
UC Berkeley
UC Berkeley Electronic Theses and Dissertations

Title
Constrained machine learning: algorithms and models

Permalink
https://escholarship.org/uc/item/92d86234

Author
Negiar, Geoffrey

Publication Date
2023

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/92d86234
https://escholarship.org
http://www.cdlib.org/

Constrained Machine Learning: Algorithms and Models

By

Geoffrey Négiar

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Engineering – Electrical Engineering and Computer Science

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Professor Laurent El Ghaoui, Co-chair
Professor Michael Mahoney, Co-chair

Professor Somayeh Sojoudi
Assistant Professor Aditi Krishnapriyan

Summer 2023

Constrained Machine Learning: Algorithms and Models

Copyright 2023
by

Geoffrey Négiar

1

Abstract

Constrained Machine Learning: Algorithms and Models

by

Geoffrey Négiar

Doctor of Philosophy in Engineering – Electrical Engineering and Computer Science

University of California, Berkeley

Professor Laurent El Ghaoui, Co-chair

Professor Michael Mahoney, Co-chair

This thesis is concerned with designing efficient methods to incorporate known structure in
machine learning models. Structure arises either from problem formulation (e.g. physical
constraints, aggregation constraints), or desirable model properties (energy efficiency, sparsity,
robustness). In many cases, the modeler has a certain knowledge about the system that
they are modeling, which must be enforced in an exact manner. This can be necessary for
providing adequate safety guarantees, or for improving the system’s efficiency: training a
system with less data, or less computation costs. This thesis provides methods to do so in
a variety of settings, by building on the two foundational fields of continuous, constrained
optimization and of differentiable statistical modeling (also known as deep learning).

The first part of the thesis is centered on designing and analyzing efficient algorithms for
optimization problems with convex constraints. In particular, it focuses on two variants of the
Frank-Wolfe algorithm: the first variant proposes a fast backtracking-line search algorithm
to adaptively set the step size in the full-gradient setting; the second variant proposes a
fast stochastic Frank-Wolfe algorithm for constrained finite-sum problems. I also describe
contributions to open-source constrained optimization software. The second part of this
thesis is concerned with designing deep learning models which enforce certain constraints
exactly: constraints based on physics, and aggregation constraints for probabilistic forecasting
models. This part leverages bi-level optimization models, and differentiable optimization to
constrain the output of a complex neural network. We demonstrate that complex non-linear
constraints can be enforced on complex non-convex models, including probabilistic models.

These examples showcase the power of hybrid models which couple data-driven learning
and leverage complex nonlinear models such as deep neural networks, and well-studied
optimization problems allowing for efficient algorithms. These hybrid models help highly
flexible models to pick up structural patterns, achieving strong performance with sometimes
no data access at all.

i

To my grandparents, Jeannine, Charles, Louise and James.
To my parents, Carol and Xavier.

ii

Contents

Contents ii

List of Figures v

List of Tables x

1 Overview 1

I Algorithms 4

2 Linearly convergent Frank-Wolfe with backtracking line-search 5
2.1 Introduction . 5
2.2 Methods . 7
2.3 Analysis . 11
2.4 Benchmarks . 15
2.5 Conclusion and Future Work . 17

3 Stochastic Frank-Wolfe for constrained finite-sum minimization 19
3.1 Introduction . 19
3.2 Methods . 21
3.3 Analysis . 24
3.4 Stopping Criterion . 29
3.5 Discussion . 30
3.6 Implementation Details . 31
3.7 Experiments . 32
3.8 Conclusion and Future Work . 33

4 Constrained Optimization Software 34
4.1 Introduction . 34
4.2 Project Vision . 34
4.3 Methods Currently Implemented . 35
4.4 Underlying Technologies . 35
4.5 Examples . 36

CONTENTS iii

II Models 37

5 Learning differentiable solvers for systems with hard constraints 38
5.1 Introduction . 38
5.2 Background and Related work . 39
5.3 Methods . 41
5.4 Experimental results and implementation . 44
5.5 Conclusions . 50

6 Probabilistic forecasting 51
6.1 Introduction . 51
6.2 Background and Related Work . 54
6.3 Our Main Method . 58
6.4 Empirical Evaluation . 64
6.5 Conclusion . 67

Bibliography 72

A Stochastic Frank-Wolfe 81
A.1 Smoothness . 81
A.2 Proof of Lemma 1 . 82
A.3 Completing the proof for Theorem 1 . 84
A.4 Bounds for Bt, Ct . 86
A.5 Convergence of the stochastic gap to the FW gap (Proposition 1.) 87
A.6 Proof of Theorem 2 . 88
A.7 Comparison with other methods . 89
A.8 Comparison with full-gradient Frank-Wolfe 90

B Frank-Wolfe with backtracking line-search 91
B.1 Pseudocode . 91
B.2 Basic definitions and properties . 95
B.3 Preliminaries: Key Inequalities . 97
B.4 Proofs of convergence for non-convex objectives 101
B.5 Proofs of convergence for convex objectives 105
B.6 Proofs of convergence for strongly convex objectives 112
B.7 Experiments . 118

C Learning differentiable solvers for systems with hard constraints 121
C.1 1D convection . 121
C.2 Details on the 1d Convection problem . 122
C.3 Details on the Darcy Flow problem . 125
C.4 Hard constraints bound . 126
C.5 Ablation: Evaluating the quality of the learned basis functions 127
C.6 Comparison to numerical solvers . 128

CONTENTS iv

D Probabilistic forecasting with coherent aggregation 130
D.1 Details for each dataset . 130
D.2 Code Script for Sampling . 132
D.3 Visualization of Predictions . 133

v

List of Figures

2.1 Top table: description of the datasets. Bottom figure: Benchmark of different
FW and MP variants. The variants with backtracking line-search proposed in
this paper are in dashed lines. Problem in A, B, C, D = logistic regression with
ℓ1-constrained coefficients, in E, F = Huber regression with on the nuclear norm
constrained coefficients and in G, H = unconstrained logistic regression (MP
variants). In all the considered datasets and regularization regimes, backtracking
variants have a much faster convergence than others. 16

3.1 Comparing our SFW method to the related works of Lu and Freund and Mokhtari,
Hassani, and Karbasi. From left to right: Breast Cancer, RCV1, and Cal-
ifornia Housing datasets. We plot the relative subtimality values in log-log
plots to show empirical rates of convergence. We use the following batch size:
b = ⌊n/100⌋. 30

5.1 Mapping PDE parameters ϕ to PDE solutions u(ϕ). The goal of our model is
to learn a mapping G : ϕ 7→ u(ϕ), without access to solution data. As an example,
we study the Darcy Flow PDE, which describes the chemical engineering problem
of fluid flow through a porous medium. The system is composed of two materials
in a given spatial domain X = (0, 1)2, each with specific diffusion coefficients which
depend on the position. The left figure shows ϕ, which encodes the locations and
diffusion properties of the two materials. The right figure shows the corresponding
solution u(ϕ). The function u is a solution of the Darcy Flow PDE with diffusion
coefficients ϕ if, for all (x, y) ∈ (0, 1)2, it satisfies −∇ · (ϕ(x, y)∇u(x, y)) = 1. The
boundary condition is u(x, y) = 0, ∀(x, y) ∈ ∂(0, 1)2. 42

LIST OF FIGURES vi

5.2 Heatmaps of Darcy Flow example test set predictions. We compare our
hard-constrained model and the baseline soft-constrained model on a test set of
new diffusion coefficients ν. The NN architectures are the same except for our
additional PDE-CL in the hard-constrained model. a Target solutions of a subset of
PDEs in the test set. b Difference between the predictions of our hard-constrained
PDE-CL model and the target solution. c Difference between the predictions
of the baseline soft-constrained model and the target solution. Over the test
dataset, our model achieves 1.82%± 0.04% relative error and 0.0457± 0.0021
interior domain test loss. In contrast, the soft-constrained model only reaches
3.86%± 0.3% relative error and 1.1355± 0.0433 interior domain test loss. Our
model achieves 71% less relative error than the soft-constrained model. While
the heatmaps show a subset of the full test set, the standard deviation across the
test set for our model is very low, as shown by the box plot in Appendix C.3. . 45

5.3 2D Darcy Flow: Error on test set during training. We train a NN
architecture with the PDE residual loss function (“soft constraint” baseline), and
the same NN architecture with our PDE-CL (“hard constraint”). During training,
we track error on the test set, which we plot on a log-log scale. a PDE residual
loss on the test set, during training. This loss measures how well the PDE is
enforced. b Relative error on the test set, during training. This metric measures
the distance between the predicted solution and the target solution obtained via
finite differences. Both measures show that our hard-constrained PDE-CL model
starts at a much lower error (over an order of magnitude lower) on the test set at
the very start of training, and continues to decrease as training proceeds. This is
particularly visible when tracking the PDE residual test loss. 47

5.4 Heatmaps of 1D Burgers’ example test set predictions. We compare
our hard-constrained model and the baseline soft-constrained model on a test
set of new initial conditions u0. Both architectures are the same, except for
our additional PDE-CL in the hard-constrained model. a) Target solutions of a
subset of PDEs in the test set. b) Difference between the predictions of our hard-
constrained model and the target solution. c) Difference between the predictions of
the baseline soft-constrained model and the target solution. Over the test dataset,
our model achieves 1.11± 0.11% relative error. The baseline soft-constrained
model achieves only 4.34%± 0.33% relative error. We use the same base network
architecture (MLPs) for both the soft-constrained and hard-constrained model.
The errors in both models are concentrated around the “sharp” features in the
solution, but these errors have 4x higher magnitude in the soft-constrained model. 48

5.5 1D Burgers’ equation: Error on validation set during training. We train
a NN with the PDE residual loss function (“soft constraint” baseline) and the
same NN architecture with our PDE-CL (“hard constraint”). Both architectures
are MLPs. During training, we track relative error on the test set, which we plot
on a log-log scale. Our hard-constrained model learns low error predictions much
earlier in training. The hard constrained model achieves lower relative error than
the soft-constrained method. 49

LIST OF FIGURES vii

6.1 A simple hierarchical example of M = 8 aggregates over N = 4 entities.
Figure 6.1a (left) shows the set representation of the aggregation. Figure 6.1b
(center) shows a possible graph representation: the edge between J6 and J8 could
be removed since J6 is included in the union of J5 and J7. The graph is a DAG,
but it is not a tree: the node J2 appears in the aggregations J5 and J6. Figure 6.1c
(right) shows the corresponding aggregation matrix. In the matrix representation,
we’ve added horizontal lines to separate levels of the hierarchy. These levels do
not matter in our algorithm or methods, although they may be important for
evaluation. These levels match the levels in the DAG representation, and they
correspond to the topological ordering of the nodes in the graph. Our method
uses only the matrix representation, which is equivalent to the set representation. 55

6.2 Model architecture for our work. We show an example with N = 3 base series,
M = 3 aggregates, and K = 2 factors. Base-level series xn1 , · · · ,xn3 are fed into a
multi-variate neural network forecasting model such as MQCNN [103]. This model
outputs encodings for each base-level series. These encodings are used in two
manners: they are summed to produce an encoding at the common factor level,
which is decoded into the factor distribution parameters ϕk1 and ϕk2 by a shallow
network; they are also decoded directly by another shallow network to produce the
base-level distribution loadings ws and parameters σs. The base-level forecast
distributions can be sampled differentiably using a reparametrization trick by
using parameter-free random inputs from factor level η(l)’s and the base level
η(b)’s. Aggregating these samples zn1 , zn2 , zn3 with aggregation matrices S yields
coherent samples at all levels of the hierarchy ym1 , . . . , ym3 . Finally, aggregate
samples are used to define the desired loss. 58

6.3 Performance of our model for different numbers of factors based on one run with
the same random seed. We provide overall normalized CRPS on Traffic for a
model with Gamma factors and Clipped Normal base distributions. We also fit a
3-degree polynomial function to the results. 67

B.1 Comparison of different FW variants. Problem is ℓ1-regularized logistic
regression and dataset is Madelon in the first, RCV1 in the second figure. . . . 118

B.2 Comparison of different FW variants. Problem is ℓ1-regularized logistic
regression and dataset is RCV1. 119

B.3 Comparison of different FW variants. Comparison of FW variants on the
Movielens 1M dataset. 120

LIST OF FIGURES viii

C.1.1Heatmaps of 1D convection example test set predictions. We compare
our hard-constrained model and the baseline soft-constrained model on a test
set of new wavespeed parameters β. Both architectures are the same, except for
our additional PDE-CL in the hard-constrained model. a) Target solutions of a
subset of PDEs in the test set. b) Difference between the predictions of our hard-
constrained model and the target solution. c) Difference between the predictions of
the baseline soft-constrained model and the target solution. Over the test dataset,
our model achieves 1.32%± 0.02% relative error and 9.84± 2.15 PDE residual
test loss. In contrast, the soft-constrained model only reaches 2.59%± 0.15%
relative error and 774± 1.2 PDE residual test loss. Our model achieves 49%
less relative error than the soft-constrained model. The errors in both models are
concentrated around the “sharp” features in the solution, but these errors have
higher magnitude in the soft-constrained model. 122

C.1.21D convection: Error on test set during training. We train a NN with
the PDE residual loss function (“soft constraint” baseline) and the same NN
architecture with our PDE-CL (“hard constraint”). During training, we track
error on the test set, which we plot on a log-log scale. a) PDE residual loss on the
test set, during training. We observe that the NN starts by fitting the initial and
boundary condition regression loss during training, which explains why the PDE
residual loss seems to go up initially. b) Relative error on the test set, during
training. Both measures show that our hard-constrained model starts at a much
lower error on the test set at the very start of training. The grey, dashed line
shows that the hard-constrained model achieves the same relative error as the
soft-constrained model in over 100x fewer iterations, and ultimately achieves lower
relative error. Wall-time comparison figures are given in Appendix C.2. 123

C.2.1Walltime plots for 1D convection. During the training procedure, we track
error on an unseen test set. Our hard- constrained model reaches the optimal
accuracy of the soft-constrained model in 10x less time. 123

C.2.21D convection: Box plots showing error over test set. We show the
distribution of errors over the test set, at the end of training. Our hard-constrained
model has both a lower error and a lower standard deviation as compared to the
soft-constrained model. 124

C.3.1Walltime plots for Darcy Flow. During the training procedure, we track error
on an unseen test set. Our hard- constrained model achieves higher accuracy
much more quickly than the soft-constrained model. 125

C.3.22D Darcy Flow: Box plots showing error over test set. We show the
distribution of errors over the test set, at the end of training. Our hard-constrained
model has both a lower error, as well as a significantly lower standard deviation
as compared to the soft-constrained model. 126

LIST OF FIGURES ix

C.4.1Histogram of errors: Error for points sampled by the PDE-CL, versus
error for points not sampled. We consider a trained model, and perform
inference on a random PDE instance. In this plot, we consider the 1D convection
setting. The histogram shows that the error for points used in the PDE-CL (1000
points) is about the same as error for points not used for the PDE-CL (9000
points). This demonstrates that we do not need to fit the PDE-CL on all points
of the grid. 127

C.5.1Quality of learned basis functions. We compare the interpolation from the
hard-constrained points against our model’s learned prediction. Our learned
basis functions have lower error, as compared to the baseline interpolation. The
error gap increases with higher resolution on the grid of interest (i.e., a finer
discretization). Our learned basis functions are 36% more accurate than the
baseline interpolation for the 100x100 grid, and 37% more accurate than the
baseline interpolation for the 1000x1000 grid. 128

D.2.1PyTorch function for sampling from our model, with a Gamma factor distribution
and a Log-Normal base distribution. Note that the factor samples are shared
across all base-level distributions. The samples are differentiable with regard
to the function inputs. We can easily adapt this function to sample from other
distributions. The parameters of the function are the outputs of a neural network.133

D.3.1Targets and predictions on the test set, for the hierarchy containing Store 1, for a
given item, in the Favorita dataset. We visualize weekly forecast generated at
the first forecast creation date in the test set. We show the forecasted quantiles
at levels 0.01, 0.05, 0.1, 0.5, 0.9, 0.95 and 0.99 to demonstrate the spread of our
forecasts, where the quantile forecasts are estimated empirically from 500 points
from the factor model at each forecasted week. The model uses Gamma factors,
and a Normal distribution clipped to be non-negative at the base-level. Clipping
the Normal rather than truncating it allows to put point mass at zero, which is
useful at the store level, as can be seen in Figure. D.3.1a: up to P10 quantile
forecast is zero at the store level for this item for all evaluation weeks. 134

x

List of Tables

2.1 Comparison with related work. non-convex analysis : convergence guarantees
for problems with a non-convex objective. approximate subproblems : convergence
guarantees cover the case in which linear subproblems are solved approximately.
linear convergence: guaranteed linear rate of convergence (under hypothesis).
adaptive step-size: step-size is set using local information of the objective. bounded
backtracking : explicit bound for the total number of inner iterations in adaptive
step-size methods. † = assumes cartesian product domain. 6

2.2 Convergence rate summary on non-convex, convex and strongly convex objec-
tives. For non-convex objectives, bound is on the minimum FW gap (MP gap in
the case of AdaMP), in other cases its on the objective suboptimality. 12

3.1 Worst-case convergence rates for the function suboptimality after t iterations, for
a dataset with n samples. κ ≤ n and can be much smaller than n for datasets of
interest. κ is introduced in Section 3.5. 20

3.2 Datasets and tasks used in experiments. 30

6.1 Desirable properties satisfied by the models Deep HierE2E and DPMN and
the proposed method. The ideal method is 1) coherent by construction, 2)
differentiable with respect to its parameters for efficient optimization of expected
loss functions 3) capable of optimizing arbitrary sample-based loss functions, 4)
hierarchical in structure, represented by a factor model, 5) flexible in the choice of
factor and base-level distributions, and 6) able to produce compact and expressive
forecasts for ease of storing predictions. Our proposed method satisfies all of these
desired properties. 53

6.2 Summary of publicly-available data used in our empirical evaluation. The
Tourism-Large dataset [123] represents tourism visits to Australia between 1998
and 2016. The Favorita dataset [137] represents daily grocery sales in stores
owned by the Favorita Corporación in Ecuador between 2013 and 2017. The
Traffic dataset [127] consists of daily occupancy rate for 200 selected car lanes
in California Bay Area between 2008 and 2009. 69

LIST OF TABLES xi

6.3 Results of our empirical evaluation. We report the CRPS score for each dataset (smaller
is better) at various hierarchical levels (a level with lower number represents a more
aggregated level, more details discussed in Appendix D.1). Average accuracy and its
interval are computed based on three independent runs. Our model improves on previous
methods on all datasets at all levels but Level 1 of Traffic. On Tourism-Large, our
model improves on the previous state of the art by 11.8%. On the larger-scale Favorita
dataset, our model improves by 23.4%. On Traffic, we improve the best result by
41.4% overall. Our model performs notably better at the finest granularity; our model’s
performance is stable across levels, whereas the other models perform better at the
aggregate levels than at the base level. We evaluate our mean forecasts by computing
the RelMSE score at the overall level (summing the total squared error at all levels, and
normalize it by that of naive forecasts). Note ARIMA-MinT-Boot produces deterministic
mean forecasts across model runs. Our model achieves lower RelMSE than other models
on two datasets: 44.1% improvement on Tourism-Large, 28.9% on Favorita, but
reaches higher RelMSE on Traffic, despite large gains in CRPS. 70

6.4 Performance of our model for various choices of base distribution, where results
are based on three independent runs. We provide overall normalized CRPS for
factor models with Gamma distributed factors and various base distributions. . 71

D.1.1Features used for the Tourism-Large dataset. 131
D.1.2Features used for the Favorita dataset. 131
D.1.3Features used for the Traffic dataset. 132

LIST OF TABLES xii

Acknowledgments

My PhD adventure would have been nothing without all the people who have supported me
over the years, during the PhD itself of course, but also way before, paving my way here.
I dedicate this thesis to my grandparents, and my parents. Jeannine, who I never got to
meet, but who indirectly defined so much of who I am. Charles, his survivor mindset and
endless curiosity. Louise, for being my anchor in California, with Uncle Gerry and Aunt
Gail. James, for getting me started in engineering, and the American practical spirit through
many (many) hardware store hangouts. Mom, Dad, thank you for your kindness, your open
minds, and for aiming to pass on your ability to be everywhere at home. Thank you also
to my cousins, Laure, Julie-Anne, Edouard and Claire, and to my Aunt Karen and Uncle
Didier for making growing up as an American in Paris seem completely normal – also for
preceding me to the grand California adventure, letting me stay, and help me be at home in
San Francisco and New York. Ed, thanks for sharing all your favorite places in SF – I would
not know half the restaurants and bars I know without you. Also, thank you for introducing
me to great people like Jacob K, Germain B, Irva (thanks for the apple pie, SF recs, and for
being around in the Bay :)).

This thesis would never have happened if my advisors Laurent El Ghaoui and Michael
Mahoney hadn’t taken a chance on me. Thank you Laurent for teaching me the depths of
optimization, and for many blackboard sessions figuring out how to model problems, and
solve them fast. When I decided to switch gears a bit and focus on bringing structure to deep
learning, Michael gave me the time and opportunity to learn, meet many new people and get
a deep overview of ML based in the physical world. I’m very grateful for that. Thanks to
Amir for introducing me to Michael.

Thank you to Fabian Pedregosa for being my mentor in all things open-source, continuous
optimization, for mentoring me to write my first first-author paper, and for hosting me at
Google. I learned so much! I hope that we’ll go soon for the famed chocolate factory tour on
the banks of the Léman. Aditi, that paper was a lot of fun, and I wish you all the best for
the hard path of professorship. Thank you Rob Freund, for hopping in our paper, working on
a proof together, and for your kindness and mentorship since. Thanks to Thomas Kerdreux,
Gautier Gidel for keeping the Frank-Wolfe fire ablaze.

Shirley Salanio, you deserve special thanks for cheerfully supporting me (and all the other
EECS students!) up until graduation. No-one would ever graduate without you. Thank you
also to the ICSI staff: Jacob W, Ashley C for getting me out of admin limbo many times!

I was lucky to be hosted in several internships before and during my PhD. Thank you to
all the teams at Bloomberg LP, Google and Amazon for hosting me, helping me on all my
Python, PyTorch, Jax and ML questions. In particular, Ryan T. Hoens, Kang Sun, Danny
Tarlow, Daniel D. Johnson, Hugo Larochelle, Jake Vanderplas, Roy Frostig, Stephan Hoyer,
Matthieu Blondel, Mengfei Cao, Ruijun Ma, Youxin Shen, Danielle Maddix, Kenny Shirley.
Also my co-interns in NYC Joachim, Ege, Arturo, Matthieu (DRM), Hanjing, Bella, Léa,
Patricia, Victoria, Simon R: you all made those summers fun and interesting (sometimes
more productive, sometimes less ;)). I want to thank the great people at Lawrence Berkeley
Lab, and from Michael’s group all over Berkeley, in particular Dmitriy Morozov for the

LIST OF TABLES xiii

white-board brainstorms, Ben Erichson, Rajiv Khanna, Yaoqing Yang and others! Thanks
also to all my Berkeley PhD friends, Armin, Nilesh, Allan, Morris, Daniel Rothschild, You
Sun, Nilandri, Aldo, Colorado, Chenling, Esther, Neil, Eric Mazumdar. I loved sharing our
challenges, discoveries, internship and job tips together. Finally, all the people I got to meet
and hang out with during ML conferences: those were amongst the best times of my PhD!

I’d like to give thanks to the open-source teams who supported me during this journey:
PyTorch, Jax, NumPy, SciPy, Sklearn. You make all of this possible, and practical. May you
always be supported to do so.

I would not have gone the PhD route without my mentors at Shift Technology Alice
(more to be said here :)), and Éric S. DJ, that burrito changed my academic trajectory.
Thank you.

I had the great joy and opportunity to live in a shared house at California St in Berkeley
with wonderful housemates, both for a long time and a short time. Romain, we managed
to nurture a special environment over the years; thank you for reaching out to me ("Dear
Kung Fu Master")! I’m glad Anna and Alice joined the ride for a bit. Philippe, Chiraz,
Paul-Armand, Georg, Maddie, Hector, Julia and Titouan (j’ai hésité sur l’ordre du trio ;)),
Heather, Khalil, Louise, Max F, but also honorary housemates Sevan, Thomas, Valentine,
Ronan, Anne-Claire, Étienne, Hugo, Alexis, Grégoire Hamel, and Grégoire Mialon (for
inaugurating the house together), Denis... quelle aventure! Thankgsgiving dinners or trips to
LA, DIY house improvement (I still don’t see a farmbot, but it’ll happen someday), cocktail
parties, treasure hunts, crazy snowshoeing for my poor urban self, music Wednesdays... More
recently, thanks to the SF brewery night crew for being there in the last months of my thesis:
David, Zack, Francesco, Rigney, Felix, Johanna, Eugene, Prastuti, Alex, Maud, Thibault.
Talking about LA, thank you to my Angelenos brothers, Max and Adam G, and their parents,
Dr. Russ and Wendy. Thanks to Louise F, Emma G and Noémie M for welcoming me in
your unforgettable Rwanda road trip.

A big thanks to the French community in the SF Bay Area for being so French and so
unFrench at the same time. Y’all feel like home in a good, weird, neither here nor there, way.
Christelle, Antoine D (and Will!), Nicolas Zweibaum (from reading my CV in my application
to many evenings of commiserating our LDRs), Matthieu, Marie, Johan, Nina, Raphael (who
followed me into boxing for a bit), Ferdi, Jonas, Balthazar, Guillaume, Olivier, Solenne,
Clément, Solène, Adrien, Pierre Fredenucci, Taha, Loic, Jérome T, Aurian & Antoine K,
Ahmed EA, Ilai D, Charlotte W and Tom B, and many others.

Thanks to all my friends in France (and everywhere) who tolerated me only popping
by occasionally, rarely announcing myself more than a few hours in advance (“Yo! Je suis
à Paris, et toi?” or “Hey!! I’m in LA/NYC next week, hbu?”). Those who came visit in
California and those who didn’t (Covid19, I’m looking at you). Juliette, Alex Benoliel, Antoine
DVD, Vincent, Djerby, Goga, Hugo, Sabrina, Jean-Baptiste L, Dhruv, Clara, Gregoire M,
Yana, Antoine Gondé and Cassandre, Marc Szafraniec, Margot L, Solène, toute l’oenologie
(Ambroise, Ludo, Pauline – merci pour ta patience :), Nico & Mathilde, Gabriel, Simon,
Pierre), Jose, la HX2 (Christian, Nathan, Lucas, Jack, Majdi, Rémi, Alex Darmon, Antoine
Lagarde, Victoire, Antoine Pelletier...). Thank you to the always-on, always active tech (and
more) support line from les Bolosses.

LIST OF TABLES xiv

Thank you to my martial arts families over the years, from boxing (Coach Jon and Coach
Evan) to Systema (Juan, Patrick), my instructors at l’École polytechnique, the majors Sacha
Engel and Alexandre Arisso, and Jujitsu Pariset. Martial arts have always kept me sane,
and grounded me in times of need. From Cal Boxing: Jimmy, Kipper, Jacquie, Vivian, Eric,
Gabriel R, and all the others: I boxed a bit too much in my early PhD years – it was a great
outlet from research. I’m glad I did though, and glad I stopped. Go Bears!

My New York adventure friends: Vincent B, Pierre-Louis C, Marc T, Yoann LC, Céline
G, Nico, Camille S, Alexia P, Morgane, Julien GC, Léonore C.

Last but not least: Alice, you unwittingly got me started on this path, and you brought
me to its conclusion. Thank you for your love; I can’t wait to live all the years and moments
to come.

I’m so grateful to share my time on Earth with you all. Thanks to all who have taken the
time to share their essential selves with me, and to grow together, in big or small ways. Now,
onward: to all the future moments together and with new people, with intensity and intent!
If I’ve forgotten you, send me a text, and let’s go for an adventure!

1

Chapter 1

Overview

In recent years, machine learning models have achieved countless success stories in fields
aiming to match human perception (computer vision, audio processing, natural language).
This success was achieved by understanding how to exploit structure in model inputs: digital
representations of images, sound, text, code, and even molecules [1, 2, 3, 4]. To achieve
similar levels of success in engineering and the sciences, models must incorporate additional
structural constraints: both the model internals and the model outputs should satisfy certain
key properties (e.g. sparse or low rank weights for model internals and physical equations for
model outputs). Although the field of optimization has long been concerned with developing
methods to enforce such constraints, efforts to tie in structure brought by optimization
methods and the flexibility of data-driven models are very recent [5, 6]. This thesis proposes
novel, efficient methods for incorporating structure in machine learning models, both in the
model internals (Part I), and in the model outputs (Part II). We argue that such hybrid
systems will be key to develop high performance systems for complex physical applications.

Structured constraints in Machine Learning have recently brought the Frank-Wolfe (FW)
family of algorithms back in the spotlight. The Frank-Wolfe algorithm allows to enforce
convex constraints on a decision variable (e.g. model weights), while maintaining a sparse
representation of the decision variable. The first part of this thesis develops novel variants
of the Frank-Wolfe algorithm to improve practical speed of the algorithm. Additionally, we
describe our two open-source optimization libraries: COPT and CHOP.

When deploying decision-making systems in the wild, the systems must enforce physical
constraints: discrepancies can lead to undefined decisions. For example, if we predict inbound
water flow in reservoirs in a region at different granularities, the predictions at the different
levels must enforce conservation of mass; otherwise, there will be quantities of water that
are unaccounted for, breaking the decision making system. The second part of this thesis
considers the problem of incorporating physical constraints into deep learning models, in the
form of partial differential equations and hierarchical conservation of mass.

We now describe each section in more detail.

https://github.com/openopt/copt
https://github.com/openopt/chop

CHAPTER 1. OVERVIEW 2

Backtracking line search for Frank-Wolfe (Chapter 2)

While the classical FW algorithm has poor local convergence properties, the Away-steps and
Pairwise FW variants have emerged as improved variants with faster convergence. However,
these improved variants suffer from two practical limitations: they require at each iteration
to solve a 1-dimensional minimization problem to set the step-size and also require the
Frank-Wolfe linear subproblems to be solved exactly. In this paper, we propose variants
of Away-steps and Pairwise FW that lift both restrictions simultaneously. The proposed
methods set the step-size based on a sufficient decrease condition, and do not require prior
knowledge of the objective. Furthermore, they inherit all the favorable convergence properties
of the exact line-search version, including linear convergence for strongly convex functions over
polytopes. Benchmarks on different machine learning problems illustrate large performance
gains of the proposed variants. Our backtracking line search scheme has become standard
in the subsequent FW literature, as evidenced in the recent Frank-Wolfe book [7]. Code is
available in our open source COPT library.

This work appears as Pedregosa et al. [8].

Stochastic Frank-Wolfe for constrained finite-sum
minimization (Chapter 3)

Machine learning problems are often expressed as empirical risk minimization problems over
a fixed training dataset. In this case, the objective is written as a finite-sum of loss terms
over the datapoints in the dataset. Since it may be computationally intractable to keep the
full dataset in memory, or to compute gradient of the full objective, it is common in the ML
optimization literature to provide stochastic variants of optimization algorithms, where only
sampled datapoints are used at each iteration. We provide an efficient stochastic Frank-Wolfe
algorithm for these finite-sum problems, which can exploit sampling batches of arbitrary,
fixed size. We provide rates of convergence for our algorithm in the convex objective case,
and prove convergence in the nonconvex case. Code is available in our open source COPT
library.

This work appears as Negiar et al. [9].

COPT and CHOP: open-source optimization libraries
(Chapter 4)

In this chapter, we describe our software libraries for first order optimization methods:
the COPT and CHOP libraries. We provide efficient implementations of state of the art
constrained or composite optimization algorithms in NumPy (COPT) and PyTorch (CHOP).

https://github.com/openopt/copt/blob/5423537e41fd4b566910d7bdd3abca9638111bb5/copt/frank_wolfe.py#L13
https://github.com/openopt/copt/blob/5423537e41fd4b566910d7bdd3abca9638111bb5/copt/randomized.py#L734
https://github.com/openopt/copt
https://github.com/openopt/chop

CHAPTER 1. OVERVIEW 3

Learning differentiable solvers for systems with hard
constraints (Chapter 5)

We introduce a practical method to enforce partial differential equation (PDE) constraints
for functions defined by neural networks (NNs), with a high degree of accuracy and up to a
desired tolerance. We develop a differentiable PDE-constrained layer that can be incorporated
into any NN architecture. Our method leverages differentiable optimization and the implicit
function theorem to effectively enforce physical constraints. Inspired by dictionary learning,
our model learns a family of functions, each of which defines a mapping from PDE parameters
to PDE solutions. At inference time, the model finds an optimal linear combination of the
functions in the learned family by solving a PDE-constrained optimization problem. Our
method provides continuous solutions over the domain of interest that accurately satisfy
desired physical constraints. Our results show that incorporating hard constraints directly
into the NN architecture achieves much lower test error when compared to training on an
unconstrained objective.

This work appears as Négiar, Mahoney, and Krishnapriyan [10].

Probabilistic forecasting with coherent aggregation
(Chapter 6)

Obtaining accurate probabilistic forecasts while respecting hierarchical information is an
important operational challenge in many applications, perhaps most obviously in energy
management, supply chain planning, and resource allocation. The basic challenge, especially
for multivariate forecasting, is that forecasts are often required to be coherent with respect
to the hierarchical structure. In this chapter, we propose a new model which leverages a
factor model structure to produce coherent forecasts by construction. This is a consequence
of a simple (exchangeability) observation: permuting base-level series in the hierarchy does
not change their aggregates. Our model uses a convolutional neural network to produce
parameters for the factors, their loadings and base-level distributions; it produces samples
which can be differentiated with respect to the model’s parameters; and it can therefore
optimize for any sample-based loss function, including the Continuous Ranked Probability
Score and quantile losses. We can choose arbitrary continuous distributions for the factor and
the base-level distributions. We compare our method to two previous methods which can be
optimized end-to-end, while enforcing coherent aggregation. Our model achieves significant
improvements: between 11.8 − 41.4% on three hierarchical forecasting datasets. We also
analyze the influence of parameters in our model with respect to base-level distribution and
number of factors.

This work appears as Negiar et al. [11].

4

Part I

Algorithms

5

Chapter 2

Linearly convergent Frank-Wolfe with
backtracking line-search

2.1 Introduction

The Frank-Wolfe (FW) or conditional gradient algorithm [12, 13, 14] is a method for
constrained optimization that solves problems of the form

minimize
x∈conv(A)

f(x) , (OPT)

where f is a smooth function for which we have access to its gradient and conv(A) is the
convex hull of A; a bounded but potentially infinite set of elements in Rp which we will refer
to as atoms.

The FW algorithm is one of the oldest methods for non-linear constrained optimization
and has experienced a renewed interest in recent years due to its applications in machine
learning and signal processing [15]. Despite some favorable properties, the local convergence
of the FW algorithm is known to be slow, achieving only a sublinear rate of convergence for
strongly convex functions when the solution lies in the boundary [16]. To overcome these
limitations, variants of the FW algorithms with better convergence properties have been
proposed. Two of these variants, the Away-steps FW [17] and Pairwise FW [18] enjoy a linear
rate of convergence over polytopes [18].

Despite this theoretical breakthrough, Away-steps and Pairwise FW are not yet practical
off-the-shelf solvers due to two main limitations. The first and most important is that
both variants rely on an exact line-search. That is, they require to solve at each iteration
1-dimensional subproblems of the form

argmin
γ∈[0,γmax]

f(xt + γdt) , (2.1)

where dt is the update direction and γmax is the maximum admissible step-size. In a few
cases like quadratic objectives, the exact line-search subproblem has a closed form solution.

CHAPTER 2. FRANK-WOLFE WITH BACKTRACKING LINE-SEARCH 6

Fr
an

k-
W

ol
fe Related work non-convex approximate linear adaptive bounded

analysis subproblems convergence step-size backtracking
This work ✓ ✓ ✓ ✓ ✓

[18] ✗ ✗ ✓ ✗ N/A
[19] ✗ ✓† ✗ ✓ ✗
[20] ✓ ✗ ✗ ✓ ✗

M
P This work ✓ ✓ ✓ ✓ ✓

[21] ✗ ✓ ✓ ✗ N/A

Table 2.1: Comparison with related work. non-convex analysis: convergence guarantees
for problems with a non-convex objective. approximate subproblems: convergence guarantees
cover the case in which linear subproblems are solved approximately. linear convergence:
guaranteed linear rate of convergence (under hypothesis). adaptive step-size: step-size is set
using local information of the objective. bounded backtracking: explicit bound for the total
number of inner iterations in adaptive step-size methods. † = assumes cartesian product
domain.

In most other cases, it is a costly optimization problem that needs to be solved at each
iteration, making these methods impractical. The second limitation is that they require
access to an exact Linear Minimization Oracle (LMO), which leaves out important cases like
minimization over a trace norm ball where the LMO is computed up to some predefined
tolerance. In this paper we develop methods that lift both limitations simultaneously.

Our main contribution is the design and analysis of variants of Away-steps and Pairwise
FW that i) don’t require access to an exact line-search or knowledge of properties of the
objective like its curvature or Lipschitz constant, and ii) admits the FW subproblems to be
solved approximately. We describe our approach in §2.2. Although our main motivation is to
develop practical variants of Away-steps and Pairwise FW, we also show that this technique
extends to other methods like FW and Matching Pursuit.

We develop in §2.3 a convergence rate analysis for the proposed methods. The obtained
rates match asymptotically the best known bounds on convex, strongly convex and non-convex
problems, including linear convergence for strongly convex functions.

Finally, we show in §2.4 benchmarks between the proposed and related methods, and
discuss the importance of large step-sizes in Pairwise FW.

Related work

We comment on the most closely related ideas, summarized in Table 2.1.
Away-Steps FW [17] is a popular variant of FW that adds the option to move away from

an atom in the current representation of the iterate. In the case of a polytope domain, it
was recently shown to enjoy a linear convergence rate for strongly convex objectives [22, 18].
Pairwise FW [18] simplifies the above-described variant by replacing the two kinds of steps
by a single step modifying the weights of only two atoms. It generalizes the algorithm of

CHAPTER 2. FRANK-WOLFE WITH BACKTRACKING LINE-SEARCH 7

Mitchell, Demyanov, and Malozemov [23] used in geometry and SMO [24] for training SVMs.
These methods all require exact line-search.

Variants of FW that, like the proposed methods, set the step-size based on a local decrease
condition have been described by Dunn [20] and Beck, Pauwels, and Sabach [19], but none of
these methods achieve a linear convergence rate to the best of our knowledge.

Matching Pursuit (MP) [25] is an algorithm for constrained optimization problems of the
form Eqn. OPT with conv(A) replaced by linspan(A), the linear span of A. Locatello et al.
[26] has recently shown that MP and FW are deeply related. We show that our algorithm
and convergence results also extend naturally to MP, and as a byproduct of our analysis
we obtain the first convergence rate for MP on non-convex objectives to the best of our
knowledge.

Notation. Throughout this chapter we denote vectors and vector-valued functions in
lowercase boldface (e.g. x or argmin), matrices in uppercase boldface letters (e.g. D), and
sets in caligraphic letters (e.g., A). We say a function f is L-smooth if it is differentiable and
its gradient is L-Lipschitz continuous, that is, if it verifies ∥∇f(x)−∇f(y)∥ ≤ L∥x− y∥ for
all x,y in the domain. A function is µ-strongly convex if f − µ

2
∥ · ∥2 is convex. ∥ · ∥ denotes

the euclidean norm.

2.2 Methods

In this section we describe the core part of our contribution, which is a strategy to select the
step-size in FW-type algorithms.

Since this strategy can be applied very broadly to Frank-Wolfe variants including Away-
steps, Pairwise, classical FW and Matching Pursuit, we describe it within the context of a
generic FW-like algorithm. This generic algorithm is detailed in Algorithm 1 and depends on
two key functions: update_direction and step_size. The first one computes the direction
that we will follow to compute the next iterate and its implementation will depend on the FW
variant. The second one will choose an appropriate step-size based upon local information of
the objective and is the key novelty of this algorithm. We now describe them in more detail.

Update direction

In this subsection we describe update_direction in Algorithm 1, the function that computes
the update direction dt and the maximum allowable step-size γmax

t . While its implementation
varies according to the FW variant, all of them require to solve one or two linear problems,
often referred to as linear minimization oracle (LMO).

