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Purpose: Delayed enhancement imaging is an essential component of cardiac MRI, 
which is used widely for the evaluation of myocardial scar and viability. The selec-
tion of an optimal inversion time (TI) or null point (TINP) to suppress the background 
myocardial signal is required. The purpose of this study was to assess the feasibility 
of automated selection of TINP using a convolutional neural network (CNN). We 
hypothesized that a CNN may use spatial and temporal imaging characteristics from 
an inversion‐recovery scout to select TINP, without the aid of a human observer.
Methods: We retrospectively collected 425 clinically acquired cardiac MRI exams 
performed at 1.5 T that included inversion‐recovery scout acquisitions. We devel-
oped a VGG19 classifier ensembled with long short‐term memory to identify the 
TINP. We compared the performance of the ensemble CNN in predicting TINP against 
ground truth, using linear regression analysis. Ground truth was defined as the expert 
physician annotation of the optimal TI. In a backtrack approach, saliency maps were 
generated to interpret the classification outcome and to increase the model’s 
transparency.
Results: Prediction of TINP from our ensemble VGG19 long short‐term memory 
closely matched with expert annotation (ρ = 0.88). Ninety‐four percent of the pre-
dicted TINP were within ±36 ms, and 83% were at or after expert TI selection.
Conclusion: In this study, we show that a CNN is capable of automated prediction 
of myocardial TI from an inversion‐recovery experiment. Merging the spatial and 
temporal characteristics of the VGG‐19 and long short‐term‐memory CNN struc-
tures appears to be sufficient to predict myocardial TI from TI scout.
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1 |  INTRODUCTION

Delayed enhancement imaging is an essential component of 
cardiac MRI and is used widely for the evaluation of myocar-
dial scar and viability. The selection of an optimal inversion 
time (TI), known as the myocardial null point (TINP), to sup-
press the background myocardial signal is required to optimize 
image contrast in myocardial delayed enhancement (MDE) 
acquisitions.1 Incorrect selection of TINP can impair diagnos-
tic quality. In certain diffuse myocardial diseases such as am-
yloidosis, it may be difficult to identify a single optimal null 
point.2,3 Furthermore, it is known that TINP varies after intrave-
nous contrast administration, and is therefore time‐sensitive.1

In practice, selection of myocardial TI is generally per-
formed through visual inspection and selection of TINP from 
an inversion‐recovery scout acquisition. This is dependent on 
the skill of a technologist or physician to select the optimal 
TI, which may not be readily available outside of specialized 
centers. Thus, several technical approaches have been pro-
posed to address this issue. Gassenmaier et al investigated the 
feasibility of developing a T1 mapping–based method for the 
selection of TINP for late‐gadolinium enhancement cardiac 
MRI.1 The phase‐sensitive inversion‐recovery technique has 
also been widely adopted to broaden the range of acceptable 
TIs for MDE and to avoid inversion artifact.4,5 However, such 
methods still rely on visual inspection of an image series by 
a trained human observer to select an optimal myocardial TI.

Deep learning approaches, including convolutional neural 
networks (CNNs), have the potential to automate the selec-
tion of TI and are the current state‐of‐the‐art technology for 
image classification,6-11 segmentation,12-17 localization,18-22 
and prediction.23 The CNNs apply a variation of multilayer 
perceptron to identify the optimal representation from the 
input (raw) data without requiring prior feature selection.24 
These models are known for capturing and automatically 
weighing the most relevant features from images (e.g., edge, 
contrast, intensity, morphology) to perform a specific task. 
However, there is a dearth of temporal information in static 
CNN models. During the visual inspection of the inversion 
scout sequence, trained observers often sequentially view the 
series of images to identify TINP. Long short‐term memory 
(LSTM) models are a building unit for layers of a recurrent 
neural network, which observe temporal features from multi-
ple frames. These models have been applied successfully for 
the evaluation of dynamic temporal activities in object rec-
ognition.25,26 Combining the spatial features from CNN and 
the temporal features from LSTM could therefore provide a 
comprehensive set of feature maps to optimally select the null 
point from a TI scout sequence.

The purpose of this study is to assess the feasibility of 
automated selection of TINP using a new deep learning ap-
proach combining the characteristics of a CNN and LSTM, 
using a model we refer to as STEMINet (SpatioTemporal 

Ensemble Myocardial Inversion Network). We hypothesized 
that our ensembled model may utilize spatial and temporal 
imaging characteristics from an inversion‐recovery scout to 
select TINP, without the aid of a human observer.

