonathan Behrens, Adam Belay, and Hari Balakrishnan.

Shenango: Achieving high CPU efficiency for latency-sensitive datacenter workloads.

In NSDI, pages 361–378, 2019.

195

https://www.nvidia.com/en-us/data-center/virtual-solutions/
https://www.nvidia.com/en-us/data-center/virtual-solutions/
https://github.com/NVIDIA/FasterTransformer
https://github.com/NVIDIA/TensorRT-LLM
https://developer.nvidia.com/triton-inference-server
https://developer.nvidia.com/triton-inference-server
https://developer.nvidia.com/cuda-toolkit
https://chat.openai.com
https://openai.com/index/introducing-the-gpt-store/
https://openai.com/index/introducing-the-gpt-store/
https://platform.openai.com/docs/guides/batch/batch-api

[195] A.K. Parekh and R.G. Gallager. A generalized processor sharing approach to flow

control in integrated services networks: the single-node case. IEEE/ACM Transactions

on Networking, 1(3):344–357, 1993. doi: 10.1109/90.234856.

[196] SeongJae Park. Using damon for proactive reclaim. https://lwn.net/Articles/

863753/.

[197] Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary

DeVito, Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. Automatic

differentiation in pytorch. 2017.

[198] Pratyush Patel, Esha Choukse, Chaojie Zhang, Aashaka Shah, Íñigo Goiri, Saeed

Maleki, and Ricardo Bianchini. Splitwise: Efficient generative llm inference using phase

splitting, 2024.

[199] R. H. Patterson, G. A. Gibson, E. Ginting, D. Stodolsky, and J. Zelenka. Informed

prefetching and caching. In SOSP, pages 79–95, 1995.

[200] Leeor Peled, Shie Mannor, Uri Weiser, and Yoav Etsion. Semantic locality and context-

based prefetching using reinforcement learning. In ISCA, pages 285–297, 2015.

[201] Perlexity AI. Perplexity is a free ai search engine. https://www.perplexity.ai/, 2024.

[202] Simon Peter, Jialin Li, Irene Zhang, Dan R. K. Ports, Doug Woos, Arvind Krishna-

murthy, Thomas Anderson, and Timothy Roscoe. Arrakis: The operating system is

the control plane. In OSDI, pages 1–16, 2014.

[203] Lucian Popa, Arvind Krishnamurthy, Sylvia Ratnasamy, and Ion Stoica. Faircloud:

Sharing the network in cloud computing. In SIGCOMM, pages 187–198, 2012.

[204] George Prekas, Marios Kogias, and Edouard Bugnion. Zygos: Achieving low tail

latency for microsecond-scale networked tasks. In Proceedings of the 26th Symposium

on Operating Systems Principles, SOSP ’17, page 325–341, New York, NY, USA,

196

https://lwn.net/Articles/863753/
https://lwn.net/Articles/863753/
https://www.perplexity.ai/

2017. Association for Computing Machinery. ISBN 9781450350853. doi: 10.1145/

3132747.3132780. URL https://doi.org/10.1145/3132747.3132780.

[205] Proxet. Llm has a performance problem inherent to its architecture: Latency.

https://www.proxet.com/blog/llm-has-a-performance-problem-inherent-to-

its-architecture-latency, 2023.

[206] Qifan Pu, Haoyuan Li, Matei Zaharia, Ali Ghodsi, and Ion Stoica. FairRide: Near-

Optimal, fair cache sharing. In 13th USENIX Symposium on Networked Systems

Design and Implementation (NSDI 16), pages 393–406, Santa Clara, CA, March

2016. USENIX Association. URL https://www.usenix.org/conference/nsdi16/

technical-sessions/presentation/pu.

[207] Yifan Qiao, Chenxi Wang, Zhenyuan Ruan, Adam Beley, Yiying Zhang, Miryung Kim,

and Guoqing Harry Xu. Hermit: Low-latency, high-throughput, and transparent remote

memory via feedback-directed asynchrony. In 20th USENIX Symposium on Networked

Systems Design and Implementation (NSDI 23). USENIX Association, April 2023. URL

https://www.usenix.org/conference/nsdi23/presentation/qiao.

[208] Yifan Qiao, Zhenyuan Ruan, Haoran Ma, Adam Belay, Miryung Kim, and Harry Xu.

