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Spoken language production involves selecting and assembling words and syntactic
structures to convey one’s message. Here we probe this process by analyzing natural lan-
guage productions of individuals with primary progressive aphasia (PPA) and healthy
individuals. Based on prior neuropsychological observations, we hypothesize that
patients who have difficulty producing complex syntax might choose semantically richer
words to make their meaning clear, whereas patients with lexicosemantic deficits may
choose more complex syntax. To evaluate this hypothesis, we first introduce a
frequency-based method for characterizing the syntactic complexity of naturally pro-
duced utterances. We then show that lexical and syntactic complexity, as measured by
their frequencies, are negatively correlated in a large (n = 79) PPA population. We
then show that this syntax–lexicon trade-off is also present in the utterances of healthy
speakers (n = 99) taking part in a picture description task, suggesting that it may be a
general property of the process by which humans turn thoughts into speech.

syntax–lexicon trade-off j syntactic complexity j syntax frequency j word frequency j primary
progressive aphasia

During language production, speakers turn complex thoughts into a linear sequence of
words (1–4). In the process of selecting how to package a message into an utterance,
speakers choose both the words and the syntactic frames that determine the order and
morphology of the lexical items (5, 6). The nature of the relationship between word
selection and structural selection has remained a long-standing topic of discussion in
the psycholinguistic literature (3, 5, 7–10). The primary concern of this research is to
delineate how the selection of words and syntactic structures affect each other in the
process of language production.
A classic finding from the neuropsychological literature is that patients with post-

stroke aphasia often fall within two broad categories: those with difficulties retrieving
and producing lexical items rich in semantic content and those with agrammatism who
have difficulties producing various morphosyntactic elements (11–16). A similar pat-
tern has been observed among patients with primary progressive aphasia (PPA), a clini-
cal syndrome arising from neurodegenerative disease that primarily affects language
(17, 18). Two of the variants, the logopenic variant (lvPPA) and the semantic variant
(svPPA), are characterized by deficits in lexicosemantic processing, whereas the nonflu-
ent variant (nfvPPA) is characterized by production of simplified syntactic structures
and/or effortful speech (19). At first glance, this double dissociation may seem to be
evidence for a modular system where lexical and structural representations are stored
separately and speech planning unfolds independently.
However, more fine-grained analyses hint at further interactivity and a trade-off in

the planning of lexical and structural elements. For instance, patients categorized as
agrammatic use semantically richer or heavier verbs such as fly and fewer light verbs
such as go, whereas patients with semantic deficits rely more on light verbs (20–25).
Thus, even the lexical items produced by patients with agrammatism seem to be
semantically richer. Similarly, it has been shown that svPPA patients produce more
high-frequency lexical items than nfvPPA patients and controls (26). They also produce
a numerically higher rate of syntactic embeddings in connected speech samples than
controls (refs. 27, 28 but also see ref. 29), which has been interpreted as a potential
compensation for lexicosemantic deficits (30).
This clinical observation of a trade-off in complexity between words and syntactic

structures during utterance assembly has the potential to inform psycholinguistic mod-
els of language production (26). However, the trade-off has not yet been rigorously
characterized, nor has it been observed in language production among healthy speakers.
Both limitations likely stem from the difficulty in operationalizing complexity in a
manner that is general enough to capture both lexicosemantic and syntactic complexity.
While lexicosemantic complexity has often been approximated with word frequency
(5, 31, 32), no directly comparable metric has yet been used for syntactic structures.
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In the present work, we probe a potential syntax–lexicon
trade-off in language production as follows. First, we provide a
frequency-based method for characterizing the syntactic complex-
ity of utterances in naturalistic speech. We then test whether lexi-
cal and syntactic complexity, as measured by their frequencies,
trade off in a large (n = 79) sample of individuals with PPA
engaged in a picture description task, which is commonly used
by clinicians to diagnose patients with PPA. We hypothesize that
patients with svPPA and lvPPA who have lexicosemantic deficits
choose more complex syntax to make their meaning clear. For
instance, if these patients are unable to access the low-frequency
noun phrase “a sailboat,” they might convey their meaning by
producing the more complex structure “a boat that is moved by
the wind.” Conversely, patients with nfvPPA who have difficulty
producing complex syntax as measured here by syntax frequency
might choose semantically richer words. Therefore, we expect a
negative correlation between the frequency of syntactic structure
and the frequency of words. In addition, as PPA patients have
persistent deficits in producing either complex syntactic or lexical
items in their utterances, we expect the average syntax frequency
and average word frequency to be negatively correlated at the
subject level.
Finally, we test the generalizability of the syntax–lexicon trade-

off in a large (n = 99) sample of healthy speakers taking part in
the same picture description task. Here we expect a negative cor-
relation between syntax frequency and word frequency at the
utterance level. Unlike PPA patients, this population has the abil-
ity to shift between the use of complex syntactic or complex lexi-
cal items, perhaps depending on what is more accessible in the
moment or what might facilitate comprehension.