2 |  METHODS

2.1 | Patient demographics and cardiac 
MRI
With HIPAA compliance and internal review board approval 
with institutional waiver of informed consent, we retrospec-
tively collected 425 clinically acquired cardiac MRI exams 
performed at 1.5 T from 2012 to 2017 (age: 12‐88 years, 157 
female and 268 male) (Table 1), which included inversion‐re-
covery scout acquisitions 8 minutes after the administration 
of gadolinium‐based intravenous contrast. For all subjects, 
0.3 mL/kg (0.3 mmol/kg) of gadobenate dimeglumine was 
administered. The inversion‐recovery (cine IR) scout se-
quence captures image contrast evolution at multiple time 
points following an inversion pulse, and is typically used to 
identify the optimal TI for MDE imaging. The inversion‐re-
covery scout contained 30 frames with flip angle = 10, ma-
trix = 128 × 128, slice thickness = 8 mm, TR = 4.5 ms, and 
TE = 2.0 ms, acquired with a temporal resolution of 24 ms to 
36 ms and TIs ranging from 88 ms to 1289 ms.

2.2 | Inversion time null point (TINP) 
ground‐truth annotation
A radiology resident (T.R.) was trained to visually select 
the image in the sequence corresponding to the optimal 
myocardial TI (TINP) by a board‐certified cardiac radiolo-
gist (A.H.) with 10 years of experience in cardiac MRI. Due 

T A B L E  1  Patient demographics and reason of study

Patients (n)

Sex Male 268

Female 157

Age range (years) 12‐88 (average: 46)

Indications Myocardial scar/viability 119

Amyloid 10

Hypertrophic 
cardiomyopathy

30

Other cardiomyopathy 100

Mass 54

Congenital heart disease 9

Pericardial disease 13

Myocarditis/Sarcoid 34

Others 56
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to the frequently suboptimal selection of TIs in our clinical 
exams, we chose the more reliable reference standard of a 
dedicated radiologist‐supervised annotation of the cine IR 
images, rather than the selected TI of the MDE images. The 
optimal TINP was marked on all available inversion‐recovery 
scout sequences as the time point at which the myocardium 
had the lowest homogeneous signal intensity, after resolution 
of inversion artifact.

2.3 | Problem definition and model design
Although it is tempting to define the problem of selecting a sin-
gle optimal TI in a cine IR series as a classification task to iden-
tify a solitary frame from a series of time frames, we instead 
posed the problem as a more balanced 2‐class classification 
problem: classifying frames before the optimal TI as “early,” 
and those at or following the optimal TI as “acceptable.” Image 
frames before the ground‐truth TINP were considered “early,” 
whereas the image frames at or beyond TINP were considered 
“acceptable.” We believed that this more balanced 2‐class 
formulation would be more tractable for a neural network. 
In addition, because we felt that the temporal context of each 
frame could be helpful for identifying the optimal TI, we im-
plemented a sliding window of 4 consecutive frames as inputs 
to the neural network (Figure 1). Each window was assigned a 
class based on its third frame, so that 2 frames preceding and 1 
frame following the frame of interest could provide context. In 
other words, the input data window spanned 4 image frames, 

including the frame of interest (t0), 2 preceding (t‐2, t‐1), and one 
following (t1). Formulating the problem in this way, predicted 
inversion time can be calculated as the third image of the first 
acceptable window in a time series.

2.4 | Model structure and training
To solve this classification task, we devised an ensemble neu-
ral network called the STEMI‐Net (Figure 2). This network 
includes a deep VGG19 convolutional network,27 with the 
primary intent of capturing relevant spatial features. In addi-
tion, we included a recurrent neural network in the form of 
LSTM28 to address temporal features relevant to this task. We 
constructed and trained 3 neural networks separately to assess 
their relative performance (VGG19, LSTM, and STEMI‐
Net). All models were built based on the inversion‐recovery 
scout images, and no transfer learning or weight initialization 
was used. The models were each independently trained on 
a GPU workstation running Ubuntu 16.04, equipped with a 
Titan X graphics card (NVIDIA, Mountain View, CA). For 
each model described subsequently, networks were used to 
classify windows into 2 classes, “early” and “acceptable,” 
and the third frame defined the class.