Harvesting idle memory for application-managed soft state with midas. In 21st USENIX

Symposium on Networked Systems Design and Implementation (NSDI 24), pages 1247–

1265, Santa Clara, CA, April 2024. USENIX Association. ISBN 978-1-939133-39-7.

URL https://www.usenix.org/conference/nsdi24/presentation/qiao.

[209] Ruoyu Qin, Zheming Li, Weiran He, Mingxing Zhang, Yongwei Wu, Weimin Zheng, and

Xinran Xu. Mooncake: A kvcache-centric disaggregated architecture for llm serving,

2024. URL https://arxiv.org/abs/2407.00079.

[210] Haonan Qiu, Xiaoliang Wang, Tianchen Jin, Zhuzhong Qian, Baoliu Ye, Bin Tang,

197

https://doi.org/10.1145/3132747.3132780
https://www.proxet.com/blog/llm-has-a-performance-problem-inherent-to-its-architecture-latency
https://www.proxet.com/blog/llm-has-a-performance-problem-inherent-to-its-architecture-latency
https://www.usenix.org/conference/nsdi16/technical-sessions/presentation/pu
https://www.usenix.org/conference/nsdi16/technical-sessions/presentation/pu
https://www.usenix.org/conference/nsdi23/presentation/qiao
https://www.usenix.org/conference/nsdi24/presentation/qiao
https://arxiv.org/abs/2407.00079

Wenzhong Li, and Sanglu Lu. Toward effective and fair RDMA resource sharing. In

APNet, pages 8–14, 2018.

[211] Rodric M. Rabbah, Hariharan Sandanagobalane, Mongkol Ekpanyapong, and Weng-Fai

Wong. Compiler orchestrated prefetching via speculation and predication. In ASPLOS,

pages 189–198, 2004.

[212] Benjamin Reidys, Jinghan Sun, Anirudh Badam, Shadi Noghabi, and Jian Huang. Block-

Flex: Enabling storage harvesting with Software-Defined flash in modern cloud platforms.

In 16th USENIX Symposium on Operating Systems Design and Implementation (OSDI

22), pages 17–33, Carlsbad, CA, July 2022. USENIX Association. ISBN 978-1-939133-

28-1. URL https://www.usenix.org/conference/osdi22/presentation/reidys.

[213] Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer.

High-resolution image synthesis with latent diffusion models, 2021.

[214] Ryan A. Rossi and Nesreen K. Ahmed. The network data repository with in-

teractive graph analytics and visualization. In AAAI, 2015. URL https://

networkrepository.com.

[215] Baptiste Rozière, Jonas Gehring, Fabian Gloeckle, Sten Sootla, Itai Gat, Xiaoqing Ellen

Tan, Yossi Adi, Jingyu Liu, Romain Sauvestre, Tal Remez, Jérémy Rapin, Artyom

Kozhevnikov, Ivan Evtimov, Joanna Bitton, Manish Bhatt, Cristian Canton Ferrer,

Aaron Grattafiori, Wenhan Xiong, Alexandre Défossez, Jade Copet, Faisal Azhar, Hugo

Touvron, Louis Martin, Nicolas Usunier, Thomas Scialom, and Gabriel Synnaeve. Code

llama: Open foundation models for code, 2024.

[216] Zhenyuan Ruan, Malte Schwarzkopf, Marcos K. Aguilera, and Adam Belay. AIFM:

High-performance, application-integrated far memory. In 14th USENIX Symposium on

Operating Systems Design and Implementation (OSDI 20), pages 315–332. USENIX

198

https://www.usenix.org/conference/osdi22/presentation/reidys
https://networkrepository.com
https://networkrepository.com

Association, November 2020. ISBN 978-1-939133-19-9. URL https://www.usenix.org/

conference/osdi20/presentation/ruan.

[217] Zhenyuan Ruan, Shihang Li, Kaiyan Fan, Marcos K. Aguilera, Adam Belay, Seo Jin

Park, and Malte Schwarzkopf. Unleashing true utility computing with quicksand. In

Proceedings of the 19th Workshop on Hot Topics in Operating Systems, HOTOS ’23,

page 196–205, New York, NY, USA, 2023. Association for Computing Machinery. ISBN

9798400701955. doi: 10.1145/3593856.3595893. URL https://doi.org/10.1145/

3593856.3595893.

[218] Zhenyuan Ruan, Seo Jin Park, Marcos Aguilera, Adam Belay, and Malte Schwarzkopf.

Nu: Achieving microsecond-scale resource fungibility with logical processes. In NSDI,

2023.

