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an open source knowledge graph 
ecosystem for the life sciences
Tiffany J. Callahan  1,2 ✉, Ignacio J. tripodi3, Adrianne L. Stefanski1, Luca Cappelletti4, 
Sanya B. taneja  5, Jordan M. Wyrwa6, Elena Casiraghi  4,7, Nicolas A. Matentzoglu8, 
Justin Reese7, Jonathan C. Silverstein  9, Charles Tapley Hoyt  10, Richard D. Boyce9, 
Scott A. Malec11, Deepak R. Unni  12, Marcin P. Joachimiak7, Peter N. Robinson  13,  
Christopher J. Mungall7, Emanuele Cavalleri  4, Tommaso Fontana4, Giorgio Valentini  4,14,  
Marco Mesiti  4, Lucas A. Gillenwater1,15, Brook Santangelo1,15, Nicole A. Vasilevsky  16,  
Robert Hoehndorf  17, Tellen D. Bennett15,18, Patrick B. Ryan19, George Hripcsak2, 
Michael G. Kahn  15, Michael Bada20, William A. Baumgartner Jr20 ✉ & Lawrence E. Hunter1,15 ✉

Translational research requires data at multiple scales of biological organization. Advancements 
in sequencing and multi-omics technologies have increased the availability of these data, but 
researchers face significant integration challenges. Knowledge graphs (KGs) are used to model 
complex phenomena, and methods exist to construct them automatically. However, tackling complex 
biomedical integration problems requires flexibility in the way knowledge is modeled. Moreover, 
existing KG construction methods provide robust tooling at the cost of fixed or limited choices among 
knowledge representation models. PheKnowLator (Phenotype Knowledge Translator) is a semantic 
ecosystem for automating the FAIR (Findable, Accessible, Interoperable, and Reusable) construction 
of ontologically grounded KGs with fully customizable knowledge representation. The ecosystem 
includes KG construction resources (e.g., data preparation APIs), analysis tools (e.g., SPARQL 
endpoint resources and abstraction algorithms), and benchmarks (e.g., prebuilt KGs). We evaluated 
the ecosystem by systematically comparing it to existing open-source KG construction methods and 
by analyzing its computational performance when used to construct 12 different large-scale KGs. 
With flexible knowledge representation, PheKnowLator enables fully customizable KGs without 
compromising performance or usability.
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Introduction
The worldwide growth of biomedical data is exponential, with the volume of molecular data alone expected to 
surpass more than four exabytes by 20251. Translational science requires integrating data and knowledge at mul-
tiple scales of biological organization. Rapid advancements in sequencing and multi-omics technologies have 
made tremendous amounts of diverse data available for secondary use2–5. Multimodal data like these capture 
different views and, when properly combined, help characterize complex systems6. Unfortunately, these data are 
highly distributed and heterogeneous, can be difficult to access due to licensing restrictions, lack interoperabil-
ity, and often have inconsistent underlying models or representations, which limit most researchers from fully 
utilizing them7,8.

Knowledge graphs (KGs) have frequently been used to systematically model and interrogate the biology 
underlying complicated systems, organisms, and diseases9. For example, Fig. 1 provides a high-level overview of 
the main biomedical concepts needed to model our currently accepted knowledge of the Central Dogma10 and 
has been expanded to include pathways, variants, pharmaceutical treatments, and diseases. In the life sciences, 
KGs are usually constructed from a wide range of data sources such as Linked Open Data (http://www.w3.org/
DesignIssues/LinkedData.html), ontologies, the scientific literature, data derived from electronic health records, 
and multi-omics experiments8,11. In the biomedical context, nodes usually represent different kinds of biological 
entities such as genes, proteins or diseases, and edges (or triples) are used to specify different types of relation-
ships that can exist between a pair of nodes (e.g., “interaction”, “substance that treats”). Multiple definitions of 
KGs have been proposed in the literature, all sharing the assumption that KGs are more than simple large-scale 
graphs12–14. Existing definitions are best summarized by Ehrlinger’s and Wöb’s12 definition: “A knowledge graph 
acquires and integrates information into an ontology and applies a reasoner to derive new knowledge“12. We 
provide an alternative definition and consider a KG to be a graph-based data structure representing a variety 
of heterogeneous entities with multiple types of relationships between them that serves as an abstract frame-
work capable of inferring new knowledge (as well as revealing and resolving discrepancies or contradictions) to 
address a variety of applications and use cases.

KG construction is not a simple process, requiring significant data preprocessing or wrangling before edge 
lists can be assembled. Fortunately, several methods have been developed to tackle the primary challenges faced 
when constructing a KG, including: the integration or harmonization of disparate resources (e.g., SPOKE15, 
RTX-KG216, Petagraph17, Bio2RDF18, and Hetionet19), processing and formatting of structured data and KGs 
(e.g., Dipper [https://github.com/monarch-initiative/dipper] and the Knowledge Graph Exchange [KGX; 
https://github.com/biolink/kgx]), enhancement or extraction of relationships (e.g., Biomedical Knowledge 
Discovery Engine [BioKDE]20 and KG-COVID-1921) and evidence (e.g., PrimeKG22) from the literature, and 
the exchange or sharing of constructed KGs (e.g., Network Data Exchange [NDEx]23 and KGX). Recently, sev-
eral frameworks such as KG-HUB24, the Clinical KG (CKG)25, RTX-KG216, BioCypher26, and the Knowledge 
Base Of Biomedicine (KaBOB)7 which provide all of the aforementioned functionalities, have been developed. 
While methods have been developed for each of the processes or steps required to construct KGs, robust tools 
and resources to evaluate constructed KGs are lacking8. Traditionally, the evaluation of constructed KGs has 
been task- or domain-specific and largely limited to case studies15,16,19,21,22,25,26. Ideally, constructed KGs would 
be evaluated in the same manner as other network science (e.g., community detection and link prediction algo-
rithms) and KG or node embedding methods using benchmarks such as Zachary’s Karate Club graph27, DBPedia 
(https://www.dbpedia.org/resources/knowledge-graphs), and OpenBioLink28. KG benchmarks could be used to 

Fig. 1 A Knowledge Representation of the Levels of Biological Organization Underlying Human Disease. 
This knowledge graph provides a representation of our currently accepted knowledge of the Central Dogma 
expanded to include pathways, variants, pharmaceutical treatments, and diseases10. At a high level this 
knowledge graph represents anatomical entities such as tissues, cells, and bodily fluids containing genomic 
entities such as DNA, RNA, mRNA, and proteins. DNA encodes genes that are processed into mRNA and 
translated into proteins, which can interact with each other. Genes can also be altered by variants and may cause 
disease. Finally, proteins also have molecular functions and participate in pathways and biological processes.
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assess the computational performance of KG construction methods as well as to evaluate the implications of dif-
ferent knowledge representations on specific tasks. To the best of our knowledge, no existing benchmarks exist 
to systematically evaluate knowledge representation.

Tackling complex problems within the life sciences requires flexible knowledge representations. An impor-
tant limitation of existing KG construction methods is fixed or limited flexibility in the way that knowledge is 
modeled. Within the biomedical domain, knowledge is typically modeled in one of three ways (Fig. 2), though 
the nomenclature used to describe these different approaches differs widely in the literature. For simplicity’s 
sake, we will refer to the three different approaches as simple, hybrid, and complex. The first approach results 
in a simple graph (Fig. 2a). Simple graphs (Fig. 2a) are the most common type of network used in the literature. 
Examples of simple graphs include Zachary’s Karate Club graph27, Hetionet19, and SPOKE15. In these graphs, 
entities are represented as nodes, and edges are used to model relationships between them. These graphs usually 
lack formal semantics for the edges and nodes. Edges are often semantically overloaded, ignoring the distinction 
between data (e.g., a protein participating in a process) and metadata (e.g., the source of information about the 
protein’s participation in that process). Simple graphs are usually straightforward to construct and can be stored 
as key-value pairs, resulting in small file sizes and using modest amounts of memory. Disadvantages of simple 
graphs include ad hoc semantics, which decreases interoperability, and a lack of clear specification, making 
machine inference difficult. The second approach results in a hybrid or property graph (Fig. 2b). Example hybrid 
graphs include KG-COVID-1921, DisGeNET29, OpenBioLink28, Petagraph17, the Monarch KG30, and Bio2RDF18. 
Hybrid graphs aim to model entities and their relations using a mix of standard network representations and 
formal semantics, usually the Resource Description Framework (RDF; https://www.w3.org/RDF) and RDF 

Fig. 2 Types of Knowledge Graphs used in the Life Sciences. This figure provides examples of three types of 
knowledge graphs that are typically used in the Life Sciences. All knowledge graphs are modeling the Mondo 
concept ABCD syndrome (MONDO:0010895). (a) illustrates a simple graph-based representation where two 
nodes are connected by an edge and nodes and edges are assigned attributes in the form of key-value pairs.  
(b) illustrates a hybrid or property graph-based representation where edges are represented as sets of three 
nodes (each composed of a subject, predicate, and object) called triples, often based on the RDF/RDFS 
standards. (c) illustrates a complex or OWL-graph-based representation where edges are represented as 
triples and these representations are augmented with additional OWL expressivities such as domain/range or 
cardinality restrictions. Acronyms: HP (Human Phenotype Ontology); MONDO (Mondo Disease Ontology); 
OWL (Web Ontology Language); RDF (Resource Description Framework); RDFS (Resource Description 
Framework Syntax); RO (Relation Ontology).
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Schema (RDFS; https://www.w3.org/TR/rdf11-mt). Compared to simple graphs, standards-based hybrid graphs 
facilitate integration with other resources31 and are more amenable to automated inference. They also provide 
faceted querying as nodes and edges are typed. One cost of hybrid graphs is that they require substantially more 
storage space than simple graphs. The third approach results in a complex graph, such as KaBOB7, often built on 
the Web Ontology Language (OWL; https://www.w3.org/TR/owl-features) (Fig. 2c). Complex graphs are more 
expressive, facilitating the generation of new knowledge via deductive inference32. By enforcing explicit seman-
tics, OWL provides advantages over RDF/RDFS in the integration of large biomedical data33. Complex graphs 
are fully machine-readable, highly expressive, and, because they are built on Description Logics32, can leverage 
reasoners to verify their logical consistency and do deductive inference. Unlike simple graphs, both hybrid and 
complex graphs can distinguish between data and metadata as demonstrated in Fig. 2. Unless defining cus-
tom relations, hybrid graphs do this by primarily using RDFS and resources like the OBO Format metamodel 
(https://www.bioontology.org/wiki/OboInOwl:Main_Page), whereas complex graphs formally define these 
types and their attributes using RDF and OWL. Unfortunately, complex graphs are very large, can be difficult for 
humans to understand, and have been shown to perform poorly on some inductive inference tasks34. To date, 
none of the existing KG construction methods enable the construction of multiple or alternative versions of the 
same KG utilizing different underlying knowledge representations, making comparisons, and benchmarking 
difficult.

To address the lack of relevant benchmarks and flexibility in knowledge representation, we developed 
PheKnowLator (Phenotype Knowledge TransLator, referred to as “PKT” throughout the remainder of this man-
uscript), a semantic ecosystem for automating the FAIR (Findable, Accessible, Interoperable, and Reusable)35 
construction of ontologically grounded KGs with fully customizable knowledge representation. The ecosystem 
consists of three components (Fig. 3): (1) KG Construction Resources, a set of tools to download and process 
heterogeneous data and algorithms to construct custom KGs; (2) KG Benchmarks, a collection of prebuilt KGs 
that can be used to systematically assess the effects of different knowledge representations on downstream anal-
yses, workflows, and learning algorithms; and (3) KG Tools to analyze KGs, including Jupyter Notebook-based 
tutorials, archive-based data storage, application programming interfaces (APIs), and triplestores. We evalu-
ate the PheKnowLator ecosystem by systematically comparing its components with existing open-source KG 
construction software using a survey developed to assess the functionality, availability, usability, maturity, and 
reproducibility of KG construction software. We also assess the ecosystem’s computational performance when 
constructing 12 different types of benchmark KGs designed to provide alternative representations for modeling 
the molecular mechanisms underlying human disease.

Fig. 3 The PheKnowLator Ecosystem. This figure provides an overview of the PheKnowLator ecosystem106.  
The ecosystem consists of three components as indicated by the gray boxes: (1) Knowledge Graph Construction 
Resources, which consist of resources to download and process data and an algorithm to customize the construction 
of large-scale heterogeneous biomedical knowledge graphs; (2) Knowledge Graph Benchmarks, which consist 
of prebuilt KGs that can be used to systematically assess the effects of different knowledge representations on 
downstream analyses, workflows, and learning algorithms; and (3) Knowledge Graph Tools to use knowledge 
graphs, cloud-based data storage, APIs, and triplestores. Acronyms: NT (N-Triples file format); OWL (Web 
Ontology Language); PKL (Python pickle file format); SPARQL (SPARQL Protocol and RDF Query Language).
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Results
PheKnowLator is open-source and available through GitHub (https://github.com/callahantiff/PheKnowLator) 
and PyPI (https://pypi.org/project/pkt-kg). Important manuscript definitions are provided in Supplementary 
Table 1, acronyms are provided in Supplementary Table 2, and PheKnowLator ecosystem resources are listed in 
Supplementary Tables 3 and 4.