2.4.1 | VGG19
First, we constructed a 4‐channel VGG19 network, in which 
a sliding window of 4 consecutive frames was used as the 

F I G U R E  1  Formulation of the inversion time selection problem as a time window classification task. From a series of images from an 
inversion‐recovery scout (left), multiple 4‐frame image windows can be created. Two of these 4‐frame image windows are shown (right). Frames 
preceding the optimal inversion time (TI) are labeled as “early,” and frames at or following this time are labeled as “acceptable.” On the right are 2 
example windows. The third frame of each window (t0) defines the class of the window
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input. This model included 5 blocks of convolutional layers 
and was trained in the Keras environment with a Tensorflow 
backend. The initial hyperparameters of this network were 
set with a learning rate of 10‐3, momentum of 0.9, kernel size 
of 21 in the first block and 3 in the rest, decay of 10‐4 of the 
learning rates, using stochastic gradient descent as the opti-
mizer, while shuffling the data. These 5 blocks were able to 
create 1024 deep features for each individual input.

2.4.2 | Long short‐term memory
We also constructed a separate recurrent neural network 
to address the temporal relationship between image frames 
using LSTM. This LSTM model included 16 filters, with a 
2D kernel size of 3. We maintained the image size at 256 
× 256 with the embedding dimensions of 128. Three se-
rial bidirectional LSTMs (Keras LSTM model) with return 
sequence were implemented to capture both forward and 
backward relationships across the frames (classes were de-
fined as “early” and “acceptable”; the third frame defined 
the class).

2.4.3 | STEMI‐Net
Finally, we developed a third and final network, called 
STEMI‐Net, in which the spatial features captured by a 

VGG19 were ensembled with the temporal features captured 
by 3 LSTM blocks. Each network extracted 1024 features 
independently, and concatenating these features provided us 
with a large number of parameters (n = 2048). Two dense 
layers were used to reduce the redundancies in the feature 
maps. We used 0.5 dropout to increase the robustness of the 
remaining features. Training error was minimized using the 
stochastic gradient descent optimizer, minimizing binary 
cross‐entropy, and was validated by classification accuracy. 
Training was performed over 50 epochs with a batch size  
of 1.

2.5 | Saliency map
A saliency map, also known as an attention map, is a vis-
ual representation of salient regions, pixels, or objects in an 
image that are activated during the classification task.29,30 
Inspection of saliency maps can help localize the spatial and 
temporal characteristics that a CNN uses to make the final 
classification into early and acceptable categories. Saliency 
maps were created based on a backpropagation paradigm, 
decoding the most important features from the input image. 
The rectified linear unit was used as the backpropagation 
modifier for saliency map visualization, using the Keras_Vis 
toolkit.31 Saliency maps were generated based on the tempo-
ral and spatial characteristics of all 4 slices of the windows to 

F I G U R E  2  Structure of STEMI‐Net (SpatioTemporal Ensemble Myocardial Inversion Network). The network architecture contains a VGG19 
classifier (convolutional neural network) ensembled with long short‐term memory (LSTM) block (recurrent neural network) to extract the most 
efficient and related spatial and temporal features on the cardiac MRI inversion‐recovery scout. This model concatenates the features captured 
by convolutional neural network and recurrent neural network blocks to classify windows as early or acceptable, to identify the most optimal 
myocardial TI or null point
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illustrate relevant features, and then were overlaid on the t0 
slide for presentation.

2.6 | Statistics
Five‐fold cross‐validation was performed. For each cross‐
validation step, the neural networks were initialized with ran-
dom weights (keras: kernel_initializer = “random_uniform”; 
bias_initializer = “zeros”) and freshly and independently 
trained with 80% of the patients, whereas the remaining 20% 
of patients were used as independent test data. Cross‐valida-
tion is a commonly used strategy to ensure that proposed al-
gorithms are not dependent on the selection of any particular 
subset of training data. Network training performance was 
assessed by accuracy and model loss at each epoch. In the 
model prediction step, classification accuracy for each win-
dow was captured on the validation data set. The confusion 
matrix and its parameters were calculated on the validation 
data set in a per‐patient scheme. We compared the perfor-
mance of the ensemble CNN for predicting TINP against 
ground truth and calculated the correlation coefficient using 
the Pearson method. Ground truth was defined as the expert 
physician annotation of optimal TI. Python 3.6 and R were 
used for statistical analysis.