[219] Stephen M. Rumble. Infiniband verbs performance. https : / /

ramcloud.atlassian.net / wiki / display / RAM / Infiniband+ Verbs+ Performance,

2010.

[220] Stephen M. Rumble, Ankita Kejriwal, and John Ousterhout. Log-structured memory

for DRAM-based storage. In 12th USENIX Conference on File and Storage Technolo-

gies (FAST 14), pages 1–16, Santa Clara, CA, February 2014. USENIX Association.

ISBN ISBN 978-1-931971-08-9. URL https://www.usenix.org/conference/fast14/

technical-sessions/presentation/rumble.

[221] Stuart J Russell. Artificial intelligence a modern approach. Pearson Education, Inc.,

2010.

[222] Alon Shalita, Brian Karrer, Igor Kabiljo, Arun Sharma, Alessandro Presta, Aaron

Adcock, Herald Kllapi, and Michael Stumm. Social hash: an assignment framework

for optimizing distributed systems operations on social networks. In 13th {USENIX}

199

https://www.usenix.org/conference/osdi20/presentation/ruan
https://www.usenix.org/conference/osdi20/presentation/ruan
https://doi.org/10.1145/3593856.3595893
https://doi.org/10.1145/3593856.3595893
https://ramcloud.atlassian.net/wiki/display/RAM/Infiniband+Verbs+Performance
https://ramcloud.atlassian.net/wiki/display/RAM/Infiniband+Verbs+Performance
https://www.usenix.org/conference/fast14/technical-sessions/presentation/rumble
https://www.usenix.org/conference/fast14/technical-sessions/presentation/rumble

Symposium on Networked Systems Design and Implementation ({NSDI} 16), pages

455–468, 2016.

[223] Yizhou Shan, Shin-Yeh Tsai, and Yiying Zhang. Distributed shared persistent memory.

In Proceedings of the 2017 Symposium on Cloud Computing, pages 323–337, 2017.

[224] Yizhou Shan, Yutong Huang, Yilun Chen, and Yiying Zhang. LegoOS: A disseminated,

distributed OS for hardware resource disaggregation. In OSDI, pages 69–87, 2018.

[225] Prateek Sharma, Ahmed Ali-Eldin, and Prashant Shenoy. Resource deflation: A

new approach for transient resource reclamation. In Proceedings of the Fourteenth

EuroSys Conference 2019, EuroSys ’19, New York, NY, USA, 2019. Association for

Computing Machinery. ISBN 9781450362818. doi: 10.1145/3302424.3303945. URL

https://doi.org/10.1145/3302424.3303945.

[226] Noam Shazeer. Fast transformer decoding: One write-head is all you need, 2019.

[227] Dian Shen, Junzhou Luo, Fang Dong, Xiaolin Guo, Kai Wang, and John C. S. Lui.

Distributed and optimal rdma resource scheduling in shared data center networks. In

INFOCOM, pages 606–615, 2020.

[228] Ying Sheng, Lianmin Zheng, Binhang Yuan, Zhuohan Li, Max Ryabinin, Beidi Chen,

Percy Liang, Christopher Ré, Ion Stoica, and Ce Zhang. Flexgen: high-throughput

generative inference of large language models with a single gpu. In Proceedings of the

40th International Conference on Machine Learning, ICML’23. JMLR.org, 2023.

[229] Ying Sheng, Shiyi Cao, Dacheng Li, Coleman Hooper, Nicholas Lee, Shuo Yang,

Christopher Chou, Banghua Zhu, Lianmin Zheng, Kurt Keutzer, Joseph E. Gonzalez,

and Ion Stoica. S-lora: Serving thousands of concurrent lora adapters, 2024. URL

https://arxiv.org/abs/2311.03285.

[230] Ying Sheng, Shiyi Cao, Dacheng Li, Banghua Zhu, Zhuohan Li, Danyang Zhuo, Joseph E.

Gonzalez, and Ion Stoica. Fairness in serving large language models. In 18th USENIX

200

https://doi.org/10.1145/3302424.3303945
https://arxiv.org/abs/2311.03285

Symposium on Operating Systems Design and Implementation (OSDI 24), pages 965–

988, Santa Clara, CA, July 2024. USENIX Association. ISBN 978-1-939133-40-3. URL

https://www.usenix.org/conference/osdi24/presentation/sheng.

[231] Timothy Sherwood, Suleyman Sair, and Brad Calder. Predictor-directed stream buffers.

