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ABSTRACT OF THE DISSERTATION  

 

Neuroimaging Biomarkers in Cognitive Aging 

by 

Elena Dominguez 

Doctor of Philosophy in Biological Sciences 

University of California, Irvine, 2022 

Professor Craig Stark, Chair 

 

While aging is typically associated with cognitive decline, some individuals are able to diverge 

from the characteristic downward slope and maintain very high levels of cognitive performance. By 

examining morphological characteristics of the brain using structural neuroimaging, several studies have 

attempted to understand these trajectories and elucidate what neurobiological factors contribute to 

preserved cognition throughout advanced aging. Using data from the National Alzheimer’s Coordinating 

Center (NACC) and Alzheimer's Disease Neuroimaging Initiative (ADNI), I examined individuals aged 

60 and above who demonstrated a combined performance at or above the top 50th percentile in memory 

and executive function, deemed as Top Cognitive Performers (TCP). In this thesis, we aimed to 

understand how well structural (cortical thickness, cortical volume, and white matter hyperintensity 

volume) and pathological (amyloid and tau burden) characteristics can be used to model TCP. As these 

relationships are sparsely studied in the oldest segment of our population, those 90 and above, we also 

utilized existing structural magnetic resonance imaging (MRI) and neuropsychological assessment data 

collected by The 90+ Study. Results showed that regional network-style cortical thickness both 

outperformed localist cingulate models and was sufficient in predicting TCP. Additionally, we were able 

to show that while both cortical thickness and volume models preformed similarly, cortical thickness did 

slightly better at predicting TCP. Though we were able to see group differences in white matter intensities 

in some age groups, this measure did not independently perform as well as cortical thickness. Lastly, 

unlike differences seen in structural correlates, TCP individuals did not exhibit group differences in PET 

measures of amyloid or tau. Taken together, this shows that neuroimaging biomarkers are useful in the 

identification of successfully aging cohorts, particularly when examining structural correlates of aging. 



 

 

xv

These relationships were seen in younger and older datasets, further suggesting that MRI biomarkers are 

useful across the full adult lifespan.  
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INTRODUCTION 

 

 

Aging is a physiological process associated with increased risk in many debilitating diseases such 

as heart disease, stroke, and dementia. Despite this, advancements in health care and modern technology 

have led to an increase in life expectancy, and, by 2030, individuals 65 and older will outnumber those 

under the age of 18 (US Census Bureau, 2010, 2018). With this dramatic increase in the elderly 

population, it is important to better understand the various cognitive trajectories associated with aging, a 

well-studied but multifarious path. Disease-related aging, such as those living with Alzheimer’s disease, 

is sometimes met with a precipitous drop in the ability to complete everyday cognitive tasks such as 

accessing memories and navigating the world. Even cognitively normal individuals who are able to avoid 

the deleterious effects of dementia may experience subtle changes in cognition. A third aging trajectory, 

represented by successful aging, includes individuals who are able to retain their cognitive faculties 

throughout advanced aging. It is widely proposed that the spectrum of these trajectories is the 

consequence of various neurobiological processes. Thus, this thesis covers 3 aims designed to answer 

some major questions around this idea and are outlined as follows: 

 

Chapter 1: What does normal and successful aging look like throughout in the elderly? This chapter 

describes normal and “super” cognitive aging throughout the older-adult lifespan and how it is 

represented in the brain, as seen on neuroimaging. It briefly describes the contributions of structural 

characteristics of the whole brain, and how the cingulate cortex may partly explain those who exhibit 

superior cognitive performance. Additionally, it covers why other networks may also equally contribute 

to successful aging.  
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Chapter 2: Is cortical thickness of the cingulate cortex key in predicting successful aging? This 

chapter assesses the role of regional cortical thickness, both in the a priori cingulate cortex and whole-

brain, network-level models, in predicting Top Cognitive Performance (TCP), measured by performance 

in the top 50th percentile of memory & executive function. Additionally, we wanted to observe if such 

relationships between cortical thickness and TCP persists in rising age groups by examining individuals 

70-100. 

A version of this chapter was first published in Frontiers in Aging Neuroscience (Dominguez et al., 2021). 

The chapter has been edited for clarity and relevance to this thesis. 

Chapter 3:  What factors other than cortical thickness can predict Top Cognitive Performance? 

This chapter expands upon Chapter 2 and assesses additional structural features that may contribute to 

Top Cognitive Performance such as cortical volume and white matter hyperintensities and positron. 

Moreover, this chapter addresses top performance in other cognitive domains (memory, executive 

function, language, and attention). 

Chapter 4: Do Top Cognitive Performers exhibit lower levels of Alzheimer’s disease related 

pathology throughout the lifespan? This chapter aims to assess TCP group differences in Alzheimer’s 

disease related pathologies: amyloid and tau. These goals are studied across the full elderly lifespan and 

support the theory of resilience in successful aging individuals. 

Chapter 5: Discussion and Conclusions 
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Chapter 1 

 

1.1 COGNITIVE TRAJECTORIES IN THE ELDERLY AND THE 90+ STUDY 

 

COGNITION AFTER 60 

 

Though there is general decline in most areas of cognition, studies have consistently shown that 

not every cognitive domain follows the same trajectory across the lifespan in magnitude or rate (Anstey & 

Low, 2004; Christensen, 2001; Wilson et al., 2002). For example, some abilities, such as crystallized 

knowledge, or knowledge from one’s past experiences, tend to remain relatively stable throughout 

adulthood (Christensen, 2001; Craik, 1990), even up to the age of 90 (Singer et al., 2003). Other domains, 

such as verbal ability, or our ability to use our semantic memory to identify objects, express ideas, and 

respond to verbal instructions, follow similar stable trajectories throughout our lifespan (Deary et al., 

2009; Harvey, 2019; Hedden & Gabrieli, 2004). 

Memory, a domain that is most notably susceptible to early subjective complaints in older adults, 

has been shown to follow a heterogeneous pattern of decline (Christensen, 2001; Grady, 2012; Hultsch et 

al., 1992), with some aspects declining faster than others. Episodic memory, defined by a process of 

encoding, maintaining, and retrieving information 

pertaining to specific events, has frequently been 

cited to decline sharply with age (Christensen, 

2001; Daselaar et al., 2007; Grady, 2012; Harvey, 

2019). As shown in Figure 1.1a, cross-sectional 

performance in measures of episodic memory from 

The Betula Study drastically decreased as a 

function of age (Nilsson, 2003). Moreover, when 

examining 6-year longitudinal changes in the 

Berlin Aging Study, individuals 70 and above 

 

 
Figure 1.1: Aspects of memory decline more than Others 

(Adapted from Nilsson et al., 2003)- Cross‐sectional data 

from the first wave of data collection from The Betula Study 

revealed that episodic memory performance dramatically 

decreased as a function of age in episodic memory, while 

short-term memory remained relatively stable.   
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exhibited a decrease in episodic memory performance, with older (mean age= 83.04 years) participants 

exhibiting a more negative slope than their somewhat younger counterparts (mean age=73.77), suggesting 

a steeper decline with increasing age (Singer et al., 2003). Alternatively, short-term memory is known to 

be relatively preserved and shows little to no decline across the adult lifespan (Nilsson, 2003), as depicted 

in Figure 1.1b. Likewise, procedural memory, or our ‘memory for motor actions or skills’, (Churchill et 

al., 2003; Harvey, 2019; Mitchell et al., 1990; Nilsson, 2003) is similarly conserved.  

  Other cognitive domains, such as processing speed, attention, and executive functioning also 

deteriorate as we age. Moreover, some have even suggested that cognitive abilities such as speed and 

executive function may account for or mediate various kinds of memory and fluid abilities (Finkel et al., 

2007; Salthouse, 1996; Schretlen et al., 2000). Processing speed, defined by the time it takes to perform 

mental tasks and to process information, is often cited as a core feature of normal cognitive decline, and is 

linked to many functional aspects of our life, such as driving cessation in older adults (Edwards et al., 

2010; Harvey, 2019). For example, a meta-analysis of 91 early aging studies showed that both working 

memory and processing speed acted as strong mediators for other age-related differences in other domains 

such as episodic memory and general fluid intelligence (Verhaeghen & Salthouse, 1997).  Unsurprisingly, 

speed has shown both longitudinal and cross-sectional declines as a function of age (Ebaid et al., 2017; 

Perbal et al., 2002; Singer et al., 2003). Attention, defined as the process of attending to relevant 

information and ignoring all else, can be further broken down into subtypes of which are differentially 

affected by age. Madden (2007) stated that, when compared to younger adults, older adults exhibit slower 

and less accurate performance in visual-search tasks (Madden, 2007). This finding is also highlighted by 

Commodari & Guarnera (2008), who demonstrated that participants in their 50’s outperformed 

individuals in their 60’s in immediate attention span, attention shifting, and ability to ignore interference, 

but not in reaction time, suggesting a deficit in some attentional abilities but not others (Commodari & 

Guarnera, 2008). Executive function, a domain that is closely related to daily living functional status 

(Cahn-Weiner et al., 2002; Johnson et al., 2007), accounts for decision making, task switching, reasoning, 
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strategizing, and problem solving (Harvey, 2019). Research has shown that the elderly exhibit worse 

performance in planning (Allain et al., 2005; Andrés & Van der Linden, 2000; H. Lin et al., 2007), and 

inhibition (Andrés & Van der Linden, 2000) when compared to younger groups, while other aspects such 

as cognitive flexibility and reasoning have shown to be preserved (Treitz et al., 2007).  

 

 

COGNITION IN THE OLDEST OLD AND THE 90+ STUDY 

 

Individuals in their 90’s display a more marked and rapid decline than those in their 70’s in 

cognitive domains such as memory, perceptual speed, knowledge, and fluency (Singer et al., 2003). 

Moreover, people aged 95 and older exhibit significantly increased daily living difficulties than those 

aged 75-84 years old (Cohen-Mansfield et al., 2013). Given that these aging trends persist and are 

exacerbated in the oldest-old, defined here as those aged 90 and above, they are of particular interest in 

the examination of cognition, disease progression, and longevity. The continued growth of those that are 

able to reach their ninth decade and beyond has prompted considerable interest in the study of 

nonagenarians and centenarians, one chief population-based cohort being The 90+ Study. 

The 90+ Study, established in 2003, is an ongoing longitudinal investigation of aging and 

dementia in individuals aged 90 and above, consisting of the survivors of the Leisure World Cohort Study 

(Kawas, 2008). As one of the largest and longest studies of oldest-old, The 90+ Study has contributed 

seminal findings related to cognition, disease progression, as well as lifestyle and risk factors of disease. 

In line with other studies, the prevalence of having difficulty in one or more activities of daily living 

dramatically increased with age in The 90+ Study (Berlau et al., 2009). Further, the incidence of dementia 

persists into the oldest old, nearly doubling in rate percentage every 5 years and reaching 40.7% per year 

in centenarians (Corrada et al., 2010). 

Studies of 90+ participants without dementia (i.e., cognitively normal and cognitively impaired-

no dementia (CIND)) revealed that neuropsychological performance assessing attention, language, verbal 

memory, and construction continuously decline with increasing age (Whittle et al., 2007). Further studies 
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in The 90+ Study examining normative data in only cognitively normal participants revealed similar 

results, though, contrary to Whittle and colleagues (2007), performance on Trails Making Test Part-B and 

Digit Span Backwards, measurements of working memory and executive function, were not sensitive to 

increasing age (Melikyan et al., 2019a). Melikyan and colleagues that the variance seen in Whittle et al. 

(2007) may have been better explained by CIND rather than age. Thus, given their wide-ranging spectrum 

of cognitive abilities, high risk for developing dementia (Corrada et al., 2010), large well-characterized 

cognitively normal sample size (Melikyan et al., 2019a), and availability of multi-modal in vivo and post 

mortem imaging, The 90+ Study cohort presents an excellent opportunity to study the neural correlates of 

age-related cognition. 

 

1.2 DEFINING SUCCESSFUL AGING AND EXAMINING ITS NEURAL CORRELATES  

 

DEFINITIONS OF SUCCESSFUL AGING 

While a declining trajectory in cognitive performance is typically expected in the aging 

population, many individuals are able to diverge from this characteristic downward slope. This 

phenomenon reflects one of the many operational definitions of successful aging, in which an individual 

retains optimal cognitive abilities throughout advanced aging in key domains such as memory and 

processing speed (Rowe & Kahn, 1997). Individuals in these specialized groups are typically identified 

based on their higher-than-normal performance on various neuropsychological tests, often chosen due to 

their challenging nature and sensitivity to neurodegenerative processes.  

