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Abstract

The incidence of dengue has increased rapidly in Bangladesh since 2010 with an outbreak

in 2018 reaching a historically high number of cases, 10,148. A better understanding of the

effects of climate variability before dengue season on the increasing incidence of dengue in

Bangladesh can enable early warning of future outbreaks. We developed a generalized lin-

ear model to predict the number of annual dengue cases based on monthly minimum tem-

perature, rainfall and sunshine prior to dengue season. Variable selection and leave-one-

out cross-validation were performed to identify the best prediction model and to evaluate the

model’s performance. Our model successfully predicted the largest outbreak in 2018, with

10,077 cases (95% CI: [9,912–10,276]), in addition to smaller outbreaks in five different

years (2003, 2006, 2010, 2012 and 2014) and successfully identified the increasing trend in

cases between 2010 and 2018. We found that temperature was positively associated with

the annual incidence during the late winter months (between January and March) but nega-

tively associated during the early summer (between April and June). Our results might be

suggest an optimal minimum temperature for mosquito growth of 21–23˚C. This study has

implications for understanding how climate variability has affected recent dengue expansion

in neighbours of Bangladesh (such as northern India and Southeast Asia).

Background

Dengue fever, one of the most prevalent vector-borne diseases, has led to significant socio-eco-

nomic costs in many parts of the world [1]. Three-quarters of the global dengue cases occur in

Southeast Asian and western Pacific countries, due to the associated favorable weather condi-

tions for mosquito population expansion [2, 3]. Outbreaks of dengue fever can significantly

reduce life expectancy due to the possibility of developing severe dengue following secondary

infections from different dengue serotypes [4]. Therefore, it is critically important to
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understand the impacts of the climate on the spread of dengue in these regions, as this can

serve as early warning system and enable early preventative measures to be put in place before

outbreaks become established.

Expansion of dengue in the regions surrounding northern India may have occurred in recent

years due to climate change. The prolonged rainy seasons and increasing temperatures in sub-

tropical regions of Southeast Asia may provide favorable conditions for expansion of Aedes mos-

quito populations, the dengue vector [5–8]. In addition, increased incidence of dengue has

recently been observed in more temperate regions [9], such as Nepal [10], indicating a possible

expansion of the disease from the subtropics to cooler climates, posing a threat to northern

India, Pakistan and their neighbors. Bangladesh is located to the northeast of India and to the

south of Nepal, and lies along the Tropic of Cancer. Understanding the patterns of recent den-

gue outbreaks in Bangladesh may provide greater insight into whether dengue has expanded

into the region surrounding northern India, a region with more than 140 million inhabitants.

Dengue fever was first identified in Bangladesh in 1964 [11] and was not initially considered

to be a severe threat to public health. However, in 2000, an outbreak occurred, leading to a

total of 5,551 reported cases and 93 confirmed deaths [12, 13]. The average annual number of

dengue cases decreased between 2000 and 2010. However, since then the number of annual

dengue cases in Bangladesh has been increasing rapidly. A recent outbreak in 2019 was the

largest ever experienced by the country, whereas the second largest outbreak was seen only a

year prior, in 2018. Whether or how climate variability may have driven this unprecedented

rise in outbreak size in 2018 and 2019 is still largely unknown [14].

Several studies have been carried out to estimate dengue incidence in Bangladesh using cli-

mate data prior to 2010 [15–17]; however, the driving factors responsible for the increasing

disease burden since 2010 remain to be investigated. In these previous studies, temperature

and rainfall were found to be significant contributing factors [18–21]. Previous studies also

assumed that the effects of climate variables are independent of the time of year. However, the

effects of climate variables can also be time-dependent. Several studies have demonstrated that

the effects of rainfall on dengue incidence can vary throughout the year [22, 23]. The abundant

rainfall that occurs during monsoon season is likely to have negative effects on mosquito popu-

lation size, as the rain can disrupt potential mosquito habitats. In contrast, rainfall in winter

months may result in stagnant bodies of water suitable for mosquito breeding.

Recent studies have mentioned the dengue incidence and mosquito abundance can be

affected by weather conditions up to 5 months before the season starts [22–24] using data in or

near subtropical areas. However, most of the studies focus on climate factors during dengue

season. A better understanding of the relationship between climate variability before dengue

season and annual incidence can provide insight into whether dengue has been expanding in a

region and allow early warning system to be built.

This study aimed to estimate the effects of climate factors before dengue season on annual

incidence in Bangladesh using historical data from 2000 to 2018. We developed a generalized

linear model to predict annual dengue cases based on monthly temperature, rainfall and sun-

shine. We demonstrated that temperature and rainfall have variable effects on dengue inci-

dence depending on the time of year and suggest an ideal temperature range for mosquito

population growth based on our findings.

Methods

Study location

Bangladesh is a Southeast Asian country, as defined by the World Health Organization

(WHO) [25]. India surrounds it to the east, west and north, and Myanmar borders it to the
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southeast (Fig 1). The Bay of Bengal is located in the south. Bangladesh is located at 20˚590N to

26˚630N and 88˚030E to 92˚670E. The Tropic of Cancer line is located at 23˚260N and 88˚470E,

where it crosses Bangladesh from east to west [26].

Bangladesh is located in both tropical and subtropical climate regions. The seasons in Ban-

gladesh can be broadly characterized as summer (March–June; mostly hot and humid), mon-

soon (June–October; warm and rainy) and winter (October–March; cold and dry). However,

March can also be described as the spring, and the duration between mid-October and mid-

November can be called the autumn. The maximum temperature ranges from 30˚C to 40˚C
during summer, whereas in winter the average temperature reaches as low as 10˚C in most

areas of the country. The average annual rainfall ranges between 1,500 mm and 3,000 mm.