In MICRO, pages 42–53, 2000.

[232] Alan Shieh, Srikanth Kandula, Albert Greenberg, and Changhoon Kim. Seawall:

Performance isolation for cloud datacenter networks. In HotCloud, 2010.

[233] Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper,

and Bryan Catanzaro. Megatron-lm: Training multi-billion parameter language models

using gpu model parallelism. arXiv preprint arXiv:1909.08053, 2019.

[234] David Shue, Michael J. Freedman, and Anees Shaikh. Performance isolation and fairness

for multi-tenant cloud storage. In OSDI, pages 349–362, 2012.

[235] David Sidler, Zeke Wang, Monica Chiosa, Amit Kulkarni, and Gustavo Alonso.

Strom: Smart remote memory. In Proceedings of the Fifteenth European Confer-

ence on Computer Systems, EuroSys ’20, New York, NY, USA, 2020. Association for

Computing Machinery. ISBN 9781450368827. doi: 10.1145/3342195.3387519. URL

https://doi.org/10.1145/3342195.3387519.

[236] Akshitha Sriraman and Thomas F. Wenisch. µsuite: A benchmark suite for microservices.

In 2018 IEEE International Symposium on Workload Characterization (IISWC), pages

1–12, 2018. doi: 10.1109/IISWC.2018.8573515.

[237] Robert Stets, Sandhya Dwarkadas, Nikolaos Hardavellas, Galen Hunt, Leonidas Kon-

tothanassis, Srinivasan Parthasarathy, and Michael Scott. Cashmere-2l: Software

coherent shared memory on a clustered remote-write network. In Proceedings of the

Sixteenth ACM Symposium on Operating Systems Principles, pages 170–183, 1997.

201

https://www.usenix.org/conference/osdi24/presentation/sheng
https://doi.org/10.1145/3342195.3387519

[238] Biao Sun, Ziming Huang, Hanyu Zhao, Wencong Xiao, Xinyi Zhang, Yong Li, and Wei

Lin. Llumnix: Dynamic scheduling for large language model serving, 2024.

[239] Zhenheng Tang, Yuxin Wang, Qiang Wang, and Xiaowen Chu. The impact of gpu dvfs

on the energy and performance of deep learning: an empirical study. In Proceedings

of the Tenth ACM International Conference on Future Energy Systems, e-Energy ’19,

page 315–325, New York, NY, USA, 2019. Association for Computing Machinery. ISBN

9781450366717. doi: 10.1145/3307772.3328315. URL https://doi.org/10.1145/

3307772.3328315.

[240] Konstantin Taranov, Salvatore Di Girolamo, and Torsten Hoefler. Corm: Compactable

remote memory over rdma. In Proceedings of the 2021 International Conference on

Management of Data, pages 1811–1824, 2021.

[241] Kiran Tati and Geoffrey M. Voelker. Shortcuts: Using soft state to improve dht routing.

In Chi-Hung Chi, Maarten van Steen, and Craig Wills, editors, Web Content Caching

and Distribution, page 44–62, Berlin, Heidelberg, 2004. Springer Berlin Heidelberg.

ISBN 978-3-540-30471-5.

[242] The Claude Team. Introducing the next generation of claude. https://

www.anthropic.com/news/claude-3-family, 2024.

[243] The PyTorch Foundation. Torchserve is a performant, flexible, and easy to use tool for

serving pytorch models in production. https://pytorch.org/serve/, 2024.

[244] Eno Thereska, Hitesh Ballani, Greg O’Shea, Thomas Karagiannis, Antony Rowstron,

Tom Talpey, Richard Black, and Timothy Zhu. IOFlow: A software-defined storage

architecture. In SOSP, pages 182–196, 2013.

[245] Tien-Fu Chen and Jean-Loup Baer. Effective hardware-based data prefetching for

high-performance processors. IEEE Transactions on Computers, 44(5):609–623, 1995.

202

https://doi.org/10.1145/3307772.3328315
https://doi.org/10.1145/3307772.3328315
https://www.anthropic.com/news/claude-3-family
https://www.anthropic.com/news/claude-3-family
https://pytorch.org/serve/

[246] Muhammad Tirmazi, Adam Barker, Nan Deng, Md E. Haque, Zhijing Gene Qin, Steven

Hand, Mor Harchol-Balter, and John Wilkes. Borg: The next generation. In EuroSys,

2020.