A Frequency-Based Characterization of Syntactic
and Lexical Complexity

Previous research has used a variety of approaches to assess syn-
tactic complexity in language processing. In clinical popula-
tions, subjective assessments of syntactic complexity are based
on the use of rating scales (33) or the best judgment of clini-
cians (34). Other approaches measure various features of an
utterance such as the constituent or utterance length (35–37),
the ratio of function words to content words (27, 28, 37, 38),
the ratio of nouns to verbs (27, 37–39), the number of embed-
ded clauses (27, 29, 38, 39), the proportion of inflected verbs
(27, 38, 40), the use of certain noncanonical structures
(41, 42), the left-branching depth of an utterance (27, 38, 43),
the stage of development of structures during language acquisi-
tion (44, 45), and more recently, the variability of the structure
of clauses (46, 47). Many of these measures are correlated and
have been shown to differ between patient and control popula-
tions (48) and have been used to systematically study differ-
ences in patients with cognitive impairment (49–52).
In the psycholinguistics literature, much work has focused on

the real-time consequences of processing a sentence containing
syntactic ambiguity, which is often resolved after a few words.
A good predictor of the difficulty of resolving a temporary ambi-
guity is syntactic surprisal, which reflects how unpredictable a
word (or part of speech [POS]) is given the context (53, 54).
A second line of work in psycholinguistics has investigated
unambiguous sentence structures in both language comprehen-
sion and production. The difficulty of parsing or generating an
unambiguous sentence left to right is proportional to the degree
of center-embedding in the structure, the number of incomplete
phrase structure rules (55), the number of incomplete sentences
(56), and the maximal or average dependency distances within a

structure (57–60). Whereas Gibson proposed a distance measure
in terms of the number of discourse referents between a head
and dependent, a simplified version from the literature counts
the words between a head and dependent (61).

To explore a potential syntax–lexicon trade-off in language
production, a syntactic complexity metric should be compara-
ble to word frequency. We therefore propose the frequency of
syntactic rules as a characterization of syntactic complexity. To
measure the frequency of syntactic rules in spoken English, we
use the Switchboard corpus (62). We first parsed the sentences
in the corpus using the automated Stanford Lexicalized Parser
(63) in order to extract headed syntactic rules (Fig. 1).
A headed syntactic rule is determined by the head and all its
dependents in a dependency parse, whether they occur on the
left or right. Thus, the syntactic rules extracted from the parse
of the sentence “The older couple is picnicking with wine” in
Fig. 1 are as follows.*

1) for the head NOUN “couple”: det + amod + NOUN
2) for the head VERB “picnicking”: nsubj + aux + VERB +

nmod:with
3) for the head NOUN “wine”: case + NOUN

These n-ary rules correspond to all the dependents of a word
within a sentence. So the verb “picnicking” has three depend-
ents: the subject (nsubj) headed by “couple,” the auxiliary verb
(aux) “is,” and the modifier “wine” (nmod:with). The n-ary
rules represent word collocations in language, corresponding to
argument structures and common modifier structures (64, 65).
In particular, the n-ary dependency formalism would have one
rule for all dependents of a verb like “put,” which almost always
cooccurs with a subject noun, an object noun, and a goal noun
(e.g., as in “Mary put the bucket in the closet”). Furthermore,
as syntax frequency has not been previously evaluated in the

Fig. 1. Extracting syntactic rules of a dependency parse. (A) Sentences
produced by participants were annotated and disfluencies removed.
(B) Sentences were parsed using the Stanford Lexicalized Parser Package.
Dependency heads, underlined, were identified by the parser. (C) The com-
binations of heads and dependents, preserving the order in which they
appeared in the original sentence, were extracted as syntactic rules. This
sentence resulted in three syntactic rules. The analyses we present here
are by utterance (sentence). Thus, for this utterance, we would take the
average syntax frequency of the three syntactic rules and the average
word frequency for the content words in this sentence.

*The definition of common abbreviations of the dependency relations are provided in SI
Appendix, Table S1.
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aphasia literature, we test its clinical relevance by examining its
accuracy at classifying patients with nfvPPA.
For the same example sentence in Fig. 1, lexical complexity

was measured as the average word frequency across the four con-
tent words (older, couple, picnicking, and wine). Mean frequency
of content words (adjectives, adverbs, nouns, and verbs), as
opposed to all words, was chosen as the primary measure because
the frequency of nouns and verbs are the most commonly used
in assessments of PPA patients (28, 66, 67). We present equiva-
lent analyses using the mean frequency of all words in footnotes.

Results

Study 1: Word Frequency, Syntax Frequency, and the Syntax–
Lexicon Trade-Off in the Utterances of Patients with PPA and
Healthy Controls.
Word frequency. Here, we compare the average content word
frequency at the utterance level across the four groups. We fit a
mixed effects model with random effects for subjects to predict
log word frequency with patient subtype (treatment-coded with
healthy controls as reference level) and sentence length as pre-
dictors. We include random intercepts for subjects but no ran-
dom slopes since models with random slopes failed to converge.
The effect of patient subtype was significant by a likelihood
ratio test, comparing the full model to a null model with ran-
dom effects held constant but without the fixed effect for
patient subtype [chisq (3) = 118.5, P < 0.001].
Replicating previous findings in the literature on language pro-

duction in PPA, patients with lvPPA and svPPA produced utter-
ances with higher-frequency content words when compared with
healthy controls [β = 1.134, SE = 0.130, t = 8.744,

P < 0.001 and β = 1.350, SE = 0.136, t = 9.953,
P < 0.001, respectively). However, we found that patients with
nfvPPA used lower-frequency words (β = �0.282, SE = 0.135, t
= �2.085, P = 0.039) when compared with healthy controls.†

Fig. 2A shows the density graphs of content word frequency of
utterances across the four groups.
Syntax frequency.
Comparing syntax frequency of PPA variants with healthy controls.
Fig. 3 illustrates the proportions of use of the 20 most common
syntactic rules from the Switchboard corpus by patients with PPA
and healthy controls. The last set of bars shows the proportion of
use of syntactic rules for all other lower-frequency syntactic rules
illustrating that nfvPPA patients produce more of the common
syntactic rule types and fewer of the low-frequency syntactic rule
types when compared to healthy controls and other PPA variants.