Fig 1. Location of Bangladesh on the world map. India surrounds Bangladesh on three sides (east, west and north) and the Bay of Bengal

is to the south. The country shares a border with Myanmar in the southeast. The Tropic of Cancer line crosses the middle of the country.

https://doi.org/10.1371/journal.pgph.0000047.g001
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Approximately 70–80% of the annual rainfall occurs during monsoon season [27]. The short-

est period of sunshine, 5.4–5.8 hours per day, also occurs during this season. In contrast, win-

ter and summer have the longest sunshine duration, 8.5–9.1 hours per day [28].

Dengue data

Dengue cases observed in health facilities across the country are generally reported to the

Directorate General of Health Services (DGHS), and are classified into suspected, probable

and confirmed cases. Individuals having acute febrile illness with or without non-specific signs

and symptoms are classified as suspected cases and those having acute febrile illness with sero-

logical diagnosis are considered probable cases. The confirmed cases should have an acute

febrile illness with positive dengue NS1 antigen or PCR test. Details of dengue case definitions

and management are available from the DGHS [29].

The communicable disease control (CDC) unit of the DGHS compiles the reported dengue

cases on a daily basis for further circulation. We accessed monthly dengue cases between Janu-

ary 2000 and December 2018 from the DGHS by collaborating with the Institute of Epidemiol-

ogy, Disease Control and Research.

Climate data

Accumulated weather information was monitored and managed by the Bangladesh Meteoro-

logical Department (BMD) at 35 distinct weather stations across the country (location of the

stations are available in Fig 1 in [15]). We collected these weather records from the BMD

including daily mean, minimum and maximum temperature, total and maximum daily rainfall

and daily sunshine duration. Temperature and rainfall are measured in degree Celsius (˚C)

and millimeter (mm), respectively, whereas sunshine duration is recorded in hours. Daily

information was averaged for each month to obtain monthly information for each station. The

national averages for monthly temperature, sunshine duration and rainfall were obtained by

averaging the values of all 35 weather stations.

Model formulation

Following the previous approaches, we modeled annual dengue incidence using quasi Poisson

regression. In order to deal with the potential overdispersion issue, the quasi Poisson model and

corrected quasi Akaike information criteria (QAICc) were used. QAICc has been frequently

adopted for estimating the goodness of fit in modeling overdispersed count data in biological or

ecological studies using the quasi Poisson regression [30]. Another approach is to adopt a nega-

tive binomial model. Hence, we have adopted QAICc in quasi Poisson regression model and

also evaluate whether a negative binomial regression model can provide a best prediction result.

We assumed that dengue cases reported in January, February and March were belonging to

the previous year’s dengue outbreak. Hence, annual dengue incidence is defined as the sum of

the number of dengue cases from April to December of a given year and from January to

March of the following year. Let yj be the annual dengue cases in the jth year (j = 1, 2, . . ., 19)

such that yj* quasi- Poisson(λj), where λj represents the expected number of dengue cases in

the jth year, i.e. E(yj) = λj. Therefore, the Poisson regression model can be expressed as

logðljÞ ¼ aþ
X6

i¼1

biTij þ
X6

i¼1

giRij þ
X6

i¼4

ZiSij; ð1Þ

where βi, ηi and γi represent coefficients of temperature (T), rainfall (R) and sunshine duration

(S) in the ith month (i = 1, 2, . . ., 6). Therefore, 15 predictor variables exist in the full model as
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shown in Eq (1). These predictors were preselected during these months as we aimed to pre-

dict dengue outbreaks, which often begin during the early summer. The final model was

selected based on QAICc, which was designed to deal with small samples, and the results of

cross-validation (details are given in Model selection and validation sections). It is worth to

note that this approach has been previously applied in the annual dengue prediction in Asian

countries [22, 23].

Model selection

We compared six different models for predicting the annual dengue outbreaks with various

combinations of climate variables. Monthly temperatures (minimum, average or maximum)

and rainfall (maximum or total) from January to June and the sunshine duration from April to

June were chosen as potential predictors. Sunshine duration is mainly related to mosquito

activities (e.g., mosquito bite) and hence the associated disease transmissibility. As the number

of mosquitoes between January and March is low there is no need to consider sunshine dura-

tion during this period. Hence, we considered a shorter window for the sunshine duration. On

the other hand, temperature and rainfall are involved in mosquito population growth. The

change of growth rate during early months (e.g. from January to March) can affect population

size later. To avoid overlapping the climate predictors, we considered a single category of tem-

peratures and rainfall in each model.

A corrected version of the Akaike information criteria (AICc) [31] was used to extract

potential predictor variables. The best prediction model was determined using a two-stage

selection approach (Fig 2). In the first stage, variable selection was performed using forward

stepwise AICc selection for each of the models. In each step of the stepwise selection, we

recorded AICc along with parameter estimates, mean squared errors for validation and train-

ing to assess the fitness of the models (the details of the forward stepwise selection approach

are given in the supplementary section). In the final step, each model provides a set of variables

with minimum AICc. For these models, the model with the lowest AICc was selected as the

Fig 2. Two-stage selection of the best prediction model. Min(AICc) and Min(MSEVa) refer to the lowest value of AICc and lowest value of mean squared error of

LOOCV validation. �m represents the average value of AICc for all candidate models.

https://doi.org/10.1371/journal.pgph.0000047.g002
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lowest AICc model (ML). In contrast, the models satisfying the condition

jAICc � MinðAICcÞj < jAICc � �mj ð2Þ

were defined as low AICc models (Ml), where �m is the average AICc of all candidate models.

