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The rising prevalence of type-2 diabetes is becoming a pressing issue based on emerging reports that T2DM can
also adversely impact mental health.We have utilized the UCD-T2DM rat model in which the onset of T2DM de-
velops spontaneously across time and can serve to understand the pathophysiology of diabetes in humans. An
increased insulin resistance index and plasma glucose levelsmanifested the onset of T2DM. Therewas a decrease
in hippocampal insulin receptor signaling in the hippocampus, which correlated with peripheral insulin resis-
tance index along the course of diabetes onset (r = −0.56, p b 0.01). T2DM increased the hippocampal levels
of 4-hydroxynonenal (4-HNE; a marker of lipid peroxidation) in inverse proportion to the changes in the mito-
chondrial regulator PGC-1α. Disrupted energy homeostasis was further manifested by a concurrent reduction in
energy metabolic markers, including TFAM, SIRT1, and AMPK phosphorylation. In addition, T2DM influenced
brain plasticity as evidenced by a significant reduction of BDNF–TrkB signaling. These results suggest that the pa-
thology of T2DM in the brain involves a progressive and coordinated disruption of insulin signaling, and energy
homeostasis, with profound consequences for brain function and plasticity. All the described consequences of
T2DM were attenuated by treatment with the glucagon-like peptide-1 receptor agonist, liraglutide. Similar re-
sults to those of liraglutide were obtained by exposing T2DM rats to a food energy restricted diet, which suggest
that normalization of brain energymetabolism is a crucial factor to counteract central insulin sensitivity and syn-
aptic plasticity associated with T2DM.

© 2014 Elsevier B.V. All rights reserved.
1. Introduction

The prevalence of metabolic disorders such as diabetes andmetabolic
syndrome (MetS) is rapidly increasing and posing a serious concern for
morbidity and mortality around the world. While the effects of
metabolic disorders have been characterized in peripheral systems,
recent evidence from clinical studies suggests that the complexity of
these disorders can extend to the brain, and can compromise cognitive
function [1,2].Wehave recently reported thenegative effects ofmetabolic
syndrome in brain plasticity and cognitive function induced by consump-
tion of high fructose [3]. In the current study, we wanted to determine
whether the same sequelae inducedby fructose could occur spontaneous-
ly in a novel ratmodel of type-2 diabetes (T2DM) that closely reproduces
the pathophysiology of T2DM in human. The model was produced by
crossing obese insulin-resistant Sprague–Dawley (OSD) rats resulting
tive Biology and Physiology,
les E. Young Drive South, Los

-Pinilla).
from polygenic adult-onset obesity with Zucker diabetic fatty (ZDF) lean
rats that have a defect in pancreatic β-cell function, but normal leptin sig-
naling [4]. We performed these studies in the hippocampus based on the
importance of this structure in cognitive functions such as learning and
memory.

The brain is a highly metabolic organ, and disruptions of metabolic
homeostasis can have dramatic consequences for information process-
ing. Mitochondria are the major bioenergetic machinery of the cell
and are highly susceptible to metabolic damage and thus, likely influ-
ence the pathology of T2DM in the brain. T2DM has been associated
with lower expression of mitochondrial genes, abnormal mitochondrial
morphology and impaired oxidative phosphorylation [5]. Insulin recep-
tor (InR) dysfunction, a hallmark of T2DM, is associated withmitochon-
drial dysfunction in metabolic diseases [6–8]. Therefore, effective
control of mitochondrial biogenesis is critical for energy management
and subsequent neuronal function. ATP and NAD are small molecules
involved in all energy transactions in cells, and they are under regulato-
ry control of proteins such as sirtuins and AMP-activated protein kinase
(AMPK). Sirtuins regulate important metabolic functions in the cell
working in close associationwith NAD and AMPK.Multiple endogenous

http://crossmark.crossref.org/dialog/?doi=10.1016/j.bbadis.2014.05.007&domain=pdf
http://dx.doi.org/10.1016/j.bbadis.2014.05.007
mailto:fgomezpi@mednet.ucla.edu
http://dx.doi.org/10.1016/j.bbadis.2014.05.007
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and exogenous factors regulate mitochondrial biogenesis through per-
oxisome proliferator-activated receptor gamma (PPARγ) coactivator-
1alpha (PGC-1α). PGC-1α is a regulator of various transcription factors
involved in mitochondrial biogenesis [9], including nuclear respiratory
factors (NRFs). In turn, the NRFs activate the mitochondrial transcrip-
tion factor A (TFAM) that regulates mitochondrial DNA transcription
and replication [10]. PGC-1α can also influence neuronal plasticity by
acting on brain-derived neurotrophic factor (BDNF) [11]. BDNF is classi-
cally recognized for its role on plasticity and behavior [12], and has been
lately shown to participate in a range of metabolic events, including
glucose utilization and energy management in diabetes [13].