Evaluation.  The PheKnowLator ecosystem was evaluated in two ways. First, publicly available software to 
construct biomedical KGs was identified and systematically compared using a survey developed to assess each 
method’s functionality, availability, usability, maturity, and reproducibility. Second, the computational perfor-
mance of the ecosystem was assessed when used to construct 12 different types of benchmark KGs designed 
to provide alternative representations for modeling the molecular mechanisms underlying human disease. The 
resources used for each task are listed in Supplementary Table 4.

Systematic comparison of open-source KG construction software. Open-source biomedical KG construction meth-
ods available on GitHub were identified and compared to the PheKnowLator ecosystem. A survey was used to 
compare the methods for the task of constructing biomedical KGs and consisted of 44 questions designed to assess 
five criteria: KG construction functionality, maturity, availability, usability, and reproducibility (Supplementary 
Table 5). Of the 1,905 repositories identified on GitHub, 231 contained course, tutorial, or presentation material 
(i.e., manuscript reviews and slide decks), 278 were duplicate or cloned repositories, 79 were KG applications or 
services, 60 were websites or resource lists, and 1,253 were determined to be irrelevant (i.e., mislabeled, not bio-
medical, or not a KG construction method). This initial list was supplemented with 11 methods identified through 
a review article8 or were recommended by a collaborator. The final list included 15 methods (see Table 1 with 
additional details provided in Supplementary Table 6): Bio2Bel (ttps://github.com/bio2bel), Bio2RDF (https://
github.com/bio2rdf), Bio4J (https://github.com/bio4j/bio4j), BioGrakn (https://github.com/vaticle/biograkn), 
the Clinical Knowledge Graph (https://github.com/MannLabs/CKG), COVID-19-Community (https://github.
com/covid-19-net/covid-19-community), Dipper, Hetionet (https://github.com/hetio/hetionet), IASiS Open Data 
Graph (https://github.com/tasosnent/Biomedical-Knowledge-Integration), KG-COVID-19 (https://github.com/
Knowledge-Graph-Hub/kg-covid-19), KaBOB (https://github.com/UCDenver-ccp/kabob), KGX, the Knowledge 
Graph Toolkit (https://github.com/usc-isi-i2/kgtk), ProNet (https://github.com/cran/ProNet), and the SEmantic 
Modeling machIne (https://github.com/giuseppefutia/semi). The methods are visualized by date of GitHub pub-
lication in Fig. 4a.

The average coverage score of the five assessment criteria was 3.93 (min = 2.79, max = 4.90). The coverage of 
each assessment criterion by method is shown in Fig. 4b. Examining the results by assessment criteria revealed 
interesting patterns. KG Construction Functionality (Supplementary Table 7): The majority of the methods 
(81.3%; n = 13) included functionality to download data, while 56.3% (n = 9) were able to process experimental 
data and 37.5% (n = 6) were able to process clinical data. Availability (Supplementary Table 8): Three-fourths 
of the methods (75%; n = 12) were written in Python and 43.8% (n = 7) were written in a Java-based language. 
All the methods but one were licensed with GPL, MIT, or BSD-3. Usability (Supplementary Table 9): Sample 
data were provided by 93.8% (n = 15) of the methods, and 75% (n = 12) provided tutorials via R Markdown or 
Jupyter Notebook. Maturity (Supplementary Table 10): On average, the number of commits per year ranged 
from 17 to 1,000. Over half of the methods (68.8%, n = 11) had been published, and 43.8% (n = 7) provided 
collaboration guidelines. Reproducibility (Supplementary Table 11): Tools to enable reproducible workflows 
and aid in installing the method were provided by 75% (n = 12) of the methods. Most often, these tools included 
Docker containers (n = 6) and Jupyter or R Notebooks (n = 8).

While the PheKnowLator ecosystem was comparable to the other methods on the assessed criteria, we 
identified three important differentiating factors relative to the other methods: (i) tools to assess the quality of 

Method GitHub Repository

Bio2BEL https://github.com/bio2bel/

Bio2RDF https://github.com/bio2rdf

Bio4J https://github.com/bio4j/bio4j

BioGrakn https://github.com/graknlabs/biograkn

Clinical Knowledge Graph (CKG) https://github.com/MannLabs/CKG

COVID-19-Community https://github.com/covid-19-net/covid-19-community

Dipper https://github.com/monarch-initiative/dipper

Hetionet https://github.com/hetio/hetionet

iASiS Open Data Graph https://github.com/tasosnent/Biomedical-Knowledge-Integration

KG-COVID-19 https://github.com/Knowledge-Graph-Hub/kg-covid-19

Knowledge Base Of Biomedicine (KaBOB) https://github.com/UCDenver-ccp/kabob/tree/bg-integration

Knowledge Graph Exchange (KGX) https://github.com/NCATS-Tangerine/kgx

Knowledge Graph Toolkit (KGTK) https://github.com/usc-isi-i2/kgtk/

ProNet https://github.com/cran/ProNet

SEmantic Modeling machIne (SeMi) https://github.com/giuseppefutia/semi

Table 1. Open-Source Knowledge Graph Construction Methods.
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underlying ontologies; (ii) logging and documentation of metadata including the KG construction process, the 
data downloaded, the processing steps applied to each data source, and the node and edge types each source con-
tributes to; and (iii) customizable knowledge representation making it possible to take advantage of advanced 
Semantic Web tools like description logic reasoners (which we have successfully applied in the construction 
of KGs by the PheKnowLator ecosystem). The ability to generate multiple versions of the same KGs enables 
the ecosystem to provide benchmark KGs, which can be used to evaluate modeling decisions and to study the 
impact of knowledge representation on downstream learning. PheKnowLator included all the functionalities 
in the five assessment criteria except for tools to process clinical data, which only 37.5% (n = 6) of the methods 
provided.

Human disease knowledge graph benchmark comparison and construction performance. The PheKnowLator 
ecosystem enables users to fully customize KG construction by providing the following parameters (described in 
detail in the Construct Knowledge Graphs section of Component 1: Knowledge Graph Construction Resources 
in the Methods): knowledge model (i.e., complex graphs using class- or instance-based knowledge models), 
relation strategy (i.e., standard directed relations or inverse bidirectional relations), and semantic abstraction 
(i.e., transformation of complex graphs into hybrid graphs) with or without knowledge model harmonization 
(i.e., ensuring a hybrid KG is consistent with the class- or instance-based complex graph it was abstracted from). 
These parameters enable 12 different versions or benchmarks of each KG to be constructed for a given build. 
Descriptive statistics and computational performance of the PheKnowLator ecosystem was assessed when used 
to build a large-scale heterogeneous KG designed to represent the molecular mechanisms underlying human 

Fig. 4 Open-Source Knowledge Graph Construction Methods - Survey Results. This figure presents the open-
source knowledge graph construction methods identified on GitHub and the results of the survey assessment. 
(a) The final set of 16 knowledge graph construction methods surveyed according to the year they were first 
published on GitHub. (b) A chart of the methods evaluated in terms of the different survey categories. The 
survey was scored out of a total score of five points, which was derived as the sum of the ratios of coverage, 
each out of one point, for the five categories: KG Construction Functionality (10 questions); Availability 
(two questions); Usability (nine questions); Maturity (five questions); and Reproducibility (six questions). 
Acronyms: iASiS, Automated Semantic Integration of Disease-Specific Knowledge; KaBOB, Knowledge Base Of 
Biomedicine; KG, (Knowledge Graph); KGX (Knowledge Graph Exchange); KGTK (Knowledge Graph Toolkit); 
SeMi (SEmantic Modeling machine).
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disease and its 12 associated KG types or benchmarks (referred throughout the remainder of manuscript as the 
PKT [PheKnowLator] Human Disease benchmark KGs).

Benchmark comparison. Under the advice of domain experts (ALS, IJT, LH, and CJM), the PKT Human 
Disease benchmark KGs were constructed from 12 OBO Foundry ontologies, 31 Linked Open Data sets, and 
results from two large-scale molecular experiments (all build data are listed and described in Supplementary 
Table 12). The knowledge representation used for the build is shown in Supplementary Figure 1. A simplified 
overview of this knowledge representation is provided in Fig. 5, which highlights the connectivity between the 
12 OBO Foundry ontologies (Fig. 5a) and their relationship to the primary node types. The 18 primary node 
types are listed in Table 2 (visualized in Fig. 5b), and 33 primary edge types are shown in Table 3. The primary 
node and edge types do not include all possible node and edge types made available in the core set of 12 OBO 
Foundry ontologies, only those that are explicitly modeled in our knowledge representation.

Descriptive statistics for the OBO Foundry ontologies, pre- and post-data quality assessment, are shown 
in Table 4 (and detailed statistics are provided in Supplementary Table 13). Please note that when report-
ing results, we will refer to edges as triples, but they both refer to node-relation-node statements. The size 
of the ontologies varied widely, with the Chemical Entities of Biological Interest (ChEBI)36 containing the 
largest number of triples (n = 5,190,458) and the Protein Ontology (PRO; modified to exclude all non-human 
proteins)37 containing the most classes (n = 148,243). The Relation Ontology (RO)38 contained the fewest tri-
ples (n =7,873), and the Sequence Ontology (SO)39 contained the fewest classes (n = 2,569). The merged set 
of cleaned OBO Foundry ontologies (i.e., core OBO Foundry ontologies; for additional detail on the ontol-
ogy cleaning process, please see the Component 1: Knowledge Graph Construction Resources section of 
the Methods) contained 545,259 classes and 13,748,009 triples. Statistics for triples added to the core OBO 
Foundry ontologies are listed by edge type in Table 5. The largest edge sets were protein-protein (n = 618,069 
triples), transcript-anatomy (n = 439,917 triples), and disease-phenotype (n = 408,702 triples). The smallest 
edge sets were biological process-pathway (n = 665 triples), gene-gene (n = 1,668 triples), and protein-cofactor 
(n = 1,961 triples).

Descriptive statistics for the 12 PKT Human Disease benchmark KGs are shown in Table 6. The PKT Human 
Disease benchmark KGs constructed using the class-based knowledge model with inverse relations and with-
out semantic abstraction were the largest (13,803,521 nodes; 41,116,791 triples). All the PKT Human Disease 
benchmark KGs built without semantic abstraction, regardless of the knowledge model or relation strategy, 
contained two connected components and three self-loops. All the PKT Human Disease benchmark KGs were 
highly sparse, with the average density ranging from 2.16 × 10−7 to 3.50 × 10−7 and 3.03 × 10−7 to 3.40 × 10−7 
for benchmark KGs constructed using class-based and instance-based knowledge models, respectively. When 
applying semantic abstraction, the PKT Human Disease benchmark KGs constructed using instance-based 
knowledge models (743,829 nodes; 4,967,391 to 9,624,232 triples) were on average larger than those constructed 
using the class-based knowledge models (743,829 nodes; 4,967,427 to 7,629,599 triples). All PKT Human 
Disease benchmark KGs constructed using the instance-based knowledge model with semantic abstraction, 
regardless of the relation strategy employed, were larger, had a higher average degree, and contained more 
self-loops when knowledge model harmonization was applied. The average density (6.68 standard relations; 
10.26 inverse relations) and number of self-loops (445 standard and inverse relations) did not differ for the PKT 
Human Disease benchmark KGs constructed using the class-based knowledge model with semantic abstraction 
and when applying knowledge model harmonization. The PKT Human Disease benchmark KGs constructed 
with semantic abstraction, with and without knowledge model harmonization, are visualized in Fig. 6.

Construction performance. Performance metrics by KG construction step for each of the 12 PKT Human 
Disease benchmark KGs are shown in Supplementary Figure 2. On average, Step 1 (Data Download) took 
2.30 minutes (1.80–3.72 minutes) and used an average of 7.93 GB of memory (7.86–7.99 GB). Step 2 (Edge List 
Creation) took an average of 4.82 minutes to complete (4.80–4.87 minutes) and used an average of 39.55 GB of 
memory (38.93–40.43 GB). Step 3 (Graph Construction) took an average of 391.56 minutes (6.53 hours) to com-
plete (265.98–615.92 minutes; 4.43–10.27 hours) and used an average of 118.69 GB of memory (104.30–147.10 
GB). On average, the PKT Human Disease benchmark KGs constructed using class-based knowledge models 
took roughly the same amount of time and used roughly the same maximum amount of memory as those con-
structed using instance-based knowledge models. Additionally, regardless of the knowledge model, on average, 
the PKT Human Disease benchmark KGs built using inverse relations and semantic abstraction took longer to 
run and required more memory.