The first of these subproblems is the same for all variants and consists in finding st in the
domain such that:

⟨∇f(xt), st − xt⟩ ≤ δmin
s∈A

⟨∇f(xt), s− xt⟩ . (2.2)

CHAPTER 2. FRANK-WOLFE WITH BACKTRACKING LINE-SEARCH 8

Algorithm 1 Generic FW with backtracking
1: Input: x0 ∈ conv(A), initial Lipschitz estimate L−1 > 0, tolerance ε ≥ 0, subproblem

quality δ ∈ (0, 1]
2: for t = 0, 1 . . . do
3: dt, γ

max
t = update_direction(xt,∇ft)

4: gt = ⟨−∇f(xt),dt⟩
5: if gt ≤ δε then
6: return xt
7: end if

8: γt, Lt = step_size(f,dt,xt, gt, Lt−1, γ
max
t)

9: xt+1 = xt + γtdt
10: end for

Here, we introduce a subproblem quality parameter δ ∈ (0, 1] that allows this subproblem
to be solved approximately. When δ = 1, the problem is solved exactly and becomes
argmins∈A⟨∇f(xt), s⟩, which consists in selecting the atom that correlates the most with
the steepest descent direction, −∇f(xt).

Away-steps and Pairwise FW will also require to solve another linear subproblem, this
time over the active set St. This is the set of atoms with non-zero weight in the decomposition
of xt. More formally, the active set St ⊆ A is the set of atoms that have non-zero weight
αs,t > 0 in the expansion xt =

∑
s∈St

αv,ts.
The linear subproblem that needs to be solved consists in finding vt such that:

⟨∇f(xt),xt − vt⟩ ≤ δmin
v∈St

⟨∇f(xt),xt − v⟩ . (2.3)

Unlike the previous linear subproblem, this time the problem is over the typically much
smaller active set St. As before, δ ∈ (0, 1] allows this subproblem to be solved approximately.
When δ = 1, the subproblem becomes argmaxv∈St

⟨∇f(xt),v⟩, which can be interpreted
as selecting the atom in the active set that correlates the most with the steepest ascent
direction ∇f(xt).

FW, AFW and PFW then combine the solution to these linear subproblems in different
ways, and Line 3’s update_direction is implemented as:

• FW returns dt = st − xt and γmax
t = 1: the next iterate will be a convex combination of

xt and st.

• AFW considers directions st−xt and xt−vt, and chooses the one that correlates the most
with −∇f(xt). γmax

t = 1 if dt = st − xt and αvt/(1 − αvt) otherwise, where αvt is the
weight associated with vt in the decomposition of xt as a convex combination of atoms.

• PFW uses dt = st−vt, shifting weight from vt to st in our current iterate, and γmax
t = αvt .

• MP uses dt = st and γmax = +∞, since the constraint set is not bounded.

CHAPTER 2. FRANK-WOLFE WITH BACKTRACKING LINE-SEARCH 9

Algorithm 2 Backtracking for FW variants
1: Initialization: f ,dt, xt, gt, Lt−1, γmax

2: Choose τ > 1, η ≤ 1
3: Choose M ∈ [ηLt−1, Lt−1]
4: γ = min {gt/(M∥dt∥2), γmax}
5: while f(xt + γdt) > Qt(γ,M) do
6: M = τM
7: end while
8: γ = min {gt/(M∥dt∥2), γmax}
9: return γ, M

Backtracking line-search

In this subsection we describe the step-size selection routine step_size (Algorithm 2). This
is the main novelty in the proposed algorithms, and allows for the step-size to be computed
using only local properties of the objective, as opposed to other approaches that use global
quantities like the gradient’s Lipschitz constant. As we will see in §2.4, this results in
step-sizes that are often more than an order of magnitude larger than those estimated using
global quantities.

Minimizing the exact line-search objective γ 7→ f(xt + γdt) yields the highest decrease in
objective but can be a costly optimization problem. To overcome this, we will replace the
exact line-search objective with the following quadratic approximation:

Qt(γ,M) = f(xt)− γgt +
γ2M

2
∥dt∥2 . (2.4)

This approximation has the advantage that its minimum over γ ∈ [0, γmax] can be computed
in closed form, which gives the step-size used in line 4:

γ⋆M = min

{
gt

M∥dt∥2
, γmax

}
, (2.5)

The quality of this quadratic approximation will depend on the Lipschitz estimate pa-
rameter M . This parameter needs to be carefully selected to maintain the convergence
guaratees of exact line-search, while keeping the number of objective function evaluations to
a minimum.

This is achieved through the strategy implemented in Algorithm 2. The algorithm
initializes the Lipschitz estimate M to a value between ηLt−1 and the previous iterate Lt−1,
where η is a user-defined parameter (default values discussed later). A value of η = 1 is
admissible but would not allow the Lipschitz estimate to decrease through the optimization,
and we have observed empirically a drastic benefit in doing so.

The algorithm then defines a candidate step-size γ (Line 4) and checks whether the
following sufficient decrease condition is verified for this step-size

f(xt + γdt) ≤ Qt(γ,M) , γ=min
{
gt/(M∥dt∥2), γmax} .

CHAPTER 2. FRANK-WOLFE WITH BACKTRACKING LINE-SEARCH 10

If it is not verified, we increase this constant by a power factor of τ > 1 (Line 6). By the
properties of L-smooth functions, we know that this condition is verified for all M ≥ L, and
so this loop has a finite termination.

Once this condition is verified, the current step-
size is accepted and the value of M is assigned
the name Lt. Geometrically, the sufficient de-
crease condition ensures that the quadratic ap-
proximation is an upper bound at its constrained
minimum of the line-search objective. We em-
phasize that this upper bound does not need
to be a global one, as it only holds at γt.
This allows for smaller Lt than the global Lips-
chitz constant L, and therefore larger step-sizes. γ=0 γ=γmax

t
γt

Qt(γ, Lt)

f(xt+γdt)

As we will see in §2.3, this translates into faster convergence rates that depend on Lt, as
well as faster empirical convergence (§2.4).

Default and initial parameters. Algorithm 1 requires an (arbitrary) initial value for the
Lipschitz estimate L−1. We found the following heuristic using the definition of Lipschitz
continuity of the gradient to work well in practice. Select a small constant ε, say 10−3, and
compute L−1 = ∥∇f(x0)−∇f(x0 + εd0)∥/(ε∥d0∥).

The step_size depends on hyperparameters η and τ . Although the algorithm is guaran-
teed to converge for any η ≤ 1, τ > 1, we recommend η = 0.9, τ = 2, as we found that it
performs well in a variety of scenarios. These are the values used throughout benchmarks
§2.4.

This method also requires to choose the initial value of the Lipschitz estimate M to a
value between ηLt−1 and Lt−1. A choice that we found to work remarkably well in practice is
to initialize it to

M = clip[ηLt−1,Lt−1]

(
g2t

2(ft−1 − ft)∥dt∥2

)
. (2.6)

The value inside the clip function corresponds to the optimal value of M for a quadratic
interpolation between the previous two iterates and the derivative of the line-search objective
f(xt + γdt) at γ = 0. Since this value might be outside of the interval [ηLt−1, Lt−1], we clip
the result to this interval.

Pseudocode and implementation details. A practical implementation of these algo-
rithms depends on other details that are not specific to the backtracking variant, such as
efficiently maintaining the active-set in the case of Away-steps and Pairwise. For completeness,
B.1 contains a full pseudocode for all these algorithms. A Python implementation of these
methods, as well as the benchmarks used in §2.4 will be made open source upon publication
of this manuscript.

CHAPTER 2. FRANK-WOLFE WITH BACKTRACKING LINE-SEARCH 11

2.3 Analysis

In this section, we provide a convergence rate analysis of the proposed methods, showing
that all enjoy a O(1/

√
t) convergence rate for non-convex objectives (Theorem 2), a stronger

O(1/t) convergence rate for convex objectives (Theorem 3), and for some variants linear
convergence for strongly convex objectives over polytopes (Theorem 4).

Notation. In this section we make use of the following extra notation:
• For convenience we will refer to the variants of FW, Away-steps FW, Pairwise FW and MP

with backtracking line-search as AdaFW, AdaAFW, AdaPFW and AdaMP respectively.

• We denote the objective suboptimality at step t as ht = f(xt)−minx∈conv(A) f(x).

• Good and bad steps. Our analysis, as that of Lacoste-Julien and Jaggi [18], relies on a
notion of “good” and “bad” steps. We define bad steps as those that verify γt = γmax

t

and γmax
t < 1 and good steps as any step that is not a bad step. The name “bad steps”

makes reference to the fact that we won’t be able to bound non-trivially the improvement
for these steps. For these steps we will only be able to guarantee that the objective is
non-increasing. AdaAFW and AdaPFW both may have bad steps. Let us denote by Nt

the number of “good steps” up to iteration t. We can lower bound the number of good
steps by

Nt ≥ t/2 for AdaAFW , (2.7)
Nt ≥ t/(3|A|! + 1) for AdaPFW (2.8)

where it is worth noting that the last bound for AdaPFW requires the set of atoms A to
be finite. The proof of these bounds can be found in B.3 and are a direct translation of
those in [18]. We have found these bounds to be very loose, as in practice the fraction of
bad/good steps is negligible, commonly of the order of 10−5 (see last column of the table
in Figure 2.1).

• Average and maximum of Lipschitz estimates. In order to highlight the better convergence
rates that can be obtained by adaptive methods we introduce the average and maximum
estimate over good step-sizes. Let Gt denote the indices of good steps up to iteration t.
Then we define the average and maximum Lipschitz estimate as

Lt
def
=

1

Nt

∑
k∈Gt

Lk (2.9)

Lmax
t

def
= maxk∈GtLk (2.10)

respectively. In the worst case, both quantities can be upper bounded by max{τL, L−1}
(Proposition 4), which can be used to obtain asymptotic convergence rates. This bound is
however very pessimistic. We have found that in practice Lt is often more than 100 times
smaller than L (see second to last column of the table in Figure 2.1).

CHAPTER 2. FRANK-WOLFE WITH BACKTRACKING LINE-SEARCH 12

Algorithm Non-convex Convex Strongly convex

AdaAFW O(1
δ
√
t
) O(1

δ2t) O((1−δ2ρ)t)

AdaPFW O(1
δ
√
t
) O(1

δ2t) O((1−δ2ρ)t)

AdaFW O(1
δ
√
t
) O(1

δ2t) O(1
δ2t)

AdaMP O(1
δ
√
t
) O(1

δ2t) O((1−δ2ρMP)
t)

Table 2.2: Convergence rate summary on non-convex, convex and strongly convex
objectives. For non-convex objectives, bound is on the minimum FW gap (MP gap in the
case of AdaMP), in other cases its on the objective suboptimality.

Our new convergence rates are presented in the following theorems, which consider the
cases of non-convex, convex and strongly convex objectives. The results are discussed in §2.3
and the proofs can be found in B.4, B.5 and B.6 respectively.

Overhead of backtracking

Evaluation of the sufficient decrease condition Algorithm 2 requires two extra evaluations of
the objective function. If the condition is verified, then it is only evaluated at the current
and next iterate. FW requires anyway to compute the gradient at these iterates, hence in
cases in which the objective function is available as a byproduct of the gradient this overhead
becomes negligible.

Furthermore, we can provide a bound on the total number of evaluations of the sufficient
decrease condition:

Theorem 1. Let nt be the total number of evaluations of the sufficient decrease condition up
to iteration t. Then we have

nt ≤
[
1− log η

log τ

]
(t+ 1) +

1

log τ
max

{
log

τL

L−1

, 0

}
,

This result highlights the trade-off faced when choosing η. Minimizing it with respect to
η gives η = 1, in which case (1− log η/ log τ) = 1 and so there’s an asymptotically vanishing
number of failures in the sufficient decrease condition. Unfortunately, η = 1 also forbids the
Lipschitz estimate to decrease along the optimization. Ideally, we would like η small enough
so that the Lipschitz estimate decreases when it can, but not too small so that we waste too
much time in failed sufficient decrease evaluations.

As mentioned before, we recommend parameters η = 0.9, τ = 2. With these values, we
have that

[
1− log η

log τ

]
≤ 1.16, and so asymptotically no more than 16% of the iterates will

result in more than one evaluations of the sufficient decrease condition.

CHAPTER 2. FRANK-WOLFE WITH BACKTRACKING LINE-SEARCH 13

Non-convex objectives

Gap function. Convergence rates for convex and strongly convex functions are given in
terms of the objective function suboptimality or a primal-dual gap. As the gap upper-bounds
(i.e. certifies) the suboptimality, the latter is a stronger result in this scenario. In the case
of non-convex objectives, as is common for first order methods, we will only be able to
guarantee convergence to a stationary point, defined as any element x⋆ ∈ conv(A) such that
⟨∇f(x⋆),x− x⋆⟩ ≥ 0 for all x ∈ conv(A) [27].

Following Lacoste-Julien [28] and Reddi et al. [29], for FW variants we will use as
convergence criterion the FW gap, defined as gFW(x) = maxs∈conv(A)⟨∇f(x),x− s⟩. From
the definition of stationary point it is clear that the FW gap is zero only at a stationary
point. These rates are also valid for AdaMP, albeit for the more appropriate gap function
gMP detailed in B.4.

Theorem 2. Let xt denote the iterate generated by any of the proposed algorithms after t
iterations, with Nt+1 ≥ 1. Then we have:

lim
t→∞

g(xt) = 0 and (2.11)

min
k=0,...,t

g(xk) ≤
Ct

δ
√
Nt+1

= O
(

1

δ
√
t

)
, (2.12)

where Ct = max{2h0, Lmax
t diam(A)2} and g = gFW is the FW gap for AdaFW, AdaAFW,

AdaPFW and Ct = radius(A)
√

2h0Lt+1 and g = gMP is the MP gap for AdaMP.

Convex objectives

For convex objectives we will be able to improve the results of Theorem 2. We will first state
the convergence results for FW variants and then for MP.

For adaptive FW variants, we will be able to give an O(1/δ2t) convergence rate on the
primal-dual gap, which trivially implies a bound on the objective suboptimality. In order to
define the primal-dual gap, we define the following dual objective function

ψ(u)
def
= −f ∗(u)− σconv(A)(−u) , (2.13)

where f ∗ denotes the convex conjugate of f and σconv(A)(x)
def
= sup{⟨x,a⟩ : a ∈ conv(A)} is

the support function over conv(A), which is the convex conjugate of the indicator function.
Note that ψ is concave and that when f convex, we have by duality minx∈conv(A) f(xt) =
maxu∈Rp ψ(u).

Theorem 3 (FW variants). Let f be convex, xt denote the iterate generated by any of
the proposed FW variants (AdaFW, AdaAFW, AdaPFW) after t iterations, with Nt ≥ 1,
and let ut be defined recursively as u0 = ∇f(x0), ut+1 = (1 − ξt)ut + ξt∇f(xt), where

CHAPTER 2. FRANK-WOLFE WITH BACKTRACKING LINE-SEARCH 14

ξt = 2/(δNt + 2) if t is a good step and ξt = 0 otherwise. Then we have:

ht ≤ f(xt)− ψ(ut) (2.14)

≤ 2Lt diam(A)2

δ2Nt + δ
+

2(1− δ)

δ2N2
t + δNt

(
f(x0)− ψ(u0)

)
= O

(
1

δ2t

)
. (2.15)

Strongly convex objectives

The next result states the linear convergence of some algorithm variants and uses the notions of
pyramidal width (PWidth) and minimal directional width (mDW) that have been developed
in [28] and [21] respectively, which we state in B.2 for completeness. We note that the
pyramidal width of a set A is lower bounded by the minimal width over all subsets of atoms,
and thus is strictly greater than zero if the number of atoms is finite. The minimal directional
width is a much simpler quantity and always strictly greater than zero by the symmetry of
our domain.

Theorem 4 (Linear convergence rate for strongly convex objectives). Let f be µ–strongly
convex. Then for AdaAFW, AdaPFW or AdaMP we have the following linear decrease for
each good step t:

ht+1 ≤ (1− δ2ρt)ht , (2.16)
where

ρt =
µ

4Lt

(
PWidth(A)

diam(A)

)2

for AdaAFW and AdaPFW,

ρt =
µ

Lt

(
mDW(A)

radius(A)

)2

for AdaMP.

The previous theorem gives a geometric decrease on good steps. Combining this theorem
with the bound for the number of bad steps in Eqn. 2.7, and noting that the sufficient
decrease guarantees that the objective is monotonically decreasing, we obtain a global linear
convergence for AdaAFW, AdaPFW and AdaMP.

Discussion

Non-convex objectives. Lacoste-Julien [28] studied the convergence of FW assuming the
linear subproblems are solved exactly (δ = 1) and obtained a rate of the form Eqn. 2.11 with
C0 = max{2h0, L diam(conv(A))2} instead. Both rates are similar, although our analysis
is more general as it allows to consider the case in which linear subproblems are solved
approximately (δ < 1) and also gives rates for the Away-steps and Pairwise variants, for
which no rates were previously known.

CHAPTER 2. FRANK-WOLFE WITH BACKTRACKING LINE-SEARCH 15

Theorem 2 also gives the first known convergence rates for a variant of MP on general
non-convex functions. Contrary to the case of FW, this bound depends on the mean instead
of the maximum of the Lipschitz estimate.

Convex objectives. Compared with [15], the primal-dual rates of Theorem 3 are stronger
as they hold for the last iterate and not only for the minimum over previous iterates. To
the best of our knowledge, primal-dual convergence rates on the last iterate have only been
derived in [30] and were not extended to approximate linear subproblems nor the Away-steps
and Pairwise variants.

Compared to Nesterov [30] on the special case of exact subproblems (δ = 1), the rates of
Theorem 3 are similar but with Lt replaced by L. Hence, in the regime Lt ≪ L (as is often
verified in practice), our bounds have a much smaller leading constant.

For MP, Locatello et al. [26] obtain a similar convergence rate of the form O(1/(δ2t)),
but with constants that depend on global properties of ∇f , instead of the adaptive, averaged
Lipschitz estimate in our case.

Strongly convex objectives. For the FW variants, the rates are identical to the ones in [18,
Theorem 1], with the significant difference of replacing L with the adaptive Lt in the linear
rate factor, giving a larger per-iteration decrease whenever Lt < L. Our rates are the first
also covering approximate subproblems for Away-Steps and Pairwise FW algorithms. It’s
also worth noticing that both Away-steps FW and Pairwise FW have only been previously
analyzed in the presence of exact line-search [18]. Additionally, unlike [18], we do not require
a smoothness assumption on f outside of the domain. Finally, for the case of MP, we again
obtain the same convergence rates as in [21, Theorem 7], but with L replaced by Lt.

2.4 Benchmarks

We compared the proposed methods across three problems and three datasets. The three
datasets are summarized in the table of Figure 2.1, where density denotes the fraction of
nonzero coefficients in data matrix and where the last two columns are quantities that arise
during the optimization of AdaPFW and shed light into their empirical value. In both cases
t is the number of iterates until 10−10 suboptimality is achieved.

ℓ1-constrained logistic regression

The first problem that we consider is a logistic regression with an ℓ1 norm constraint on the
coefficients of the form:

argmin
∥x∥1≤β

1

n

n∑
i=1

φ(a⊤
i x, bi) +

λ

2
∥x∥22 , (2.17)

where φ is the logistic loss. β is chosen to give approximately 1%, 20% of nonzero coefficients
respectively. The linear subproblems in this case can be computed exactly (δ = 1) and consist
of finding the largest entry of the gradient. The ℓ2 regularization parameter λ is always set
to λ = 1

n
.

CHAPTER 2. FRANK-WOLFE WITH BACKTRACKING LINE-SEARCH 16

Dataset #samples #features density Lt/L (t−Nt)/t

Madelon [31] 4400 500 1. 3.3× 10−3 5.0× 10−5

RCV1 [32] 697641 47236 10−3 1.3× 10−2 7.5× 10−5

MovieLens 1M [33] 6041 3707 0.04 1.1× 10−2 –

0 100 200 300 40010 8

10 5

10 2

A RCV1 (high reg.)

0 250 500 750 100010 8

10 5

10 2

B RCV1 (low reg.)

0 2 410 8

10 5

10 2

C Madelon (high reg.)

0 5 10 15 2010 8

10 5

10 2

D Madelon (low reg.)

0 500 1000 1500 2000
Time (in seconds)

10 3

10 2

10 1

100

E

A

Movielens (high reg.)

0 500 1000 1500 2000
Time (in seconds)

10 3

10 2

10 1

100

F

B

Movielens (low reg.)

0 500 1000 1500 2000
Time (in seconds)

10 6

10 4

10 2

100
G

C

RCV1 (MP)

0 10 20 30
Time (in seconds)

10 6

10 4

10 2

100
H

D

Madelon (MP)

O
bj

ec
tiv

e
m

in
us

 o
pt

im
um

AdaFW
AdaPFW

AdaAFW
FW

PFW
AFW

D-FW
B-FW

MP
AdaMP

Figure 2.1: Top table: description of the datasets. Bottom figure: Benchmark of different
FW and MP variants. The variants with backtracking line-search proposed in this paper are
in dashed lines. Problem in A, B, C, D = logistic regression with ℓ1-constrained coefficients,
in E, F = Huber regression with on the nuclear norm constrained coefficients and in G,
H = unconstrained logistic regression (MP variants). In all the considered datasets and
regularization regimes, backtracking variants have a much faster convergence than others.

We applied this problem on two different datasets: Madelon and RCV1. We show the
results in Figure 2.1, subplots A, B, C, D. In this figure we also show the performance
of FW, Away-steps FW (AFW) and Pairwise FW (PFW), all of them using the step-size
γt=min {gtL−1∥dt∥−2, γmax

t }, as well as the backtracking variants of Dunn [20] and [19], which
we denote D-FW and B-FW respectively.

Nuclear-norm constrained Huber regression

The second problem that we consider is collaborative filtering. We used the MovieLens 1M
dataset, which contains 1 million movie ratings, and consider the problem of minimizing a
Huber loss, as in [34], between the true known ratings and a matrix X. We also constrain
the matrix by its nuclear norm ∥X∥∗ ≤ β, where β is chosen to give approximately 1% and
20% of non-zero singular values respectively. The problem is of the form:

CHAPTER 2. FRANK-WOLFE WITH BACKTRACKING LINE-SEARCH 17

argmin
∥X∥∗≤β

1

n

n∑
(i,j)∈I

Lξ(Ai,j −X i,j) , (2.18)

where H1 is the Huber loss, defined as

Lξ(a) =

{
1
2
a2 for |a| ≤ ξ,

ξ(|a| − 1
2
ξ), otherwise .

The Huber loss is a quadratic for |a| ≤ ξ and grows linearly for |a| > ξ. The parameter ξ
controls this tradeoff and was set to 1 during the experiments.

In this case, the AFW and PFW variants were not considered as they are not directly
applicable to this problem as the size of the active set is potentially unbounded. The results
of this comparison can be see in subplots E and F of Figure 2.1. We emphasize that the goal
of this experiment is to compare different FW variants and not find the best method for
matrix completion. For alternative approaches not based on FW see for instance [35].

We comment on some observed trends from these results:

• Importance of backtracking. Across the different datasets, problems and regularization
regimes we found that backtracking methods always perform better than their non-
backtracking variant.

• Pairwise FW. AdaPFW shows a surprisingly good performance when it is applicable,
specially in the high regularization regime. A possible interpretation for this is that it
is the only variant of FW in which the coefficients associated with previous atoms are
not shrunk when adding a new atom, hence large step-sizes are potentially even more
beneficial as coefficients that are already close to optimal do not get necessarily modified
in subsequent updates.

• Lt vs L. We compared the average Lipschitz estimate Lt and the L, the the gradient’s
Lipschitz constant. We found that across all datasets the former was more than an order of
magnitude smaller, highlighting the need to use a local estimate of the Lipschitz constant
to use a large step-size.

• Bad steps. Despite the very pessimistic bounds obtained for the number of bad steps in
the previous section, we observe that in practice these are extremely rare events, happening
less than once every 10,000 iterations.

2.5 Conclusion and Future Work

In this work we have proposed and analyzed a novel adaptive step-size scheme that can be
used in projection-free methods such as FW and MP. The method has minimal computational
overhead and does not rely on any step-size hyperparameter (except for an initial estimate).
Numerical experiments show large computational gains on a variety of problems.

CHAPTER 2. FRANK-WOLFE WITH BACKTRACKING LINE-SEARCH 18

A possible extension of this work is to develop backtracking step-size strategies for
randomized variants of FW such as [36, 37, 38], in which there is stochasticity in the linear
subproblems.

Another area of future research is to improve the convergence rate of the Pairwise FW
method. Due to the very pessimistic bound on its number of bad steps, there is still a large
gap between its excellent empirical performance and its known convergence rate. Furthermore,
convergence of Pairwise and Away-steps for an infinite A, such as the trace norm ball, is still
an open problem.

Acknowledgements

The authors would like to thank Vlad Niculae and Courtney Paquette for valuable feedback
on the manuscript.

19

Chapter 3

Stochastic Frank-Wolfe for constrained
finite-sum minimization

3.1 Introduction

We consider constrained finite-sum optimization problems of the form

minimize
w∈C

1

n

n∑
i=1

fi
(
x⊤
i w
)
, (OPT)

where C is a compact and convex set and X = (x1, · · · ,xn)⊤ ∈ Rn×d is a data matrix,
with n samples and d features. This template includes several problems of interest, such as
constrained empirical risk minimization. The LASSO [39] may be written in this form, where
fi(x

⊤
i w) =

1

2
(x⊤

i w − yi)
2 and C = {w : ∥w∥1 ≤ λ} for some parameter λ. We focus on the

case where the fis are differentiable with L-Lipschitz derivative, and study the convex and
non-convex cases.

The classical Frank-Wolfe (FW) or Conditional Gradient algorithm [12, 13, 14] is an
algorithm for constrained optimization. Contrary to other projection-based constrained opti-
mization algorithms, such as Projected Gradient Descent, it relies on a Linear Minimization
Oracle (LMO) over the constraint set C, rather than a Quadratic Minimization Oracle (the
projection subroutine). For certain constraint sets such as the trace norm or most ℓp balls,
the LMO can be computed more efficiently than the projection subroutine. Recently, the
Frank-Wolfe algorithm has garnered much attention in the machine learning community
where polytope constraints and sparsity are of large interest, e.g. Jaggi [15], Lacoste-Julien
and Jaggi [18], and Locatello et al. [21].

In the unconstrained setting, stochastic variance-reduced methods [40, 41, 42] exhibit the
same iteration complexity as full gradient (non-stochastic) methods, while reaching much
smaller per-iteration complexity, usually at some (small) additional memory cost. This work
takes a step in the direction of designing such a method for Frank-Wolfe type algorithms,
which remains an important open problem.

CHAPTER 3. STOCHASTIC FRANK-WOLFE FOR CONSTRAINED FINITE-SUM
MINIMIZATION 20
Table 3.1: Worst-case convergence rates for the function suboptimality after t iterations, for
a dataset with n samples. κ ≤ n and can be much smaller than n for datasets of interest. κ
is introduced in Section 3.5.

Related Work Convex Non-Convex

Frank and Wolfe [12] O (n/t) O
(
n/

√
t
)

Mokhtari, Hassani, and Karbasi [38] O
(
1/ 3

√
t
)

✗
Lu and Freund [43] O (n/t) ✗
This work O (κ/t) → 0

The main contributions of this chapter are:

1. A constant batch-size Stochastic Frank-Wolfe (SFW) algorithm for finite sums
with linear prediction. We describe the method in Section 3.2 and discuss its computa-
tional and memory cost.

2. A non-asymptotic rate analysis on smooth and convex objectives. The subopti-
mality of the SFW algorithm after t iterations can be bounded as O (κ/t), where κ is a
data-dependent constant we will discuss later. It is upper bounded by the sample-size n
but, depending on the setting, can be potentially much smaller.

3. An asymptotic analysis for non-convex objectives. We prove that SFW converges
to a stationary point for smooth but potentially non-convex functions. This is the first
stochastic FW variant that has convergence guarantees in this setting of large practical
interest.

Finally, we compare the SFW algorithm with other stochastic Frank-Wolfe algorithms
amenable to constant batch size on different machine learning tasks. These experiments show
that the proposed method converges at least as fast as previous work, and notably faster on
several such instances.

Related Work

We split existing stochastic FW algorithm into two categories: methods with increasing batch
size and methods with constant batch size.

Increasing batch size Stochastic Frank-Wolfe. This variant allows the number of
gradient evaluations to grow with the iteration number [44, 45, 29]. Because of the growing
number of gradient evaluations, these methods converge towards a deterministic full gradient
FW algorithm and so asymptotically share their computational requirements. In this work
we will instead be interested in constant batch-size methods, in which the number of gradient
evaluations does not increase with the iteration number. See Hazan and Luo [45] for a

CHAPTER 3. STOCHASTIC FRANK-WOLFE FOR CONSTRAINED FINITE-SUM
MINIMIZATION 21
detailed comparison of assumptions and complexities for Stochastic Frank-Wolfe methods
with increasing batch sizes, in terms of both iterations and gradient calls.

Constant batch size Stochastic Frank-Wolfe. These methods use a constant batch
size b, which is chosen by the user as a hyperparameter. In the convex and smooth setting,
Mokhtari, Hassani, and Karbasi [38] and Locatello et al. [46] reach O

(
1/ 3

√
t
)

convergence
rates. The rate of Locatello et al. [46] further holds for non-smooth and non-Lipschitz
objectives. Zhang et al. [47] requires second order knowledge of the objective. Lu and Freund
[43] proves convergence for an averaged iterate in O(n/t) with n the number of samples in
the dataset. Let us assume for simplicity that we use unit batch size. Since each iteration
involves only one data point, the per-iteration complexity of their method reduces by a factor
of n the per-iteration complexity of full-gradient method. On the other hand, the method
proposed in this work loses this factor in the rate in number of iterations, reaching the same
overall complexity as the deterministic full gradient method. Depending on the use-case
(large or small datasets), each of the rates reported in Lu and Freund [43] and Mokhtari,
Hassani, and Karbasi [38] can have an advantage over the other. In favorable cases, the rate
of convergence achieved by our method is nearly independent of the number of samples in
the dataset. In these cases, our method is therefore faster than both. In the worst case, it
matches the O (n/t) bound [43].

Notation

In this chapter, we denote vectors in lowercase boldface letters (w), matrices in uppercase
boldface letters (X), and sets in calligraphic letters (e.g., C). We say a function f is L-smooth
in the norm ∥ · ∥ if it is differentiable and its gradient is L-Lipschitz continuous with respect
to ∥ · ∥, that is, if it verifies ∥∇f(x) − ∇f(y)∥∗ ≤ L∥x − y∥ for all x,y in the domain
(where ∥ · ∥∗ is the dual norm of ∥ · ∥). For a one dimensional function f , this reduces to
|f ′(z)− f ′(z′)| ≤ L|z − z′| for all z, z′ in the domain. For the time dependent vector ut, we
denote by u

(i)
t its i-th coordinate.

We distinguish E, the full expectation taken with respect to all the randomness in the
system, from Et, the conditional expectation with respect to the random index sampled at
iteration t, conditioned on all randomness up to iteration t.

Finally, LMO(u) returns an arbitrary element in argmins∈C⟨s,u⟩.

3.2 Methods

A Primal-Dual View on Frank-Wolfe

In this subsection, we present the Frank-Wolfe algorithm as an alternating optimization
scheme on a saddle-point problem. This point of view motivates the design of the proposed
SFW algorithm. This perspective is similar to the two player game point of view of Abernethy

CHAPTER 3. STOCHASTIC FRANK-WOLFE FOR CONSTRAINED FINITE-SUM
MINIMIZATION 22
and Wang [48] and Abernethy et al. [49], which we express using convex conjugacy. We
suppose here that f is closed, convex and differentiable.

Let us rewrite our initial problem Eqn. OPT in the equivalent unconstrained formulation

minimize
w∈Rd

f(Xw) + ıC(w) , (3.1)

where ıC is the indicator function of C: it is 0 over C and +∞ outside of C.
We denote by f ∗ the convex conjugate of f , that is, f ∗(α)

def
= maxw⟨α,w⟩ − f(w).

Whenever f is closed and convex, it is known that f = (f ∗)∗, and so we can write f(Xw) =
maxα{−f ∗(α) + ⟨Xw,α⟩}. Plugging this identity into the previous equation, we arrive at a
saddle-point reformulation of the original problem:

min
w∈Rd

max
α∈Rn

{
L(w,α)

def
= −f ∗(α) + ıC(w) + ⟨Xw,α⟩

}
. (3.2)

This reformulation allows to derive the Frank-Wolfe algorithm as an alternating optimiza-
tion method on this saddle-point reformulation. To distinguish the algorithm in this section
from the stochastic algorithm we propose, we denote the iterates in this section by ᾱt, w̄t.

The first step of the Frank-Wolfe algorithm is to compute the gradient of the objective at
the current iterate. In the saddle-point formulation, this corresponds to maximizing over the
dual variable α at step t:

ᾱt ∈ argmax
α∈Rn

{L(w̄t−1,α) = −f ∗(α) + ⟨Xw̄t−1,α⟩}

⇐⇒ ᾱt = ∇f(Xw̄t−1). (3.3)

Then, the LMO step corresponds to fixing the dual variable and minimizing over the
primal one w. This gives

s̄t ∈ argmin
w∈Rd

{
L(w, ᾱt) = ıC(w) + ⟨w,X⊤ᾱt⟩

}
⇐⇒ s̄t = LMO(X⊤ᾱt). (3.4)

Note that from the definition of the LMO, s̄t can always be chosen as an extreme point
of the constraint set C. We then update our iterate using the convex combination

w̄t = (1− γt)w̄t−1 + γts̄t, (3.5)

where γt is a step-size to be chosen. These updates determine the Frank-Wolfe algorithm.

The Stochastic Frank-Wolfe Algorithm

We now consider a variant in which we replace the exact minimization of the dual variable
Eqn. 3.3 by a minimization over a single coordinate, chosen uniformly at random.

Let us define the function f from Rn to R as f(θ) def
= 1

n

∑n
i=1 fi(θi). We can write our

original optimization problem as an optimization over w ∈ C of f(Xw). Still alternating

CHAPTER 3. STOCHASTIC FRANK-WOLFE FOR CONSTRAINED FINITE-SUM
MINIMIZATION 23
Algorithm 3 Stochastic Frank-Wolfe

1: Initialization: w0 ∈ C, α0 ∈ Rn, r0 = X⊤α0

2: for t = 1, 2, . . . , do
3: Sample i ∈ {1, . . . , n} uniformly at random.
4: Update α

(i)
t = 1

n
f ′
i(x

⊤
i wt−1)

5: Update α
(j)
t = αj

t−1, j ̸= i

6: rt = rt−1 + (α
(i)
t −α

(i)
t−1)xi

7: st = LMO(rt)
8: wt = wt−1 +

2
t+2

(st −wt−1)
9: end for

between the primal and the dual problems, we replace maximization over the full vector α
in Eqn. 3.3 with optimization along the coordinate i only. We obtain the update α

(i)
t =

1
n
f ′
i(x

⊤
i wt−1). Doing so changes the cost per-iteration from O(nd) to O(d), and yields

Algorithm 3.
We now describe our main contribution, Algorithm 3 (SFW) above. It follows the classical

Frank-Wolfe algorithm, but replaces the gradient with a stochastic estimate of the gradient.
Throughout Algorithm 3, we maintain the following iterates:

• the iterate wt,

• the stochastic estimator of ∇f(Xwt−1) denoted by αt ∈ Rn,

• the stochastic estimator of the full gradient of our loss X⊤∇f(Xwt−1), denoted by
rt ∈ Rd.

Algorithm. At the beginning of iteration t, we have access to αt−1, rt−1 and to the
iterate wt−1.

Thus equipped, we sample an index i uniformly at random over {1, . . . , n}. We then
compute the gradient of our loss function for that datapoint, on our iterate, yielding
[∇f(Xwt−1)]i =

1
n
f ′
i(x

⊤
i wt−1). We update the stochastic gradient estimator αt by refreshing

the contribution of the i-th datapoint and leaving the other coordinates untouched.

Remark 1. Coordinate j of our estimator αt contains the latest sampled one-dimensional
derivative of 1

n
fj.

To get rt, we do the same, removing the previous contribution of the i-th datapoint, and
adding the refreshed contribution. This allows us not to store the full data-matrix in memory.

The rest of the algorithm continues as the deterministic Frank-Wolfe algorithm from the
previous subsection: we find the update direction from st = LMO(rt), and we update our
iterate using a convex combination of the previous iterate wt−1 and st, whereby our new
iterate is feasible.

CHAPTER 3. STOCHASTIC FRANK-WOLFE FOR CONSTRAINED FINITE-SUM
MINIMIZATION 24
Remark 2. Our algorithm requires to keep track of the αt vector and amounts to keeping
one scalar per sample in memory. Our method requires the same small memory caveat as
other variance reduced algorithms such as SDCA [40], SAG [41] or SAGA [50]. Despite the
resemblance of our gradient estimator to the Stochastic Average Gradient [41], the convergence
rate analyses are quite different.

3.3 Analysis

Preliminary tools

Recall that in our setting, our objective function is w 7→ f(Xw), where f(θ) = 1
n

∑n
i=1 fi(θi).

We suppose that for all i, fi is L-smooth, which then implies that f satisfies the following
non-standard smoothness condition:

∥∇f(θ)−∇f(θ̄)∥p ≤
L

n
∥θ − θ̄∥p (3.6)

for every p ∈ [1,∞]. Note that in this inequality – unlike in the standard definition of
L-smoothness with respect to the ℓp norm – the same norm appears on both sides of the
inequality. This inequality is proven in Appendix A.1. In particular it follows from Eqn. 3.6
that f is (L/n)-smooth with respect to the ℓ2 norm.

We therefore have the following quadratic upper bound on our objective function f , valid
for all w,v in the domain:

f(Xw) ≤ f(Xv) + ⟨∇f(Xv),w − v⟩

+
L

2n
∥X (w − v) ∥22 .

(3.7)

For p ∈ {1, 2,∞}, we define the diameters

Dp = max
u,v∈C

∥X(u− v)∥p. (3.8)

Remark 3. For p ∈ {1, 2}, we have that Dp
p ≤ nDp

∞.

Worst-Case Convergence Rates for Smooth and Convex Objectives

We state our main result in the L-smooth, convex setting. In this section, we suppose that
the fis are L-smooth and convex and that for all θ, f(θ) = 1

n

∑n
i=1 fi(θi). The objective

function f then satisfies Eqn. 3.6 as noted previously.

Theorem 5. Let H0
def
= ∥α0 −∇f(Xw0)∥1 be the initial error of our gradient estimator and

w⋆ ∈ C a solution to OPT. We run Algorithm 3 with step sizes γt = 2/(t+ 2). At time-step
t ≥ 2, the expected primal suboptimality Eεt = E[f(Xwt)− f(Xw⋆)] has the following upper
bound

CHAPTER 3. STOCHASTIC FRANK-WOLFE FOR CONSTRAINED FINITE-SUM
MINIMIZATION 25

Eεt ≤2L

(
D2

2 + 4(n− 1)D1D∞

n

)
t

(t+ 1)(t+ 2)

+
2ε0 + (2D∞H0 + 64LD1D∞)n2

(t+ 1)(t+ 2)

(3.9)

Remark 4. The rate of the proposed method in terms of gradient calls is also given by Eqn. 3.9
(one gradient call per iteration), whereas for deterministic Frank-Wolfe, the (deterministic)
suboptimality after t gradient calls has the following upper bound [15, 45]

εt ≤
2LD2

2

t
. (3.10)

In this paper, we will only discuss unit batch size. We can adapt our algorithm and proofs
to consider sampling a mini-batch of b datapoints at each step. The leading term in our rate
from Theorem 5 will change: we will use ρ = 1− b

n
in Lemma 3. The overall rate will be

modified accordingly. The per-iteration complexity will then become O(bd).
We first sketch the outline of the proof before delving into details. The proof of

this convergence rate builds on three key lemmas. The first is an adaptation of Lemma 2 of
Mokhtari, Hassani, and Karbasi [38] which bounds the suboptimality at step t by the sum of
a contraction in the suboptimality at t− 1, a vanishing term due to smoothness, and a last
term depending on our gradient estimator’s error in ℓ1 norm. The first two terms show up
in the convergence proof of the full-gradient Frank-Wolfe, see Lacoste-Julien and Jaggi [18].
The last term is an error, or noise term. Supposing the error term vanishes fast enough, we
can fall back on the full-gradient proof technique [12, 15].