We studied the effects of two interventions, i.e., administration of a
GLP-1 receptor agonist, liraglutide and dietary energy restriction, with
proven ability to restore systemic metabolic homeostasis [14,15], and
they have great potential to counteract the central effects of T2DM.
Liraglutide (Victoza) is a glucagon-like peptide-1 (GLP-1) receptor
agonist which has been shown to cross the blood brain barrier [16],
and is used clinically as an effective therapeutic agent for T2DM [17].
Liraglutide has the ability to regulate glucose by restoring insulin secre-
tion [18] and inhibiting glucagon secretion [19]. GLP-1 also acts as a
growth factor in the brain [20] and has been shown to protect neurons
against various insults including Alzheimer's and Parkinson's diseases
[21–23]. In turn, dietary energy restriction stimulates mitochondrial
biogenesis [24] and has been shown to restore neuronal function [25]
under several pathological conditions. We examine the possibility that
interventions that restore metabolic homeostasis and insulin signaling
have the efficacy to slow or prevent the progression of the pathophysi-
ology of T2DM in the brain.

2. Materials and methods

2.1. Animals

The University of California, Davis, type 2 diabetes mellitus (UCD-
T2DM) rat model was produced by crossing obese Sprague–Dawley
(OSD) rats prone to adult-onset obesity and insulin resistance with
Zucker diabetic fatty (ZDF) lean rats that have intact leptin signaling,
but a defect in pancreatic β-cell insulin gene transcription [26]. This
cross resulted in a new rat model that develops polygenic adult-onset
obesity and diabetes in both sexes with rats exhibiting insulin resistance,
impaired glucose tolerance and eventual β-cell decompensation [4].
These rats had the genetic propensity to develop diabetes at later age
when fed a standard rodent chow diet than other rodent models of
T2DM, such as the ZDF rat, making them highly suitable for diabetes pre-
vention studies [27–30]. OSD and ZDF lean ratswere originally purchased
fromCharles River Laboratories (Wilmington,MA). Both the founderOSD
rats and UCD-T2DM rats gainweightmore rapidly than Sprague–Dawley
rats purchased from Harlan Laboratories (Indianapolis, IN), which were
used as control in the present study. All animals received a ground rodent
chow diet (no. 5012; Ralston Purina, Belmont, CA) in spill-resistant jars
and were housed in hanging wire cages in the Department of Nutrition
animal facility at the University of California, Davis, and maintained on
a 12 h light–dark cycle.

2.2. Experimental design

Male UCD-T2DM rats were followed until the age of ~5.5 months
and divided into pre-diabetic (no diabetes onset occurred until sacri-
fice) and diabetic (had diabetes for a duration of either 2 weeks or
3 months) groups (n = 6/group), based on the period after diabetes
onset. A group of UCD-T2DM animals were continued for 6 months
after diabetes onset to assess the long-term effects of T2DM and the an-
imals were sacrificed at the age of 8.5 months. Diabetes onset was
defined as a non-fasted blood glucose value above 11·1 mmol/l
(200 mg/dl) on two consecutive weeks. Blood glucose was measured
with a glucose meter (One-Touch Ultra, LifeScan, Milpitas, CA, USA)
using a lancet to collect a drop of blood from the tail.

A separate cohort of UCD-T2DM male rats was divided into vehicle,
energy restricted diet and liraglutide groups (n= 6/group) at 2 months
of age. Only the animals with body weight N375 g were selected for
these groups. Data from previous study have shown that animals
weighing N375 g at 2 months of age have an average age of diabetes
onset of 113± 5 days and a diabetes incidence rate of 98%, whereas an-
imals weighing b375 g at 2 months of age have an average age of onset
of 219 ± 10 days and a diabetes incidence rate of 89% [4]. Body weights
at the time of entry into the studywere 400.2± 5.25, 400.4± 9.76, and
396.5 ± 7.86 g in vehicle, energy restricted diet, and liraglutide groups,
respectively. Restricted animals were diet restricted to 9% less energy
per kg of body weight compared with liraglutide-treated animals to
equalize body weights between these two groups [27]. Liraglutide ani-
mals received subcutaneous liraglutide injections (0.2 mg/kg body
weight) twice daily, and vehicle and energy restricted diet animals re-
ceived subcutaneous Dulbecco's PBS injections (1 ml/kg body weight)
twice daily. The dose for liraglutide (0.2 mg/kg) was selected based on
efficacy in diabetes patients (i.e. 0.6 mg–1.8 mg) [31], and designed ac-
cording to the guidelines provided by the Centre for Drug Evaluation
and Research (CDER) at the Food and Drug Administration (http://
www.fda.gov/downloads/Drugs/Guidance/UCM078932.pdf July 2005)
[32].

