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The diffraction of a scalar plane wave from a doubly-periodic surface on which either the Dirichlet

or Neumann boundary condition is imposed is studied by means of a rigorous numerical solution of

the Rayleigh equation for the amplitudes of the diffracted Bragg beams. From the results of these

calculations the diffraction efficiencies of several of the lowest order diffracted beams are calcu-

lated as functions of the polar and azimuthal angles of incidence. The angular dependencies of the

diffraction efficiencies display features that can be identified as Rayleigh anomalies for both types

of surfaces. In the case of a Neumann surface additional features are present that can be attributed

to the existence of surface waves on such surfaces. Some of the results obtained through the use of

the Rayleigh equation are validated by comparing them with the results of a rigorous Green’s func-

tion numerical calculation. Published by AIP Publishing. https://doi.org/10.1063/1.5041441

1. Introduction

In several resent papers the present authors have studied

theoretically and computationally the diffraction of p-polar-

ized light from a perfectly conducting grating1 and from a

high-index dielectric grating,2 and the diffraction of a shear

horizontally polarized acoustic wave from a gating ruled on

the surface of an isotropic elastic medium.3 Each of these

media does not support a surface wave when the surface

bounding it is planar, but supports one when it is periodically

corrugated. The dependence of the diffraction efficiencies of

some of the lowest-order Bragg beams on the angle of inci-

dence was found to posses two types of anomalies. The first

type of anomaly occurred at angles of incidence at which a

diffractive order begins to propagate or ceases to propagate.

They were first observed by Wood in 19024 in the diffraction

of light from a metallic grating. Their origin was explained

by Lord Rayleigh,5 and they are now called Rayleigh anoma-

lies. The second type of anomaly occurred at angles of inci-

dence at which the incident field excites a surface wave

supported by the grating, when the difference of the compo-

nents of the wave vectors of the incident field parallel to the

mean scattering plane and of the surface wave is made up by

the addition of a grating vector. These anomalies were also

first observed by Wood in 1902,4 and were shown to be due

to the grating-induced excitation of surface plasmon polari-

tons by the incident light by Fano.6 We refer to them as

Wood anomalies. Since surface waves do not exist on planar

surfaces of the media studied in Refs. 1–3, our results

obtained in these papers emphasized the necessity of surface

waves for the existence of Wood anomalies, and that the sur-

face waves need not be surface plasmon polaritons, but can

be of a quite different nature.

In this paper, we extend the work presented in Refs. 1–3

to the case of diffraction of a scalar plane wave from a

doubly-periodic grating (often called a bigrating or a cross-

grating), fabricated on a surface of a medium that when planar

does not support a surface wave, but can support one when it

is doubly periodic. Specifically, we consider the diffraction of

a scalar plane wave from a doubly-periodic surface on which

either the Dirichlet or the Neumann boundary condition is sat-

isfied. For brevity, we will refer to these two types of surfaces

as Dirichlet and Neumann surfaces, respectively. It is known

that a doubly-periodic Neumann surface supports a surface

wave while a doubly-periodic Dirichlet surface does not.7 We

calculate the dependence of several of the lowest-order dif-

fraction efficiencies on the polar angle of incidence for a fixed

azimuthal angle of incidence, and look for Rayleigh anoma-

lies in these dependencies for both types of surfaces, and for

Wood anomalies in the diffraction from a Neumann surface.

Calculations of the dependence of the efficiencies of dif-

fraction of light from, or its transmission through, several

types of doubly-periodic structures on the wavelength of the

incident light, or on its polar angle of incidence for a fixed

azimuthal angle of incidence, have been carried out by a
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variety of approaches. Some of them have been devoted to

the wavelength dependence of the reflectivity and the dip it

displays that arises from the excitation of a surface wave

supported by the doubly-periodic structure,8–11 others to the

phenomenon of total absorption,12 and still others to the

wavelength dependence of the enhanced transmission of

light through a doubly-periodic array of nanoscale holes

piercing a thin metal film.13–16 Similar calculations of

higher-order diffraction efficiencies, such as the ones carried

out in the present work, do not appear to have been carried

out in these earlier studies.

The calculations in the body of this paper will be carried

out on the basis of the Rayleigh hypothesis,17 perhaps the sim-

plest approach to solving this scattering problem. This hypothe-

sis is the assumption that when a rough surface is illuminated

from above by a downward propagating incoming incident

plane wave the scattered field can be expanded in a series of

upward outgoing plane waves at every point above the surface.

This scattered field thus satisfies the boundary condition of out-

going scattered waves at infinity, and together with the incoming

incident wave satisfies the boundary condition on the rough sur-

face. In general this is an approximation, because if the indenta-

tions of the surface are sufficiently deep and narrow, some of

the scattered waves can be propagating downward toward the

surface within them, before becoming upward propagating

waves due to multiple scattering. Such waves are not taken into

account by the Rayleigh hypothesis, which considers only

upward outgoing scattered waves in the surface indentations.