[247] Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux,

Timothée Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, Aurelien

Rodriguez, Armand Joulin, Edouard Grave, and Guillaume Lample. Llama: Open and

efficient foundation language models, 2023.

[248] Shin-Yeh Tsai and Yiying Zhang. LITE kernel RDMA support for datacenter applica-

tions. In SOSP, pages 306–324, 2017.

[249] Twitter Inc. Processing billions of events in real time at twitter. https:

/ / blog.twitter.com / engineering / en_us / topics / infrastructure / 2021 /

processing-billions-of-events-in-real-time-at-twitter-, 2021.

[250] S. P. Vander Wiel and D. J. Lilja. When caches aren’t enough: data prefetching

techniques. Computer, 30(7):23–30, 1997.

[251] S. P. Vander Wiel and D. J. Lilja. A compiler-assisted data prefetch controller.

In Proceedings 1999 IEEE International Conference on Computer Design: VLSI in

Computers and Processors, pages 372–377, 1999.

[252] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N.

Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention is all you need, 2017.

[253] Abhishek Verma, Luis Pedrosa, Madhukar R. Korupolu, David Oppenheimer, Eric

Tune, and John Wilkes. Large-scale cluster management at Google with Borg. In

Proceedings of the European Conference on Computer Systems (EuroSys), Bordeaux,

France, 2015.

[254] Lluís Vilanova, Lina Maudlej, Shai Bergman, Till Miemietz, Matthias Hille, Nils

Asmussen, Michael Roitzsch, Hermann Härtig, and Mark Silberstein. Slashing the

203

https://blog.twitter.com/engineering/en_us/topics/infrastructure/2021/processing-billions-of-events-in-real-time-at-twitter-
https://blog.twitter.com/engineering/en_us/topics/infrastructure/2021/processing-billions-of-events-in-real-time-at-twitter-
https://blog.twitter.com/engineering/en_us/topics/infrastructure/2021/processing-billions-of-events-in-real-time-at-twitter-

disaggregation tax in heterogeneous data centers with fractos. In Proceedings of the

Seventeenth European Conference on Computer Systems, EuroSys ’22, page 352–367,

New York, NY, USA, 2022. Association for Computing Machinery. ISBN 9781450391627.

doi: 10.1145/3492321.3519569. URL https://doi.org/10.1145/3492321.3519569.

[255] Geoffrey M. Voelker, Eric J. Anderson, Tracy Kimbrel, Michael J. Feeley, Jeffrey S.

Chase, Anna R. Karlin, and Henry M. Levy. Implementing cooperative prefetching and

caching in a globally-managed memory system. In SIGMETRICS, pages 33–43, 1998.

[256] Midhul Vuppalapati, Justin Miron, Rachit Agarwal, Dan Truong, Ashish Motivala,

and Thierry Cruanes. Building an elastic query engine on disaggregated storage. In

17th USENIX Symposium on Networked Systems Design and Implementation (NSDI

20), pages 449–462, Santa Clara, CA, February 2020. USENIX Association. ISBN 978-

1-939133-13-7. URL https://www.usenix.org/conference/nsdi20/presentation/

vuppalapati.

[257] Matthew Wachs, Michael Abd-El-Malek, Eno Thereska, and Gregory R. Ganger. Argon:

Performance insulation for shared storage servers. In FAST, 2007.

[258] Chenxi Wang, Haoran Ma, Shi Liu, Yuanqi Li, Zhenyuan Ruan, Khanh Nguyen,

Michael D. Bond, Ravi Netravali, Miryung Kim, and Guoqing Harry Xu. Semeru: A

memory-disaggregated managed runtime. In 14th USENIX Symposium on Operating

Systems Design and Implementation (OSDI 20), pages 261–280. USENIX Association,

November 2020. ISBN 978-1-939133-19-9. URL https://www.usenix.org/conference/

osdi20/presentation/wang.

[259] Chenxi Wang, Haoran Ma, Shi Liu, Yifan Qiao, Jonathan Eyolfson, Christian Navasca,

Shan Lu, and Guoqing Harry Xu. MemLiner: Lining up tracing and application for a

far-memory-friendly runtime. In OSDI, 2022.