From there, we show that the error term verifies a particular recursive inequality in lemma
2. In lemma 3, we then leverage this inequality to prove that the error term vanishes as
O(1/t), finally allowing us to obtain the promised rate. The formal statements of these
lemmas follow.

Lemma 1. Let fi be convex and L-smooth for all i. For any direction αt ∈ Rn, define
st = LMO(X⊤αt), xt = (1− γt)xt−1 + γtst and Ht = ∥αt −∇f(Xwt−1)∥1.

We have the following upper bound on the primal suboptimality at step t:

εt ≤ (1− γt)εt−1 + γ2t
LD2

2

2n
+ γtD∞Ht︸ ︷︷ ︸

error term

. (3.11)

We defer this proof to Appendix B.3.

Remark 5. This lemma holds for any direction αt ∈ Rn, not necessarily the αt given by the
SFW algorithm.

Remark 6. This lemma generalizes the key inequality used in many proofs in the Frank-Wolfe
literature [15] but includes an extra error term to account for the fact that the direction αt,
which we use for the LMO step and therefore to compute the updated iterate, is not the true
gradient. If αt = ∇f(Xwt−1), that is, if we compute the gradient on the full dataset, then
Ht = 0 and we recover the standard quadratic upper bound.

CHAPTER 3. STOCHASTIC FRANK-WOLFE FOR CONSTRAINED FINITE-SUM
MINIMIZATION 26

In the following, αt is the direction given by Algorithm 3, and the ℓ1 error term is in
terms of that αt:

Ht
def
= ∥αt −∇f(Xwt−1)∥1 (3.12)

for t > 0 and H0 = ∥α0 −∇f(Xw0)∥1.
Notice that we define the gradient estimator’s error with the ℓ1 norm. The previous

lemma also holds with the ℓ2 norm of the gradient error (replacing D∞ by D2). We prefer
the ℓ1 norm because of the finite-sum assumption: it induces a coordinate-wise separation
over αt which corresponds to a datapoint-wise separation. The following lemma crucially
leverages this assumption to upper bound Ht given by the SFW algorithm.

Lemma 2. For the stochastic gradient estimator αt given by Algorithm 3 (SFW), we can
upper bound Ht = ∥αt −∇f(Xwt−1)∥1 in conditional expectation as follows

EtHt ≤
(
1− 1

n

)(
Ht−1 + γt−1

LD1

n

)
. (3.13)

Proof. We have the following expression for αt, supposing that index i was sampled at step t.

αt = αt−1 +

(
1

n
f ′
i(x

⊤
i wt−1)−α

(i)
t−1

)
ei (3.14)

where ei is the i-th vector of the canonical basis of Rn. Consider a fixed coordinate j. Since
there is a 1

n
chance of αj being updated to f ′

j(x
⊤
j wt−1), taking conditional expectations we

have

EtHj
t

def
= |α(j)

t − 1

n
f ′
j(x

⊤
j wt−1)| (3.15)

=

(
1− 1

n

)
|α(j)

t−1 −
1

n
f ′
j(x

⊤
j wt−1)|. (3.16)

Summing over all coordinates we then have

EtHt =
n∑
j=1

EtHj
t (3.17)

=

(
1− 1

n

)
∥αt−1 −∇f(Xwt−1)∥1︸ ︷︷ ︸

δt−1

. (3.18)

We denote the ℓ1 norm term by δt−1 for ease. Let us introduce the full gradient at the
previous step ∇f(Xwt−2) and use the triangle inequality. Our finite sum assumption gives
us that for all j ∈ {1, . . . , n} and w ∈ C, [∇f(Xw)]j =

1
n
f ′
j(x

⊤
j w). Then, we separate the

CHAPTER 3. STOCHASTIC FRANK-WOLFE FOR CONSTRAINED FINITE-SUM
MINIMIZATION 27
ℓ1 norm, use L-smoothness of each of the fjs and the definition of wt−1.

δt−1 ≤ Ht−1 + ∥∇f(Xwt−2)−∇f(Xwt−1)∥1 (3.19)

≤ Ht−1 +
L

n

n∑
j=1

|x⊤
j (wt−1 −wt−2)| (3.20)

≤ Ht−1 + γt−1
L

n

n∑
j=1

|x⊤
j (st−1 −wt−2)| (3.21)

≤ Ht−1 + γt−1
L

n
∥X(st−1 −wt−2)∥1 (3.22)

where we used wt−1 −wt−2 = γt−1(wt−1 − st−2). Finally, using the definition of the diameter
D1, we obtain inequality Eqn. 3.13.

Now, we can use the structure of this recurrence to obtain the desired rate of convergence
for our gradient estimator. We state this in the following lemma.

Lemma 3. Let γt = 2
t+2

. We have the following bound on the expected error EHt, for t ≥ 2:

EHt ≤ 2
LD1

n

(
2(n− 1)

t+ 2
+
(
1− 1

n

)t/2
log t

)
+
(
1− 1

n

)t
H0. (3.23)

Remark 7. Our gradient estimator’s error in ℓ1 norm goes to zero as O
(
D1

t

)
. This rate

depends on the assumption of the separability of f into a finite sum of L-smooth fi’s. On the
other hand, it does not require that each (or any) fi be convex.

Proof. Consider a general sequence of nonnegative numbers, u0, u1, u2, . . . , ut ∈ R+ where
for all t, the following recurrence holds:

ut ≤ ρ

(
ut−1 +

K

t+ 1

)
(3.24)

where 0 < ρ < 1 and K > 0 are scalars.
First note that all the iterates are nonnegative. Suppose t ≥ 2,

ut ≤ ρtu0 +K

t∑
k=1

ρt−k+1

k + 1

= ρtu0 +K

⌊t/2⌋∑
k=1

ρt−k+1

k + 1
+

t∑
k=⌊t/2⌋+1

ρt−k+1

k + 1


≤ ρtu0 +K

⌊t/2⌋∑
k=1

ρt/2

k + 1
+

t∑
k=⌊t/2⌋+1

2
ρt−k+1

t+ 2

 .

CHAPTER 3. STOCHASTIC FRANK-WOLFE FOR CONSTRAINED FINITE-SUM
MINIMIZATION 28

To go from the second line to the third line, we observe that for “old" terms with large
steps sizes, we are saved by the higher power in the geometric term. For the more recent
terms, the step-size is small enough to ensure convergence. More formally, in the early terms
(1 ≤ k ≤ ⌊t/2⌋), we upper bound ρt−k+1 by ρt/2. In the later terms (⌊t/2⌋+ 1 ≤ k ≤ t), we
upper bound 1

k+1
by 2

t+2
.

To obtain the full rate, we now study both parts separately. For the first part, we use
knowledge of the harmonic series:

ρt/2
⌊t/2⌋∑
k=1

1

k + 1
≤ ρt/2 log

(
t

2
+ 1

)
(3.25)

for t ≥ 2, we can upper bound log
(
t
2
+ 1
)

by log t.
For the second part, we use knowledge of the geometric series:

t∑
k=⌊t/2⌋+1

ρt−k+1 ≤ ρ

1− ρ
. (3.26)

Finally, for t ≥ 2

0 ≤ ut ≤ K

(
ρ

(1− ρ)

2

(t+ 2)
+ ρt/2 log t

)
+ ρtu0. (3.27)

The expected error EHt verifies our general conditions with u0 = H0 = ∥α0−∇f(Xw−1)∥1,
defining w−1

def
= w0 for the sake of the proof; ρ = 1 − 1

n
and K =

2LD1

n
. Specifying these

values gives us the claimed bound.

The remainder of the proof of Theorem 5 follows the usual Frank-Wolfe proofs in the full
gradient case, which can be found e.g. in Frank and Wolfe [12] and Jaggi [15]. Here is a brief
sketch of these steps: we tie the three key lemmas together, plugging in the bound on EHt

given by Lemma 3 into the upper bound on the suboptimality at step t given by Lemma 1.
By specifying the step size 2/(t+ 2), and scaling the bounds by a factor of (t+ 1)(t+ 2), we
obtain a telescopic sum, allowing us to upper bound the expected suboptimality at the latest
step considered. The details are deferred to Appendix A.3.

Worst-case Convergence Rates for Smooth, Non-Convex Objectives

We start by recalling the definition of the Frank-Wolfe gap:

gt = max
s∈C

⟨∇f(Xwt−1),X(wt−1 − s)⟩. (3.28)

Previous work [15] has shown the importance of the Frank-Wolfe gap. In the convex setting,
it is a primal-dual gap, and as such, upper bounds both primal and dual suboptimalities. In
the general non-convex setting, it is a measure of near-stationarity. We define a stationary

CHAPTER 3. STOCHASTIC FRANK-WOLFE FOR CONSTRAINED FINITE-SUM
MINIMIZATION 29
point as any point w⋆ such that for all w ∈ C, ⟨∇f(Xw⋆),X(w −w⋆)⟩ ≥ 0 [27]. From this
definition, it is clear that the Frank-Wolfe gap gt is zero only at a stationary point.

In this section, we suppose that fi is L-smooth for i in {1, . . . , n}, but not necessarily
convex. The following theorem states that we can still obtain a stationary point from
Algorithm 3.

Theorem 6. Let wt be computed according to Algorithm 3, then

lim inf
t→∞

Etgt = 0, (3.29)

where gt is the Frank-Wolfe gap.

The proof of this result is deferred to Appendix A.6.

3.4 Stopping Criterion

In this section, we define a natural stochastic Frank-Wolfe gap, and explain why it can be
used as a stopping criterion.

We recall the definition of the true Frank-Wolfe gap gt, and define the stochastic Frank-
Wolfe gap ĝt as:

gt = max
s∈C

⟨∇f(Xwt−1),X(wt−1 − s)⟩, (3.30)

ĝt = max
s∈C

⟨αt,X(wt−1 − s)⟩ (3.31)

for αt given by SFW.
The Frank-Wolfe gap’s properties make estimating it very desirable: when the gap is

small for a given iteration of a Frank-Wolfe type algorithm, we can guarantee we are close
to optimum (or to a stationary point in the general non-convex case). Unfortunately, in
datasets with many samples, and since it depends on the full gradient, computing this gap
can be impractical.

The following proposition shows that the stochastic Frank-Wolfe gap estimator resulting
from Algorithm 3 can be used as a proxy for the true Frank-Wolfe gap.

Proposition 1. For αt given by Algorithm 3, we can bound the distance between the stochastic
Frank-Wolfe gap and the true Frank-Wolfe gap as follows:

|gt − ĝt| ≤ D∞Ht, (3.32)

which yields the following bound in expectation

E|gt − ĝt| ≤ 2
LD1D∞

n

(
2(n− 1)

t+ 2
+
(
1− 1

n

)t/2
log t

)
+
(
1− 1

n

)t
D∞H0. (3.33)

CHAPTER 3. STOCHASTIC FRANK-WOLFE FOR CONSTRAINED FINITE-SUM
MINIMIZATION 30

We defer the proof to Appendix A.5.
If ĝt goes to 0, then the true Frank-Wolfe gap will be expected to vanish as well. We

therefore propose to use ĝt, which is computed as a byproduct of our SFW algorithm, as a
heuristic stopping criterion, but defer a more in-depth theoretical and empirical analysis of
this gap to future work.

3.5 Discussion

Table 3.2: Datasets and tasks used in experiments.

Dataset n d κ/n fi C

Breast Cancer 683 10 0.929 log(1 + exp(−yix
⊤
i w)) {∥w∥1 ≤ λ, λ = 5}

RCV1 20,242 47,236 0.021 log(1 + exp(−yix
⊤
i w)) {∥w∥1 ≤ λ, λ = 100}

California Housing 20,640 8 0.040 1
2(yi − x⊤

i w)2 {∥w∥1 ≤ λ, λ = 0.1}

103 104 105 106 107

Number of sampled gradients processed

10−14

10−11

10−8

10−5

10−2

R
el

at
iv

e
su

b
op

ti
m

al
it

y

Breast Cancer

Mokhtari et al. (2018)

Lu & Freund (2018)

This work

105 106 107 108

Number of sampled gradients processed

10−8

10−6

10−4

10−2

100
RCV1

Mokhtari et al. (2018)

Lu & Freund (2018)

This work

104 105 106 107 108 109

Number of sampled gradients processed

10−9

10−7

10−5

10−3

10−1

California Housing

Mokhtari et al. (2018)

Lu & Freund (2018)

This work

Figure 3.1: Comparing our SFW method to the related works of Lu and Freund [43] and
Mokhtari, Hassani, and Karbasi [38]. From left to right: Breast Cancer, RCV1, and
California Housing datasets. We plot the relative subtimality values in log-log plots to
show empirical rates of convergence. We use the following batch size: b = ⌊n/100⌋.

In this section, we compare the convergence rate of the proposed SFW, Lu and Freund
[43] and Mokhtari, Hassani, and Karbasi [38] as shown in Table 3.1. We use big O notation,
only focusing on dependencies in n and t to upper bound the suboptimality at step t.

To make a fair comparison, including dependencies in n, the number of samples, we first
standardize notations across papers. Lu and Freund [43] use the same formal setting as ours,
where x⊤

i w is the argument to the i-th objective fi, and the full objective is the average of
these. Mokhtari, Hassani, and Karbasi [38] set themselves in a more general setting, where
they only assume access to an unbiased estimator of the full gradient.

https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+(Diagnostic)
http://jmlr.csail.mit.edu/papers/volume5/lewis04a/
http://lib.stat.cmu.edu/datasets/houses.zip

CHAPTER 3. STOCHASTIC FRANK-WOLFE FOR CONSTRAINED FINITE-SUM
MINIMIZATION 31

For ease of comparison, we rewrite the two algorithms of Lu and Freund [43] and Mokhtari,
Hassani, and Karbasi [38] in Appendix A.7 using our notations.

Because of their more general setting, the Lmok Lipschitz constant appearing in Mokhtari,
Hassani, and Karbasi [38] can be written Lmok = L

n
nmaxi ∥xi∥2 (using Cauchy-Schwartz).

Their diameter constant Dmok = maxu,v∈C ∥u− v∥2 is also independent of n. Finally, their
σ2 term controlling the variance of their stochastic estimator should also be n-independent.
Under this notation, their convergence rate (Theorem 3, Mokhtari, Hassani, and Karbasi
[38]) is O

(
1/ 3

√
t
)

with no dependency in n as expected.
Lu and Freund [43] have a detailed discussion of the rate of their method, and achieve

the overall rate of O (n/t).
To fairly compare these rates to the one given by Theorem 5, we must consider the D1

and D∞ terms, which may depend on the number of samples n. The rate we obtain has
a leading term of O (D1D∞/t), and a second term of O (D1D∞n

2/t2). The second term is
dominated by the first in the regime t > n2. Defining κ = D1/D∞, we can write D1D∞ as
κD2

∞. We have that κ ≤ n, meaning that in the worst case, this bound matches the one
in Lu and Freund [43]. When the constraint set is the ℓ1 ball {w | ∥w∥1 ≤ λ}, we have the
following closed form expression:

κ =
∥X∥1,1
∥X∥1,∞

=
maxj

∑n
i=1 |Xij|

maxij |Xij|
. (3.34)

We can therefore easily compute it for given datasets.

Remark 8. We briefly remark that if for every feature, the contribution of that feature is
limited to a few datapoints, this ratio will be small, and therefore the overall bound does not
depend on the number of samples. This tends to happen for TF-IDF text representations, and
for fat-tailed data.

Formal analysis of this ratio exceeds the scope of this paper, and we defer it to future
work. We report values of κ for the considered datasets in Section 3.7.

3.6 Implementation Details

Our implementation is available in the C-OPT package.1
Initialization. We use the cheapest possible initialization: our initial stochastic gradient

estimator α0 starts out at 0. We also then have that r0 = 0.
Sparsity in X. Suppose there are at most s non-zero features for any datapoint xi.

Then for instances where C is an ℓ1 ball, all updates in SFW algorithm can be implemented
using using only the support of the current datapoint, making the per-iteration cost of SFW
O(s) instead of O(d). Large-scale datasets are often extremely sparse, so leveraging this
sparsity is crucial. For example, in the LibSVM datasets suite, 8 out of the 11 datasets with
more than a million samples have a density between 10−4 and 10−6.

1https://github.com/openopt/copt

https://github.com/openopt/copt

CHAPTER 3. STOCHASTIC FRANK-WOLFE FOR CONSTRAINED FINITE-SUM
MINIMIZATION 32

3.7 Experiments

We compare the proposed SFW algorithm with other constant batch size algorithms from
Mokhtari, Hassani, and Karbasi [38] and Lu and Freund [43].

Experimental Setting. We consider ℓ1 constrained logistic regression problems on the
Breast Cancer and RCV1 datasets, and an ℓ1 constrained least squares regression problem
on the California Housing dataset, all from the UCI dataset repository [51]. See Table
3.2 for details and links.

We compare the relative suboptimality computed for each method, given by (f(Xwt)−
fmin)/(fmax− fmin) at step t, where fmin and fmax are the smallest and largest function values
encountered by any of the compared methods. We compute these values at different time
intervals (the same for each method) depending on problem size, to limit the time of each
run. We use batches using 1% of the dataset at each step, following Lu and Freund [43].
Within a batch, data points are sampled without replacement.

We plot these values as a function of the number of gradient evaluations, equal to the
number of iterations times the batch size b: for all of the considered methods, an iteration
involves exactly b gradient evaluations and one call to the LMO. This allows us to fairly
compare the convergence speeds in practice.

Compared to both methods from Mokhtari, Hassani, and Karbasi [38] and Lu and Freund
[43], the proposed SFW achieves lower suboptimality for a given number of iterations on
the considered tasks and datasets. We have no explanation for the initial regime in the
California Housing dataset, before the methods start showing what resembles a sublinear
rate, as the theory prescribes. Notice that the RCV1 dataset has the lowest κ/n (due to
sparsity of the TF-IDF represented data), and that the method presented in this paper
performs particularly well on this dataset.

Comparison with Mokhtari, Hassani, and Karbasi [38]. Although the step-size in
our SFW Algorithm and the one proposed in the paper are of the same order of magnitude
O(1/t), Mokhtari, Hassani, and Karbasi [38] use f ′

i(x
⊤
i wt−1) instead of our (1/n)f ′

i(x
⊤
i wt−1),

because they require an unbiased estimator. Their choice induces higher variance, which
then requires the algorithm to use momentum with a vanishing step size in their stochastic
gradient estimator, damping the contributions of the later gradients (using ρt = 1

t2/3
, see the

pseudo code in Appendix A.7). This may explain why the method proposed in Mokhtari,
Hassani, and Karbasi [38] achieves slower convergence. On the contrary, the lower variance
in our estimator αt allows us to give the same weight to contributions of later gradients as
to previous ones, and to forget all but the last gradient computed at a given datapoint.

Comparison with Lu and Freund [43]. The method from Lu and Freund [43] computes
the gradient at an averaged iterate, putting more weight on earlier iterates, making it more
conservative. This may explain slower convergence versus the SFW algorithm proposed in
this paper in certain settings.

CHAPTER 3. STOCHASTIC FRANK-WOLFE FOR CONSTRAINED FINITE-SUM
MINIMIZATION 33

3.8 Conclusion and Future Work

Similarly to methods from the Variance Reduction literature such as SAG, SAGA, SDCA, we
propose a Stochastic Frank Wolfe algorithm tailored to the finite-sum setting. Our method
achieves a step towards attaining comparable complexity iteration-wise to deterministic,
true-gradient Frank-Wolfe in the smooth, convex setting, at a per-iteration cost which can be
nearly independent of the number of samples in the dataset in favorable settings. Our rate of
convergence depends on the norm ratio κ on the dataset, which is related to a measure of the
weights of the data distribution’s tails. We will explore this intriguing fact in future work.

We propose a stochastic Frank-Wolfe gap estimator, which may be used as a heuristic
stopping criterion, including in the non-convex setting. Its distance to the true gap may
be difficult to evaluate numerically. Obtaining a practical bound on this distance is an
interesting avenue for future work.

Guélat and Marcotte [17] and Lacoste-Julien and Jaggi [18] have proposed variants of the
FW algorithm that converge linearly on polytope constraint sets for strongly convex objectives:
the Away Steps Frank-Wolfe and the Pairwise Frank-Wolfe. Goldfarb, Iyengar, and Zhou
[44] studied stochastic versions of these and showed linear convergence over polytopes using
increasing batch sizes. Our SFW algorithm, the natural stochastic gap and the analyses in
this paper should be amenable to such variants as well, which we plan to explore in future
work.

Acknowledgments

The authors would like to thank Donald Goldfarb for early encouragement in this direction of
research, and Armin Askari, Sara Fridovich-Keil, Yana Hasson, Thomas Kerdreux, Nicolas Le
Roux, Romain Lopez, Grégoire Mialon, Courtney Paquette, Hector Roux de Bézieux, Alice
Schoenauer-Sebag, Dhruv Sharma, Yi Sun, and Nilesh Tripuraneni for their constructive
criticism on drafts of this paper. The authors also warmly thank Maria-Luiza Vladareanu for
finding and reporting an error in an earlier draft’s proof, and Alex Belloni, Jose Moran for
discussions as well.

Francesco Locatello is supported by the Max Planck ETH Center for Learning Systems,
by an ETH core grant (to Gunnar Rätsch), and by a Google Ph.D. Fellowship. Robert
Freund’s research is supported by AFOSR Grant No. FA9550-19-1-0240.

34

Chapter 4

Constrained Optimization Software

4.1 Introduction

The Python programming language has established itself as the most popular language for
scientific computing. Thanks to its high-level interactive nature and its maturing ecosystem
of scientific libraries, it is an appealing choice for algorithmic development and exploratory
data analysis.

While some of the most-used optimization methods are available in the SciPy [52]
package, the Python ecosystem still lacks a comprehensive optimization library. Furthermore,
the methods implemented in SciPy can only efficiently handle simple constraints like box-
constraints. Finally, these packages are not directly compatible with auto-differentiation
libraries such as PyTorch [53] or Jax [54].

We develop two libraries: (COPT) (based on NumPy) and (CHOP (based on PyTorch)
to answer this demand.

4.2 Project Vision

The goal of these packages is to develop a comprehensive set of methods for constrained and
composite optimization in Python.

Target audience. Scientist and engineers faced with optimization problems that arise in,
but are not restricted to, machine learning, signal processing and control.

Code quality. We enforce for code quality by i) maintaining a high code coverage (currently
93% for COPT, 72% for CHOP), using automated code quality assessment tools like pylint
(current score=8.47) and having all code reviewed before it’s accepted.

Bare-bones design and compatible API. We aim for a similar goal to that of the
scipy.optimize package: easy usage out of the box. To achieve this, copt relies on minimal

https://github.com/openopt/copt
https://github.com/openopt/chop

CHAPTER 4. CONSTRAINED OPTIMIZATION SOFTWARE 35

dependencies. Our API is as similar to scipy.optimize’s API as possible, to offer a smooth
learning curve to users. For CHOP, we additionally offer objects with the same API similar
as torch.optim for stochastic optimizers.

Documentation. Based on sphinx and sphinx-gallery [55]. We strive to provide examples
for each method which can be easily extended and adapted by the package’s users.

Permissive license. This package is licensed using the New BSD license to encourage its
use in both academic and commercial settings. The same licence is used by other related
packages like SciPy and scikit-learn, ensuring maximum code reuse.

4.3 Methods Currently Implemented

As of today (September 1, 2023), we have implemented methods in the following families:

• Proximal methods These methods optimize composite objectives of the form

min
x
f(x) + g(x) (+h(x)). (4.1)

Traditional assumptions are that 1) f is smooth, and 2) that we have access to the
proximal operator of the typically non-smooth function g (and h). See [56] for an
overview.

• Frank-Wolfe methods These methods solve optimization problems over convex
constraint sets of the form

min
x∈C

f(x). (4.2)

Traditional assumptions are that f is smooth and that we have access to a Linear
Minimization Oracle (LMO) over C: LMO(u) = argminv∈C⟨u, v⟩ [12, 15].

• Stochastic methods These methods solve problems using stochastic gradient estima-
tors. These problems are of the form

Eξf(x, ξ). (4.3)

4.4 Underlying Technologies

• COPT We rely on sparse matrix implementations in SciPy [52]. Stochastic methods
that need fast iterations use Numba [57] compilation.

• CHOP We rely on PyTorch tensor and linear algebra implementations.

CHAPTER 4. CONSTRAINED OPTIMIZATION SOFTWARE 36

4.5 Examples

We provide examples for machine learning model training, signal processing, adversarial
examples [39, 58].

See the project websites https://openopt.github.io/copt/auto_examples/index.html
and https://github.com/openopt/chop.

https://openopt.github.io/copt/auto_examples/index.html
https://github.com/openopt/chop

37

Part II

Models

38

Chapter 5

Learning differentiable solvers for systems
with hard constraints

5.1 Introduction

Methods based on neural networks (NNs) have shown promise in recent years for physics-
based problems [59, 60, 61, 62]. Consider a parameterized partial differential equation (PDE),
Fϕ(u) = 0. Fϕ is a differential operator, and the PDE parameters ϕ and solution u are
functions over a domain X . Let Φ be a distribution of PDE-parameter functions ϕ. The goal
is to solve the following feasibility problem by training a NN with parameters θ ∈ Rp, i.e.,
find θ such that, for all functions ϕ sampled from Φ, the NN solves the feasibility problem,

Fϕ(uθ(ϕ)) = 0. (5.1)

Training such a model requires solving highly nonlinear feasibility problems in the NN
parameter space, even when Fϕ describes a linear PDE.

Current NN methods use two main training approaches to solve Equation 5.1. The first
approach is strictly supervised learning, and the NN is trained on PDE solution data using a
regression loss [61, 60]. In this case, the feasibility problem only appears through the data; it
does not appear explicitly in the training algorithm. The second approach [59] aims to solve
the feasibility problem in Equation 5.1 by considering the relaxation,

min
θ

Eϕ∼Φ∥Fϕ(uθ(ϕ))∥22. (5.2)

This second approach does not require access to any PDE solution data. These two approaches
have also been combined by having both a data fitting loss and the PDE residual loss [62].

However, both of these approaches come with major challenges. The first approach requires
potentially large amounts of PDE solution data, which may need to be generated through
expensive numerical simulations or experimental procedures. It can also be challenging to
generalize outside the training data, as there is no guarantee that the NN model has learned
the relevant physics. For the second approach, recent work has highlighted that in the context
of scientific modeling, the relaxed feasibility problem in Equation 5.2 is a difficult optimization

CHAPTER 5. LEARNING DIFFERENTIABLE SOLVERS FOR SYSTEMS WITH HARD
CONSTRAINTS 39
problem [63, 64, 65]. There are several reasons for this, including gradient imbalances in the
loss terms [64] and ill-conditioning [63], as well as only approximate enforcement of physical
laws. In numerous scientific domains including fluid mechanics, physics, and materials science,
systems are described by well-known physical laws, and breaking them can often lead to
nonphysical solutions. Indeed, if a physical law is only approximately constrained (in this
case, “soft-constrained,” as with popular penalty-based optimization methods), then the
system solution may behave qualitatively differently or even fail to reach an answer.

In this work, we develop a method to overcome these challenges by solving the PDE-
constrained problem in Equation 5.1 directly. We only consider the data-starved regime, i.e.,
we do not assume that any solution data is available on the interior of the domain (however,
note that when solution data is available, we can easily add a data fitting loss to improve
training). To solve Equation 5.1, we design a PDE-constrained layer for NNs that maps
PDE parameters to their solutions, such that the PDE constraints are enforced as “hard
constraints.” Once our model is trained, we can take new PDE parameters and solve for
their corresponding solutions, while still enforcing the correct constraint.

In more detail, our main contributions are the following:

• We propose a method to enforce hard PDE constraints by creating a differentiable layer,
which we call PDE-Constrained-Layer or PDE-CL. We make the PDE-CL differentiable
using implicit differentiation, thereby allowing us to train our model with gradient-based
optimization methods. This layer allows us to find the optimal linear combination of
functions in a learned basis, given the PDE constraint.

• At inference time, our model only requires finding the optimal linear combination of
the fixed basis functions. After using a small number of sampled points to fit this linear
combination, we can evaluate the model on a much higher resolution grid.

• We provide empirical validation of our method on three problems representing different
types of PDEs. The 2D Darcy Flow problem is an elliptic PDE on a stationary (steady-
state) spatial domain, the 1D Burger’s problem is a non-linear PDE on a spatiotemporal
domain, and the 1D convection problem is a hyperbolic PDE on a spatiotemporal
domain. We show that our approach has lower error than the soft constraint approach
when predicting solutions for new, unseen test cases, without having access to any
solution data during training. Compared to the soft constraint approach, our approach
takes fewer iterations to converge to the correct solution, and also requires less training
time.

5.2 Background and Related work

The layer we design solves a constrained optimization problem corresponding to a PDE
constraint. We outline some relevant lines of work.

CHAPTER 5. LEARNING DIFFERENTIABLE SOLVERS FOR SYSTEMS WITH HARD
CONSTRAINTS 40
Dictionary learning. The problem we study can be seen as PDE-constrained dictionary
learning. Dictionary learning [66] aims to learn an over-complete basis that represents the
data accurately. Each datapoint is then represented by combining a sparse subset of the
learned basis. Since dictionary learning is a discrete method, it is not directly compatible
with learning solutions to PDEs, as we need to be able to compute partial derivatives for the
underlying learned functions. NNs allow us to do exactly this, as we can learn a parametric
over-complete functional basis, which is continuous and differentiable with regard to both its
inputs and its parameters.

NNs and structural constraints. Using NNs to solve scientific modeling problems has
gained interest in recent years [67]. NN architectures can also be designed such that they
are tailored to a specific problem structure, e.g. local correlations in features [68, 4, 69],
symmetries in data [70], convexity [71], or monotonicity [72] with regard to input. This
reduces the class of models to ones that enforce the desired structure exactly. For scientific
problems, NN generalization can be improved by incorporating domain constraints into
the ML framework, in order to respect the relevant physics. Common approaches have
included adding PDE terms as part of the optimization loss function [59], using NNs to learn
differential operators in PDEs such that many PDEs can be solved at inference time [60,
61], and incorporating numerical solvers within the framework of NNs [73]. It is sometimes
possible to directly parameterize Gaussian processes [74, 75] or NNs [76] to satisfy PDEs,
and fit some desired loss function. However, in the PDEs we study, we cannot have a
closed-form parameterization for solutions of the PDE. Previous work in PDE-solving has
tried to enforce hard constraints by enforcing boundary conditions [77]. We instead enforce
the PDE constraint on the interior domain.

Implicit layers. A deep learning layer is a differentiable, parametric function defined as
fθ : x 7→ y. For most deep learning layers, the two Jacobians ∂f

∂x
and ∂f

∂θ
are computed using

the chain rule. For these explicit layers, fθ is usually defined as the composition of elementary
operations for which the Jacobians are known. On the other hand, implicit layers create an
implicit relationship between the inputs and outputs by computing the Jacobian using the
implicit function theorem [78], rather than the chain rule. Specifically, if the layer has input
x ∈ Rdin , output y ∈ Rdout and parameters θ ∈ Rp, we suppose that y solves the following
nonlinear equation g(x, y, θ) = 0 for some g. Under mild assumptions, this defines an implicit
function fθ : x 7→ y. In our method, the forward function solves a constrained optimization
problem. When computing the Jacobian of the layer, it is highly memory inefficient to
differentiate through the optimization algorithm (i.e., all the steps of the iterative solver).
Instead, by using the implicit function theorem, a set of linear systems can be solved to obtain
the required Jacobians (see Amos and Kolter [5], Barratt [6], Blondel et al. [79], Agrawal
et al. [80], and El Ghaoui et al. [81] and the Deep Implicit Layer NeurIPS 2021 tutorial1 for
more details). Implicit layers have been leveraged in many applications, including solving

1http://implicit-layers-tutorial.org/

http://implicit-layers-tutorial.org/

CHAPTER 5. LEARNING DIFFERENTIABLE SOLVERS FOR SYSTEMS WITH HARD
CONSTRAINTS 41
ordinary differential equations (ODEs) [82], optimal power flow [83], and rigid many-body
physics [84].

Differentiable physics. In a different setting, recent work has aimed to make physics
simulators differentiable. The adjoint method [85] is classically used in PDE-constrained
optimization, and it has been incorporated into NN training [82, 86, 87]. In this case, the
assumption is that discrete samples from a function satisfying an unknown ODE are available.
The goal is to learn the system dynamics from data. A NN model is used to approximate the
ODE, and traditional numerical integration methods are applied on the output of the NN to
get the function evaluation at the next timestep. The adjoint method is used to compute
gradients with regard to the NN parameters through the obtained solution. The adjoint
method also allows for differentiating through physics simulators [88, 89, 73]. Our setup
is different. In our case, the underlying physical law(s) are known and the NN is used to
approximate the solutions, under the assumption that there is no observational data in the
interior of the solution domain.

5.3 Methods
We describe the details of our method for enforcing PDE constraints within a NN model.

Problem setup

Our goal is to learn a mapping between a PDE parameter function ϕ : X → R and the
corresponding PDE solution u(ϕ) : X → R, where the domain X is an open subset of Rd

for some d. The PDE parameters ϕ could be parameter functions such as initial condition
functions, boundary condition functions, forcing functions, and/or physical properties such
as wavespeed, diffusivity, and viscosity. We consider well-posed PDEs, following previous
work exploring NNs and PDEs [59, 60, 64]. Let Fϕ be a functional operator such that for all
PDE parameter functions ϕ sampled from Φ, the solution u(ϕ) satisfies Fϕ(u(ϕ)) = 0. The
inputs to our NN vary depending on the domain of interest and the PDE parameters. In
the simplest case, the input is a pair (x, ϕ(x)), where x ∈ X and ϕ(x) is the value of the
PDE parameter at x. The output of the NN is the value of the corresponding approximated
solution uθ(ϕ), for a given x. We want to learn the mapping,

G : ϕ︸︷︷︸
PDE parameters

7→ u(ϕ).︸ ︷︷ ︸
PDE solutions

(5.3)

We show an example of such a mapping in Figure 5.1. Importantly, we consider only the
unsupervised learning setting, where solution data in the interior domain of the PDE is not
available for training the model. In this setting, the training is done by only enforcing the
PDE, and the initial and/or boundary conditions.

CHAPTER 5. LEARNING DIFFERENTIABLE SOLVERS FOR SYSTEMS WITH HARD
CONSTRAINTS 42

Figure 5.1: Mapping PDE parameters ϕ to PDE solutions u(ϕ). The goal of our
model is to learn a mapping G : ϕ 7→ u(ϕ), without access to solution data. As an example,
we study the Darcy Flow PDE, which describes the chemical engineering problem of fluid
flow through a porous medium [90]. The system is composed of two materials in a given
spatial domain X = (0, 1)2, each with specific diffusion coefficients which depend on the
position. The left figure shows ϕ, which encodes the locations and diffusion properties of the
two materials. The right figure shows the corresponding solution u(ϕ). The function u is
a solution of the Darcy Flow PDE with diffusion coefficients ϕ if, for all (x, y) ∈ (0, 1)2, it
satisfies −∇·(ϕ(x, y)∇u(x, y)) = 1. The boundary condition is u(x, y) = 0, ∀(x, y) ∈ ∂(0, 1)2.

A differentiable constrained layer for enforcing PDEs

There are two main components to our model. The first component is a NN parameterized
by θ, denoted by fθ. The NN fθ takes the inputs described in Section 5.3 and outputs a
vector in RN . The output dimension N is the number of functions in our basis, and is a
hyperparameter.

The second component of our model, the PDE-constrained layer or PDE-CL, is our main
design contribution. We implement a layer that performs a linear combination of the N
outputs from the first component, such that the linear combination satisfies the PDE on all
points xi in the discretized domain. Specifically, let ω be the weights in the linear combination
given by the PDE-CL. The output of our system is uθ =

∑N
i=1 ωif

i
θ, where f iθ is the i-th

coordinate output of fθ. We now describe the forward and backward pass of the PDE-CL.

Forward pass of the differentiable constrained layer. Our layer is a differentiable
root-finder for PDEs, and we focus on both linear and non-linear PDEs. As an example, we
describe a system based on an affine PDE, where Fϕ is an affine operator, which depends on ϕ.
In our experiments, we study an inhomogeneous linear system in Section 5.4, a homogeneous
non-linear system in Section 5.4, and a homogeneous linear system in Section 5.4. The
operator Gϕ is linear when, for any two functions u, v from X to R, and any scalar λ ∈ R, we

CHAPTER 5. LEARNING DIFFERENTIABLE SOLVERS FOR SYSTEMS WITH HARD
CONSTRAINTS 43
have that,

Gϕ(u+ λv) = Gϕ(u) + λGϕ(v). (5.4)

The operator Fϕ is affine when there exists a function b such that the shifted operator Fϕ− b
is linear. Let Gϕ be the linear part of the operator: Gϕ = Fϕ − b. We define the PDE-CL to
find the optimal linear weighting ω of the N 1D functions encoded by the first NN component,
over the set of sampled inputs x1, . . . , xn. The vector ω ∈ RN solves the linear equation
system,

∀j = 1, . . . , n, Gϕ

(
N∑
i=1

ωif
i
θ

)
(xj) = b(xj) ⇐⇒

N∑
i=1

ωiGϕ(f iθ)(xj) = b(xj). (5.5)

This linear system is a discretization of the PDE Fϕ(uθ) = 0; we aim to enforce the PDE at
the sampled points x1, . . . , xn. The linear system has n constraints and N variables. These
are both hyperparameters, that can be chosen to maximize performance. Note that once N
is fixed, it cannot be changed. On the other hand, n can be changed at any time. When
the PDE is non-linear, the linear system is replaced by a non-linear least-squares system, for
which efficient solvers are available [91, 92].

Backward pass of the differentiable constrained layer. To incorporate the PDE-CL
into an end-to-end differentiable system that can be trained by first-order optimization
methods, we need to compute the gradients of the full model using an autodiff system [54].
To do this, we must compute the Jacobian of the layer.

The PDE-CL solves a linear system of the form g(ω,A, b) = Aω − b = 0 in the forward
pass, where A ∈ Rn×N , ω ∈ RN , b ∈ Rn. Differentiating g with respect to A and b using the
chain rule gives the following linear systems, which must be satisfied by the Jacobians ∂ω

∂A

and ∂ω
∂b

,

∀i, k ∈ 1, . . . , N, ∀j ∈ 1, . . . , n, 0 =
∂ωi
∂Ajk

=

(
ωk + A⊤

j

∂ω

∂Ajk

)
1i=j, (5.6)

∀i ∈ 1, . . . , N, ∀j ∈ 1, . . . , n, 0 =
∂gi
∂bj

= A⊤
i

∂ω

∂bj
− 1i=j, (5.7)

where 1i=j is 1 when i = j and 0 otherwise. Given the size and conditioning of our problems,
we cannot directly solve the linear system. Thus, we use an indirect solver (such as conjugate
gradient [93] or GMRES [94]) for both the forward system Aω = b and the backward system
given by Equation 5.6 and Equation 5.7. We use the JAX autodiff framework [54, 79]
to implement the full model. We include an analysis and additional information on the
enforcement of the hard constraints in C.4. We also include an ablation study in C.5 to
evaluate the quality of functions in our basis.

Loss function. Our goal is to obtain a NN parameterized function which verifies the PDE
over the whole domain. The PDE-CL only guarantees that we verify the PDE over the

CHAPTER 5. LEARNING DIFFERENTIABLE SOLVERS FOR SYSTEMS WITH HARD
CONSTRAINTS 44
sampled points. In the case where N > n, the residual over the sampled points x1, . . . , xn is
zero, up to numerical error of the linear solver used in our layer. It is preferable to not use this
residual for training the NN as it may not be meaningful, and an artifact of the chosen linear
solver and tolerances. Instead, we sample new points x′1, . . . , x′n′ and build the corresponding
linear system A′, b′. Our loss value is ∥A′ω − b′∥22, where ω comes from the PDE-CL and
depends on A and b, not A′, b′. We compute gradients of this loss function using the Jacobian
described above. Another possibility is to use n > N . In this case, the residual ∥Aω − b∥22
will be non-zero, and while the “hard constraints” will not be satisfied during training, we
can minimize this residual loss directly. Let U(X) denote the uniform distribution over our
(bounded) domain X . Formally, our goal is to solve the bilevel optimization problem,

min
θ

Eϕ∼ΦE(x1,...,xn),(x′1,...,x
′
n)∼U(X) ∥A′(ϕ, x′1, . . . ; θ)ω(ϕ, x1, . . . ; θ)− b′(ϕ, x′1, . . . ; θ)∥22

s.t. ω = argmin
w

∥A(ϕ, x1, . . . ; θ)w − b(ϕ;x1, . . . ; θ)∥22. (5.8)

We approximate this problem by replacing the expectations by sums over finite samples. The
matrices A, A′, and vectors b, b′ are built by applying the differential operator Fϕ to each
function in our basis f iθ, using the sampled gridpoints. It is straightforward to extend this
method in the case of non-linear PDEs by replacing the linear least-squares with the relevant
non-linear least squares problem.