A mixed effects model predicting log syntax frequency was fit
with patient subtype (treatment-coded with healthy controls as
reference level) and sentence length as predictors and random
intercepts for subjects (with no random slopes since they led to
convergence failures). The effect of patient subtype was signifi-
cant by a likelihood ratio test, comparing the full model to a null
model with random effects held constant but without the fixed
effect for patient subtype [chisq (3) = 60.364, P < 0.001]. Indi-
viduals with nfvPPA were more likely to use higher-frequency
syntax rules when compared to healthy controls [β = 0.704, SE
= 0.134, t = 5.237, P < 0.001], while patients with lvPPA and

Fig. 2. (A) The density graphs of content word frequency and (B) syntax frequency of utterances. (C) The box plots of content word frequency per individual
in each group. (D) The box plots of syntax frequency per individual in each group. The box plots show the median, 25th, and 75th percentiles of the data.
Error bars represent 95% CI.

†Analysis of all-word frequency, as opposed to just content word frequency, showed a simi-
lar pattern when we conducted the same analysis. Patients with lvPPA and svPPA produced
utterances with higher-frequency content words when compared with healthy controls
[β = 0.404, SE = 0.100, t = 4.022, p < 0.001 and β = 0.557, SE = 0.105, t = 5.320, p < 0.001,
respectively], while patients with nfvPPA used lower-frequency words
[β = �0.336, SE = 0.103, t = �3.255, p = 0.001] when compared with healthy controls.
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svPPA produced sentences with lower syntax frequency when
compared to healthy controls [β = �0.401, SE = 0.124, t =
�3.238, P = 0.002 and β = �0.415, SE = 0.129, t = �3.213,
P = 0.002, respectively]. Fig. 2B shows the density plots of syntax
frequencies of utterances in each group.
Comparing syntax frequency of PPA variants with healthy controls in
language subsamples with equal sentence length distributions. As
patients with nfvPPA tend to produce sparse speech when com-
pared with other groups, it is possible that the production of

syntactic rules with higher frequency results from the produc-
tion of shorter sentences. In the previous section, we used sen-
tence length as a predictor in the regressions. However, it is still
possible that there is a nonlinear relationship between sentence
length and syntax frequency which may drive the observed rela-
tionship and confound the results of the regression analyses.
Consequently, we ran a more conservative version of the analy-
sis where we randomly subsampled sentences from the language
outputs of each of the four groups so that all groups would

Fig. 3. The proportions of use of the 20 most common syntactic rules of the Switchboard by PPA patients and healthy controls. The last set of bars shows
all other lower-frequency rules.
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have the same distributions of sentence length. In this subsam-
ple, the linear regression analysis of syntax frequency with sub-
type as a dummy coded predictor (with the control group as
the reference level) and the same random effect structure as
described in Comparing syntax frequency of PPA variants with
healthy controls continued to show that patients with nfvPPA
produce syntactic rules with higher frequency (β = 0.654,
SE = 0.183, t = 3.58, P < 0.001) and patients with lvPPA and
svPPA produce sentences with lower syntax frequency when
compared to healthy controls (β = �0.409, SE = 0.184,
t = �2.23, P < 0.05 and β = �0.427, SE = 0.189,
t = �2.286, P < 0.05, respectively).
Syntax-lexicon trade-off in PPA patients and healthy controls. At
the utterance level, fitting a mixed effects model (68) that pre-
dicts content word frequency, with syntax frequency and sen-
tence length as predictors and random intercepts for subject
(with a random slope for syntax frequency but no correlations
and no random slopes for length, in order to aid convergence),
we found a main effect of syntax frequency (β = �0.09,
SE = 0.020, t = �4.63, P < 0.001) but not sentence length
(β = 0.013, SE = 0.008, t = 1.1.65, P = 0.09) (Fig. 4A). We
do not include patient subtype as a predictor in this analysis,
since we are investigating the utterance-level correlation across
the patient population and do not presuppose a diagnosis.
At the subject level (n = 132), syntax and word frequency

were inversely related to each other (r = �0.38, P < 0.001)
(Fig. 4B). This inverse correlation was stronger when only PPA
patients were analyzed (r = �0.65, P < 0.001) (the dashed line
in Fig. 4B).‡ Again, this analysis does not presuppose PPA
subtypes.