The dietary energy restriction and liraglutide treatments were
started at 2 months of age and continued until the age of sacrifice at
6.5 months. The average age of diabetes onset in the vehicle treated an-
imals was 136 ± 17 days. Dietary energy restriction and liraglutide
treatment delayed the onset of diabetes as none of the energy restricted
diet or liraglutide-treated animals had developed diabetes at the time of
sacrifice. Data from previous study have shown that dietary energy
restriction and liraglutide treatment delay the onset of diabetes by ap-
proximately 4 months [27]. The experimental protocols were approved
by the University of California, Davis Institutional Animal Care and Use
Committee.

2.3. Plasma analyses

Blood samples were collected from the tail vein after an overnight
(13-h) fast and placed into EDTA-treated tubes. The plasma was
separated by centrifugation and assayed for glucose, insulin and triglyc-
erides (TGs). Plasma glucose concentrations were measured with an
enzymatic colorimetric assay for glucose (Thermo DMA Louisville, CO)
and plasma insulin concentrations were measured with a rat-specific
radioimmunoassay (Millipore, St. Charles, MO). Plasma TG was mea-
sured with an enzymatic colorimetric assay (L-type TG H kit, Wako
Chemicals, Richmond, VA). The homeostasis model assessment ratio
(HOMA-R), which is an index of insulin resistance [33], was calculated
using the formula: HOMA-R = fasting glucose (mmol l−1) × fasting
insulin (μIU ml−1) / 22.5.

2.4. Tissue collection

The animals were killed by decapitation and thewhole brainwas re-
moved and quickly frozen in powdered dry ice and stored at −70 °C
until use. The hippocampus (HP)wasdissected out later for the analyses
reported here.

2.5. Immunoblotting

The hippocampal tissues were homogenized in a lysis buffer con-
taining 137 mM NaCl, 20 mM Tris–HCl pH 8.0, 1% NP40, 10% glycerol,
1 mM phenylmethylsulfonylfluoride (PMSF), 10 μg/ml aprotinin,
0.1 mM benzethonium chloride, and 0.5 mM sodium vanadate. The ho-
mogenates were then centrifuged, the supernatants were collected and
total protein concentration was determined according to MicroBCA

http://www.fda.gov/downloads/Drugs/Guidance/UCM078932.pdf
http://www.fda.gov/downloads/Drugs/Guidance/UCM078932.pdf


Table 1
Body weight (g), triglycerides (mg/dl), glucose (mg/dl), and HOMA-R levels in control, pre-diabetic and diabetic groups.

Groups Body weight (g) Plasma triglycerides (mg/dl) Plasma glucose (mg/dl) HOMA-R

Control 399.8 ± 7.22 94 ± 10 82 ± 1 3.12 ± 0.32
Pre-diabetic 628.8 ± 4.65## 112 ± 19 97 ± 2 10.97 ± 1.37##

Diabetic (2 weeks) 677.5 ± 5.87## 91 ± 13 91 ± 5 15.22 ± 1.17#

Diabetic (3 months) 478.3 ± 22.54##⁎⁎ 188 ± 34#⁎ 220 ± 33##⁎⁎ 13.44 ± 1.71##

Diabetic (6 months) 495.8 ± 12.28##⁎⁎ 203 ± 29#⁎ 331 ± 36##⁎⁎ 11.47 ± 1.41##

Values are expressed as mean ± SEM. ANOVA (one-way) followed by Bonferroni's multiple comparison post-hoc test.
# p b 0.05 vs control.

## p b 0.01 vs control.
⁎ p b 0.05 vs pre-diabetic.
⁎⁎ p b 0.01 vs pre-diabetic.
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procedure (Pierce, IL, USA), using bovine serum albumin (BSA) as
standard. Briefly, protein samples were separated by electrophoresis
on a 10% polyacrylamide gel and electrotransferred to a PVDF mem-
brane (Millipore, MA, USA). Non-specific binding sites were blocked
in Tris-buffered saline (TBS), pH 7.6, containing 5% non-fat dry milk.
Membraneswere rinsed in buffer (0.05% Tween-20 in TBS) and then in-
cubated with anti-actin or anti-BDNF, anti-pTrk, anti-Trk, anti-AMPK,
anti-mtTFA, anti-4HNE, anti-pIR-β, anti-IR-β (1:500; Santa Cruz Bio-
technology, Santa Cruz, CA, USA), anti-PGC-1α, anti-Sir2, anti-pIRS-1,
anti-IRS-1 (1:1000, Millipore, MA, USA), anti-pAMPK (1:1000; Cell sig-
naling technology, MA, USA) followed by anti-rabbit or anti goat IgG
horseradish peroxidase-conjugate (1:10,000; Santa Cruz Biotechnolo-
gy). After rinsing with buffer, the immunocomplexes were visualized
by chemiluminescence using the ECL kit (AmershamPharmacia Biotech
Inc., NJ, USA) according to themanufacturer's instructions. The film sig-
nals were digitally scanned and then quantified using ImageJ software.
Actin was used as an internal control for western blot such that data
were standardized according to actin values.
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Fig. 1. (A) Phosphorylation of insulin receptor (InR) and (B) IRS-1 in control (CON), pre-diabe
diabetic (6 mos-db) groups. (C) Negative correlation between insulin resistance index (HOMA
(one-way) followed by Bonferroni's multiple comparison post-hoc test.
2.6. Statistical analysis