The reason we included both lowest and low AICc models is that we aim to identify the best

prediction model using LOOCV among all the models with low AICc. In the second stage, the

ML and Ml models were compared using the mean squared errors obtained from leave-one-

out cross-validation (LOOCV). The best model was the model with the minimum MSEVa in

LOOCV. In addition, the models were compared using QAICc of which a lower value referred

to a better predictivity of the model.

Model validation

Model validation was conducted using LOOCV to check how accurately the models can pre-

dict an independent dataset. If the difference between the predicted and observed value is min-

imum, we considered the predictive model is good. To perform LOOCV, the data for a specific

test year were removed and the model was fitted based on the remaining data, which served as

a training set. The fitted model was then used to predict the annual dengue cases for the test

year. We repeated this procedure for all years from 2000 to 2018. Mean squared errors for the

validation set MSEVa and for the training set MSETr were obtained by calculating the difference

between predicted and observed numbers of annual dengue cases in the testing set and train-

ing set. Next, we checked the mean squared error ratio F ¼ MSEVa
MSETr

� �
[22], the ratio of the mean

squared errors of the validation set and the training set.

We computed bootstrap confidence intervals for the predicted annual dengue cases in each

year. To do this, we simulated 1,000 random samples from a Poisson distribution by consider-

ing LOOCV-estimated annual cases (l̂) as the parameter of the distribution. The random

numbers were used to refit the model 1,000 times, giving the distribution of the estimated

parameters. The lower and upper bounds of the 95% confidence intervals were calculated

based on the 2.5% and 97.5% quantiles of the parameter distributions.

Assessment of the effects of climate factors

Interpretation of the estimated model coefficients for a generalized linear model is not as

straightforward as it is for an ordinary linear regression model, as the dependent variable y is

associated with a link function, such as a Poisson link [32]. Therefore, we calculated the mar-

ginal effect at the mean (MEM) to understand the effect of each of the predictor variables sepa-

rately using the R-package ggeffect [33].

Results

Dengue cases in Bangladesh

The number of dengue cases exhibited a decreasing trend since the outbreak in 2000 until

2010 (Fig 3A). After 2010, the number began to increase until a drop in 2014, and then grow

again till 2018. Over 5,000 infections were reported in 2000, 2002 and 2016. In contrast, in

2018, over 10,000 cases were reported. Dengue fever occurs primarily between July and

November each year (Fig 3B). Therefore, monthly climate predictors were selected prior to

July to predict the overall annual incidence.
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Climate variabilities

Different combinations of temperature (monthly average, maximum or minimum), rainfall

(monthly total or maximum) and sunshine duration were used to predict annual dengue inci-

dence. The monthly minimum temperature in Bangladesh increased after January and contin-

ued to increase until June/July, with the highest temperature of 26.4˚C measured in 2010 and

2014 (Fig 4). However, large variations in temperature were observed between March and

June. Rainfall increased between April and October (S1 Fig). The highest amount of rainfall

usually occurs between May and August, with low levels of rainfall recorded in January, Febru-

ary and December. Sunshine duration in January to April and in December exhibits a decreas-

ing trend over the years, an indication of warmer winter (S1 Fig). Longer sunlight duration is

mostly observed in the period from April to June.

Model selection and annual dengue prediction

To obtain an appropriate set of predictors for annual dengue prediction, we compared six

models with different combinations of climate variables (Table 1). The best prediction model

was determined using a two-stage model selection approach. In the first stage, Model 3 and

Model 6, which belonged to either the low or the lowest AICc models, were chosen based on

Fig 3. Dengue incidence in Bangladesh for different years and months. (A) Annual dengue case trends between 2000 and 2018.

A LOESS smoothing function is used to obtain a smooth line to represent the trend over the years. The shaded region shows the

pointwise 95% confidence interval. (B) Month-wise average dengue cases from January 2000 to December 2018. The shaded area

represents the 95% confidence interval.

https://doi.org/10.1371/journal.pgph.0000047.g003
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the criteria defined in Eq (2). For details of the stepwise AICc results, please refer to S2–S7

Tables. In the second stage, LOOCV was conducted for the selected models. After LOOCV was

performed, Model 3 was identified as the best prediction model, with the lowest mean squared

error for the validation set, compared with Model 6 (0.29 vs 0.31; see Table 2). Model 3 was

Fig 4. Minimum temperatures (in ˚C) in Bangladesh between January 2000 and December 2018. A LOESS smoothing function is

used to obtain a smooth line to represent the trend over the years. The shaded region represents the 95% confidence interval. Dots

represent the average minimum temperature of a given month for a particular year.

https://doi.org/10.1371/journal.pgph.0000047.g004

Table 1. Comparison of candidate models based on different evaluation metrics.

Model Temperature Rainfall Sunshine AICc QAICc R2
V Adj � R2

V

Model 1 ave.Ti tot.Ri Si 1,731 193 0.9903 0.9566

Model 2 max.Ti tot.Ri Si 3,235 134 0.9899 0.9635

Model 3 min.Ti tot.Ri Si 791 107 0.9951 0.9853

Model 4 ave.Ti max.Ri Si 2,026 135 0.9932 0.9755

Model 5 max.Ti max.Ri Si 3,913 191 0.9707 0.8683

Model 6 min.Ti max.Ri Si 675 140 0.9961 0.9861

Models 1, 2 and 3 considered average, maximum and minimum monthly temperatures, respectively, along with monthly sunshine duration and monthly total rainfall.