Inference procedure. At inference, when given a new PDE parameter test point ϕ, the
weights θ are fixed as our function basis is trained. In this paragraph, we discuss guarantees
in the linear PDE case. Suppose that we want the values of uθ over the (new) points
xtest
1 , . . . , xtest

ntest . If ntest < N , we can fit ω in the PDE-CL using all of the test points. This
guarantees that our model satisfies the PDE on all test points: the linear system in the
PDE-CL is underdetermined. In practice, ntest is often larger than N . In this case, we can
sample J ⊂ {1, . . . , ntest}, |J | < N , and fit the PDE-CL over these points. Over the subset
{xtest

j , j ∈ J}, the PDE will be satisfied. Over the other points, the residual may be non-zero.
Another option is to fit the PDE-CL using all the points xtest

1 , . . . , xtest
ntest , in which case the

residual may be non-zero for all points, but is minimized on average over the sampled points
by our PDE-CL. Our method controls the trade-off between speed and accuracy:
choosing a larger N results in larger linear systems, but also larger sets of points on which
the PDE is enforced. A smaller N allows for faster linear system solves. Once ω is fit, we
can query uθ for any point in the domain. In practice, we can choose |J | to be much smaller
than ntest; here, the linear system we need to solve is much smaller than the linear system
required by a numerical solver.

5.4 Experimental results and implementation

We test the performance of our model on three different scientific problems: 2D Darcy Flow
(Section 5.4), 1D Burgers’ equation (Section 5.4), and 1D convection (Section 5.4). In each

CHAPTER 5. LEARNING DIFFERENTIABLE SOLVERS FOR SYSTEMS WITH HARD
CONSTRAINTS 45

(a) Target
(b) Hard-constrained

difference (c) Soft-constrained difference

Figure 5.2: Heatmaps of Darcy Flow example test set predictions. We compare
our hard-constrained model and the baseline soft-constrained model on a test set of new
diffusion coefficients ν. The NN architectures are the same except for our additional PDE-CL
in the hard-constrained model. a Target solutions of a subset of PDEs in the test set. b
Difference between the predictions of our hard-constrained PDE-CL model and the target
solution. c Difference between the predictions of the baseline soft-constrained model and
the target solution. Over the test dataset, our model achieves 1.82%± 0.04% relative error
and 0.0457± 0.0021 interior domain test loss. In contrast, the soft-constrained model only
reaches 3.86%± 0.3% relative error and 1.1355± 0.0433 interior domain test loss. Our
model achieves 71% less relative error than the soft-constrained model. While the heatmaps
show a subset of the full test set, the standard deviation across the test set for our model is
very low, as shown by the box plot in Appendix C.3.

case, the model is trained without access to any solution data in the interior solution domain.
The training set contains 1000 PDE parameters ϕ. The model is then evaluated on a separate
test set with M = 50 PDE parameters ϕ that are not seen during training. We compare
model results on the test set using two metrics: relative L2 error 1

M

∑M
i=1

∥uθ(ϕi)−u(ϕi)∥2
∥u(ϕi)∥2 ; and

the PDE residual loss 1
M

∑M
i=1 ∥Fϕi(uθ)∥2, which measures how well the PDE is enforced on

the interior domain. We demonstrate that our constrained NN architecture generalizes much
better on the test set than the comparable unconstrained model for all three problems.2

2D Darcy Flow

We look at the steady-state 2D Darcy Flow problem, which describes, for example, fluid flow
through porous media. In this section, the PDE parameter (denoted by ϕ in the previous
sections as a general variable) is ν ∈ L∞((0, 1)2;R+), a diffusion coefficient. The problem is
formulated as follows:

−∇ · (ν(x)∇u(x)) = f(x), ∀x ∈ (0, 1)2,

u(x) = 0, ∀x ∈ ∂(0, 1)2.
(5.9)

2We used a single Titan RTX GPU for each run in our experiments.

CHAPTER 5. LEARNING DIFFERENTIABLE SOLVERS FOR SYSTEMS WITH HARD
CONSTRAINTS 46
Here, f is the forcing function (f ∈ L2((0, 1)2;R), and u(x) = 0 is the boundary condition.
The differential operator is then Fν(u) = −∇·(ν(x)∇u(x)). Given a set of variable coefficients
ν, the goal is to predict the correct solution u. The ν(x) values are generated from a Gaussian
and then mapped to two values, corresponding to the two different materials in the system
(such as the fluid and the porous medium). We follow the data generation procedure from Li
et al. [60]. We use the Fourier Neural Operator (FNO) [60] architecture, trained using a PDE
residual loss as the baseline model (“soft-constrained”). Our model uses the FNO architecture
and adds our PDE-CL (“hard-constrained”). The domain (0, 1)2 is discretized over nx × ny
points. For each point on this grid, the model takes as input the coordinates, x ∈ (0, 1)2,
and the corresponding values of the diffusion coefficients, ν(x). The boundary condition is
satisfied by using a mollifier function [60], and so the only term in the loss function is the
PDE residual. We use a constant forcing function f equal to 1. We provide more details on
our setup and implementation in Appendix C.3.

Results. We plot example heatmaps from the test set in Figure 5.2. We compare visually
how close our hard-constrained model is to the target solution (Figure 5.2b), and how close the
soft-constrained baseline model is to the target solution (Figure 5.2c). Our hard-constrained
model is much closer to the target solution, as indicated by the difference plots mostly being
white (corresponding to zero difference).

During the training procedure for both hard- and soft-constrained models, we track error
on an unseen test set of PDE solutions with different PDE parameters from the training
set. We show these error plots in Figure 5.3. In Figure 5.3a, our model starts at a PDE
residual test loss value two orders of magnitude smaller than the soft constraint baseline.
The PDE residual test loss continues to decrease as training proceeds, remaining significantly
lower than the baseline. Similarly, in Figure 5.3b, we show the curves corresponding to the
relative error and the PDE residual loss metric on the test dataset. Our model starts at a
much smaller relative error immediately and continues to decrease, achieving a final lower
test relative error.

On the test set, our model achieves 1.82%± 0.04% relative error, versus 3.86%± 0.3%
for the soft-constrained baseline model. Our model also achieves 0.0457± 0.0021 for the
PDE residual test loss, versus 1.1355± 0.0433. Our model has almost two orders of
magnitude lower PDE residual test loss, and it has significantly lower standard deviation. On
the relative error metric, our model achieves a 71% improvement over the soft-constrained
model. While the example heatmaps show a subset of the full test set, the standard deviation
across the test set for our model is very low. This indicates that the results are consistent
across test samples.

CHAPTER 5. LEARNING DIFFERENTIABLE SOLVERS FOR SYSTEMS WITH HARD
CONSTRAINTS 47

(a) PDE residual loss on test set (b) Relative error on test set

Figure 5.3: 2D Darcy Flow: Error on test set during training. We train a NN
architecture with the PDE residual loss function (“soft constraint” baseline), and the same
NN architecture with our PDE-CL (“hard constraint”). During training, we track error on
the test set, which we plot on a log-log scale. a PDE residual loss on the test set, during
training. This loss measures how well the PDE is enforced. b Relative error on the test set,
during training. This metric measures the distance between the predicted solution and the
target solution obtained via finite differences. Both measures show that our hard-constrained
PDE-CL model starts at a much lower error (over an order of magnitude lower) on the test
set at the very start of training, and continues to decrease as training proceeds. This is
particularly visible when tracking the PDE residual test loss.

1D Burgers’ equation

We study a non-linear 1D PDE, Burgers’ equation, which describes transport phenomena.
The problem can be written as,

∂u(x, t)

∂t
+

1

2

∂u2(x, t)

∂x
= ν

∂2u(x, t)

∂x2
, x ∈ (0, 1), t ∈ (0, 1),

u(x, 0) = u0(x), x ∈ (0, 1),

u(x, t) = u(x+ 1, t), x ∈ R, t ∈ (0, 1).

(5.10)

Here, u0 is the initial condition, and the system has periodic boundary conditions. We aim
to map the initial condition u0 to the solution u. We consider problems with a fixed viscosity
parameter of ν = 0.01. We follow the data generation procedure from Li et al. [60], which
can be found here. We use a physics-informed DeepONet baseline model [64] with regular
multi-layer perceptrons as the base NN architecture, trained using the PDE residual loss.
Our hard-constrained model is composed of stacked dense layers and our PDE-CL, which
allows for a fair comparison. Because this PDE is non-linear, our PDE-CL solves a non-linear
least-squares problem, using the PDE residual loss and the initial and boundary condition
losses.

https://github.com/neuraloperator/neuraloperator/tree/master/data_generation/burgers

CHAPTER 5. LEARNING DIFFERENTIABLE SOLVERS FOR SYSTEMS WITH HARD
CONSTRAINTS 48

(a) Target (b) Hard-constrained difference (c) Soft-constrained difference

Figure 5.4: Heatmaps of 1D Burgers’ example test set predictions. We compare
our hard-constrained model and the baseline soft-constrained model on a test set of new
initial conditions u0. Both architectures are the same, except for our additional PDE-CL
in the hard-constrained model. a) Target solutions of a subset of PDEs in the test set. b)
Difference between the predictions of our hard-constrained model and the target solution.
c) Difference between the predictions of the baseline soft-constrained model and the target
solution. Over the test dataset, our model achieves 1.11± 0.11% relative error. The baseline
soft-constrained model achieves only 4.34%± 0.33% relative error. We use the same base
network architecture (MLPs) for both the soft-constrained and hard-constrained model. The
errors in both models are concentrated around the “sharp” features in the solution, but these
errors have 4x higher magnitude in the soft-constrained model.

Results. We plot example heatmaps from the test set in Figure 5.4. We compare how
close our hard-constrained model’s output is to the target solution (b)), and similarly for the
soft-constrained baseline model (c)). The solution found by our hard-constrained model is
much closer to the target solution than the solution found by the baseline model, and our
model captures “sharp” features in the solution visibly better than the baseline model. Our
hard-constrained model achieves 1.11± 0.11% relative error after less than 5, 000 steps of
training, using just dense layers and our PDE-CL. In contrast, the soft-constrained baseline
model only achieves 4.34%± 0.33% relative error after many more steps of training.

During the training procedure for both hard- and soft-constrained models, we track the
relative error on a validation set of PDE solutions with different PDE parameters from the
training set. We show the error plot in Figure 5.5. The target solution was obtained using
the Chebfun package [95], following Wang, Wang, and Perdikaris [64]. Our model achieves
lower error much earlier in training. The large fluctuations are due to the log-log plotting,
and small batches used by our method for memory reasons.

CHAPTER 5. LEARNING DIFFERENTIABLE SOLVERS FOR SYSTEMS WITH HARD
CONSTRAINTS 49

Figure 5.5: 1D Burgers’ equation: Error on validation set during training. We
train a NN with the PDE residual loss function (“soft constraint” baseline) and the same NN
architecture with our PDE-CL (“hard constraint”). Both architectures are MLPs. During
training, we track relative error on the test set, which we plot on a log-log scale. Our
hard-constrained model learns low error predictions much earlier in training. The hard
constrained model achieves lower relative error than the soft-constrained method.

1D convection

We study a 1D convection problem, describing transport phenomena. The problem can be
formulated as follows:

∂u(x, t)

∂t
+ β(x)

∂u(x, t)

∂x
= 0, x ∈ (0, 1), t ∈ (0, 1),

h(x) = sin(πx), x ∈ (0, 1),

g(t) = sin
(π
2
t
)
, t ∈ (0, 1).

(5.11)

Here, h(x) is the initial condition (at t = 0), g(t) is the boundary condition (at x = 0), and
β(x) represents the variable coefficients (denoted by ϕ in Section 5.3). Given a set of variable
coefficients, β(x), and spatiotemporal points (xi, ti), the goal is to predict the correct solution
u(x, t). We provide results and more details in Appendix C.1.

CHAPTER 5. LEARNING DIFFERENTIABLE SOLVERS FOR SYSTEMS WITH HARD
CONSTRAINTS 50

5.5 Conclusions

We have considered the problem of mapping PDEs to their corresponding solutions, in
particular in the unsupervised setting, where no solution data is available on the interior
of the domain during training. For this situation, we have developed a method to enforce
hard PDE constraints, when training NNs, by designing a differentiable PDE-constrained
layer (PDE-CL). We can add our layer to any NN architecture to enforce PDE constraints
accurately, and then train the whole system end-to-end. Our method provides a means to
control the trade-off between speed and accuracy through two hyperparameters. We evaluate
our proposed method on three problems representing different physical settings: a 2D Darcy
Flow problem, which describes fluid flow through a porous medium; a 1D Burger’s problem,
which describes viscous fluids and a dissipative system; and a 1D convection problem, which
describes transport phenomena. Compared to the baseline soft-constrained model, our model
can be trained in fewer iterations, achieves lower PDE residual error (measuring how well
the PDE is enforced on the interior domain), and achieves lower relative error with respect
to target solutions generated by numerical solvers.

Acknowledgements. The authors would like to thank Quentin Berthet, David Duvenaud,
Romain Lopez, Dmitriy Morozov, Parth Nobel, Daniel Rothchild, Hector Roux de Bézieux,
and Alice Schoenauer Sebag for helpful comments on previous drafts. MWM would like
to acknowledge the DOE, NSF, and ONR for providing partial support of this work. This
material is based in part upon work supported by the Intelligence Advanced Research Projects
Agency (IARPA) and Army Research Office (ARO) under Contract No. W911NF-20-C-0035.
ASK and MWM would like to acknowledge the U.S. Department of Energy, Office of Science,
Office of Advanced Scientific Computing Research, Scientific Discovery through Advanced
Computing (SciDAC) program under contract No. DE-AC02-05CH11231.

51

Chapter 6

Probabilistic forecasting with coherent
aggregation

6.1 Introduction

Obtaining accurate forecasts is an important step for long-term planning in complex and
uncertain environments, with applications ranging from energy management to supply chains,
from transportation to climate prediction [96, 97, 98]. Going beyond point forecasts such as
means and medians, probabilistic forecasting provides a key tool for forecasting uncertain
future events. This involves, e.g., forecasting that there is a 90% chance of rain on a certain
day, or that there is a 99% chance that people will want to buy fewer than 100 items at a
certain store on a certain week. Providing more detailed predictions of this form permits finer
uncertainty quantification. This in turn permits planners to prepare for different scenarios
and to allocate resources depending on their anticipated likelihood and cost structure. This
can lead to better resource allocation, improved decision making, and less waste.

In many applications, there exist natural hierarchies over quantities one wants to forecast:
energy consumption at various temporal granularities, from monthly to weekly; or at different
geographic granularities, from the building-level to city-level to state-level; or forecasting
retail demand for specific items, as well as for categories of items or brands. Typically, most
or all levels of the hierarchy are important: base-levels of the hierarchy are key for operational
short-term planning; and higher levels of aggregation yield insights on longer-term or coarser
trends. Moreover, it is often desired that the probabilistic forecasts at different granularities
are coherent (or consistent) for efficient decision-making at all levels [96, 99].

To be somewhat more precise, we say that probabilistic forecasts at different granularities
in a hierarchy are coherent if and only if there exists a valid joint distribution across all base-
levels such that the probabilistic forecasts have the same distributions as the corresponding
marginals of the joint distribution [100, 99, 101]. See also Def. 6.2.1 below. This follows [101],
and informally it means that the distribution of an aggregate is the sum of the distributions
of the base-levels in the aggregate. Designing a model which is accurate at all levels of
aggregation of the hierarchy, and which can exploit information at different levels, while also

CHAPTER 6. PROBABILISTIC FORECASTING 52

enforcing coherency, is well-known to be a difficult challenge [102]. In particular, one can not
simply aggregate or disaggregate probabilistic forecasts independently (assuming, of course,
that one wants to achieve reasonable accuracy), without accounting for correlations among
base time series.

In the last few years, end-to-end trainable neural network models have achieved a mea-
sure of success for (multi-horizon) probabilistic forecasting for univariate time series [103,
104, 105, 106, 107]. Compared to previous auto-regressive methods, these models provide
additional flexibility: one can now fit quantile functions directly through nonlinear quantile
regression [104, 103, 108, 106, 109, 107] (while forbidding quantile crossing [110]); and one can
differentiate through sampling complex hierarchical graphical models. The added flexibility
results in higher forecast accuracy.

In addition to multi-horizon univariate time series forecasting problems, targets to be
forecasted sometimes lie in a linear subspace of a common multivariate target. This is the case
for hierarchical forecasting: there is a linear relationship between base-level series and aggre-
gates [101, 99]. Despite the flexibility of neural network models, we cannot expect the output of
these models to learn from the training data to satisfy (these hierarchical, or other) constraints
exactly [111, 10]. Recent work has aimed at enforcing these constraints exactly; and these
neural networks models have achieved state of the art results for the hierarchical forecasting
setup [100, 112, 113]. These end-to-end forecasting models mitigate an important shortcoming
of previous (pre-neural network) hierarchical forecasting methods: the need to forecast first, be-
fore reconciliating those forecasts in a coherent manner. By exploiting an end-to-end training
approach, these methods permit one to train a coherent model in one step: either by integrat-
ing the reconciliation as a differentiable module [100]; or by designing a probabilistic model
which enforces the coherence, with distribution parameters given by neural networks [112].

In the light of the recent literature, here are properties which a hierarchical forecasting
method should satisfy: 1) coherence by construction; 2) end-to-end trainability; 3) ability to
optimize for arbitrary sample-based loss functions, e.g., quantile loss, Continuous Ranked
Probability Score (CRPS), depending on the use-case; 4) exploitation of the hierarchical
structure in the data, leading to a factor model representation; 5) flexibility in the choice of
factor and base-level noise distributions that best approximate the data distribution; and 6)
compact representation of the forecast to minimize storage cost.

In this paper, we present a method which satisfies all of these properties. We are aware
of only two previous methods which provide end-to-end trainable, and coherent hierarchical
forecasts: [100] and [112]. However, these two previous methods only satisfy some of the
properties stated above. See Table 6.1 for a summary.

In more detail, our main contributions are the following.

1. We propose a a novel model for probabilistic forecasting that satisfies all the desired
properties stated above. Our model explicitly leverages exchangeability of the base-level
targets using a factor model structure. It can be easily adapted to use different factor
and base-level distributions, e.g., Gamma, Normal, Truncated Normal, etc. Our model
enforces coherent aggregation exactly by construction.

CHAPTER 6. PROBABILISTIC FORECASTING 53

Method Coherence Differentiable Arbitrary Factor Arbitrary factor/ #Parameters to represent
samples loss function model base distribution a forecast

Deep HierE2E ✓ ✓ ✓ ✗ ✗ Low
DPMN ✓ ✗ ✗ ✓ ✗ High

This work ✓ ✓ ✓ ✓ ✓ Low

Table 6.1: Desirable properties satisfied by the models Deep HierE2E [100, 112] and
DPMN [113] and the proposed method. The ideal method is 1) coherent by construc-
tion, 2) differentiable with respect to its parameters for efficient optimization of expected
loss functions 3) capable of optimizing arbitrary sample-based loss functions, 4) hierarchical
in structure, represented by a factor model, 5) flexible in the choice of factor and base-level
distributions, and 6) able to produce compact and expressive forecasts for ease of storing
predictions. Our proposed method satisfies all of these desired properties.

2. The factor model parameters are the output of a neural network. We optimize this neural
network directly by optimizing for marginal forecast accuracy, using a reparametrization
trick. In addition, depending on the use-case, our model can be used for optimizing
arbitrary forecast metrics, such as quantile losses, CRPS, mean squared error, or
combinations of them.

3. Due to the importance of coherent forecasts in practice, we evaluate our method
empirically by comparing against previous coherent end-to-end trainable methods,
namely those of [100, 112, 113], on three public datasets. Following previous work,
we evaluate on the CRPS metric [114], and we find that our method improves on
previous methods by 11.8-41.4% depending on the dataset. We additionally evaluate
our mean forecasts using the relative MSE, and find that our method improves on
previous methods by 28.9-44.1% on two of three datasets. We analyze CRPS results
at different levels of the hierarchy, demonstrating higher or comparable accuracy at all
levels on the three datasets. Our model achieves this while providing a more compact
forecast representation (an important practical consideration) than previous proposed
coherent models.

4. We illustrate the influence of the choice of base-level distributions. Changing distribu-
tional assumptions, even in seemingly-minor ways, can have a large impact on accuracy,
and the best choice often depends sensitively on the data. Our model has the flexibility
to evaluate different modeling choices quickly and easily.

CHAPTER 6. PROBABILISTIC FORECASTING 54

6.2 Background and Related Work

Probabilistic Forecasting

Probabilistic forecasts are usually formulated to quantify future uncertainty to inform
decision making. We start by providing an overview of the general probabilistic forecasting
problem [97].

We focus on real-valued observations y ∈ R, with y ∼ Y , a realization of random variable
Y . A forecast distributed as Ŷ can be represented by an inverse cumulative density function
(CDF) on the real line R. At a given forecast creation date, we assume that we have access to
a set of prior information, X, which we use to inform our forecasts. This information could
be historical observations of the variable we want to predict, static features about the entity,
e.g., item characteristics in retail, correlated future features, e.g., future holidays which could
influence the energy consumption we’re forecasting, etc. We want to output the forecast Ŷ
which uses the most possible information from X to predict the distribution Y from which y
is realized. Without access to the full distribution Y , we typically evaluate quality of Ŷ | X
against a single realization y. If we estimate the conditional mean E[Y | X], we set ourselves
in the popular least squares regression setting [115]. If we estimate quantiles of Y | X, we
set ourselves in the quantile regression setting [116, 103, 106].

In practice, our forecasts are represented computationally using an inverse CDF, which
depends on distribution parameters. These parameters are themselves the output of an
(optimized) parametric function, e.g., a linear or generalized linear model or a neural network
model. For example, if we constrain our forecast to be normally distributed, we can use its
mean and standard deviation to characterize the full forecasted distribution. This mean
and standard deviation will be the output of a parametric model, given covariates as input.
More flexible models such as normalizing flows [117] would require more parameters. Armed
with a forecast class thus parametrized, we can optimize the fit of the distribution to the
observation data. For this, we need a loss function which measures how well a proposed
forecast in the forecast class fits the observations.

Forecasting with Coherent Hierarchical Aggregation

Hierarchical forecasting aims to solve the probabilistic forecasting problem, as discussed
above, but over a set of variables with hierarchical relationships. Most often, we are interested
in hierarchies where quantities are summed from one level to the level above it. For instance,
the energy consumed in a region is the sum of the energy consumed in each zip code in the
region. Methods concerned with hierarchies initially focused on mean forecasts [102, 118,
119, 120, 121, 122, 123, 124]. More recent methods consider probabilistic forecasts [112, 100,
125, 113]. Mean forecasts are easy to aggregate: by linearity of the expectation operator, the
mean of the aggregate is the aggregate of the means. However, this is not always the case for
other quantities such as quantiles, including the medians.

There are two main method families for hierarchical forecasting: top-down disaggrega-
tion [119, 126]; and bottom-up aggregation and reconciliation [102, 118, 127]. Recently, [126]

CHAPTER 6. PROBABILISTIC FORECASTING 55

J1 = {1} J5 = {1, 2}
J2 = {2} J6 = {2, 3}
J3 = {3} J7 = {3, 4}
J4 = {4} J8 = {1, 2, 3, 4}

(a) Set representa-
tion

z1 z2 z3 z4

J1 J2 J3 J4

J5 J6 J7

J8

(b) Graph representation

S =



1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
1 1 0 0
0 1 1 0
0 0 1 1
1 1 1 1


(c) Matrix represen-
tation

Figure 6.1: A simple hierarchical example of M = 8 aggregates over N = 4 entities.
Figure 6.1a (left) shows the set representation of the aggregation. Figure 6.1b (center)
shows a possible graph representation: the edge between J6 and J8 could be removed since
J6 is included in the union of J5 and J7. The graph is a DAG, but it is not a tree: the
node J2 appears in the aggregations J5 and J6. Figure 6.1c (right) shows the corresponding
aggregation matrix. In the matrix representation, we’ve added horizontal lines to separate
levels of the hierarchy. These levels do not matter in our algorithm or methods, although they
may be important for evaluation. These levels match the levels in the DAG representation,
and they correspond to the topological ordering of the nodes in the graph. Our method uses
only the matrix representation, which is equivalent to the set representation.

have shown that, in a simplified setting, top-down disaggregation yields provably smaller
excess risk than bottom-up aggregation. End-to-end coherent methods [100, 112] (discussed
in more detail in Sec. 6.2 below) address the limitation in these two-stage approaches that
information is inefficiently used (since models for each series are learned independently and
are then post-processed to be coherent). These end-to-end methods fit all levels of the
hierarchy simultaneously, with a module for reconciliating forecast at different levels, and
they cannot be characterized as either bottom-up or top-down.

End-to-end Coherent Probabilistic Hierarchical Forecasting Models

We are only aware of two methods which yield provably coherent probabilistic forecasts
and which allow the models to be trained in an end-to-end manner: Rangapuram et al.
[100] and Olivares et al. [112]. Two other works offer guaranteed coherent probabilistic
forecasts [126, 127], but they both rely on separately trained models, either for the base-level
forecasts or for the top-level forecast. Wang et al. [108] takes a similar approach to ours,
motivated by exchangeability between time-series which share global factors, but they do
not consider the problem of aggregation. Here, we focus on the two end-to-end trainable
coherent forecasting methods [100, 112]. We compare properties of these models with the one

CHAPTER 6. PROBABILISTIC FORECASTING 56

developed in this paper in Table 6.1. The method described in [100] is designed for general
convex constraints between multi-variate forecasts. Hierarchical forecasting is a special case
of this general problem: it has added structure which is not leveraged by this method. On
the other hand, the method described in [112] is too restrictive: it only considers mixtures
of Poisson distributions. Since these distributions are integer-valued, this requires training
the model using a likelihood loss which cannot directly be related to metrics closer to the
downstream goal, such as CRPS or quantile loss on an important quantile level.

Finally, we should note that an important component of our approach to coherent aggrega-
tion is to make explicit use of the exchangability of information at the base levels of the hierar-
chy. To this end, Wang et al. [108]’s observation that exchangeability of base time series induces
a factor model structure is related. However, Wang et al. [108] does not consider the hierarchi-
cal aggregation setting, and they do not consider end-to-end trainable models, but instead they
suppose access to an already trained top-level model. From this perspective, we make broad
changes to their method: 1) tailoring it to the coherent aggregation setting; 2) making it end-
to-end differentiable; and 3) studying the influence of parametric distributions on accuracy.

End-to-end Probabilistic Hierarchical Forecasting Methods Without
Coherence

In a related but separate thread, researchers have designed methods to regularize forecasts to
be “more coherent” without enforcing coherence exactly. This is useful for datasets stemming
from noisy measurements, e.g., disease control, where local and global measures are taken
by different means to estimate quantities at different levels in the hierarchy. In this case,
exact hierarchical aggregation does not hold. Han, Dasgupta, and Ghosh [125] focuses on
regularizing quantile estimators for coherence between the different levels in the hierarchy.
Recently, Kamarthi et al. [113] proposed such a regularization approach for probabilistic
forecasts, and focuses on the missing data case. Unlike methods described in the previous
paragraph and our method, these methods do not provide guaranteed coherent forecasts
between levels of the hierarchy (and thus we do not compare against them).

Notations

We consider the following hierarchical forecasting problem, with a set of base-level entities
indexed by [N] := {1, · · · , N}. Let Z1, · · · , ZN ∈ R be the base-level quantities we want to
forecast, and let Z = (Z1, · · · , ZN). In addition, for n ∈ [N], let Xn ∈ RD be random histori-
cal covariates observed for Zn, and let X = (X1, · · · ,XN) ∈ RDN be all historical covariates
across base time series. At each discrete time step t ∈ [T], assume that new values of covariates
X is given, and new value of targets are observed Z. In addition, we introduce another set of
indices [U] to extend the framework into a contextual problem. We will refer to this dimension
as the item dimension (e.g., in retail) or as the batch dimension. From an applied perspective,
there may be multiple attributes or “dimensions” being used to describe the data, and we may
or may not be interested in aggregating over all of them. For instance, if we are forecasting

CHAPTER 6. PROBABILISTIC FORECASTING 57

regional item-level demand in retail, then we may want to provide forecasts for many different
items in the catalog at multiple regional granularities. The item dimension is different than
the region dimension (over which we want to aggregate in this example). Hence, we reserve the
subscript u for the target variables and forecasts corresponding to such a dimension, which we
do not use to aggregate across. At each time step t and for each item u ∈ [U], a forecaster is
required to forecast for Z, given realized values of X. That is, let zt,u,n and xt,u,n be historical
observations for the quantity to be forecasted Zn and covariates Xn for each base-level entity
n ∈ [N]. We consider ((zt,u,1, · · · , zt,u,N), (xt,u,1, · · · ,xt,u,N)) be a realized value of (Z,X).

We can model hierarchical aggregation in terms of a set of base-level entities [N] and
various subsets of that set. Suppose that we are interested in M different hierarchical
aggregations of the N finest-grained entities. For each m ∈ [M], we can define the set
Jm ⊆ [N] of fine-grained Zs in the m-th aggregate. We suppose that {J1, · · · , JM} ⊆ P ([N])
are subsets of the power set of [N]. The target variable corresponding to the m-th aggregate
is Ym =

∑
n∈Jm Zn. For instance, if N = 3, we could have J1 = {1, 2} and J2 = {2, 3}. The

set {Y1, . . . , YM} is the set of aggregate targets in which we are interested. It could be that
Ym correspond to a single base-level entity, in which case the corresponding Jm is a singleton.

This setup allows us to define aggregations in matrix form. For n ∈ [N], let en be the
n-th canonical basis vector, i.e., the column vector with all zeros except for a 1 in the n-th
coordinate. We define the vector sm =

∑
n∈Jm en. For aggregate m, we have Ym = s⊤mZ. We

therefore define the aggregation matrix

S =
(
s1 · · · sM

)⊤ ∈ {0, 1}M×N . (6.1)

If there are U different items, then yt,u,m is the m-th aggregated target variable corre-
sponding to item u at time t. The aggregation matrix S does not depend on u or t in our
work. Our method is very general. It applies to the case where we want to aggregate across
the region dimension, or the time dimension, or both the region and time dimensions, or
other dimensional of the data.

Regardless of the specific hierarchy, we want the probabilistic forecasts to be coherent
with respect to the hierarchy. Here is an operational definition.

Definition 6.2.1. Let Y = (Y1, · · · , YM)⊤ be a multi-variate random variable. Let d
= denote

equality in distribution. We say that Y is a coherent aggregation of the base-level series Z

for the aggregation matrix S if Y has the same distribution as SZ, i.e., Y d
= SZ.

Note that historical observations (yt,u,1, · · · , yt,u,M) are always coherent aggregations of base-
level observations, as we can view historical observations as degenerate distributions with
support at the observed values only.

Our aggregation matrix S defines a directed acyclic graph (DAG), from the base-level
entities up. Indeed, any DAG defines a possible hierarchy. In previous work [102, 100, 112,
127], the aggregation graph is assumed to be a tree, since latent variables are associated
with each node, either to aggregate up or disaggregate down the forecasted quantities. In
our method, it only matters which base-level series are in a given aggregate, i.e., only the
aggregation matrix matters. Contrary to previous methods, we do not use relations between

CHAPTER 6. PROBABILISTIC FORECASTING 58

the aggregates (e.g., between Ym and Ym′). Therefore, our method can handle aggregations
represented by general DAGs, rather than just trees. In particular, in our method, the
aggregates may overlap. See Figure 6.1 for an example, where we consider a hierarchy with
N = 4 base-level entities and M = 8 aggregates. In this hierarchy, we are interested in the
base-level entities themselves, in 3 different pairs of the base-level entities, and in the total
across all entities. Some of the pairs have a non empty intersection.

Figure 6.2: Model architecture for our work. We show an example with N = 3 base
series, M = 3 aggregates, and K = 2 factors. Base-level series xn1 , · · · ,xn3 are fed into a
multi-variate neural network forecasting model such as MQCNN [103]. This model outputs
encodings for each base-level series. These encodings are used in two manners: they are
summed to produce an encoding at the common factor level, which is decoded into the
factor distribution parameters ϕk1 and ϕk2 by a shallow network; they are also decoded
directly by another shallow network to produce the base-level distribution loadings ws and
parameters σs. The base-level forecast distributions can be sampled differentiably using a
reparametrization trick by using parameter-free random inputs from factor level η(l)’s and the
base level η(b)’s. Aggregating these samples zn1 , zn2 , zn3 with aggregation matrices S yields
coherent samples at all levels of the hierarchy ym1 , . . . , ym3 . Finally, aggregate samples are
used to define the desired loss.

6.3 Our Main Method

In this section, we present our main model for probabilistic forecasting with coherent
aggregation.

Factor Model from Exchangeability

We develop a two-level probabilistic factor model for hierarchical forecasting that directly
estimates the conditional joint probability function of base-level quantities Z1, · · · , ZN condi-
tioning on historical covariates X, i.e.,

p(Z1, · · · , ZN | X).

CHAPTER 6. PROBABILISTIC FORECASTING 59

We can then obtain the target random variables in our hierarchical forecasting problems by
marginalizing from this common joint distribution. A reasonable assumption in probabilistic
forecasting applications is that the base level forecasts are exchangeable. Indeed, this was
implicitly used in prior work [112]. Recall that exchangeable random variables are those
whose joint probability distribution does not change when the positions in a sequence in
which finitely many of them appear are altered.

Under the assumption that Z1, · · · , ZN are exchangeable, conditioned on the covariates
X, then, motivated by de Finetti’s theorem [128, 129, 130, 108], we can model these
exchangeable random variables as independent variables, conditioned on some multivariate
latent variables v, such that

p(z1, · · · , zN |X)=

∫
p(l)(v|X)

[
N∏
n=1

p(b)(zn|X,v)

]
dv, (6.2)

where p(l)(·) and p(b)(·) are, respectively, the probability functions of latent variable v and of
the base-level quantity z, conditioned on the value of latent variable. Choosing the factor
distributions and the base-level distributions are important design choices in our model. We
will evaluate different choices empirically in section 6.4.

From Eqn. 6.2, we see that the target variables we want to predict are often influenced by
common factors. For instance, if we are predicting precipitations in a country over different
geographical granularities, then factors like topography may be important (mountainous
regions will have different characteristics than coastal regions); and if we are predicting
demand in a country, then information about the overall national demand may be important.

Since identifying such factors often requires expert knowledge, we aim to learn them. To
do so, we consider the following generic factor structure, where there are K independent
random factors Vk for k ∈ [K], such that

p(v | X) =
K∏
k=1

p(vk | X). (6.3)

Let each Vk follow a L(l)-parameter distribution f (l), with parameters ϕk ∈ RL(l) , where
f (l)(ϕk) ∈ F (l), the family of chosen distributions, e.g., Gamma, or Normal.

We suppose that the parameters of these factor distributions can be predicted using past
observations of the target variables (at all levels of the hierarchy). In particular, let these
factors each follow a L(l)-parameter distribution, and we define ϕk := ϕk(X;θ), where θ

represents parameters of a neural network model, and ϕk : RDN → RL(l) . The function ϕk
maps covariates (representing historical, time-independent and known future features, e.g.,
day of week) to distribution parameters, e.g., the parameters of a continuous distribution, or
parameters of a normalizing flow [117]. The dimension of the image of ϕk varies depending
on the number of unique parameters required for determining the chosen distribution from
the pre-specified distribution family.

Let W ∈ [0, 1]N×K be a loading matrix learned with data, and let W = (w⊤
1 , · · · ,w⊤

N),
where ∀ n ∈ [N], wn := wn(Xn;θ) and wn : RN → [0, 1]N . Then each entry in W quantifies

CHAPTER 6. PROBABILISTIC FORECASTING 60

how much the target variable in base-level entity depends on the factors. We assume it
can also be predicted from coviariates. Conditioned on a realization v ∼ V , by Eqn. 6.2,
the target variables Zn for n ∈ [N] are independent, and each follows a L(b)−parameter
distribution f (b) from a pre-specified distribution class F (b). In addition, each distribution
depends on parameters λn ∈ RL

n(b) , where given σn := σn(Xn;θ) we let λn := λn(w
⊤
nv,σn).

λn : RL(b) → RL(b) , the mapping to base-level distribution parameters is assumed to be known,
given σn and w⊤

nv; and σn : RD → RL(b)−1 is learned. Overall, we assume that base-level
quantities follow the following two-stage factor model:

∀k ∈ [K], vk ∼ f (l)(ϕk)

∀n ∈ [N], zn ∼ f (b)
(
λn | w⊤

nv,σn

)
.

(6.4)

With Eqn. 6.3 and Eqn. 6.4, the joint distribution of the (Z1, · · · , ZN) target variables in
Eqn. 6.2 can be written as

p(z1,· · ·, zN |X)=

∫ (K∏
k=1

p(l)(vk |ϕk)

)
·
N∏
n=1

p(b)
(
zn|w⊤

nv,σn

)
dv. (6.5)

Given the general model above, we can compute statistics related to the full joint
distribution across multivariate targets in the hierarchy, or marginal distributions of aggregates
along the hierarchy. Suppose we are interested in the marginal distribution of Ym with
Jm = {n1, n2}, which contains n1, n2 ∈ [N]. Then, the probability function of Ym can be
written as

p(ym) =

∫
zn1+zn2=ym

p(z1, · · · , zn)dzn1dzn2 . (6.6)

In practice, when the integral is not tractable, we can sample from the marginal distribution
of the forecasted aggregate Ŷm by sampling from the base-level series in Jm, and aggregating
the samples. In the next sub-section, we discuss how to use these samples to optimize the
model for different objective functions.

Sampling and Model Structure

Differentiable sampling of the factor model. We design our method so that it can
provide differentiable samples: we can differentiate samples with respect to our model’s
parameters. Recent work [131, 132, 133] has shown that one can sample in a differentiable
manner from almost any continuous distribution. Our method exploits these results: if
we can compute differentiable samples from the factor distributions and from the base-
level distributions, we can compute differentiable samples for our forecasts, at any level of
aggregation.

We now describe how to sample differentiably from the marginal distributions, follow-
ing Kingma and Welling [134] and Figurnov, Mohamed, and Mnih [131]. To do so, we write
our samples as a function of 1) model parameters and 2) samples from a distribution which

CHAPTER 6. PROBABILISTIC FORECASTING 61

does not depend on the model’s parameters. More formally, we can write the k-th factor
realization, Vk | ϕk, and n-th base-level target realization, Zn | λn, as

vk = α(l)(ϕk, η
(l)) (6.7)

zn = α(b)(λn, η
(b)), (6.8)

where η(l) ∼ f̃ (l) is parameter-free noise (e.g., sampled uniformly from [0, 1], or from a
standard Normal), and α(l) : RL(l)+1 → R.

To obtain samples of our forecasted distribution, we start by sampling the factor distribu-
tions. The parameters of the factor distributions come from a learned neural network. We
use these factor samples as parameters for the base-level distributions. We can then compute
samples from the base-level distributions, which are independent conditioned on the (shared)
factor samples. Finally, we aggregate the base-level samples up to the desired m-th aggregate.
The samples over all aggregates are coherent by construction.

Structure of the model. Expanding on the differentiable sampling module of Eqn. 6.7-6.8,
we further explain the overall structure of the model. Let R be total number of samples we
want to produce during the training process. For time t ∈ [T], item u ∈ [U], r ∈ [R], let the
realized parameter-free noise η

(l)
t,u,r = (η

(l)
t,u,r,1, · · · , η

(l)
t,u,r,K), where all η(l)s are i.i.d. sampled

from f̃ (l). Similarly, let η
(b)
t,u,r = (η

(b)
t,u,r,1, · · · , η

(b)
t,u,r,N), where all η(b)s are i.i.d. sampled from

f̃ (b). Given covariates X t,u, we generate parameters for defining the predictive distribution
by

ϕt,u,k = ϕk(X t,u;θ), ∀ k ∈ [K] (6.9)
wt,u,n = wn(X t,u,n;θ), ∀ n ∈ [N] (6.10)
σt,u,n = σn(X t,u,n;θ), ∀ n ∈ [N]. (6.11)

Given parameters of the distribution, we further obtain a forecasted sample ŷt,u,r,m for the
target yt,u,m by

vt,u,r,k = α(l)
(
ϕt,u,k, ηt,u,r,k

)
, ∀k ∈ [K] (6.12)

zt,u,r,n = α(b)
(
λn(w

⊤
t,u,nvt,u,r,σt,u,n),η

(b)
t,u,r

)
, ∀ n ∈ [N] (6.13)

ŷt,u,r,m = smzt,u,r, ∀ m ∈ [M]. (6.14)

Recall that ϕs are learned distribution parameters for random factors, ws are loadings
for these factors on each base-level series, and σs are additional parameters for defining
distribution at the base level. The vs and zs are the factor-level and base-level predictions in
samples; and the ys are the aggregate forecasts in samples. The last line, Eqn. 6.14, ensures
that the aggregates are coherent by construction.