The validity of the Rayleigh hypothesis has been ques-

tioned on occasion18–20 for this reason. Nevertheless, in subse-

quent work limits of validity of this hypothesis have been

determined for the scattering of a scalar plane wave from a

singly-periodic surface21–26 and from a doubly-periodic sur-

face,27 defined by profile functions that are analytic functions

of the coordinates in the mean scattering plane. It has recently

been argued that the Rayleigh hypothesis is always valid.28

With this background, in this paper we derive the Rayleigh

equations for the diffraction of a scalar plane wave from

doubly-periodic Dirichlet and Neumann surfaces, and solve

them numerically. For greater generality, and for pedagogical

reasons, we begin the derivation by first obtaining the Rayleigh

equation for the scattering of a scalar plane wave from an arbi-

trary rough two-dimensional Dirichlet and Neumann surface,

and then specialize this equation to the case of a doubly-

periodic surface. From the solutions of these equations we will

calculate the angular dependencies of several of the diffraction

orders. The validity of the Rayleigh hypothesis in the context

of the problem studied will be demonstrated by a comparison

of some of the results obtained by its use with those obtained

by a rigorous numerical method.29,30

2. Scattering theory

The system that we consider consists of a liquid in the

region x3 > fðxjjÞ and an impenetrable medium in the region

x3 > fðxjjÞ where xjj ¼ ðx1; x2; 0Þ is a position vector in the

plane x3 ¼ 0. The surface profile function fðxjjÞ is assumed

to be a single valued function of xjj, and to be differentiable

with respect to x1 and x2.

The field wðx; tÞ in the region x3 > fðxjjÞ consists of an

incoming incident scalar plane wave of frequency x and

a superposition of outgoing scattered plane waves of the same

frequency wðx; tÞ ¼ ½wðxjxÞinc þ wðxjxÞsc�exp ð�ixtÞ � w
ðxjxÞ exp ð�ixtÞ. The amplitude function wðxjxÞ is the solu-

tion of the Helmholtz equation

r2 þ x2

c2

� �
w xjxð Þ ¼ 0; (1)

where c is the speed of the field in the liquid. The field satis-

fies either (a) the Dirichlet boundary condition

w xjxð Þjx3¼f xjjð Þ ¼ 0 (2)

or (b) the Neumann boundary condition

@w xjxð Þ
@n

����
x3¼f xjjð Þ

¼ 0 (3)

on the rough surface x3 ¼ fðxjjÞ. In Eq. (3) @=@n is the deriv-

ative along the normal to the surface at each point of it

directed into the region x3 > fðxjjÞ,

@

@n
¼ 1

1þ rf xjjð Þ
� �2

h i1=2
�f1 xjjð Þ

@

@x1

�f2

�
xjj
� @
@x2

þ @

@x3

� �
;

(4)

where faðxjjÞ ¼ @fðxjjÞ=@xa ða ¼ 1; 2Þ. It is clear that the

prefactor ½1þ rfðxjjÞ
� �2��1=2

on the right-hand side of Eq.

(4) can be neglected in what follows.

In the scattering of a scalar plane wave from either type

of surface, the incident field wðxjxÞinc can be written as

w xjxð Þinc ¼ exp ikjj � xjj � ia0 kjj;x
� �

x3

	 

; (5)

where kjj ¼ ðk1; k2; 0Þ and a0ðkjj;xÞ ¼ ½ðx2=c2Þ � k2
jj�

1=2
,

with kjj < x=c.

Similarly, the field scattered from either type of surface,

wðxjxÞsc, can be written

w xjxð Þsc¼
ð

d2qjj

2pð Þ2
R qjjjkjj
� �

exp iqjj �xjjþ ia0 qjj;xð Þx3
	 


; (6)

where a0ðqjj;xÞ ¼ ½ðx2=c2Þ � q2
jj�

1=2
with Rea0ðqjj;xÞ > 0

and Ima0ðqjj;xÞ > 0. Of course the scattering amplitude

RðqjjjkjjÞ will be different for the scattering from a Dirichlet

surface then it is for scattering from a Neumann surface due

to the different boundary conditions satisfied on the two

types of surfaces. Equation (6) is the mathematical statement

of the Rayleigh hypothesis.

We now substitute the sum of Eqs. (5) and (6) into the

boundary conditions (2) and (3). The resulting equations for

the scattering amplitude can be written as

1

� kjj �rf xjjð Þþa0 kjj;x
� �h i !

exp ikjj �xjj�ia0 kjj;x
� �

f xjjð Þ
h i

þ
ð

d2qjj

2pð Þ2
R qjjjkjj
� � 1

� qjj �rf xjjð Þþa0 qjj;xð Þ
	 


 !

�exp iqjj �xjj�ia0 qjj;xð Þf xjjð Þ
	 
¼0:

(7)
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We now introduce the function IðcjQjjÞ by

exp �icf xjjð Þ
	 
 ¼ ð d2Qjj

2pð Þ2
I cjQjj
� �

exp iQjj � xjj
	 


; (8a)

so that

I cjQjj
� �

¼
ð

d2xjj exp �icf xjjð Þ
	 


exp �iQjj � xjj
	 


: (8b)

If we differentiate both sides of Eq. (8a) with respect to

xaða ¼ 1; 2Þ, we obtain the useful result

fa xjjð Þexp �icf xjjð Þ
	 


¼ �
ð

d2Qjj

2pð Þ2
Qa

c
I cjQjj
� �

exp iQjj � xjj
	 


: (8c)

When we substitute Eq. (8) into Eq. (7) and equate to

zero the coefficient of exp½ipjj � xjj� in the resulting equations,

the equations satisfied by the scattering amplitudes RðqjjjkjjÞ
become

ð
d2qjj

2pð Þ2
I �a0 qjj;xð Þjpjj � qjj
� �

M pjjjqjj
� �

R qjjjkjj
� �

¼ �I a0 kjj;x
� �

jpjj � kjj
� �

N pjjjkjj
� �

; (9)

where

M pjjjqjj
� �

¼ 1; N pjjjkjj
� �

¼ 1 (10)

for a Dirichlet surface, and

M pjjjqjj
� �

¼
x=cð Þ2 � pjj � qjj

a0 qjj;xð Þ
;

N pjjjkjj
� �

¼
x=cð Þ2 � pjj � kjj

a0 kjj;x
� �

:

(11)

for a Neumann surface. Equations (9)–(11) constitute the

Rayleigh equations for the scattering amplitude in the scat-

tering of a scalar plane wave from a two-dimensional rough

Dirichlet or Neumann surface.