Discussion
In this paper, we have presented PheKnowLator, a semantic ecosystem for automating the FAIR construc-
tion of ontologically grounded KGs with customizable knowledge representation. The ecosystem includes KG 
construction resources, analysis tools (i.e., SPARQL endpoint resources and cloud-based APIs), and bench-
marks (i.e., prebuilt KGs in multiple formats and embeddings). PheKnowLator enables users to build Semantic 
Web-compliant complex KGs that are amenable to automatic OWL reasoning, conform to contemporary graph 
standards, and are importable by popular graph toolkits. By providing flexibility in the way KGs are constructed 
and generating multiple types of KGs, PheKnowLator also enables the use of cutting-edge graph-based learning 
and sophisticated inference algorithms. We demonstrated PheKnowLator’s utility by comparing its features to 
15 existing open-source KG construction methods and by analyzing its computational performance when con-
structing 12 different large-scale heterogeneous benchmark KGs. Comparing these methods to PheKnowLator 
revealed similarities but also highlighted important differentiating factors lacking in other systems, namely: (i) 
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Fig. 5 An Overview of the PKT Human Disease Mechanism Knowledge Graph. This figure provides a high-
level overview of the primary node and edge types in the PKT Human Disease Mechanism knowledge graph. 
(a) illustrates the relationships between the core set of Open Biological and Biomedical Ontology (OBO) 
Foundry ontologies when including their imported ontologies (as of August 2022). (b) illustrates the edges or 
triples that are added to the core set of merged ontologies in (a). Shared colors between (a) and (b) represent a 
single resource. For example, chemicals, cofactors, and catalysts share the same color (maroon) and are part of 
ChEBI. This is the same for the RO, which is represented in (b) as the black lines between nodes. The green and 
yellow rectangles indicate data sources that are not from an OBO Foundry ontology and the specific ontology 
used to integrate them with the core set of ontologies in (a). For example, variant, transcript, and gene data are 
connected to the core ontology set via the SO. Acronyms: CL (Cell ontology); CLO (Cell Line Ontology); ChEBI 
(Chemical Entities of Biological Interest); GO (Gene Ontology); HPO (Human Phenotype Ontology); Mondo 
(Mondo Disease Ontology); PRO (Protein Ontology); PW (Pathway Ontology); SO (Sequence Ontology); VO 
(Vaccine Ontology); Uberon (Uber-Anatomy Ontology).
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tools to assess the quality of ontologies (which identify, repair, and document syntactic and semantic errors); 
(ii) logging and metadata documentation (which enable users to debug errors quickly and ensures builds can be 
rigorously reproduced); and (ii) customizable data preprocessing pipelines (which enable users to use ecosystem 
tools to develop custom pipelines for processing a wide variety of data, leverage complex mappings, and appro-
priately resolve missing data), knowledge representation (class- or instance-based), and benchmarks (the ability 
to construct different types of KGs from the same data, which enables users to empirically evaluate modeling 
decisions and find the optimal knowledge model or representation for a particular task). These differences high-
light PheKnowLator’s ability to provide fully customizable KGs without compromising performance or usability.

One of the biggest challenges to developing novel KG construction methods is properly verifying and 
robustly validating the resulting KGs. Network-science-based algorithms and machine learning methods typ-
ically used within the biomedical domain such as link prediction and KG embedding are able to make use of 
well-established benchmarks like YAGO40, DBPedia, and Wikidata41, which are not specific to the biomedi-
cal domain. OpenBioLink28 was developed as a benchmark for biomedical KGs but is almost exclusively used 
for link prediction tasks. While it might not be possible to create a universal benchmark to verify or validate 
biomedical KG construction methods or biomedical KGs, development of trusted resources that are not 
task-specific (e.g., entity prediction or node classification) would benefit the community. The PheKnowLator 
ecosystem introduces a set of benchmarks to serve this purpose. These benchmarks were specifically designed to 
enable two types of tasks: (i) the validation of tools and algorithms designed to analyze KGs (e.g., link prediction 
algorithms and graph representation learning methods); and (ii) the validation and comparison of KGs built 
using different underlying knowledge representations. The ability to empirically evaluate knowledge modeling 
decisions is important when designing knowledge-based systems8 and will become more important as more 
performant graph representation learning methods are developed, especially with respect to explainability42.

PheKnowLator applications and use cases.  The majority of existing published KGs and KG construc-
tion software within the biomedical domain rely on case studies as a form of evaluation15,17,19,21,22,26. While we did 
not explicitly include case studies as part of our validation, the PheKnowLator ecosystem has fostered substantial 
collaborations and led to several publications. PheKnowLator benchmark KGs have been used in applications 
of toxicogenomic mechanistic inference43, to enable the exploration of large-scale biomedical hypergraphs44, 
and to facilitate deeper sub-phenotyping of pediatric rare disease patients45. Recently, PheKnowLator was used 
to create a disease-specific KG that combined ontology-grounded resources with literature-derived computa-
ble knowledge from machine reading46. The resulting KG was then used to identify causal features suitable for 
addressing confounding bias. PheKnowLator has also been used to generate hypotheses for potential pharma-
cokinetic natural-product/drug interactions, by facilitating the design and implementation of a KG involving 

Node Universal Resource Identifier

Anatomical Entities http://purl.obolibrary.org/obo/UBERON

Biological Processes http://purl.obolibrary.org/obo/GO

Catalysts http://purl.obolibrary.org/obo/CHEBI

Cells http://purl.obolibrary.org/obo/CL

Cell Lines http://purl.obolibrary.org/obo/CLO

Cellular Components http://purl.obolibrary.org/obo/GO

Chemicals http://purl.obolibrary.org/obo/CHEBI

Cofactors http://purl.obolibrary.org/obo/CHEBI

Diseases http://purl.obolibrary.org/obo/MONDO

Genes http://www.ncbi.nlm.nih.gov/gene/

Molecular Functions http://purl.obolibrary.org/obo/GO

Pathwaysa http://purl.obolibrary.org/obo/PW
https://reactome.org/content/detail/R-HSA-

Phenotypes http://purl.obolibrary.org/obo/HP

Proteins http://purl.obolibrary.org/obo/PR

Sequencesb http://purl.obolibrary.org/obo/SO

Transcripts https://uswest.ensembl.org/Homo_sapiens/Transcript/Summary?t=ENST

Vaccinesb http://purl.obolibrary.org/obo/VO

Variants https://www.ncbi.nlm.nih.gov/snp/rs

Table 2. PKT Human Disease Knowledge Graph Primary Node Types. Note: The node types listed above apply 
to the PKT Human Disease KG v2.1.0. The node types listed above do not include all of the classes that exist 
in each Open Biological and Biomedical Ontology (OBO) Foundry ontology. The Cell Ontology is included 
with the extended version of Uberon. aTwo URIs are shown for pathways as the OBO Found ontology is the 
core ontology used to connect Reactome entities to the core set of OBO Foundry ontologies. bOBO node type. 
Includes all of the classes that are contained in the ontology even though they are not all explicitly listed here. 
Acronyms: CL (Cell ontology); CLO (Cell Line Ontology); CHEBI (Chemical Entities of Biological Interest); 
GO (Gene Ontology); HPO (Human Phenotype Ontology); MONDO (Mondo Disease Ontology); PKT 
(PheKnowlator); PRO (Protein Ontology); PW (Pathway Ontology); SO (Sequence Ontology); VO (Vaccine 
Ontology); UBERON (Uber-Anatomy Ontology).
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biomedical ontologies, natural-product-ontology extensions, and machine reading from literature47. Finally, the 
PheKnowLator ecosystem was recently selected as the primary infrastructure to facilitate the development of a 
large-scale KG (denoted RNA-KG) dedicated to the study and development of RNA-based drugs by integrating 
more than 50 public data sources (https://github.com/AnacletoLAB/RNA-KG)48. PheKnowLator is also the foun-
dation for novel KG approaches in microbiome research. The microbe-relevant KG Microbe-Gene-Metabolite 
Link (MGMLink) was constructed by augmenting PheKnowLator with information on microbes from the inte-
grated database gutMGene. GutMGene relationships describing observed microbe-metabolite or microbe-gene 
associations were introduced to a PheKnowLator KG, enabling a search space for mechanistic understanding of 
microbial influence on disease at the molecular level (https://github.com/bsantan/MGMLink).

Relations Edge Types

participates in (RO_0000056)
has participant (RO_0000057) chemical-pathway; gene-pathway; protein-biological process; protein-pathway

has function (RO_0000085)
function of (RO_0000079) pathway-molecular function; protein-molecular function

located in (RO_0001025)
location of (RO_0001015)

protein-anatomy; protein-cella; protein-cellular component; transcript-anatomy; 
transcript-cella

has component (RO_0002180)b pathway-cellular component

has phenotype (RO_0002200)
phenotype of (RO_0002201) disease-phenotype

has gene product (RO_0002205)
gene product of (RO_0002204) gene-protein

interacts with (RO_0002434)c chemical-gene; chemical-protein

genetically interacts with (RO_0002435)c gene-gene

molecularly interacts with (RO_0002436)c chemical-biological process; chemical-cellular component; chemical-molecular 
function; protein-catalyst; protein-cofactor; protein-protein

transcribed to (RO_0002511)
transcribed from (RO_0002510) gene-transcript

ribosomally translates to (RO_0002513)
ribosomal Translation of (RO_0002512) transcript-protein

causally influences (RO_0002566)
causally influenced by (RO_0002559) variant-gene

is substance that treats (RO_0002606)
is treated by substance (RO_0002302) chemical-disease; chemical-phenotype

causes or contributes to condition (RO_0003302)b gene-disease; gene-phenotype; variant-disease; variant-phenotype

realized in response to (RO_0009501)b biological process-pathway

Table 3. PKT Human Disease Knowledge Graph Primary Edge Types by Relation. Note: The primary relations 
and edge types listed above apply to the PKT Human Disease KG v2.1.0. These relations are added to the core 
set of Open Biological and Biomedical Ontology Foundry ontologies. aThe word “cell” above is used to represent 
cell lines from the Cell Line Ontology and cell types from the Cell Ontology. bRelation Ontology concepts that 
do not have an inverse. cRelations with symmetrical inverse relations. Acronyms: PKT (PheKnowLator).

Ontology

Before Cleaning After Cleaning

Classes Triples Classes Triples

Cell Line Ontology 111,712 1,387,096 111,696 1,422,153

Chemical Entities of Biological Interest 156,098 5,264,571 137,592 5,190,485

Gene Ontology 62,237 1,425,434 55,807 1,343,218

Human Phenotype Ontology 38,843 884,999 38,530 885,379

Mondo Disease Ontology 55,478 2,313,343 52,937 2,277,425

Protein Ontologya 148,243 2,079,356 148,243 2,079,356

Pathway Ontology 2,642 35,291 2,600 34,901

Relation Ontology 116 7,970 115 7,873

Sequence Ontology 2,910 44,655 2,569 41,980

Uber-Anatomy Ontologyb 28,738 752,291 27,170 734,768

Vaccine Ontology 7,089 86,454 7,085 89,764

Core OBO Foundry ontologies (merged)c 548,947 13,746,883 545,259 13,748,009

Table 4. Ontology Statistics Pre- and Post-Data Quality Assessment. Note: The numbers for the ontologies are 
calculated using the versions of the ontologies that include all imported ontologies referenced by the primary 
ontology. This means that the counts of classes include all OWL classes used for logical definitions, not only 
those that are explicitly part of the primary ontology’s namespace. aThe Protein Ontology version references the 
human subset created for the PheKnowLator ecosystem. bThe extended version of the Uber-Anatomy Ontology 
contains the Cell Ontology. cConsistency was evaluated using the ELK reasoner. The reasoner was only applied 
to individual ontologies.
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In addition to the use of the PheKnowLator KG construction software and benchmark KGs, the ecosys-
tem has also contributed to the development of novel tools and resources. Although results are not yet availa-
ble, PheKnowLator is currently included in the Continuous Evaluation of Relational Learning in Biomedicine 
(https://biochallenge.bio2vec.net/) task. This task aims to provide a means for evaluating prediction models 
as new knowledge becomes available over time. Results from this task will provide insight into the useful-
ness of the PheKnowLator builds and will be used to identify areas where the ecosystem can be improved. 
Additionally, subsets of prebuilt PheKnowLator KGs have been used to help develop and evaluate novel, 
cutting-edge graph embedding AI tools (i.e., GRAPE49), including random-walk-based embedding meth-
ods for extremely large-scale heterogeneous graphs using the PheKnowLator KG builds50. In addition to 
graph representation learning, prebuilt PheKnowLator KGs were used for prototyping a novel method for 
knowledge-driven mechanistic enrichment of ignorome genes (i.e., differentially expressed genes which are 
associated with a disease experimentally but that have no known association to the disease in the literature)51. 
When applied to preeclampsia, this method was able to identify 53 novel clinically relevant and biologically 
actionable disease associations. The National Institutes of Health (NIH) Common Fund Human BioMolecular 
Atlas Program (HuBMAP)52 needed to assemble a KG based on its own preferred graph schema (https://github.
com/dbmi-pitt/UMLS-Graph)53, with one focus being to maximize the leverage of external references among 
ontologies for translation (https://github.com/hubmapconsortium/ontology-api). The PheKnowLator ecosys-
tem tool OWL-NETS34 is currently being used to ingest other operational ontologies (whether in OWL or not) 
into HuBMAP and the NIH Common Fund Cellular Senescence Network (SenNet)54. PheKnowLator was also 
applied to methods in generating pathway diagrams using biomedically relevant KGs55. This novel approach 
was able to recapitulate existing figures regarding neuroinflammation and Down Syndrome from literature with 