The growing interest in successful aging has resulted in various definitions or labels for 

specialized cohorts, including SuperAgers, Supernormals, High Performing Elderly, and more, briefly 

described in Table 1.1. It is important to note that the literature is not limited to those in Table 1.1, and 

though each of these studies reflect the concept of successful aging in some capacity, they vary in criteria 

and inclusion for group membership. For example, 70 year old successful agers derived from the 

Berkeley Aging Cohort Study were required to have a score at or above the mean gender-adjusted value 
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for young adults (18 –32) on the California Verbal Learning Test (CVLT), a measure of episodic 

memory, and age adjusted performance on Trails-B, a test of executive function (Harrison et al., 2018). 

The Health, Aging, and Body Composition Study’s longitudinal cognitive maintainers, on the other hand, 

were described as 70+ year old’s that maintained global cognition, measured by a slope greater than zero 

on the Modified Mini Mental (3MS) test (Rosano et al., 2012; Yaffe et al., 2009). Importantly, although 

these groups employ different methods of classification, they all offer insight into preserved cognitive 

functioning late into life “successful” aging and share common threads in their classification methods. 

 

Table 1.1: Definitions of Successful Aging examining structural and functional correlates 

Name Age 

Range 

Participants Definition Citations 

High Performing Groups 

High Performing 

Elderly (High 

Fluid 

Performers) 

60+ Community 

dwellers 

Participant were classified as 

“high” or “average” on fluid 

ability based on Wechsler 

Abbreviated Scale of Intelligence 

performance. 

(Fjell et al., 

2006) 

Successful 

Older/ Cognitive 

Maintainer 

60+ Betula Study Participants were classified based 

on a moderate to high baseline 

episodic memory composite score 

and a better‐than‐average rate 

of change in performance. 

(Pudas et al., 

2013) 

Supernormals 70+ Alzheimer’s 

Disease 

Neuroimaging 

Initiative  

Participant were classified based 

on constantly high and stable 

episodic memory and executive 

function composite scores over a 

5-year period. 

(Baran et al., 

2018; F. Lin et 

al., 2017; Wang 

et al., 2019) 

SuperAger 60-93 Australian 

Imaging, 

Biomarkers and 

Lifestyle study 

Participant were classified by a 

score above the sex-adjusted 

normative average for younger 

adults (age range, 30-44) in 

episodic memory and 

performance above −1 SD on 

non-memory tests. 

(Dang, 

Harrington, et 

al., 2019a) 

60+ 

 

Recruitment 

from the greater 

Boston area  

 

Participant were classified by a 

score at or above the mean 

gender-adjusted value for young 

adults (age range, 18 –32) in 

episodic memory and a score no 

lower than 1 SD below the mean 

(Sun et al., 

2016a; Zhang et 

al., 2020) 



 

8 

 

 

for their age group in executive 

function. 

80+ 

 

Northwestern 

University 

SuperAging 

Study 

Participant were classified by a 

score at or above average 

normative values for younger 

individuals (age, 50s and 60s) in 

episodic memory and a score 

within one standard deviation of 

the average range for their age 

and education on non-memory 

tests. 

(Gefen et al., 

2015; Harrison et 

al., 2012) 

 

80+ Northwestern 

University 

Participant were classified by a 

score at or above average 

normative values for younger 

adults (age range, 50-65) on a test 

of episodic memory and at least 

average-for-age normative values 

on tests in other cognitive 

domains. 

(Cook et al., 

2017) 

Optimal  

Performers and 

Maintainers 

75+ Harvard Aging 

Brain Study 

Optimal Performers: A score in 

the top 20% of a memory 

composite score. 

Maintainers: A score ≥ 0.5 SD 

above the mean for the memory 

composite at a three-year follow-

up. 

(Dekhtyar et al., 

2017) 

Successful 

Agers 

70+ Berkeley Aging 

Cohort Study  

Participant were classified by a 

score at or above the mean 

gender-adjusted value for young 

adults (age range, 18 –32) 

episodic memory and normal-for-

age performance in executive 

function. 

(Harrison et al., 

2018) 

Maintained Cognition 

Cognitive 

Maintainers 

70+ The Health, 

Aging, and Body 

Composition 

Study 

“Participants were classified as 

having shown either maintenance 

(3MS slope > 0) or decline (3MS 

slope < 1 SD below the mean) of 

cognition using linear mixed 

models.” 

(Rosano et al., 

2012; Yaffe et 

al., 2009) 
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SUCCESSFUL AGING AND THE BRAIN 

Two terms that are at the forefront of successful aging literature are resistance and resilience. 

Though a common core feature of both is the maintenance of stellar cognition in old age, resistant 

individuals exhibit an absence or low frequency of neurodegenerative brain insults, while resilient 

individuals maintain their cognition even in the presence of said neuropathology and brain atrophy 

(Montine et al., 2019; J. W. Rowe & Kahn, 1997)(Montine et al., 2019; J. W. Rowe & Kahn, 1997). To 

explore both resistance and resilience, researchers like those mentioned in Table 1.1 have studied the 

brains of these specialized cohorts compared to normal-for-age individuals to determine what structural 

and pathological characteristics (measured by structural MRI, PET imaging, etc.) contribute to preserved 

cognition in the elderly. 

First, to explore its contribution to alternative aging trajectories, it is important to understand 

characteristic brain changes in normal aging. Typically, normal aging is met with diffuse atrophy 

throughout the brain. It is important to note, though, that while mean cortical thickness, total intracranial 

 

Figure 1.2: Age-related changes in the brain: Total mean cortical thickness (a), total cortical volume 

(b), and total  cortical surface area (c) (adapted from Salat et al., 2004) – Structural T1-weighted magnetic 

resonance  imaging in 106 non-demented participants ranging in age from 18-93. Scatter plots in each 

hemisphere  were regressed by age, separated by sex (F, female; M, male) and cortical hemisphere (lh, left 

hemisphere;  rh, right hemisphere). 
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volume, and total surface area are significantly correlated with age (Figure 1.2), atrophy does not occur 

uniformly throughout the brain (Salat et al., 2004). Areas of increased age-related atrophy include regions 

in the frontal (Jernigan et al., 2001; Resnick et al., 2003; Thambisetty et al., 2010; Tisserand et al., 2002), 

temporal (Fjell et al., 2014; Raz et al., 2010; Yao et al., 2012), and parietal lobes (Fjell et al., 2014; 

Lemaitre et al., 2012; Resnick et al., 2003), as well as regions of the cingulate cortex (Lemaitre et al., 

2012; Mann et al., 2011; Pardo et al., 2007). Atrophy has been reported to be more pronounced in the 

cingulate cortex (Resnick et al., 2003), with decreases in both volume (Good et al., 2001), and cortical 

thickness (Hurtz et al., 2014) in aging subjects.   

The cingulate cortex has been of particular interest in successful aging due to its diffuse 

connectivity throughout the brain and involvement in many areas of cognition, including memory, 

emotional processing, task engagement, and attention (Pearson et al., 2011a; Stanislav et al., 2013a; 

Vaidya et al., 2007a). The cingulate can be further divided into subregions (e.g., anterior and posterior), 

with regional specificity in function, cytoarchitecture, and connectivity (Palomero-Gallagher et al., 2019; 

Torta & Cauda, 2011). The anterior cingulate cortex has been shown to exhibit connectivity to key limbic 

areas, such as the amygdala and hippocampus, as well as the prefrontal cortex (Etkin et al., 2006, 2011; 

Margulies et al., 2007). The posterior cingulate, in contrast, is a key node and central hub of the default 

mode network and is highly metabolically active (Leech & Sharp, 2014). It has been implicated in 

emotional processing (Maddock et al., 2003), recollection and familiarity (Yonelinas et al., 2005), and 

autobiographical memory retrieval (Maddock et al., 2001). Thus, the cingulate cortex plays a critical role 

in the domains of cognition that are sensitive to aging and may represent a key region in resistance to age-

related decline. 

In the context of successful aging, many have connected structural properties, such as cortical 

thickness, to successful aging. Areas such as the caudal anterior and posterior cingulate (Fjell et al., 2014; 

Gefen et al., 2015; Harrison et al., 2012, 2018), the insula (Fjell et al., 2014; Sun et al., 2016a), and the 

prefrontal cortex (Harrison et al., 2018) were found to exhibit greater cortical thickness in successful 



 

11 

 

 

aging individuals, described more in Chapter 2. Interestingly, the cingulate has also been identified in 

other modes of imaging such as functional MRI (fMRI) and diffusion tensor imaging (DTI). Seventy year 

old Supernormals, distinguished by a higher episodic memory composite score, exhibited a significantly 

stronger functional connectivity between the anterior cingulate cortex and right hippocampus, a region 

heavily involved in memory (F. Lin et al., 2017).  

 

SUMMARY  

 

The goal of this proposal is to understand the neurobiological mechanisms that underly resistance 

to cognitive decline that plagues our rapidly growing elderly population via neuroimaging biomarkers. 

Given the various definitions of successful aging and their modeling of a priori networks, the current 

literature leaves us with the question of what is the central and salient model of successful aging? In other 

words, is there a true hotspot of regions, key cortical measure, or one definition that identifies super 

individuals? For example, whether the cortical thickness of the cingulate sufficiently predicts preserved 

cognition in older adults is still to be determined. Though the cingulate has proven to be important in 

successful aging, the structural integrity of other regions and networks have also been identified in 

preserved cognitions. This suggests that structural properties across a wide range of areas may better 

explain differences in cognitive abilities. Thus, using data driven approaches we assessed established 

models of cortical thickness and examined  multiple structural markers associated with normal decline. 

Additionally, it is important to consider other age-related biomarkers that are known to be associated with 

cognitive decline, such as amyloid burden. Identifying neurobiological markers that contribute to 

cognitive preservation may help us to prolong onset of decline and develop therapies that target these 

protective features.  
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Chapter 2 

Regional Cortical Thickness Predicts Top Cognitive Performance in the Elderly 

 

 

 

 

2.1 Introduction 

As previously described, many studies in successful aging have identified the cingulate cortex as 

a key area in identifying those who are able to maintain their cognition. For example, upon conducting a 

whole brain analysis, Northwestern University’s eighty year old SuperAgers, distinguished by their 

middle-age-like episodic memory, exhibited a significantly thicker anterior cingulate cortex when 

compared to their normal-for-age peers (Harrison et al., 2012). Note, however, that the modest sample 

 

Prior studies have found that cortical thickness in the cingulate cortex, a region involved in 

information processing, memory, and attention, distinguish those with exceptional cognitive abilities 

when compared to their cognitively more typical elderly peers. Others major areas outside of the 

cingulate, such as the prefrontal cortex & insula, are also key in successful aging well into late age, 

suggesting that structural properties across a wide range of areas may better explain differences in 

cognitive abilities. Here, we aimed to assess the role of regional cortical thickness, both in the 

cingulate and the whole brain, in modeling Top Cognitive Performance (TCP), measured by 

performance in the top 50th percentile of memory & executive function. Using data from National 

Alzheimer’s Coordinating Center and The 90+ Study, we examined healthy subjects aged 70-100 

years old. We found that, while thickness in cingulate regions can model TCP status with some 

degree of accuracy, a whole-brain, network-level approach out-performed the localist, cingulate 

models. These findings suggest a need for more network-style approaches and furthers our 

understanding of neurobiological factors contributing to preserved cognition. 
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sizes (n=12 SuperAgers and n=10 elderly controls) may have impacted their ability to reliably identify a 

broader range of regions. Following this finding, an a priori region-of-interest (ROI)-based analysis 

revealed that SuperAgers displayed greater cortical thickness in the posterior and caudal anterior 

cingulate cortex when compared to elderly controls (Gefen et al., 2015).   

As shown in Table 1.1, studies of successful aging are not limited to the popularized SuperAger 

cohort, and many have examined top performing individuals based on varying neuropsychological 

performance and tests. Despite this variability, one commonality exists in the structural integrity of the 

cingulate cortex. Seventy-year-old successful agers, defined by high performance in episodic memory, 

working memory, and processing speed, displayed greater cortical thickness within the right anterior 

cingulate and prefrontal cortex (Harrison et al., 2018). Additionally, they had greater hippocampal 

volume and lower white matter hypointensity volumes. Another study, examining optimal cognitive aging 

assessed by high performance in visuo-constructive abilities and visual reasoning, found that older 

individuals with high fluid abilities displayed greater cortical thickness in large areas of the cingulate 

cortex. Interestingly, they did not find this same relationship when comparing high vs. average performers 

in younger groups (Fjell et al., 2006). 

Though the cingulate has proven to be important in successful aging, the structural integrity of 

other regions and networks have also been identified in preserved cognitions. For example, the above 

mentioned optimal cognitive aging individuals also displayed greater cortical thickness in areas such as 

the insula, temporal middle gyrus, and the isthmus cingulate (Fjell et al., 2006). Sun and colleagues (Sun 

et al., 2016b) found that younger SuperAgers, aged 60-80, exhibited greater cortical thickness in the 

dorsomedial prefrontal cortex, angular gyrus, and superior frontal gyrus; all key regions in the default 

mode and salience networks. Whole brain analyses in high functioning individuals, aged 90 and older, 

revealed structural preservation in prefrontal and insular areas (Yang et al., 2016). Similarly,  70+ year 

old Successful Agers, distinguished by high memory scores, exhibited greater cortical thickness in the 

insula, midcingulate cortex, and the medial prefrontal cortex (Harrison et al., 2018). Thus, while the 
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cingulate appears in each of these studies, several other regions have been implicated as well, suggesting 

a possible widespread network contributing to the resistance to cognitive decline. 