3. The differential reflection coefficient

The scattering amplitude RðqjjjkjjÞ is of great importance

in calculations of scattering from rough surfaces because an

experimentally accessible quantity, the differential reflection

coefficient, is expressed in terms of it. The differential reflec-

tion coefficient @R=@Xs is defined such that ð@R=@XsÞdXs is

the fraction of the total time-averaged incident flux that is

scattered into an element of solid angle dXs around the

direction defined by the polar and azimuthal angles of scat-

tering ðhs;usÞ.
The magnitude of the total time-averaged flux incident

on the surface is given by

Pinc¼�AIm

ðL1
2

�L1
2

dx1

ðL1
2

�L1
2

dx2 w� xjxð Þinc

@w xjxð Þinc

@x3

� �
x3>maxf xjjð Þ

;

(12)

where L1 and L2 are the lengths of the scattering surface

along the x1 and x2 axes, while A is a coefficient that drops

out of the expression for the differential reflection coeffi-

cient. (For the scattering of a particle of mass m, A ¼ �h=m
where �h denotes Planck’s constant.) The minus sign that

appears in on the right-hand side of Eq. (12) compensates for

the fact that the incident flux is negative. For the form of the

incident field given by Eq. (5) we find easily that

Pinc ¼ AL1L2a0 kjj;x
� �

; (13)

where we have used the fact that a0ðkjj;xÞ is real.

Similarly, the magnitude of the total time-averaged scat-

tered flux is given by

Psc¼AIm

ðL1
2

�L1
2

dx1

ðL2
2

�L2
2

dx2 w� xjxð Þsc

@w xjxð Þsc

@x3

� �
x3>maxf xjjð Þ

:

(14)

With the use of the expression for wðxjxÞsc given by Eq. (6),

this expression becomes

Psc ¼ A Im

ðL1
2

�L1
2

dx1

ðL2
2

�L2
2

dx2

ð
d2qjj

2pð Þ2
d2q0jj

2pð Þ2
ia0 q0jj;x
� �

� R� qjjjkjj
� �

R q0jjjkjj
� �

exp �i qjj � q0
� �

� xjj
h i

� exp �i a�0 qjj;xð Þ � a0 q0jj;x
� �h i

x3

n o
¼ A Imi

ð
d2qjj

2pð Þ2
a0 qjj;xð ÞjR qjjjkjj

� �
j2

� exp �2Ima0 qjj;xð Þx3

	 

¼ A

ð
qjj<x=c

d2qjj

2pð Þ2
a0 qjj;xð ÞjR qjjjkjj

� �
j2: (15)

In obtaining this result we have used the fact that a0ðqjj;xÞ
is real for 0 < qjj < x=c, while it is imaginary for qjj > x=c,

to obtain the domain of integration indicated.

We now introduce the polar and azimuthal angles of

incidence ðh0;u0Þ and of scattering ðhs;usÞ, respectively,

through the relations

kjj ¼
x
c

sin h0 cos u0; sin u0; 0ð Þ (16a)

and

qjj ¼
x
c

sin hs cos us; sin us; 0ð Þ: (16b)

It follows that a0ðkjj;xÞ ¼ ðx=cÞcos h0, a0ðqjj;xÞ ¼ ðx=cÞ
cos hs, and d2qjj ¼ ðx=cÞ2 cos hsdXs where dXs, the element

of solid angle, is dXs ¼ sin hsdhsdus. With the use of these

results the incident flux can be written as

Pinc h0ð Þ ¼ AL1L2

x
c

cos h0; (17)

while the scattered flux becomes
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Psc ¼
ð

dXspsc hs;usð Þ; (18)

where

psc hs;usð Þ ¼ A
x

2pc

 �2 x
c

cos2 hsjR qjjjkjj
� �

j2: (19)

By definition the differential reflection coefficient is

@R

@Xs
¼ psc hs;usð Þ

Pinc h0ð Þ
¼ 1

L1L2

x
2pc

 �2 cos2 hs

cos h0

jR qjjjkjj
� �

j2;

(20)

where kjj and qjj are defined by Eqs. (16a) and (16b),

respectively.

4. Doubly-periodic surface

The results obtained in the preceding sections of this paper

apply to an arbitrary two-dimensional rough surface defined by

the single-valued surface profile function fðxjjÞ that is differen-

tiable with respect to x1 and x2. In this section we specialize

these results to the case where the surface profile function is a

doubly-periodic function of xjj, namely a bigrating.

Thus the surface profile function fðxjjÞ is assumed to

possess the property fðxjj þ xjjð‘ÞÞ ¼ fðxjjÞ, where the vector

xjjð‘Þ is a translation vector of a two-dimensional Bravais

lattice.31 It is defined by

xjj ‘ð Þ ¼ ‘1a1 þ ‘2a2; (21)

where a1 and a2 are the two noncolinear primitive translation

vectors of the Bravais lattice, while ‘1 and ‘2 are any positive

or negative integers or zero, which we denote collectively

by ‘. The area of a primitive unit cell of this lattice is

ac¼ ja1� a2j.
We also introduce the lattice reciprocal to the one defined

by Eq. (21). Its lattice sites are defined by the vectors

Gjj hð Þ ¼ h1b1 þ h2b2; (22)

where the primitive translation vectors b1 and b2 are related

to the primitive translation vectors of the direct lattice, a1

and a2, by ai � bj ¼ 2pdij, while h1 and h2 are any positive or

negative integers or zero, which we denote collectively by h.