The results of metabolic markers are expressed asmean± standard
error of the mean (SEM). Protein expression results are expressed as
mean ± SEM of percentage of either the control or vehicle group. All
statistical analyses were performed by one-way analysis of variance
(ANOVA) followed by Bonferroni's multiple comparison post-hoc test.
A level of 5% probability was considered as statistically significant. Pear-
son correlation analysis was performed on individual samples to evalu-
ate the association between variables.
3. Results

3.1. Alteration in metabolic markers with time course of diabetes onset

Wehavemeasured thebodyweight (F4,25= 84.94, p b 0.01), fasting
plasma triglycerides (F4,25 = 5.445, p b 0.01), fasting plasma glucose
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Fig. 2. (A) Phosphorylation of AMPK, (B) protein expression of SIRT1, (C) PGC-1α, (D) levels of 4HNE, (E) negative correlation between PGC-1α expression and 4HNE and (F) TFAM in
control (CON), pre-diabetic (Pre-db), 2 weeks-diabetic (2 wks-db), 3 months-diabetic (3 mos-db) and 6 months-diabetic (6 mos-db) groups. #p b 0.05, ##p b 0.01 vs CON; ⁎p b 0.05,
⁎⁎p b 0.01 vs Pre-db; ANOVA (one-way) followed by Bonferroni's multiple comparison post-hoc test.
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(F4,25 = 24.82, p b 0.01) and homeostasis model assessment ratio
(HOMA-R; F4,25= 12.94, p b 0.01), an index of insulin resistance in con-
trol (Sprague–Dawley rats from Harlan Laboratories), pre-diabetic
(UCD-T2DM rats with no diabetes onset until sacrifice) and diabetic
rats (UCD-T2DM rats; 2 weeks, 3 months & 6 months after diabetes
onset). As shown in Table 1, the pre-diabetic rats gain significantly
higher body weight (Pre-db vs CON, p b 0.01) and HOMA-R (Pre-db vs
CON, p b 0.01) comparedwith control, demonstrates the genetic predis-
position of UCD-T2DM rats to develop diabetes at later age. Animals that
had diabetes since 3 & 6 months, have elevated levels of triglycerides
(3 mos-db or 6 mos-db vs Pre-db, p b 0.05) and glucose (3 mos-db or
6 mos-db vs Pre-db, p b 0.01) in comparison to the pre-diabetic group,
thus demonstrating the peripheral occurrence of diabetes in UCD-T2DM
rats. Animals with diabetes of 3 and 6 month duration exhibited
significantly lower body weights (3 mos-db or 6 mos-db vs Pre-db,
p b 0.01) compared with pre-diabetic animals, likely due to loss of
energy in the form of glucosuria and polyuria.

3.2. Influence of T2DM on insulin receptor signaling in the brain

We assessed the time course of T2DM for the development of brain
insulin resistance by analyzingmolecules involved in the insulin signaling
pathway in the hippocampus to explore whether the insulin resistance
associated with T2DM may extend to the brain. Insulin resistance is the
consequence of impaired insulin signaling at the level of the insulin re-
ceptor and its downstream effectors as a result of post-translational
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modifications such as altered phosphorylation. To measure the changes
in insulin signaling, we assessed the phosphorylation levels of insulin
receptor (InR), and IRS-1 in control, pre-diabetic and diabetic rats. Ani-
mals that had diabetes for 2 weeks (2 wks-db vs CON, p b 0.05),
3 months (3 mos-db vs CON, p b 0.05–0.01) and 6 months (6 mos-db
vs CON, p b 0.05–0.01) exhibited deficits in insulin signaling in the hippo-
campus as evidenced by decreased phosphorylation of InR (F4,25 =
4.628, p b 0.01; Fig. 1A) and IRS-1 (F4,25 = 11.99, p b 0.01; Fig. 1B) in
comparison to the control group. Pre-diabetic (UCD-T2DM rats with
no diabetes onset) animals did not alter the phosphorylation of InR
and IRS-1 (Pre-db vs CON, p N 0.05), however, the occurrence of diabe-
tes onset decreases the phosphorylation of IRS-1 as observed in animals
with 3 (3mos-db vs Pre-db, p b 0.01) & 6 months (6mos-db vs Pre-db,
p b 0.01) of diabetes. Thus it appears that transition from the pre-
diabetic to diabetic state is associated with a marked decrease of in-
sulin signaling, thereby indicating insulin resistance in the brain. The
negative correlation found between HOMA-R and InR phosphorylation
(r = −0.5594, p b 0.01; Fig. 1C) suggests that the insulin resistance in
the periphery and the brain is a closely related phenomenon.