It is important to note that our goal here is not to identify a set of specific cortical biomarkers of 

successful aging. Rather, the goal of the present study is a more generalized one.  Here, we aim to 

understand how well cortical thickness can be used to model a behavioral outcome like successful aging, 

whether certain regions are disproportionately involved in this, and whether the cingulate cortex in 

particular is disproportionately involved. Thus, one hypothesis is that there is a set of specific regions, 

such as the cingulate regions, where thickness is able to predict cognitive status, while other regions have 

little or no predictive value (i.e., the cingulate is particularly informative when trying to model cognitive 

status). A second hypothesis is that the predictive power is distributed as a relatively smooth gradient 

across regions, with some more predictive than others, but no clear-cut differentiation between predictive 

and non-predictive regions. Finally, a third, “null” hypothesis is that all regions are equally predictive (or 

non-predictive) of cognitive status. Using structural and neuropsychological data from the National 

Alzheimer’s Coordinating center (NACC), we evaluated these hypotheses by examining the relationship 

between cortical thickness the brain and high cognitive performance in measures of episodic memory and 

executive function; two abilities that are otherwise known as hallmark domains of cognitive impairment 

and disease progression. We examined individuals aged 70-89, who demonstrated a combined 

performance at or above the top 50th percentile in both domains, deemed as Top Cognitive Performers 

(TCP) and we compared logistic regression performance using the cingulate ROIs relative to using the 

whole brain. To assess reliability of our models and the overall informativeness of individual regions, we 

performed Monte Carlo sampling of the population, creating logistic regression models for each sample. 

Finally, we examined the efficacy of these approaches as a function of age as by breaking them down by 

decade and including data from The 90+ Study.  Individuals in their 90’s display a more marked and rapid 

decline than those in their 70’s in cognitive domains such as memory, perceptual speed, knowledge, and 
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fluency (Singer et al., 2003), making it valuable to understand how the informativeness of these metrics 

persists into very advanced stages of aging. 

 

2.2 Experimental Design And Methods 

The National Alzheimer's Coordinating Center  

Participants 

Three hundred and forty-seven individuals were selected from the larger NACC cohort (Figure 

2.1A). NACC is a database of patient information collected from multiple Alzheimer disease centers 

funded by the National Institute on Aging (Beekly et al., 2004). For this analysis, participants were 

required to be seventy years old and above (70-89 years old) and have at least one T1 MRI scan available 

within 2 years of their initial UDS visit. Additionally, participants were required to have a NACC status 

indicating normal cognition and behavior (NORMCOG and NACCUDSD), as determined by a clinician 

 
Figure 2.1: Inclusion flow chart for (A) NACC and (B) The 90+ Study Participants. Blue box 

reflects the participants included in the final analysis of top cognitive performers (TCP). 
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or panel of clinicians based on  neuropsychological test scores, CDR, Form B9 (Clinician Judgement of 

Symptoms), and center specific tests. Individuals who contained missing data in any of the criteria 

variables, described below, were excluded from the analyses. 

 

 

Neuropsychological criteria for group inclusion  

Previous studies of successfully aging cohorts have used neuropsychological tests with specific 

criteria based either on performance being consistent with a younger population or with performance 

being atypically high for their age group. Following the latter, TCPs were required to be in the top 50th 

percentile for both the Wechsler Memory Scale-revised Logical Memory IIA-Delayed Recall (WMS-R 

IIA) and Trails Making Test- Part B (Trails-B). The WMS-R IIA tests verbal and visual modalities and 

asks participants to recall units of a story after a 15 minute delay (Wechsler, 1987). Trails-B engages 

executive function and processing speed by asking the participant to draw a line that connects an ordered 

progression of alternating letters and numbers (e.g. 1 – A – 2 – B – 3 – C…) as quickly as possible 

(Tombaugh, 2004). All individuals that did not fit these criteria were classified as non-Top Cognitive 

Performers (non-TCP). 

 

Image Data 

Pre-calculated regional cortical thickness data for NACC MRIs were provided by the IDeA Lab 

at University of California, Davis. T1-weighted structural MRI (sMRI) scans were obtained from multiple 

centers using 3.0 and 1.5 Tesla scanners (GE, Siemens, and Phillips). sMRI data from the date closest to 

the initial UDS visit were processed based on the Advanced Normalization Tools (ANTs) toolkit and 

thickness pipeline (Das et al., 2009). Modifications to that pipeline for improving grey/white matter 

segmentation used to generate the numbers in NACC are described by Fletcher et al. (2012). 
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The 90+ Study 

Participants 

One hundred and eight individuals from the larger The 90+ Study cohort were included (Figure 

2.1B). The 90+ Study, established in 2003, is an ongoing longitudinal investigation of aging and dementia 

in individuals aged 90 and above, consisting of the survivors of the Leisure World Cohort Study (Kawas, 

2008).  Participants were selected based on the availability of a sMRI, two or more neuropsychological 

visits, and a cognitively normal diagnosis at a majority of their visits (i.e., 2 out of 3 visits or 3 out of 4 

visits). Cognitively normal was determined by The 90+ Study and refers to a primary diagnosis, 

determined by neurological examiners, where an individual is deemed as normal, absent of impairment in 

any cognitive domains, and able to complete Instrumental activities of daily living (IADL). Individuals 

who contained missing data in any of the criteria variables were excluded from the analyses. 

 

Neuropsychological criteria for group inclusion  

While participants in The 90+ Study are visited every six months by researchers who perform 

neuropsychological tests, the number of visits for each individual at the time of these analyses varied 

from one visit to twenty three.  Thus, based on the available data, median cognitive scores from up to four 

visits closest to sMRI scan date were chosen as a more robust measure of cognition that would account 

possible variance in individual session performance. Following NACC TCP criteria, The 90+ TCP 

individuals were required to perform at or above the top 50th percentile for their age group on the long-

delay recognition portion of the California Verbal Learning Test – short form (CVLT) and at or above the 

top 50th percentile on completion time for their age group in the Trails-B. All other individuals that did 

not fit these criteria were classified as non-Top Cognitive Performers (non-TCP). 

 

Image Data 
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T1-weighted structural MRI scans were collected on a 3.0 Tesla GE Discovery MR750w scanner 

(1 mm isotropic resolution, TE=3ms, TR=7.2ms, flip angle = 11°). Images were processed using 

Mindboggle (Klein et al., 2017), which performs atlas registration to the Desikan-Killiany-Tourville 

(DKT) atlas (Desikan et al., 2006) and cortical thickness estimation using Advanced Normalization Tools 

(ANTs; its additional FreeSurfer estimates were not used here).  ANTs calculates cortical thickness by 

measuring the distance between gray/white matter boundaries and grey/cerebrospinal fluid (CSF) 

boundaries by quantifying the amount of registration needed to bring these surfaces together. Thickness 

was calculated in the original native subject space before being transformed into Montreal Neurological 

Institute and Hospital (MNI) space. Using DKT regions of interest as masks, we computed the average 

cortical thickness within each ROI. To reduce edge effects that will be present in these masks (thickness 

is computed in the cortical sheet and the ROIs will cover voxels not in a particular subject’s sheet), 

thickness maps were clipped at 1 mm and the average computed across all resulting non-zero voxels. The 

average cortical thickness of three bilateral cingulate regions from the DKT atlas (posterior cingulate 

cortex, caudal anterior cingulate cortex, rostral anterior cingulate cortex) was examined as a priori 

regions based on their previously shown involvement in successful aging (Figure 2.2).  

 

Statistical analysis of MRI study participants and cortical thickness 
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For both datasets, statistical analyses 

were performed using SAS and both the 

Statsmodels (https://www.statsmodels.org/) 

and skikit-learn (https://scikit-learn.org/) 

libraries in Python. To evaluate the influence 

of cortical thickness on top cognitive 

performance, two logistic regression model 

were used to model TCP status as a function of 

regions of interest as follows: (1) 6 bilateral a 

priori cingulate ROIs (rostral anterior, caudal 

anterior, and posterior segments), and (2) a 

forward-selection model with 62 whole brain cortical ROIs (cutoff p-value for the F statistic, p=0.25). 

Receiving Operating Characteristic (ROC) curves were created to assess the accuracy of TCP status as a 

diagnostic marker. Additionally, unpaired t-tests were used to evaluate differences in continuous variables 

(age, education-NACC, and neuropsychological performance) and Fisher's exact test to evaluate gender 

distribution, across the two subject groups. 

2.3 Results 

 

Demographics and neuropsychological performance at baseline 

 

NACC analyses used data from 11 Alzheimer’s Disease Research Centers (ADRCs) for UDS 

visits conducted between September 2005 and December 2020. The average time between initial 

neuropsychological visit and MRI was 133.3 (189.6) and 138.7 (185.1) days for non-TCP and TCP, 

respectively. The 347 NACC participants had an average of 15 years of education and were 60.81% 

female (Table 2.1). TCP and Non-TCP groups did not differ in age in either the 70 (t(24)=0.71, p=0.48) 

or 80 year old subgroups (t(1)=0.98, p =0.33). They did, however, differ in education (t(242)=5.02, 

 
Figure 2.2: Desikan Killiany Tourville Atlas Three 

bilateral a priori cingulate regions derived from DKT atlas; 

left hemisphere is shown 
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p<0.0001) and gender distribution (Fisher’s exact p=0.04)  in the 70 year-olds and education 

(t(101)=2.72, p=.01) in the 80 year-olds. The 108 90+ Study participants were 63.89% female and 47% 

had a college education (Table 2.2). TCP and Non-TCP did not differ in age (t(106)=0.58, p=0.57), 

gender distribution (Fisher’s exact p=>0.999), or education level at a baseline visit (X2 (2, n = 108) = 

1.88, p = .39).  

 

Cortical thickness in the NACC sample: a priori cingulate regions 

When considered in isolation, logistic regressions modeling TCP status based on the a priori 

cingulate regions’ thickness (Table 2.3) failed to robustly model TCP status.  When examining the full 

NACC 70-89 sample, no cingulate ROI could reliably model TCP status (p’s > .1, uncorrected for 

multiple comparisons).  When restricted to only those in their 70s, the right caudal anterior (p= 0.04, 

uncorrected), and rostral anterior (p= 0.01, uncorrected) cingulate showed some predictive power, but this 

was not the case in the NACC participants in their 80s (p= 0.15 & p= 0.29, respectively).  
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Table 2.2: The 90+ Study Demographics 
 

All TCP Non-

TCP 

T-Test/ Fisher’s Exact Test 

or Chi Square Test 

n 108 35 73 
 

Age (SD) 93.85 

(2.60) 

94.06 

(2.60) 

93.75 

(2.62) 

.565 

Female (%) 69 

(63.89) 

22 

(62.86) 

47 

(64.38) 

> 0.999 

Education (SD) 

  High-school graduate or less (%)  

  Some college to college 

graduate(%)  

  Some graduate school or higher 

(%) 

15 

(13.89) 

47 

(43.52) 

46 

(42.59) 

3 (8.57) 

18 

(51.43) 

14  (40) 

12 

(16.44) 

29 

(39.73) 

32 

(43.84) 

0.391 

 

Table 2.3: Fitted Logistic Regression Models 

Age 

Group 

ROI Fitted Model 

70-89 Left Caudal Anterior Cingulate, Left Posterior 

Cingulate, Left Rostral Anterior Cingulate, 

Right Caudal Anterior Cingulate, Right 

Logit(TCP) = -4.13 + 0.48 xL Caudal Anterior 

Cingulate + 0.48 xL Posterior Cingulate + 0.28 xL 

Rostral Anterior Cingulate + 0.43 xR Caudal Anterior 

Table 2.1: NACC Demographics 

 
All 70 Year 

Old’s 

TCP Non-

TCP 

T-Test/ 

Fisher’s 

Exact 

Test 

80 Year 

Old’s 

TCP Non-

TCP 

T-Test/ 

Fisher’s 

Exact 

Test 

n 347 244 83 161 
 

103 22 81 
 

Age (SD) 75.94 

(4.95) 

74.25 

(2.72) 

74.07 

(2.68) 

74.34 

(2.75) 

0.476 83.31 

(2.67) 

82.82 

(2.56) 

83.44 

(2.70) 

0.331 

Female (%) 211 

(60.81%

) 

150 

(61%) 

59 

(71%) 

91 

(56%) 
0.037 61 

(59.22%

) 

13 

(59.09%

) 

48 

(59.26%

) 

> 0.999 

Education (SD) 15.00 

(3.38) 

15.07 

(3.35) 

16.49(2.