As shown visually in Figure 6.2, Eqn. 6.9-6.14 define the network structure at training
time. In practice, we add some structure to the above-defined ϕk and wn functions: our

CHAPTER 6. PROBABILISTIC FORECASTING 62

network computes encodings h1, . . . , hn of each base-level series. These encodings are then
used in two places: 1) we sum them to obtain a top-level encoding h =

∑N
n=1 hn, which is

then decoded by a shallow network into the factor distribution parameters ϕ; and 2) they are
decoded by a separate shallow network into the loadings w and parameters σ. At inference
time, since the predictive distribution is defined by outputs from Eqn. 6.9-6.11, the sampling
module Eqn. 6.12-6.14 can be discarded.

Differentiable sampling is implemented for many distributions of interest in several open
source machine learning frameworks, e.g., PyTorch1 [53], TensorFlow2 [135] and JAX3 [54],
making it extremely easy to implement for many different functional forms. We demonstrate
this in the PyTorch code snippet in Figure D.2.1 in Appendix D.2. We only need to change
a single line of code to change our distribution assumptions at either level.

Optimizing the Model

Having differentiable samples allows us to optimize for any loss which is a differentiable
function of forecasted samples. This could be losses on the marginal distributions, i.e., the
aggregates, such as squared error loss, quantile losses for quantile levels of interest (0.5 if the
median is important, 0.9 or 0.99 if the tails are important), or even weighted combinations of
these losses. It could also be a function of the joint distribution, e.g., the energy score [136].

It is common in the hierarchical forecasting literature to evaluate forecast performance
on the marginal forecasts [101, 100, 112] using the Continuous Ranked Probability Score
(CRPS) [114]. We focus on this loss as an example, and we define it now.

Definition 6.3.1. Let ym be the target realized value of some underlying distribution Ym. Let
Ŷm represent the forecasted distribution of Ym, and let ŷm and ŷ′m be independent samples of
the forecast distribution. Then, the CRPS between the forecasted distribution and observed
value, using samples from the forecast distribution, is defined as Eŷ,ŷ′∼Ŷmℓcrps(ŷ, ŷ

′, ym), where

ℓcrps(ŷ, ŷ
′, ym) = |ŷ − ym| −

1

2
|ŷ − ŷ′|. (6.15)

The CRPS can also be written as the integral over all quantile levels of the corresponding
quantile loss [114]. We use the formulation above because it is an expectation: we can easily
produce an unbiased estimator of the CRPS via Monte-Carlo sampling.

Let our model parameters θ belong to a pre-determined parameter set Θ. Then, as we
will be evaluating our model using the CRPS, we fit θ by optimizing the following objective:

min
θ∈Θ

1

TUR

M∑
m=1

T∑
t=1

U∑
u=1

R∑
r=1

ℓcrps(ŷt,u,r,m, ŷt,u,R+r,m, yt,u,m), (6.16)

where ℓcrps is given by Eqn 6.15.
1https://pytorch.org/docs/stable/distributions.html: see rsample methods.
2https://www.tensorflow.org/probability/api_docs/python/tfp/distributions
3See e.g. https://jax.readthedocs.io/en/latest/_autosummary/jax.random.gamma.html.

https://pytorch.org/docs/stable/distributions.html
https://www.tensorflow.org/probability/api_docs/python/tfp/distributions
https://jax.readthedocs.io/en/latest/_autosummary/jax.random.gamma.html

CHAPTER 6. PROBABILISTIC FORECASTING 63

In practice, we use a neural network with the MQCNN architecture [103] parametrized
by θ to output parameters of the distribution from the covariates X. This architecture takes
historical, static and future features which can be either numerical or categorical.

Discussion

Here, we compare our method with coherent probabilistic forecasting baselines. We consider
the two coherent, end-to-end trainable methods in Rangapuram et al. [100] and Olivares
et al. [112]. For completeness, we also consider an ARIMA-based model with reconciliation
implemented in [138, 139].

From our perspective, the first method of Rangapuram et al. [100] is “too general.” It con-
sists of a neural network model [104] which produces probabilistic forecasts for all time-series
in the hierarchy. This method is in fact more general than hierarchical forecasting, since it is
designed to enforce any convex constraint satisfied by the forecasts; due to the constraining
operation in the method, it has to revise the optimized forecasts. It does not leverage specifics
of the hierarchical constraints, which are more structured than a general convex constraint.
The model predicts parameters of Gaussian distributions for each time-series in the hierarchy,
without coupling. Since the forecasts are not guaranteed to be hierarchically coherent, the
model then couples samples from these Gaussian distributions by projecting them on the
space of coherent probabilistic forecasts. Both the sampling operation [134] and the projection
are differentiable, allowing the method to be trained end-to-end. This model allows different
modeling choices, although they are not explored in the initial paper, since Gaussians can
be replaced by any distribution which can be sampled in a differentiable way, i.e., almost any
continuous distribution [132, 131, 133]. In Rangapuram et al. [100], the projection operator
ensures coherence, and correlations between base-levels are learned only by optimizing the
neural network. In contrast, our proposed method produces forecasts for base-level series
only, while relying on common factors to encode correlations. This removes the need to
forecast at all levels simultaneously, therefore reducing computational requirements if we are
only interested in a subset of the aggregates.

On the other hand, the method described in Olivares et al. [112] is “too restrictive.” It
can only handle learned mixture of Poisson distributions. It is in fact a special case of our
model. If we suppose that there is a single non-parametric factor V1 in our model that
follows a multivariate discrete distribution with the supports and weights outputted by the
neural network, and that conditioning on the realized value of the factor, the base-level
distributions are Poisson (Eqn. 6.13), then we recover the model of Olivares et al. [112]. Our
model represents a substantial generalization along both directions: we consider multiple
independent factors and arbitrary distributions.

Observe that these two methods represent two extremes on the spectrum between non-
parametric modeling and parametric modeling. In Rangapuram et al. [100], we do not have
access directly to the distributions of the marginals (i.e., the distribution of each aggregate
time-series) since the model outputs samples from Gaussian distributions, and then it couples
them with a projection. Due to this coupling, the forecasts follow an unknown, non-parametric
distribution. On the other hand, in the Olivares et al. [112] method, we can easily describe

CHAPTER 6. PROBABILISTIC FORECASTING 64

the marginals, since they are designed to follow a mixture of Poisson distributions. The same
holds true for our proposed method.

Another difference between these two approaches is that the model of Rangapuram et al.
[100] optimizes the fit over the marginal time series of interest, under the coherence constraint,
while in the model of Olivares et al. [112], the training objective is likelihood-based, which
in general does not directly optimize the evaluation metric of interest. In addition, their
objective is fixed regardless of the set of marginal time series being evaluated. We design
our method so that we can optimize marginal metrics of interest.

Our non-neural network-based baseline ARIMA-MinT-Boot consists of three steps. In
the first step, we fit an auto ARIMA model [140] to each marginal time series. Then, we
make the mean forecasts coherent by studying the covariance matrix of forecasted errors
Wickramasuriya, Athanasopoulos, and Hyndman [123], using ordinary least squares. Lastly,
to obtain probabilistic coherent forecasts, we apply a a bootstrap-based method [141] on
the coherent point forecasts. Although ARIMA-based methods do not show state-of-the-art
performance for these datasets [112], we include it for completeness as an example of a recon-
ciliation method. Among approaches to reconcile point forecasts (such as Wickramasuriya,
Athanasopoulos, and Hyndman [123] and Taieb and Koo [127], and approaches to extend
them to probabilistic forecasts [141, 101], we only report results for ARIMA-MinT-Boot as
they achieved the best CRPS results across most of hierarchical datasets studied in [138].

6.4 Empirical Evaluation

In this section, we present our main empirical results. First, we describe the empirical set
up. Second, we evaluate the proposed model, by comparing with two previous end-to-end
trainable models, proposed in [100] and [112], as well as an ARIMA-based reconciliation
model. Finally, we analyze our model’s sensitivity to hyperparameters: 1) choice of base-level
distribution; and 2) number of factors.

Setting

Datasets. In our analysis, we consider three qualitatively different (public) datasets:
Tourism-Large, Favorita, and Traffic. They have different properties which are repre-
sentative of more realistic non-public data, and forecasting all of them accurately requires
substantial modeling flexibility. The Tourism-Large dataset represents the number of visitors
to different regions in Australia. The goal is to forecast thousands of visitors, i.e., rescaling
count data by 1000. The aggregation is done according to a hierarchy over region and purpose
of travel, allowing us to test a case where the aggregate levels have overlap. The Favorita
dataset is a large retail dataset, and it contains both count data (whole items) and real-valued
data (items sold by weight) for over 4000 items. The aggregation hierarchy is regional.
We use it to test our method on a (relatively) large-scale problem. Finally, the Traffic
dataset contains sum-aggregates of highway occupancy rates. The initial rates are hourly,
but (following [112]) the dataset we consider is daily, i.e., it uses rates already aggregated

CHAPTER 6. PROBABILISTIC FORECASTING 65

to the daily level for each highway bend as base-level series. The hierarchy in this dataset
was defined randomly over highway bends. We use the same hierarchy as previous work.
This allows us to test whether our model requires aggregations to be in line with correlation
structures to achieve high accuracy. For all three datasets, the forecasted quantities are
non-negative.

Pre-processing and features. For data preprocessing, we follow previous work [100, 112].
Our models take in both numerical and categorical features for historical, static and future
data, as allowed by the MQCNN architecture [103]. We describe these features in detail in
Appendix D.1.

Evaluation metrics. Our main evaluation metric is a target-normalized CRPS [114]. We
compute the score described in Eqn. 6.15, and normalize it by dividing the result by the sum
of all target values. We also evaluate mean forecasts by reporting ratio between mean squared
error across forecasts in all levels over mean squared error of the naive forecast (which treats
the previous observation in each time series as the point forecasts for all future horizons),
which we call RelMSE.

Hyperparameter search. We consider limited sets of hyperparameters when tuning our
model. Since all considered data are non-negative, we consider the Clipped Normal, Truncated
Normal, Log-Normal and Gamma distributions as candidates for the base distribution. The
Clipped Normal is a normal distribution where all the density at negative values are moved
to being point mass at zero. The Truncated Normal on the other hand renormalizes
the non-negative part of a normal distribution; there is no added weight on zero. We
only consider Gamma random variables as factors, although we could choose any other
continuous distribution. When reporting final accuracy results of our model on test set,
we used the base distribution that performs the best in validation set, which is Clipped
Normal in all three datasets. We determine the number of factors by using results from the
validation set. For Tourism-Large and Traffic, we ran experiments for number of factors
K = {1, 2, 4, 6, 8, 10, 15, 20, 30, 40}; for Favorita, due to memory constraints, we set number
of factors K = {1, 2, 4, 6, 8, 10}. Likewise for the learning rate, we performed binary-search
by hand on [10−4, 10−3], and we chose the best learning rate according to results on the
validation set. This light hyperparameter tuning shows that 1) our method is easy to optimize,
and 2) we would get even better results by performing an automated hyperparameter search.
Moreover, we only train our models on the CRPS, i.e., we do not yet test the effect of a
discrepancy between train and test metrics. We leave this analysis for future work.

Optimization We fit each model using (stochastic) AdamW [142] (Adam [143] with weight
decay) using the U dimension as our batch dimension. We use 10−5 weight-decay in all of
our experiments, without tuning this parameter. Tourism-Large and Traffic both have a
degenerate batch dimension, in the sense that U = 1, therefore we use full-batch gradients.
For Favorita, batch size is 8.

CHAPTER 6. PROBABILISTIC FORECASTING 66

Comparison with Previous Methods

We compare the proposed model to the DPMN model from [112], the HierE2E model
from [100], and an ARIMA-based reconcilliation method [123, 141]. Following previous
work, we report the CRPS (normalized by the sum of target quantities) at all levels of
the defined hierarchies; see Table 6.3 for the best model choices in our proposed family.
For detailed definitions of all hierarchical levels of these datasets, see Appendix D.1. The
ARIMA-MinT-Boot results are generated using [138], with confidence interval computed
based on 10 independent runs. Results for HierE2E is generated based on three independent
runs using hyperparameters tuned by [138]. All metrics for DPMN are quoted from [112]
with identical experimental setting on all datasets.

Our model achieves lower overall CRPS for the test sets of all three datasets, improving on
previous methods by 11.8%, 23.4% and 41.4% on Tourism-Large, Favorita and Traffic,
respectively, as seen on the Overall rows of Table 6.3. For Tourism-Large and Favorita,
our model achieves better accuracy at almost every single level of the defined hierarchy. On
Traffic, our model achieves remarkably better results at the finer-grained level (level 3
and 4), but slightly worse accuracy at the higher levels of aggregation. It achieves strong
accuracy overall due to its ability to model the fine-grained series very accurately. In this
dataset, contrary to the others, the aggregation matrix is defined somewhat randomly, by
sampling base-level series. The base-level series within an aggregate therefore do not share
special structure, unlike stores in a city for the Favorita dataset, or regions in a state in the
Tourism-Large dataset. This lack of correlation structure may explain the slight performance
lag experienced by our model at the higher levels of aggregation. Because RelMSE overweighs
aggregated level mean forecast accuracy due to the nature of this metric, our method is
associated with sub-optimal mean forecast accuracy overall.

Sensitivity of the Model to Design Choices

We analyze the sensitivity of the model to 1) the base-level distribution, and 2) to the number
of chosen factors.

Sensitivity to base-level distribution. To evaluate how accuracy of the proposed model
changes depending on the choice of base distribution, we train models for four different base
distributions on each dataset, while using Gamma distributions to model the factors Vk.
We report the CRPS results in Table 6.4. On all three datasets, Clipped Normal performs
the best. On Tourism-Large and Traffic, Clipped Normal is better than other base-level
distributions by a small margin. However, its accuracy is significantly better than others
on Favorita, possibly due to the base-level series in the retail demand dataset is sparse,
and a zero-inflated distribution is needed. For more details, see Appendix D.3. We also
observed that Gamma base-level distribution performs worse than Truncated Normal in all
three datasets. Finally, on two of the three datasets, the Log-Normal distribution performs
poorly.

CHAPTER 6. PROBABILISTIC FORECASTING 67

Sensitivity to numbers of factors. To obtain good results on a large scale dataset
such as Favorita, [112] required the neural network to output parameters for up to 100
support positions and weights to approximate the empirical distribution of random factors
times loadings. Our model allows for several factors, where each factor vk requires only
two parameters, contained in ϕk(X;θ) (Eqn. 6.9, 6.12). Separating random factors and
deterministic factor loadings rather than learning an empirical distribution approximation as
in [112], our model can model more complex distributions while requiring fewer parameters.
For example, we discovered that using one Gamma factor in our work already yields improved
forecast accuracy for Favorita, compared to previous models. Moreover, we show how the
choice of the number of factors impacts forecast accuracy, using an experiment on Traffic
dataset as an example. We show the results in Figure 6.3 below. On this dataset, we observe
that a single factor already performs better than previous methods. The best results are
obtained with 20 factors.

Figure 6.3: Performance of our model for different numbers of factors based on one run with
the same random seed. We provide overall normalized CRPS on Traffic for a model with
Gamma factors and Clipped Normal base distributions. We also fit a 3-degree polynomial
function to the results.

6.5 Conclusion

In this work, we propose a novel probabilistic forecasting framework for hierarchical forecasting
problems. To guarantee that probabilistic predictions are coherent in aggregation, our
framework assumes that the predictive joint distribution over base-level targets follows a
factor model, provided that base targets are exchangeable.

While the factor model assumption constrains the predictions, our model leverages recent
advances in differentiable sampling, and it can optimize various sample-based objective
functions that are aligned with forecasting evaluation metrics. We further conducted experi-
ments on models in this framework on three benchmark datasets, comparing with alternative
approaches. We demonstrate that our model improves overall forecast accuracy by 11.8-41.4%

CHAPTER 6. PROBABILISTIC FORECASTING 68

on three benchmark datasets. The model generates best or comparable forecast accuracy on
almost all hierarchical levels for three datasets.

When forecasting for a given aggregate quantity within the hierarchy, our proposed model
requires data for all base-level series included in the aggregate to be fitted on a single GPU.
This may be prohibitive in certain applications where there exists thousands or millions
of time series within an hierarchy. Removing this restriction would allow our method to
handle to large-scale hierarchies. Our model currently uses a simple aggregation over all
base-level embeddings for learning the parameters for the factors, this simple operator can
lead to sub-optimal performance when forecasting at the most aggregated levels, as shown in
empirical results. Leveraging other neural network structures with higher degrees of freedom
for replacing the aggregation operator is a interesting future research direction.

CHAPTER 6. PROBABILISTIC FORECASTING 69

D
at

as
et

#
It

em
s

(U
)

B
as

e
(N

)
Le

ve
ls

A
gg

re
ga

te
d

(M
)

T
im

e
ra

ng
e

Fr
eq

ue
nc

y
H

or
iz

on
(t

im
e

st
ep

s)

To
ur

is
m-

La
rg
e

1
30

4
4/

5
55

5
19

98
-2

01
6

M
on

th
ly

12

Fa
vo

ri
ta

40
36

54
4

93
1/

20
13

-
8/

20
17

D
ai

ly
34

Tr
af

fi
c

1
20

0
4

20
7

1/
20

08
-3

/2
00

9
D

ai
ly

1

T
ab

le
6.

2:
Su

m
m

ar
y

of
pu

bl
ic

ly
-a

va
ila

bl
e

da
ta

us
ed

in
ou

r
em

pi
ri

ca
l

ev
al

ua
ti

on
.

T
he

To
ur

is
m-

La
rg
e

da
ta

se
t

[1
23

]
re

pr
es

en
ts

to
ur

is
m

vi
si

ts
to

A
us

tr
al

ia
be

tw
ee

n
19

98
an

d
20

16
.

T
he

Fa
vo

ri
ta

da
ta

se
t

[1
37

]r
ep

re
se

nt
s

da
ily

gr
oc

er
y

sa
le

s
in

st
or

es
ow

ne
d

by
th

e
Fa

vo
ri

ta
C

or
po

ra
ci

ón
in

E
cu

ad
or

be
tw

ee
n

20
13

an
d

20
17

.
T

he
Tr

af
fi

c
da

ta
se

t
[1

27
]c

on
si

st
s

of
da

ily
oc

cu
pa

nc
y

ra
te

fo
r

20
0

se
le

ct
ed

ca
r

la
ne

s
in

C
al

ifo
rn

ia
B

ay
A

re
a

be
tw

ee
n

20
08

an
d

20
09

.

CHAPTER 6. PROBABILISTIC FORECASTING 70
D

at
as

et
M

et
ri

c
Le

ve
l

O
ur

s
D

P
M

N
-G

ro
up

B
U

D
P

M
N

-N
ai

ve
B

U
H

ie
rE

2E
A

R
IM

A
-M

in
T

-B
oo

t

To
ur

is
m

C
R

P
S

O
ve

ra
ll

0
.1
1
0
1
±
0
.0
0
0
9
0.
1
2
4
9
±
0
.0
0
2
0

0.
1
2
7
4
±

0.
0
0
2
8

0.
1
4
5
6
±
0
.0
0
6
1

0.
1
3
1
7
±
0.
0
0
0
8

-L
ar

ge
Le

ve
l1

0.
03
49

±
0.
0
0
2
8

0.
0
4
3
1
±
0
.0
0
4
2

0.
0
5
1
4
±

0.
0
0
3
0

0.
0
7
2
1
±
0
.0
0
9
5

0
.0
2
7
7
±

0
.0
0
1
1

Le
ve

l2
0
.0
6
0
1
±
0
.0
0
2
1
0.
0
6
3
7
±
0
.0
0
3
2

0.
0
7
0
5
±

0.
0
0
2
6

0.
0
9
4
3
±
0
.0
0
5
9

0.
0
6
2
8
±
0.
0
0
1
0

Le
ve

l3
0
.0
9
5
9
±
0
.0
0
2
7
0.
1
0
8
4
±
0
.0
0
3
3

0.
1
0
6
8
±

0.
0
0
1
9

0.
1
2
8
0
±
0
.0
0
7
7

0.
1
1
5
0
±
0.
0
0
0
8

Le
ve

l4
0
.1
3
7
2
±
0
.0
0
2
2
0.
1
5
5
4
±
0
.0
0
2
5

0.
1
5
0
7
±

0.
0
0
1
4

0.
1
6
8
2
±
0
.0
0
8
3

0.
1
6
8
8
±
0.
0
0
0
7

Le
ve

l5
0
.0
5
5
2
±
0
.0
0
1
6
0.
0
7
0
0
±
0
.0
0
3
8

0.
0
9
0
7
±

0.
0
0
6
1

0.
0
9
9
2
±
0
.0
1
3
3

0.
0
7
5
0
±
0.
0
0
1
4

Le
ve

l6
0
.1
0
0
0
±
0
.0
0
0
9
0.
1
0
7
0
±
0
.0
0
2
3

0.
1
1
7
5
±

0.
0
0
4
7

0.
1
3
6
1
±
0
.0
0
6
9

0.
1
2
2
1
±
0.
0
0
1
4

Le
ve

l7
0
.1
6
5
2
±
0
.0
0
0
8
0.
1
8
8
7
±
0
.0
0
3
2

0.
1
8
3
6
±

0.
0
0
3
8

0.
1
9
9
6
±
0
.0
0
7
2

0.
1
9
7
6
±
0.
0
0
1
0

Le
ve

l8
0
.2
3
2
1
±
0
.0
0
3
6
0.
2
6
2
9
±
0
.0
0
3
4

0.
2
4
8
1
±

0.
0
0
2
6

0.
2
6
7
0
±
0
.0
0
7
3

0.
2
8
4
1
±
0.
0
0
0
8

R
el

M
SE

O
ve

ra
ll

0
.0
6
0
1
±
0
.0
0
1
9
0.
1
1
1
3
±
0
.0
1
5
8

0.
2
6
8
0
±

0.
0
7
4
8

0.
2
0
5
8
±
0
.0
4
4
3

0.
10

75

Fa
vo

ri
ta

C
R

P
S

O
ve

ra
ll

0
.3
0
8
0
±
0
.0
2
0
1
0.
4
0
2
0
±
0
.0
1
8
2

0.
5
3
0
1
±

0.
0
1
2
0

0.
5
0
9
9
±
0
.1
0
8
0

0.
3
9
6
8
±
0.
0
0
0
7

C
ou

nt
ry

0
.2
1
1
6
±
0
.0
1
1
7
0.
2
7
6
0
±
0
.0
1
4
9

0.
4
1
6
6
±

0.
0
1
9
5

0.
3
5
2
1
±
0
.1
5
2
6

0.
2
6
5
2
±
0.
0
0
0
5

St
at

e
0
.2
9
1
0
±
0
.0
2
0
5
0.
3
8
6
5
±
0
.0
2
0
7

0.
5
1
2
8
±

0.
0
1
0
8

0.
4
8
6
0
±
0
.1
1
2
0

0.
3
7
8
2
±
0.
0
0
0
6

C
it
y

0
.3
0
9
5
±
0
.0
2
0
5
0.
4
0
6
8
±
0
.0
2
0
6

0.
5
3
1
7
±

0.
0
1
1
5

0.
5
2
9
3
±
0
.1
0
4
6

0.
4
0
2
8
±
0.
0
0
0
8

St
or

e
0
.4
2
0
1
±
0
.0
1
6
2
0.
5
3
8
7
±
0
.0
2
5
3

0.
6
5
9
4
±

0.
0
1
5
0

0.
6
7
2
3
±
0
.0
6
3
0

0.
5
4
1
0
±
0.
0
0
1
0

R
el

M
SE

O
ve

ra
ll

0
.5
3
8
1
±
0
.0
3
6
8
0.
7
5
6
3
±
0
.0
7
1
3

0.
9
5
3
3
±

0.
0
2
0
1

1.
0
8
2
±

0.
5
4
7
3

1.
1
2
7
0

Tr
af

fi
c

C
R

P
S

O
ve

ra
ll

0
.0
1
8
1
±
0
.0
0
2
8
0.
0
9
0
7
±
0
.0
0
2
4

0.
0
7
0
4
±

0.
0
0
1
4

0.
0
3
0
9
±
0
.0
0
6
2

0.
0
7
3
1
±
0.
0
0
5
0

Le
ve

l1
0.
01
76

±
0.
0
0
3
0

0.
0
3
9
7
±
0
.0
0
4
4

0
.0
1
3
4
±
0
.0
0
2
2
0.
0
1
5
7
±
0
.0
3
2
7

0.
0
4
5
2
±
0.
0
0
6
6

Le
ve

l2
0.
01
76

±
0.
0
0
3
0

0.
0
5
3
7
±
0
.0
0
2
4

0.
0
2
8
9
±

0.
0
0
1
7

0
.0
1
0
3
±
0
.0
0
9
9
0.
0
4
7
0
±
0.
0
0
5
7

Le
ve

l3
0
.0
1
7
6
±
0
.0
0
3
1
0.
0
5
3
8
±
0
.0
0
2
2

0.
0
2
9
0
±

0.
0
0
1
1

0.
0
1
6
0
±
0
.0
0
9
3

0.
0
5
4
4
±
0.
0
0
4
2

Le
ve

l4
0
.0
1
9
5
±
0
.0
0
2
8
0.
2
1
5
5
±
0
.0
0
2
2

0.
2
1
0
1
±

0.
0
0
0
8

0.
0
8
8
1
±
0
.0
0
9
4

0.
1
4
5
9
±
0.
0
0
4
7

R
el

M
SE

O
ve

ra
ll

0.
02
32

±
0.
0
5
3
6

0.
1
7
5
0
±
0
.0
0
9
9

0.
0
1
6
8
±

0.
0
0
2
6

0
.0
0
4
7
±
0
.0
0
5
4
0.
0
6
2
4

Ta
bl

e
6.

3:
R

es
ul

ts
of

ou
r

em
pi

ri
ca

le
va

lu
at

io
n.

W
e

re
po

rt
th

e
C

R
P

S
sc

or
e

fo
r

ea
ch

da
ta

se
t

(s
m

al
le

r
is

be
tt

er
)

at
va

ri
ou

s
hi

er
ar

ch
ic

al
le

ve
ls

(a
le

ve
lw

it
h

lo
w

er
nu

m
be

r
re

pr
es

en
ts

a
m

or
e

ag
gr

eg
at

ed
le

ve
l,

m
or

e
de

ta
ils

di
sc

us
se

d
in

A
pp

en
di

x
D

.1
).

Av
er

ag
e

ac
cu

ra
cy

an
d

it
s

in
te

rv
al

ar
e

co
m

pu
te

d
ba

se
d

on
th

re
e

in
de

pe
nd

en
t

ru
ns

.
O

ur
m

od
el

im
pr

ov
es

on
pr

ev
io

us
m

et
ho

ds
on

al
ld

at
as

et
s

at
al

ll
ev

el
s

bu
t

L
ev

el
1

of
Tr

af
fi

c.
O

n
To

ur
is

m-
La

rg
e,

ou
r

m
od

el
im

pr
ov

es
on

th
e

pr
ev

io
us

st
at

e
of

th
e

ar
t

by
1
1
.8
%

.
O

n
th

e
la

rg
er

-s
ca

le
Fa

vo
ri

ta
da

ta
se

t,
ou

r
m

od
el

im
pr

ov
es

by
2
3
.4
%

.
O

n
Tr

af
fi

c,
w

e
im

pr
ov

e
th

e
be

st
re

su
lt

by
4
1
.4
%

ov
er

al
l.

O
ur

m
od

el
pe

rf
or

m
s

no
ta

bl
y

be
tt

er
at

th
e

fin
es

t
gr

an
ul

ar
ity

;o
ur

m
od

el
’s

pe
rf

or
m

an
ce

is
st

ab
le

ac
ro

ss
le

ve
ls

,w
he

re
as

th
e

ot
he

r
m

od
el

s
pe

rf
or

m
be

tt
er

at
th

e
ag

gr
eg

at
e

le
ve

ls
th

an
at

th
e

ba
se

le
ve

l.
W

e
ev

al
ua

te
ou

r
m

ea
n

fo
re

ca
st

s
by

co
m

pu
ti

ng
th

e
R

el
M

SE
sc

or
e

at
th

e
ov

er
al

ll
ev

el
(s

um
m

in
g

th
e

to
ta

l
sq

ua
re

d
er

ro
r

at
al

l
le

ve
ls

,
an

d
no

rm
al

iz
e

it
by

th
at

of
na

iv
e

fo
re

ca
st

s)
.

N
ot

e
A

R
IM

A
-M

in
T

-B
oo

t
pr

od
uc

es
de

te
rm

in
is

ti
c

m
ea

n
fo

re
ca

st
s

ac
ro

ss
m

od
el

ru
ns

.
O

ur
m

od
el

ac
hi

ev
es

lo
w

er
R

el
M

SE
th

an
ot

he
r

m
od

el
s

on
tw

o
da

ta
se

ts
:
4
4
.1
%

im
pr

ov
em

en
t

on
To

ur
is

m-
La

rg
e,

28
.9
%

on
Fa

vo
ri

ta
,b

ut
re

ac
he

s
hi

gh
er

R
el

M
SE

on
Tr

af
fi

c,
de

sp
it

e
la

rg
e

ga
in

s
in

C
R

P
S.

CHAPTER 6. PROBABILISTIC FORECASTING 71

Tourism-Large Favorita Traffic

Gamma 0.1174± 0.0044 0.4817± 0.2274 0.0738± 0.0629
Log-Normal 0.2245± 0.0905 0.5268± 0.1211 1.0135± 0.2967
Trunc-Normal 0.1123± 0.0038 0.3922± 0.0695 0.0216± 0.0033
Clipped Normal 0.1101± 0.0009 0.3080± 0.0201 0.0181± 0.0028

Table 6.4: Performance of our model for various choices of base distribution, where results
are based on three independent runs. We provide overall normalized CRPS for factor models
with Gamma distributed factors and various base distributions.

72

Bibliography

Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E Hinton (2012). “ImageNet Classification with
Deep Convolutional Neural Networks”. In: Advances in Neural Information Processing
Systems. Ed. by F. Pereira et al. Vol. 25. Curran Associates, Inc.

Vaswani, Ashish et al. (2017). “Attention is All you Need”. In: Advances in Neural Information
Processing Systems. Ed. by I. Guyon et al. Vol. 30. Curran Associates, Inc.

Oord, Aaron van den et al. (2016). WaveNet: A Generative Model for Raw Audio. cite
arxiv:1609.03499.

Bronstein, Michael M. et al. (2017). “Geometric Deep Learning: Going beyond Euclidean
data”. In: IEEE Signal Processing Magazine 34, pp. 18–42.

Amos, Brandon and J. Zico Kolter (2017a). “OptNet: Differentiable Optimization as a Layer
in Neural Networks”. In: ICML.

Barratt, Shane T. (2018). “On the Differentiability of the Solution to Convex Optimization
Problems”. In: arXiv: Optimization and Control.

Braun, Gábor et al. (Nov. 2022). Conditional Gradient Methods. arXiv: 2211.14103 [math.OC].
url: https://conditional-gradients.org/.

Pedregosa, Fabian et al. (2020). “Linearly Convergent Frank-Wolfe with Backtracking Line-
Search”. In: Proceedings of the Twenty Third International Conference on Artificial Intel-
ligence and Statistics. Ed. by Silvia Chiappa and Roberto Calandra. Vol. 108. Proceedings
of Machine Learning Research. PMLR, pp. 1–10.

Negiar, Geoffrey et al. (2020). “Stochastic Frank-Wolfe for Constrained Finite-Sum Minimiza-
tion”. In: Proceedings of the 37th International Conference on Machine Learning. Ed. by
Hal Daumé III and Aarti Singh. Vol. 119. Proceedings of Machine Learning Research.
PMLR, pp. 7253–7262. url: https://proceedings.mlr.press/v119/negiar20a.html.

Négiar, Geoffrey, Michael W. Mahoney, and Aditi Krishnapriyan (2023). “Learning differen-
tiable solvers for systems with hard constraints”. In: The Eleventh International Conference
on Learning Representations. url: https://openreview.net/forum?id=vdv6CmGksr0.

Negiar, Geoffrey et al. (2023). “Probabilistic Forecasting with Coherent Aggregation”. In:
ArXiv abs/2307.09797. url: https://api.semanticscholar.org/CorpusID:259982821.

Frank, Marguerite and Philip Wolfe (1956). “An algorithm for quadratic programming”. In:
Naval Research Logistics (NRL).

Levitin, Evgeny S and Boris T Polyak (1966). “Constrained minimization methods”. In: USSR
Computational mathematics and mathematical physics.

https://proceedings.neurips.cc/paper_files/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
http://arxiv.org/abs/1609.03499
https://arxiv.org/abs/2211.14103
https://conditional-gradients.org/
https://proceedings.mlr.press/v108/pedregosa20a.html
https://proceedings.mlr.press/v108/pedregosa20a.html
https://proceedings.mlr.press/v119/negiar20a.html
https://openreview.net/forum?id=vdv6CmGksr0
https://api.semanticscholar.org/CorpusID:259982821
http://dx.doi.org/10.1002/nav.3800030109
https://doi.org/10.1016/0041-5553(66)90114-5

BIBLIOGRAPHY 73

Demyanov, Vladimir and Aleksandr Rubinov (1967). “The minimization of a smooth convex
functional on a convex set”. In: SIAM Journal on Control.

Jaggi, Martin (2013). “Revisiting Frank-Wolfe: projection-free sparse convex optimization”.
In: International Conference on Machine Learning.

Canon, Michael D and Clifton D Cullum (1968). “A tight upper bound on the rate of
convergence of Frank-Wolfe algorithm”. In: SIAM Journal on Control.

Guélat, Jacques and Patrice Marcotte (1986). “Some comments on Wolfe’s ‘away step’”. In:
Mathematical Programming.

Lacoste-Julien, Simon and Martin Jaggi (2015). “On the global linear convergence of Frank-
Wolfe optimization variants”. In: Advances in Neural Information Processing Systems.

Beck, Amir, Edouard Pauwels, and Shoham Sabach (2015). “The cyclic block conditional
gradient method for convex optimization problems”. In: SIAM Journal on Optimization.

Dunn, Joseph C (1980). “Convergence rates for conditional gradient sequences generated by
implicit step length rules”. In: SIAM Journal on Control and Optimization.

Locatello, Francesco et al. (2017). “A Unified Optimization View on Generalized Matching
Pursuit and Frank-Wolfe”. In: Proceedings of the 20th International Conference on Artificial
Intelligence and Statistics.

Garber, Dan and Elad Hazan (2013). “A linearly convergent conditional gradient algorithm
with applications to online and stochastic optimization”. In: arXiv preprint arXiv:1301.4666.

Mitchell, BF, Vladimir Demyanov, and VN Malozemov (1974). “Finding the point of a
polyhedron closest to the origin”. In: SIAM Journal on Control.

Platt, John (1998). “Sequential minimal optimization: A fast algorithm for training support
vector machines”. In.

Mallat, Stéphane G and Zhifeng Zhang (1993). “Matching pursuits with time-frequency
dictionaries”. In: IEEE Transactions on signal processing.

Locatello, Francesco et al. (2018). “On Matching Pursuit and Coordinate Descent”. In:
Proceedings of the 35th International Conference on Machine Learning.

Bertsekas, Dimitri P (1999). Nonlinear programming. Athena Scientific.
Lacoste-Julien, Simon (2016). “Convergence rate of Frank-Wolfe for non-convex objectives”.

In: arXiv preprint arXiv:1607.00345.
Reddi, Sashank J et al. (2016). “Stochastic Frank-Wolfe methods for nonconvex optimization”.

In: 54th Annual Allerton Conference on Communication, Control, and Computing.
Nesterov, Yurii (2017). “Complexity bounds for primal-dual methods minimizing the model

of objective function”. In: Mathematical Programming.
Guyon, Isabelle et al. (2008). Feature extraction: foundations and applications. Vol. 207.

Springer.
Lewis, David D et al. (2004). “RCV1: A new benchmark collection for text categorization

research”. In: Journal of machine learning research.
Harper, F Maxwell and Joseph A Konstan (2015). “The movielens datasets: History and

context”. In: ACM Transactions on Interactive Intelligent Systems (TiiS).
Mehta, Bhaskar, Thomas Hofmann, and Wolfgang Nejdl (2007). “Robust collaborative

filtering”. In: Proceedings of the 2007 ACM conference on Recommender systems.

https://doi.org/10.1137/0305019
https://doi.org/10.1137/0305019
http://proceedings.mlr.press/v28/jaggi13.pdf
https://doi.org/10.1137/0306032
https://doi.org/10.1137/0306032
https://doi.org/10.1007/BF01589445
http://papers.nips.cc/paper/5925-on-the-global-linear-convergence-of-frank-wolfe-optimization-variants.pdf
http://papers.nips.cc/paper/5925-on-the-global-linear-convergence-of-frank-wolfe-optimization-variants.pdf
https://doi.org/10.1137/15M1008397
https://doi.org/10.1137/15M1008397
https://doi.org/10.1137/0318035
https://doi.org/10.1137/0318035
http://proceedings.mlr.press/v54/locatello17a/locatello17a.pdf
http://proceedings.mlr.press/v54/locatello17a/locatello17a.pdf
https://arxiv.org/abs/1301.4666
https://arxiv.org/abs/1301.4666
https://doi.org/10.1137/0312003
https://doi.org/10.1137/0312003
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/tr-98-14.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/tr-98-14.pdf
https://doi.org/10.1109/78.258082
https://doi.org/10.1109/78.258082
http://proceedings.mlr.press/v80/locatello18a.html
http://www.athenasc.com/nonlinbook.html
https://arxiv.org/abs/1607.00345
https://doi.org/10.1109/ALLERTON.2016.7852377
https://doi.org/10.1007/s10107-017-1188-6
https://doi.org/10.1007/s10107-017-1188-6
https://doi.org/10.1007/978-3-540-35488-8
http://www.jmlr.org/papers/v5/lewis04a.html
http://www.jmlr.org/papers/v5/lewis04a.html
http://dx.doi.org/10.1145/2827872
http://dx.doi.org/10.1145/2827872
https://doi.org/10.1145/1297231.1297240
https://doi.org/10.1145/1297231.1297240

BIBLIOGRAPHY 74

Mareček, Jakub, Peter Richtárik, and Martin Takáč (2017). “Matrix completion under interval
uncertainty”. In: European Journal of Operational Research.

Lacoste-Julien, Simon et al. (2013). “Block-Coordinate Frank-Wolfe Optimization for Struc-
tural SVMs”. In: Proceedings of the 30th International Conference on Machine Learning.

Kerdreux, Thomas, Fabian Pedregosa, and Alexandre d’Aspremont (2018). “Frank-Wolfe with
Subsampling Oracle”. In: Proceedings of the 35th International Conference on Machine
Learning. PMLR.

Mokhtari, Aryan, Hamed Hassani, and Amin Karbasi (2018). “Stochastic Conditional Gradient
Methods: From Convex Minimization to Submodular Maximization”. In: arXiv. arXiv:
1804.09554v1 [math.OC].

Tibshirani, R. (1996). “Regression Shrinkage and Selection via the Lasso”. In: Journal of the
Royal Statistical Society (Series B).

Shalev-Shwartz, Shai and Tong Zhang (2013). “Stochastic dual coordinate ascent methods
for regularized loss minimization”. In: Journal of Machine Learning Research.

Schmidt, Mark, Nicolas Le Roux, and Francis Bach (2013). “Minimizing finite sums with the
stochastic average gradient”. In: Mathematical Programming.

Hofmann, Thomas et al. (2015). “Variance reduced stochastic gradient descent with neighbors”.
In: Advances in Neural Information Processing Systems.