Edge Relation Subjects Objects Standard Relations Inverse Relations

chemical-disease substance that treats 4,289 4,494 167,681 335,362

chemical-genea interacts with 462 11,922 16,639 33,278

chemical-biological processa molecularly interacts with 1,338 1,569 287,068 574,136

chemical-cellular componenta molecularly interacts with 1,085 226 40,992 81,984

chemical-molecular functiona molecularly interacts with 1,105 200 25,385 50,770

chemical-pathway participates in 2,104 2,213 28,685 57,370

chemical-phenotype substance that treats 4,053 1,712 107,962 215,924

chemical-proteina interacts with 4,178 6,379 64,991 129,982

disease-phenotype has phenotype 11,620 9,714 408,702 817,404

gene-diseaseb causes or contributes to 5,031 4,420 12,717 –

gene-genea genetically interacts with 247 263 1,668 3,336

gene-pathway participates in 10,371 1,809 104,906 209,812

gene-phenotypeb causes or contributes to 6,780 1,528 23,501 –

gene-protein has gene product 19,327 19,143 19,534 39,068

gene-transcript transcribed to 25,529 179,870 182,736 365,472

biological process-pathwayb realized in response to 471 665 665 –

pathway-cellular componentb has component 11,134 99 15,846 –

pathway-molecular function has function 2,412 726 2,416 4,832

protein-anatomy located in 10,747 68 30,682 61,364

protein-catalysta molecularly interacts with 3,024 3,730 23,629 47,258

protein-cellc located in 10,045 125 73,530 147,060

protein-cofactora molecularly interacts with 1,584 44 1,961 3,922

protein-biological process participates in 17,527 12,246 137,812 275,624

protein-cellular component located in 18,427 1,757 81,602 163,204

protein-molecular function has function 17,779 4,324 68,633 137,266

protein-pathway participates in 10,852 2,468 117,182 234,364

protein-proteind molecularly interacts with 14,320 14,230 618,069 –

transcript-anatomy located in 29,104 102 439,917 879,834

transcript-cellc located in 14,038 127 64,427 128,854

transcript-protein ribosomally translates to 44,144 19,200 44,147 88,294

variant-diseaseb causes or contributes to 13,291 3,565 37,861 –

variant-gene causally influences 121,790 3,236 121,790 243,580

variant-phenotypeb causes or contributes to 1,822 371 2,470 –

Table 5. PKT Human Disease Knowledge Graph Descriptive Statistics by Primary Edge Type. Please see Table 3 
for Relation Ontology for inverse relations and identifiers. aSymmetric relations were computationally inferred. 
bThe Relation Ontology does not provide an inverse relation. cThe word “cell” above is used to represent cell 
lines from the Cell Line Ontology and cell types from the Cell Ontology. dThe data source already included 
symmetrical edges. Acronyms: PKT (PheKnowlator).
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more detailed and semantically consistent molecular interactions using PheKnowLator (https://github.com/
UCDenver-ccp/Cartoomics).

Limitations and future work.  This current work has several important limitations. First, it is important to 
point out that the systematic comparison we performed of open-source KG construction methods on GitHub was 
subjective, included only three researchers actively involved in developing PheKnowLator, and was originally per-
formed in 2020. While the results were updated in 2021 and re-reviewed in 2023, it is possible that new methods 
might not have been included. Further, only a qualitative comparison was carried out that only considered each 
method’s GitHub and associated publications. Ideally, a fair evaluation would be performed where each method 
would be downloaded and compared when used to build a KG from the same set of data. Unfortunately, this type 
of analysis requires significant resources and was not within the scope of our analysis. Similarly, given their suc-
cess within the Semantic Web Domain, future work should formally evaluate our data integration and ontology 
alignment pipelines to tools like Web Karma56, OpenRefine (https://openrefine.org/), and mapping languages 
like R2RML (https://www.w3.org/TR/r2rml/). Second, computational performance metrics were only computed 
over a single build run due to the number of resources required to build the KGs. While it is not expected that 
the results for these metrics would significantly change, small deviations related to data provider constraints with 
respect to accessing build data could result in different outcomes. Third, we mention that the PheKnowLator 
ecosystem includes two types of benchmarks: KGs and embeddings. Currently, embeddings are only available 
for one build (v1.0.057) because the size of the generated KGs were quite small. Subsequent builds have resulted 
in KGs that are so large that generating embeddings has not been feasible. Fortunately, the recent development 
of performant embedding tools like GRAPE will enable us to provide embeddings for future builds49 Fourth, 
while the ecosystem includes robust logging to monitor metadata and builds, it does not formally integrate 
resources like the Bioregistry58 and BioLink59, which are becoming important new KG standards16,24. Similarly, 
the PheKnowLator ecosystem relies heavily on OWLTools (https://github.com/owlcollab/owltools) but newer and 
more stable tools like ROBOT60 should be leveraged because it supports the integration of the OWL API and has 
improved Jena-based functionality. Fifth, as mentioned above, validating very large KGs, like the ones produced 
by PheKnowLator, is challenging but important. Additional validation of the PheKnowLator ecosystem, including 
the construction tools and benchmarks is needed, especially with respect to the different KG builds it produces. 
Finally, while we have worked hard to ensure that the ecosystem tools and infrastructure are user-friendly, addi-
tional work is needed to simplify the inputs and make them more machine-readable (e.g., converting input text 
files into configurable yaml files) and also develop Graphical User Interfaces for supporting the users in all the 
steps of KG construction.

Methods
The PheKnowLator ecosystem.  The PheKnowLator ecosystem was developed to provide a more com-
prehensive resource to aid in the construction of KGs within the Life Sciences and consists of three components 
(Fig. 3): (1) KG Construction Resources; (2) Benchmark KGs; and (3) KG Tools. Each component is modular; 
all features and elements can be replaced or extended as technology evolves or to fit a particular use case. The 
PheKnowLator ecosystem resources are listed by component in Supplementary Table 3.

Component 1: Knowledge graph construction resources. This component is represented by the largest gray box 
in Fig. 3 and consists of two elements: (1) Process Data. Resources to process a variety of heterogeneous data; 

Knowledge Model Relation Strategy Semantic Abstraction
Edges 
(triples) Nodes Relations

Self-
Loops

Average 
Degree

aCore OBO Foundry 
ontologies N/A N/A 4,044,658 1,399,756 847 3 2.89

Class-based

Standard Relations

None 25,143,729 8,479,167 847 3 2.97

Semantic Abstraction Only 4,967,427 743,829 294 445 6.68

Semantic 
Abstraction + Harmonization 4,967,429 743,829 293 445 6.68

Inverse Relations

None 41,116,791 13,803,521 847 3 2.98

Semantic Abstraction Only 7,629,597 743,829 301 445 10.26

Semantic 
Abstraction + Harmonization 7,629,599 743,829 300 445 10.26

Instance-based

Standard Relations

None 21,770,455 8,479,167 847 3 2.57

Semantic Abstraction Only 4,967,391 743,829 294 409 6.68

Semantic 
Abstraction + Harmonization 7,285,496 743,829 293 649 9.79

Inverse Relations

None 24,432,633 8,479,167 847 3 2.88

Semantic Abstraction Only 7,629,594 743,829 301 409 10.26

Semantic 
Abstraction + Harmonization 9,624,232 743,829 300 650 12.94

Table 6. PheKnowLator Human Disease Knowledge Graph Descriptive Statistics. Note. Edges and triples are 
synonymous with respect to the results reported in this table. aRelation Strategy and Semantic Abstraction 
information are not provided as this row of the table reports information on the core set of merged ontologies.
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and (2) Construct Knowledge Graphs. An algorithm that enables the construction of different types of hetero-
geneous KGs. The resources that support these elements are detailed in the ecosystem Component 1: Knowledge 
Graph Construction Resources section of Supplementary Table 3.

Process data. This element consists of two features and was designed to help users download and prepare a 
wide variety of heterogeneous data sources needed to construct KGs. The two primary features of this compo-
nent are: (i) Download and (ii) Preparation.

Download. This feature has been configured to download two types of data: (i) ontologies (e.g., HPO61, 
GO62, and PRO37) and databases (i.e., a data source not represented as an ontology), which includes Linked 
Open Data (e.g., Comparative Toxicogenomics Database63, UniProt Knowledgebase64, STRING65), data from 
molecular experiments (e.g., the Human Protein Atlas66, the Genotype-Tissue Expression Project67), and exist-
ing networks and KGs (e.g., Hetionet19, the Monarch KG68). Ontologies are downloaded using OWLTools (April 
06, 2020 release) and databases are downloaded using a custom-built API capable of processing a variety of file 
formats (e.g., zip, gzip, tar) from different types of servers and APIs.

Preparation. A collection of tools were developed to help users perform a variety of tasks when preparing 
data that will be used to construct a KG. This feature provides services to map different types of identifiers 
(e.g., aligning gene identifiers from the Human Gene Nomenclature Committee [HGNC]69 to Entrez Gene70 
and Ensembl71), annotate concepts (e.g., convert strings of tissue names from the Human Protein Atlas66 to 
Uber-Anatomy Ontology [Uberon]72 concepts), filter data (e.g., identify variant-disease relationships from 
Clinvar73 with a specific type of experimental validation), and process entity metadata (e.g., obtain PubMed 
identifiers for exposure-outcome relationships from the Comparative Toxicogenomics Database63 and extract 
synonyms and definitions for OBO Foundry ontology concepts). The Data Preparation Notebook (https://
github.com/callahantiff/PheKnowLator/blob/master/notebooks/Data_Preparation.ipynb) illustrates some of 
these features. There are also tools to assess and repair OBO Foundry ontologies, which are known to have a 
variety of errors74–76. The Ontology Cleaning Notebook (https://github.com/callahantiff/PheKnowLator/blob/
master/notebooks/Ontology_Cleaning.ipynb) includes detailed descriptions and examples of the data quality 
checks77. A report is generated after assessing the quality of each ontology, which provides statistics before and 
after applying each check (ontology_cleaning_report.txt).

Construct knowledge graphs. This element consists of four features designed to facilitate the construction of 
large-scale heterogeneous KGs. Together, these features comprise the core functionality of the PheKnowLator 
KG construction algorithm (referred to as PKT-KG throughout the remainder of the manuscript). The PKT-KG 
algorithm requires three input documents: (i) a list of one or more OBO Foundry ontologies; (ii) a list of one 
or more databases; and (iii) edge list assembly instructions (i.e., instructions for filtering input data sources 
and references to resources needed to normalize concept identifiers). Additional information on each input 

Fig. 6 The Impact of Knowledge Model Harmonization on the Semantically Abstracted PKT Human Disease 
Knowledge Graphs. The figure visualizes the impact of knowledge model harmonization on the semantically 
abstracted PKT Human Disease benchmark Knowledge Graphs. The top row of figures (a–d) were built using 
the class-based knowledge model varying: (a) standard relations without harmonization; (b) standard relations 
with harmonization; (c) inverse relations without harmonization; (d) inverse relations with harmonization. The 
bottom row of figures (e-h) were built using the instance-based knowledge model varying: (e) standard relations 
without harmonization; (f) standard relations with harmonization; (g) inverse relations without harmonization; 
(h) inverse relations with harmonization. Nodes are colored by type: anatomical entities (light blue), chemical 
entities (light purple), diseases (red), genes (purple), genomic features (light green), organisms (yellow), 
pathways (dark green), phenotypes (magenta), proteins (dark blue), molecular sequences (orange), transcripts 
(turquoise), and variants (light pink).
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is available on GitHub (https://github.com/callahantiff/PheKnowLator/wiki/Dependencies). The four primary 
features of this component are: (i) Edge List Construction, (ii) Ontology Alignment, (iii) Customize Knowledge 
Representation, and (iv) Output Generation.

Edge list construction. Using information in the edge list assembly instructions, the edge list construction 
procedure merges data, applies filtering and evidence criteria, and removes unneeded attributes. To automate 
this process, we have developed a universal file parser (and constantly update it with procedures for parsing new 
file types) that currently processes more than 30 distinct file types. Once the edge lists are constructed, they are 
serialized in a JSON file.

Ontology alignment. OBO Foundry ontologies were selected because they represent canonical knowledge 
and exist for nearly all scales of biological organization78. PKT-KG assumes that every KG is logically grounded79 
in one or more OBO Foundry ontologies. This feature leverages OWLTools to merge the ontologies into a single 
integrated core ontology.