37) 

14.33(3.

54) 
< 

0.0001 

14.82 

(3.47) 

16.55 

(2.54) 

14.35 

(3.55) 
.008 
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Posterior Cingulate, Right Rostral Anterior 

Cingulate 
Cingulate + 0.33 xR Posterior Cingulate - 0.61 xR 

Rostral Anterior Cingulate 

Left Caudal Anterior Cingulate, Left Caudal 

Middle Frontal, Left Entorhinal, Left Medial 

Orbitofrontal, Left Paracentral, Right Cuneus, 

Right Superior Frontal  

Logit(TCP) = -2.36 + 0.66 xL Caudal Anterior 

Cingulate + 1.72 xL Caudal Middle Frontal - 0.62 xL 

Entorhinal + 1.28 xL Medial Orbitofrontal+ 1.37 xL 

Paracentral – 1.00 xR Cuneus – 2.23 xR Superior 

Frontal 

70s Left Caudal Anterior Cingulate, Left Posterior 

Cingulate, Left Rostral Anterior Cingulate, 

Right Caudal Anterior Cingulate, Right 

Posterior Cingulate, Right Rostral Anterior 

Cingulate 

Logit(TCP) = -3.95 + 0.73 xL Caudal Anterior 

Cingulate + 0.28 xL Posterior Cingulate + 0.51 xL 

Rostral Anterior Cingulate + 1.05 xR Caudal Anterior 

Cingulate + 0.10 xR Posterior Cingulate – 1.28 xR 

Rostral Anterior Cingulate 

Left Entorhinal, Left Inferior Temporal, Left 

Paracentral, Left Rostral Anterior Cingulate, 

Right Caudal Anterior Cingulate, Right 

Lingual, Right Rostral Anterior Cingulate 

Logit(TCP) = -4.19 - 0.64 xL Entorhinal +  

1.01 xL Inferior Temporal + 1.62 xL Paracentral + 

1.19 xL Rostral Anterior Cingulate+ 1.33 xR Caudal 

Anterior Cingulate – 1.50 xR Lingual – 1.39 xR Rostral 

Anterior Cingulate 

80s Left Caudal Anterior Cingulate, Left Posterior 

Cingulate, Left Rostral Anterior Cingulate, 

Right Caudal Anterior Cingulate, Right 

Posterior Cingulate, Right Rostral Anterior 

Cingulate 

Logit(TCP) = -5.37 – 0.30 xL Caudal Anterior 

Cingulate + 1.91 xL Posterior Cingulate – 0.24xL 

Rostral Anterior Cingulate – 1.06 xR Caudal Anterior 

Cingulate + 0.74 xR Posterior Cingulate + 0.77 xR 

Rostral Anterior Cingulate 

Left Pericalcarine, Left Postcentral, Left 

Superior Temporal, Left Supramarginal, Right 

Isthmus Cingulate, Right Parahippocampal, 

Right Superior Parietal 

Logit(TCP) = -9.94 + 3.49 xL Pericalcarine + 

9.14 xL Postcentral – 5.33 xL Superior Temporal + 

3.95 xL Supramarginal+ 5.76 xR Isthmus Cingulate– 

3.72 xR Parahippocampal – 7.79 xR Superior Parietal 

90s Left Caudal Anterior Cingulate, Left Posterior 

Cingulate, Left Rostral Anterior Cingulate, 

Right Caudal Anterior Cingulate, Right 

Posterior Cingulate, Right Rostral Anterior 

Cingulate 

Logit(TCP) = -2.67 + 1.51 xL Caudal Anterior 

Cingulate + 0.55 xL Posterior Cingulate – 0.11xL 

Rostral Anterior Cingulate – 1.28 xR Caudal Anterior 

Cingulate + 0.71 xR Posterior Cingulate – 0.43 xR 

Rostral Anterior Cingulate 

Left Isthmus Cingulate, Left Lateral 

Orbitofrontal, Left Pars Opercularis, Left 

Transverse Temporal, Right Caudal Anterior 

Cingulate, Right Medial Orbitofrontal, Right 

Insula 

Logit(TCP) = -4.21 + 2.31 xL Isthmus Cingulate 

+ 5.41 xL Lateral Orbitofrontal –  6.94 xL Pars 

Opercularis+ 2.25 xL Transverse Temporal – 2.63 xR 

Caudal Anterior Cingulate– 2.77 xR Medial Orbitofrontal 

+ 2.33 xR Insula 

 

We next turned to receiver-operating characteristic (ROC) analysis, using a logistic multiple regression 

based on all six cingulate ROIs modeling TCP status.  Here, we used the area under the curve (AUC) to 

quantify performance and assess the sensitivity and specificity of the model. Using this, the cingulate 

regions yielded an estimated AUC of 0.64 across the full age range in NACC (Figure 2.3A). While 

modest, this AUC was reliably better than chance. Given the combination of the biased base-rate of TCP 

status and the multiple predictors used (and potential for overfitting), a null value of 0.5 for AUC cannot 
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be assumed. To assess the null and estimate the true alpha, we conducted a permutation analysis, 

randomly shuffling the TCP/non-TCP labels 10,000 times and running the same logistic regression and 

AUC estimation to empirically derive an alpha using the same data and the same proportion of TCP status 

labels. We found the alpha to be ~0.009, indicating the odds that a large or larger AUC would be 

generated by chance (Figure 2.3D, blue line). 

 

 
Figure 2.3: Receiver operating characteristic curves show better TCP predictive performance in whole brain model. Top: 

ROC curves with area under the curves (AUC) displayed for (A) entire NACC sample (ages 70-89), (B) a priori cingulate 

regions in all age groups, and (C) whole-brain forward-selected ROIs across all age groups. Bottom: Permutation analyses 

where the labeling of TCP vs non-TCP was shuffled 10,000 times in (D) NACC 70 year old’s, (E) NACC 80 year olds, and (F)  

The 90+ Study 90 year olds. Red line represents AUC’s for a priori cingulate ROIS reflected in panel (B) and blue line 

represents AUC for whole brain forward-selected ROIs reflected in panel (C). Abbreviations AUC: Area under the curve, 70s: 

NACC 70 year old’s, 80s: NACC 80 year old’s, 90s: The 90+ Study 90 year old’s 
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Cortical thickness in the NACC sample: Whole-brain 

To determine whether the cingulate ROIs represented the ideal or near-ideal set of regions for this 

approach, we next performed a whole-brain forward-selection logistic regression (i.e., using all 62 

cortical ROIs). This analysis selected the left caudal anterior cingulate, left caudal middle frontal, left 

entorhinal, left medial orbitofrontal, left paracentral, right cuneus, and right superior frontal regions with a 

resulting AUC of 0.74 and a permutation-derived alpha of p<0.0001. Thus, while one of the cingulate 

regions was present in this model, the optimal model drew upon regions throughout the brain. 

We should note that this is not the result of any global difference in cortical thickness across TCP groups. 

Estimates of average whole-brain cortical thickness were calculated for each individual by weighted 

averaging of the thickness from all 62 regions (weighted by region volume). Unpaired t-tests showed no 

difference in average whole-brain cortical thickness for the whole cohort or for those in their 70s or 80s 

separately (all t’s < 0.8, all p’s > 0.4). 

 

Cortical thickness across age groups  

We next turned to the question of whether our ability to model TCP status was affected by age. 

To do so, we shifted from thickness values provided by NACC to thickness values derived from ANTs 

directly as we wanted to include data from The 90+ Study as well to give a broader age range (note, we 

found that overall, the estimates provided by NACC yielded slightly higher AUCs than those provided by 

ANTs.)  Here, we found that when restricting ourselves to the a priori cingulate regions, all three age 

groups yielded virtually identical ROC curves and 0.68 AUC values (Figure 2.3B). As with the combined 

data, however, shifting to a whole brain analysis improved performance considerably.  The AUCs rose to 

0.75 in the cohort in their 70’s, 0.88 in those in their 80’s, and 0.83 in the 90+ (alpha < 0.0001 in all).  

ROC contrast estimations comparing AUCs for cingulate versus forward-selected ROIs revealed a 

significant difference across all age groups, suggesting a better fit by regional cortical thickness (all p < 

.02). 
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Role of age, sex, and education covariates 

 Our primary question here was whether cortical thickness could be used to model TCP status. As 

such, we excluded typical covariates such as age, sex and education that might otherwise predict TCP 

status and therefore inflate our AUC values. To determine their predictive value beyond cortical 

thickness, we repeated each of these logistic regression models including these factors.  There was a slight 

increase in AUCs across all age groups when age, sex, and education were added to the model (Table 

2.4). The 70 year old group showed the largest improvement, moving from 0.75 – 0.8, while the 80 year 

old group improved from 0.88 to 0.89 and the 90 year old group from 0.83 to 0.85. 

 

Table 2.4: Effects of age, sex, & education on AUC values 

Age 

Group 

Forward 

Selected 

ROIs 

Forward 

Selected ROIs  

+ Sex 

Forward 

Selected ROIs  + 

Education 

Forward Selected 

ROIs  +  Sex, 

Education 

Forward Selected 

ROIs + Age, Sex, & 

Education 

70-89 0.73 0.74 0.77 0.79 0.79 

70s 0.75 0.76 0.78 0.80 0.80 

80s 0.88 0.89 0.89 0.90 0.89 

90s 0.83 0.83 0.84 0.84 0.85 

 

Reliability of selected regions 

Finally, we turned to the question of the consistency of the generated models. Informally, Table 

2.3, which details fitted models of both the a priori cingulate model and our forward selection models,  

shows that there is some degree of consistency across models, but that there is significant deviation in the 

regions chosen as well. These data lead to the hypothesis considered at the outset that, rather than a 

specific set of ROIs carrying far more predictive value than others, that all ROIs capture some amount of 
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this variance. In this framework, which ROIs are selected in the model might depend, to a large degree, 

on the specific sample of brains used rather than purely any prior probability of the predictive value of a 

given region.  

Here, we sought to determine the distribution of the predictive value of each ROI across 

samplings. To do so, we performed a nonparametric bootstrapping analysis that drew 1000 samples from 

our 70-89 NACC population. Each sample drew the same number of TCP and non-TCP individuals as our 

final dataset, drawing samples with replacement to arrive at an estimate of the samples one might have 

outside of our particular population (Wu & Jia, 2013). Figure 2.4 shows the resulting distribution of how 

often each region was selected in the forward-selection logistic along with an inset depicting several 

possible models. This enables us to determine whether a subset of regions is selected more often than 

others (e.g., inset, orange line), all regions are equally likely to be selected (inset, blue solid or dashed 

lines), or if some in between gradient of predictive value for regions exists (inset, purple line). Results 

showed a curvilinear distribution that highlighted the relative importance of some regions, but also 

demonstrated the broad predictive value across the whole brain. In particular, two regions (left entorhinal 

and right superior frontal) were selected in almost every iteration with two more (left caudal middle 

frontal and left medial orbitofrontal) selected over 75% of the time. Notably these four ROIs were also 

included in our initial forward-selection model. Moving down in frequency of selection, 11 ROIs were 

selected ~60-70% of the time. This group included three of the a priori cingulate ROIs. Note, all of the 62 

ROIs were selected at least 22% of the time, although some number of these are at rates expected by 

chance (determined by 1000 random shufflings of the TCP/non-TCP labels and repeating the entire 

process to determine the base rate of region selection).  When this analysis was repeated in the 70 year-

olds separately, the two of the top four ROIs in the whole group were again in the top 4 here, but the 

overall distribution was quite linear (Supplemental Figure 1A). When repeated in just the 80-year old’s, 

the distribution was again non-linear, but no region was included more than 62% of the iterations and 

none of the original top four ROIs were present in the top four in this subset (Supplemental Figure 1B).   
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2.3 DISCUSSION  

The present study aimed to: (1) assess if the cingulate as a localized a priori network sufficiently 

models successful aging, (2) observe if such relationships between cortical thickness and TCP persists in 

rising age groups, and (3) assess the reliability of various selected networks in the brain in modeling TCP. 