We now proceed to transform the Rayleigh equation (9)

for the scattering amplitude RðqjjjkjjÞ into the Rayleigh equa-

tion for the corresponding amplitude that arises in the diffrac-

tion of a scalar plane wave from an impenetrable bigrating.

Due to the periodicity of the surface profile function

fðxjjÞ, the field in the region x3 > fðxjjÞ must satisfy the

Floquet–Bloch condition32,33

w xjj þ xjj ‘ð Þ; x3jx
� �

¼ exp ikjj � xjj ‘ð Þ
h i

w xjj; x3jx
� �

: (23)

This condition is satisfied if we rewrite the scattering ampli-

tude RðqjjjkjjÞ in the form

R qjjjkjj
� �

¼
X
Gjj

2pð Þ2d qjj �kjj �Gjj
� �

r kjj þGjjjkjj
� �

: (24)

In writing this equation we have replaced summation over h
by summation over Gjj.

A second consequence of the periodicity of the surface

profile function fðxjjÞ is that the function IðcjQjjÞ defined by

Eq. (8b) can now be written

I cjQjj
� �

¼
X
‘

ð
ac ‘ð Þ

d2xjj exp �icf xjjð Þ
	 


exp �iQjj �xjj
	 


; (25)

where acð‘Þ is the area of the unit cell containing the transla-

tion vector xjjð‘Þ. The change of variable xjj ¼ xjjð‘Þ þ ujj,
and the relation fðxjj þ xjjð‘ÞÞ ¼ fðxjjÞ, yield the result

I cjQjj
� �

¼
X
‘

exp �iQjj � xjj ‘ð Þ
h i

�
ð
ac

d2ujj exp �icf ujjð Þ
	 


exp �iQjj:ujj
	 


: (26)

The use of the relation34

X
‘

exp �iQjj � xjj ‘ð Þ
h i

¼
X
Gjj

2pð Þ2

ac
d Qjj �Gjj
� �

(27)

in Eq. (26) yields the result

I cjQjj
� �

¼
X
Gjj

2pð Þ2d Qjj �Gjj
� �

Î cjGjj
� �

; (28)

where

Î cjGjj
� �

¼ 1

ac

ð
ac

d2xjj exp �icf xjjð Þ
	 


exp �iGjj � xjj
	 


: (29)

When the results given by Eqs. (24) and (28) are

substituted into Eq. (9), and the integration over qjj is carried

out, we obtain the equationX
Kjj

2pð Þ2d pjj �Kjj
� �X

K0jj

Î �a0 K0jj;x
� �

jKjj �K0jj

� �

�M KjjjK0
� �

r K0jkjj
� �

¼ �
X
Kjj

2pð Þ2d pjj �Kjj
� �

� Î a0 kjj;x
� �

jKjj � kjj
� �

N Kjjjkjj
� �

: (30)

In writing this equation, to simplify the notation we

have defined the two wave vectors

Kjj ¼ kjj þGjj; K0jj ¼ kjj þG0jj; (31)

and have replaced summation over Gjj and G0jj by summation

over Kjj and K0jj, respectively. On equating the coefficients

of dðpjj �KjjÞ on both sides of Eq. (30) we obtain the

Rayleigh equation satisfied by rðKjjjkjjÞX
K0jj

Î �a0ðK0jj;xj
� �

Kjj �K0jjÞM KjjjK0jj
� �

r K0jjjkjj
� �

¼ �Î a0 kjj;x
� �

jKjj � kjj
� �

N Kjjjkjj
� �

: (32)

Equation (32) holds for all possible values of Kjjðor GjjÞ, and

hence it represents a linear system of equations of infinite

dimension. To be able to solve the system numerically, we

need a system of finite dimension. This can be achieved by
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restricting the vectors GjjðhÞ and G0jjðhÞ to a domain for

which their lengths are no more than several times x=c, but

at the same time no shorter than x=c. In this way a finite

dimensional linear system is obtained that can be solved for

rðkjj þGjjðhÞjkjjÞ by standard methods.

5. Diffraction efficiencies

The total time-averaged flux scattered from our doubly-

periodic surface is obtained by substituting Eq. (27) into

Eq. (15):

Psc¼A

ð
qjj<x=c

d2qjj

2pð Þ2
a0 qjj;xð Þ

X
Gjj

2pð Þ2d qjj�kjj�Gjj
� �

�r� kjjþGjjjkjj
� �X

G0jj

2pð Þ2d qjj�kjj�G0jj

� �

�r kjjþG0jjjkjj
� �

: (33)

The only nonzero terms on the right-hand side of this equa-

tion are those for which G0jj ¼ Gjj. Then, with the result that

in two-dimensions

2pð Þ2d 0ð Þ ¼ L1L2: (34)

Equation (33) becomes

Psc¼AL1L2

ð
qjj<x=c

d2qjja0 qjj;xð Þ
X
Gjj

d qjj �kjj �Gjj
� �

�jr kjj þGjjjkjj
� �

j2¼AL1L2

X0

Gk

a0 jkjj þGjjj;x
� �

�jr kjj þGjjjkjj
� �

j2: (35Þ

The prime on the sum indicates that it extends over only

those values of Gjj for which jkjj þGjjj < x=c. Equation

(35) demonstrates that each diffracted beam contributes

independently to the scattered flux.