3.3. T2DM and markers related to the brain energy homeostasis

We evaluated the effects of T2DM on brain energy homeostasis
by measuring energy sensing molecules including AMPK and SIRT1
Table 2
Body weight (g), triglycerides (mg/dl), glucose (mg/dl) and HOMA-R levels in vehicle, energy

Groups Body weight (g) Plasma triglyceride

Vehicle 565.2 ± 38.8 164 ± 26
Energy restricted 572.2 ± 9.2 97 ± 9#

Liraglutide 588.7 ± 16.1 107 ± 16#

Values are expressed as mean ± SEM. ANOVA (one-way) followed by Bonferroni's multiple co
# p b 0.05 vs pre-diabetic.
and proteins involved in mitochondrial biogenesis that control the bal-
ance and transduction of cellular energy metabolism. AMPK, a serine–
threonine kinase, has the ability to sense low energy levels and activate
or inhibit the appropriate molecules to re-establish cellular energy ho-
meostasis. Phosphorylation of AMPK (F4,25 = 10.78, p b 0.01; Fig. 2A)
found to be decreased in animals with diabetes of 3 (3 mos-db vs
CON, p b 0.01) or 6 month (6 mos-db vs CON, p b 0.01) duration in
comparison with control animals, however, no significant change was
observed in AMPK phosphorylation in pre-diabetic animals (Pre-db vs
CON, p N 0.05). The animals with diabetes of 3 month duration exhibit-
ed decreased phosphorylation of AMPK (3 mos-db vs Pre-db, p b 0.01)
compared with pre-diabetic animals. In addition, hippocampal SIRT1
(F4,25= 16.82, p b 0.01; Fig. 2B)was down-regulated in both prediabet-
ic and diabetic UCD-T2DM rats.

We also assessedmolecules associated with mitochondrial biogene-
sis, including PGC-1α and TFAM to assess the influence of T2DM on
energy homeostasis. PGC-1α is a member of a family of transcription
co-activators considered to have a central role in the regulation of cellu-
lar energy metabolism. The decrease in the levels of PGC-1α (F4,25 =
15.15 p b 0.01; Fig. 2C) was observed only at 6 months (6 mos-db vs
CON, p b 0.01) following the onset of diabetes. Pre-diabetic UCD-T2DM
rats did not exhibit a reduction of PGC-1α (Pre-db vs CON, p N 0.05) in
the hippocampus. In contrast, PGC-1α was down-regulated in animals
with diabetes of 6 month duration, but not 2 week or 3 month duration
restricted diet and liraglutide groups.

s (mg/dl) Plasma glucose (mg/dl) HOMA-R

224 ± 59 14.69 ± 1.96
127 ± 1 19 ± 2.76
111 ± 4 11.86 ± 1.57

mparison post-hoc test.
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(6 mos-db vs Pre-db, p b 0.01). Previous studies have indicated that
the actions of PGC-1α are also related to the reactive oxygen species
(ROS)-detoxifying capacity of cells [34,35]. Overproduction of reactive
oxygen species (ROS), a byproduct of mitochondrial electron transport
chain, leads to oxidative damage. Therefore, we assessed the levels of
4-hydroxynonenal (4HNE), a marker of lipid peroxidation to determine
the effects of T2DM on oxidative stress. 4HNE was elevated in animals
with diabetes of 3 (3 mos-db vs CON, p b 0.01) and 6 month (6 mos-db
vs CON, p b 0.01) duration (F4,25 = 38.30, p b 0.01; Fig. 2D) compared
with control and pre-diabetic UCD-T2DM animals. 4HNE was not in-
creased in pre-diabetic animals (Pre-db vs CON, p N 0.05). Diabetes for
3 and 6 months resulted in an increase in 4HNE levels with respect to
the pre-diabetic group (3 mos-db or 6 mos-db vs Pre-db, p b 0.01).
PGC-1α expression was inversely correlated with 4HNE (r = −0.5640,
p b 0.01; Fig. 2E) suggesting that a decrease in the levels of PGC-1α
may contribute to increased lipid peroxidation.

Further, we assessed the mitochondrial transcription factor TFAM,
which is a key activator of mitochondrial transcription and mitochon-
drial genome replication. The level of TFAM (F4,25 = 6.804, p b 0.01;
Fig. 2F) was reduced in animals that had diabetes since 3 (3 mos-db
vs CON, p b 0.01) and 6 months (6 mos-db vs CON, p b 0.05) as com-
pared to control.