Figure 2.4: Frequency of ROI selection in bootstrapping analysis. Random samplings of subjects matching our existing 

TCP rates were repeatedly drawn and analyzed using the same logistic forward regression to determine how often each ROI 

was selected by the model. ROIs here are sorted by their frequency of being selected, which was normalized by the number 

of iterations (n=1000) to scale from 0 to 1, and ROI names are color-coded by whether they are part of the cingulate (red), 

were in the original whole-brain model (blue), or both (purple). The horizontal line reflects the chance frequency of 

selection. ROI names are based on NACC labels. Highlighted Abbreviations (in order): RPOSCINM: Right Posterior 

Cingulate; LPOSCINM: Left Posterior Cingulate; LROSANCM: Left Rostral Anterior Cingulate; RCUNM: Right Cuneus; 

LPARCENM: Left Paracentral; LCACM: Left Caudal Anterior Cingulate; RCACM: Right Caudal Anterior Cingulate; 

RROSANCM: Right Rostral Anterior Cingulate; LMEDORBM: Left Medial Orbital; LCMFM: Left Caudal Middle Frontal; 

LENTM: Left Entorhinal; RSUPFRM; Right Superior Frontal. For full list, please refer to NACC’s Imaging Data 

Researcher’s data dictionary: https://files.alz.washington.edu/documentation/rdd-imaging.pdf. Inset Figure: Hypothetical 

distributions that would arise from different underlying models: (orange) distribution that would result if only a small subset 

of regions were highly predictive; (purple) distribution that would result if an even gradient of predictive ability existed 

across regions; (blue, dashed) distribution that would result if no regions’ cortical thickness could model TCP status; (blue, 

solid) distribution that would result if all regions had some predictive power but there was no differentiation across regions.   
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We were particularly interested in the cingulate cortex based on it recurring role in successful aging 

literature, as well its role in cognition; including information processing, memory, emotional processing, 

task engagement, and attention (Pearson et al., 2011b; Stanislav et al., 2013b; Vaidya et al., 2007b). Here, 

we were able to replicate the finding that the thickness of cingulate cortex can be used to some degree to 

model TCP status and that this ability was similar across 70s, 80s, and 90+ cohorts (Figure 2.3B). 

However, we also found that far stronger models could be made when extending the scope of the analysis 

to the whole brain. Our AUCs from the ROC analyses revealed that, across all age groups, forward 

selected ROIs from the logistic regression outperformed a priori cingulate regions in modeling TCP 

status. Furthermore, the regions selected by logistic regressions, either on the complete dataset (Table 2.4) 

or via random sub-sampling of our data (Figure 2.4) often had representation of the cingulate (typically 

caudal anterior cingulate), but also included representation across the brain.  

Thus, while our results continue to implicate structural characteristics of the cingulate cortex in 

successfully aging individuals, these results suggest that global-style networks, rather than literature 

driven localized areas, may be better at modeling preserved cognition in the elderly. This is not to suggest 

a new subset of regions as a model for studying successful aging, but rather to propose examining a more 

data-driven set of ROIs as a robust approach in modeling superior cognition in memory and executive 

function.  

Similar relationships can be found in other modes of imaging. Seventy-year-old “supernormals”, 

defined by stringent criteria based on 5-year maintenance of episodic memory and executive functioning, 

displayed stronger functional connectivity between anterior cingulate and the hippocampus, middle 

cingulate, posterior cingulate, among other regions when compared to healthy elderly controls and those 

with mild cognitive impairment (F. Lin et al., 2017). More importantly, these researchers identified a 

functional “Supernormal map”, consisting of the right fusiform gyrus, right middle frontal gyrus, right 

anterior cingulate cortex, left middle temporal gyrus, left precentral gyrus, and left orbitofrontal cortex, 

which successfully predicted a 1-year change in global cognition and correlated to Alzheimer’s pathology 
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(Wang et al., 2019). Similar to possible cortical signatures of successful aging, these findings all suggest a 

pattern of widespread brain regions that may reflect the neurobiological underpinnings that result in 

preserved cognition. 

This widespread pattern is perhaps best illustrated in Figure 2.4 where we aggregated across 

many random re-samplings of our 70-89 year-old population to determine how frequently different 

regions were included in our logistic model. Under the null hypothesis of all regions being equally 

uninformative of TCP status (inset, blue dashed), we would have observed a flat distribution with all 

regions being included ~25% of the time. Under a localistic hypothesis in which some subsets of regions 

are informative of TCP status while others are not (inset, orange line), we would have observed a step-

function distribution where most regions were uninformative and highly unlikely to be included in the 

model while others were highly informative and almost always included in the model.  Our results were 

not consistent with either of those hypotheses, instead supporting the view that while cortical thickness is 

informative of TCP status and while individual regions do vary in their predictive value, there is no 

specific subset of regions that are the key regions we should use. Instead, the results suggest that many, if 

not all regions carry the ability to inform modeling of TCP status. Thus, specific set of regions one 

isolates in a given analysis from a given sample of scans will vary to some degree from what one would 

arrive at with a different set of scans.  However, these results do not arise from simple Type II error as 

shown by the permutation analyses in Figure 2.3D-F and by the distribution shown in Figure 2.4. Rather, 

if all regions contain variance that is informative of TCP status to some degree, we would expect that 

noise and the randomness associated with a particular population (that which we attempted to model in 

Figure 2.4) will lead to a somewhat different subset of ROIs being chosen in any particular forward 

selection model, consistent with what we observed in Table 2.4.  Therefore, when approaching the 

problem of modeling TCP status from regional cortical thickness, we must view this as a “brain-wide” 

problem rather than a “localistic” problem. Rather than approaching a problem such as the relationship 

between a biomarker like cortical thickness and a behavioral outcome such as TCP status by searching for 
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a critical region or small set of regions, a richer understanding of this relationship might be had by taking 

a more “distributed” or network-based approach. 

While discussing this network-level view of relating regional thickness to TCP status, we should 

note that a number of the beta coefficients in our models (Table 2.3) are negative. These negative 

coefficients should not be interpreted as demonstrating a thinner cortex in these regions in TCP 

individuals. For example, in our 70-89 group, while approximately half of the coefficients in Table 2.3 are 

negative in both the cingulate and the whole-brain analyses, TCP individuals are numerically thicker in all 

these regions (see also Figure 2.3). The negative coefficients are merely the byproduct of this multiple 

regression approach. 

Finally, we should note that the group analyses in NACC revealed significant differences in sex 

and education. TCP subjects in their 70s tended to have a higher education and female distribution, while 

those in their 80s tended to only be more highly educated. All AUCs increased when both sex and 

education were added into the model, but the gains in AUC appeared quite modest.  This is not to say that 

sex and education are not informative of cognitive status. When examining a cohort of SuperAgers from 

the Personality and Total Health Through Life (PATH) study, researchers found that SuperAging was 

both more prevalent in woman and associated to education (Maccora et al., 2021). It is possible that the 

significant differences in demographics are attributed to TCP group inclusion, which is reflected higher 

scores in both memory and executive function.  Previous studies examining the role of age, sex, and 

education in elderly cognition revealed that (1) individuals with higher levels of education performed 

better on cognitive tests and (2) women performed better than men on verbal memory tasks (van Hooren 

et al., 2007). Additionally, despite there being no group differences in the oldest-old TCP, The 90+ Study 

previously showed that higher education is associated with lower prevalence rates of dementia in women 

(Corrada et al., 2008). For example, if education and sex alone are used to model TCP status in the 70-89 

group, performance is at least as good as the a priori cingulate-only models (AUC=0.7 vs. the cingulate’s 

AUC of 0.64). However, it is not the case that thickness is merely a very expensive way of determining 
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age and education, as in other groups, performance is far worse (e.g., 90+ Age + Education AUC=0.52 vs 

cingulate AUC=0.68 or whole-brain AUC=0.83). Therefore, it is clear that cortical thickness, while 

potentially correlated with these other factors, can be used to model TCP status irrespective of them. 

 

Limitations 

While participants were required to be diagnosed as cognitively normal, and thus determined to 

be free from MCI or dementia, it is possible that we are capturing some non-TCP individuals who are pre-

clinical, defined here as asymptomatic participants with evidence of AD pathology or individuals who 

display cognitive symptoms that do not meet clinical criteria for mild cognitive impairment (MCI). AD-

related lesions accumulate in the brain years before cognitive deficits, (Morris & Price, 2001a; C. C. 

Rowe et al., 2007a) with longitudinal studies showing amyloid deposition measured by PET 15 years 

before symptom onset (Bateman et al., 2012a). Thus, it is possible that the effects observed can be 

attributed to other aging biomarkers not captured on structural MRI, especially given the wide age range. 

Future studies examining such biomarkers will be informative for better understanding differences in the 

available data.  

We should also point out that the behavioral measures chosen for these analyses were based on previous 

successful aging studies, which typically use a test of delayed recall (usually CVLT or Rey Auditory 

Verbal Learning Test (RAVLT)) and executive function (usually Trails B). The WMS-R IIA and CVLT 

were chosen as tests of delayed recall to mirror this standard as closely as possible, limited by what data is 

available in each dataset. There are some key differences between these tests of delay recall potentially 

influencing the differences found between cohorts. The WMS-R IIA requires participants to recall units 

of a provided story while the CVLT requires participants to recall words from a list. While a narrative 

will help memory and can be used in both cases, any such narrative must be constructed by the participant 

in the case of the CVLT, leading to potentially more contamination by executive function in a word list 

task like the CVLT (Tremont et al., 2000). While these tests are not identical in nature, both are measures 
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of verbal memory and tap into strategic organization of the information to help memory and we find it 

more likely that the differences observed between cohorts are better explained by additional complex 

changes the aging brain goes through that may change the importance of structural characteristics of 

certain brain regions throughout the lifespan, such as amyloid deposition or vascular changes. It is 

important to note that differences were also observed within NACC throughout age groups, thus making 

it less likely that differences are attributed test type.  

In addition to the relatively modest sample sizes (particularly in the 80- and 90-year old 

subgroups), it is important to note the role of volunteer and selection biases these analyses common to 

many aging studies and potentially all neuroimaging studies. People who are able and willing to 

participate in imaging tend to be healthier and meet a priori selection criteria. One large study examining 

the nature of volunteer and selection biases found that those who were more likely to participate in studies 

were also more likely to be cognitively healthy, well-educated, and male compared to their counterparts 

who were not interested in participating (Ganguli et al., 2015). Inclusion criteria and recruitment, amongst 

other factors, have led to a more heterogenous population in NACC participants, which tend to be mostly 

Caucasian and of both high socioeconomic and education status. Given that participants from The 90+ 

Study are largely survivors of Leisure World Cohort Study and recruited from a retirement community in 

Laguna Woods, California, it is certainly possible that participants are not fully representative of the 

population. As reported by Melikyan et al., (2019b), compared with the oldest-old population in the 

United States (He & Muencharth., 2011), the cognitively normal sample in The 90+ Study has a higher 

proportion of Caucasians (98.5% vs. 88%) and a higher percentage of individuals with more than a high 

school education (78% vs. 28%). Previous research has shown that differences in sex and education may 

account for cognitive test performance (Hall et al., 2007; Hooren et al., 2007), and cortical thickness 

(Habeck et al., 2020; Seo et al., 2011; Steffener, 2021). As reported in Tables 2.1 & 2.2, the overall TCP 

NACC sample was 61% female with had an average of 15 years of education, while The 90+ Study 

sample was 64% female and 46% college educated and above. It is possible that higher education or 
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larger female distributions may be influencing external validity by: (1) introducing a moderation 

relationship between key demographics, test performance, and cortical thickness that we would not 

otherwise see in the general public or (2) significantly influencing the distribution of TCP (approximately 

32% and 30% for current NACC and The 90+ Study analyses, respectively) that is not representative of 

all elderly individuals. It is also important to note that, given these potential biases and the fact that 

percentiles for TCP group inclusion were determined based on a very select subset of each of these 

cohorts (blue boxes reflected in Figure 2.1), inclusion in the top 50th percentile for each of our cognitive 

domains may not reflect TCP in the general public. Finally, we should note that the present study cannot 

identify specific mechanisms that are associated with these differences in cortical thickness.  
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Supplemental Figures 

 

 
Supplemental Figure 1: A gradation of ROIs, ordered by predicative value for TCP status from 

bootstrapped forward selection, is seen for participants in their (A-Top) 70s and (B-Bottom) 80s. 

Frequency of selection was normalized by the number of iterations (n=1000), to scale from 0 to 1. 

ROI labels are color-coded by whether they are part of the cingulate (red), were in the original whole-

brain model (blue), or both (purple). The horizontal line reflects the chance frequency of selection. 

ROI names are based on NACC labels. Highlighted Abbreviations (in order): (A) LPOSCINM: Left 

Posterior Cingulate; RPOSCINM: Right Posterior Cingulate; LPARCENM: Left Paracentral; 

LROSANCM: Left Rostral Anterior Cingulate; RLINGM: Right Lingual; LCACM: Left Caudal 

Anterior Cingulate; RCACM: Right Caudal Anterior Cingulate; LINFTEMM: Left Inferior 

Temporal; RROSANCM: Right Rostral Anterior Cingulate; LENTM: Left Entorhinal; (B) 

LSUPMARM: Left Supramarginal; LPOSCINM: Left Posterior Cingulate; LROSANCM: Left 

Rostral Anterior Cingulate; LCACM: Left Caudal Anterior Cingulate; RROSANCM: Right Rostral 

Anterior Cingulate; RPOSCINM: Right Posterior Cingulate; RCACM: Right Caudal Anterior 

Cingulate; RPARHIPM: Right Parahippocampal; LPERCALM: Left pericalcarine; LSUPTEMM: 

Left Superior temporal; LPOSCENM: Left Postcentral; RISTHCM: Right Isthmus Cingulate; 

RSUPPARM: Right Superior Parietal. For full list, please refer to NACC’s Imaging Data 

Researcher’s data dictionary: https://files.alz.washington.edu/documentation/rdd-imaging.pdf   
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Chapter 3 

Other Structural Correlates of Top Cognitive Performance 
  

 

What structural correlates other than cortical thickness can predict top performance? 