Customize Knowledge Representation. To enable customization in the way that knowledge is represented 
when constructing a KG, three configurable parameters are provided:

 1. Knowledge Model. Following Semantic Web standards80, PKT-KG defines a KG as K = 〈T, A〉, where T 
is the TBox and A is the ABox. The TBox represents the taxonomy of a particular domain81,82. It describes 
classes, properties or relationships, and assertions that are assumed to generally hold within a domain (e.g., 
a gene is a heritable unit of DNA located in the nucleus of cells [Fig. 7a]). The ABox describes attributes 
and roles of instances of classes (i.e., individuals) and assertions about their membership in classes within 
the TBox (e.g., A2M is a type of gene that may cause Alzheimer’s Disease [Fig. 7b])81,82. PKT KGs are logi-
cally grounded in one or more OBO Foundry ontology79. Database entities (i.e., entities from a data source 
that is not an OBO Foundry ontology) are added to the core OBO Foundry ontologies using either a TBox 
(i.e., class-based) or ABox (i.e., instance-based) knowledge model. For the class-based approach, each 
database entity is made a subclass of an existing core OBO Foundry ontology class (see the “Class-based” 
section of Supplementary Table 14). For the instance-based approach, each database entity is made an in-
stance of an existing core OBO Foundry ontology class (see the “Instance-based” section of Supplementary 
Table 14). Both approaches require the alignment of database entities to an existing core OBO Foundry on-
tology class, which is managed by a dictionary that is constructed using tools in the Process Data Element 
of the Knowledge Graph Construction Resources component (subclass_construction_map.pkl).

 2. Relation Strategy. PKT-KG provides two relation strategies. The first strategy is standard or directed 
relations, through a single directed edge (e.g., “gene causes phenotype”). The second strategy is inverse or 
bidirectional relations, through inference if the relation is from an ontology like the RO (e.g., “chemical 
participates in pathway” and “pathway has participant chemical”) or through inferring implicitly symmet-
ric relations for edge types that represent biological interactions (e.g., gene-gene interactions).

 3. Semantic Abstraction. KGs built using expressive languages like OWL are structurally complex and 
composed of triples or edges that are logically necessary but not biologically meaningful (e.g., anony-
mous subclasses used to express TBox assertions with all-some quantification). PKT-KG currently uses 
the OWL-NETS34 semantic abstraction algorithm to convert or transform complex KGs into hybrid 
KGs. OWL-NETS v2.0 (https://github.com/callahantiff/PheKnowLator/wiki/OWL-NETS-2.0) includes 
additional functionality that harmonizes a semantically abstracted KG to be consistent with a class- or 
instance-based knowledge model. For class-based knowledge models, all triples containing rdf:type are 

Fig. 7 Description Logics Approaches to Knowledge Modeling. This figure provides a simple example of two 
approaches for modeling knowledge within a Description Logics architecture. (a) The TBox includes classes 
(i.e., “Gene”, “DNA sequence”, and “Cell nucleus”), properties (i.e., “located in” and “is a”), and the assertions 
between classes (i.e., “Gene is a DNA sequence” and “Gene located in Cell nucleus”). (b) The ABox includes 
instances of classes (i.e., “Endothelin receptor type B”) represented in the TBox and assertions about those 
instances (i.e., “Endothelin receptor type B, instance of, Gene” and “Endothelin receptor type B, causes, ABCD 
syndrome”). Please note that this figure is a simplification and was inspired by Fig. 2 from Thessen et al.82.
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updated to rdfs:subClassOf. For instance-based knowledge models, all triples containing rdfs:subClassOf are 
updated to rdf:type. For additional details, see OWL-NETS v2.0 documentation.

Output Generation. To ensure features of the Process Data element (KG Construction Resources com-
ponent) are transparent and reproducible, metadata are output for all downloaded (downloaded_build_meta-
data.txt; Supplementary Document 1)) and processed (preprocessed_build_metadata.txt; Supplementary 
Document 2) data, including the details of the processing steps applied to each database (edge_source_meta-
data.txt; Supplementary Document 3) and OBO Foundry ontology (ontology_source_metadata.txt and 
ontology_cleaning_report.txt; Supplementary Documents 4,5). The PKT KG construction process is logged 
extensively (data download and preprocessing [pkt_builder_phases12_log.log; Supplementary Document 6] 
and KG construction [pkt_build_log.log; Supplementary Document 7]). PKT KGs, including node and relation 
metadata, are output to a variety of standard formats. A description of all file types is available from the Zenodo 
Community archive (PheKnowLator_HumanDiseaseKG_Output_FileInformation.xlsx)83.

Component 2: Knowledge graph benchmarks. This component consists of different types of prebuilt KGs or 
benchmarks that can be used to systematically assess the effects of different knowledge representations on 
downstream analyses, workflows, and learning algorithms (Fig. 3). Current benchmarks and their supporting 
features are detailed in the ecosystem Component 2: Knowledge Graph Benchmarks section of Supplementary 
Table 3. Currently, the PheKnowLator ecosystem supports two types of benchmarks: (i) KGs and (ii) embed-
dings. An end-to-end example demonstrating how a single data source is transformed through each build step of 
Component 2 is provided in Fig. 8. This figure also demonstrates how this data source would be modeled across 
the 12 different types of KGs that can be configured from a single build using the ecosystem.

Knowledge graphs. The PKT Human Disease KG was built to model mechanisms of human disease, which 
includes the Central Dogma and represents multiple biological scales of organization including molecular, cel-
lular, tissue, and organ. The knowledge representation was designed in collaboration with a PhD-level molecular 
biologist (Supplementary Figure 1). The PKT Human Disease KG was constructed using 12 OBO Foundry 
ontologies, 31 Linked Open Data sets, and results from two large-scale experiments (Supplementary Table 12). 
The 12 OBO Foundry ontologies were selected to represent chemicals and vaccines (i.e., ChEBI36 and Vaccine 
Ontology [VO]84,85), cells and cell lines (i.e., Cell Ontology [CL]86, Cell Line Ontology [CLO]87), gene/gene 
product attributes (i.e., Gene Ontology [GO]62,88), phenotypes and diseases (i.e., Human Phenotype Ontology 
[HPO]61, Mondo Disease Ontology [Mondo]89), proteins, including complexes and isoforms (i.e., PRO37), path-
ways (i.e., Pathway Ontology [PW]90), types and attributes of biological sequences (i.e., SO39), and anatomical 
entities (Uberon72). The RO38 is used to provide relationships between the core OBO Foundry ontologies and 
database entities. As shown in Fig. 5, the PKT Human Disease KG contained 18 node types (Table 2) and 33 
edge types (listed by relation in Table 3). Note that the number of nodes and edge types reflects those that are 
explicitly added to the core set of OBO Foundry ontologies and does not consider the node and edge types pro-
vided by the ontologies. These nodes and edge types were used to construct 12 different PKT Human Disease 
benchmark KGs by altering the Knowledge Model (i.e., class- vs. instance-based), Relation Strategy (i.e., stand-
ard vs. inverse relations), and Semantic Abstraction (i.e., OWL-NETS (yes/no) with and without Knowledge 
Model harmonization [OWL-NETS Only vs. OWL-NETS + Harmonization]) parameters. Benchmarks within 
the PheKnowLator ecosystem are different versions of a KG that can be built under alternative knowledge mod-
els, relation strategies, and with or without semantic abstraction. They provide users with the ability to evaluate 
different modeling decisions (based on the prior mentioned parameters) and to examine the impact of these 
decisions on different downstream tasks.

Embeddings. To provide a version of the benchmarks that can more easily be used for downstream learn-
ing tasks or to aid in the evaluation of graph-based machine learning algorithms, we have also made some 
of the monthly builds available with embeddings. A modified version of DeepWalk (https://github.com/
xgfs/deepwalk-c) was used to create node embeddings for the v1.0.0 PKT Human Disease benchmark KGs. 
Embeddings were trained using 128, 256, and 512 dimensions (i.e., the length of the embedding), 100 walks (i.e., 
the number of paths generated for each node), a walk length of 20 (i.e., the length or number of nodes included 
in each path), and a sliding window length of 10 (i.e., the number of nodes to the right and left of the target node, 
which are used as training data for the target node embedding).

Eleven monthly PKT Human Disease benchmark KG builds were created between September 2, 2019 and 
November 1, 2021, each containing 12 different types of KGs. Each monthly build was executed using GitHub 
Actions-scheduled Cron jobs and implemented using dedicated Docker containers, which output all data 
directly to a Google Cloud Storage (GCS) Bucket. The PKT Human Disease benchmark KGs, metadata, and logs 
are made available through a dedicated Zenodo Community83.

Component 3: Knowledge graph tools. This component consists of tools to analyze and use KGs (Fig. 3), which 
includes Jupyter Notebook-based use cases and tutorials, cloud-based data storage, APIs, and triplestores. The 
features that support these elements are detailed in the ecosystem Component 3: Knowledge Graph Tools section of 
Supplementary Table 3. The Jupyter Notebooks are available on GitHub and currently include tutorials and exam-
ples for how to use the OWL-NETS algorithm (https://github.com/callahantiff/PheKnowLator/blob/master/
notebooks/OWLNETS_Example_Application.ipynb), load, explore, and modify existing RDF resources (https://
github.com/callahantiff/PheKnowLator/blob/master/notebooks/RDF_Graph_Processing_Example.ipynb),  
and search for paths between two entities in a PKT Human Disease KG (https://github.com/callahantiff/
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PheKnowLator/blob/master/notebooks/tutorials/entity_search/Entity_Search.ipynb). As mentioned above, 
KGs are publicly available through the PKT Human Disease benchmark KGs Zenodo Community. Code is pro-
vided within the GitHub repository to build and host a SPARQL Endpoint (http://sparql.pheknowlator.com/). 
The Database Center for Life Science SPARQL proxy web application (https://github.com/dbcls/sparql-proxy) is 
used as the front end, and the data is served from a Blazegraph triplestore (https://blazegraph.com/).

Fig. 8 An Example of How Variant-Disease Edges are Created in the PKT Human Disease Mechanism 
Knowledge Graph. This figure provides an end-to-end example of how variant-disease edges are created in 
the PKT Human Disease Mechanism knowledge graph. Beginning with the Data Preparation stage, in Step 1, 
the primary data source (i.e., ClinVar data) is downloaded and cleaned, which includes steps such as replacing 
“NaN” values with “None”, removing bad or missing identifiers, unnesting the data, and reformatting identifiers. 
The cleaned data (highlighted in yellow) are output for ingestion into the Knowledge Graph Construction stage. 
In Step 2, metadata are extracted from the primary data source to create labels, synonyms, and descriptions for 
each identifier. Step 3 leverages a manually curated resource (highlighted in green) to map variant identifiers 
to a PKT core ontology. In this case, variant identifiers are aligned to the Sequence Ontology (SO) by their 
type, and the final mapping is output to subclass_construction_map.pkl which is one of the required inputs for 
constructing a knowledge graph (highlighted in purple; cited example is from the May 2021 Class-Standard 
Relation-OWL build). In Step 4, the final step of this stage, the remaining required input documents for 
constructing a knowledge graph are updated with the resources created in the prior steps. In the Knowledge 
Graph Construction stage, the cleaned variant data are downloaded and an edge list is built. This edge list 
can then be used to construct the 12 different knowledge graphs shown in the bottom right gray box. In this 
example, the class-based semantically abstracted knowledge graphs are the same whether harmonization is 
applied or not, which is often the case for class-based builds that leverage Open Biological and Biomedical 
Ontology Foundry ontologies. See the Data_Preparation.ipynb Jupyter Notebook (https://github.com/
callahantiff/PheKnowLator/blob/master/notebooks/Data_Preparation.ipynb) for code to process all resources 
used in the PKT Human Disease knowledge graph. Acronyms: PKT (PheKnowLator). Note. A UUID is a 
blank or anonymous node that is created from an md5 hash of concatenated Universal Resource Identifiers 
(URIs). The URIs used in the hash string include the subject and object URIs (each appended with “subject” 
and “object,” respectively) in addition to a relation. All UUIDs created during construction are explicitly defined 
within the PKT namespace (https://github.com/callahantiff/PheKnowLator/pkt/).
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FAIR data principles. The PheKnowLator ecosystem is built on the FAIR principles35 (Supplementary 
Figure 3). Findability. Unique persistent identifiers are used for all data (i.e., downloaded, processed, and 
generated), metadata (i.e., for all downloaded and processed resources, data quality reports, and logged pro-
cesses), and infrastructure (i.e., Docker containers, compute instances, and KG builds run via GitHub Actions 
[https://github.com/features/actions] and the Google AI Platform [https://cloud.google.com/ai-platform]). 
All benchmark KGs are built using standardized and persistent node and relation identifiers. Accessibility. 
All data (i.e., downloaded, processed, and generated), constructed KGs, and metadata generated during the 
KG construction process, are publicly available and accessible via RESTful API access to a dedicated Zenodo 
Community archive. Additionally, all builds are versioned on GitHub, Google’s Container Registry (https://
cloud.google.com/container-registry), and DockerHub (https://hub.docker.com/). Finally, PheKnowLator pro-
vides Jupyter Notebooks and automated dependency generation scripts to improve the usability of its resources. 
Interoperability. The PheKnowLator ecosystem is built on Semantic Web standards, the KGs benchmarks and 
construction processes are grounded in OBO Foundry ontologies, and, whenever possible, standard identifiers 
are assigned for all database resources. Additionally, all constructed KGs and KG metadata are output to a variety 
of standardized file formats like RDF/XML, N-Triples, JSON, and text files. Reusability. Benchmark KG builds 
are automated, containerized, and deployed through GitHub Actions workflows, which makes the build process 
and resulting KGs consistent across versions. Semantic Versioning (https://semver.org/) is used for all code and 
documentation. The ecosystem is licensed (Apache-2.0; https://www.apache.org/licenses/LICENSE-2.0), and 
all ingested data sources are described transparently on the ecosystem’s GitHub Wiki by build version (https://
github.com/callahantiff/PheKnowLator/wiki).