Classifying nfvPPA versus other groups using syntax frequency.
As syntax frequency has not been previously used in the aphasia
literature, here we examine the measure’s utility in differentiat-
ing patients with nfvPPA from healthy controls, lvPPA, and
svPPA by using binary logistic regression to compare the classi-
fication accuracy of syntactic frequency and other measures of
syntactic complexity commonly used in aphasia: sentence
length, the maximum length of an incomplete dependency in
an utterance (43), bigram entropy over POS tags (48), average
dependency distance of a sentence (57), and the ratio of nouns
to verbs. Table 1 shows the accuracy of the leave-one-out cross-
validation of the classification using the average score of each
measure of syntactic complexity per individual. We see that
syntax frequency on its own achieves high classification accu-
racy (89%; baseline = 78%). All models that include both sen-
tence length and lexical frequency and a syntactic complexity
metric have high classification accuracy (92% or greater), inde-
pendent of the choice of syntactic complexity metric. SI
Appendix, Table S2, shows the accuracy of classification of all
variants using multinomial logistic regressions, in which we use
a four-way classification to categorize a particular individual as
falling into the control group or one of the three patient
groups. We observed broadly similar patterns to that of the
logistic regression. All models that include both sentence length
and lexical frequency and a syntactic complexity metric have
high multinomial classification accuracy (66% or greater), inde-
pendent of the choice of syntactic complexity metric.

Fig. 4. Syntax–lexicon scatterplots. (A) Utterance level in PPA patients (n = 79) and healthy controls (n = 53). (B) Subject level in PPA patients (dashed line)
and healthy controls (solid line represents all data points). (C) Utterance level in healthy individuals (n = 99). (D) Subject level in healthy individuals.

‡We repeated similar analyses for the average frequency of all words in an utterance. At
the utterance level, fitting a maximal mixed effects model with random effects for subject

that predicts all-word frequency, with syntax frequency and sentence length as predic-
tors, we found a main effect of syntax frequency (β = �0.035, SE = 0.012, t = �2.83,
p < 0.01) but not sentence length (β = �0.001, SE = 0.005, t = �0.31, p = 0.76). At the sub-
ject level (n = 132), syntax and all-word frequency were inversely related to each other
(r = �0.41, p < 0.001). This inverse correlation was stronger when only PPA patients were
analyzed (r = �0.58, p < 0.001).
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We also obtained test scores on the Northwestern anagram
test (NAT), a measure of syntactic complexity used in multiple
studies of PPA, from 43 patients. In a binary logistic regression
model that predicted the nfvPPA status from both NAT and
syntax frequency as predictors, we found an effect for syntax
frequency [β = 5.072 (1.64), P = 0.002] but not NAT
[β = �0.003 (0.023), P = 0.911]. The inability of the NAT to
classify PPA subtypes replicates results recently reported in a
larger independent sample of patients (69).

Study 2: Syntax–Lexicon Trade-Off in Healthy Individuals.
The syntax–lexicon trade-off in healthy individuals describing the
picnic picture. The 99 healthy individuals who completed the
picture description task produced a total of 2,331 utterances.
Fitting a maximal mixed effects model with random intercepts
for subject and random slopes by subject for syntax frequency
(but not for sentence length in order to make the models con-
verge) that predicts content word frequency from syntax fre-
quency and sentence length as predictors, we found a main
effect of syntax frequency (β = �0.146, SE = 0.024,
t = �5.98, P < 0.001) but not sentence length (β = �0.004,
SE = 0.005, t = �0.65, P = 0.51) (Fig. 4C), indicating that
utterances with higher syntax frequency contained lower-
frequency content words and vice versa. We also examined the
syntax–lexicon trade-off at the subject level. During the plan-
ning of each utterance, healthy speakers may select either low-
frequency syntactic rules or low-frequency content words.
Therefore, the correlation between syntax frequency and word
frequency at the subject level was small (r = �0.02) and not
significantly different from 0 (P = 0.843).§

Combining all the utterance level data from studies 1 and 2
(as shown in Fig. 4 A and C), we ran a regression predicting
word frequency from syntax frequency, whether the subject was
a patient, and the interaction of patient status and syntax fre-
quency. We included a random intercept for subject but no
random slopes to aid convergence. We found that whether the
subject was a patient as opposed to healthy individual did not
significantly moderate the effect of syntax frequency on word
frequency, as evidenced by a nonsignificant interaction term
(for the interaction term, β = �0.018, P = 0.516).

Combining all the subject-level data from studies 1 and 2 (as
shown in Fig. 4 B and D), we ran a standard linear regression
predicting content word frequency, based on patient status
(i.e., whether the participant is a patient or a healthy control,
binarized as a dummy coded variable), with syntax frequency,
normalized sentence length, and the interaction between syntax
frequency and patient status. We vary whether the patient
group or control group is the baseline and use normalized sen-
tence length so that the main effect of syntax frequency can be
interpreted as the effect of syntax frequency for a sentence of
average length, in the baseline group. With the patient group
treated as the baseline, the main effect of syntax frequency was
a strong predictor of word frequency (β = �0.787, P < 0.001),
suggesting that within patients, word frequency is robustly
related to syntax frequency. Treating healthy individuals as a
baseline, we did not find a significant main effect for syntax fre-
quency to predict word frequency (β = �0.010, P = 0.918).
The syntax–lexicon trade-off at the utterance level in a subset of
healthy individuals describing their work. To examine the gener-
alizability of our findings, we evaluated the syntax–lexicon
trade-off in the language samples from a subset of MTurk
healthy controls (n = 26) who described their work. Fitting a
mixed effects model, with a random intercept for subject and a
random slope for syntax frequency (additional random slopes
prevented convergence) that predicts the average content word
frequency of an utterance using the syntax frequency and
length of the utterance as predictors, we found a numerical but
nonsignificant trend for the predicted effect of syntax frequency
(β = �0.102, SE = 0.067, t = �1.53, P = 0.14) and no clear
effect of sentence length (β = 0.0004, SE = 0.113, t = 0.033,
P = 0.97).¶