Models 4, 5 and 6 considered average, maximum and minimum monthly temperature, respectively, with monthly sunshine duration and maximum monthly rainfall. R2
V

and Adj � R2
V represent the pseudo-coefficient of determination and the adjusted coefficient of determination for the generalized linear model.

https://doi.org/10.1371/journal.pgph.0000047.t001
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also considered as the best fitting model while comparing the models using QAICc. Therefore,

we used the best prediction model (Model 3) for further analysis of the impact of climate on

dengue incidence. Note that the best fitting model (Model 6) also identified similar climate

variables to the best prediction model. The best prediction model can be expressed as,

logðljÞ ¼ 57:6ð�11:039Þ þ 0:41ð�0:097ÞT1j þ 0:36ð�0:095ÞT2j

þ0:54ð�0:111ÞT3j � 0:54ð�0:118ÞT4j

� 0:72ð�0:228ÞT5j � 1:34ð�0:241ÞT6j

� 0:48ð�0:195ÞS4j � 0:56ð�0:113ÞS5j

� 0:01ð�0:012ÞR1j þ 0:02ð�0:007ÞR2j

þ0:002ð�0:002ÞR4j þ 0:001ð�0:001ÞR6j:

ð3Þ

In Eq (3), the estimated mean and corresponding standard deviation for each climate predic-

tors were given. Using quasi-Poisson regression, the estimates for the minimum temperature

and sunshine duration were statistically significant with p−value < 0.001 except sunshine dura-

tion in April. The coefficient of rainfall in February was also significant with p−value = 0.0393

(see S10 Table for details). We evaluated the performance of the model using an LOOCV tech-

nique. The best prediction model successfully predicted the largest outbreak in 2018 as well as

smaller outbreaks in five different years (2003, 2006, 2010, 2012 and 2014) (Fig 5). The esti-

mated number of annual dengue cases for other years fell within a narrow range of the 95%

bootstrap confidence interval (S11 Table).

Marginal effect of climate predictors

To check the impact of each climate variable individually on annual dengue incidence, we fur-

ther assessed the marginal effects of climate predictors. The optimal minimum temperature

for mosquito population expansion is around 21–23˚C (Fig 6). There was an upward trend of

temperature from January until June. During this six-month period, the marginal effects of

mean minimum temperature from January to March were positive. In contrast, the effects

were negative from April to June. Thus, the results indicate that a turning point of marginal

effects was located between 21 and 23˚C. Starting from 2,500 predicted cases with a tempera-

ture of 23˚C, the number of predicted cases gradually declined to below 1000 predicted cases

in April if the temperature was increased by two degrees. The similar patterns were also evi-

dent in May and June.

Table 2. The second stage of model selection.

Model MSEVa MSETr F

Best fitting model (Model 6) 0.31 0.03 9.82

Best prediction model (Model 3) 0.29 0.05 5.73

Mean squared errors for the validation data set (MSEVa) and the training data set (MSETr) and their ratios F ¼ MSEVa
MSETr

were used to select the best prediction model. These measures were calculated while performing LOOCV as given in

S8 and S9 Tables.

https://doi.org/10.1371/journal.pgph.0000047.t002
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Fig 5. Comparison of observed and predicted annual dengue cases. The 95% confidence intervals were estimated using a bootstrap

estimation technique and the LOOCV estimates.

https://doi.org/10.1371/journal.pgph.0000047.g005

Fig 6. Marginal effect of minimum temperature from January to June on annual dengue cases. The shaded area denotes the 95%

confidence interval of annual dengue cases at different values of minimum temperature, whereas the dotted vertical line represents

mean minimum temperature for a month. The marginal effect here represents marginal effects at the mean (MEMs).

https://doi.org/10.1371/journal.pgph.0000047.g006
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Rainfall also had different effects depending on the time. In February, April and June, rain-

fall had a positive relationship with dengue incidence (Fig 7). In contrast, rainfall in a cooler

winter period (January) had a negative association with dengue incidence.

The mean sunshine duration in April and May were 7.4 and 6.5 hours, respectively and

were negatively associated with annual dengue incidence (Fig 8). Comparing the magnitude of

all climate predictors, minimum temperature in June (T6), sunshine duration in May (S5) and

rainfall in February (R2) had the strongest effects on annual dengue incidence.

Fig 7. Marginal effect of total rainfall on annual dengue incidence in January, February, April and June. The shaded area denotes

the 95% confidence interval of the expected number of annual dengue cases for different values of rainfall whereas the dotted vertical

line represents mean rainfall for a month. The marginal effect here represents marginal effects at the mean (MEMs).

https://doi.org/10.1371/journal.pgph.0000047.g007

Fig 8. Marginal effect of sunshine duration on annual dengue incidence in April and May. The shaded area denotes the 95%

confidence interval of the expected number of annual dengue cases for different values of sunshine duration, whereas the dotted

vertical line represents mean sunshine duration for a month. The marginal effect here represents marginal effects at the mean

(MEMs).

https://doi.org/10.1371/journal.pgph.0000047.g008
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Discussion

Climate change poses a great threat to global health, particularly for subtropical and tropical

climate regions due to the expansion of dengue fever. Since 2010, Bangladesh had an increas-

ing total number of dengue cases, except in 2014, during each seasonal epidemic. In 2018, the

recorded number of confirmed and suspected cases was more than 10,000, including 26 con-

firmed deaths [3, 34]. Although many studies have attempted to estimate dengue incidence in

Bangladesh using climate data, most of these studies focused on data collected prior to 2010

[15–17, 35]. We developed a model to estimate the impact of various climate factors in the

lead-up to dengue seasons, which typically occur during the monsoon season in Bangladesh.