When the scattered flux is normalized by the total time-

averaged flux of the incident field, Eq. (13), the result can be

written

Psc

Pinc

¼
X0

Gk

e kjj þGjjjkjj
� �

; (36)

where

e kjj þGjjjkjj
� �

¼
a0 jkjj þGjjj;x
� �
a0 kjj;x
� � ����r kjj þGjjjkjj

� �
j2: (37)

The quantity eðkjj þGjjjkjjÞ, called the diffraction efficiency,
is the fraction of the total time-averaged incident flux that is

diffracted into a Bragg beam defined by the wave vector

kjj þGjj (when the incident beam is defined by kjj). It has a

physical meaning for only those values of Gjj for which

a0ðjkjj þGjjj;xÞ is real. The propagating diffracted beams

defined by this condition are called the open channels.
Since there is no absorption in the scattering from an

impenetrable surface, all the power incident on it must be

scattered back into the medium of incidence. Hence, the con-

servation of energy in the scattering process requires that

X0

Gk

e kjj þGjjjkjj
� �

¼ 1: (38)

The closeness to unity of the sum on the left-hand side of

Eq. (38) is a good test of the quality of the numerical simula-

tion calculations of the diffraction efficiencies.

The reflectivity of the bigrating is obtained from the dif-

fraction efficiency for the beam defined by Gjj ¼ 0

R kjj
� �

¼ e kjjjkjj
� �

: (39)

6. Results

We will illustrate the proceeding results by presenting

simulation results for the dependence of the reflectivity and

several other diffraction efficiencies on the polar and azi-

muthal angles of incidence h0 and u0, respectively, when the

bigrating defined by the surface profile function

f xjjð Þ ¼
f0

2
cos

2px1

a

 �
þ cos

2px2

a

 �� �
(40)

is illuminated by a scalar plane wave of frequency x. The

primitive translation vectors of the square Bravais lattice

underlying this surface profile function are

a1 ¼ a 1; 0; 0ð Þ; a2 ¼ a 0; 1; 0ð Þ: (41)

Those of the corresponding reciprocal lattice are

b1 ¼
2p
a

1; 0; 0ð Þ; b2 ¼
2p
a

0; 1; 0ð Þ: (42)

An attractive feature of the form of the surface profile

function in Eq. (40) is that the Î-integral defined in Eq. (29)

can be obtained analytically, and takes the form

Î cjGjj hð Þ
� �

¼ �1ð Þh1þh2 Jh1

cf0

2

 �
Jh2

cf0

2

 �
; (43)

where Jnð�Þ represents the Bessel function of the first kind

and order n.

In the first set of calculations of the dependence of the

reflectivity of the bigrating defined by Eq. (40) on the polar

angle of incidence h0 for a value of the azimuthal angle of inci-

dence u0 ¼ 0 ½k̂jj ¼ ð1; 0; 0Þ�, we assumed that the lattice con-

stant a had the value a¼ 3.5 k, where k is the wavelength of the

incident wave, while the amplitude f0 took several values. The

calculated reflectivities for Neumann surfaces characterized by

the amplitudes f0 ¼ 0:3k; 0:5k; 0:7k are presented in Fig. 1.

These results show a complex dependence of the reflectivity on

the polar angle of incidence in the form of the presence of many

sharp peaks and dips. These features are Rayleigh anomalies,
which occur at values of h0 for a given value of u0 at which dif-

fractive orders start or cease to propagate.

To determine the angles of incidence at which the

Rayleigh anomalies occur, we note that the lateral wave vec-

tor of the diffractive beam characterized by the index pair

h1, h2 is given by

qjj h1; h2ð Þ ¼ kjj þGjj h1; h2ð Þ: (44)

This diffractive beam goes from being a propagating one to

an evanescent one when jqjjðh1; h2Þj ¼ x=c, which is the
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condition for a potential Rayleigh anomaly to be associated

with this wave. On squaring both sides of Eq. (44) and using

Eqs. (16a) and (22), we obtain a quadratic equation for sin

h0

sin2h0 þ 2 sin h0k̂jj � h1

c

x
b1 þ h2

c

x
b2

 �

þ h1

c

x
b1 þ h2

c

x
b2

 �2

� 1 ¼ 0 (45)

with k̂jj ¼ ðcos u0; sin u0; 0Þ.
Equation (45) determines for a general grating where

Rayleigh anomalies can exist. From its solutions

sin h0 ¼ �k̂jj � h1

c

x
b1 þ h2

c

x
b2

 �

6 k̂jj � h1

c

x
b1 þ h2

c

x
b2

 �� �2
(

� h1

c

x
b1 þ h2

c

x
b2

� �2

þ 1

)1
2

; (46)

under the condition jsinh0j � 1, as h1 and h2 each run over

all positive and negative integers and zero, the polar angles

of incidence h0 at which Rayleigh anomalies can exist for a

specified azimuthal angle of incidence u0 are obtained. The

values of h0 obtained in this way are indicated by gray verti-

cal dashed lines in Fig. 1. From the results of this figure we

see that the majority of the peaks and dips present in the

reflectivity are Rayleigh anomalies. It should be noted that

even if a Rayleigh anomaly is predicted to exist at a

particular polar angle of incidence, it may not be observed in

the reflectivity, because it is too weak to be seen.

We see from Fig. 1 that as the amplitude of the surface

profile function f0 is increased, the polar angles of incidence

at which the Rayleigh anomalies occur do not change, as

must be the case, but the forms of the anomalies can change.

Peaks and dips can change their magnitudes, and broaden,

and dips can change into peaks, and peaks can change into

dips.