[260] Chenxi Wang, Yifan Qiao, Haoran Ma, Shi Liu, Yiying Zhang, Wenguang Chen, Ravi

204

https://doi.org/10.1145/3492321.3519569
https://www.usenix.org/conference/nsdi20/presentation/vuppalapati
https://www.usenix.org/conference/nsdi20/presentation/vuppalapati
https://www.usenix.org/conference/osdi20/presentation/wang
https://www.usenix.org/conference/osdi20/presentation/wang

Netravali, Miryung Kim, and Guoqing Harry Xu. Canvas: Isolated and adaptive

swapping for multi-applications on remote memory. In NSDI, 2023.

[261] Qing Wang, Youyou Lu, Erci Xu, Junru Li, Youmin Chen, and Jiwu Shu. Concordia:

Distributed shared memory with {In-Network} cache coherence. In 19th USENIX

Conference on File and Storage Technologies (FAST 21), pages 277–292, 2021.

[262] Xiaodong Wang and José F. Martínez. ReBudget: Trading off efficiency vs. fairness

in market-based multicore resource allocation via runtime budget reassignment. In

ASPLOS, pages 19–32, 2016.

[263] Yuxin Wang, Yuhan Chen, Zeyu Li, Zhenheng Tang, Rui Guo, Xin Wang, Qiang Wang,

Amelie Chi Zhou, and Xiaowen Chu. Towards efficient and reliable llm serving: A

real-world workload study, 2024.

[264] Qizhen Weng, Lingyun Yang, Yinghao Yu, Wei Wang, Xiaochuan Tang, Guodong

Yang, and Liping Zhang. Beware of fragmentation: Scheduling GPU-Sharing workloads

with fragmentation gradient descent. In 2023 USENIX Annual Technical Confer-

ence (USENIX ATC 23), pages 995–1008, Boston, MA, July 2023. USENIX Associ-

ation. ISBN 978-1-939133-35-9. URL https://www.usenix.org/conference/atc23/

presentation/weng.

[265] Bingyang Wu, Zili Zhang, Zhihao Bai, Xuanzhe Liu, and Xin Jin. Transparent GPU

sharing in container clouds for deep learning workloads. In 20th USENIX Symposium

on Networked Systems Design and Implementation (NSDI 23), pages 69–85, Boston,

MA, April 2023. USENIX Association. ISBN 978-1-939133-33-5. URL https://

www.usenix.org/conference/nsdi23/presentation/wu.

[266] Bingyang Wu, Ruidong Zhu, Zili Zhang, Peng Sun, Xuanzhe Liu, and Xin Jin. dLoRA:

Dynamically orchestrating requests and adapters for LoRA LLM serving. In 18th

USENIX Symposium on Operating Systems Design and Implementation (OSDI 24),

205

https://www.usenix.org/conference/atc23/presentation/weng
https://www.usenix.org/conference/atc23/presentation/weng
https://www.usenix.org/conference/nsdi23/presentation/wu
https://www.usenix.org/conference/nsdi23/presentation/wu

pages 911–927, Santa Clara, CA, July 2024. USENIX Association. ISBN 978-1-

939133-40-3. URL https://www.usenix.org/conference/osdi24/presentation/

wu-bingyang.

[267] Guangxuan Xiao, Yuandong Tian, Beidi Chen, Song Han, and Mike Lewis. Efficient

streaming language models with attention sinks, 2024. URL https://arxiv.org/abs/

2309.17453.

[268] Wencong Xiao, Romil Bhardwaj, Ramachandran Ramjee, Muthian Sivathanu, Nipun

Kwatra, Zhenhua Han, Pratyush Patel, Xuan Peng, Hanyu Zhao, Quanlu Zhang, Fan

Yang, and Lidong Zhou. Gandiva: Introspective cluster scheduling for deep learning. In

13th USENIX Symposium on Operating Systems Design and Implementation (OSDI 18),

pages 595–610, Carlsbad, CA, October 2018. USENIX Association. ISBN 978-1-939133-

08-3. URL https://www.usenix.org/conference/osdi18/presentation/xiao.

[269] Wencong Xiao, Shiru Ren, Yong Li, Yang Zhang, Pengyang Hou, Zhi Li, Yihui Feng, Wei

Lin, and Yangqing Jia. AntMan: Dynamic scaling on GPU clusters for deep learning.

In 14th USENIX Symposium on Operating Systems Design and Implementation (OSDI

20), pages 533–548. USENIX Association, November 2020. ISBN 978-1-939133-19-9.

URL https://www.usenix.org/conference/osdi20/presentation/xiao.

[270] Hailong Yang, Alex Breslow, Jason Mars, and Lingjia Tang. Bubble-Flux: Precise

online qos management for increased utilization in warehouse scale computers. In ISCA,

pages 607–618, 2013.