3 |  RESULTS

We first evaluated the relative performance of the VGG19, 
LSTM, and STEMI‐Net neural networks for classifying each 
of the 4‐frame windows into early and acceptable categories. 
Using VGG19 alone, classification accuracy was 83.9% ± 
2.8%. Using LSTM alone, classification accuracy was 81.9% 
± 3.2%. In contrast, the ensemble STEMI‐Net had a classifi-
cation accuracy of 92.1% ± 2.2%, exceeding the performance 
of either of its component networks. STEMI‐Net learned 419 

870 850 parameters. Table 2 indicates the accuracy of all 3 
models in 5‐fold cross‐validation.

3.1 | Inversion‐recovery null 
point prediction
Next, we evaluated the performance of the neural networks 
in identifying the myocardial null point. As described previ-
ously, the predicted null point can be calculated as the third 
frame (t0) of the first acceptable window in a time series. 
Prediction of TINP from our ensemble STEMI‐Net closely 
matched with expert annotation (ρ = 0.88). STEMI‐Net pre-
dicted the exact inversion‐recovery time as the ground truth 
for 63% of the patients (n = 285). In 94% of cases (n= 397), 
predictions of TINP were within 1 frame (approximately 36 
ms) of the ground truth. In addition, in 83% of cases (n = 
352) the prediction occurred at or after the ground truth, sug-
gesting that the neural network was largely able to choose TIs 
at time points after inversion artifact. Figure 3 demonstrates 
the performance of STEMI‐Net.

3.2 | Transparency and attention maps
To further explore the underlying characteristics of 
STEMI‐Net, we created saliency maps to better understand 

T A B L E  2  Training and accuracy of STEMI‐NET and its 
component models

Model Accuracy

VGG19 83.9% ± 2.8%

LSTM 81.9% ± 3.2%

STEMI‐NETa

Fold 1 92.9%

Fold 2 94.2%

Fold 3 93.9%

Fold 4 89.9%

Fold 5 89.8%

Total 92.1% ± 2.1%
aSTEMI‐Net outperformed the predictions of its individual components. 

F I G U R E  3  Performance of STEMI‐Net relative to the ground 
truth. Dark green boxes show the number of patients for whom the 
optimal ground‐truth frame exactly matched the STEMI‐Net system. 
Sixty‐three percent of predictions exactly matched ground truth and 
94% of predictions were within 1 frame of the ground truth. The light 
green boxes show the number of patients in whom the prediction 
underestimated ground truth, and the yellow boxes show the number of 
patients in whom prediction overestimated ground truth
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the behavior of the network during the classification task. 
These maps highlight the magnitude and location of the 
features with greatest activation during the classification 
task. Saliency map analysis on STEMI‐Net revealed that 
the network attention focused primarily on myocardium 

and skeletal muscle on windows that it ultimately classi-
fied as early (Figure 4A). In contrast, attention appeared 
to be more diffuse for windows classified as acceptable, 
with slightly increased attention to the blood pool. In cases 
in which myocardial scar was present (Figure 4B), this 
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pattern persisted. The classification of early windows was 
performed with attention to segments of normal myocar-
dium, and little or no attention to scar. In the few rare cases 
in which there was disagreement between STEMI‐Net and 
the expert reader, occasionally this was due to a more accu-
rate or equivocal prediction by the neural network (Figure 
4C). In this example, STEMI‐Net predicted the null point 1 
frame earlier than the expert. In retrospect, both time points 
were comparable, and an expert reader could have just as 
readily chosen the earlier time frame.

4 |  DISCUSSION

In this study, we showed that a CNN is capable of automated 
prediction of myocardial TI from an inversion‐recovery ex-
periment. We accomplish this through a novel transformation 
of an image‐frame selection problem into a 2‐class classi-
fication task. The 2‐class formulation enables the use of a 
classification approach, in which an otherwise selection of 
a single, optimal time frame may be too imbalanced to solve 
with this strategy—analogous to searching for a “needle in a 
haystack.” Merging the spatial and temporal characteristics 
of the VGG‐19 and LSTM CNN structures appears to be suf-
ficient to accurately classify these frames, and improves on 
each of the component networks. In this study, we studied the 
use of VGG19, which leverages spatial features, and LSTM, 
which leverages temporal features: a combination of both 
improved classification accuracy and overall null point pre-
diction. Furthermore, study of the saliency maps of STEMI‐
Net confirms that the classification task is accomplished by 
monitoring the signal characteristics of the myocardium.