The numerical calculations that produced the results pre-

sented in Fig. 1 were performed under the assumption that

GjjðhÞ � 4x=c, and the linear system of equations satisfied

by rðKjjjkjjÞ, Eq. (32), was solved by the routine la_gesv

from LAPACK95.35 For this value of max GjjðhÞ the simula-

tion time required per angle of incidence to produce the

results in Fig. 1 was 1.5s, or less on average, when the simu-

lations were performed on a machine equipped with an Intel

i7–5930K CPU running at 3.50 GHz. The energy conserva-

tion condition (38) was found to be satisfied with an error no

greater than 10�10 for all the values of h0 and f0 that we

considered.

In Fig. 2 we present the dependence of the reflectivity

on the polar angle of incidence when the azimuthal angle of

incidence is u0¼ 45	. In this case the unit vector k̂jj
becomes k̂jj ¼ 1=

ffiffiffi
2
p

; 1=
ffiffiffi
2
p

; 0
� �

, and the values of h0 at

which Rayleigh anomalies are predicted to occur are differ-

ent from the values at which they occur in Fig. 1. With an

increase of the amplitude of the surface profile function,

these anomalies undergo the same kinds of changes in their

forms as they do in the case where u0¼ 0	.
We now turn to the diffraction of a scalar plane wave

from a doubly-periodic Dirichlet surface defined by Eq. (40).

Fig. 1. Reflectivity of a doubly-periodic cosine Neumann surface [see Eq. (40)] as a function of the polar angle of incidence h0 for the azimuthal angle of inci-

dence u¼ 0. The doubly-periodic cosine grating had a period a=k¼ 3.5 and amplitudes (a) f0=k¼ 0.3; (b) f0=k¼ 0.5 and (c) f0=k¼ 0.7. The vertical dashed

lines display the positions of the Rayleigh anomalies predicted on the basis of Eq. (46). The scan over polar angle of incidence, h0, was done in steps of

dh0¼ 0.025	. In performing the numerical calculations, it was assumed that GjjðhÞ � 4x=c.
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In Fig. 3 we present the reflectivity as a function of h0 for

the case where u0¼ 0	. The parameters defining the surface

profile function are a¼ 3.5k and f0¼0.3k, 0.5k, 0.7k, namely

the values assumed in obtaining the results presented in Figs.

1 and 2. The values of h0 at which Rayleigh anomalies are

predicted to exist are the same as those at which they are pre-

dicted to exist in Fig. 1. However, these anomalies are sig-

nificantly weaker than those occurring at the same values of

h0 in Fig. 1. This difference demonstrates the important role

played by the boundary condition on the surface of the

bigrating satisfied by the field in the region x3 > fðxjjÞ in

forming these anomalies.

A further comparison of Figs. 1 and 3 prompts the follow-

ing observation. In Fig. 1(a) we see a dip in the reflectivity at

a value of h0 
 88:0	, an angle at which no Rayleigh anom-

aly is predicted to exist. In Fig. 1(b), for a larger amplitude of

the bigrating profile function, this dip has broadened and

shifted to a smaller value of h0, namely h0 
 84:5	. Again, no

Fig. 2. The same as Fig. 1 but for u0 ¼ 45	.

Fig. 3. Same as Fig. 1 but for doubly-periodic Dirichlet surfaces.
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Rayleigh anomaly is predicted to occur at this angle. With a

further increase of the amplitude of the bigrating profile func-

tion, we see in Fig. 1(c) a break in the slope of the reflectivity

curve at a value of h0 
 80	. Such a dip is more clearly visi-

ble at these three values of 00 in Figs. 2(a)–2(c). No such fea-

ture is present at these (or other) angles in Figs. 3(a)–3(c). It is

known7 that a doubly-periodic Neumann surface supports a

surface wave, while a doubly-periodic Dirichlet surface does

not. It is also known that changing the amplitude of the sur-

face profile function shifts the nonradiative and radiative

branches of the dispersion relation (in the reduced zone

scheme) of the surface wave on a Neumann bigrating.7 Since

a Wood anomaly arises due to the excitation of a surface

wave on a periodically modulated surface by the incident

field1,6 the angles of incidence at which these anomalies occur

will shift with changes in the surface profile function. These

properties of the large angle dip suggest that it represents a

Wood anomaly. However, confirmation of this conjecture has

to await the determination of the branches of the dispersion

curve of the surface wave supported by the doubly-periodic

Neumann surface, in the radiative region of the (kjj;x,) plane

as well as in the nonradiative region.

Features similar to those observed in Figs. 1–3 are pre-

sent in the dependence of other diffraction efficiencies on h0

Fig. 4. Several diffraction efficiencies eðkjj þGðhÞjkjjÞ for values of h given in each panel as functions of the polar angle of incidence h0 for the azimuthal

angle of incidence u0 ¼ 0	. The doubly-periodic Neumann surface, defined by Eq. (40), is characterized by the parameters f0 ¼ 0.5k and a¼ 3.5k. These are

the same parameter values assumed in obtaining the results presented in Figs. 1(b), 2(b), and 3(b). Here also the scan over the polar angle of incidence was

done in steps of Dh0 ¼ 0.025	, and GjjðhÞ � 4x=c was assumed in performing the numerical calculations.
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for a given value of u0. In Fig. 4 we plot this dependence for

the efficiencies of the {1,0}, {–1,0}, {0, 61}, {1, 61}, and

{–1, 61} beams diffracted from the Neumann surface

defined by Eq. (40) with f0¼ 0.5k and a¼ 3.5k. The azi-

muthal angle of incidence is u0¼ 0	. The notation {h1,6h2}

indicates that the {h1,h2} and {h1, –h2} efficiencies are iden-

tical. This identity is a consequence of the symmetry of the

scattering system under reflection in the x1 axis when

u0¼ 0	. The predicted angular positions of the Rayleigh

anomalies are indicated by the gray vertical dashed lines. It

is seen that all of the peaks and dips in these dependencies

occur at these angles, but not every one of these angles has

an anomaly associated with it.