Lu, Haihao and Robert M Freund (2018). “Generalized Stochastic Frank-Wolfe Algorithm
with Stochastic “Substitute” Gradient for Structured Convex Optimization”. In: arXiv.

Goldfarb, Donald, Garud Iyengar, and Chaoxu Zhou (2017). “Linear Convergence of Stochastic
Frank Wolfe Variants”. In: Proceedings of the 20th International Conference on Artificial
Intelligence and Statistics.

Hazan, Elad and Haipeng Luo (2016). “Variance-reduced and projection-free stochastic
optimization”. In: International Conference on Machine Learning.

Locatello, Francesco et al. (2019). “Stochastic Frank-Wolfe for Composite Convex Minimiza-
tion”. In: Advances in Neural Information Processing Systems 32.

Zhang, Mingrui et al. (2019a). “One Sample Stochastic Frank-Wolfe”. In: arXiv.
Abernethy, Jacob D. and Jun-Kun Wang (2017). “On Frank-Wolfe and Equilibrium Compu-

tation”. In: Advances in Neural Information Processing Systems 30.
Abernethy, Jacob et al. (2018). “Faster Rates for Convex-Concave Games”. In: Proceedings of

the 31st Conference On Learning Theory.
Defazio, Aaron, Francis Bach, and Simon Lacoste-Julien (2014). “SAGA: A Fast Incremental

Gradient Method With Support for Non-Strongly Convex Composite Objectives”. In:
Advances in Neural Information Processing Systems 27.

Dua, Dheeru and Casey Graff (2017). UCI Machine Learning Repository. url: http://
archive.ics.uci.edu/ml.

Virtanen, Pauli et al. (2019). “SciPy 1.0–Fundamental Algorithms for Scientific Computing
in Python”. In: arXiv preprint arXiv:1907.10121.

Paszke, Adam et al. (2019). “PyTorch: An Imperative Style, High-Performance Deep Learning
Library”. In: Advances in Neural Information Processing Systems 32. Curran Associates,
Inc., pp. 8024–8035. url: http://papers.neurips.cc/paper/9015-pytorch-an-
imperative-style-high-performance-deep-learning-library.pdf.

https://doi.org/10.1016/j.ejor.2016.07.014
https://doi.org/10.1016/j.ejor.2016.07.014
http://proceedings.mlr.press/v28/lacoste-julien13.html
http://proceedings.mlr.press/v28/lacoste-julien13.html
http://proceedings.mlr.press/v80/kerdreux18a.html
http://proceedings.mlr.press/v80/kerdreux18a.html
https://arxiv.org/abs/1804.09554
https://arxiv.org/abs/1804.09554
https://arxiv.org/abs/1804.09554v1
https://www.jstor.org/stable/2346178
http://www.jmlr.org/papers/volume14/shalev-shwartz13a/shalev-shwartz13a.pdf
http://www.jmlr.org/papers/volume14/shalev-shwartz13a/shalev-shwartz13a.pdf
https://arxiv.org/pdf/1309.2388.pdf
https://arxiv.org/pdf/1309.2388.pdf
http://papers.nips.cc/paper/5919-variance-reduced-stochastic-gradient-descent-with-neighbors.pdf
https://arxiv.org/abs/1807.07680
https://arxiv.org/abs/1807.07680
http://proceedings.mlr.press/v54/goldfarb17a.html
http://proceedings.mlr.press/v54/goldfarb17a.html
http://proceedings.mlr.press/v48/hazana16.html
http://proceedings.mlr.press/v48/hazana16.html
http://papers.nips.cc/paper/9572-stochastic-frank-wolfe-for-composite-convex-minimization.pdf
http://papers.nips.cc/paper/9572-stochastic-frank-wolfe-for-composite-convex-minimization.pdf
https://arxiv.org/abs/1910.04322
https://papers.nips.cc/paper/7236-on-frank-wolfe-and-equilibrium-computation
https://papers.nips.cc/paper/7236-on-frank-wolfe-and-equilibrium-computation
http://proceedings.mlr.press/v75/abernethy18a.html
http://papers.nips.cc/paper/5258-saga-a-fast-incremental-gradient-method-with-support-for-non-strongly-convex-composite-objectives.pdf
http://papers.nips.cc/paper/5258-saga-a-fast-incremental-gradient-method-with-support-for-non-strongly-convex-composite-objectives.pdf
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf

BIBLIOGRAPHY 75

Bradbury, James et al. (2018). JAX: composable transformations of Python+NumPy programs.
Version 0.2.5. url: http://github.com/google/jax.

Nájera, Óscar et al. (2020). sphinx-gallery. Version v0.7.0. doi: 10.5281/zenodo.3838216.
url: https://doi.org/10.5281/zenodo.3838216.

Parikh, Neal and Stephen P. Boyd (2014). “Proximal Algorithms”. In: Found. Trends Optim.
1, pp. 127–239.

Lam, Siu Kwan, Antoine Pitrou, and Stanley Seibert (2015). “Numba: A llvm-based python jit
compiler”. In: Proceedings of the Second Workshop on the LLVM Compiler Infrastructure
in HPC, pp. 1–6.

Goodfellow, Ian J., Jonathon Shlens, and Christian Szegedy (2014). “Explaining and Harness-
ing Adversarial Examples”. In: CoRR abs/1412.6572. url: https://api.semanticscholar.
org/CorpusID:6706414.

Raissi, M., P. Perdikaris, and G.E. Karniadakis (2019). “Physics-informed neural networks: A
deep learning framework for solving forward and inverse problems involving nonlinear
partial differential equations”. In: Journal of Computational Physics 378, pp. 686–707.
issn: 0021-9991. doi: https://doi.org/10.1016/j.jcp.2018.10.045. url: https:
//www.sciencedirect.com/science/article/pii/S0021999118307125.

Li, Zongyi et al. (2020). “Fourier neural operator for parametric partial differential equations”.
In: arXiv preprint arXiv:2010.08895.

Lu, Lu et al. (2021a). “Learning nonlinear operators via DeepONet based on the universal
approximation theorem of operators”. In: Nat. Mach. Intell. 3, pp. 218–229.

Li, Zongyi et al. (2021). “Physics-informed neural operator for learning partial differential
equations”. In: arXiv preprint arXiv:2111.03794.

Krishnapriyan, Aditi et al. (2021). “Characterizing possible failure modes in physics-informed
neural networks”. In: Advances in Neural Information Processing Systems 34.

Wang, Sifan, Hanwen Wang, and Paris Perdikaris (2021). “Learning the solution operator of
parametric partial differential equations with physics-informed DeepOnets”. In: Science
Advances 7.40.

Edwards, Chris (2022). “Neural networks learn to speed up simulations”. In: Communications
of the ACM 65.5, pp. 27–29.

Mairal, Julien et al. (2009). “Online Dictionary Learning for Sparse Coding”. In: Proceedings
of the 26th Annual International Conference on Machine Learning. ICML ’09. Montreal,
Quebec, Canada: Association for Computing Machinery, pp. 689–696. isbn: 9781605585161.
doi: 10.1145/1553374.1553463. url: https://doi.org/10.1145/1553374.1553463.

Willard, Jared et al. (2020). “Integrating physics-based modeling with machine learning: A
survey”. In: arXiv preprint arXiv:2003.04919 1.1, pp. 1–34.

LeCun, Yann et al. (1998). “Gradient-based learning applied to document recognition”. In:
Proc. IEEE 86, pp. 2278–2324.

Hochreiter, Sepp and Jürgen Schmidhuber (1997). “Long Short-Term Memory”. In: Neural
Computation 9, pp. 1735–1780.

Cohen, Taco and Max Welling (2016). “Group Equivariant Convolutional Networks”. In:
ICML.

http://github.com/google/jax
https://github.com/sphinx-gallery/sphinx-gallery/
https://doi.org/10.5281/zenodo.3838216
https://doi.org/10.5281/zenodo.3838216
https://api.semanticscholar.org/CorpusID:6706414
https://api.semanticscholar.org/CorpusID:6706414
https://doi.org/https://doi.org/10.1016/j.jcp.2018.10.045
https://www.sciencedirect.com/science/article/pii/S0021999118307125
https://www.sciencedirect.com/science/article/pii/S0021999118307125
https://doi.org/10.1145/1553374.1553463
https://doi.org/10.1145/1553374.1553463

BIBLIOGRAPHY 76

Amos, Brandon, Lei Xu, and J. Zico Kolter (2017). “Input Convex Neural Networks”. In:
Proceedings of the 34th International Conference on Machine Learning. Ed. by Doina
Precup and Yee Whye Teh. Vol. 70. Proceedings of Machine Learning Research. PMLR,
pp. 146–155. url: https://proceedings.mlr.press/v70/amos17b.html.

Sill, Joseph (1997). “Monotonic Networks”. In: Advances in Neural Information Processing
Systems. Ed. by M. Jordan, M. Kearns, and S. Solla. Vol. 10. MIT Press. url: https://
proceedings.neurips.cc/paper/1997/file/83adc9225e4deb67d7ce42d58fe5157c-
Paper.pdf.

Um, Kiwon et al. (2020). “Solver-in-the-loop: Learning from differentiable physics to interact
with iterative pde-solvers”. In: Advances in Neural Information Processing Systems 33,
pp. 6111–6122.

Lange-Hegermann, Markus (2018). “Algorithmic Linearly Constrained Gaussian Processes”.
In: NeurIPS.

Jidling, Carl et al. (2017). “Linearly constrained Gaussian processes”. In: NIPS.
Hendriks, Johannes N. et al. (2020). “Linearly Constrained Neural Networks”. In: ArXiv

abs/2002.01600.
Lu, Lu et al. (2021b). “Physics-informed neural networks with hard constraints for inverse

design”. In: SIAM Journal on Scientific Computing 43.6, B1105–B1132.
Krantz, Steven George and Harold R Parks (2002). The implicit function theorem: history,

theory, and applications. Springer Science & Business Media.
Blondel, Mathieu et al. (2021). “Efficient and Modular Implicit Differentiation”. In: ArXiv

abs/2105.15183.
Agrawal, Akshay et al. (2019). “Differentiable Convex Optimization Layers”. In: NeurIPS.
El Ghaoui, Laurent et al. (2021). “Implicit Deep Learning”. In: SIAM J. Math. Data Sci. 3,

pp. 930–958.
Chen, Tian Qi et al. (2018). “Neural Ordinary Differential Equations”. In: ArXiv abs/1806.07366.
Donti, Priya L, David Rolnick, and J Zico Kolter (2021). “Dc3: A learning method for

optimization with hard constraints”. In: arXiv preprint arXiv:2104.12225.
Avila Belbute-Peres, Filipe de et al. (2018). “End-to-end differentiable physics for learning

and control”. In: Advances in neural information processing systems 31, pp. 7178–7189.
Pontryagin, Lev Semenovich et al. (1962). “The mathematical theory of optimal processes”.

In.
Zhang, T. et al. (2019b). ANODEV2: A Coupled Neural ODE Evolution Framework. Tech. rep.

Preprint: arXiv:1906.04596.
Krishnapriyan, Aditi S et al. (2022). “Learning continuous models for continuous physics”. In:

arXiv preprint arXiv:2202.08494.
Degrave, Jonas et al. (2019). “A Differentiable Physics Engine for Deep Learning in Robotics”.

In: Frontiers in Neurorobotics 13. issn: 1662-5218. doi: 10.3389/fnbot.2019.00006.
url: https://www.frontiersin.org/article/10.3389/fnbot.2019.00006.

Schoenholz, Samuel S. and Ekin D. Cubuk (2020). “JAX M.D. A Framework for Differen-
tiable Physics”. In: Advances in Neural Information Processing Systems. Vol. 33. Curran
Associates, Inc.

https://proceedings.mlr.press/v70/amos17b.html
https://proceedings.neurips.cc/paper/1997/file/83adc9225e4deb67d7ce42d58fe5157c-Paper.pdf
https://proceedings.neurips.cc/paper/1997/file/83adc9225e4deb67d7ce42d58fe5157c-Paper.pdf
https://proceedings.neurips.cc/paper/1997/file/83adc9225e4deb67d7ce42d58fe5157c-Paper.pdf
https://doi.org/10.3389/fnbot.2019.00006
https://www.frontiersin.org/article/10.3389/fnbot.2019.00006
https://papers.nips.cc/paper/2020/file/83d3d4b6c9579515e1679aca8cbc8033-Paper.pdf
https://papers.nips.cc/paper/2020/file/83d3d4b6c9579515e1679aca8cbc8033-Paper.pdf

BIBLIOGRAPHY 77

Darcy, Henry (1856). Les fontaines publiques de la ville de Dijon : exposition et application
des principes à suivre et des formules à employer dans les questions de distribution d’eau.
Victor Dalmont.

Levenberg, Kenneth (1944). “A METHOD FOR THE SOLUTION OF CERTAIN NON –
LINEAR PROBLEMS IN LEAST SQUARES”. In: Quarterly of Applied Mathematics 2,
pp. 164–168.

Marquardt, Donald W. et al. (1963). “An algorithm for least-squares estimation of nonlinear
parameters”. In.

Hestenes, Magnus R. and Eduard Stiefel (1952). “Methods of conjugate gradients for solving
linear systems”. In: Journal of research of the National Bureau of Standards 49, pp. 409–
435.

Saad, Youcef and Martin H. Schultz (1986). “GMRES: a generalized minimal residual algorithm
for solving nonsymmetric linear systems”. In: Siam Journal on Scientific and Statistical
Computing 7, pp. 856–869.

Driscoll, T. A, N. Hale, and L. N. Trefethen (2014). Chebfun Guide. Pafnuty Publications.
url: http://www.chebfun.org/docs/guide/.

Hong, Tao, Pierre Pinson, and Shu Fan (2014). Global energy forecasting competition 2012.
Gneiting, Tilmann and Matthias Katzfuss (2014). “Probabilistic Forecasting”. In: Annual

Review of Statistics and Its Application 1.1, pp. 125–151. eprint: https://doi.org/
10.1146/annurev-statistics-062713-085831. url: https://doi.org/10.1146/
annurev-statistics-062713-085831.

Makridakis, Spyros, Evangelos Spiliotis, and Vassilios Assimakopoulos (2022). “M5 accuracy
competition: Results, findings, and conclusions”. In: International Journal of Forecasting
38.4. Special Issue: M5 competition, pp. 1346–1364. url: https://www.sciencedirect.
com/science/article/pii/S0169207021001874.

Jeon, Jooyoung, Anastasios Panagiotelis, and Fotios Petropoulos (2019). “Probabilistic forecast
reconciliation with applications to wind power and electric load”. In: European Journal of
Operational Research 279.2, pp. 364–379.

Rangapuram, Syama Sundar et al. (2021). “End-to-end learning of coherent probabilistic
forecasts for hierarchical time series”. In: International Conference on Machine Learning.
PMLR, pp. 8832–8843.

Taieb, Souhaib Ben, James W Taylor, and Rob J Hyndman (2017). “Coherent probabilistic
forecasts for hierarchical time series”. In: International conference on machine learning.
PMLR, pp. 3348–3357.

Hyndman, Rob J. et al. (2011). “Optimal combination forecasts for hierarchical time series”.
In: Computational Statistics & Data Analysis 55.9, pp. 2579–2589. url: https://www.
sciencedirect.com/science/article/pii/S0167947311000971.

Wen, Ruofeng et al. (2017). “A Multi-Horizon Quantile Recurrent Forecaster”. In: arXiv:
Machine Learning.

Flunkert, Valentin, David Salinas, and Jan Gasthaus (2017). “DeepAR: Probabilistic Fore-
casting with Autoregressive Recurrent Networks”. In: ArXiv abs/1704.04110.

http://www.chebfun.org/docs/guide/
https://doi.org/10.1146/annurev-statistics-062713-085831
https://doi.org/10.1146/annurev-statistics-062713-085831
https://doi.org/10.1146/annurev-statistics-062713-085831
https://doi.org/10.1146/annurev-statistics-062713-085831
https://www.sciencedirect.com/science/article/pii/S0169207021001874
https://www.sciencedirect.com/science/article/pii/S0169207021001874
https://www.sciencedirect.com/science/article/pii/S0167947311000971
https://www.sciencedirect.com/science/article/pii/S0167947311000971

BIBLIOGRAPHY 78

Alexandrov, Alexander et al. (2020). “GluonTS: Probabilistic and Neural Time Series Modeling
in Python”. In: Journal of Machine Learning Research 21.116, pp. 1–6. url: http:
//jmlr.org/papers/v21/19-820.html.

Eisenach, Carson, Yagna Patel, and Dhruv Madeka (2020). “MQTransformer: Multi-Horizon
Forecasts with Context Dependent and Feedback-Aware Attention”. In: ArXiv.

Benidis, Konstantinos et al. (2022). “Deep learning for time series forecasting: Tutorial and
literature survey”. In: ACM Computing Surveys 55.6, pp. 1–36.

Wang, Bernie et al. (2019). “Deep Factors for Forecasting”. In: International Conference on
Machine Learning.

Kan, Kelvin et al. (2022). “Multivariate quantile function forecaster”. In: AISTATS 2022. url:
https://www.amazon.science/publications/multivariate-quantile-function-
forecaster.

Park, Youngsuk et al. (2022). “Learning Quantile Functions without Quantile Crossing for
Distribution-free Time Series Forecasting”. In: ArXiv abs/2111.06581.

Amos, Brandon and J. Zico Kolter (2017b). “OptNet: Differentiable Optimization as a Layer
in Neural Networks”. In: Proceedings of the 34th International Conference on Machine
Learning. Ed. by Doina Precup and Yee Whye Teh. Vol. 70. Proceedings of Machine
Learning Research. PMLR, pp. 136–145. url: https://proceedings.mlr.press/v70/
amos17a.html.

Olivares, Kin G. et al. (2023). “Probabilistic hierarchical forecasting with deep Poisson
mixtures”. In: International Journal of Forecasting. url: https://www.sciencedirect.
com/science/article/pii/S0169207023000432.

Kamarthi, Harshavardhan et al. (2022). “PROFHIT: Probabilistic Robust Forecasting for
Hierarchical Time-series”. In: arXiv preprint arXiv:2206.07940.

Matheson, James E. and Robert L. Winkler (1976). “Scoring Rules for Continuous Probability
Distributions”. In: Management Science 22, pp. 1087–1096.

Legendre, Adrien Marie (1805). Nouvelles méthodes pour la détermination des orbites de
comètes. F. Didot.

Koenker, Roger and Gilbert Bassett (1978). “Regression Quantiles”. In: Econometrica 46.1,
pp. 33–50. (Visited on 12/30/2022).

Rezende, Danilo Jimenez and Shakir Mohamed (2015). “Variational Inference with Normalizing
Flows”. In: International Conference on Machine Learning.

Hyndman, Rob J and George Athanasopoulos (2013). “Forecasting: principles and practice”.
In.

Vitullo, Steven R. (2011). “Disaggregating Time Series Data for Energy Consumption by
Aggregate and Individual Customer”. In.

Hyndman, Rob J., Alan J. Lee, and Earo Wang (2016). “Fast Computation of Reconciled
Forecasts for Hierarchical and Grouped Time Series”. In: Comput. Stat. Data Anal. 97.C,
pp. 16–32. url: https://doi.org/10.1016/j.csda.2015.11.007.

Dangerfield, Byron J. and John S. Morris (1992). “Top-down or bottom-up: Aggregate versus
disaggregate extrapolations”. In: International Journal of Forecasting 8.2, pp. 233–241.
url: https://www.sciencedirect.com/science/article/pii/016920709290121O.

http://jmlr.org/papers/v21/19-820.html
http://jmlr.org/papers/v21/19-820.html
https://arxiv.org/abs/2009.14799
https://arxiv.org/abs/2009.14799
https://www.amazon.science/publications/multivariate-quantile-function-forecaster
https://www.amazon.science/publications/multivariate-quantile-function-forecaster
https://proceedings.mlr.press/v70/amos17a.html
https://proceedings.mlr.press/v70/amos17a.html
https://www.sciencedirect.com/science/article/pii/S0169207023000432
https://www.sciencedirect.com/science/article/pii/S0169207023000432
https://doi.org/10.1016/j.csda.2015.11.007
https://www.sciencedirect.com/science/article/pii/016920709290121O

BIBLIOGRAPHY 79

Erven, Tim van and Jairo Cugliari (Dec. 2013). “Game-theoretically Optimal Reconciliation
of Contemporaneous Hierarchical Time Series Forecasts”. working paper or preprint. url:
https://hal.inria.fr/hal-00920559.

Wickramasuriya, Shanika L., George Athanasopoulos, and Rob J. Hyndman (2019). “Opti-
mal Forecast Reconciliation for Hierarchical and Grouped Time Series Through Trace
Minimization”. In: Journal of the American Statistical Association 114.526, pp. 804–819.

Mishchenko, Konstantin, Mallory Montgomery, and Federico Vaggi (2019). “A Self-supervised
Approach to Hierarchical Forecasting with Applications to Groupwise Synthetic Controls”.
In: ArXiv abs/1906.10586.

Han, Xing, Sambarta Dasgupta, and Joydeep Ghosh (2021). “Simultaneously Reconciled
Quantile Forecasting of Hierarchically Related Time Series”. In: International Conference
on Artificial Intelligence and Statistics.

Das, Abhimanyu et al. (2022). “A Deep Top-Down Approach to Hierarchically Coherent
Probabilistic Forecasting”. In.

Taieb, Souhaib Ben and Bonsoo Koo (2019). “Regularized Regression for Hierarchical Fore-
casting Without Unbiasedness Conditions”. In: KDD, pp. 1337–1347.

Diaconis, Persi (1977). “Finite forms of de Finetti’s theorem on exchangeability”. In: Synthese
36.2, pp. 271–281.

Diaconis, Persi and David Freedman (1980). “Finite exchangeable sequences”. In: The Annals
of Probability, pp. 745–764.

Zaheer, Manzil et al. (2017). “Deep sets”. In: Advances in neural information processing
systems 30.

Figurnov, Michael, Shakir Mohamed, and Andriy Mnih (2018). “Implicit Reparameterization
Gradients”. In: Neural Information Processing Systems.

Ruiz, Francisco J. R., Michalis K. Titsias, and David M. Blei (2016). “The Generalized
Reparameterization Gradient”. In: NIPS.

Jankowiak, Martin and Fritz Obermeyer (2018). “Pathwise Derivatives Beyond the Reparam-
eterization Trick”. In: ArXiv abs/1806.01851.

Kingma, Diederik P. and Max Welling (2013). “Auto-Encoding Variational Bayes”. In: CoRR
abs/1312.6114.

Martín Abadi et al. (2015). TensorFlow: Large-Scale Machine Learning on Heterogeneous
Systems. Software available from tensorflow.org. url: https://www.tensorflow.org/.

Gneiting, Tilmann and Adrian E Raftery (2007). “Strictly proper scoring rules, prediction,
and estimation”. In: Journal of the American statistical Association 102.477, pp. 359–378.

Favorita, Corporación et al. (2017). Corporación Favorita Grocery Sales Forecasting. url:
https://kaggle.com/competitions/favorita-grocery-sales-forecasting.

Olivares, Kin G. et al. (2022). “HierarchicalForecast: A Reference Framework for Hierarchical
Forecasting in Python”. In: Work in progress paper, submitted to Journal of Machine
Learning Research. abs/2207.03517. url: https://arxiv.org/abs/2207.03517.

Garza, Federico et al. (2022). StatsForecast: Lightning fast forecasting with statistical and
econometric models. PyCon Salt Lake City, Utah, US 2022. url: https://github.com/
Nixtla/statsforecast.

https://hal.inria.fr/hal-00920559
https://www.tensorflow.org/
https://kaggle.com/competitions/favorita-grocery-sales-forecasting
https://arxiv.org/abs/2207.03517
https://github.com/Nixtla/statsforecast
https://github.com/Nixtla/statsforecast

BIBLIOGRAPHY 80

Hyndman, Rob J and Yeasmin Khandakar (2008). “Automatic time series forecasting: the
forecast package for R”. In: Journal of statistical software 27, pp. 1–22.

Panagiotelis, Anastasios et al. (2023). “Probabilistic forecast reconciliation: Properties, eval-
uation and score optimisation”. In: European Journal of Operational Research 306.2,
pp. 693–706.

Loshchilov, Ilya and Frank Hutter (2017). “Fixing Weight Decay Regularization in Adam”.
In: ArXiv abs/1711.05101.

Kingma, Diederik P. and Jimmy Ba (2014). “Adam: A Method for Stochastic Optimization”.
In: CoRR abs/1412.6980.

Nesterov, Yurii (2013). “Gradient methods for minimizing composite functions”. In: Mathe-
matical Programming.

https://doi.org/10.1007/s10107-012-0629-5

81

Appendix A

Stochastic Frank-Wolfe for constrained
finite-sum minimization

A.1 Smoothness

Proposition 2. Let f : Rn → R be defined as f(θ) = 1
n

∑
i fi(θi). If fi is L-smooth for all

i ∈ {1, . . . , n}, then f satisfies Eqn. 3.6 for every p ∈ [1,∞].

Proof. We observe that the i-th component of the gradient of f is

[∇f(θ)]i =
1

n
f ′
i(θi). (A.1)

Recall that |f ′
i(θi)− f ′

i(θ̄i)| ≤ L|θi − θ̄i| for all θi, θ̄i in the domain of fi. Then, for the
ℓp norm ∥ · ∥p and for all θ, θ̄ in the domain of f , the following holds

∥∇f(θ)−∇f(θ̄)∥p =
1

n
p

√√√√ n∑
i=1

|f ′
i(θi)− f ′

i(θ̄i)|p ≤
L

n
p

√√√√ n∑
i=1

|θi − θ̄i|p =
L

n
∥θ − θ̄∥p . (A.2)

APPENDIX A. STOCHASTIC FRANK-WOLFE 82

A.2 Proof of Lemma 1

We adapt [38]’s proof of Lemma 1. For ease, we reproduce its statement first.

Lemma 4. Suppose f is a convex function and is (L/n)-smooth with respect to the ℓ2 norm.
For any direction α ∈ Rn, defining st = LMO(X⊤α) and wt = (1− γt)wt−1 + γtst, we have
the following upper bound on the primal suboptimality

εt ≤ (1− γt)εt−1 + γ2t
LD2

2

2n
+ γtD∞Ht, (A.3)

where εt = f(Xwt)− f(Xw⋆).

Proof. Recall the definition of Dp = maxw, v∈C ∥X(w − v)∥p.

f(Xwt) ≤f(Xwt−1) + ⟨∇f(Xwt−1),X(wt −wt−1)⟩+
L

2n
∥X(wt −wt−1)∥22 (A.4)

f(Xwt) ≤f(Xwt−1) + γt⟨∇f(Xwt−1),X(st −wt−1)⟩+
γ2tL

2n
∥X(st −wt−1)∥22 (A.5)

≤f(Xwt−1) + γt⟨∇f(Xwt−1),X(st −wt−1)⟩+ γ2t
LD2

2

2n
(A.6)

=f(Xwt−1) + γt⟨∇f(Xwt−1)−α,X(st −wt−1)⟩

+ γt⟨α,X(st −wt−1)⟩+ γ2t
LD2

2

2n

(A.7)

≤f(Xwt−1) + γt⟨∇f(Xwt−1)−α,X(st −w⋆ +w⋆ −wt−1)⟩

+ γt⟨α,X(w⋆ −wt−1)⟩+ γ2t
LD2

2

2n

(A.8)

=f(Xwt−1) + γt⟨∇f(Xwt−1)−α,X(st −w⋆)⟩

+ γt⟨∇f(Xwt−1),X(w⋆ −wt−1)⟩+ γ2t
LD2

2

2n

(A.9)

≤f(Xwt−1) + γt⟨∇f(Xwt−1),X(w⋆ −wt−1)⟩

+ γtD∞∥∇f(Xwt−1)−α∥1 + γ2t
LD2

2

2n

(A.10)

≤f(Xwt−1) + γt(f(Xw⋆)− f(Xwt−1)) + γtD∞∥∇f(Xwt−1)−α∥1

+ γ2t
LD2

2

2n

(A.11)

Subtracting f(Xw⋆) on both sides, we get

f(Xwt)− f(Xw⋆) ≤ (1− γt)(f(Xwt−1)− f(Xw⋆)) + γtD∞∥∇f(Xwt−1)−α∥1 + γ2t
LD2

2

2n
.

(A.12)

APPENDIX A. STOCHASTIC FRANK-WOLFE 83

We define Ht = ∥α − ∇f(Xwt−1)∥1, and recall the definition of εt to obtain the claimed
bound

εt ≤ (1− γt)εt−1 + γ2t
LD2

2

2n
+ γtD∞Ht. (A.13)

APPENDIX A. STOCHASTIC FRANK-WOLFE 84

A.3 Completing the proof for Theorem 1

Given the three key Lemmas 1-3, we can finish the proof. Under the hypotheses of Theorem 5,
let us consider step t of the SFW algorithm.

We plug our upper bound on Ht Eqn. 3.23 into the upper bound from Lemma 1 Eqn. 3.11
and take expectations on both sides to obtain the following upper bound on the expected
primal-suboptimality Eεt.

Eεt ≤(1− γt)Eεt−1 + γ2t
LD2

2

2n

+ γt
2LD1D∞

n

(
2(n− 1)

t+ 2
+

(
1− 1

n

)t/2
log t

)

+ γtD∞

(
1− 1

n

)t
H0.

(A.14)

By specifying the step-size γt = 2
t+2

and multiplying the previous inequality by (t+1)(t+2),
we get an expression in which the expected sub-optimalities telescope under summation. This
allows us to get the promised rate. For simplicity, we upper bound t+1

t+2
by 1.

Let Γt = (t+ 1)(t+ 2)Eεt. We have

Γt ≤ Γt−1 + 2
LD2

2

n
+ 8

(n− 1)

n
LD1D∞

+ 4
LD1D∞

n
(t+ 1)

(
1− 1

n

)t/2
log t

+ 2D∞H0(t+ 1)
(
1− 1

n

)t (A.15)

If we sum this expression over time-steps k = 1, . . . , t, we obtain

Γt ≤Γ0 + 2L

(
D2

2 + 4(n− 1)D1D∞

n

)
t

+ 4
LD1D∞

n
Bt

+ 2D∞H0Ct ,

(A.16)

where

Bt =
t∑

k=1

(k + 1)

(
1− 1

n

)k/2
log k ≤ 16n3 (A.17)

Ct =
t∑

k=1

(k + 1)

(
1− 1

n

)k
≤ n2 . (A.18)

APPENDIX A. STOCHASTIC FRANK-WOLFE 85

These bounds use Taylor series and are proven in Appendix A.4. By combining the previous
two bounds we get the following upper bound

Γt ≤ Γ0 + 2L

(
D2

2 + 4(n− 1)D1D∞

n

)
t

+ (2D∞H0 + 64LD1D∞)n2.

(A.19)

We divide this upper bound by (t+ 1)(t+ 2), and finally use the bound 1
(t+1)(t+2)

≤ 1
t2

to
obtain the following rate on Eεt:

Eεt ≤ 2L

(
D2

2 + 4(n− 1)D1D∞

n

)
t

(t+ 1)(t+ 2)
+

2ε0 + (2D∞H0 + 64LD1D∞)n2

(t+ 1)(t+ 2)
.

(A.20)

APPENDIX A. STOCHASTIC FRANK-WOLFE 86

A.4 Bounds for Bt, Ct

For Bt, we use the (aggressive) bound log k ≤ k − 1 and notice that
∑∞

k=1(k + 2)(k + 1)ρk =
2

(1−ρ)3 to get

Bt ≤
t∑

k=1

(k − 1)(k + 1)

(
1− 1

n

)k/2
(A.21)

≤
t∑

k=1

(k + 2)(k + 1)

(
1− 1

n

)k/2
(A.22)

≤ 2

 1

1−
√

1− 1
n

3

(A.23)

= 2n3

(
1 +

√
1− 1

n

)3

≤ 16n3. (A.24)

Notice that Ct is the beginning of the Taylor series expansion of d
dx

1
1−x = 1

(1−x)2 , for
x = n−1

n
. We can upper bound it by the full series, leading to

Ct ≤

(
1

1−
(
1− 1

n

))2

= n2. (A.25)

APPENDIX A. STOCHASTIC FRANK-WOLFE 87

A.5 Convergence of the stochastic gap to the FW gap
(Proposition 1.)

Proof. It suffices to prove that

|gt − ĝt| ≤ D∞Ht . (A.26)

We recall the definitions of the true and stochastic FW gaps:

gt = max
s∈C

⟨∇f(Xwt−1),X(wt−1 − s)⟩ def
= ⟨∇f(Xwt−1),X(wt−1 − st)⟩ (A.27)

ĝt = max
s∈C

⟨αt,X(wt−1 − s)⟩ def
= ⟨αt,X(wt−1 − ŝt)⟩ (A.28)

where we associate st to the true gap, and ŝt to the stochastic gap.
Now,

gt = ⟨∇f(Xwt−1),X (wt−1 − st)⟩ (A.29)
= ⟨αt,X (wt−1 − st)⟩+ ⟨∇f(Xwt−1)−αt,X (wt−1 − st)⟩ (A.30)
≤ ⟨αt,X (wt−1 − ŝt)⟩+ ⟨∇f(Xwt−1)−αt,X (wt−1 − st)⟩ (A.31)
≤ ĝt +D∞Ht, (A.32)

where the first inequality results from optimality of ŝt, and the second inequality results from
Hölder’s inequality and the definitions of Ht and D∞.

Both gaps gt and ĝt play symmetric roles in the previous bounds, therefore, we also have
the bound:

ĝt ≤ gt +D∞Ht, (A.33)

thus concluding the proof.

APPENDIX A. STOCHASTIC FRANK-WOLFE 88

A.6 Proof of Theorem 2

Let us now show that when the fis are L-smooth, and the iterates are given by the proposed
SFW, then lim inft→∞ Et[gt] = 0.

Proof. We adapt the proof of Lemma 1. At step t, using Proposition 2 with p = 2, we obtain

f(Xwt) ≤ f(Xwt−1) + γt⟨∇f(Xwt−1),X(st −wt−1)⟩+ γ2t
LD2

2

2n
(A.34)

= f(Xwt−1)− γtĝt + γt⟨∇f(Xwt−1)−αt,X(st −wt−1)⟩+ γ2t
LD2

2

2n
(A.35)

≤ f(Xwt−1)− γtĝt + γtD∞Ht + γ2t
LD2

2

2n
. (A.36)

Rearranging, we have

γtĝt ≤ f(Xwt−1)− f(Xwt) + γtD∞Ht + γ2t
LD2

2

2n
. (A.37)

Therefore, summing for u = 1, . . . , t

t∑
u=1

γuĝu ≤ f(Xw0)− f(Xwt) +
t∑

u=1

γuD∞Hu + γ2u
LD2

2

2n
. (A.38)

The right hand side is bounded in expectation: f is continuous on the compact set C, and
the series converges, since EtHt = O(1

t
) and γ2t = O(1/t2). This implies that lim inf Etĝt = 0,

since γt = 2
t+2

is not the general term of a convergent series. Finally, since |gt − ĝt| ≤ D∞Ht

(Appendix A.5), this yields the claimed result.

APPENDIX A. STOCHASTIC FRANK-WOLFE 89

A.7 Comparison with other methods

To make the comparison with other methods easier to grasp and to implement for the
interested reader, we report pseudo code using our notation for the Stochastic Frank-Wolfe
algorithms in Lu and Freund [43] and Mokhtari, Hassani, and Karbasi [38]. In the case of
Mokhtari, Hassani, and Karbasi [38], we also specify their algorithm in the same formal
setting as ours where f(Xw) = 1

n
fi(x

⊤
i w) and the sampling is over datapoints.

Mokhtari, Hassani, and Karbasi [38]

Mokhtari, Hassani, and Karbasi [38] have two sets of step-sizes, which we denote by ρt, γt.
They use a form of momentum on an unbiased estimator of the gradient using the ρt step
sizes. The values they use are γt = 1

t+1
and ρt = 1

(t+1)2/3
.

Algorithm 4 Mokhtari, Hassani, and Karbasi [38]
1: Initialization: w0 ∈ C, α0 = 0, r0 = 0
2: for t = 1, 2, . . . , do
3: Sample i uniformly at random in {1, . . . , n}
4: αi

t = (1− ρt)α
i
t−1 + ρtf

′
i(x

⊤
i wt−1)

5: rt = rt−1 + (αi
t −αi

t−1)xi
6: st = LMO(rt)
7: wt = (1− γt)wt−1 + γtst
8: end for

Lu and Freund [43]

Lu and Freund [43] also have two step-size sequences given by γt = 2(2nb+t)
(t+1)(4nb+t+1)

and
δt =

2nb

2nb+t+1
, where nb is the number of batches, i.e. ⌊n/b⌋, with n the number of samples in

the dataset, and b the chosen batch size. They use a form of momentum on the argument to
a given fi, and compute the gradient at an averaged iterate, which we denote by σi

t. In our
notation, t is the iteration step and i corresponds to the i-th datapoint.

APPENDIX A. STOCHASTIC FRANK-WOLFE 90

A.8 Comparison with full-gradient Frank-Wolfe

We derive the rate for the full gradient, deterministic Frank-Wolfe in the finite sum setting,
to make comparison with our method easier.

Let us first write the Frank-Wolfe algorithm, using our notations.

Comparison w.r.t. gradient calls.

In the full gradient setting, one iteration makes n gradient calls. Therefore, if u = nt is the
number of gradient calls after t iterations, we obtain the following bound in the full gradient
case, using the slight abuse of notation ϵu to denote the suboptimality after u gradient calls.

εu ≤
2LD2

2

u
. (A.39)

Compare to our method, after t iterations (and therefore after t gradient calls), as shown
in Theorem 5

Eεt ≤2L

(
D2

2 + 4(n− 1)D1D∞

n

)
t

(t+ 1)(t+ 2)

+
2ε0 + (2D∞H0 + 64LD1D∞)n2

(t+ 1)(t+ 2)

(A.40)

Algorithm 5 Lu and Freund [43]
1: Initialization: w0 ∈ C, σ0 = Xw0, α0 = 0, r0 = 0
2: for t = 1, 2, . . . , do
3: st = LMO(rt−1)
4: Sample i uniformly at random in {1, . . . , n}
5: σi

t = (1− δt)σ
i
t−1 + δt(x

⊤
i st)

6: αi
t =

1
n
f ′
i(σ

i
t)

7: rt = rt−1 +
(
αi
t −αi

t−1

)
xi

8: wt = (1− γt)wt−1 + γtst
9: end for

Algorithm 6 Frank-Wolfe algorithm [12]
Initialization: w0 ∈ C
for t = 1, 2, . . . , do
αt = ∇f(Xwt−1)
rt = X⊤αt

st = LMO(rt)
wt = (1− γt)wt−1 + γtst

end for

91

Appendix B

Linearly convergent Frank-Wolfe with
backtracking line-search

Outline. The supplementary material of this chapter is organized as follows.

• B.1 provides pseudo-code for all FW Variants we consider: AdaFW, AdaAFW, AdaPFW,
AdaMP.

• B.2 contains definitions and properties relative to the objective function and/or the domain,
such as the definition of geometric strong convexity and pyramidal width.

• B.3 we present key inequalities on the abstract algorithm which are used by the different
convergence proofs.

• B.4 provides a proof of convergence for non-convex objectives (Theorem 2).

• B.5 provides a proof of convergence for convex objectives (Theorem 3).

• B.6 provides a proof of linear convergence for all variants except FW (Theorem 4).

B.1 Pseudocode

In this Appendix, we give detailed pseudo-code for the backtracking variants of FW (AdaFW),
Away-Steps FW (AdaAFW), Pairwise FW (AdaPFW) and Matching Pursuit (AdaMP).