The syntax–lexicon trade-off at the utterance level in the Switch-
board corpus. Here, we tested the syntax–lexicon trade-off in
the utterances within the Switchboard corpus. We automati-
cally removed disfluencies, such as “um” and “uh.” Using a lin-
ear regression model to predict an utterance’s content word
frequency from its syntax frequency and sentence length, we
found a main effect of syntax frequency (β = �0.039,
SE = 0.004, t = �10.13, P < 0.001) and sentence length
(β = �0.025, SE = 0.001, t = �25.88, P < 0.001). Whereas
for the majority of our analyses, the results are qualitatively
similar when we use content word frequency or all-word

Table 1. Binary logistic regression with leave-one-out cross-validation to classify nfvPPA versus other groups
(lvPPA, svPPA, and control)

Model
Classification accuracy,

R2 of the model

Classification accuracy, R2 of
the model adding sentence

length as a predictor

Classification accuracy, R2 of the
model adding sentence length and

word frequency as predictors

nfvPPA ∼ sentence length 80%, 0.41 — 93%, 0.77
nfvPPA ∼ maximum

incomplete dependencies
85%, 0.43 83%, 0.44 92%, 0.78

nfvPPA ∼ POS entropy 86%, 0.62 91%, 0.76 93%, 0.83
nfvPPA ∼ dependency

distance
87%, 0.46 85%, 0.48 93%, 0.78

nfvPPA ∼ noun/(noun + verb) 79%, 0.16 87%, 0.57 94%, 0.80
nfvPPA∼ syntax frequency 89%, 0.61 90%, 0.67 92%, 0.80

Nagelkerke’s R2 is reported for each model. Chance on the classification task is 78%.

§We further repeated the analyses using all-word frequency instead of content word fre-
quency. Fitting a maximal mixed effects model with random effects for subject that pre-
dicts all-word frequency from syntax frequency and sentence length as predictors, we
found a main effect of syntax frequency (β = �0.057, SE = 0.014, t = �4.186, p < 0.001)
and sentence length (β = �0.009, SE = 0.003, t = �2.78, p < 0.01). At the subject level, the
correlation between syntax frequency and all-word frequency was small (r = 0.06) and
not significantly different from 0 (p = 0.540).

¶We repeated this analysis using all-word frequency. Fitting a maximal mixed effects
model with random effects for subject that predicts the average content word frequency
of an utterance using from the syntax frequency and sentence length of the utterance as
predictors, we did not find a main effect of syntax frequency (β = 0.004, SE = 0.04,
t = 0.115, p = 0.912) nor sentence length (β = �0.008, SE = 0.008, t = �0.992, p = 0.322).
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frequency, in this case they differ: using a linear regression model
to predict an utterance’s all-word frequency from its syntax fre-
quency and sentence length, we found a main effect of syntax fre-
quency (β = 0.009, SE = 0.002, t = 3.809, P < 0.001) in the
opposite direction of the predicted trade-off and a negative effect
of sentence length (β = �0.019, SE = 0.001, t = �30.494,
P < 0.001). Because all-word frequency is heavily dependent on
the ratio of function words to content words, it measures some-
thing fundamentally different from content word frequency, and
we leave it to future work to understand why this difference
emerges in the Switchboard analysis but not in the analyses of
the picture description task. In Discussion, we speculate about the
potential differences between tasks that might give rise to the
observed analysis differences.

Discussion

In this work, we introduced a frequency-based measure of syn-
tactic complexity that can be used to characterize any language
sample. Using this metric, we provide converging evidence for
a trade-off between syntactic and lexical complexity in lan-
guage productions for patients with PPA. Individuals with
nfvPPA generate higher-frequency syntax and lower-frequency
words. Conversely, patients with lvPPA and svPPA produce
utterances with higher-frequency words and lower-frequency
syntax. Impairment in the use of complex and thus lower-
frequency syntax in patients with nfvPPA is consistent with
previous reports of lower syntactic variability in the language
production of these patients. The use of higher-frequency
syntactic structures indicates that nfvPPA patients may have
difficulty accessing a wide range of syntax rules. The negative
correlation between syntax and lexical frequency held at both
the utterance level and the subject level, consistent with the
notion that the patients have a persistent deficit in either syn-
tactic or lexicosemantic processing which in turn influences
each utterance they produce. Crucially, we applied the same
analysis to speech samples from a large number of healthy indi-
viduals. Unlike patients with PPA, healthy speakers do not
have a persistent deficit that consistently constrains their pro-
duction of either low-frequency syntax or low-frequency words
for all utterances. Rather, healthy individuals vary this balance
from utterance to utterance, with utterances that contain low-
frequency words having higher-frequency syntax and vice versa.
Taken together, these findings suggest that healthy individuals
are able to dynamically produce language that balances syntac-
tic and lexical complexity, while people with PPA are impaired
in one of these dimensions yet still capable along the other
dimension.
From a clinical perspective, syntax frequency—which performs

as well in classifying patients as a number of well-attested meas-
ures of syntactic complexity like POS entropy and noun/verb
ratio—may be a promising tool for discriminating patients with
nfvPPA from other PPA subtypes. Unlike most other measures of
syntactic complexity in the PPA literature, such as noncanonical-
ity of sentence structures, which are applicable to a limited range
of syntactic forms, syntax frequency provides a complexity metric
which can be computed for any utterance. Additionally, the mea-
surement of syntactic frequency can be fully automated resulting
in analyses that are less labor-intensive to gather and less vulnera-
ble to potential human biases.
The syntax–lexicon trade-off fits well with multiple current