[271] Suli Yang, Tyler Harter, Nishant Agrawal, Salini Selvaraj Kowsalya, Anand Krishna-

murthy, Samer Al-Kiswany, Rini T. Kaushik, Andrea C. Arpaci-Dusseau, and Remzi H.

Arpaci-Dusseau. Split-level i/o scheduling. In SOSP, pages 474–489, 2015.

[272] Gyeong-In Yu, Joo Seong Jeong, Geon-Woo Kim, Soojeong Kim, and Byung-Gon Chun.

Orca: A distributed serving system for Transformer-Based generative models. In 16th

206

https://www.usenix.org/conference/osdi24/presentation/wu-bingyang
https://www.usenix.org/conference/osdi24/presentation/wu-bingyang
https://arxiv.org/abs/2309.17453
https://arxiv.org/abs/2309.17453
https://www.usenix.org/conference/osdi18/presentation/xiao
https://www.usenix.org/conference/osdi20/presentation/xiao

USENIX Symposium on Operating Systems Design and Implementation (OSDI 22),

pages 521–538, Carlsbad, CA, July 2022. USENIX Association. ISBN 978-1-939133-28-1.

URL https://www.usenix.org/conference/osdi22/presentation/yu.

[273] Peifeng Yu and Mosharaf Chowdhury. Salus: Fine-grained gpu sharing primitives for

deep learning applications, 2019.

[274] Matei Zaharia, Mosharaf Chowdhury, Michael J. Franklin, Scott Shenker, and Ion

Stoica. Spark: Cluster computing with working sets. In HotCloud, HotCloud, page 10,

Berkeley, CA, USA, 2010.

[275] Matei Zaharia, Omar Khattab, Lingjiao Chen, Jared Quincy Davis, Heather Miller,

Chris Potts, James Zou, Michael Carbin, Jonathan Frankle, Naveen Rao, and Ali

Ghodsi. The shift from models to compound ai systems. https://bair.berkeley.edu/

blog/2024/02/18/compound-ai-systems/, 2024.

[276] Haoran Zhang, Konstantinos Kallas, Spyros Pavlatos, Rajeev Alur, Sebastian Angel,

and Vincent Liu. MuCache: A general framework for caching in microservice graphs.

In 21st USENIX Symposium on Networked Systems Design and Implementation (NSDI

24), pages 221–238, Santa Clara, CA, April 2024. USENIX Association. ISBN 978-

1-939133-39-7. URL https://www.usenix.org/conference/nsdi24/presentation/

zhang-haoran.

[277] Hong Zhang, Yupeng Tang, Anurag Khandelwal, and Ion Stoica. SHEPHERD: Serving

DNNs in the wild. In 20th USENIX Symposium on Networked Systems Design and

Implementation (NSDI 23), pages 787–808, Boston, MA, April 2023. USENIX Associa-

tion. ISBN 978-1-939133-33-5. URL https://www.usenix.org/conference/nsdi23/

presentation/zhang-hong.

[278] Irene Zhang, Amanda Raybuck, Pratyush Patel, Kirk Olynyk, Jacob Nelson, Omar

S. Navarro Leija, Ashlie Martinez, Jing Liu, Anna Kornfeld Simpson, Sujay Jayakar,

207

https://www.usenix.org/conference/osdi22/presentation/yu
https://bair.berkeley.edu/blog/2024/02/18/compound-ai-systems/
https://bair.berkeley.edu/blog/2024/02/18/compound-ai-systems/
https://www.usenix.org/conference/nsdi24/presentation/zhang-haoran
https://www.usenix.org/conference/nsdi24/presentation/zhang-haoran
https://www.usenix.org/conference/nsdi23/presentation/zhang-hong
https://www.usenix.org/conference/nsdi23/presentation/zhang-hong

Pedro Henrique Penna, Max Demoulin, Piali Choudhury, and Anirudh Badam. The

demikernel datapath os architecture for microsecond-scale datacenter systems. In SOSP,

pages 195–211, 2021.

[279] Lixia Zhang. A new architecture for packet switching network protocols. Technical

report, MASSACHUSETTS INST OF TECH CAMBRIDGE LAB FOR COMPUTER

SCIENCE, 1989.

[280] Tianjun Zhang, Shishir G. Patil, Naman Jain, Sheng Shen, Matei Zaharia, Ion Stoica,

and Joseph E. Gonzalez. Raft: Adapting language model to domain specific rag, 2024.