Evaluation.  The PheKnowLator ecosystem was evaluated in two ways: (1) Systematic Comparison of 
Open-Source KG Construction Software. Publicly available software to construct biomedical KGs was identified 
and systematically compared using a survey developed to assess the functionality, availability, usability, matu-
rity, and reproducibility of each method. (2) Human Disease KG Benchmark Comparison and Construction 
Performance. The computational performance of the ecosystem was assessed when used to construct 12 bench-
mark KGs designed to represent the molecular mechanisms underlying human disease. The resources used for 
each task are listed in Supplementary Table 4.

Systematic comparison of open-source KG construction software. A systematic comparison was performed to 
examine how the PheKnowLator ecosystem compared to existing open-source biomedical KG construction 
methods available on GitHub. To provide an unbiased comparison, no assumptions were made regarding a spe-
cific set of user requirements. Instead, the goal of the comparison was to provide a detailed overview of existing 
methods. A survey91 was constructed from five criteria (adapted from the evaluation methodology of Babar 
et al.92) including: KG construction functionality, maturity, availability, usability, and reproducibility. Example 
questions used to assess each criterion are provided in Supplementary Table 5. The full set of survey ques-
tions (n = 44) are available as a Google Form from Zenodo91. Existing open-source biomedical KG construction 
methods were identified by performing a keyword search against the GitHub API. The following words were 
combined to form 31 distinct keyword phrases, which were queried against existing GitHub repository descrip-
tions and README content: “biological”, “bio”, “medical”, “biomedical”, “life science”, “semantic”, “knowledge 
graph”, “kg”, “graph”, “network”, “build”, “construction”, “construct”, “create”, and “creation”. The GitHub scraper is 
publicly available from Zenodo93 and was run in May 2020. The systematic comparison was completed in May 
2020 (and updated in June 2021) by TJC with consultation and oversight from WAB and LEH. The survey was 
scored out of a total score of five points, which was derived as the sum of the ratio of coverage out of one point 
for each category (i.e., the number of answerable questions out of the number of questions for that category): 
KG Construction Functionality (10 questions); Availability (two questions); Usability (nine questions); Maturity 
(five questions); and Reproducibility (six questions). The GitHub scraper and survey results are available from 
Zenodo91.

Human disease knowledge graph benchmark comparison and construction performance. Performance metrics 
were evaluated when building the PKT Human Disease benchmark KGs (v2.1.0 April 11, 2021; testing version 
not officially released, logs and descriptive statistics available from Zenodo94), which included total runtime 
(minutes) and minimum, maximum, and average memory use (GB). The PKT Human Disease benchmark KGs 
(v2.1.0 May 1, 2021) were used to compare builds and produce descriptive statistics. Statistics were calculated 
to help characterize each benchmark KG, including counts of nodes, edges or triples, self-loops, average degree, 
the number of connected components, and the density. The semantically abstracted (with and without knowl-
edge model harmonization) PKT Human Disease benchmark KGs were visualized and examined for patterns. 
The v2.1.0_01MAY2021 PKT Human Disease benchmark KGs are publicly available in several formats from 
Zenodo95–102. Additional build details, including data sources, build metadata, and logs, can be found on GitHub 
(https://github.com/callahantiff/PheKnowLator/wiki/May-01%2C-2021).

Technical specifications.  The PheKnowLator ecosystem resources, including data used to construct KGs 
and constructed PKT Human Disease benchmark KGs, and code are listed by component in Supplementary 
Table  3. The PKT Human Disease KG builds were visualized using Gephi103 (v0.9.2). The OpenOrd 
Force-Directed layout104 was applied with an edge cut of 0.5, a fixed time of 0.2, and trained for 750 iterations. 
To help with interpretation, nodes were colored according to node type. When assessing computational perfor-
mance, all PKT Human Disease KGs were constructed using Docker (v19.03.8) on a Google Cloud Platform N1 
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Container-Optimized OS instance configured with 24 CPUs, 500 GB of memory, and a 500 GB solid-state drive 
Boot Disk. PKT Human Disease KG statistics were calculated using Networkx (v2.4).

Data availability
PKT Human Disease Benchmark KG Archive Resources. Eleven monthly PKT Human Disease benchmark 
KG builds were created between September 2, 2019 and November 1, 2021. Each monthly build contains 12 
different benchmarks or types of KGs, which were created by altering the following KG construction parameters: 
knowledge model (i.e., class- or instance-based), relation strategy (i.e., standard directed relations or inverse 
bidirectional relations), and semantic abstraction (i.e., transformation of complex graphs into OWL-NETS hybrid 
KGs) with or without knowledge model Harmonization (i.e., ensuring a OWL-NETS KG is consistent with the 
knowledge model it was abstracted from). The 12 different KG types created by altering these parameters are:

1. Class-based knowledge + Standard Relations + OWL
2. Class-based knowledge + Standard Relations + OWL-NETS
3. Class-based knowledge + Standard Relations + OWL-NETS + Harmonization
4. Class-based knowledge + Inverse Relations + OWL
5. Class-based knowledge + Inverse Relations + OWL-NETS
6. Class-based knowledge + Inverse Relations + OWL-NETS + Harmonization
7. Instance-based knowledge + Standard Relations + OWL
8. Instance-based knowledge + Standard Relations + OWL-NETS
9. Instance-based knowledge + Standard Relations + OWL-NETS + Harmonization
10. Instance-based knowledge + Inverse Relations + OWL
11. Instance-based knowledge + Inverse Relations + OWL-NETS
12. Instance-based knowledge + Inverse Relations + OWL-NETS + Harmonization

The builds are available through a Zenodo Community archive (https://zenodo.org/communities/phek-
nowlator-benchmark-human-disease-kg) with all builds listed and linked on the primary archive page83. The 
monthly builds can also be accessed through the PheKnowLator GitHub Wiki (https://github.com/callahantiff/
PheKnowLator/wiki/Archived-Builds). The GitHub Wiki build pages serve as a companion resource to each cor-
responding Zenodo build archive providing detailed descriptions of the output data files, links to input data 
sources and Jupyter notebook-based workflows, and lists of generated metadata and logs. Each Wiki build page 
also includes direct links to each of the 12 benchmark KGs on Zenodo. A detailed description of the build KG 
files types, including required input documents and curated data, generated build metadata and logs, and output 
KG data files can be found in the PheKnowLator_HumanDiseaseKG_Output_FileInformation.xlsx83 file availa-
ble on the Zenodo Community archive and from each build’s GitHub Wiki page. This file is intended to provide 
high-level information on the build file types. It does not cite specific builds or resources but instead, provides 
explanations of the files that one can expect with each build. Please note that the Zenodo Community archive 
and associated GitHub pages list 8 KG types rather than 12 as the non-harmonization and harmonization OWL-
NETS KG type files are combined into a single repository for each build. Within the Zenodo archives, the harmo-
nized OWL-NETS KGs are referred to as “purified”.

Build data sources. The curated data sources required for each build are provided in the Zenodo Community 
archive. All other data are not included with each monthly build due to the large number of required files and 
their size. These files are all publicly available and can be obtained using information provided with each build, 
including URL and date of download. For the September 3, 2021 build, links and date of download information 
are provided on the GitHub Wiki. For the May 01, 2020 build, see the build metadata (edge_source_metadata.
txt and ontology_source_metadata.txt) and logs (*_Stats_Terminal_Output.txt), which are all available from the 
Zenodo Community archive. For all other builds, see downloaded_build_metadata.txt, also available from the 
Zenodo Community archive. A detailed description of the data sources used to build the PKT Human Disease 
KG is provided in Supplemental Material Table 12. This table includes the following information for each data 
source: data provider, filenames, download URLs, literature citations, license types, and a brief description of how 
each data source was used.

Evaluation resources. The v2.1.0 May 2021 PKT Human Disease benchmark KGs are available through the 
GitHub Wiki (https://github.com/callahantiff/PheKnowLator/wiki/May-01%2C-2021), and on Zenodo by KG 
type:

1. Class-based + StandardRelations + OWL95

2. Class-based + StandardRelations + OWL-NETS96

3. Class-based + StandardRelations + OWL-NETS (purified)96

4. Class-based + InverseRelations + OWL97

5. Class-based + InverseRelations + OWL-NETS98

6. Class-based + InverseRelations + OWL-NETS (purified)98

7. Instance-based + StandardRelations + OWL99

8. Instance-based + StandardRelations + OWL-NETS100

9. Instance-based + StandardRelations + OWL-NETS (purified)100

10. Instance-based + InverseRelations + OWL101

11. Instance-based + InverseRelations + OWL-NETS102

12. Instance-based + InverseRelations + OWL-NETS (purified)102
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Build logs and statistics are also available for the v2.1.0 April 2021 PKT Human Disease benchmark KGs 
on Zenodo94. As mentioned in the prior section, a table describing the output file types for each build type can 
be found on the Zenodo Community archive (https://zenodo.org/communities/pheknowlator-benchmark-hu-
man-disease-kg)83. Descriptions of the data sources used to build the PKT Human Disease KG are provided in 
Supplemental Material Table 12. As mentioned above, within the Zenodo archives, the harmonized OWL-NETS 
KGs are referred to as “purified”.

Code availability
The PheKnowLator ecosystem coding resources are described in detail in Supplementary Table 3 by ecosystem 
component. The PKT-KG algorithm is publicly available through GitHub (https://github.com/callahantiff/
PheKnowLator) and PyPI (https://pypi.org/project/pkt-kg). The SPARQL Endpoint deployment code and 
documentation are also available through GitHub: https://github.com/callahantiff/PheKnowLator/tree/master/
builds/deploy/triple-store#readme. A list of the computational resources used to evaluate the PheKnowLator 
ecosystem is provided in Supplementary Table 4. The code used to scrape the GitHub API is available from 
Zenodo93. The survey of open-source KG construction tools is also available on Zenodo91. The v2.1.0 
PheKnowLator code is available on GitHub (https://github.com/callahantiff/PheKnowLator/releases/tag/v2.1.0) 
and from Zenodo (https://zenodo.org/record/4685943)105.

Received: 26 July 2023; Accepted: 21 March 2024;
Published: xx xx xxxx

References
 1. Agrawal, R. & Prabakaran, S. Big data in digital healthcare: lessons learnt and recommendations for general practice. Heredity 124, 

525–534 (2020).
 2. van Dijk, E. L., Auger, H., Jaszczyszyn, Y. & Thermes, C. Ten years of next-generation sequencing technology. Trends Genet. 30, 

418–426 (2014).
 3. Gupta, N. & Verma, V. K. Next-Generation Sequencing and Its Application: Empowering in Public Health Beyond Reality. in 

Microbial Technology for the Welfare of Society (ed. Arora, P. K.) 313–341 (Springer Singapore, Singapore, 2019).
 4. Graw, S. et al. Multi-omics data integration considerations and study design for biological systems and disease. Mol Omics 17, 

170–185 (2021).
 5. Reuter, J. A., Spacek, D. V. & Snyder, M. P. High-throughput sequencing technologies. Mol. Cell 58, 586–597 (2015).
 6. Fröhlich, H. et al. From hype to reality: data science enabling personalized medicine. BMC Med. 16, 150 (2018).
 7. Livingston, K. M., Bada, M., Baumgartner, W. A. Jr & Hunter, L. E. KaBOB: ontology-based semantic integration of biomedical 

databases. BMC Bioinformatics 16, 126 (2015).
 8. Callahan, T. J., Tripodi, I. J., Pielke-Lombardo, H. & Hunter, L. E. Knowledge-Based Biomedical Data Science. Annu. Rev. Biomed. 

Data Sci. 3, 23–41 (2020).
 9. Vidal, M., Cusick, M. E. & Barabási, A.-L. Interactome networks and human disease. Cell 144, 986–998 (2011).
 10. Crick, F. Central dogma of molecular biology. Nature 227, 561–563 (1970).
 11. Nicholson, D. N. & Greene, C. S. Constructing knowledge graphs and their biomedical applications. Comput. Struct. Biotechnol. J. 