This is the first study to demonstrate that climate variability before dengue season can explain

dengue expansions in Bangladesh in the past 20 years, suggesting that an early warning system

can be built for this area.

Dengue fever has been increasing the health burden worldwide, including in South and

Southeast Asian countries. Previous studies have been conducted in these regions to investi-

gate the effects of climate change on dengue fever spreading [35–40]. In these studies, tempera-

ture, rainfall, and humidity were the commonly used climate predictors that can possibly

influence dengue outbreaks. These studies showed an overall effect of particular climate vari-

ables throughout the years. In contrast, in our study, we explained that the impact of climate

variables depends on the time of a year and is capable of predicting dengue cases before start-

ing the peak season. It would help to mitigate any upcoming severe incidence in Bangladesh as

it allows sufficient time to preparedness.

Our study suggests that some climate factors might exert opposing effects on the annual

number of dengue cases, depending on the time of year. For example, minimum temperatures

from January to March were positively associated with dengue cases, whereas a negative asso-

ciation was seen in the subsequent months from April to June, closer to the start of dengue sea-

son. This may be due to a complex dependency between the population dynamics of the

dengue vector and the changing environment, such as the seasonal transition from winter to

summer and the associated increasing temperatures. One study claimed that temperatures of

21.3–34˚C are optimal for expansion of Aedes aegypti populations [21]. As the average daily

minimum temperature is lower than 21˚C before April and higher than 23˚C during and after

April, our results suggest an optimal daily minimum temperature in the range of 21–23˚C.

Total rainfall in a winter month (January) was found to have a negative relationship with

dengue cases, whereas a positive relationship was seen for later months mainly in summer

such as April and June. Rainfall is thought to have both beneficial and harmful effects on mos-

quito population growth. Rainfall can provide standing water for mosquito breeding. How-

ever, an excessive amount of rainfall (e.g., heavy rainfall during monsoons or cyclones) has

been commonly thought to be able to disrupt potential mosquito habitats [41]. Our study has

identified a negative relationship between rainfall and dengue incidence in January. This may

be because during this period the number of adult mosquitoes is low, meaning that rainfall has

a larger negative impact by flushing away mosquito eggs than a positive impact due to creating

habitats required by adult mosquitoes. A similar pattern of a negative association of pre-den-

gue-season rainfall with dengue cases has been seen in recent studies [22–24].

Additionally, sunshine duration was found to be closely linked to mosquito-related activi-

ties, such as frequency of mosquito bites [42]. However, sunshine duration has not been

included in any prediction models thus far. Therefore, an evaluation of the increasing dengue

incidence since 2010, with respect to these climate variables, is warranted. A shorter duration

of sunshine is more favorable for dengue transmission. In general, mosquitoes are more active

in darker environments, and there is a greater chance of dengue being transmitted during
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periods of less sunshine due to the increasing frequency of mosquito bites [43]. The marginal

effect of sunshine duration in Fig 8 reveals that the shorter the duration of sunlight, the higher

the number of dengue cases, supporting the biological characteristics of mosquito activity as

described by [44]. A 2-hour reduction in sunshine duration in April and May was predicted to

result in a 3-fold increase in annual cases. These estimates are consistent with a previous study

that found a negative association between sunshine duration and dengue incidence [43].

While this study has an implication, some limitations exist in this study. Meteorological

data for 2019 were not disclosed at the time of this study; hence, 2019 data were excluded from

the models. Secondly, the small number of outcome values (19 data points) and a relatively

large number of predictor variables might lead to overfitting. Dengue prediction in 2002 and

2007 might be the consequence of it. Moreover, the epidemiological data includes both labora-

tory confirmed cases and probable case, hence, actual estimate might be affected due to under/

over reporting biased. Because we aim to estimate the effects of climate variability before den-

gue season on annual incidence in this study we did not plan to include monthly predictors

within dengue season.

In conclusion, our research offers a potential alert system by modeling annual dengue out-

breaks before the season begins using climate variables. As an early warning system is required

to improve public health and safety, the model we developed may improve disease control sys-

tems in Bangladesh. This research will aid our understanding of the effects of climate variabil-

ity on dengue expansion, not only in Bangladesh but also in northern India and other

Southeast Asian countries with similar climates and social-economic conditions.

Supporting information

S1 Fig. Sunshine duration (in hours) in Bangladesh between January 2000 and December

2018. A LOESS smoothing function is used to obtain a smooth line to represent the trend over

the years. The shaded region represents the 95% confidence interval. Dots represent the aver-

age sunshine duration of a given month for a particular year.

(TIFF)

S2 Fig. Monthly total rainfall (in mm) in Bangladesh between January 2000 and December

2018. A LOESS smoothing function is used to obtain a smooth line to represent trend over

years. The shaded region shows the 95% confidence interval. Dots represent the average rain-

fall of a given month for a particular year.

(TIFF)

S3 Fig. Scatter plot of sunshine duration in April and minimum temperature between Jan-

uary and June. The top left panel represents minimum temperature data in January, whereas

the bottom right represents minimum temperature data in June. r denotes the correlation coef-

ficients score and p is p−value from a correlation test. The line refers to the regression line, and

the shaded region shows the 95% confidence interval. The points are intersecting values of

minimum temperature and sunshine duration.

(TIFF)

S4 Fig. Scatter plot of sunshine duration in May and minimum temperature between Janu-

ary and June. The top left panel represents minimum temperature data in January, whereas

the bottom right represents minimum temperature data in June. r denotes the correlation coef-

ficients score and p is the p−value from a correlation test. The line refers to the regression line,

and the shaded region shows the 95% confidence interval. The points are intersecting values of

minimum temperature and sunshine duration.