APPENDIX B. FRANK-WOLFE WITH BACKTRACKING LINE-SEARCH 92

Backtracking FW

Algorithm 7 Backtracking FW (AdaFW)
1: Input: x0 ∈ A, initial Lipschitz estimate L−1 > 0, tolerance ε ≥ 0, subproblem quality
δ ∈ (0, 1], adaptivity params τ > 1, η ≥ 1

2: for t = 0, 1 . . . do
3: Choose any st ∈ A that satisfies ⟨∇f(xt), st − xt⟩ ≤ δmins∈A⟨∇f(xt), s− xt⟩
4: Set dt = st − xt and γmax = 1
5: Set gt = ⟨−∇f(xt),dt⟩
6: if gt ≤ δε then
7: return xt
8: end if
9: γt, Lt = step_size(f,dt,xt, gt, Lt−1, γ

max
t)

10: xt+1 = xt + γtdt
11: end for

Backtracking Away-steps FW

Algorithm 8 Backtracking Away-Steps FW (AdaAFW)
1: Input: x0 ∈ A, initial Lipschitz estimate L−1 > 0, tolerance ε ≥ 0, subproblem quality
δ ∈ (0, 1], adaptivity params τ > 1, η ≥ 1

2: Let S0 = {x0} and α0,v = 1 for v = x0 and α0,v = 0 otherwise.
3: for t = 0, 1 . . . do
4: Choose any st ∈ A that satisfies ⟨∇f(xt), st − xt⟩ ≤ δmins∈A⟨∇f(xt), s− xt⟩
5: Choose any vt ∈ St that satisfies ⟨∇f(xt),xt − vt⟩ ≤ δminv∈St⟨∇f(xt),xt − v⟩
6: if ⟨∇f(xt), st − xt⟩ ≤ ⟨∇f(xt),xt − vt⟩ then
7: dt = st − xt
8: γmax

t = 1
9: else

10: dt = xt − vt, and γmax
t =αvt,t/(1−αvt,t)

11: end if
12: Set gt = ⟨−∇f(xt),dt⟩
13: if gt ≤ δε then
14: return xt
15: end if
16: γt, Lt = step_size(f,dt,xt, gt, Lt−1, γ

max
t)

17: xt+1 = xt + γtdt
18: Update active set St+1 and αt+1 (see text)
19: end for

The active set is updated as follows.

APPENDIX B. FRANK-WOLFE WITH BACKTRACKING LINE-SEARCH 93

• In the case of a FW step, we update the support set St+1 = {st} if γt = 1 and
otherwise St+1 = St ∪ {st}, with coefficients αv,t+1 = (1− γt)αv,t for v ∈ St \ {st} and
αst,t+1 = (1− γt)αst,t + γt.

• In the case of an Away step: If γt = γmax, then St+1 = St \ {vt}, and if γt < γmax, then
St+1 = St. Finally, we update the weights as αv,t+1 = (1 + γt)αv,t for v ∈ St \ {vt} and
αvt,t+1 = (1 + γt)αvt,t − γt for the other atoms.

Backtracking Pairwise FW

Algorithm 9 Backtracking Pairwise FW (AdaPFW)
1: Input: x0 ∈ A, initial Lipschitz estimate L−1 > 0, tolerance ε ≥ 0, subproblem quality
δ ∈ (0, 1], adaptivity params τ > 1, η ≥ 1

2: Let S0 = {x0} and α0,v = 1 for v = x0 and α0,v = 0 otherwise.
3: for t = 0, 1 . . . do
4: Choose any st ∈ A that satisfies ⟨∇f(xt), st − xt⟩ ≤ δmins∈A⟨∇f(xt), s− xt⟩
5: Choose any vt ∈ St that satisfies ⟨∇f(xt),xt − vt⟩ ≤ δminv∈St⟨∇f(xt),xt − v⟩
6: dt = st − vt and γmax

t =αvt,t

7: Set gt = ⟨−∇f(xt),dt⟩
8: if gt ≤ δε then
9: return xt

10: end if
11: γt, Lt = step_size(f,dt,xt, gt, Lt−1, γ

max
t)

12: xt+1 = xt + γtdt
13: Update active set St+1 and αt+1 (see text)
14: end for

AdaPFW only moves weight from vt to st. The active set update becomes αst,t+1 =
αst,t+γt, αvt,t+1 = αvt,t−γt, with St+1 = (St \{vt})∪{st} if αvt,t+1 = 0 and St+1 = St∪{st}
otherwise.

Backtracking Matching Pursuit

Matching Pursuit [25, 21] is an algorithm to solve optimization problems of the form

minimize
x∈lin(A)

f(x) , (B.1)

where lin(A)
def
=
{∑

v∈A λvv
∣∣λv ∈ R

}
is the linear span of the set of atoms A. As for the

backtracking FW algorithm, we assume that f is L-smooth and A a potentially infinite but
bounded set of elements in Rp.

APPENDIX B. FRANK-WOLFE WITH BACKTRACKING LINE-SEARCH 94

The MP algorithm relies on solving at each iteration a linear subproblem over the set
B def

= A ∪ −A, with −A = {−a |a ∈ A}. The linear subproblem that needs to be solved
at each iteration is the following, where as for previous variants, we allow for an optional
quality parameter δ ∈ (0, 1]:

⟨∇f(xt), st⟩ ≤ δmin
s∈B

⟨∇f(xt), s⟩ . (B.2)

In Algorithm 10 we detail a novel adaptive variant of the MP algorithm, which we name
AdaMP.

Algorithm 10 Backtracking Matching Pursuit (AdaMP)
1: Input: x0 ∈ A, initial Lipschitz estimate L−1 > 0, tolerance ε ≥ 0, subproblem quality
δ ∈ (0, 1]

2: for t = 0, 1 . . . do
3: Choose any st ∈ A that satisfies Eqn. B.2
4: dt = st
5: Set gt = ⟨−∇f(xt),dt⟩
6: if gt ≤ δε then
7: return xt
8: end if
9: γt, Lt = step_size(f,dt,xt, gt, Lt−1,∞)

10: xt+1 = xt + γtdt
11: end for

APPENDIX B. FRANK-WOLFE WITH BACKTRACKING LINE-SEARCH 95

B.2 Basic definitions and properties

In this section we give basic definitions and properties relative to the objective function
and/or the domain, such as the definition of geometric strong convexity and pyramidal width.
These definitions are not specific to our algorithms and have appeared in different sources
such as Lacoste-Julien and Jaggi [18] and Locatello et al. [21]. We merely gather them here
for completeness.

Definition 1 (Geometric strong convexity). We define the geometric strong convexity
constant µAf as

µA
f

def
= inf

x,x⋆∈conv(A)
⟨∇f(x),x⋆−x⟩<0

2

γ(x,x⋆)2

(
f(x⋆)− f(x)− ⟨∇f(x),x⋆ − x⟩

)
(B.3)

where γ(x,x⋆) def
=

⟨−∇f(x),x⋆ − x⟩
⟨−∇f(x), sf (x)− vf (x)⟩

, (B.4)

where

sf (x)
def
= argmin

v∈A
⟨∇f(x),v⟩ (B.5)

vf (x)
def
= argmin

v=vS(x)
S∈Sx

⟨∇f(x),v⟩ (B.6)

vS(x)
def
= argmax

v∈S
⟨∇f(x),v⟩ (B.7)

where S ⊆ A and Sx
def
= {S|S ⊆ A such that x is a proper convex combination of all the

elements in S} (recall x is a proper convex combination of elements in S when x =
∑

i αisi
where si ∈ S and αi ∈ (0, 1)).

Definition 2 (Pyramidal width). The pyramidal width of a set A is the smallest pyramidal
width of all its faces, i.e.

PWidth(A)
def
= min

x∈K
K∈faces(conv(A))
r∈cone(K−x)\{0}

PdirW(K ∩A, r,x) (B.8)

where PdirW is the pyramidal directional width, defined as

PdirW(W)(A, r,x) def
= min

S∈Sx

max
s∈A,v∈S

〈 r
∥r∥2

, s− v
〉

(B.9)

We now relate these two geometric quantities together.

Lemma 5 (Lower bounding µAf). Let f µ–strongly convex on conv(A) = conv(A). Then

µAf ≥ µ · (PWidth(A))2 (B.10)

APPENDIX B. FRANK-WOLFE WITH BACKTRACKING LINE-SEARCH 96

Proof. We refer to [18, Theorem 6].

Proposition 3. PWidth(A) ≤ diam(conv(A)) where diam(X)
def
= supx,y∈X ∥x− y∥2.

Proof. First note that given r ∈ R, s ∈ S, v ∈ V with R, S, V ⊆ Rn, we have

⟨r/∥r∥2, s− v⟩ ≤ ∥s− v∥2 ∀r ∈ R, s ∈ S,v ∈ V (B.11)
⇒ max

s∈S,v∈V
⟨r/∥r∥2, s− v⟩ ≤ max

s∈S,v∈V
∥s− v∥2 ∀r ∈ R (B.12)

⇒ min
r∈R

max
s∈S,v∈V

⟨r/∥r∥2, s− v⟩ ≤ max
s∈S,v∈V

∥s− v∥2 (B.13)

Applying this result to the definition of pyramidal width we have

PWidth(A) = min
x∈K

K∈faces(conv(A))
r∈cone(K−x)\{0}

PdirW(K ∩A, r,x) (B.14)

= min
x∈K

K∈faces(conv(A))
r∈cone(K−x)\{0}

min
S∈Sx

max
s∈A,v∈S

〈 r
∥r∥

, s− v
〉

(B.15)

= min
r∈R

max
s∈A,v∈V

〈 r
∥r∥

, s− v
〉

(B.16)

(B.17)

where R = {cone(K − x)\{0} : for some x ∈ K, K ∈ faces(conv(A))} and V is some subset
of A. Applying the derived result we have that

PWidth(A) ≤ max
s∈A,v∈V

∥s− v∥2

≤ max
s,v∈conv(A)

∥s− v∥2

= diam(conv(A))

Definition 3. The minimal directional width mDW(A) of a set of atoms A is defined as

mDW(A) = min
d∈lin(A)

max
z∈A

⟨z,d⟩
∥d∥

. (B.18)

Note that in contrast to the pyramidal width, the minimal directional width here is a
much simpler and robust property of the atom set A, not depending on its combinatorial face
structure of the polytope. As can be seen directly from the definition above, the mDW(A) is
robust when adding a duplicate atom or small perturbation of it to A.

APPENDIX B. FRANK-WOLFE WITH BACKTRACKING LINE-SEARCH 97

B.3 Preliminaries: Key Inequalities

In this appendix we prove that the sufficient decrease condition verifies a recursive inequality.
This key result is used by all convergence proofs.

Lemma 6. The following inequality is verified for all proposed algorithms (with γmax
t = +∞

for AdaMP):

f(xt+1) ≤ f(xt)− ξgt +
ξ2Lt
2

∥dt∥2 for all ξ ∈ [0, γmax
t]. (B.19)

Proof. We start the proof by proving an optimality condition of the step-size. Consider the
following quadratic optimization problem:

minimize
ξ∈[0,γmax

t]
−ξgt +

Ltξ
2

2
∥dt∥2 . (B.20)

Deriving with respect to ξ and noting that on all the considered algorithms we have
⟨∇f(xt),dt⟩ ≤ 0, one can easily verify that the global minimizer is achieved at the value

min

{
gt

Lt∥dt∥2
, γmax

t

}
, (B.21)

where gt = ⟨−∇f(x),dt⟩. This coincides with the value of γt+1 computed by the backtracking
procedure on the different algorithms and so we have:

−γtgt +
Ltγt

2

2
∥dt∥2 ≤ −ξgt +

Ltξ
2

2
∥dt∥2 for all ξ ∈ [0, γmax] . (B.22)

We can now write the following sequence of inequalities, that combines the sufficient
decrease condition with this last inequality:

f(xt+1) ≤ f(xt)− γtgt +
Ltγ

2
t

2
∥dt∥2 (B.23)

Eqn. B.20

≤ f(xt)− ξgt +
Ltξ

2

2
∥dt∥2 for any ξ ∈ [0, γmax] . (B.24)

Proposition 4. The Lipschitz estimate Lt is bounded as Lt ≤ max{τL, L−1}.

Proof. If the sufficient decrease condition is verified then we have Lt = ηLt−1 and so Lt ≤ Lt−1.
If it’s not, we at least have that the Lipschitz estimate cannot larger than τL by definition of
Lipschitz constant. Combining both bounds we obtain

Lt ≤ max{τL, Lt−1} . (B.25)

Applying the same bound recursively on Lt−1 leads to the claimed bound Lt ≤ max{τL, L−1}.

APPENDIX B. FRANK-WOLFE WITH BACKTRACKING LINE-SEARCH 98

Lemma 7. Let g(·) be as in Theorem 2, i.e., g(·) = gFW(·) for FW variants (AdaFW,
AdaAFW, AdaPFW) and g(·) = gMP(·) for MP variants (AdaMP). Then for any of these
algorithms we have

gt ≥ δg(xt) . (B.26)

Proof. • For AdaFW and AdaMP, Eq. Eqn. B.26 follows immediately from the definition of
gt and g(xt).

• For AdaAFW, by the way the descent direction is selected in Line 6, we always have

gt ≥ ⟨∇f(xt),xt − st⟩ ≥ δg(xt) , (B.27)

where the last inequality follows from the definition of st

• For AdaPFW, we have

gt = ⟨∇f(xt),vt − st⟩ = ⟨∇f(xt),xt − st⟩+ ⟨∇f(xt),vt − xt⟩ (B.28)
≥ ⟨∇f(xt),xt − st⟩ ≥ δg(xt) (B.29)

where the term ⟨∇f(xt),vt − xt⟩ is positive by definition of vt since xt is necessarily in
the convex envelope of St. The second inequality follows from the definition of st.

Theorem 1. Let Nt be the total number of evaluations of the sufficient decrease condition
up to iteration t. Then we have

nt ≤
[
1− log η

log τ

]
(t+ 1) +

1

log τ
max

{
log

τL

L−1

, 0

}
. (B.30)

Proof. This proof follows roughly that of [144, Lemma 3], albeit with a slightly different
bound on Lt due to algorithmic differences.

Denote by ni ≥ 1 the number of evaluations of the sufficient decrease condition. Since
the algorithm multiplies by τ every time that the sufficient condition is not verified, we have

Li = ηLi−1τ
ni−1 . (B.31)

Taking logarithms on both sides we obtain

ni ≤ 1− log η

log τ
+

1

τ
log

Li
Li−1

. (B.32)

Summing from i = 0 to i = t gives

nt ≤
t∑
i=0

ni =

[
1− log η

log τ

]
(t+ 1) +

1

log τ
log

(
Lt
L−1

)
(B.33)

Finally, from Proposition 4 we have the bound Lt ≤ max{τL, L−1}, which we can use to
bound the numerator’s last term. This gives the claimed bound

nt ≤
t∑
i=0

ni =

[
1− log η

log τ

]
(t+ 1) +

1

log τ
max

{
log

τL

L−1

, 0

}
. (B.34)

APPENDIX B. FRANK-WOLFE WITH BACKTRACKING LINE-SEARCH 99

A bound on the number of bad steps

To prove the linear rates for the backtracking AFW and backtracking PFW algorithm it
is necessary to bound the number of bad steps. There are two different types of bad steps:
“drop” steps and “swap” steps. These names come from how the active set St changes. In a
drop step, an atom is removed from the active set (i.e. |St+1| < |St|). In a swap step, the size
of the active set remains unchanged (i.e. |St+1| = |St|) but one atom is swapped with another
one not in the active set. Note that drop steps can occur in the (backtracking) Away-steps
and Pairwise, but swap steps can only occur in the Pairwise variant.

For the proofs of linear convergence in B.6, we show that these two types of bad steps are
only problematic when γt = γmax

t < 1. In these scenarios, we cannot provide a meaningful
decrease bound. However, we show that the number of bad steps we take is bounded. The
following two lemmas adopted from [18, Appendix C] bound the number of drop steps and
swap steps the backtracking algorithms can take.

Lemma 8. After T steps of AdaAFW or AdaPFW, there can only be T/2 drop steps. Also,
if there is a drop step at step t+ 1, then f(xt+1)− f(xt) < 0.

Proof. Let At denote the number of steps that added a vertex in the expansion, and let Dt

be the number of drop steps. Then 1 ≤ |St| = |S0|+At−Dt and we clearly have At−Dt ≤ t.
Combining these two inequalities we have that Dt ≤ 1

2
(|S0| − 1 + t) = t

2
.

To show f(xt+1)− f(xt) < 0, because of Lemma 6, it suffices to show that

−γtgt +
1

2
γ2tLt∥dt∥2 < 0 , (B.35)

with γt = γmax
t (recall drop steps only occur when γt = γmax

t). Note this is a convex quadratic
in γt which is precisely less than or equal to 0 when γt ∈ [0, 2gt/Lt∥dt∥2]. Thus in order to
show f(xt+1)−f(xt) < 0 it suffices to show γmax

t ∈ (0, 2gt/Lt∥dt∥2). This follows immediately
since 0 < γmax

t ≤ gt/Lt∥dt∥2.

Since in the AdaAFW algorithm all bad steps are drop steps, the previous lemma implies
that we can effectively bound the number of bad steps by t/2, which is the bound claimed in
Eqn. 2.7.

Lemma 9. There are at most 3|A|! bad steps between any two good steps in AdaPFW. Also,
if there is a swap step at step t+ 1, then f(xt+1)− f(xt) < 0.

Proof. Note that bad steps only occur when γt = γmax
t = αvt,t. When this happens there are

two possibilities; we either move all the mass from vt to a new atom st ̸∈ St (i.e. αvt,t+1 = 0
and αst,t+1 = αvt,t) and preserve the cardinality of our active set (|St+1| = |St|) or we move
all the mass from vt to an old atom st ∈ St (i.e. αst,t+1 = αst,t + αvt,t) and the cardinality of
our active set decreases by 1 (|St+1| < |St|). In the former case, the possible values of the
coordinates αv do not change, but they are simply rearranged in the possible |A| slots. Note
further every time the mass from vt moves to a new atom st ̸∈ St we have strict descent, i.e.
f(xt+1) < f(xt) unless xt is already optimal (see Lemma 8) and hence we cannot revisit the

APPENDIX B. FRANK-WOLFE WITH BACKTRACKING LINE-SEARCH 100

same point unless we have converged. Thus the maximum number of possible consecutive
swap steps is bounded by the number of ways we can assign |St| numbers in |A| slots, which
is |A|!/(|A| − |St|)!. Furthermore, when the cardinality of our active set drops, in the worst
case we will do a maximum number of drop steps before reducing the cardinality of our active
set again. Thus starting with |St| = r the maximum number of bad steps B without making
any good steps is upper bounded by

B ≤
r∑

k=1

|A|!
(|A| − k)!

≤ |A|!
∞∑
k=0

1

k!
= |A|!e ≤ 3|A|!

APPENDIX B. FRANK-WOLFE WITH BACKTRACKING LINE-SEARCH 101

B.4 Proofs of convergence for non-convex objectives

In this appendix we provide the convergence proof of Theorem 2. Although this theorem
provides a unified convergence proof for both variants of FW and MP, for convenience we
split the proof into one for FW variants (Theorem 2.A) and another one for variants of MP
(Theorem 2.B)

Theorem 2.A. Let xt denote the iterate generated by either AdaFW, AdaAFW or
AdaPFW after t iterations. Then for any iteration t with Nt+1 ≥ 0, we have the following
suboptimality bound in terms of the FW gap:

lim
k→∞

gFW(xk) = 0 and min
k=0,...,t

gFW(xk) ≤
max{2h0, Lmax

t diam(A)2}
δ
√
Nt+1

= O
(

1

δ
√
t

)
(B.36)

Proof. By Lemma 6 we have the following inequality for any k and any ξ ∈ [0, γmax
k],

f(xk+1) ≤ f(xk)− ξgk +
ξ2Ck
2

, (B.37)

where we define Ck
def
= Lk∥dk∥2 for convenience. We consider now different cases according

to the relative values of γk and γmax
k , yielding different upper bounds for the right hand side.

Case 1: γk < γmax
k

In this case, γk maximizes the right hand side of the (unconstrained) quadratic in inequality
Eqn. B.37 which then becomes:

f(xk+1) ≤ f(xk)−
g2k
2Ck

≤ f(xk)−
gk
2
min

{
gk
Ck
, 1

}
(B.38)

Case 2: γk = γmax
k ≥ 1

By the definition of γt, this case implies that Ck ≤ gk and so using ξ = 1 in Eqn. B.37 gives

f(xk+1)− f(xk) ≤ −gk +
Ck
2

≤ −gk
2
. (B.39)

Case 3: γk = γmax
k < 1

This corresponds to the problematic drop steps for AdaAFW or possibly swap steps for
AdaPFW, in which we will only be able to guarantee that the iterates are non-increasing.
Choosing ξ = 0 in Eqn. B.37 we can at least guarantee that the objective function is
non-increasing:

f(xk+1)− f(xk) ≤ 0 . (B.40)

APPENDIX B. FRANK-WOLFE WITH BACKTRACKING LINE-SEARCH 102

Combining the previous cases. We can combine the inequalities obtained for the previous
cases into the following inequality, valid for all k ≤ t,

f(xk+1)− f(xk) ≤ −gk
2
min

{
gk
Ck
, 1

}
1{k is a good step} (B.41)

Adding the previous inequality from k = 0 up to t and rearranging we obtain

f(x0)− f(xt+1) ≥
t∑

k=0

gk
2
min

{
gk

Lk∥dk∥2
, 1

}
1{k is a good step} (B.42)

≥
t∑

k=0

gk
2
min

{
gk
Cmax
k

, 1

}
1{k is a good step} (B.43)

with Cmax
t

def
= Lmax

t diam(conv(A))2. Taking the limit for t→ +∞ we obtain that the left hand
side is bounded by the compactness assumption on the domain conv(A) and L-smoothness on
f . The right hand side is an infinite sum, and so a necessary condition for it to be bounded
is that gk → 0, since gk ≥ 0 for all k. We have hence proven that limk→∞ gk = 0, which by
Lemma 7 implies limk→∞ g(xk) = 0. This proves the first claim of the Theorem.

We will now aim to derive explicit convergence rates for convergence towards a stationary
point. Let g̃t = min0≤k≤t gk, then from Eq. Eqn. B.43 we have

f(x0)− f(xt+1) ≥
t∑

k=0

g̃t
2
min

{
g̃t

Cmax
t

, 1

}
1{k is a good step} (B.44)

= Nt+1
g̃t
2
min

{
g̃t

Cmax
t

, 1

}
. (B.45)

We now make a distinction of cases for the quantities inside the min.

• If g̃t ≤ Cmax
t , then Eqn. B.45 gives f(x0)− f(xt+1) ≥ Nt+1g̃t

2/(2Cmax
t), which reordering

gives

g̃t ≤

√
2Cmax

t (f(x0)− f(xt+1))

Nt+1

≤

√
2Cmax

t h0
Nt+1

≤ 2h0 + Cmax
t

2
√
Nt+1

≤ max{2h0, Cmax
t }√

Nt+1

.

(B.46)

where in the third inequality we have used the inequality
√
ab ≤ a+b

2
with a =

√
2h0,

b =
√
Cmax
t .

• If g̃t > Cmax
t we can get a better 1

Nt
rate, trivially bounded by 1√

Nt
.

g̃t ≤
2h0
Nt+1

≤ 2h0√
Nt+1

≤ max{2h0, Cmax
t }√

Nt+1

. (B.47)

APPENDIX B. FRANK-WOLFE WITH BACKTRACKING LINE-SEARCH 103

We have obtained the same bound in both cases, hence we always have

g̃t ≤
max{2h0, Cmax

t }√
Nt+1

. (B.48)

Finally, from Lemma 7 we have g(xk) ≤ 1
δ
gk for all k and so

min
0≤k≤t

g(xk) ≤
1

δ
min
0≤k≤t

gk =
1

δ
g̃t ≤

max{2h0, Cmax
t }

δ
√
Nt+1

, (B.49)

and the claimed bound follows by definition of Cmax
t . The O(1/δ

√
t) rate comes from the fact

that both Lt and h0 are upper bounded. Lt is bounded by Proposition 4 and h0 is bounded
by assumption.

Matching Pursuit

In the context of Matching Pursuit, we propose the following criterion which we name the
MP gap: gMP(x) = maxs∈B⟨∇f(x), s⟩, where B is as defined in B.1. Note that gMP is always
non-negative and gMP(x⋆) = 0 implies ⟨∇f(x⋆), s⟩ = 0 for all s ∈ B. By linearity of the
inner product we then have ⟨∇f(x⋆),x− x⋆⟩ = 0 for any x in the domain, since x− x⋆ lies
in the linear span of A. Hence x⋆ is a stationary point and gMP is an appropriate measure of
stationarity for this problem.

Theorem 2.B. Let xt denote the iterate generated by AdaMP after t iterations. Then
for t ≥ 0 we have the following suboptimality bound in terms of the MP gap:

lim
k→∞

gMP(xk) = 0 and min
0≤k≤t

gMP(xk) ≤
radius(A)

δ

√
2h0Lt
t+ 1

= O
(

1

δ
√
t

)
.

(B.50)

Proof. The proof similar than that of Theorem 2.A, except that in this case the expression of
the step-size is simpler and does not depend on the minimum of two quantities. This avoids
the case distinction that was necessary in the previous proof, resulting in a much simpler
proof.

APPENDIX B. FRANK-WOLFE WITH BACKTRACKING LINE-SEARCH 104

For all k = 0, . . . , t, using the sufficient decrease condition, and the definitions of γk and
gk:

f(xk+1)− f(xk) ≤ γk⟨∇f(xk),dk⟩+
γ2kLk
2

∥dk∥2 (B.51)

≤ min
η≥0

{
−ηgk +

1

2
η2Lk∥dk∥2

}
(B.52)

≤ − g2k
2Lk∥dk∥2

, (B.53)

where the last inequality comes from minimizing with respect to η. Summating over k from
0 to t and negating the previous inequality, we obtain:∑

0≤k≤t

g2k
Lk

≤ (f(x0)− f(xt)) radius(A)2 ≤ 2h0 radius(A)2 . (B.54)

Taking the limit for t → ∞ we obtain that the left hand side has a finite sum since the
right hand side is bounded by assumption. Therefore, gk → 0, which by Lemma 7 implies
limk→∞ g(xk) = 0. This proves the first claim of the Theorem.

We now aim to derive explicit convergence rates. Taking the min over the gks and taking
a square root for the last inequality

min
0≤k≤t

gk ≤
√

2h0 radius(A)2∑
0≤k≤t Lk

−1 (B.55)

The term
(
n/
∑

0≤k≤t Lk
−1
)

is the harmonic mean of the Lks, which is always upper bounded
by the average Lt. Hence we obtain

min
0≤k≤t

gk ≤
radius(A)

δ

√
2h0Lt
t+ 1

. (B.56)

The claimed rate then follows from using the bound g(xk) ≤ 1
δ
gk from Lemma 7, valid for all

k ≥ 0.
The O(1/δ

√
t) rate comes from the fact that both Lt and h0 are upper bounded. Lt is

bounded by Proposition 4 and h0 is bounded by assumption.

Note: Harmonic mean vs arithmetic mean. The convergence rate for MP on non-
convex objectives (Theorem 2) also holds by replacing Lt by its harmonic mean Ht

def
=

Nt/(
∑t−1

k=0 L
−1
k 1{k is a good step}) respectively. The harmonic mean is always less than

the arithmetic mean, i.e., Ht ≤ Lt, although for simplicity we only stated both theorems
with the arithmetic mean. Note that the Harmonic mean is Schur-concave, implying that
Ht ≤ tmin{Lk : k ≤ t}, i.e. it is controlled by the smallest Lipschitz estimate encountered so
far.

APPENDIX B. FRANK-WOLFE WITH BACKTRACKING LINE-SEARCH 105

B.5 Proofs of convergence for convex objectives

In this section we provide a proof the convergence rates stated in the theorem for convex
objectives (Theorem 3). The section is structured as follows. We start by proving a technical
result which is a slight variation of Lemma 6 and which will be used in the proof of Theorem
3. This is followed by the proof of Theorem 3.

Frank-Wolfe variants

Lemma 10. For any of the proposed FW variants, if t is a good step, then we have

f(xt+1) ≤ f(xt)− ξgt +
ξ2Lt
2

∥dt∥2 for all ξ ∈ [0, 1]. (B.57)

Proof. If γmax
t ≥ 1, the result is obvious from Lemma 6. If γmax

t < 1, then the inequality is
only valid in the smaller interval [0, γmax

t]. However, since we have assumed that this is a
good step, if γmax

t < 1 then we must have γt < γmax
t . By Lemma 6, we have

f(xt+1) ≤ f(xt) + min
ξ∈[0,γmax

t]

{
ξ⟨∇f(xt),dt⟩+

Ltξ
2

2
∥dt∥2

}
(B.58)

Because γt < γmax
t and since the expression inside the minimization term of the previous

equation is a quadratic function of ξ, γt is the unconstrained minimum and so we have

f(xt+1) ≤ f(xt) + min
ξ≥0

{
ξ⟨∇f(xt),dt⟩+

Ltξ
2

2
∥dt∥2

}
(B.59)

≤ f(xt) + min
ξ∈[0,1]

{
ξ⟨∇f(xt),dt⟩+

Ltξ
2

2
∥dt∥2

}
. (B.60)

The claimed bound then follows from the optimality of the min.

The following lemma allows to relate the quantity ⟨∇f(xt),xt − st⟩ with a primal-dual
gap and will be essential in the proof of Theorem 3.

Lemma 11. Let st be as defined in any of the FW variants. Then for any iterate t ≥ 0 we
have

⟨∇f(xt),xt − st⟩ ≥ δ(f(xt)− ψ(∇f(xt))) . (B.61)

Proof.

⟨∇f(xt),xt − st⟩
Eqn. 2.2

≥ δ max
s∈conv(A)

⟨∇f(xt),xt − s⟩ (B.62)

= δ⟨∇f(xt),xt⟩+ δ max
s∈conv(A)

⟨−∇f(xt), s⟩ (B.63)

= δ
(
⟨∇f(xt),xt⟩+ σconv(A)(−∇f(xt))

)
(B.64)

= δ
(
f(xt) + f ∗(∇f(xt)) + σconv(A)(−∇f(xt))︸ ︷︷ ︸

=−ψ(∇f(xt))

)
= δ
(
f(xt)− ψ(∇f(xt))

)
(B.65)

APPENDIX B. FRANK-WOLFE WITH BACKTRACKING LINE-SEARCH 106

where the first identity uses the definition of st, the second one the definition of convex
conjugate and the last one is a consequence of the Fenchel-Young identity. We recall σconv(A)

is the support function of conv(A).

APPENDIX B. FRANK-WOLFE WITH BACKTRACKING LINE-SEARCH 107

Theorem 3.A. Let f be convex, xt denote the iterate generated by any of the proposed
FW variants (AdaFW, AdaAFW, AdaPFW) after t iterations, with Nt ≥ 1, and let ut be
defined recursively as u0 = ∇f(x0), ut+1 = (1− ξt)ut+ ξt∇f(xt), where ξt = 2/(δNt+2)
if t is a good step and ξt = 0 otherwise. Then we have:

ht ≤ f(xt)−ψ(ut) ≤
2Lt diam(A)2

δ2Nt + δ
+

2(1− δ)

δ2N2
t + δNt

(
f(x0)−ψ(u0)

)
= O

(
1

δ2t

)
. (B.66)

Proof. The proof is structured as follows. First, we derive a bound for the case that k is a
good step. Second, we derive a bound for the case that k is a bad step. Finally, we add over
all iterates to derive the claimed bound.

In both the good and bad step cases, we’ll make use of the auxiliary variable σk. This
is defined recursively as σ0 = ψ(∇f(xk)), σk+1 = (1 − δξk)σk + δξkψ(∇f(xk)). Since ψ is
concave, Jensen’s inequality gives that ψ(uk) ≥ σk for all k.
Case 1: k is a good step:
By Lemma 10, we have the following sequence of inequalities, valid for all ξk ∈ [0, 1]:

f(xk+1) ≤ f(xk)− ξkgk +
ξ2kLk
2

∥dk∥2 (B.67)

≤ f(xk)− ξk⟨∇f(xk),xk − sk⟩+
ξ2kLk
2

∥dk∥2 (B.68)

≤ (1− δξk)f(xk) + δξkψ(∇f(xk)) +
ξ2kLk
2

∥dk∥2 , (B.69)

where the second inequality follows from the definition of gk (this is an equality for AdaFW
but an inequality for the other variants) and the last inequality follows from Lemma 11.

Subtracting ψ(uk+1) from both sides of the previous inequality gives

f(xk+1)− ψ(uk+1) ≤ f(xk+1)− σk+1 (B.70)

≤ (1− δξk)
[
f(xk)− σk

]
+
ξ2kLk
2

∥sk − xk∥2 (B.71)

Let ξk = 2/(δNk + 2) and ak
def
= 1

2
((Nk − 2)δ + 2)((Nk − 1)δ + 2). With these definitions, we

have the following trivial identities that we will use soon:

ak+1(1− δξk) =
1

2
((Nk − 2)δ + 2)((Nk − 1)δ + 2) = ak (B.72)

ak+1
ξ2k
2

=
((Nk − 1)δ + 2)

(Nkδ + 2)
≤ 1 (B.73)

where in the first inequality we have used that k is a good step and so Nk+1 = Nk + 1.

APPENDIX B. FRANK-WOLFE WITH BACKTRACKING LINE-SEARCH 108

Multiplying Eqn. B.71 by ak+1 we have

ak+1

(
f(xk+1)− ψ(uk+1)) ≤ ak+1(1− δξk)

[
f(xk)− σk

]
+
Lk
2
∥sk − xk∥2 (B.74)

Eqn. B.72
= ak

[
f(xk)− σk

]
+
Lk
2
∥sk − xk∥2 (B.75)

≤ ak
[
f(xk)− σk

]
+ Lk diam(A)2 (B.76)

Case 2: k is a bad step:
Lemma 6 with ξk = 0 guarantees that the objective function is non-increasing, i.e., f(xk+1) ≤
f(xk). By construction of σk we have σk+1 = σk, and so substracting both multiplied by ak+1

we obtain

ak+1

(
f(xk+1)− ψ(uk+1)

)
≤ ak+1

(
f(xk+1)− σk+1

)
(B.77)

≤ ak+1

(
f(xk)− σk

)
(B.78)

= ak
(
f(xk)− σk

)
, (B.79)

where in the last identity we have used that its a bad step and so ak+1 = ak.
Final: combining cases and adding over iterates:
We can combine Eqn. B.76 and Eqn. B.79 into the following inequality:

ak+1

(
f(xk+1)−ψ(uk+1)

)
− ak

(
f(xk)−ψ(uk)

)
≤ Lk diam(A)21{k is a good step} , (B.80)

where 1{condition} is 1 if condition is verified and 0 otherwise.
Adding this inequality from 0 to t− 1 gives

at
(
f(xt)− ψ(ut)

)
≤

t−1∑
k=0

LkQ
2
A1{k is a good step}+ a0(f(x0)− σ0) (B.81)

= NtLt diam(A)2 + (1− δ)(2− δ)(f(x0)− σ0) (B.82)

Finally, dividing both sides by at (note that at > 0 for Nt ≥ 1) and using (2 − δ) ≤ 2 we
obtain

f(xt)− ψ(ut) ≤
2Nt

((Nt − 2)δ + 2)((Nt − 1)δ + 2)
LtQ

2
A (B.83)

+
4(1− δ)

((Nt − 2)δ + 2)((Nt − 1)δ + 2)
(f(x0)− σ0) (B.84)

We will now use the inequalities (Nt − 2)δ + 2 ≥ Ntδ and (Nt − 1)δ + 2 ≥ Ntδ + 1 for the
terms in the denominator to obtain

f(xt)− ψ(ut) ≤
2LtQ

2
A

δ2Nt + δ
+

4(1− δ)

δ2tN
2
t + δNt

(f(x0)− f(x⋆)) . (B.85)

APPENDIX B. FRANK-WOLFE WITH BACKTRACKING LINE-SEARCH 109

which is the desired bound:

f(xt)− ψ(ut) ≤
2LtQ

2
A

δ2Nt + δ
+

4(1− δ)

δ2tN
2
t + δNt

[
f(x0)− ψ(∇f(x0))

]
. (B.86)

We will now prove the bound ht ≤ f(xt)− ψ(ut). Let u⋆ be an arbitrary maximizer of ψ.
Then by duality we have that f(x⋆) = ψ(u⋆) and so

f(xt)− ψ(ut) = f(xt)− f ∗ (x⋆) + ψ(u⋆)− ψ(ut) ≥ f(xt)− f ∗ (x⋆) = ht (B.87)

Finally, the O(1
δt
) rate comes from bounding the number of good steps from Eqn. 2.7,

for which we have 1/Nt ≤ O(1/t), and bounding the Lipschitz estimate by a contant
(Proposition 4).

Matching Pursuit

Lemma 12. Let st be as defined in AdaMP, RB be the level set radius defined as

RB = max
x∈lin(A)
f(x)≤f(x0)

∥x− x⋆∥B , (B.88)

and x⋆ be any solution to Eqn. B.1. Then we have

⟨−∇f(xt), st⟩ ≥
δ

max{RB, 1}
(
f(xt)− f(x⋆)

)
(B.89)

Proof. By definition of atomic norm we have

xt − x⋆t
∥xt − x⋆∥B

∈ conv(B) (B.90)

Since f(xt) ≤ f(x0), which is a consequence of sufficient decrease condition (Eq. Eqn. B.52),
we have that RB ≥ ∥xt − x⋆∥B and so ζ def

= ∥xt − x⋆∥B/RB ≤ 1. By symmetry of B we have
that

xt − x⋆

RB
= ζ

xt − x⋆

∥xt − x⋆∥B
+ (1− ζ)0 ∈ conv(B) . (B.91)

We will now use this fact to bound the original expression. By definition of st we have

⟨−∇f(xt), st⟩
Eqn. B.2

≥ δmax
s∈B

⟨−∇f(xt), s⟩ (B.92)

Eqn. B.91

≥ δ

RB
⟨−∇f(xt),xt − x⋆⟩ (B.93)

≥ δ

RB
(f(xt)− f(x⋆)) (B.94)

where the last inequality follows by convexity.

APPENDIX B. FRANK-WOLFE WITH BACKTRACKING LINE-SEARCH 110

Theorem 3.B. Let f be convex, x⋆ be an arbitrary solution to Eqn. B.1 and let RB the
level set radius:

RB = max
x∈lin(A)
f(x)≤f(x0)

∥x− x⋆∥B . (B.95)

If we denote by xt the iterate generated by AdaMP after t ≥ 1 iterations and β = δ/RB,
then we have:

f(xt)− f(x⋆) ≤ 2Lt radius(A)2

β2t+ β
+

2(1− β)

β2t2 + βt
h0 = O

(
1

β2t

)
. (B.96)

Proof. Let x⋆ be an arbitrary solution to Eqn. B.1. Then by Lemma 6, we have the following
sequence of inequalities, valid for all ξt ≥ 0:

f(xk+1) ≤ f(xk)− ξk⟨−∇f(xk), sk⟩+
ξ2kLk
2

∥sk∥2 (B.97)

≤ f(xk)− ξk
δ

RB

[
f(xk)− f(x⋆)

]
+
ξ2kLt
2

∥sk∥2 , (B.98)

where the second inequality follows from Lemma 12.
Subtracting f(x⋆) from both sides of the previous inequality gives

f(xk+1)− f(x⋆) ≤
(
1− δ

RB
ξk

)[
f(xk)− f(x⋆)

]
+
ξ2kLk
2

∥sk∥2 . (B.99)

Let β = δ/RB and ξk = 2/(βk + 2) and ak
def
= 1

2
((k − 2)β + 2)((k − 1)β + 2). With these

definitions, we have the following trivial results:

ak+1(1− βξk) =
1

2
((k − 2)β + 2)((k − 1)β + 2) = ak (B.100)

ak+1
ξ2k
2

=
((k − 1)β + 2)

(kβ + 2)
≤ 1 . (B.101)

Multiplying Eqn. B.99 by ak+1 we have

ak+1

(
f(xk+1)− f(x⋆)) ≤ ak+1(1− βξk)

[
f(xk)− f(x⋆)

]
+
Lk
2
∥sk∥2 (B.102)

Eqn. B.72
= ak

[
f(xk)− f(x⋆)

]
+
Lk
2
∥sk∥2 (B.103)

≤ ak
[
f(xk)− f(x⋆)

]
+ Lt radius(A)2 (B.104)

Adding this last inequality from 0 to t− 1 gives

at
(
f(xt)− f(x⋆)

)
≤

t−1∑
k=0

Lk radius(A)2 + a0(f(x0)− β0) (B.105)

= tLt diam(A)2 + (1− δ)(2− δ)(f(x0)− β0) (B.106)

APPENDIX B. FRANK-WOLFE WITH BACKTRACKING LINE-SEARCH 111

Finally, dividing both sides by at (note that a1 = 2− β ≥ 1 and so at is strictly positive for
t ≥ 1), and using (2− δ) ≤ 2 we obtain

f(xt)− f(x⋆) ≤ 2t

((t− 2)β + 2)((t− 1)β + 2)
Lt radius(A)2 (B.107)

+
4(1− β)

((t− 2)β + 2)((t− 1)β + 2)
(f(x0)− β0) (B.108)

We will now use the inequalities (t− 2)β + 2 ≥ tβ and (t− 1)β + 2 ≥ tβ + 1 to simplify the
terms in the denominator. With this we obtain to obtain

f(xt)− f(x⋆) ≤ 2Lt radius(A)2

β2Nt + β
+

4(1− β)

β2
tN

2
t + βNt

(f(x0)− f(x⋆)) , (B.109)

which is the desired bound.