accounts in the language production literature. In what follows,
we elaborate on a few possible explanations of this trade-off in
terms of 1) communicative efficiency pressures and 2) access to

lexical or structural elements. The data presented in this work
do not allow us to distinguish among these explanations, which
are not necessarily mutually exclusive, but we detail them here
in the hopes that this will spur further empirical work. One
intuitive explanation of why we observe this trade-off is that it
reflects joint pressures to produce sentences that are unambigu-
ous yet not overly verbose or redundant (70). As the speaker
formulates their thoughts into utterances, they wish to be
clearly understood, so for example, saying “thing” to describe a
sailboat would not suffice. If they select a lower-frequency word
such as “sailboat,” the structure can be simple as the necessary
information has already been conveyed. If they select a higher-
frequency word, a more complex structure may be needed to
convey the same information, as in “a boat that is moved by
the wind.” Note that this is not meant to imply that lexical
items are chosen first. Combining both low-frequency words
and structures may often lead to verbosity or redundancy.

Along these lines, the syntax–lexicon trade-off can be
explained in the context of an information-theoretic account of
language production which proposes a single pressure on the
production system, that of distributing information evenly
across the utterance (70, 71). The uniform information density
(UID) hypothesis states that when multiple formulations are
possible, the speaker will choose the one for which information
is closest to uniformly distributed. This pressure avoids peaks
in information density which could overwhelm the capacity of
the channel and lead to information loss or troughs which
could lead to miscommunication. Under this hypothesis, listen-
ers are more likely to experience comprehension difficulty dur-
ing a moment of high unpredictability [surprisal (53, 54, 72)],
and speakers plan their utterances in such a way as to avoid
causing such difficulty. For example, speakers use shorter word
forms when they are more predictable (73, 74). At the syntactic
level, speakers are more likely to include an optional comple-
mentizer, “that,” when the upcoming clause is less predictable.
The presence of the complementizer serves as a cue to the
nature of the upcoming clause, thereby reducing its surprisal
(ref. 70 but see ref. 75). From a UID perspective, lexical and
syntactic elements are arranged in such a way as to efficiently
convey the intended information. When an upcoming word
will be high in surprisal such as a low-frequency word, the
speaker may distribute the information more uniformly by
using a simple structure such as a high-frequency one.
Similarly, when the structure is complex, simpler words may be
chosen to avoid peaks of information that would exceed the
channel’s capacity.

Alternatively, according to a more mechanistic account of
language production, some lexical and structural elements are
easier to access—more available—and are therefore more likely
to be produced (76–79). Ease of access is influenced by a num-
ber of factors, including perceptual salience (80), the topic of
conversation, idiosyncratic interest, conceptual simplicity, life-
long exposure, and recent experience (81–85). Lexical selection
in this framework is typically modeled as spreading activation
through a connectionist network from a meaning layer down to
a lexical and finally a phonetic layer (5, 86, 87). The process of
producing a word involves both the activation of the single
most active representation and the inhibition of coactive com-
petitors which is thought to engage domain-general cognitive
control (88, 89). Similarly, neural networks have been used to
model effects of syntactic persistence in production (90). Syn-
tactic selection in these models involves the spread of activation
from the meaning layer down to the syntactic state of the net-
work and ultimately to the output layer (23, 91–93). Thus, via
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a similar mechanism of selection and competitor inhibition, it
is plausible that cognitive control—possibly language-specific
(94)—plays a role in syntactic selection as well. We can specu-
late that on this view, the planning of an utterance requires shared
cognitive control resources to be allocated both for the selection of
a lexical item and for that of a structure. Less cognitive control is
needed to select an item that is higher in availability. Thus, if a
lexical item is low in availability, such as a low-frequency word, its
selection will require a large amount of cognitive control resources,
and little will be available for the selection of a structure. In this
scenario, only the most available structures—typically high-
frequency structures—will be chosen. On the other hand, if a
structure is highly available, its selection will require fewer cogni-
tive control resources, and consequently, more will be available for
the selection of low-frequency words. Further empirical work is
needed to determine whether lexical items and structures do in
fact compete for shared resources in the process of utterance
formulation.
Interestingly, although the trade-off between syntax and

lexical frequency was robust in the picture description task, the
evidence in the work description task and in the Switchboard
corpus was mixed (the trade-off holds for analyses including
just content words but not all words). This may be explained,
at least in part, by the smaller sample size of the work descrip-
tion task and the additional noise present in the Switchboard
dataset (many false starts, such as “I’ve” or “I’m,” remain as full
sentences; many discourse fillers, such as “you know,” also
remain), relative to the picture description utterances which
were filtered of discourse markers, false starts, and other dis-
fluencies (see protocol in SI Appendix, supplementary material 3).
More intriguingly, the cognitive demands and linguistic con-
tent present in the different types of speech samples may play a
role. Much of the speech sampled in the Switchboard corpus
consists of casual conversation between people. Similarly, the
work description task involves generating narratives from the
speaker’s own personal context, which is easily accessible. Both
of these speech samples may consist of language that is more
familiar, internally elicited, and likely less demanding. It may
be that the cognitive and linguistic demands imposed by on-
the-fly description of an unfamiliar image are sufficiently
demanding to reveal trade-offs in production processes. Thus,
in order to investigate this lexicosyntactic trade-off in language
production, we may need to focus on tasks like picture descrip-
tion. Note that many scenarios in which people use language
in everyday life are in fact more similar to the unfamiliar pic-
ture description task than to the casual conversation about
one’s own life, for instance, a professor lecturing to a class-
room, a person giving directions to someone else from a map,
etc.
Overall, these studies suggest that language production