(TIFF)
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S1 Table. Variance inflation factor (VIF) for the predictors used in the best prediction

model: Monthly minimum temperature, monthly sunshine duration, and monthly total

rainfall.

(PDF)

S2 Table. (Model 1) Step-by-step forward selection results of the generalized Poisson

regression model for each step based on AICc. ave.Ti, Si and tot.Ri represent mean tempera-

ture, sunshine duration and total rainfall in the ith month. For each of the variables included in

the model, the corresponding AICc, the leave-one-out mean squared error for the validation

set (MSEVa), the leave-one-out mean squared error for the training set (MSETr), and the mean

squared error ratio F ¼ MSEva
MSETr

� �
were calculated.

(PDF)

S3 Table. (Model 2) Step-by-step forward selection results of the generalized Poisson

regression model for each step based on AICc. max.Ti, Si and tot.Ri represent maximum tem-

perature, sunshine duration and total rainfall in the ith month. For each of the variables

included in the model, the corresponding AICc, the leave-one-out mean squared error for the

validation set (MSEVa), the leave-one-out mean squared error for the training set (MSETr), and

the mean squared error ratio F ¼ MSEva
MSETr

� �
were calculated.

(PDF)

S4 Table. (Model 3) Step-by-step forward selection results of the generalized Poisson

regression model for each step based on AICc. Ti, Si and Ri represent minimum temperature,

sunshine duration and total rainfall in the ith month. For each of the variables included in the

model, the corresponding AICc, the leave-one-out mean squared error for the validation set

(MSEVa), the leave-one-out mean squared error for the training set (MSETr), and the mean

squared error ratio F ¼ MSEva
MSETr

� �
were calculated.

(PDF)

S5 Table. (Model 4) Step-by-step forward selection results of the generalized Poisson

regression model for each step based on AICc. ave.Ti, Si and max.Ri represent mean tempera-

ture, sunshine duration and maximum rainfall in the ith month. For each of the variables

included in the model, the corresponding AICc, the leave-one-out mean squared error for the

validation set (MSEVa), the leave-one-out mean squared error for the training set (MSETr), and

the mean squared error ratio F ¼ MSEva
MSETr

� �
were calculated.

(PDF)

S6 Table. (Model 5) Step-by-step forward selection results of the generalized Poisson

regression model for each step based on AICc. max.Ti, Si and max.Ri represent maximum

temperature, sunshine duration and maximum rainfall in the ith month. For each of the vari-

ables included in the model, the corresponding AICc, the leave-one-out mean squared error

for the validation set (MSEVa), the leave-one-out mean squared error for the training set

(MSETr), and the mean squared error ratio F ¼ MSEva
MSETr

� �
were calculated.

(PDF)

S7 Table. (Model 6) Step-by-step forward selection results of the generalized Poisson

regression model for each step based on AICc. min.Ti, Si and max.Ri represent minimum

temperature, sunshine duration and maximum rainfall in the ith month. For each of the
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variables included in the model, the corresponding AICc, the leave-one-out mean squared

error for the validation set (MSEVa), the leave-one-out mean squared error for the training set

(MSETr), and the mean squared error ratio F ¼ MSEva
MSETr
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were calculated.

(PDF)

S8 Table. Leave-one-out cross-validation (LOOCV) results for Model 6. Achieved by omit-

ting the jth year in the jth iteration, where j = 1, . . ., 19, and j = 1 indicate the year 2000, j = 2

indicates 2001, etc. Italic font denotes the predicted annual dengue cases when the jth year is

removed.

(PDF)

S9 Table. Leave-one-out cross-validation (LOOCV) results for Model 3. Achieved by omit-

ting the jth year in the jth iteration, where j = 1, . . ., 19, and j = 1 indicates the year 2000, j = 2

indicates 2001, etc. Italic font denotes the predicted annual dengue cases when the jth year is

removed.

(PDF)

S10 Table. Parameter estimates of the best prediction model based on quasi Poisson

regression. SD represents the standard deviations of the estimate of each predictor. Asterisks

in the p−value indicates that the predictors are significant with certain levels (i.e. �� = 0.001; �

= 0.01).

(PDF)

S11 Table. Comparison between observed and predicted annual dengue cases in Bangla-

desh between 2000 and 2018. The lower and upper boundaries represent the lower and upper

limit of the 95% bootstrap confidence interval, respectively, for the predicted value.

(PDF)

S12 Table. Comparison of negative binomial regression models based on AICc.

(PDF)

S13 Table. Comparison of the validation results among the best fitting models in negative

binomial regression.

(PDF)

S1 Data.

(CSV)

S1 Text.

(DOCX)

Acknowledgments

We thank Dr. Iqbal Ansary Khan, Principal Scientific Officer, and Head of Medical Social Sci-

ence, Institute of Epidemiology, Disease Control and Research, Directorate General of Health

Services, Dhaka, for generously providing dengue surveillance data. The authors are indebted

to City University of Hong Kong for providing excellent research facilities.

Author Contributions

Conceptualization: M. Pear Hossain, Hsiang-Yu Yuan.

Data curation: M. Pear Hossain.