Study of the behavior of neural network through sa-
liency maps may be valuable to assess their generalizability 
beyond the training data set. In this study, we calculated 
saliency maps through backpropagation, to localize fea-
tures that contribute to the final prediction. Study of sa-
liency maps showed that this model predicts the correct 
frame classification based on signal characteristics of myo-
cardium, skeletal muscle, and blood pool. This network 

appears to be robust, even in the presence of scar in the 
myocardium, and suggests that it may have clinical value if 
incorporated into clinical MRI protocols.

To our knowledge, STEMI‐Net is the first application of 
deep learning to address the selection of myocardial TI. A 
few deep learning algorithms have been proposed for other 
areas in cardiac MRI.32 Previously, Avendi et al used the 
CNN to automatically detect the left ventricle chamber in an 
MRI data set.32 In addition, Zhang et al combined recurrent 
neural network with convolutional LSTM for left‐ventricle 
myocardium segmentation.33 Xue et al introduced a spatial–
temporal circle LSTM model to calculate left‐ventricle myo-
cardial thickness in the short axis scan.34

A few limitations of this feasibility study should be 
noted. In the training and validation of this model, we re-
stricted training to short‐axis inversion‐recovery scout ac-
quisitions. Because some sites prefer 4‐chamber or other 
long‐axis acquisitions for the inversion‐recovery scout se-
quence, future work may incorporate long‐axis inversion 
data. Similarly, for this initial study, we included only 
training data from 1.5T scanners from a single vendor at 
our institution, and incorporation of data acquired at higher 
field strength (e.g., 3 T) and across vendors may improve 
the generalizability of the model. We did not specifically 
address variations in radiologist preference for “optimal 
null point” in this work. It is possible that a different ra-
diologist may systematically choose slightly earlier or 
later TIs, which raises the issue that an important design 
decision for neural networks can be the choice of ground 
truth. Because STEMI‐Net may be readily retrained with 
an alternate set of ground‐truth annotations, a future study 
could be performed to assess the use of ground truth ob-
tained from multiple radiologists on the performance of 
the algorithm. Moreover, the inversion‐recovery scout se-
quence has a finite temporal resolution, and it is possible 
that the optimal TI may lie between image frames of this 
sequence, which we did not fully explore here. Another 
limitation of the study is that there were relatively few 
cases of cardiac amyloidosis in our patient cohort, for 
which identification of a single TI may not be technically 

F I G U R E  4  A, Saliency maps from a typical case, classified with STEMI‐Net. On the top row are the source images from an inversion‐
recovery scout sequence. On the bottom row are saliency map color overlays on top of the source images, showing areas of highest attention by the 
neural network. Classification of windows as early is associated with attention to left ventricle and right ventricle myocardium, as well as skeletal 
muscle in the chest wall. Classification of windows as acceptable is associated with more diffuse saliency maps with relatively absent attention to 
the myocardium and slightly greater attention to the blood pool. B, Saliency maps from a case with myocardial delayed enhancement, classified 
with STEMI‐Net. On the top row are the source images from an inversion‐recovery scout sequence. On the bottom row are saliency map color 
overlays on top of the source images, showing areas of highest attention by the neural network. The neural network appears to ignore the area of 
myocardial scar in the septal wall when making the determination of an early time window. C, Saliency maps from a case with slight discordance 
between ground truth and STEMI‐Net. On the top row are the source images from an inversion‐recovery scout sequence. On the bottom row are 
saliency map color overlays on top of the source images, showing areas of highest attention by the neural network. STEMI‐Net identified a time 
point 1 frame earlier than that annotated by an expert radiologist. In retrospect, this selection time point may be closer to the actual myocardial null 
point/TI
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feasible due to intrinsic tissue heterogeneity of the myo-
cardium. Further investigation of how to optimize neural 
networks for this and other specific patient subgroups may 
be warranted. This might require obtaining an additional, 
larger cohort of such patients for further model training. 
Finally, a comprehensive test of the performance of the 
model in routine clinical practice would serve as the ulti-
mate test of its applicability and effectiveness in address-
ing this long‐standing problem.

5 |  CONCLUSIONS

In this study, we showed that STEMI‐Net is capable of au-
tomatically identifying the optimal myocardial TI from an 
inversion‐recovery scout acquisition. Implementation of this 
ensemble CNN into a clinical workflow may facilitate the 
automation of TI and may help improve the reliability and 
accessibility of cardiac MRI.
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