18, 1414–1428 (2020).
 12. Ehrlinger, L. & Wöß, W. Towards a Definition of Knowledge Graphs. SEMANTiCS (Posters, Demos, SuCCESS) 48, 1–4 (2016).
 13. Hogan, A. et al. Knowledge Graphs. in ACM Computing Surveys (Csur) vol. 54 1–37 (2021).
 14. Ji, S., Pan, S., Cambria, E., Marttinen, P. & Yu, P. S. A Survey on Knowledge Graphs: Representation, Acquisition, and Applications. 

IEEE Trans Neural Netw Learn Syst 33, 494–514 (2021).
 15. Nelson, C. A., Butte, A. J. & Baranzini, S. E. Integrating biomedical research and electronic health records to create knowledge-

based biologically meaningful machine-readable embeddings. Nat. Commun. 10, 3045 (2019).
 16. Wood, E. C. et al. RTX-KG2: a system for building a semantically standardized knowledge graph for translational biomedicine. 

BMC Bioinformatics 23, 400 (2022).
 17. Stear, B. J. et al. Petagraph: A large-scale unifying knowledge graph framework for integrating biomolecular and biomedical data. 

Preprint at https://doi.org/10.1101/2023.02.11.528088 (2023).
 18. Belleau, F., Nolin, M.-A., Tourigny, N., Rigault, P. & Morissette, J. Bio2RDF: towards a mashup to build bioinformatics knowledge 

systems. J. Biomed. Inform. 41, 706–716 (2008).
 19. Himmelstein, D. S. et al. Systematic integration of biomedical knowledge prioritizes drugs for repurposing. Elife 6, (2017).
 20. Chung, M.-H., Zhou, J., Pang, X., Tao, Y. & Zhang, J. BioKDE: A deep learning powered search engine and biomedical knowledge 

discovery platform. in BioCreative VII Challenge Evaluation Workshop, Virtual workshop 254–259 (2021).
 21. Reese, J. T. et al. KG-COVID-19: A Framework to Produce Customized Knowledge Graphs for COVID-19 Response. Patterns 2, 

100155 (2021).
 22. Chandak, P., Huang, K. & Zitnik, M. Building a Knowledge Graph to Enable Precision Medicine. Sci. Data 10, 67 (2023).
 23. Pratt, D. et al. NDEx, the Network Data Exchange. Cell Syst 1, 302–305 (2015).
 24. Caufield, J. H. et al. KG-Hub - Building and Exchanging Biological Knowledge Graphs. Bioinformatics 39, btad418 (2023).
 25. Santos, A. et al. Clinical Knowledge Graph Integrates Proteomics Data into Clinical Decision-Making. Nat Biotechnol 40, 692–702 

(2022).
 26. Lobentanzer, S. et al. Democratising Knowledge Representation with BioCypher. Nat Biotechnol 41, 1056–1059 (2023).
 27. Zachary, W. W. An Information Flow Model for Conflict and Fission in Small Groups. J. Anthropol. Res. 33, 452–473 (1977).
 28. Breit, A., Ott, S., Agibetov, A. & Samwald, M. OpenBioLink: a benchmarking framework for large-scale biomedical link prediction. 

Bioinformatics 36, 4097–4098 (2020).
 29. Piñero, J. et al. DisGeNET: a comprehensive platform integrating information on human disease-associated genes and variants. 

Nucleic Acids Research 45, D833–D839 (2017).
 30. Mungall, C. J. et al. The Monarch Initiative: an integrative data and analytic platform connecting phenotypes to genotypes across 

species. Nucleic Acids Res. 45, D712–D722 (2017).
 31. Vettrivel, V. Knowledge graphs: RDF or property graphs, which one should you pick? Wisecube.ai, https://www.wisecube.ai/blog/

knowledge-graphs-rdf-or-property-graphs-which-one-should-you-pick/ (2022).
 32. Krötzsch, M., Simancik, F. & Horrocks, I. A Description Logic Primer. arXiv [cs.AI] (2012).
 33. Lam, H. Y. K., Marenco, L., Shepherd, G. M., Miller, P. L. & Cheung, K.-H. Using web ontology language to integrate heterogeneous 

databases in the neurosciences. AMIA Annu. Symp. Proc. 464–468 (2006).
 34. Callahan, T. J. et al. OWL-NETS: Transforming OWL Representations for Improved Network Inference. in Biocomputing 133–144 

(2018).

https://doi.org/10.1038/s41597-024-03171-w
https://zenodo.org/communities/pheknowlator-benchmark-human-disease-kg
https://zenodo.org/communities/pheknowlator-benchmark-human-disease-kg
https://github.com/callahantiff/PheKnowLator
https://github.com/callahantiff/PheKnowLator
https://pypi.org/project/pkt-kg
https://github.com/callahantiff/PheKnowLator/tree/master/builds/deploy/triple-store#readme
https://github.com/callahantiff/PheKnowLator/tree/master/builds/deploy/triple-store#readme
https://github.com/callahantiff/PheKnowLator/releases/tag/v2.1.0
https://zenodo.org/record/4685943
https://doi.org/10.1101/2023.02.11.528088
https://www.wisecube.ai/blog/knowledge-graphs-rdf-or-property-graphs-which-one-should-you-pick/
https://www.wisecube.ai/blog/knowledge-graphs-rdf-or-property-graphs-which-one-should-you-pick/


20Scientific Data |          (2024) 11:363  | https://doi.org/10.1038/s41597-024-03171-w

www.nature.com/scientificdatawww.nature.com/scientificdata/

 35. Wilkinson, M. D. et al. The FAIR Guiding Principles for scientific data management and stewardship. Sci Data 3, 160018 (2016).
 36. Hastings, J. et al. ChEBI in 2016: Improved services and an expanding collection of metabolites. Nucleic Acids Res. 44, D1214–9 

(2016).
 37. Natale, D. A. et al. The Protein Ontology: a structured representation of protein forms and complexes. Nucleic Acids Res. 39, 

D539–45 (2011).
 38. Smith, B. et al. Relations in biomedical ontologies. Genome Biol. 6, R46 (2005).
 39. Eilbeck, K. et al. The Sequence Ontology: a tool for the unification of genome annotations. Genome Biol. 6, R44 (2005).
 40. Rebele, T. et al. YAGO: A Multilingual Knowledge Base from Wikipedia, Wordnet, and Geonames. in The Semantic Web – ISWC 

2016 177–185 (Springer International Publishing, 2016).
 41. Vrandečić, D. Wikidata: a new platform for collaborative data collection. in Proceedings of the 21st International Conference on 

World Wide Web 1063–1064 (Association for Computing Machinery, New York, NY, USA, 2012).
 42. Tiddi, I. & Schlobach, S. Knowledge graphs as tools for explainable machine learning: A survey. Artif. Intell. 302, 103627 (2022).
 43. Tripodi, I. J. et al. Applying knowledge-driven mechanistic inference to toxicogenomics. Toxicology in Vitro 66, 104877 (2020).
 44. Joslyn, C. A. et al. Hypernetwork Science: From Multidimensional Networks to Computational Topology. International conference 

on complex systems (pp. 377–392. Springer International Publishing, Cham, 2020).
 45. Callahan, T. J., Hunter, L. E. & Kahn, M. G. Leveraging a Neural-Symbolic Representation of Biomedical Knowledge to Improve 

Pediatric Subphenotyping. Preprint at https://doi.org/10.5281/zenodo.5746187 (2021).
 46. Malec, S. A. et al. Causal feature selection using a knowledge graph combining structured knowledge from the biomedical literature 

and ontologies: A use case studying depression as a risk factor for Alzheimer’s disease. J. Biomed. Inform. 142, 104368 (2023).
 47. Taneja, S. B. et al. Developing a Knowledge Graph for Pharmacokinetic Natural Product-Drug Interactions. J. Biomed. Inform. 140, 

104341 (2023).
 48. Cavalleri, E. et al. RNA-KG: An ontology-based knowledge graph for representing interactions involving RNA molecules. Preprint 

at https://doi.org/10.48550/arXiv.2312.00183 (2023).
 49. Cappelletti, L. et al. GRAPE for fast and scalable graph processing and random-walk-based embedding. Nat Comput Sci 3, 552–568 

(2023).
 50. Valentini, G. et al. Het-node2vec: second order random walk sampling for heterogeneous multigraphs embedding. Preprint at 

https://doi.org/10.48550/arXiv.2101.01425 (2023).
 51. Callahan, T. J. et al. Knowledge-Driven Mechanistic Enrichment of the Preeclampsia Ignorome. in Biocomputing vol. 28 371–382 

(2023).
 52. HuBMAP Consortium. The human body at cellular resolution: the NIH Human Biomolecular Atlas Program. Nature 574, 187–192 

(2019).
 53. Reitz, K. M., Hall, D. E., Shinall, M. C. Jr, Shireman, P. K. & Silverstein, J. C. Using the Unified Medical Language System to expand 

the Operative Stress Score - first use case. J. Surg. Res. 268, 552–561 (2021).
 54. SenNet Consortium. NIH SenNet Consortium to map senescent cells throughout the human lifespan to understand physiological 

health. Nat Aging 2, 1090–1100 (2022).
 55. Santangelo, B. E., Gillenwater, L. A., Salem, N. M. & Hunter, L. E. Molecular cartooning with knowledge graphs. Front Bioinform 2, 

1054578 (2022).
 56. Szekely, P. et al. Connecting the Smithsonian American Art Museum to the Linked Data Cloud. in The Semantic Web: Semantics 

and Big Data 593–607 (Springer Berlin Heidelberg, 2013).
 57. PheKnowLator Ecosystem Developers. PheKnowLator Human Disease Knowledge Graph Benchmarks Embeddings–v1.0.0. 

Zenodo https://doi.org/10.5281/zenodo.8173107 (2021).
 58. Hoyt, C. T. et al. Unifying the identification of biomedical entities with the Bioregistry. Sci. Data 9, 714 (2022).
 59. Unni, D. R. et al. Biolink Model: A universal schema for knowledge graphs in clinical, biomedical, and translational science. Clin. 

Transl. Sci. 15, 1848–1855 (2022).
 60. Jackson, R. C. et al. ROBOT: A Tool for Automating Ontology Workflows. BMC Bioinformatics 20, 407 (2019).
 61. Köhler, S. et al. The Human Phenotype Ontology in 2021. Nucleic Acids Res. 49, D1207–D1217 (2021).
 62. Ashburner, M. et al. Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat. Genet. 25, 25–29 

(2000).
 63. Davis, A. P. et al. Comparative Toxicogenomics Database (CTD): update 2021. Nucleic Acids Res. 49, D1138–D1143 (2021).
 64. UniProt Consortium UniProt: a worldwide hub of protein knowledge. Nucleic Acids Res. 47, D506–D515 (2019).
 65. Szklarczyk, D. et al. STRING v11: protein–protein association networks with increased coverage, supporting functional discovery 

in genome-wide experimental datasets. Nucleic Acids Res. 47, D607–D613 (2018).
 66. Uhlén, M. et al. Proteomics. Tissue-based map of the human proteome. Science 347, 1260419 (2015).
 67. GTEx Consortium The Genotype-Tissue Expression (GTEx) project. Nat. Genet. 45, 580–585 (2013).
 68. Shefchek, K. A. et al. The Monarch Initiative in 2019: an integrative data and analytic platform connecting phenotypes to genotypes 

across species. Nucleic Acids Res. 48, D704–D715 (2020).
 69. Yates, B. et al. Genenames.org: the HGNC and VGNC resources in 2017. Nucleic Acids Res. 45, D619–D625 (2017).
 70. Maglott, D., Ostell, J., Pruitt, K. D. & Tatusova, T. Entrez Gene: gene-centered information at NCBI. Nucleic Acids Res. 33, D54–8 

(2005).
 71. Zerbino, D. R. et al. Ensembl 2018. Nucleic Acids Res. 46, D754–D761 (2018).
 72. Mungall, C. J., Torniai, C., Gkoutos, G. V., Lewis, S. E. & Haendel, M. A. Uberon, an integrative multi-species anatomy ontology. 