PLOS GLOBAL PUBLIC HEALTH Prediction of dengue annual incidence using seasonal climate variability

PLOS Global Public Health | https://doi.org/10.1371/journal.pgph.0000047 May 9, 2022 15 / 18

http://journals.plos.org/globalpublichealth/article/asset?unique&id=info:doi/10.1371/journal.pgph.0000047.s012
http://journals.plos.org/globalpublichealth/article/asset?unique&id=info:doi/10.1371/journal.pgph.0000047.s013
http://journals.plos.org/globalpublichealth/article/asset?unique&id=info:doi/10.1371/journal.pgph.0000047.s014
http://journals.plos.org/globalpublichealth/article/asset?unique&id=info:doi/10.1371/journal.pgph.0000047.s015
http://journals.plos.org/globalpublichealth/article/asset?unique&id=info:doi/10.1371/journal.pgph.0000047.s016
http://journals.plos.org/globalpublichealth/article/asset?unique&id=info:doi/10.1371/journal.pgph.0000047.s017
http://journals.plos.org/globalpublichealth/article/asset?unique&id=info:doi/10.1371/journal.pgph.0000047.s018
http://journals.plos.org/globalpublichealth/article/asset?unique&id=info:doi/10.1371/journal.pgph.0000047.s019
https://doi.org/10.1371/journal.pgph.0000047


Formal analysis: M. Pear Hossain.

Funding acquisition: Hsiang-Yu Yuan.

Methodology: M. Pear Hossain, Wen Zhou.

Software: M. Pear Hossain.

Supervision: Hsiang-Yu Yuan.

Visualization: M. Pear Hossain.

Writing – original draft: M. Pear Hossain, Hsiang-Yu Yuan.

Writing – review & editing: M. Pear Hossain, Wen Zhou, Chao Ren, John Marshall, Hsiang-

Yu Yuan.

References
1. Guo C, Zhou Z, Wen Z, Liu Y, Zeng C, Xiao D, et al. Global Epidemiology of Dengue Outbreaks in

1990-2015: A Systematic Review and Meta-Analysis. Frontiers in Cellular and Infection Microbiology.

2017; 7:317. https://doi.org/10.3389/fcimb.2017.00317 PMID: 28748176

2. Ferreira GLC. Global Dengue Epidemiology Trend. Revista do Instituto de Medicina Tropical de São

Paulo. 2012; 54:5–6. https://doi.org/10.1590/S0036-46652012000700003

3. World Health Organization. Dengue and severe dengue; 2020. https://www.who.int/news-room/fact-

sheets/detail/dengue-and-severe-dengue.

4. Stanaway JD, Shepard DS, Undurraga EA, Halasa YA, Coffeng LE, Brady OJ, et al. The global burden

of dengue: an analysis from the Global Burden of Disease Study 2013. The Lancet Infectious Diseases.

2016; 16(6):712–723. https://doi.org/10.1016/S1473-3099(16)00026-8 PMID: 26874619

5. Pasin CI, Elizabeth Halloran M, Gilbert PB, Langevin E, Leon Ochiai R, Pitisuttithum P, et al. Periods of

high dengue transmission defined by rainfall do not impact efficacy of dengue vaccine in regions of

endemic disease. Plos One. 2018. https://doi.org/10.1371/journal.pone.0207878

6. Loo YY, Billa L, Singh A. Effect of climate change on seasonal monsoon in Asia and its impact on the

variability of monsoon rainfall in Southeast Asia. Geoscience Frontiers. 2015; 6(6):817–823. https://doi.

org/10.1016/j.gsf.2014.02.009

7. Louis VR, Montenegro Quiñonez CA, Kusumawathie P, Palihawadana P, Janaki S, Tozan Y, et al.

Characteristics of and factors associated with dengue vector breeding sites in the City of Colombo, Sri

Lanka. Pathogens and Global Health. 2016; 110(2):79–86. https://doi.org/10.1080/20477724.2016.

1175158 PMID: 27241954

8. Getachew D, Tekie H, Gebre-Michael T, Balkew M, Mesfin A. Breeding sites of Aedes aegypti: Potential

dengue vectors in Dawa, east Ethiopia. Interdisciplinary Perspectives on Infectious Diseases. 2015;

2015. https://doi.org/10.1155/2015/706276 PMID: 26435712

9. Evelyn N, Murray A, Quam MB, Wilder-Smith A. Epidemiology of dengue: past, present and future pros-

pects. Clinical Epidemiology. 2013. https://doi.org/10.2147/CLEP.S34440

10. World Health Organization. Ten threats to global health in 2019; 2020. https://www.who.int/vietnam/

news/feature-stories/detail/ten-threats-to-global-health-in-2019.

11. Russell PK, Buescher EL, McCown JM, Ordõnez J. Recovery of dengue viruses from patients during

epidemics in Puerto Rico and East Pakistan. The American Journal of Tropical Medicine and Hygiene.

1966; 15(4):573–579. https://doi.org/10.4269/ajtmh.1966.15.573 PMID: 4957424

12. Rahman M, Rahman K, Siddque AK, Shoma S, Kamal AHM, Ali KS, et al. First Outbreak of Dengue

Hemorrhagic Fever, Bangladesh. Emerging Infectious Diseases. 2002; 8(7). https://doi.org/10.3201/

eid0807.010398 PMID: 12095447

13. Institute of Epidemiology, Disease Control and Research. Web-based Dengue Surveillance; 2020.

https://www.iedcr.gov.bd/index.php/surveillance.

14. Hsan K, Hossain MM, Sarwar MS, Wilder-Smith A, Gozal D. Unprecedented rise in dengue outbreaks

in Bangladesh; 2019.