involves a trade-off in complexity between lexical and syntactic

elements of utterances. For healthy speakers, this appears to
reflect an implicit utterance-by-utterance decision process, at
least for tasks like picture description. We speculate that this
trade-off results from the language system’s need to manage the
costs of producing informative language in light of information
processing constraints both on the side of speakers and listen-
ers. Further experimental work is needed to elucidate the
underlying mechanisms driving this trade-off. In addition, use
of a frequency-based specification of syntactic complexity not
only allows for the evaluation of the syntax–lexicon trade-off
but also provides a metric that is of clinical value for differenti-
ating patients with agrammatism in PPA from other variants.
Future work is needed to further explore the utility of syntax
frequency in other languages as well as other research domains
such as poststroke agrammatism or the development of syntax
during normal language acquisition.

Methods

Participants.
Study 1. The first study includes 79 PPA patients and 53 healthy controls with
details as follows and as shown in Table 2.
PPA patients. Seventy-nine patients with PPA were recruited from an ongoing
longitudinal study being conducted in the PPA Program in the Frontotemporal
Disorders Unit of Massachusetts General Hospital. Baseline clinical and language
assessments were used to characterize patients and to subtype them into nfvPPA
(n = 29), svPPA (n = 24), and lvPPA (n = 26). The participants of this study
underwent a comprehensive clinical evaluation as previously described (95). The
evaluation included a structure interview by a neuropsychiatrist and a neurologi-
cal examination as well as speech and language assessment by a speech-
language pathologist. The protocol for the participants of this study included the
National Alzheimer’s Coordinating Center Uniform Data Set measures (using
version 2.0 for 65 of the assessments and version 3.0 for the remaining 5),
including clinical dementia rating (CDR) scale supplementary language box
ratings (96).
Healthy controls. Fifty-three healthy controls who were age matched with the
PPA patients were included in the first part of this study. Twenty of the healthy
controls were enrolled through the Speech and Feeding Disorders Laboratory at
the Massachusetts General Hospital (MGH) Institute of Health Professions. These
participants passed a cognitive screen, were native English speakers, and had no
history of neurologic injury or developmental speech/language disorders. The
remaining 33 healthy controls were recruited through Amazon’s Mechanical Turk
(MTurk). MTurk participants filled out the short and validated version of the
everyday cognition test with 12 items, an informant-rated questionnaire
designed to detect cognitive and functional decline (97). Only language samples
from participants who were native English speakers, with no self-reported history
of brain injury or speech/language disorder, either developmental or acquired,
were included in the analyses. The healthy controls recruited from the clinic
and MTurk did not differ in terms of age, gender, handedness, and years
of education.
Study 2. The second study examined the syntax–lexicon trade-off in 99 healthy
participants.

Table 2. Demographic and clinical characteristics of study 1 participants

nfvPPA (n = 29) lvPPA (n = 26) svPPA (n = 24) Healthy controls (n = 53)

Age at testing, years (SD) 68.91 (9.36) 69.18 (6.49) 65.61 (8.23) 65.11 (6.86)
Gender, % female 51.7 38.5 58.3 61.54
Education, years (SD) 16.07 (2.88) 16.38 (2.56) 16.36 (1.81) 15.29 (1.49)
Handedness, % left 3.5 11.5 12.5 15.4
CDR, global language (SD) 0.78 (0.49) 0.70 (0.35) 0.85 (0.46) —

PASS, sum of boxes (SD) 4.81 (2.62) 5.04 (2.52) 4.68 (2.03) —

There were no significant differences between healthy controls recruited from the clinic and MTurk in terms of age [clinic = 67.33 (8.86), MTurk = 63.59 (5.03)], % female (clinic = 55,
MTurk = 65.6), years of education [clinic = 15.70 (1.17), MTurk = 14.94 (1.68)], and % left-handed (clinic = 25, MTurk = 9.38).
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Healthy participants. A cohort of 99 unique users were recruited from Ama-
zon’s MTurk following a similar protocol described above. This group had an
average age of 37.58 (SD = 9.19) and an average year of education of 14.90
(SD = 1.41). In this cohort, 38.2% were female, and 15.3% were left-handed.

The clinical data had been collected previously at MGH. All clinic participants
gave written informed consent in accordance with guidelines established by the
Massachusetts General Brigham Healthcare System Institutional Review Boards
which govern human subject research at MGH. MTurk participants were con-
sented according to the protocols of the Committee on the Use of Humans as
Experimental Subjects (COUHES) at the Massachusetts Institute of Technology.
This study was approved by the COUHES at the Massachusetts Institute of
Technology.

Procedure.
Language samples. The participants were asked to look at a drawing of a family
at a picnic from the Western Aphasia Battery–Revised (98) and describe it using
as many full sentences as they could. Responses were audio-recorded using an
Olympus VN-702PC Voice Recorder in a quiet room and later transcribed into
text using the Microsoft Dictate application. The transcriptions were then manu-
ally checked for accuracy by a research collaborator who was blind to the group-
ing. Disfluencies of speech such as repetitions and use of fillers, such as “um,”
“you know,” etc., were annotated according to the Codes for the Human Analysis
of Transcripts (CHAT) Transcription Format (99) and removed from further analy-
ses. More specific details on the filtering process are provided in SI Appendix,
supplementary material 3.