[281] Wei Zhang, Sundaresan Rajasekaran, Shaohua Duan, Timothy Wood, and Mingfa

Zhuy. Minimizing interference and maximizing progress for hadoop virtual machines.

SIGMETRICS Perform. Eval. Rev., 42(4):62–71, 2015.

[282] Xiao Zhang, Eric Tune, Robert Hagmann, Rohit Jnagal, Vrigo Gokhale, and John

Wilkes. CPI2: CPU performance isolation for shared compute clusters. In EuroSys,

pages 379–391, 2013.

[283] Yanqi Zhang, Íñigo Goiri, Gohar Irfan Chaudhry, Rodrigo Fonseca, Sameh Elnikety,

Christina Delimitrou, and Ricardo Bianchini. Faster and cheaper serverless computing on

harvested resources. In Proceedings of the ACM SIGOPS 28th Symposium on Operating

Systems Principles, SOSP ’21, page 724–739, New York, NY, USA, 2021. Association

for Computing Machinery. ISBN 9781450387095. doi: 10.1145/3477132.3483580. URL

https://doi.org/10.1145/3477132.3483580.

[284] Yiwen Zhang, Yue Tan, Brent E. Stephens, and Mosharaf Chowdhury. RDMA perfor-

mance isolation with justitia. In NSDI, 2022.

[285] Yinmin Zhong, Shengyu Liu, Junda Chen, Jianbo Hu, Yibo Zhu, Xuanzhe Liu, Xin Jin,

and Hao Zhang. Distserve: Disaggregating prefill and decoding for goodput-optimized

large language model serving, 2024.

208

https://doi.org/10.1145/3477132.3483580

[286] D. F. Zucker, R. B. Lee, and M. J. Flynn. Hardware and software cache prefetching

techniques for MPEG benchmarks. IEEE Transactions on Circuits and Systems for

Video Technology, 10(5):782–796, 2000.

209

	Introduction
	Challenges
	Insights
	Dissertation Statement
	Contributions
	Dissertation Organizations

	Background
	Characterizing Datacenter Workloads
	Existing Datacenter System Stacks for Resource Harvesting
	Operating System Kernel Paging/Swap System
	Resource-Harvesting Runtime Systems

	Midas: A New OS Abstraction for Memory Harvesting
	Introduction
	Motivation
	Midas Overview
	Design
	Soft Memory Abstraction
	Application-Integrated Runtime
	Global Soft Memory Coordinator
	Discussion

	Implementation
	Programming with Midas
	Guidelines
	Application Case Studies

	Evaluation
	Coordinating Soft Memory
	Harvesting Available Idle Memory
	Reacting to Memory Pressure
	Design Drill-Down

	Related Work
	Summary

	Hermit: Transparent and Fast Remote Memory Harvesting
	Introduction
	Understanding Existing Swap Systems
	The Life Cycle of Remote Memory Access
	Root Causes of Inefficiencies

	Hermit Design
	Design Overview
	Reclaim Scheduling
	Adapt Swap-in to Fast Remote Memory
	CPU-Efficient Page Reclamation

	Implementation
	Evaluation
	Real-world Applications
	Tail Latency of Latency-Critical Applications
	Throughput of Batch Applications
	Design Drill-Down

	Related Work
	Summary

	Canvas: Isolated and Adaptive Remote Memory Harvesting
	Introduction
	Motivating Performance Study
	Swap System Isolation
	Isolation-Enabled Swap Optimizations
	Adaptive Swap Entry Allocation
	Two-Tier Adaptive Prefetching
	Two-Dimensional RDMA Scheduling

	Evaluation
	Basic Swap Systems
	Overall Performance
	Isolation Reduces Degradation and Variation
	Effectiveness of Adaptive Optimizations

	Related Work
	Summary

	Concerto: Harvesting GPUs for Large Language Model Serving
	Introduction
	Background
	Large Language Model Inference
	Characterizing LLM Serving
	Existing LLM Serving Systems

	Motivation
	Design
	Concerto Overview
	Unified Preemptive Scheduler
	Preemptible Worker
	Incremental Checkpointing
	SLO-aware Scheduling

	Implementation
	Evaluation
	Setup
	Overall Serving Performance
	Reacting to Load Bursts

	Discussion
	Related Work
	Summary

	Conclusion
	Future Directions