3.4. Effect of T2DM on markers of neuronal plasticity

We have measured the BDNF signaling in the hippocampus of
control, UCD-T2DMpre-diabetic and diabetic rats. Brain-derived neuro-
trophic factor (BDNF) and its tropomyosin related kinase receptor type
B (TrkB) have a demonstrated role on neuronal plasticity and function.
BDNF expression was significantly decreased (F4,25 = 8.144, p b 0.01;
Fig. 3A) as was phosphorylation of TrkB (F4,25 = 9.447, p b 0.01;
Fig. 3B) in animals with diabetes of 6 month duration (6 mos-db vs
CON, p b 0.01), but not in animals with diabetes of 2 week or 3 month
duration. BDNF expression was not reduced in pre-diabetic UCD-
T2DM rats compared with control animals (Pre-db vs CON, p N 0.05).
The animals with diabetes of 3 or 6 month duration displayed signifi-
cant reductions of TrkB phosphorylation (3 mos-db or 6 mos-db vs
Pre-db, p b 0.01) compared with the pre-diabetic animals. We assessed
a possible association between BDNF action and regulation of the PGC-
1α, and found that the expression of BDNF was significantly correlated
with PGC-1α expression (r = 0.54, p b 0.01; Fig. 3C).

3.5. Dietary energy restriction or liraglutide treatment delays the onset of
T2DM

We investigated the effects of energy restriction and the administra-
tion of liraglutide, a glucagon-like peptide-1 (GLP-1) receptor agonist
on brain insulin signaling, and markers of brain energy metabolism,
and oxidative stress in the hippocampus of UCD-T2DM rats. We have
previously reported that both dietary energy restriction and liraglutide
treatment delay the onset of diabetes in UCD-T2DM rats [27] while
both dietary energy restriction and liraglutide treatment delay the
onset of diabetes, which ismanifested bydecreases of fasting plasma tri-
glycerides and fasting plasma glucose (Table 2). The age of diabetes
onset in vehicle-treated animals was 136 ± 17 days, while diabetes
had not developed in any of the energy restricted diet or liraglutide
treated animals at the time of sacrifice (4.5 months of intervention).

3.6. Dietary energy restriction and liraglutide treatment counteract the
effects of T2DM in the hippocampus

We examined the effect of dietary energy restriction and liraglutide
on insulin signaling, energy metabolism and neuronal plasticity in hip-
pocampal samples from UCD-T2DM rats. There are several reports
which suggest that dietary energy restriction increases mitochondrial
biogenesis [24]. We sought to assess the effects of dietary restriction
on insulin signaling andmitochondrial parameters in the pathophysiol-
ogy of T2DM. The effects of prolonged liraglutide administration were
also studied to determine if activation of GLP-1 signaling might also
lead to restoration of insulin resistance/signaling and energy homeosta-
sis and neuronal plasticity in the hippocampus of UCD-T2DM Rats.

According to our results, the dietary energy restriction and liraglutide
treatment offset the effect of T2DM on hippocampal insulin signaling as
evidenced by increased phosphorylation of InR (F2,15 = 16.19, p b 0.01;
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Fig. 4A) and IRS-1 (F2,15 = 17.61, p b 0.01; Fig. 4B) in comparison with
vehicle-injected animals. These results indicate that both energy restric-
tion diet and liraglutide treatment prevent the impairment of insulin sig-
naling in the brain as assessed by improved insulin receptor and IRS-1
phosphorylation in the hippocampus in UCD-T2DM rats.

Dietary restriction has been suggested to preserve neuronal plastic-
ity resulting from disruption of energy homeostasis [36,37]. According-
ly, we have assessed AMPK phosphorylation and SIRT1 expression
based on the role of thesemolecules in cellular homeostasis and energy
metabolism [38,39]. We found that either prolonged dietary restriction
exposure or liraglutide treatment increased the expression of these
metabolic sensors, AMPK phosphorylation (F2,15 = 8.037, p b 0.01;
Fig. 5A) and SIRT1 (F2,15 = 31.62, p b 0.01; Fig. 5B) compared with
vehicle-injected animals. We also found that both dietary restriction
and liraglutide increased the protein expression of PGC-1α (F2,15 =
33.27, p b 0.01; Fig. 5C) and TFAM (F2,15= 32.07, p b 0.01; Fig. 5D) com-
paredwith vehicle-injected animals. These results support the previously
reported finding that dietary energy restriction improves mitochondrial
functions tomaintain energy homeostasis under adverse conditions [24].
Treatment with liraglutide, but not energy restricted diet, also appears to
counteract the effect of T2DM on 4HNE (F2,15 = 4.727, p b 0.05; Fig. 5E).