Following the protocol in the B.D. laboratory for PPA diagnosis, we also asked
all participants to describe their work. The patient data were not available for us
to analyze (because of privacy issues), so we only had access to the data from
the healthy MTurk individuals. Only a subset (n = 26) of the 99 participants
chose to participate in this part of the study.
Constructing the syntactic rules. An illustration of the process of constructing
syntactic rules is provided in Fig. 1. Sentences were parsed using the automated
lexicalized dependency parser in the Stanford Lexicalized Parser Package
(v3.9.2). The parser automatically determines the heads in each sentence as well
as their dependencies. A syntactic rule was constructed by listing the dependen-
cies of a head in the order of appearance in the original sentence. Thus, the syn-
tactic rules extracted from the sentence “The older couple is picnicking with
wine” are 1) for “couple,” det + amod + NOUN; 2) for “picnicking,” nsubj +
aux + VERB + nmod:with; and 3) for “wine,” case + NOUN. Descriptions of
each of the dependency relations can be found in SI Appendix, Table S1, and
also at https://universaldependencies.org/en/dep/.
Measuring the frequencies of syntactic rules and words. To measure syntactic
rule and word frequencies, we used the Switchboard corpus (62), which consists of
spontaneous telephone conversations averaging 6 min in length spoken by over
500 speakers of both sexes from a variety of dialects of American English. We use
it to estimate word and syntax frequencies in spoken English, independently of
our patient and control sample. The corpus contains 2,345,269 words. For word
frequency, the full version of the Switchboard corpus was used with some filtering
to remove disfluencies and function words. Content word frequencies reported in
this study (which we use as our main measure of word frequency) are based on
frequencies of main verbs (excluding auxiliary verbs and be, do, and have), nouns,
adjectives, and adverbs. Word frequency in our main analyses excluded function
words as some studies have reported group differences in the ratio of function to
content words among PPA variants (28). In footnotes, we also report results for all-
word frequency (not limited to just content words).

To measure syntax frequencies, we used a subset of the Switchboard that has
been parsed and manually annotated, which allowed us to remove disfluencies
that occur in the spoken language (100). This subset consists of 588,183 words.
The resulting corpus was then parsed to extract structure frequencies as
described in section The syntax–lexicon trade-off at the utterance level in a subset
of healthy individuals describing their work. A total of 7,090 types of syntactic
rules occurring more than once were extracted.

Our analyses consider utterances, not words, as a basic unit. The word fre-
quency and syntax frequency of each utterance were calculated by taking the

average log frequency (with +1 smoothing) of all content words and all syntactic
rules within the utterance, respectively, based on the Switchboard corpus. There-
fore, syntactic and lexical frequencies are obtained independently of the task
itself, except for the analysis in The syntax–lexicon trade-off at the utterance level
in the Switchboard corpus, in which the target of analysis is Switchboard itself.
Other measures of syntactic complexity.
Dependency distance. The dependency distance complexity of a text or
speech transcript was measured as the average number of intermediate words
between heads and dependents (including the dependent itself) in each utter-
ance (57, 61). For example, in Fig. 1, the distance between the dependent
“with” and its head “wine” is one word, whereas the distance between the
dependent “couple” and its head “picnicking” is two words. The average depen-
dency distance for this sentence is 1.5.
Maximum incomplete dependencies. The incomplete dependency score
was calculated at each word position in a sentence, parsing from left to right.
The score for a sentence is the maximum number of incomplete dependencies
for any word in that sentence (43, 55).
POS entropy. Roark et al. (48) proposed POS bigram entropy: uncertainty
about a POS given the previous POS. We compute this measure independently
for each participant using the totality of their parsed output, measuring the aver-
age uncertainty of a POS tag given the immediately preceding POS tag (without
reference to the out-of-sample Switchboard estimates for this analysis).
Noun/verb ratio. After processing, the number of nouns is divided by the total
number of nouns plus verbs (28).
Sentence length. After tokenizing, the number of nonpunctuation tokens in
the sentence was used as sentence length.
Progressive aphasia severity scale. The progressive aphasia severity scale
(PASS) (34) uses clinicians’ best judgment, integrating information from patient
test performance in the office as well as a companion’s description of routine
daily functioning. PASS includes judgments about fluency, syntax, word retrieval
and expression, repetition, auditory comprehension, single word comprehen-
sion, reading, writing, and functional communication. PASS syntax subscore is
based on a clinician's judgment of the frequency of sentences with simple struc-
tures, paragrammatism, use of word forms (run, ran), functor words (the, an),
and word order when forming phrases and sentences in primary modality
(speech or writing).
NAT. The NAT (42) asks the participants to assemble individual word cards pre-
sented in scrambled order into meaningful sentences. The structure types tested
in NAT are three canonical structures (active, subject-extracted wh- questions,
and subject clefts) and three noncanonical structures (passives, object-extracted
wh- questions, and object clefts).

Data Availability. Anonymized deidentified data, Python code, and R code
have been deposited in Open Science Framework (https://osf.io/sr3ag/). Speech
samples from the work description task could be considered personal informa-
tion and are not included in the repository but are available upon request.
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