Genome Biol. 13, R5 (2012).
 73. Landrum, M. J. et al. ClinVar: improving access to variant interpretations and supporting evidence. Nucleic Acids Res. 46, 

D1062–D1067 (2018).
 74. Amith, M., He, Z., Bian, J., Lossio-Ventura, J. A. & Tao, C. Assessing the practice of biomedical ontology evaluation: Gaps and 

opportunities. J. Biomed. Inform. 80, 1–13 (2018).
 75. Vrandečić, D. Ontology Evaluation. in Handbook on Ontologies (eds. Staab, S. & Studer, R.) 293–313 (Springer Berlin Heidelberg, 

Berlin, Heidelberg, 2009).
 76. Gómez-Pérez, A. Ontology Evaluation. in Handbook on Ontologies (eds. Staab, S. & Studer, R.) 251–273 (Springer Berlin 

Heidelberg, Berlin, Heidelberg, 2004).
 77. Callahan, T. J. et al. Adapting the Harmonized Data Quality Framework for Ontology Quality Assessment. Preprint at https://doi.

org/10.5281/zenodo.6941289 (2022).
 78. Hoehndorf, R., Schofield, P. N. & Gkoutos, G. V. The role of ontologies in biological and biomedical research: a functional 

perspective. Brief. Bioinform. 16, 1069–1080 (2015).
 79. Correia, F. LOGICAL GROUNDS. Rev. Symb. Log. 7, 31–59 (2014).
 80. Baader, F., Calvanese, D., McGuinness, D., Patel-Schneider, P. & Nardi, D. The Description Logic Handbook: Theory, Implementation 

and Applications. (Cambridge University Press, 2003).
 81. Bergman, M. The fundamental importance of keeping an ABox and TBox split. AI3: Adaptive Information, https://www.

mkbergman.com/489/ontology-best-practices-for-data-driven-applications-part-2/ (2009).
 82. Thessen, A. E. et al. Transforming the study of organisms: Phenomic data models and knowledge bases. PLoS Comput. Biol. 16, 

e1008376 (2020).

https://doi.org/10.1038/s41597-024-03171-w
https://doi.org/10.5281/zenodo.5746187
https://doi.org/10.48550/arXiv.2312.00183
https://doi.org/10.48550/arXiv.2101.01425
https://doi.org/10.5281/zenodo.8173107
https://doi.org/10.5281/zenodo.6941289
https://doi.org/10.5281/zenodo.6941289
https://www.mkbergman.com/489/ontology-best-practices-for-data-driven-applications-part-2/
https://www.mkbergman.com/489/ontology-best-practices-for-data-driven-applications-part-2/


2 1Scientific Data |          (2024) 11:363  | https://doi.org/10.1038/s41597-024-03171-w

www.nature.com/scientificdatawww.nature.com/scientificdata/

 83. PheKnowLator Ecosystem Developers. PheKnowLator Human Disease Knowledge Graph Benchmarks Archive. Zenodo https://
doi.org/10.5281/zenodo.10689968 (2024).

 84. Xiang, Z. et al. VIOLIN: vaccine investigation and online information network. Nucleic Acids Res. 36, D923–8 (2008).
 85. He, Y. et al. Updates on the web-based VIOLIN vaccine database and analysis system. Nucleic Acids Res. 42, D1124–32 (2014).
 86. Bard, J., Rhee, S. Y. & Ashburner, M. An ontology for cell types. Genome Biol. 6, R21 (2005).
 87. Sarntivijai, S. et al. CLO: The cell line ontology. J. Biomed. Semantics 5, 37 (2014).
 88. The Gene Ontology Consortium The Gene Ontology Resource: 20 years and still GOing strong. Nucleic Acids Res. 47, D330–D338 

(2019).
 89. Vasilevsky, N. A. et al .  Mondo: Unifying diseases for the world, by the world. Preprint at https://doi.

org/10.1101/2022.04.13.22273750 (2022).
 90. Petri, V. et al. The pathway ontology - updates and applications. J. Biomed. Semantics 5, 7 (2014).
 91. Callahan, T. J., Baumgartner, W. A. & Hunter, L. E. Biomedical KG Construction Survey. Zenodo https://doi.org/10.5281/

zenodo.10052096 (2021).
 92. Babar, M. A., Zhu, L. & Jeffery, R. A framework for classifying and comparing software architecture evaluation methods. in 2004 

Australian Software Engineering Conference. Proceedings 309–318 (2004).
 93. Callahan, T. J. Open Source Biomedical KG - GitHub Scraper. Zenodo https://doi.org/10.5281/zenodo.10052114 (2023).
 94. PheKnowLator Ecosystem Developers. PheKnowLator Human Disease KG Benchmarks - Build Logs (v2.1.0 - April 2021). Zenodo 

https://doi.org/10.5281/zenodo.10056214 (2021).
 95. PheKnowLator Ecosystem Developers. PheKnowLator Human Disease KG Benchmarks: Class-Standard Relations-OWL (v2.1.0 

- May 2021). Zenodo https://doi.org/10.5281/zenodo.10056053 (2021).
 96. PheKnowLator Ecosystem Developers. PheKnowLator Human Disease KG Benchmarks: Class-Standard Relations-OWLNETS 

(v2.1.0 - May 2021). Zenodo https://doi.org/10.5281/zenodo.10056054 (2021).
 97. PheKnowLator Ecosystem Developers. PheKnowLator Human Disease KG Benchmarks: Class-Inverse Relations-OWL (v2.1.0 - 

May 2021). Zenodo https://doi.org/10.5281/zenodo.10056055 (2021).
 98. PheKnowLator Ecosystem Developers. PheKnowLator Human Disease KG Benchmarks: Class-Inverse Relations-OWLNETS 

(v2.1.0 - May 2021). Zenodo https://doi.org/10.5281/zenodo.10056056 (2021).
 99. PheKnowLator Ecosystem Developers. PheKnowLator Human Disease KG Benchmarks: Instance-Standard Relations-OWL 

(v2.1.0 - May 2021). Zenodo https://doi.org/10.5281/zenodo.10056057 (2021).
 100. PheKnowLator Ecosystem Developers. PheKnowLator Human Disease KG Benchmarks: Instance-Standard Relations-OWLNETS 

(v2.1.0 - May 2021). Zenodo https://doi.org/10.5281/zenodo.10056058 (2021).
 101. PheKnowLator Ecosystem Developers. PheKnowLator Human Disease KG Benchmarks: Instance-Inverse Relations-OWL (v2.1.0 

- May 2021). Zenodo https://doi.org/10.5281/zenodo.10056061 (2021).
 102. PheKnowLator Ecosystem Developers. PheKnowLator Human Disease KG Benchmarks: Instance-Inverse Relations-OWLNETS 

(v2.1.0 - May 2021). Zenodo https://doi.org/10.5281/zenodo.10056062 (2021).
 103. Bastian, M., Heymann, S. & Jacomy, M. Gephi: An Open Source Software for Exploring and Manipulating Networks. ICWSM 3, 

361–362 (2009).
 104. Martin, S., Michael Brown, W., Klavans, R. & Boyack, K. W. OpenOrd: an open-source toolbox for large graph layout. in 

Visualization and Data Analysis 2011 vol. 7868 45–55 (International Society for Optics and Photonics, 2011).
 105. PheKnowLator Ecosystem Developers. PheKnowLator Codebase - V2.1.0 Release. Zenodo https://doi.org/10.5281/zenodo.4685943 

(2021).
 106. Callahan, T. J. Overview of the PheKnowLator Ecosystem. Zenodo https://doi.org/10.5281/zenodo.7035867 (2022).

acknowledgements
This work was supported by funding from the National Library of Medicine (T15LM009451 and T15LM007079) 
to TJC, (4R00LM013367-03) to SAM, (R01LM013400 and 5R01LM008111-16) to LEH, and (R01LM006910) 
GH. This work was also supported by funding from the Director, Office of Science, Office of Basic Energy 
Sciences, of the U.S. Department of Energy under Contract (DE-AC02-05CH11231) to JR, the King Abdullah 
University of Science and Technology (KAUST) Office of Sponsored Research (OSR), Award (URF/1/4355-01-01 
and URF/1/5041-01-01) to RH, the NIH Common Fund (CFDE OT2OD030545, HuBMAP OT2OD033759, and 
SenNet U24CA268108) to JCS, the National Center for Complementary and Integrative Health (U54 AT008909) 
to SBT and RDB, the National Human Genome Research Institute (NHGRI) to PNR (5U24HG011449), a 
National Recovery and Resilience Plan-NextGenerationEU award from the National Center for Gene Therapy 
and Drugs based on RNA Technology (G43C22001320007) to GV, and the Defense Advanced Research Projects 
Agency (DARPA) Young Faculty Award (W911NF-20-1-0255) and the DARPA Automating Scientific Knowledge 
Extraction and Modeling program (HR00112220036) to CTH. The authors would like to thank the OHDSI 
community, especially Adam Black as well as members of Dr. Hunter’s lab at the University of Colorado Anschutz 
Medical Campus, specifically Dr. Mayla Boguslav and Harrison Pielke-Lombardo for testing different builds and 
helping conceive and pilot test tutorials to demonstrate different PheKnowLator use cases. The authors would also 
like to thank GitHub users ablack3, Bancherd-DeLong, Bsantan, GuarinoValentina, and nomisto, who identified 
and helped troubleshoot bugs through the PheKnowLator GitHub.

author contributions
M.G.K., W.A.B., and L.E.H. served as primary supervisors of this work. T.J.C., B.A.W., A.L.S., I.J.T., R.H., and 
A.L.S. conceived and helped develop the analyses performed in this work. T.J.C. and W.A.B. developed the 
PheKnowLator ecosystem. A.L.S., I.J.T., and J.M.W. provided insight into the development of documentation 
for the GitHub site. A.L.S., B.S., C.J.M., C.T.H., F.M., G.H., J.C.S., J.H., J.M.W., J.R., M.B., N.A.M., N.A.V., P.B.R., 
P.N.R., R.D.B., R.H., and T.D.B. provided domain expertise and/or commented on the PheKnowLator ecosystem, 
data sources, or other important resources used in its development. B.S., E.l.C., E.C., G.V., L.C., L.G., M.M., 
R.B., S.A.M., S.B.T., and T.F. evaluated PheKnowLator builds and provided feedback on the resulting KGs. T.J.C. 
drafted the manuscript and all authors reviewed the manuscript and provided feedback. All authors read and 
approved the final version of the manuscript.

Competing interests
The authors declare no competing interests.

https://doi.org/10.1038/s41597-024-03171-w
https://doi.org/10.5281/zenodo.10689968
https://doi.org/10.5281/zenodo.10689968
https://doi.org/10.1101/2022.04.13.22273750
https://doi.org/10.1101/2022.04.13.22273750
https://doi.org/10.5281/zenodo.10052096
https://doi.org/10.5281/zenodo.10052096
https://doi.org/10.5281/zenodo.10052114
https://doi.org/10.5281/zenodo.10056214
https://doi.org/10.5281/zenodo.10056053
https://doi.org/10.5281/zenodo.10056054
https://doi.org/10.5281/zenodo.10056055
https://doi.org/10.5281/zenodo.10056056
https://doi.org/10.5281/zenodo.10056057
https://doi.org/10.5281/zenodo.10056058
https://doi.org/10.5281/zenodo.10056061
https://doi.org/10.5281/zenodo.10056062
https://doi.org/10.5281/zenodo.4685943
https://doi.org/10.5281/zenodo.7035867


22Scientific Data |          (2024) 11:363  | https://doi.org/10.1038/s41597-024-03171-w

www.nature.com/scientificdatawww.nature.com/scientificdata/

additional information
Supplementary information The online version contains supplementary material available at https://doi.org/ 
10.1038/s41597-024-03171-w.
Correspondence and requests for materials should be addressed to T.J.C., W.A.B. or L.E.H.
Reprints and permissions information is available at www.nature.com/reprints.
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Cre-
ative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not per-
mitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the 
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
 
© The Author(s) 2024

https://doi.org/10.1038/s41597-024-03171-w
https://doi.org/10.1038/s41597-024-03171-w
https://doi.org/10.1038/s41597-024-03171-w
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	An open source knowledge graph ecosystem for the life sciences
	Introduction
	Results
	Evaluation. 
	Systematic comparison of open-source KG construction software. 
	Human disease knowledge graph benchmark comparison and construction performance. 


	Discussion
	PheKnowLator applications and use cases. 
	Limitations and future work. 

	Methods
	The PheKnowLator ecosystem. 
	Component 1: Knowledge graph construction resources. 
	Component 2: Knowledge graph benchmarks. 
	Component 3: Knowledge graph tools. 
	FAIR data principles. 

	Evaluation. 
	Systematic comparison of open-source KG construction software. 
	Human disease knowledge graph benchmark comparison and construction performance. 

	Technical specifications. 

	Acknowledgements
	Fig. 1 A Knowledge Representation of the Levels of Biological Organization Underlying Human Disease.
	Fig. 2 Types of Knowledge Graphs used in the Life Sciences.
	Fig. 3 The PheKnowLator Ecosystem.
	Fig. 4 Open-Source Knowledge Graph Construction Methods - Survey Results.
	Fig. 5 An Overview of the PKT Human Disease Mechanism Knowledge Graph.
	Fig. 6 The Impact of Knowledge Model Harmonization on the Semantically Abstracted PKT Human Disease Knowledge Graphs.
	Fig. 7 Description Logics Approaches to Knowledge Modeling.
	Fig. 8 An Example of How Variant-Disease Edges are Created in the PKT Human Disease Mechanism Knowledge Graph.
	Table 1 Open-Source Knowledge Graph Construction Methods.
	Table 2 PKT Human Disease Knowledge Graph Primary Node Types.
	Table 3 PKT Human Disease Knowledge Graph Primary Edge Types by Relation.
	Table 4 Ontology Statistics Pre- and Post-Data Quality Assessment.
	Table 5 PKT Human Disease Knowledge Graph Descriptive Statistics by Primary Edge Type.
	Table 6 PheKnowLator Human Disease Knowledge Graph Descriptive Statistics.