APPENDIX B. FRANK-WOLFE WITH BACKTRACKING LINE-SEARCH 112

B.6 Proofs of convergence for strongly convex objectives

The following proofs depend on some definitions of geometric constants, which are defined in
B.2 as well as two crucial lemmas from [18, Appendix C].

Frank-Wolfe variants

We are now ready to present the convergence rate of the backtracking Frank–Wolfe variants.
As we did in B.4, although the original proof combines the rates for FW variants and MP,
the proof will be split into two, in which we prove separately the linear convergence rates for
AdaAFW and AdaPFW (Theorem 4.A) and AdaMP (Theorem 4.B).

Theorem 4.A. Let f be µ–strongly convex. Then for each good step we have the following
geometric decrease:

ht+1 ≤ (1− ρt)ht, (B.110)

with

ρt =
µδ2

4Lt

(
PWidth(A)

diam(conv(A))

)2

for AdaAFW (B.111)

ρt = min
{δ
2
, δ2

µ

Lt

(
PWidth(A)

diam(conv(A))

)2 }
for AdaPFW (B.112)

Note. In the main paper we provided the simplified bound ρt =
µ

4Lt

(
PWidth(A)

diam(A)

)2

for

both algorithms AdaAFW and AdaPFW for simplicity. It is easy to see that the bound for
AdaPFW above can be trivially bounded by this quantity by noting that δ2 ≤ δ and that
µ/Lt and PWidth(A)/diam(conv(A)) are necessarily smaller than 1.

Proof. The structure of this proof is similar to that of [18, Theorem 8]. We begin by upper
bounding the suboptimality ht. Then we derive a lower bound on ht+1 − ht. Combining both
we arrive at the desired geometric decrease.

Upper bounding ht
Assume xt is not optimal, ie ht > 0. Then we have ⟨−∇f(xt),x⋆ − xt⟩ > 0. Using the
definition of the geometric strong convexity bound and letting γ def

= γ(xt,x
⋆) we have

γ2

2
µAf ≤ f(x⋆)− f(xt) + ⟨−∇f(xt),x⋆ − xt⟩ (B.113)

= −ht + γ⟨−∇f(xt), sf (xt)− vf (xt)⟩ (B.114)
≤ −ht + γ⟨−∇f(xt), st − vt⟩ (B.115)
= −ht + γqt , (B.116)

APPENDIX B. FRANK-WOLFE WITH BACKTRACKING LINE-SEARCH 113

where qt
def
= ⟨−∇f(xt), st − vt⟩. For the last inequality we have used the definition of vf (x)

which implies ⟨f(xt),vf (xt)⟩ ≤ ⟨∇f(xt),vt⟩ and the fact that st = sf (xt). Therefore

ht ≤ −γ
2

2
µAf + γqt , (B.117)

which can always be upper bounded by taking γ = µ−1qt (since this value of γ maximizes
the expression on the right hand side of the previous inequality) to arrive at

ht ≤
q2t
2µAf

(B.118)

≤ q2t
2µ∆2

, (B.119)

with ∆
def
= PWidth(A) and where the last inequality follows from Lemma 5.

Lower bounding progress ht − ht+1.
Let G be defined as G = 1/2 for AdaAFW and G = 1 for AdaPFW. We will now prove that
for both algorithms we have

⟨−∇f(xt),dt⟩ ≥ δGqt . (B.120)

For AdaAFW, by the way the direction dt is chosen on Line 6, we have the following sequence
of inequalities:

2⟨−∇f(xt),dt⟩ ≥ ⟨−∇f(xt),dFWt ⟩+ ⟨−∇f(xt),dAt ⟩
≥ δ⟨−∇f(xt), st − xt⟩+ δ⟨−∇f(xt),xt − vt⟩
= δ⟨−∇f(xt), st − vt⟩
= δqt ,

For AdaPFW, since dt = st−vt, it follows from the definition of qt that ⟨−∇f(xt),dt⟩ ≥ δqt.
We split the rest of the analysis into three cases: γt < γmax

t , γt = γmax
t ≥ 1 and

γt = γmax
t < 1. We prove a geometric descent in the first two cases. In the case where

γt = γmax
t < 1 (a bad step) we show that the number of bad steps is bounded.

Case 1: γt < γmax
t :

By Lemma 6, we have

f(xt+1) = f(xt + γtdt) ≤ f(xt) + min
η∈[0,γmax

t]

{
η⟨∇f(xt),dt⟩+

Ltη
2

2
∥dt∥2

}
(B.121)

Because γt < γmax
t and since the expression inside the minimization term Eqn. B.121 is a

convex function of η, the minimizer is unique and it coincides with the minimum of the
unconstrained problem. Hence we have

min
η∈[0,γmax

t]

{
η⟨∇f(xt),dt⟩+

Ltη
2

2
∥dt∥2

}
= min

η≥0

{
η⟨∇f(xt),dt⟩+

Ltη
2

2
∥dt∥2

}
(B.122)

APPENDIX B. FRANK-WOLFE WITH BACKTRACKING LINE-SEARCH 114

Replacing in Eqn. 6, our bound becomes

f(xt+1) = f(xt + γtdt) ≤ f(xt) + min
η≥0

{
η⟨∇f(xt),dt⟩+

Ltη
2

2
∥dt∥2

}
(B.123)

≤ f(xt) + min
η≥0

{
η⟨∇f(xt),dt⟩+

Ltη
2

2
M2

}
(B.124)

≤ f(xt) + η⟨∇f(xt),dt⟩+
Ltη

2

2
M2, ∀η ≥ 0 (B.125)

where the second inequality comes from bounding ∥dt∥ by M def
= diam(conv(A)). Subtracting

f(x⋆) from both sides and rearranging we have

ht − ht+1 ≥ η⟨−∇f(xt),dt⟩ −
1

2
η2LtM

2, ∀η ≥ 0 . (B.126)

Using the gap inequality Eqn. B.120 our lower bound becomes

ht − ht+1 ≥ ηδGqt −
1

2
η2LtM

2, ∀η ≥ 0 . (B.127)

Noting that the lower bound in Eqn. B.127 is a concave function of η, we maximize the
bound by selecting η⋆ = (LtM

2)−1δGqt. Plugging η⋆ into the bound in Eqn. B.127 and then
using the strong convexity bound Eqn. B.119 we have

ht − ht+1 ≥
µG2∆2δ2

LtM2
ht =⇒ ht+1 ≤

(
1− µG2∆2δ2

LtM2

)
ht . (B.128)

Then we have geometric convergence with rate 1−ρ where ρ = (4LtM
2)−1µ∆2δ2 for AdaAFW

and ρ = (LtM
2)−1µ∆2δ2 for AdaPFW.

Case 2: γt = γmax
t ≥ 1

By Lemma 6 and the gap inequality Eqn. B.120, we have

ht − ht+1 = f(xt)− f(xt+1) ≥ ηδGqt −
1

2
η2LtM

2, ∀η ≤ γmax
t . (B.129)

Since the lower bound Eqn. B.129 is true for all η ≤ γmax
t , we can maximize the bound

with η⋆ = min{(LtM2)−1δGqt, γ
max
t }. In the case when η⋆ = (LtM

2)−1δGqt we get the same
bound as we do in Eqn. B.128 and hence have linear convergence with rate 1 − ρ where
ρ = (4LtM

2)−1µ∆2δ2 for AdaAFW and ρ = (LtM
2)−1µ∆2δ2 for AdaPFW. If η⋆ = γmax

t then
this implies LtM2 ≤ δGqt. Since γmax

t is assumed to be greater than 1 and the bound holds
for all η ≤ γmax

t we have in particular that it holds for η = 1 and hence

ht − ht+1 ≥ δGqt −
1

2
LtM

2 (B.130)

≥ δGqt −
δGqt
2

(B.131)

≥ δGht
2

, (B.132)

APPENDIX B. FRANK-WOLFE WITH BACKTRACKING LINE-SEARCH 115

where in the second line we use the inequality LtM
2 ≤ δGqt and in the third we use the

inequality ht ≤ qt which is an immediate consequence of convexity of f . Then we have

ht+1 ≤ (1− ρ)ht , (B.133)

where ρ = δ/4 for AdaAFW and ρ = δ/2 for AdaPFW. Note by Proposition 3 and the fact
µ ≤ Lt we have δ/4 ≥ (4LtM

2)−1µ∆2δ2.

Case 3: γt = γmax
t < 1 (bad step)

In this case, we have either a drop or swap step and can make no guarantee on the progress
of the algorithm (drop and swap are defined in B.3). For AdaAFW, γt = γmax

t < 1 is a drop
step. From lines 6–10 of AdaAFW we can make the following distinction of cases. In case of
a FW step, then St+1 = {st} and γt = γmax

t = 1, otherwise St+1 = St ∪ {st}. In case of an
Away step, St+1 = St\{vt} if γt = γmax

t < 1 , otherwise St+1 = St. Note a drop step can only
occur at an Away step. For AdaPFW, γt = γmax

t < 1 will be a drop step when st ∈ St and
will be a swap step when st ̸∈ St.

Even though at these bad steps we do not have the same geometric decrease, Lemma 8
yields that the sequence {ht} is a non-increasing sequence, i.e., ht+1 ≤ ht. Since we are
guaranteed a geometric decrease on steps that are not bad steps, the bounds on the number
of bad steps of Eq. Eqn. 2.7 is sufficient to conclude that AdaAFW and AdaPFW exhibit a
global linear convergence.

Matching Pursuit

We start by proving the following lemma, which will be crucial in the proof of the backtracking
MP’s linear convergence rate.

Lemma 13. Suppose that A is a non-empty compact set and that f is µ–strongly convex. Let
∇Bf(x) denote the orthogonal projection of ∇f(x) onto lin(B). Then for all x⋆−x ∈ lin(A),
we have

f(x⋆) ≥ f(x)− 1

2µmDW(B)2
∥∇Bf(x)∥2B⋆ . (B.134)

Proof. From Locatello et al. [26, Theorem 6], we have that if f is µ-strongly convex, then

µB
def
= inf

x,y∈lin(B),x̸=y

2

∥y − x∥2B
[f(y)− f(x)− ⟨∇f(x),y − x⟩] (B.135)

is positive and verifies µB ≥ mDW(B)2µ. Replacing y = x + γ(x⋆ − x) in the definition
above we have

f(x+ γ(x⋆ − x)) ≥ f(x) + γ⟨∇f(x),x⋆ − x⟩+ γ2
µB

2
∥x⋆ − x∥2B . (B.136)

APPENDIX B. FRANK-WOLFE WITH BACKTRACKING LINE-SEARCH 116

We can fix γ = 1 on the left hand side and since the expression on the right hand side is true
for all γ, we minimize over γ to find γ∗ = −⟨∇f(x),x⋆ − x⟩/µB∥x⋆ − x∥2B. Thus the lower
bound becomes

f(x⋆) ≥ f(x)− 1

2µB

⟨∇f(x),x⋆ − x⟩
∥x⋆ − x∥2B

(B.137)

≥ f(x)− 1

2µmDW(B)2
⟨∇f(x),x⋆ − x⟩

∥x⋆ − x∥2B
(B.138)

= f(x)− 1

2µmDW(B)2
⟨∇Bf(x),x

⋆ − x⟩
∥x⋆ − x∥2B

(B.139)

≥ f(x)− 1

2µmDW(B)2
∥∇Bf(x)∥2B∗ , (B.140)

where the last inequality follows by |⟨y, z⟩| ≤ ∥y∥B∗∥z∥B

Theorem 4.B. (Convergence rate backtracking MP) Let f be µ–strongly convex and
suppose B is a non-empty compact set. Then AdaMP verifies the following geometric
decrease for each t ≥ 0:

ht+1 ≤
(
1− δ2ρt

)
ht, with ρt =

µ

Lt

(
mDW(B)
radius(B)

)2

, (B.141)

where mDW(B) the minimal directional width of B.

Proof. By Lemma 6 and bounding ∥dt∥ by R = radius(B) we have

f(xt+1) ≤ f(xt) + min
η∈R

{
η⟨∇f(xt), st⟩+

η2LtR
2

2

}
(B.142)

= f(xt)−
⟨∇f(xt), st⟩2

2LtR2
(B.143)

≤ f(xt)− δ2
⟨∇f(xt), s⋆t ⟩2

2LtR2
(B.144)

where s⋆t is any element such that s⋆t ∈ argmins∈B⟨∇f(xt), s⟩ and the inequality follows
from the optimality of min and the fact that ⟨∇f(xt), s⋆t ⟩ ≤ 0. Let ∇Bf(xt) denote as in
Lemma 13 the orthogonal projection of ∇f(xt) onto lin(B). Then the previous inequality
simplifies to

f(xt+1) ≤ f(xt)− δ2
⟨∇Bf(xt), s

⋆
t ⟩2

2LtR2
. (B.145)

APPENDIX B. FRANK-WOLFE WITH BACKTRACKING LINE-SEARCH 117

By definition of dual norm, we also have ⟨−∇Bf(xt), s
⋆
t ⟩ = ∥∇Bf(xt)∥2B∗. Subtracting f(x⋆)

from both sides we obtain the upper-bound:

ht+1 ≤ ht − δ2
∥∇Bf(xt)∥2B∗

2LtR2
(B.146)

To derive the lower-bound, we use Lemma 13 with x = xt and see that

∥∇Bf(xt)∥B∗ ≥ 2µmDW(B)2ht (B.147)

Combining the upper and lower bound together we have

ht+1 ≤
(
1− δ2

µmDW(B)2

LtR2

)
ht , (B.148)

which is the claimed bound.

APPENDIX B. FRANK-WOLFE WITH BACKTRACKING LINE-SEARCH 118

B.7 Experiments

In this appendix we give give some details on the experiments which were omitted from the
main text, as well as an extended set of results.

ℓ1-regularized logistic regression, Madelon dataset

For the first experiment, we consider an ℓ1-regularized logistic regression of the form

argmin
∥x∥1≤β

1

n

n∑
i=1

φ(a⊤
i x, bi) +

λ

2
∥x∥22 , (B.149)

where φ is the logistic loss. The linear subproblems in this case can be computed exactly
(δ = 1) and consists of finding the largest entry of the gradient. The regularization parameter
λ is always set to λ = 1

n
.

We first consider the case in which the data ai, bi is the Madelon datset. Below are the
curves objective suboptimality vs time for the different methods considered. The regularization
parmeter, denoted ℓ1 ball radius in the figure, is chosen as to give 1%, 5% and 20% of non-zero
coefficients (the middle figure is absent from the main text).

0 2 4
Time (in seconds)

10 8

10 6

10 4

10 2

O
bj

ec
tiv

e
m

in
us

 o
pt

im
um 1 ball radius = 13

0.0 2.5 5.0 7.5 10.0
Time (in seconds)

10 8

10 6

10 4

10 2

1 ball radius = 20

0 5 10 15 20
Time (in seconds)

10 8

10 6

10 4

10 2

1 ball radius = 30

AdaFW
AdaPFW

AdaAFW
FW

PFW
AFW

D-FW
B-FW

Figure B.1: Comparison of different FW variants. Problem is ℓ1-regularized logistic
regression and dataset is Madelon in the first, RCV1 in the second figure.

ℓ1-regularized logistic regression, RCV1 dataset

The second experiment is identical to the first one, except the madelon datset is replaced by
the larger RCV1 datset. Below we display the results of the comparison in this dataset:

APPENDIX B. FRANK-WOLFE WITH BACKTRACKING LINE-SEARCH 119

0 100 200 300 400
Time (in seconds)

10 8

10 5

10 2

101

O
bj

ec
tiv

e
m

in
us

 o
pt

im
um 1 ball radius = 100

0 200 400 600 800
Time (in seconds)

10 8

10 5

10 2

101

1 ball radius = 200

0 250 500 750 1000
Time (in seconds)

10 8

10 5

10 2

101

1 ball radius = 300

AdaFW
AdaPFW

AdaAFW
FW

PFW
AFW

D-FW
B-FW

Figure B.2: Comparison of different FW variants. Problem is ℓ1-regularized logistic
regression and dataset is RCV1.

APPENDIX B. FRANK-WOLFE WITH BACKTRACKING LINE-SEARCH 120

Nuclear norm-regularized Huber regression, MovieLens dataset

For the third experiment, we consider a collaborative filtering problem with the Movielens
1M dataset [33] as provided by the spotlight1 Python package.

In this case the dataset consists of a sparse matrix A representing the ratings for the
different movies and users. We denote by I the non-zero indices of this matrix. Then the
optimization probllem that we consider is the following

argmin
∥X∥∗≤β

1

n

n∑
(i,j)∈I

Lξ(Ai,j −X i,j) , (B.150)

where Lξ is the Huber loss, defined as

Lξ(a) =

{
1
2
a2 for |a| ≤ ξ,

ξ(|a| − 1
2
ξ), otherwise .

(B.151)

The Huber loss is a quadratic for |a| ≤ ξ and grows linearly for |a| > ξ. The parameter ξ
controls this tradeoff and was set to 1 during the experiments.

We compared the variant of FW that do not require to store the active set on this problem
(as these are the only competitive variants for this problem).

0 500 1000 1500 2000
Time (in seconds)

10 3

10 2

10 1

O
bj

ec
tiv

e
m

in
us

 o
pt

im
um

trace ball radius = 10000.0

0 500 1000 1500 2000
Time (in seconds)

10 3

10 2

10 1

trace ball radius = 20000.0

AdaFW FW D-FW B-FW

Figure B.3: Comparison of different FW variants. Comparison of FW variants on the
Movielens 1M dataset.

1https://github.com/maciejkula/spotlight

https://github.com/maciejkula/spotlight

121

Appendix C

Learning differentiable solvers for systems
with hard constraints

C.1 1D convection

We study a 1D convection problem, describing transport phenomena. The problem can be
formulated as follows:

∂u(x, t)

∂t
+ β(x)

∂u(x, t)

∂x
= 0, x ∈ (0, 1), t ∈ (0, 1),

h(x) = sin(πx), x ∈ (0, 1)

g(t) = sin
(π
2
t
)
, t ∈ (0, 1).

(C.1)

Here, h(x) is the initial condition (at t = 0), g(t) is the boundary condition (at x = 0), and
β(x) represents the variable coefficients (denoted by ϕ in Section 5.3). Given a set of variable
coefficients, β(x), and spatiotemporal points (xi, ti), the goal is to predict the correct solution
u(x, t). The β(x) values are generated in the same manner as in Wang, Wang, and Perdikaris
[64] via β(x) = v(x)−minx v(x) + 1, where v(x) is generated from a Gaussian random field
with a length scale of 0.2. We use a physics-informed DeepONet baseline model [64], trained
with the PDE residual loss. Our hard-constrained model is composed of stacked dense layers
and our PDE-CL, which allows for a fair comparison. We provide more details on our setup
and experiments in Appendix C.2.

Results. We plot example heatmaps from the test set in Figure C.1.1. We compare how
close our hard-constrained model is to the target solution (Figure C.1.1 b)), and similarly
for the soft-constrained baseline model (Figure C.1.1 c)). The solution found by our hard-
constrained model is much closer to the target solution than the solution found by the
baseline model, and our model captures “sharp” features in the solution visibly better than
the baseline model.

During the training procedure for both hard- and soft-constrained models, we track error
on an unseen test set of PDE solutions with different PDE parameters from the training

APPENDIX C. LEARNING DIFFERENTIABLE SOLVERS FOR SYSTEMS WITH
HARD CONSTRAINTS 122

(a) Target (b) Hard-constrained difference (c) Soft-constrained difference

Figure C.1.1: Heatmaps of 1D convection example test set predictions. We compare
our hard-constrained model and the baseline soft-constrained model on a test set of new
wavespeed parameters β. Both architectures are the same, except for our additional PDE-
CL in the hard-constrained model. a) Target solutions of a subset of PDEs in the test
set. b) Difference between the predictions of our hard-constrained model and the target
solution. c) Difference between the predictions of the baseline soft-constrained model and
the target solution. Over the test dataset, our model achieves 1.32%± 0.02% relative
error and 9.84± 2.15 PDE residual test loss. In contrast, the soft-constrained model only
reaches 2.59%± 0.15% relative error and 774± 1.2 PDE residual test loss. Our model
achieves 49% less relative error than the soft-constrained model. The errors in both models
are concentrated around the “sharp” features in the solution, but these errors have higher
magnitude in the soft-constrained model.

set. We show these error plots in Figure C.1.2. In Figure C.1.2 a), the PDE residual loss for
the hard-constrained model starts close to six orders of magnitude lower than for the soft-
constrained model, and it continues to remain low. In Figure C.1.2 b), we track the relative
error with respect to the target solution obtained via a Lax-Wendroff scheme. Similarly, we
see that our model starts at much smaller relative error immediately and also continues to
decrease. Our model achieves 1.32%± 0.02% relative error and 9.84± 2.15 PDE residual
test loss, versus 2.59%± 0.15% and 774± 1.2 for the soft-constrained baseline model. On
the relative error metric, our model achieves a 49% improvement over the soft-constrained
model. The standard deviation of our model for the relative error metric over the test dataset
is also small. Our model trains faster than the soft-constrained method, due to much higher
gains in accuracy per batch, even though each batch is slower (see Figure C.2.1).

C.2 Details on the 1d Convection problem

Experiment setup and implementation details. In this setting, the inputs to the
models are two sets of ((x1, t1), . . . , (xn, tn)), and ((x′1, t

′
1), . . . , (x

′
n′ , t′n′)) sampled points within

the domain X (interior points) and the corresponding β(x) values. We use the former for

APPENDIX C. LEARNING DIFFERENTIABLE SOLVERS FOR SYSTEMS WITH
HARD CONSTRAINTS 123

(a) PDE residual loss on test set (b) Relative error on test set

Figure C.1.2: 1D convection: Error on test set during training. We train a NN with
the PDE residual loss function (“soft constraint” baseline) and the same NN architecture with
our PDE-CL (“hard constraint”). During training, we track error on the test set, which we
plot on a log-log scale. a) PDE residual loss on the test set, during training. We observe that
the NN starts by fitting the initial and boundary condition regression loss during training,
which explains why the PDE residual loss seems to go up initially. b) Relative error on the
test set, during training. Both measures show that our hard-constrained model starts at a
much lower error on the test set at the very start of training. The grey, dashed line shows
that the hard-constrained model achieves the same relative error as the soft-constrained
model in over 100x fewer iterations, and ultimately achieves lower relative error. Wall-time
comparison figures are given in Appendix C.2.

(a) PDE residual loss on test set (b) Relative error on test set

Figure C.2.1: Walltime plots for 1D convection. During the training procedure, we track
error on an unseen test set. Our hard- constrained model reaches the optimal accuracy of
the soft-constrained model in 10x less time.

APPENDIX C. LEARNING DIFFERENTIABLE SOLVERS FOR SYSTEMS WITH
HARD CONSTRAINTS 124

Figure C.2.2: 1D convection: Box plots showing error over test set. We show the
distribution of errors over the test set, at the end of training. Our hard-constrained model
has both a lower error and a lower standard deviation as compared to the soft-constrained
model.

fitting the PDE-CL, and the latter for computing the residual loss function. We also require
a set ((xn+1, tn+1), . . . , (xn+n′ , tn+n′)) of sampled points on the initial condition (t = 0) and
boundary condition (x = 0). The training optimization problem is formulated as follows:

min
θ

∑
β

Lβ(uθ) + ∥Fβ(uθ;x
′
1, . . . , x

′
n′)∥22 s.t. ∀β, Fβ(uθ;x1, . . . , xn) = 0, (C.2)

with,

Lβ(uθ) =
1

2

n′∑
i=1

(uθ(β, xn+i, tn+i)− u(β, xn+i, tn+i))
2,

Fβ(uθ;x1, . . . , xn) =


∂uθ(β, x1, t1)

∂t
+ β(x1)

∂uθ(β, x1, t1)

∂x...
∂uθ(β, xn, tn)

∂t
+ β(xn)

∂uθ(β, xn, tn)

∂x

 ,

where θ corresponds to parameters of the NN, u(x, t) is the solution at the initial and
boundary conditions, and F(uθ) is the PDE constraint that must be satisfied. The loss term
L(uθ) is a regression loss over the initial and boundary conditions. The forward pass of the
PDE-CL solves the following equality constrained problem,

min
ω

L(f⊤
θ ω) s.t. Fβ(fθ)

⊤ω = 0, (C.3)

APPENDIX C. LEARNING DIFFERENTIABLE SOLVERS FOR SYSTEMS WITH
HARD CONSTRAINTS 125

(a) PDE residual loss on test set (b) Relative error on test set

Figure C.3.1: Walltime plots for Darcy Flow. During the training procedure, we track
error on an unseen test set. Our hard- constrained model achieves higher accuracy much
more quickly than the soft-constrained model.

where fθ refers to the outputs of the base NN, on which we stack the PDE-CL. Since the
initial/boundary condition regression loss uses a quadratic penalty, this equality constrained
problem is in fact a convex equality constrained quadratic problem (EqQP), which is equivalent
to a linear system. We solve this linear system using GMRES [94]. We compute the Jacobian
via implicit differentiation with respect to Equation C.3.

In practice, we sample 750 points for the PDE-CL, and sample a separate 250 points for
computing the residual in the loss function. To ensure fairness, we sample 1000 points for
the soft-constrained method, which are all used to compute the residual in the loss function.
We use N=600 for the number of basis functions in the PDE-CL.

We show plots against wall time in Figure C.2.1, and the distributions of errors over the
test set in Figure C.2.2.

C.3 Details on the Darcy Flow problem

Experiment setup and implementation details. Our goal is to find parameters θ,
which solve,

min
θ

∑
ν

∥Fν(uθ)− f(x)∥22

s.t. ∀ν, Fν(uθ) = f(x).

(C.4)

By design, the objective function for feasible parameters θ is zero. While numerical issues may
prevent exact feasibility, solving the equality constrained problem by additionally minimizing
the PDE residual helps the training procedure. The soft-constrained training method is
trained only by minimizing the PDE residual. We train the FNO model using the same

APPENDIX C. LEARNING DIFFERENTIABLE SOLVERS FOR SYSTEMS WITH
HARD CONSTRAINTS 126

Figure C.3.2: 2D Darcy Flow: Box plots showing error over test set. We show the
distribution of errors over the test set, at the end of training. Our hard-constrained model
has both a lower error, as well as a significantly lower standard deviation as compared to the
soft-constrained model.

hyperparameters as Li et al. [62]. We denote the FNO model part of the architecture as fθ.
The PDE-CL constrains the output of the FNO model by solving the linear system,

∀ν, Fν(fθ)
⊤ω = f(x). (C.5)

To train our model, we compute the Jacobian of this layer via implicit differentiation, with
respect to this linear system equation.

We sample 3721 points for the PDE-CL. We also sample 3721 points for the soft-constrained
method, which are all used to compute the residual in the loss function. We use N=4000 for
the number of basis functions in the PDE-CL.

We show plots against wall time in Figure C.3.1, and the distributions of errors over the
test set in Figure C.3.2.

C.4 Hard constraints bound

To provide an evaluation of how hard the hard constraints are, we conduct an additional study
where we look at the error in prediction for points sampled and used to fit the PDE-CL against
points that were not sampled. With a trained hard-constrained model for 1D convection, we
sample a batch of points and create a density plot showing the error as a function of points
used for fitting the PDE-CL and points not used for fitting the PDE-CL. The histogram in
Figure C.4.1 shows that the errors are qualitatively the same between points used for fitting
the PDE-CL and those not used. There are 1000 points used for fitting the PDE-CL, and
9000 points not used. Our results show that our model achieves low error, even outside of
the points used for fitting the PDE-CL.

APPENDIX C. LEARNING DIFFERENTIABLE SOLVERS FOR SYSTEMS WITH
HARD CONSTRAINTS 127

Figure C.4.1: Histogram of errors: Error for points sampled by the PDE-CL, versus
error for points not sampled. We consider a trained model, and perform inference on a
random PDE instance. In this plot, we consider the 1D convection setting. The histogram
shows that the error for points used in the PDE-CL (1000 points) is about the same as error
for points not used for the PDE-CL (9000 points). This demonstrates that we do not need to
fit the PDE-CL on all points of the grid.

C.5 Ablation: Evaluating the quality of the learned basis
functions

We implement an experiment to evaluate the quality (and the advantage) of our learned basis
functions, compared to cubic interpolation. This experiment aims to understand whether our
learned functions are useful outside of the points used for the constrained problem.

Problem setup. We start with a model trained on the 1D convection problem. The model
was trained by sampling 750 points for fitting the PDE-CL, and 250 different points for the
residual in the objective functions. The points were sampled from a 100x100 grid (10,000
points total). We sample 750 points from the grid, and solve the corresponding PDE-CL,
which gives us a candidate PDE solution. For our baseline, We interpolate the solution we
find on these 750 points to the 10,000 points using scipy.optimize’s cubic interpolation.
We also interpolate to a 1000x1000 grid to see how our model’s performance scales with
resolution.

APPENDIX C. LEARNING DIFFERENTIABLE SOLVERS FOR SYSTEMS WITH
HARD CONSTRAINTS 128

(a) 100x100 grid (b) 1000x1000 grid

Figure C.5.1: Quality of learned basis functions. We compare the interpolation from the
hard-constrained points against our model’s learned prediction. Our learned basis functions
have lower error, as compared to the baseline interpolation. The error gap increases with
higher resolution on the grid of interest (i.e., a finer discretization). Our learned basis
functions are 36% more accurate than the baseline interpolation for the 100x100 grid, and
37% more accurate than the baseline interpolation for the 1000x1000 grid.

Results. We compare the above results with the output of our trained hard-constrained
model. Once the linear combination weights are fit (same as the baseline), we now use our
learned basis functions to perform inference over all 10,000 (or 1 million) points. We plot our
results over the test dataset in Figure C.5.1. The figure shows that using our model reduces
the error, as compared to using a standard interpolation on the hard-constrained points.

C.6 Comparison to numerical solvers

We compare the complexity of our PDE-CL framework against numerical methods.

Problem setup. We define a nx × nt grid over a 1D domain with with nx samples. We
have a time horizon of [0, T], with nt samples. In this case, we assume that the PDE is linear.
Let us suppose that we set the number of basis functions to N and the number of sampled
points for solving the PDE-CL to n = ninterior + nIC + nBC . The PDE-CL will then solve a
(n+ nIC + nBC)×N linear system. Our method currently results in a dense linear system.
Solving this linear system has complexity O(max(ninterior + nIC + nBC , N)2 ×min(n+ nIC +
nBC , N)). This is added to a forward pass using the NN on the whole grid, once the optimal
linear combination has been computed. Fortunately, this forward pass is embarrassingly
parallel.

APPENDIX C. LEARNING DIFFERENTIABLE SOLVERS FOR SYSTEMS WITH
HARD CONSTRAINTS 129

On the other hand, a finite difference method such as Crank-Nicolson or Lax-Wendroff
requires solving a tri-diagonal system of size nx at each t step. This yields an overall
complexity of O(nx × nt). Comparing the complexity of both methods, the PDE-CL is
asymptotically faster than numerical methods when,

max(n,N)2 ×min(n,N) < nx × nt. (C.6)

In our current framework, inference is marginally slower or on par with numerical solvers.
However, as we increase the resolution of our grid (finer discretization), our method compares
favorably to the numerical solver—our computational cost increases more slowly than the
numerical solver. Additionally, the operations in our PDE-CL are poorly optimized for
current hardware, i.e., GPU utilization is low. Our method will greatly benefit from future
improvements in hardware acceleration, which is still a nascent field in the context of linear
solvers on GPUs.

130

Appendix D

Probabilistic forecasting with coherent
aggregation

D.1 Details for each dataset

Tourism-Large. The Tourism-Large dataset [123] represents visits to Australia, at a
monthly frequency, between January 1998 and December 2016. We use 2015 for validation,
and 2016 for testing, and all previous years for training. The dataset contains 228 monthly
observations. For each month, we have the number of visits to each of Australia’s 78 regions,
which are aggregated to the zone, state and national level, and for each of four purposes of
travel. These two dimensions of aggregation total N = 304 leaf entities (a region-purpose
pair), with a total of M = 555 aggregates in the hierarchy. We pre-process the data to
include static categorical features representing the region, zone, state and purpose. We use a
time-varying categorical feature representing the month of year (an integer between 0 and
11), and finally, the past observed values of the time-series.

Favorita. The Favorita dataset [137] contains grocery sales of the Ecuadorian Corporación
Favorita in N = 54 stores. We perform geographical aggregation of the sales at the store,
city, state and national levels, following [112]. This yields a total of M = 94 aggregates.
Concerning features, we use past unit sales and number of transactions as historical data.
We include several static categorical features provided by the dataset, such as item type
categories, or precomputed store clusters. Finally, to capture seasonality, we use day of week
and day of month categorical features.

Traffic. The Traffic dataset [127] contains aggregates of daily freeway occupancy rates for
200 sampled (out of 963) car lanes in the San Francisco Bay Area between January 2008
to March 2009. We follow the aggregation defined in Taieb and Koo [127]. We note that
this scheme aggregates occupancy rates by adding them up. There are three aggregated
levels: four groups of 50 car lanes, two groups of 100 car lanes, and an overall group of
200 lanes. Each group was chosen randomly in Taieb and Koo [127]; we keep the same

APPENDIX D. PROBABILISTIC FORECASTING WITH COHERENT AGGREGATION131

grouping. We follow previous experiments in the literature [127, 100, 112], and split the
dataset into training, validation, and test dataset of size 120, 120 and 126. In Table 6.3, we
report accuracy numbers for the last date of 126 dates only, following the experimentation
setting in [100, 112].

Features

Tourism-Large. We describe the features in Table D.1.1.

Feature Temporality Kind

Observations Past Numerical
Month of year Past/Future Categorical
Region Static Categorical
Zone Static Categorical
State Static Categorical

Table D.1.1: Features used for the Tourism-Large dataset.

Favorita. We describe the features in Table D.1.2.

Feature Temporality Kind

Observations Past Numerical
Store-level total transactions Past Numerical
Day of month Past/Future Categorical
Day of week Past/Future Categorical
On-promotion indicator Past/Future Categorical
Family Static Categorical
Class Static Categorical
Type Static Categorical
Cluster Static Categorical
Store number Static Categorical
City Static Categorical
State Static Categorical

Table D.1.2: Features used for the Favorita dataset.

Traffic. We describe the features in Table D.1.3.

APPENDIX D. PROBABILISTIC FORECASTING WITH COHERENT AGGREGATION132

Feature Temporality Kind

Observations Past Numerical
Day of month Past/Future Categorical
Day of week Past/Future Categorical

Table D.1.3: Features used for the Traffic dataset.

Reported CRPS

For each dataset, CRPS is reported at different granularities, and then an overall CRPS is
reported by taking a simple average across all levels. Below we discuss detailed definition of
levels for each dataset, as shown in Table 6.3.

Tourism-Large Base time series in Tourism-Large represents number of visitors from 4
purposes and 76 regions, where regions can be aggregated up to zones, states and nation.
After counting aggregates at different levels, there are 555 time series. Level 8 consists
of average CRPS across all 4 × 76 purpose-region level predictions. Level 7 consists of
average CRPS across 4× 27 purpose-zone level predictions. Level 5 and 6, each consists of
4× 7 purpose-state level predictions, and 4 predictions for all purposes at the national level,
respectively. Similar to levels 5-8, CRPS for different geographical granularities are reported
at level 1-4, but the predictions being evaluated are for number of visitors aggregated across
purposes. For example, level 4 includes CRPS averaged across 76 regions, and level 1 is
CRPS for national level prediction.

Favorita For 4K grocery items sold across 54 stores across 22 cities in 16 states in Ecuador,
the average CRPS across 4036× 54 item-store level predictions are reported at the “store”
level. At the “city” level, average metric across 4036 × 22 item-city level predictions are
reported. Similarly, we measure forecast accuracy at the “state” and “country” level.

Traffic We follow definition of hierarchies for Traffic data in [127]. 200 sampled car
lanes are randomly aggregated to four quadrants, and further two halves, and lastly into one
group as a whole. Level 4 in Table 6.3 includes average CRPS across 200 car lanes. Level 3
and 2 each consists of average CRPS across four quadrants and two halves. Level 1 consists
of CRPS for the aggregated prediction for all car lanes.

D.2 Code Script for Sampling

We provide a snippet of code for sampling from our factor model in Figure D.2.1.

APPENDIX D. PROBABILISTIC FORECASTING WITH COHERENT AGGREGATION133

1 def get_samples(factor_params , shares , stds , aggregation_mat ,
n_samples):

2 concentration = factor_params[..., 0]
3 rate = factor_params[..., 1]
4 factor_samples = torch.distributions.Gamma(concentration , rate).

rsample ((n_samples ,))
5 samples = torch.distributions.LogNormal ((shares * factor_samples).

sum(-1), stds).rsample ()
6 aggregate = Aggregate(axis=2, ndim=6)
7 return aggregate(samples , agg_mat)
8

Figure D.2.1: PyTorch function for sampling from our model, with a Gamma factor distribu-
tion and a Log-Normal base distribution. Note that the factor samples are shared across all
base-level distributions. The samples are differentiable with regard to the function inputs.
We can easily adapt this function to sample from other distributions. The parameters of the
function are the outputs of a neural network.

D.3 Visualization of Predictions

In Figure D.3.1, we show our predictions for the Favorita dataset over a hierarchy containing
Store 1, the city of Quito, the state of Pinchincha and the whole country of Ecuador.

APPENDIX D. PROBABILISTIC FORECASTING WITH COHERENT AGGREGATION134

(a) Store (1) (b) City (Quito)

(c) State (Pinchincha) (d) Country (Ecuador)

Figure D.3.1: Targets and predictions on the test set, for the hierarchy containing Store 1,
for a given item, in the Favorita dataset. We visualize weekly forecast generated at the first
forecast creation date in the test set. We show the forecasted quantiles at levels 0.01, 0.05,
0.1, 0.5, 0.9, 0.95 and 0.99 to demonstrate the spread of our forecasts, where the quantile
forecasts are estimated empirically from 500 points from the factor model at each forecasted
week. The model uses Gamma factors, and a Normal distribution clipped to be non-negative
at the base-level. Clipping the Normal rather than truncating it allows to put point mass at
zero, which is useful at the store level, as can be seen in Figure. D.3.1a: up to P10 quantile
forecast is zero at the store level for this item for all evaluation weeks.

	Contents
	List of Figures
	List of Tables
	Overview
	Algorithms
	Linearly convergent Frank-Wolfe with backtracking line-search
	Introduction
	Methods
	Analysis
	Benchmarks
	Conclusion and Future Work

	Stochastic Frank-Wolfe for constrained finite-sum minimization
	Introduction
	Methods
	Analysis
	Stopping Criterion
	Discussion
	Implementation Details
	Experiments
	Conclusion and Future Work

	Constrained Optimization Software
	Introduction
	Project Vision
	Methods Currently Implemented
	Underlying Technologies
	Examples

	Models
	Learning differentiable solvers for systems with hard constraints
	Introduction
	Background and Related work
	Methods
	Experimental results and implementation
	Conclusions

	Probabilistic forecasting
	Introduction
	Background and Related Work
	Our Main Method
	Empirical Evaluation
	Conclusion

	Bibliography
	Stochastic Frank-Wolfe
	Smoothness
	Proof of Lemma 1
	Completing the proof for Theorem 1
	Bounds for Bt, Ct
	Convergence of the stochastic gap to the FW gap (Proposition 1.)
	Proof of Theorem 2
	Comparison with other methods
	Comparison with full-gradient Frank-Wolfe

	Frank-Wolfe with backtracking line-search
	Pseudocode
	Basic definitions and properties
	Preliminaries: Key Inequalities
	Proofs of convergence for non-convex objectives
	Proofs of convergence for convex objectives
	Proofs of convergence for strongly convex objectives
	Experiments

	Learning differentiable solvers for systems with hard constraints
	1D convection
	Details on the 1d Convection problem
	Details on the Darcy Flow problem
	Hard constraints bound
	Ablation: Evaluating the quality of the learned basis functions
	Comparison to numerical solvers

	Probabilistic forecasting with coherent aggregation
	Details for each dataset
	Code Script for Sampling
	Visualization of Predictions