There are evidences that BDNF signaling works at the interface of
metabolism and synaptic plasticity [12]. To explore a possible associa-
tion between energy balance and synaptic plasticity, we assessed the
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effects of the interventions on BDNF signaling. We found that either
dietary restriction or liraglutide treatments elevated the expression of
BDNF protein (F2,15 = 11.00, p b 0.01; Fig. 6A), and phosphorylation
of its receptor TrkB (F2,15 = 20.26, p b 0.01; Fig. 6B) when compared
with vehicle-injected animals. Overall, these results suggest a possible
crosstalk between insulin signaling and mitochondrial functions in the
regulation of neuronal plasticity in the hippocampus.
4. Discussion

An increasing body of evidence indicates that T2DM poses a threat
for brain function and can increase the risk for neurological and psychi-
atric disorders. We have embarked in studies to determine how pro-
gression of T2DM pathology can disrupt brain plasticity. We have
utilized a rat model of T2DM that resembles the pathophysiology of
T2DM in humans [4]. We found that the peripheral manifestations of
T2DM (insulin resistance and hyperglycemia) coincided with disrup-
tions in insulin signaling in the brain.Moreover, these effects were asso-
ciated with reductions in markers of energy metabolism (PGC-1α,
TFAM and AMPK phosphorylation) and markers of neuronal plasticity
(BDNF–TrkB signaling) in the hippocampus. The fact that these alter-
ations were more pronounced during the late stages of T2DM suggests
that T2DM is associatedwith a progressive deterioration in themachin-
ery thatmaintains energy homeostasis and plasticity in the brain. Previ-
ous reports indicate that diabetes leads to morphological alterations in
cortical and hypothalamic brain regions that could be related to the var-
ious pathologic processes observed in neuropsychological disorders
[40]. Our animal model of T2DMwas centered on the hippocampal for-
mation based on its involvement in neurological disorders associated
with cognitive functions. T2DM has been associated with cortical and
subcortical atrophy and with diminished regional cerebral perfusion
and vasoreactivity [41]. A recent study in T2DM using microarray
technology shows alterations in genes related to neurotransmission,
lipid metabolism, neuronal development, insulin secretion, oxidative
damage and DNA repair in the hippocampus, striatum and prefrontal
cortex [42].

The treatment with a dietary energy restriction paradigm known to
promote energy homeostasis [24] counteracted many of the effects
of T2DM on hippocampal insulin signaling, energy metabolism and
plasticity markers. Similar effects were observed after treatment with
the GLP-1 receptor agonist liraglutide, which is known to improve insu-
lin sensitivity and pancreatic islet function [27]. Together, these results
show that the effects of T2DMon the brain involve an integrated disrup-
tion of insulin signaling, energy homeostasis, and plasticity. The results
showing that interventions known for their actions on stabilizing insu-
lin resistance and energy homeostasis can restore BDNF–TrkB signaling,
suggest potential therapeutic targets to reduce the T2DM pathology in
the brain.

4.1. T2DM and brain insulin resistance

Results showing that hippocampal insulin receptor (InR) signaling
changed in proportion to peripheral insulin resistance suggest a possi-
ble association between these two parameters. Insulin resistance is
the consequence of impaired signaling at the level of the InR and its
downstream effectors as a result of post-translational modifications
such as altered phosphorylation. The observed reduction in InR phos-
phorylation and its downstream signaling molecules such as IRS-1 in
diabetic rats (observed at 2 weeks, 3 months and 6 months), suggests
a comprehensive disruption in the insulin signaling pathways. The
counteractive effects of liraglutide on insulin signaling suggest that acti-
vation of the GLP-1 receptor may restore insulin sensitivity in the brain.
GLP-1 receptors are present in the hippocampus and GLP-1 has been
suggested to have beneficial effects on synaptic function and learning
in rats [43]. The results of our study are consistentwith previous reports
showing the beneficial effects of liraglutide in brain insulin resistance in
themousemodel of Alzheimer's disease [44]. As discussed below, treat-
ment with dietary energy restriction normalized similar parameters af-
fected by liraglutide, and suggests that disruptedmetabolic homeostasis
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and insulin signaling are key aspects of the brain pathology surrounding
T2DM.

4.2. T2DM vs energy homeostasis

Brain energy metabolism is central to all cellular processes that
maintain neuronal functionality. We found that T2DM affected all of
the parameters of energy homeostasis, especially at the later stages of
diabetes (3 and 6 months). Our results also show that T2DM altered
an important regulator of mitochondrial transcription, notably PGC-
1α, which is a major orchestrator of several pathways involved in
the regulation of energy homeostasis and neuronal plasticity. PGC-1α
is a transcriptional coactivator of peroxisome proliferator-activated
receptor-gamma (PPARγ) involved in regulation of insulin action and
other key metabolic pathways, such as adipogenesis and adiponectin
production [45]. PGC-1α is a potent coactivator of a plethora of tran-
scription factors, including nuclear respiratory factors (NRFs), which
in turn, activate the mitochondrial transcription factor A (TFAM) that
acts on mitochondrial DNA. PGC-1α also regulates several factors in-
volved inmitochondrial homeostasis such as AMPK, a serine–threonine
kinase, which has the ability to sense low energy levels and to re-
establish the proper energy balance of the cell. Once activated, AMPK
switches on catabolic pathways to produce ATP while simultaneously
shutting down energy-consuming anabolic processes, in a process in-
volving the actions of PGC-1α [46] and sirtuin-regulated deacetylation
[47]. Therefore, our results showing a decrease in AMPK activation in
the hippocampus of UCD-T2DM rats indicates a disturbance of energy
homeostasis with the progression of diabetes pathology. In turn, the in-
crease in AMPK phosphorylation in energy restricted and liraglutide
treated animals advocates that these interventions activatemechanisms
to restore energy homeostasis levels in the hippocampus. In further
support of this possibility, the treatment with liraglutide and energy re-
stricted diet normalized PGC-1α and TFAM levels, which are important
elements for the maintenance of energy homeostasis.