Chapter 2 established that (1) cortical thickness is a valuable predictor of successful aging, 

and (2) whole-brain, network-level regions can out-performed the localist cingulate models 

in predicting Top Cognitive Performance. While cortical thickness is a widely used 

biomarker of successful aging, there are additional structural properties of the brain that 

have well-established relationships with the full spectrum of aging such as greater 

performance in intelligence tests, poorer performance in cognitive domains such as 

executive function, and even predicting future onset of MCI. In this chapter, we will assess 

predictive power of regional cortical brain volume and total white matter hyperintensities 

volume, two structural measures easily derived from MRI. Additionally, here we assess 

various models of defining top performance with the addition of tests of language and 

attention to determine whether there is anything special about the domains we and others 

have used in past work. Given the large spread in successful aging definitions, highlighted in 

Table 1.1, we were interested in determining which model (example: single domain 

categorization (SDTP) versus combined domain categorization, Top 25th percentile versus 

Top 50th percentile) yielded more robust relationships with our measures. Results showed 

that regional cortical thickness and volume are similar in predicting TCP. When assessing 

the ability to predict Top 25th  versus Top 50th percentile, we showed little evidence for 

drastic differences in SDTP models. We did observe a trend for regional cortical thickness in 

predicting memory SDTP in 80 year-olds, where the Top 25th percentile yielded a higher 

AUC. Unexpectedly, we saw no apparent differences across all combinations of TCP when 

using regional cortical thickness or white matter hyperintensity across both datasets.  
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3.1 Introduction 

As highlighted above, differences in structural properties of the brain are known to make 

significant contributions to individual differences seen in cognition. For example, the size of our grey 

matter changes continuously throughout the lifespan and has proven relevant for understanding the 

cognitive problems, or lack thereof, that begin to accumulate as we age. Decreased thickness in the 

cortical signature of Alzheimer's disease (CSAD) successfully predicted future decline in cognitively 

unimpaired individuals (Knopman et al., 2018). When examining individuals with intact and superior 

cognitive abilities, many have shown preservation of grey matter both functionally and structurally, as 

well as a reduced risk of conversion to MCI and dementia (Dang, Harrington, et al., 2019b). As 

previously described, Harrison and colleagues found that 80 year old SuperAging individuals did not 

experience significant cortical atrophy and did not differ from middle age controls in whole brain cortical 

volume (Harrison et al., 2012).  Thus, examining structural characteristics of grey matter, such as cortical 

thickness and volume, may be critical to characterize future decline or even maintenance of cognition. 

Similarly, the location and extent of white matter hyperintensities are known to be associated 

with various types of cognition decline, age-related changes in the brain, and Alzheimer’s Disease 

(DeCarli et al., 1995). Thought to be the result of cerebral small vessel disease, white matter 

hyperintensities are positively associated with age (de Leeuw et al., 2001) and may account for increased 

blood brain barrier permeability and demyelination seen in the aging brain (Haller et al., 2013; Prins & 

Scheltens, 2015; Tubi et al., 2020). Though there may be conflicting evidence due to differences in WMH 

rating, many studies have found that WMH are related to poorer executive function, processing speed, 

and episodic memory (Brickman et al., 2011; Kaskikallio et al., 2019; Maillard et al., 2012; Smith et al., 

2007; Van Petten et al., 2004). Similar results are seen in The 90+ Study where higher baseline WMH 

volumes were associated with worse scores in global cognition, episodic memory, and executive 

functioning tasks (Legdeur et al., 2019). WMH has also been linked to poorer performance in domains 
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such as general intelligence (DeCarli et al., 1995), gait (Silbert et al., 2008), visuospatial memory and 

organization (Au et al., 2006), and attention (Puzo et al., 2019). To date, there are few studies examining 

the role of white matter hyperintensities in the antithesis of typical- and disease-related decline, successful 

aging. One study examined the post-mortem data of two cases of SuperAging elderly individuals and 

found that both displayed “mild” levels of WMH with prominent hyperintensities seen in periventricular 

regions of the brain, determined by visual ratings performed by a behavioral neurologist. Another study 

found that eighty year old SuperAgers displayed lower global white matter hyperintensities when 

compared to age-matched controls (Godoy et al., 2022) 

All three measures have been used as prognostic and diagnostic measures in the research setting. 

In a study aiming to identify the best measure for assessing disease burden over a large age range, 

researchers compared measures of volume and cortical thickness in their ability to distinguish cognitively 

normal from Alzheimer’s patients. By examining CSAD ROIs, they found that volume and cortical 

thickness were generally comparable in their ability to identify each group. Though not significant, they 

also found that cortical thickness yielded better correlations with pathology findings when compared to 

cortical thickness. They did, however, find that volume was more associated with total intercranial 

volume (TIV). This relationship makes using volume rely heavily on TIV correction, which can be 

imperfect, leading to the suggestion of cortical thickness measure when considering regions associated 

with Alzheimer's disease in cohorts with a large age range. (Schwarz et al., 2016). Similarly in our third 

measure, one study found that higher baseline and subsequent accumulation of white matter 

hyperintensities in the parietal lobe independently predicted progression to Alzheimer’s in a group of 300 

older adults (Brickman et al., 2011).  Others have also been able to show that white matter hyperintensity 

burden is significantly associated with diagnosis (Yoshita et al., 2006) and the speed of future cognitive 

decline (Brickman et al., 2008). 

Given their ability to predict disease status and future decline and the vast literature covering the 

importance of cortical thickness in successful aging, we aimed to assess their effectiveness in predicting 
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TCP across the full older adult life span. Loosely following the aims of Shwarz et al., this chapter 

examines the predictability of cortical thickness, volume, and white matter hyperintensities in 

distinguishing cognitively normal top performers versus non top performers in a combined measure of 

executive function and memory. Moreover, this chapter aims to identify whether the thresholds and 

domains used when selecting the “top” performers affects the relationship between top cognitive 

performance and our structural correlates of cognitive aging. As shown in Table 1.1, a standardized 

definition of successful aging has yet to be agreed up, and this in conjunction with the varying age groups 

and study population may account for the differences in results shown across studies. This last aim allows 

us to examine multiple possible models of successful aging within the same population across age groups 

(sixties, seventies, and eighty year old’s). We also have the unique opportunity to see if these 

relationships persist in the oldest-old, using data from The 90+ Study. 

3.2 Experimental Design And Methods 

 

National Alzheimer’s Coordinating Center  

Participants 

Six hundred and eighty two individuals were selected from the larger NACC cohort (Figure 

3.1A). For this analysis, participants were required to be sixty years old and above (60-89 years old), have 

at least one T1 MRI scan available within 2 years of their initial UDS visit, and be cognitively normal at 

baseline visit. 

 

Neuropsychological criteria for group inclusion  

Chapter 1 describes neuropsychological criteria for TCP group inclusion. Here, we decided to test 

the robustness of this definition, chosen based on the structure of the SuperAging definition. First, we 

incorporated tests of key domains known to be associated with general cognitive decline: language 

(Boston Naming Task) and attention (Digits Span Backward). The Boston Naming task is a 60 item 

picture naming vocabulary test that assesses participants’ ability to name common objects (Kaplan et al., 
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1983). Like its name suggests, the Digit Span Backwards is a task that tests working memory capacity by 

asking participants to verbally recall a span of numbers backwards.   

To test whether performance in the top 50th percentile was sufficient to dichotomize successfully 

aging individuals, we first compared performance in the top 25th versus performance in the top 50th 

percentile in all four of our singular domains, which we refer to here as single domain top performer 

(SDTP). To test whether our combination of domains (memory and executive function) from Chapter 1 

was optimal for predicting TCP based off structural data, we modeled each possible combination of Top 

50th performance in the 4 variables, which resulted in six classifications. Within each analysis, individuals 

who contained missing data in any individual criteria variables, described below, were excluded from the 

analyses. For example, if a participant was missing data in Trails-B but not Boston Naming task, they 

would be included in the Top 25th and Top 50th SDTP for attention, but not the combined top performance 

of executive function and attention. In other words, there are varying sample sizes depending on which 

neuropsychological variable is being included in the top versus non classification. 

 

Image Data 

As described in Chapter 2, pre-calculated regional cortical thickness, cortical volume, total white 

matter hyperintensities data for NACC MRIs were provided by the IDeA Lab at University of California, 

Davis. For the white matter hyperintensity (WMH) counts, two processing steps were added. As they 

were clearly not normally distributed, the provided counts were log transformed. To normalize predictor 

and account for confounding effects, we performed an initial step of regressing out age and education 

from WMH values (both were significantly associated with WMH initially) and analyses were performed 

on the residuals. 
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The 90+ Study 

Participants 

One hundred and sixty three individuals from the larger The 90+ Study cohort were included 

(Figure 3.2). Participants were selected based on the availability of total WMH calculations, at least one 

T1 MRI scan available, and a cognitively normal diagnosis at initial neuropsychological visit available. 

Like in NACC, individuals who contained missing data in any of the individual criteria variables were 

excluded from their respective analyses. 

 

Neuropsychological criteria for group inclusion  

 

Following the above mentioned criteria, The 90+ TCP individuals were required to perform at or 

above the top 50th percentile for their age group on the long-delay recognition portion of the California 

 
Figure 3.1: Inclusion flow chart for (A) NACC and (B) The 90+ Study Participants. Blue box 

reflects the participants included in the final analysis of top cognitive performers (TCP). 
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Verbal Learning Test – short form (CVLT) and at or above the top 50th percentile on completion time for 

their age group in the Trails-B. All other individuals that did not fit these criteria were classified as non-

Top Cognitive Performers (non-TCP). We additionally tested the top 25th and 50th of SDTPs in memory 

(CVLT), executive function (Trails-B), language (Boston Naming Task), and attention (Digit Span 

Backwards), as well as all possible combinations of the Top 50th SDTPs. 

 

Image Data 

As described in Chapter 2, estimation of cortical thickness from T1-weighted structural MRI were 

calculated using Advanced Normalization Tools. Total white matter hyperintensity volumes were 

calculated by The 90+ Study using four tissue segmentation following the methods described by the 

Alzheimer’s Disease Neuroimaging Initiative (ADNI) (DeCarli et al., 2005) using a Linux container 

provided by the IDeA lab. To normalize these volumes, white matter hyperintensities were again log 

transformed. Unlike in NACC, age, sex, and education were not shown to be significantly associated with 

white matter hyperintensities and this regression was therefore not performed. 

 

Statistical analysis  

For both datasets, statistical analyses were performed using SAS and both the Statsmodels 

(https://www.statsmodels.org/) and skikit-learn (https://scikit-learn.org/) libraries in Python. We removed 

any analysis if it had fewer than 20 TCP/SDTP individuals and had a TCP rate of under 10% as these 

would be unlikely to yield reliable, meaningful results given the exceptionally low sample size.  This 

resulted in the exclusion of two models in The 90+ Study: total white matter hyperintensity and cortical 

thickness in TCP (Boston Naming Task/Digit Span Backwards).   

To simultaneously evaluate the utility of cortical thickness versus volume and Top 25th versus 

Top 50th in each decade, forward-selection logistic regression models (cutoff p-value for the F statistic, 

p=0.25) were used to model SDTP and all six combinations of TCP as a function of all 62 cortical ROIs. 
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This resulted in 14 models per age group: four models of Top 25th SDTP (memory, executive function, 

language, attention), four models of Top 50th SDTP, and six models of TCP combinations (e.g., TCP 

(Memory/Executive Function), TCP (Memory/Language), etc.). To assess the influence of age, sex, and 

education, these same models were run with these demographic variables included in the model. To 

understand the relationship between total white matter hyperintensities and our TCP classifications, 

logistic regressions were run for each age group in NACC and The 90+ Study with our classifications as 

the dependent binary variable and log transformed and age/education regressed total white matter 

hyperintensity volume as our predictor. For all models, Receiving Operating Characteristic (ROC) curves 

were created to assess the accuracy of TCP & SDTP status as a diagnostic marker.  