It is apparent from the results presented in Fig. 1, for

instance, that the reflectivity of the doubly-periodic cosine

Neumann surface depends strongly on its amplitude f0. To

further investigate this dependence, we present in Fig. 5 as a

solid line the reflectivity of such a surface of period a¼ 3.5

k as a function of the amplitude f0 for polar and azimuthal

angles of incidence h0¼ 0	 and u0¼ 0	, respectively. These

results were obtained on the basis of a numerical solution of

the Rayleigh equation (32) for the same values of the numer-

ical parameters assumed in obtaining the results in Fig. 1.

Figure 5 shows that the reflectivity of the doubly-periodic

Neumann surface decreases monotonically from unity to

approximately 3� 10�5 when its amplitude increases from

zero (planar surface) to f0¼ 0.371k. Increasing the ampli-

tude beyond this value causes the reflectivity of the surface

to increase monotonically, and it reaches the value 0.1357

when f0 ¼ 0:7k. What happens to the reflectivity when

f0=k > 0:7, we have not investigated here.

To validate our use of the Rayleigh equation in obtain-

ing the results presented in this work, we performed addi-

tional calculations obtained on the basis of a rigorous

Green’s function-based numerical approach.29,30 To this end,

the latter approach was used to calculate the reflectivity for

normal incidence as a function of the corrugation strength

f0. The results of such calculations are presented as open

symbols in Fig. 5, and they show satisfactory agreement

with the corresponding results obtained on the basis of the

Rayleigh equation approach. In particular, the five orders of

magnitude variation of the reflectivity is consistently pre-

dicted by both approaches. It is only for f0=k > 0:5 that

some minor discrepancy starts to develop. As we will com-

ment below, it it not entirely clear if this should be inter-

preted an indication that the Rayleigh equation approach

starts to become less accurate.

We now briefly detail how the rigorous Green’s function-

based numerical calculations were performed; Ref. 30 gives

additional details. Since the Green’s function-based approach

as formulated in Ref. 30 does not explicitly use the fact that

the surface is periodic, the first step of the calculation is to

restrict the doubly-periodic surface (40) to a square region of

the x1x2 plane of edges L. Next, this surface profile, as well as

its derivatives up to order two, are discretized on a square lat-

tice of points of lattice parameters Dx. To avoid diffraction

artifacts from the edges of the surface, the incident beam is

assumed to be a Gaussian beam of 1/e half-width W. In the

numerical calculations using the Green’s function approach

that we report in Fig. 5 the values of the numerical parameters

were L¼ 38k, W¼ 15k, and Dx¼ 0.15k. The reflectivity of

the surface was calculated by integrating the differential

reflection coefficient @R=@Xs over an angular region around

the specular direction in such a way that only the contribution

from the fundamental diffractive order was included. Since

the period of the surface that we consider is sufficiently long

[a¼ 3.5k], the diffractive orders were well separated. For the

calculation of the reflectivity we used a region defined by

jqjj � kjjj < 0:1x=c. We also checked and found that minor

adjustments of the size of this angular region did not affect

the reflectivity values obtained in any significant way. It

should be remarked that for the largest values of f0 that we

considered we found a weak but detectable dependence of the

reflectivity on the parameters L and W when it was calculated

by the Green’s function approach as described above. Hence

the discrepancy seen in Fig. 5 in the reflectivity obtained by

the two approaches for the largest values of the corrugation

strength is not necessarily due to the Rayleigh approach

becoming inaccurate.

The calculations based on the Green’s function approach,

whose results are reported in Fig. 5, took about 34 min (or

about 2000 s) of cpu-time to complete per value of f0 when

the calculation was performed on an Intel i7 960 processor

running at 3.20 GHz, and the memory footprint of the calcula-

tion was almost 19 Gb. A similar calculation using the

Rayleigh equation approach took about 1 s of cpu-time when

performed on the same computer for the numerical parameters

that we assumed and it required only a faction of the computer

memory needed by the Green’s function calculation.

Finally we should remark that the rigorous Green’s func-

tion approach30 described and used above is not ideal for a

doubly-periodic system. An approach of this kind that is

adapted to doubly-periodic systems uses periodic Green’s

functions.36 However, the usual expressions for doubly-

periodic Green’s functions contain slowly convergent

series,36 and have to be subjected to accelerated transforma-

tions36–38 to make them useful in calculations. We have

therefore decided not to pursue it in this work.

Fig. 5. Reflectivity of a doubly-periodic cosine Neumann surface [see Eq.

(40)] of period a/k¼ 3.5 as a function of the amplitude f0 for the polar and

azimuthal angles of incidence h0¼ 0	 and u0¼ 0	, respectively. The solid

line represents the results obtained on the basis of the Rayleigh equation

(32) while the open symbols were obtained by a rigorous Green’s function-

based numerical approach.29 In performing the latter calculations it was

assumed the edge of the square region of the x1x2 plane covered by the

doubly-periodic surface was L¼ 38k, the width of the Gaussian incident

beam was W¼ 15k, and Dx¼ 0.15k was the discretization interval used.
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7. Conclusions