15. Sharmin S, Glass K, Viennet E, Harley D. Geostatistical mapping of the seasonal spread of under-

reported dengue cases in Bangladesh. PLoS Neglected Tropical Diseases. 2018; 12(11):1–13. https://

doi.org/10.1371/journal.pntd.0006947 PMID: 30439942

PLOS GLOBAL PUBLIC HEALTH Prediction of dengue annual incidence using seasonal climate variability

PLOS Global Public Health | https://doi.org/10.1371/journal.pgph.0000047 May 9, 2022 16 / 18

https://doi.org/10.3389/fcimb.2017.00317
http://www.ncbi.nlm.nih.gov/pubmed/28748176
https://doi.org/10.1590/S0036-46652012000700003
https://www.who.int/news-room/fact-sheets/detail/dengue-and-severe-dengue
https://www.who.int/news-room/fact-sheets/detail/dengue-and-severe-dengue
https://doi.org/10.1016/S1473-3099(16)00026-8
http://www.ncbi.nlm.nih.gov/pubmed/26874619
https://doi.org/10.1371/journal.pone.0207878
https://doi.org/10.1016/j.gsf.2014.02.009
https://doi.org/10.1016/j.gsf.2014.02.009
https://doi.org/10.1080/20477724.2016.1175158
https://doi.org/10.1080/20477724.2016.1175158
http://www.ncbi.nlm.nih.gov/pubmed/27241954
https://doi.org/10.1155/2015/706276
http://www.ncbi.nlm.nih.gov/pubmed/26435712
https://doi.org/10.2147/CLEP.S34440
https://www.who.int/vietnam/news/feature-stories/detail/ten-threats-to-global-health-in-2019
https://www.who.int/vietnam/news/feature-stories/detail/ten-threats-to-global-health-in-2019
https://doi.org/10.4269/ajtmh.1966.15.573
http://www.ncbi.nlm.nih.gov/pubmed/4957424
https://doi.org/10.3201/eid0807.010398
https://doi.org/10.3201/eid0807.010398
http://www.ncbi.nlm.nih.gov/pubmed/12095447
https://www.iedcr.gov.bd/index.php/surveillance
https://doi.org/10.1371/journal.pntd.0006947
https://doi.org/10.1371/journal.pntd.0006947
http://www.ncbi.nlm.nih.gov/pubmed/30439942
https://doi.org/10.1371/journal.pgph.0000047


16. Banu S, Hu W, Guo Y, Hurst C, Tong S. Projecting the impact of climate change on dengue transmis-

sion in Dhaka, Bangladesh. Environment International. 2014; 63:137–142. https://doi.org/10.1016/j.

envint.2013.11.002 PMID: 24291765

17. Hashizume M, Dewan AM, Sunahara T, Rahman MZ, Yamamoto T. Hydroclimatological variability and

dengue transmission in Dhaka, Bangladesh: A time-series study. BMC Infectious Diseases. 2012; 12.

https://doi.org/10.1186/1471-2334-12-98 PMID: 22530873

18. Lai YH. The climatic factors affecting dengue fever outbreaks in southern Taiwan: An application of

symbolic data analysis. BioMedical Engineering Online. 2018; 17(s2):1–14. https://doi.org/10.1186/

s12938-018-0575-4 PMID: 30396346

19. Lu L, Lin H, Tian L, Yang W, Sun J, Liu Q. Time series analysis of dengue fever and weather in Guang-

zhou, China. BMC Public Health. 2009; 9:1–5. https://doi.org/10.1186/1471-2458-9-395 PMID:

19860867

20. Gu H, Leung RKK, Jing Q, Zhang W, Yang Z, Lu J, et al. Meteorological factors for dengue fever control

and prevention in South China. International Journal of Environmental Research and Public Health.

2016; 13(9):1–12. https://doi.org/10.3390/ijerph13090867 PMID: 27589777

21. Ryan Id SJ, Carlson CJ, Mordecai EA, Johnson LR. Global expansion and redistribution of Aedes-

borne virus transmission risk with climate change. PLOS Neglected Tropical Diseases. 2019; https://

doi.org/10.1371/journal.pntd.0007213.

22. Yuan HY, Wen TH, Kung YH, Tsou HH, Chen CH, Chen LW, et al. Prediction of annual dengue inci-

dence by hydro-climatic extremes for southern Taiwan. International Journal of Biometeorology. 2019;

63(2):259–268. https://doi.org/10.1007/s00484-018-01659-w PMID: 30680621

23. Yuan HY, Liang J, Lin PS, Sucipto K, Tsegaye MM, Wen TH, et al. The effects of seasonal climate vari-

ability on dengue annual incidence in Hong Kong: A modelling study. Scientific Reports. 2020; 10(1):1–

10. https://doi.org/10.1038/s41598-020-60309-7

24. Lowe R, Gasparrini A, Van Meerbeeck CJ, Lippi CA, Mahon R, Trotman AR, et al. Nonlinear and

delayed impacts of climate on dengue risk in Barbados: A modelling study. PLOS Medicine. 2018; 15

(7). https://doi.org/10.1371/journal.pmed.1002613 PMID: 30016319

25. World Health Organization. South-East Asia; 2020. https://www.who.int/southeastasia.

26. Worldatlas. Where Is Bangladesh?; 2020. https://www.worldatlas.com/as/bd/where-is-bangladesh.html.

27. Banglapedia. Rainfall; 2020. http://en.banglapedia.org/index.php?title=Rainfall.

28. Banglapedia. Bangladesh Geography; 2020. http://en.banglapedia.org/index.php?title=Bangladesh_

Geography.

29. Directorate General of Health Services. National Guideline for Clinical Management of Dengue Syn-

drome. 4th ed. Dhaka: National Malaria Elimination & Aedes Transmitted Diseases Control Program

Disease Control Unit; 2020.
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