It is possible that by allowing the forward selection model access to all ROIs and access to all 

participants that it has overfit the data, which would limit how well the data might generalize to other 

populations. To address this, we additionally performed a leave-out, cross-validation analysis for each of 

the individual and combined metric models. The cross-validation consisted of 100 random samples that 

split the data into a two-thirds training set and one-third left-out test set (stratified to retain the 

approximate ratios in the original population). Using the already-selected ROIs, we trained separate 

logistic regression models on each dataset and calculated the resulting AUC on the left-out participants 

and averaged the resulting 100 AUCs. 
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3.3 Results 

Demographics 

 The 682 NACC participants had a mean age of 71.9, were majority female (62.5%), and highly 

educated (mean: 15.3 years). The 602 of these individuals who had total white matter hyperintensity 

Table 3.1 NACC Demographics 

 Cortical Measures (n=682) 

 

WMH Volume (n=602) 

Mean Age (SD) 71.9 (7.2) 71.9 (7.2) 

Number of Females (%) 426 (62.5%) 374 (62.1) 

Education: Number of years (SD) 

 

15.3 (3.5) 15.2 (3.4) 

Mean WMS-R IIA Score (SD) 11.3 (4.2) 11.2 (4.1) 

Mean Trails-B Score (SD) 92.9 (52.7) 93.6 (52.8) 

Mean Boston Naming Task Score (SD) 27.0 (3.3) 27 (3.3) 

Mean Digit Span Backward Score (SD) 6.4 (2.2) 6.3 (2.2) 

Table 3.2 The 90+ Study Demographics 

 Cortical Measures (n=140) 

 

WMH Volume (n=163) 

Mean Age (SD) 92.5 (2.5) 92.5 (2.4) 

Number of Females (%) 91 (65%) 109 (66.9%) 

Education: 

   High-school graduate or less (%)  

   Some college to graduate (%)  

   Some graduate school or higher (%) 

 

24 (17%) 

60 (43%) 

56 (40%) 

 

28 (17.2%) 

67 (41.1%) 

68 (41.7%) 

Mean CVLT Score (SD) 6.6 (2.0) 6.7 (2.0) 

Mean Trails-B Score (SD) 145.3 (69.1) 144.9 (71.7) 

Mean Boston Naming Task Score (SD) 13.1 (1.8) 13.3 (1.7) 

Mean Digit Span Backward Score (SD) 5.9 (1.7) 6.0 (1.8) 
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volumes available and were 71.9 years old on average,  were mostly female (62.1%), and highly educated 

(mean: 15.2 years). The 140 The 90+ Study participants had a mean age of 92.5, had a high distribution of 

females (65%), and mostly attended college and beyond. Similarly, in those with white matter 

hyperintensity volume estimates, participants had a mean age of 92.5, were mostly female (66.9%), and 

were highly educated (82.8%). 

 

Cortical Thickness versus Volume 

 Our first question was aimed at examining the performance of cortical thickness versus volume in 

predicting our original TCP definition (memory/executive function). As shown in Figure 3.2, we did not 

observe any major difference between the measures. For these comparisons, we used the methods 

described by Cumming & Finch (2005), using values below 50% overlap of confidence intervals as a 

rough estimate of statistical significance (p < 0.05). For AUC confidence interval comparison here, all 

percentage overlaps were well above the 50% cut off, suggesting no difference between the AUCs of 

cortical thickness versus volume. Also in Figure 3.2 are representations of each model with age, sex, and 

education included. As expected, adding measures correlated with cognition slightly increased AUCs. 

Given that volume and cortical thickness measures showed relatively no differences in the prediction 

ability, we continued to use cortical thickness for the rest of our analyses. 
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Top 25th Versus Top 50th percentile: Cortical Thickness 

 Results comparing the AUCs of cortical thickness predicting the top 25th and top 50th percentiles 

of each SDTP showed highly consistent results across cognitive domains and across thresholds (Figure 

3.3). Some evidence for differences in choice of threshold were found in modeling superior language in 

sixty year old’s (Figure 3.3C), where Top 25th percentile yielded a higher AUC (AUC: 0.80, percent 

overlap 48.2) than the Top 50th percentile and in memory in the eighty year old’s (Figure 3.3A), where 

once again, Top 25th percentile yielded a higher AUC (AUC: 0.86, percent overlap 51.6%). Together, 

  
Figure 3.2: Cortical thickness and volume perform equally well in distinguishing original TCP: Bar plot of 
AUC values using either regional thickness or volume to predict TCP by age. Vertical bars represent 95% 

confidence intervals for each AUC. Horizontal bars represent the approximation of chance calculated from a 

permutation analysis. Abbreviations AUC: Area under the curve, CT: Cortical Thickness 60s: NACC 70 year 

old’s, 70s: NACC 70 year old’s, 80s: NACC 80 year old’s, 



 

47 

 

 

these suggest that the definition of a top-cognitive performer is relatively tolerant of the exact threshold 

used. It also shows, however, that the relationship between cognitive performance and cortical thickness 

can be found for any of these domains. 

   

Combinations of TCP and Cortical Thickness 

 A similar pattern was found in our analysis of the various combinations of domains. Prior work in 

TCP has used a combination of memory and executive function as the basis for the definition of TCP. 

While there may be important aspects to this particular combination, as shown in Figure 3.4, when we 

consider cortical thickness’ performance in predicting all 6 combinations, we observed very similar 

results across combinations. Each had a similar range of AUCS and pattern across age groups. Models 

that combined all participants performed worse overall and models were able to predict each potential 

TCP definition better as the participants aged. Interestingly, it appears that adding demographic variables 

such as age, sex, and education do not dramatically alter AUC estimations of each combination. 

 

Figure 3.3: Little evidence for differences between Top 25th and Top 50th SDTP Percentile Bar 

plots of AUC values using regional thickness to predict SDTP by age in: A) Memory, B) Executive 

Function, C) Language, and D) Attention. Vertical bars represent 95% confidence intervals for each AUC. 

Horizontal bars represent the approximation of chance calculated from a permutation analysis. Abbreviations 

AUC: Area under the curve, CT: Cortical Thickness 60s: NACC 70 year old’s, 70s: NACC 70 year 

old’s, 80s: NACC 80 year old’s 
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Top 25th Versus Top 50th percentile: Total White Matter Hyperintensity Volume 

 

Figure 3.4: Cortical thickness Predicts Combinations of TCP Bar plots of AUC values using regional 

thickness to predict all 6 combinations of TCP by age in: A) Memory/Executive Functioning, B) 

Memory/Language, C) Memory/Attention, D) Executive Function/Language, E)Executive 

Function/Attention, and F) Language/Attention. Vertical bars represent 95% confidence intervals for each 

AUC. Horizontal bars represent the approximation of chance calculated from a permutation analysis. 

Abbreviations AUC: Area under the curve, EF: Executive Function 
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When examining how well WMH could predict SDTP (Figure 3.5), a notable feature is that 

overall model performance is far lower than observed with either cortical thickness or volume. Caution 

should be used here, as in these models, a single MRI value is being used rather than a selection of the 

best six values. Thus, chance in these models is far lower (0.5 vs. ~0.65). Results comparing the AUCs of 

white matter hyperintensities predicting the top 25th and top 50th percentiles of each SDTP showed similar 

performance between criteria for most models. Much like in cortical thickness, we see a possible trend in 

memory (Figure 3.5A) in the eighty year olds, where Top 25th percentile yielded a higher AUC (AUC: 

0.65, percent overlap 50.1%), may reflect a small trend towards differences in percentile criteria. As 

expected, this model also showed an effect of total white matter hyperintensity volume in predicting TCP 

unlike in the top 50th criteria. 

 

 

Combinations of TCP and White Matter Hyperintensity Volume 

As seen in Figure 3.6, modeling of white matter hyperintensity volumes in predicting all six 

combinations of TCP generated relatively similar AUCs, as evidenced by overlapping confidence 

 

Figure 3.5: Total White Matter Hyperintensity Poor Predictor of Top 25th Percentile vs. Top 50th 

Percentile Bar plots of AUC values using regional thickness to predict SDTP by age in: A) Memory, 

B) Executive Function, C) Language, and D) Attention. Vertical bars represent 95% confidence intervals 

for each AUC. Horizontal bars represent the approximation of chance calculated from a permutation 

analysis. Abbreviations AUC: Area under the curve, CT: Cortical Thickness 60s: NACC 70 year old’s, 

70s: NACC 70 year old’s, 80s: NACC 80 year old’s 
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intervals of each age comparison. It is possible that TCP (memory/attention) in the 90 year olds reflect a 

trend in comparison to all other combinations of SDTP categories, but further validation is necessary.  

 

 

 

Figure 3.6: White Matter Hyperintensity Volume Poor Predictor of Combinations of TCP Bar 

plots of AUC values using regional thickness to predict all 6 combinations of TCP by age in: A) 

Memory/Executive Functioning, B) Memory/Language, C) Memory/Attention, D) Executive 

Function/Language, E)Executive Function/Attention, and F) Language/Attention.  Vertical bars represent 

95% confidence intervals for each AUC. Horizontal bars represent the approximation of chance calculated 

from a permutation analysis. Abbreviations AUC: Area under the curve, EF: Executive Function 
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Cross Validation of all Models  

 One hypothesis that would account for our observation that particular individual domains or 

combinations of domains has little effect on model performance is that our regression model is overfitting 

the data. To address this, we performed 100 sample, leave out (train on 2/3, test on 1/3) cross validation 

analyses for each of the initial cortical thickness models. The results, comparing our original AUCs to the 

validation AUCs are shown in Figure 3.7. As anticipated, the Validation AUCs were typically lower than 

the original full-model AUCs. In the validation, only two thirds of the data are used, and the AUC is 

generated on data not part of the model generation. Such transfer will almost certainly be lower. Yet, in 

each of these models, the validation AUCs were quite similar to the original ones and, importantly, they 

followed the same trends present in the original models. Where the original full model produced high 

AUCs, the validation produced high AUCs and where the original full model produced low AUCs, the 

validation produced low ones as well. Regardless of metric used, this consistent relationship was 

observed, indicating our original models did not suffer from severe overfitting and that they captured real, 

generalizable aspects of the data. 
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3.4 Discussion 

This chapter aimed to assess the ability of three structural measures, cortical thickness, cortical 

volume, and total white matter hyperintensity volume, to predict the Top Cognitive Performance 

described in Chapter 1. These predictors were chosen based on their ability to distinguish cognitively 

declining individuals and those with Alzheimer’s disease. Given the wide variety of successful aging 

definitions in the literature, we also aimed to examine which cut point and what cognitive measures might 

be best distinguished by said structural measures. We hypothesized that much like in relationships with 

cognitively normal/Alzheimer’s identification described above, cortical thickness and volume would 

perform relatively the same. While structural measures such as cortical thickness and surface area of the 

brain are not linearly related, studies show that cortical volume is influenced by both (Panizzon et al., 

2009; Winkler et al., 2010), possibly explaining their similarity in predictive power. Results here showed 

that cortical thickness and volume generally performed similarly when predicting our original TCP 

Figure 3.7: Cross Validation Analysis: Models did not suffer from severe overfitting Average 

validation AUC following leave-out cross-validation for each model plotted as a function of original, full-

dataset AUC.  
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(memory & executive function), with cortical thickness models generally producing slightly higher 

AUCs. This, in line with current successful aging literature, suggests the continued use of cortical 

thickness to distinguish high performing elderly individuals. As suggested by Shwarz et al., when 

examining large cohorts with possible effects of age and sex, cortical thickness is equally reliable and 

there is less need to tediously correct for confounding total intercranial volume effects. 

When assessing the ability to predict Top 

25th  versus Top 50th percentile, we showed little 

evidence for drastic differences in SDTP models for 

both cortical thickness and white matter 

hyperintensity volume. This was a surprising finding 

given that, if we are to assume resistance to 

deleterious structural changes in high performing 

individuals given the literature, we would expect 

individuals in the top quarter of performance to 

exhibit sparing such changes. In further 

consideration of our inclusion criteria, it is important 

to note how our definition of TCP may limit our 

understanding of the spectrum of successful aging. 

The use of one cut point, either top 25th or 50th percentile, may blur effects that can be seen in individuals 

that straddle around this dichotomization. Like in many of the definitions highlighted in Table 1.1, study 

participants are either in the high performing group or not, ignoring the possibility of varying levels of 

successful aging. Thus, future directions include developing a model of TCP where we can assess 

multiple levels of cognitive maintenance and possibly better capture resistance. We did observe some 

evidence for regional cortical thickness in predicting memory SDTP in 80 year olds, where the Top 25th 

percentile yielded a higher AUC. The fact that this was seen in eighty year olds, but not sixty or seventy 

 
Figure 3.8: Longitudinal RAVLT Performance -Adapted 

from (Rogalski, 2019) Nonlinear decline in average episodic 

memory performance with age. Average episodic memory 
performance on the delayed recall portion of the RAVLT is 

provided by decade from age 20 to 80 using normative data. 

Dotted lines highlight differential magnitudes of decline over 
two 20-year periods showing steeper performance drops from 

age 60 to 80 than age 40 to 60. 
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year old’s, may allude to the larger drop in memory seen in rising aging groups, as shown in Figure 3.8, 

and described in limitations below.  It is possible that brain resistance is more meaningful in your 

eighties, though further testing is needed to assess the reliability of this finding. We also expected a 

difference. 