We have derived the Rayleigh equation for the ampli-

tude of the scattered field when a scalar plane wave is inci-

dent on a two-dimensional rough surface on which the

Neumann or Dirichlet boundary condition is imposed. From

this equation, we have obtained the equation for the ampli-

tudes of the diffracted Bragg beams, when the rough surface

is a doubly-periodic one. This equation has been solved by a

rigorous numerical approach, and from the solution the

dependence of the diffraction efficiencies of several of the

lowest-order diffracted beams on the polar and azimuthal

angles of incidence has been determined. These dependen-

cies display a rich structure of peaks and dips as functions of

the polar angle of incidence for a specified azimuthal angle

of incidence. These features occur at the angles at which a

diffracted beam starts or ceases to propagate. Hence they are

the analogues for a doubly-periodic grating of the anomalies

that were first observed by Wood4 in the diffraction of light

by a classical metal grating, and were subsequently

explained by Lord Rayleigh.5 They are now called Rayleigh

anomalies. These anomalies are observed in the diffraction

of a scalar wave from both a Neumann and a Dirichlet sur-

face. In the case of diffraction from a Neumann surface an

additional anomaly, a dip, is observed in the reflectivity at

angles of incidence for which no Rayleigh anomaly is pre-

dicted to occur. No such anomaly is presented in diffraction

from doubly-periodic Dirichlet surfaces. A doubly-periodic

Neumann surface supports a surface wave, while a doubly-

periodic Dirichlet surface does not. From this and responses

of the dip to changes of the surface profile function of the

Neumann surface, it is conjectured that it is a Wood anomaly

that was first reported by Wood in Ref. 4, and was subse-

quently explained by Fano6 as due to the excitation of the

surface electromagnetic wave supported by the grating by

the incident light through the periodic modulation of the sur-

face. This conjecture can only be verified when the branches

of the dispersion curve of the surface wave on the Neumann

bigrating in the radiative region of the (kjj;x,) plane have

been determined. That will be the subject of a separate work.

It should be noted that neither the Neumann nor the Dirichlet

surface supports a surface wave when it is planar. Finally, by

comparing results obtained from solutions of the Rayleigh

equation with results obtained by a rigorous Green’s function-

based numerical approach,29 we have validated the use of the

Rayleigh equation in the calculations reported here.

We dedicate this paper to the memory of Arnold

Markovich Kosevich. He contributed outstanding work to

many areas of condensed matter theory, and it was a pleasure

to know him. The research of I.S. was supported in part by the

Research Council of Norway (Contract No. 216699) and the

French National Research Agency (No. ANR-15-CHIN-0003).

APPENDIX: THE MEAN DIFFERENTIAL REFLECTION
COEFFICIENT

For completeness we note that if the surface profile func-

tion fðxjjÞ is a stationary, zero-mean, isotropic random pro-

cess, it is the average of the differential reflection coefficient

over the ensemble of realizations of fðxjjÞ that we must

calculate

D @R

@Xs

E
¼ 1

L1L2

x
2pc

 �2 cos2hs

cos h0

hjR qjjjkjj
� �

j2i: (A1)

Here, and in all that follows, the angle brackets denote an

average over the ensemble of realizations of the surface pro-

file function. If we write the scattering amplitude RðqjjjkjjÞ
as the sum of its average value and the fluctuation from the

mean value

R qjjjkjj
� �

¼ hR qjjjkjj
� �

i þ R qjjjkjj
� �

� hR qjjjkjj
� �

i
	 


; (A2)

we find that each term contributes separately to the mean dif-

ferential reflection coefficient,

D @R

@Xs

E
¼
D @R

@Xs

E
coh
þ
D @R

@Xs

E
incoh

; (A3)

where

D @R

@Xs

E
coh
¼ 1

L1L2

x
2pc

 �2 cos2hs

cos h0

jhR qjjjkjj
� �

ij2 (A4)

and

D @R

@Xs

E
incoh
¼ 1

L1L2

x
2pc

 �2 cos2hs

cos h0

� hjR qjjjkjj
� �

� hR qjjjkjj
� �

ij2i

¼ 1

L1L2

x
2pc

 �2 cos2hs

cos h0

� hjR qjjjkjj
� �

j2i � jhR qjjjkjj
� �

ij2
h i

: (A5)

The first term on the right-hand side of Eq. (A3) is the contri-

bution to the mean differential reflection coefficient from the

field scattered coherently (specularly), while the second term

is the contribution from the field scattered incoherently (dif-

fusely). Recently, expressions similar to those that appear in

Eqs. (A4) and (A5) were used to calculate the mean differen-

tial reflection coefficient on the basis of the numerical solu-

tions of the Rayleigh equations for the scattering of light

from a two-dimensional randomly rough perfectly conduct-

ing surface.39

For the type of randomly rough surfaces considered here

it is the case that

hR qjjjkjj
� �

i ¼ 2pð Þ2d qjj � kjj
� �

r kjj
� �

: (A6)

The delta function is a consequence of the assumed station-

ary of the surface profile function, while the fact that rðkjjÞ is

a function of kjj only through its magnitude is due to the isot-

ropy of the surface profile function.

The reflectivity of the randomly rough surface is given by

R h0ð Þ ¼
ðp2
0

dhs sin hs

ðp
�p

dus

D @R

@Xs

E
coh
: (A7)

With the use of Eqs. (A4), (A6), and (34) and the result that

d qjj � kjj
� � ¼ c

x

 �2 d hs � h0ð Þd us � u0ð Þ
sin h0 cos h0

: (A8)
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Equation (A7) simplifies to

R h0ð Þ ¼ jr kjj
� �
j2 ¼

����r x
c

sin h0

 �����
2

: (A9)

From Eqs. (A6) and (34) we find that

r kjj
� �

¼ 1

L1L2

hR kjjjkjj
� �

i: (A10)
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