4.3. Metabolic pathways supporting neuronal signaling systems

Emerging evidence suggests a strong association between cell ener-
gy regulation, synaptic plasticity, and behavior [48,49]. In particular,
systems deeply involved with energy metabolism such as SIRT1,
AMPK, PGC-1α, and BDNF can also support brain plasticity and function.
Therefore, it is not surprising that T2DM reduced the levels of BDNF and
its receptor TrkB in our results. BDNF stimulates energy metabolism in
developing cortical neurons [50], and appears to function at the inter-
face of metabolism and synaptic plasticity as a metabotrophin [12].
Therefore, our results showing that dysfunction in energy metabolism
in T2DM may influence synaptic modulators such as BDNF signaling
are particularly significant.

Our results showed that BDNF changed in proportion to levels of
PGC-1α in the T2DM rats. We have previously shown that activation
of the BDNF receptor TrkB elevates PGC-1α levels [48] which is in line
with other studies suggesting that the actions of BDNF and PGC-1α
are interrelated [11]. Through tyrosine kinase B (TrkB) receptor, BDNF
leads to the activation of cyclic-AMP response element binding protein
(CREB), which is a potent activator of PGC-1α [51]. Therefore, the
marked reduction in the levels of phosphorylated CREB in T2DM rats
may reflex the double function of CREB as a synaptic activator and ener-
gy modulator. In addition, consistent with these findings, we observed
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that dietary restriction and liraglutide treatment preserved the BDNF
signaling and energy metabolism following the onset of T2DM.

T2DMalso decreased hippocampal SIRT1 levels in harmonywith the
double action of SIRT1 in cell metabolism [38,39] and brain plasticity
[52,53]. SIRT1 has the ability to function as protein deacetylases during
energy regulation, such that PGC-1α is a deacetylation target of SIRT1
[54,55]. Previous studies have suggested a mechanistic association be-
tween SIRT1 and AMPK, as they showed that NAD, a critical substrate
for SIRT1 function, is activated by AMPK in a dose-dependent manner
[56]. The capacity of the energy restricted diet to counteract the devel-
opment of T2DMmay be related to the ability of SIRT1 to support met-
abolic transcriptional adaptations under situations of nutrient scarcity,
which are generally coupled to increased NAD+ levels [57]. This condi-
tion may be reflected in our results showing that T2DM reduced SIRT1
levels. In turn, the results showing that energy restriction and liraglutide
normalized the levels of SIRT1 emphasize the importance of restoring
energy homeostasis to reduce the effects of T2DM in the brain. During
the last decade, an overwhelming body of evidence indicates that
the activity of mammalian sirtuins, most notably SIRT1 and SIRT3, has
the ability to enhance fat oxidation and prevent metabolic disease
[58–60]. Therefore, strategies aimed to increase intracellular NAD+
levels are gaining interest in order to activate sirtuins and treatmetabolic
disorders.

5. Conclusions

T2DM has been mainly associated with disruptions of peripheral
metabolism, and the current results help extend the concept of meta-
bolic impairments to the brain. We previously found that diet-induced
metabolic syndrome disrupts hippocampal insulin resistance in propor-
tion to brain plasticity, energy homeostasis and learning performance
[3]. The current results show that similar aspects of the metabolic syn-
drome pathology can be observed under spontaneous development of
the T2DM pathology. Results reveal the impact of T2DM on brain func-
tion and plasticity centered on the involvement of insulin signaling and
mitochondrial homeostasis. These effects were counteracted by either
energy restriction or improving central insulin sensitivity. Thus, these
results observed in the UCD-T2DM rat model of type-2 diabetes suggest
that brain energy homeostasis and insulin signalingmay serve as impor-
tant targets for neurological interventions directed to improve T2DM
patient quality of life and to reduce health care expenses (Fig. 7). The
current results are additionally significant since the hippocampus is
the locus of learning andmemory,which are disrupted in various neuro-
logical disorders such as Alzheimer's disease. Further studies are re-
quired to evaluate how T2DM affects other brain regions and selected
neurological diseases.
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