Lack of differences in TCP combination models were also slightly surprising. Chapter one details 

the varying trajectories that are seen across age groups, and given these relationships, it was hypothesized 

that some combinations, particularly those including memory and executive given their strong negative 

relationship with age (5 out of the 6), would significantly differ from our other combination, 

TCP(language/attention). It is possible that given that these are all highly educated individuals, this lack 

of difference between structural characteristics is better explained by education level and not a function of 

age. Interestingly, changes in subcomponents of executive function, such as switching and flexibility, has 

been shown to be better explained by differences in education rather than age  (H. Lin et al., 2007). Thus, 

future directions include stratifying analyses by education and assessing if there is a better separation of 

TCP versus non-TCP in each category. 

 

Limitations 

As with Chapter 1, results from these analyses are heavily subjected to selection and sample bias. 

As shown is Tables 3.1 and 3.2 this sample is highly educated and mostly female. Aside from the bias 

participation in imaging studies introduce, both of the larger cohorts are high skewed in their 

representation of key demographic variables. Though validation was attempted through test and train 

subsets, we still run the risk of overfitting the data given our slightly small sample sizes. Future directions 

include testing if similar relationships exist in similar datasets such as ADNI. 

Additionally, to increase our sample size and gain a more robust understanding of the effect of 

age, 60 year olds were included in this analysis. In commentary by Rogalski, a pioneer in the SuperAging 

field, she suggested that the minimum cut off for SuperAging be set to 80 years old given that we see a 
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more precipitous and meaningful decline in older elderly adults compared to those aged 40-60 (Rogalski, 

2019). She posits that concepts of resilience and resistance become more meaningful with rising age due 

to the vast differences in decline between middle age and older adults (Figure 3.7). It is important to note 

though that noticeable decreases in cognition happen nonetheless and studies of younger SuperAgers 

were still able to find detectable neurobiological differences.  

In summary, we were able to show that while we saw group differences in total white matter 

hyperintensities, network style regional cortical thickness and cortical volume were both efficient in 

predicting Top Cognitive Performance. Additionally, our structural biomarkers were able to predict all 

TCP combinations of our SDTP variables measuring memory, executive function, language, and 

attention.  
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Chapter 4 

  

 

4.1 Introduction 

Do Top Cognitive Performers exhibit lower levels of Alzheimer’s disease related pathology 

throughout the lifespan? 

It is still yet to be determined if successful aging reflects resilience or resistance. Does their 

preserved cognition reflect a brain that is free of disease burden, or do they possess 

neurobiological characteristics that protect them from accumulation of neural injuries? 

While previous chapters and the literature establish that structural integrity is one of the keys 

in the maintenance of cognition, the contributions of AD-related burden to successful 

cognitive aging has not fully elucidated, especially in the oldest old. Here, we aimed to 

assess group differences in measures of amyloid and tau across the lifespan using data from 

the Alzheimer's Disease Neuroimaging Initiative (ADNI age: 60-89) and The 90+ Study 

(age: 90-101 ). Additionally, using the ADNI dataset, we performed exploratory ANOVAs 

of regional cingulate AV-45 SUVRs to assess if amyloid load in particular areas was 

associated with TCP.  Consistent with the literature, results showed no group differences in 

amyloid SUVRs both regionally and in the whole cortex. We also observed no differences in 

Braak composite SUVRs. Interestingly, these relationships persisted in the oldest-old. This 

indicates that Top Cognitive Performance throughout the lifespan does not reflect resistance 

to amyloid and tau burden, and other mechanisms may be associated with protection against 

amyloid and tau related neurodegeneration.  
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Alzheimer’s disease, one of the most common types of dementia, is a progressive disorder that is 

marked by a drop in various key cognitive faculties such as memory. According to the CDC, over five 

million Americans are currently living with this debilitating disease and vast efforts are being made to 

understand its mechanisms. Two well-known abnormal structures, amyloid plaques and neurofibrillary 

tangles, have been the subject of study in their contributions to conversion and cognitive decline in 

disease-related and normal aging. The presence of amyloid plaques has been linked to apoptosis, synaptic 

loss, altered calcium homeostasis, and disruptions in various cellular processes (Carrillo-Mora et al., 

2014; Reiss et al., 2018). Similar toxic effects, such as synaptic dysfunction are seen in the presence of 

tau tangles and it was shown that eliminating tau through knockout mice protected against amyloid 

induced toxicity, alluding to its mediating effects (Bloom, 2014; Leroy et al., 2012). Though amyloid and 

tau are strongly linked to pathological processes associated with Alzheimer’s, they also appear in 

successful aging and cognitively normal individuals, leading to the question of how they differentially 

contribute to any changes or preservation seen in cognition. Below, I will summarize the contributions of 

amyloid and tau to disease progression, decline in cognitively normal groups, and burden seen in 

successful aging cohorts. 

Early post mortem studies of Alzheimer’s disease showed that the accumulation of tau tangles 

was positively associated with the magnitude of cognitive decline seen in demented and cognitive normal 

individuals (Arriagada, Growdon, et al., 1992; Arriagada, Marzloff, et al., 1992). Furthermore, Braak and 

Braak developed a staging method that relied on the evidence that neurofibrillary tangles accumulate in a 

particularly characteristic fashion across the brain in stages (Braak & Braak, 1991) which was later used 

to see that staging was positively associated with memory impairment and conversion to dementia (Cho et 

al., 2016; Riley et al., 2002; Schöll et al., 2016). Early PET imaging studies shown that individuals with 

dementia displayed greater amounts of amyloid deposition when compared to cognitively normal 

participants (Klunk et al., 2004). AD-related lesions accumulate in the brain years before cognitive 

deficits (Morris & Price, 2001;  Rowe et al., 2007), with longitudinal studies showing both concentrations 
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of amyloid-beta in the CSF and amyloid deposition measured by PET appearing 25 and 15 years before 

symptom onset, respectively (Bateman et al., 2012b). Amyloid burden is known to be associated with 

lower cognitive performance in elderly individuals (Hedden et al., 2013; Rentz et al., 2010). Earlier 

studies by The 90+ Study revealed that tau and amyloid continue to be significantly associated with 

Alzheimer’s Disease in the oldest old (Robinson et al., 2011). For example, amyloid load in 13 

participants was significantly correlated with global cognition and memory, and those deemed as amyloid 

positive exhibited steeper declines over a 1.5 year follow up (Kawas et al., 2013). Further, the rate of 

cognitive decline was found to be faster in amyloid positive individuals when compared to amyloid 

negative (Greenia et al., 2014), both suggesting that increased amyloid can be used as a surrogate marker 

for rapid cognitive decline in the oldest-old.  

Further, AD-related pathology has also been observed in the cingulate cortex via increased 

amyloid burden. Many studies have shown pronounced amyloid tracer uptake in the cingulate, which can 

be detected early in AD (Li et al., 2008). Chételat and colleagues (2012) even showed that elderly healthy 

individuals with increased amyloid burden displayed a greater rate of atrophy, particularly in the posterior 

cingulate cortex and temporal neocortex (Chetelat et al., 2012). These findings are particularly relevant 

given the contributing role of the cingulate in predicting superior cognitive performance. 

Though evidence suggests that amyloid and tau are significant contributors to decline in most 

models of aging, less is known about whether highly successful cognitive aging is associated with either 

the absence of their accumulation (resistance) or with cognitive preservation despite the accumulation of 

disease-related insults (resilience). The current evidence, however, does suggest resilience is the more 

likely hypothesis. For example, despite a having a similar burden in amyloid to cognitive normal for age 

peers, SuperAgers exhibited a 69%–73% reduced risk to disease progression (Dang, Harrington, et al., 

2019b). A majority of the literature, briefly described in Table 4.1, suggests that successfully aging 

individuals do not differ from other cognitively typical elderly controls in amyloid positivity or load, 

despite maintaining higher than typical levels of cognition. These data suggest that intact cognitive 
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performance does not reflect resistance to AD-related pathology, contrary to the notion that increased 

amyloid deposition drives cognitive decline.  There is, however, sparse literature that may suggest the 

contrary, that SuperAgers don’t accumulate these markers and are models of resistance. An early post-

mortem study of a five SuperAger cases and five controls found that three of the five SuperAgers were 

determined to be Braak stage of 0, I, or II while only one control case exhibited a similar low pathology 

(Rogalski et al., 2013a). Similarly, the same research group examined the post mortem pathology of the 

entorhinal cortex and found that cognitively average normal controls (n=6) exhibited nearly 3 times more 

neurofibrillary tangles when compared with SuperAgers (n=7), despite there being no difference in 

amyloid plaques (Gefen et al., 2021). Though supernormals did not show normal control group 

differences in whole cortex amyloid, they did exhibit lower amyloid burn in the right isthmus cingulate 

following a brain wide ROI-analysis (Baran et al., 2018). Note however, that each of these studies is 

limited by their small sample sizes. 

Given these conflicting relationships between amyloid and successful aging and the sparsity of in 

vivo tau/SuperAging research, this chapter aims to assess group differences in amyloid and tau in Top 

Cognitive Performers. Additionally, these relationships are understudied in the oldest-old, leaving us with 

questions of how these associations present in advanced aging. Thus, our aim is to assess group 

differences in amyloid and tau burden via PET, using datasets from the Alzheimer's Disease 

Neuroimaging Initiative (ADNI) and 90+ Study. 

 

Table 4.1: Alzheimer’s Related Pathology in Successful Aging 

*Indicates noted caveat 

Group Subjects Pathology measure Outcome Citation 

Reduced Pathology in Successful Aging 

SuperAgers  SuperAgers (n=5, 

mean age=88.6)  

vs. Elderly Control 

(n=5, mean age= 

87.8) 

Histological amyloid 

and tau plaque count 

of the cingulate 

cortex 

SuperAger displayed 

lower amyloid and tau 

plaque counts in the 

caudal anterior 

cingulate cortex when 

compared to elderly 

controls 

(Gefen et 

al., 2015) 
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Supernormals*  Supernormals 

(n=122, mean age: 

73.9)  

vs. AD (n=27 

mean, age= 73.18)  

vs. MCI (n=69, 

mean age=71.3)  

vs. Normal 

Cognition (n=172, 

mean 74.6) 

- PET (18F-AV-45) 

“A standardized 

uptake value ratio 

(SUVR) was 

calculated for each 

PET voxel, with the 

reference region set 

to the whole 

cerebellum. SUVRs 

were extracted from 

68 cortical ROIs.” 

*SNs displayed lower 

whole cortex amyloid 

than MCI and AD, but 

not normal controls.  

 

However, regional 

analysis revealed that 

amyloid burden in the 

right isthmus cingulate 

cortex differed in SN 

when compared to all 

other groups. 

(Baran et 

al., 2018) 

 

See also: 

Lin, 2017 

SuperAgers*  SuperAgers (n=25, 

mean age=85.2), 

vs. Normal agers 

(n=25, mean age= 

84.5)  

vs. MCI (n=25, 

mean age= 84.8) 

vs. Young controls 

(n=25, mean 

age=63.6) 

- PET (18F-AV-45 

& 18F-AV-1451)  

“The voxel-wise 

ROI approach 

included 5 meta-

ROIs (entorhinal 

cortex, inferior 

temporal, middle 

occipital, precuneus, 

and orbitofrontal 

gyrus)” 

 

SuperAgers exhibited 

lower tau burden in the 

inferior temporal lobe 

and precuneus when 

compared to normal 

agers, but exhibited no 

differences in amyloid 

burden* 

(Hoenig et 

al., 2020) 

SuperAgers*  SuperAgers (n=7, 

mean age=89.9)  

vs. Elderly Control 

(n=6, mean age= 

86.6) 

Histological amyloid 

and tau plaque count 

of the entorhinal 

cortex 

SuperAgers exhibited 

greater neurofibrillary 

tau when compared to 

Elderly controls but not 

amyloid plaques. *  

(Gefen et 

al., 2021) 

No Difference in Pathology in Successful Aging 

Optimal Perfor

mers (OP) and 

maintainers 

OP (n=25 mean 

age= 77.5)  

vs. Typical 

performer (TP) 

(n=100, mean age= 

78.9) 

- PET (PiB) 

“PiB data were 

analyzed using the 

distribution volume 

ratio (DVR) created 

using the Logan 

graphical analysis 

method with 

cerebellar cortex as 

reference tissue” 

No differences in 

amyloid burden 

between OP and TP. 

 

However, maintainers 

exhibited lower 

amyloid burden at 

baseline when 

compared with non- 

maintainers. 

(Dekhtyar 

et al., 2017) 

Successful  

Agers 

Successful Agers 

(n=26 mean age= 

74.9)  

vs. Typical older 

adult (n=103 mean 

age= 75.9) 

- PET (PiB) 

“A global PiB DVR 

threshold of 1.065 

was used.” 

While amyloid burden 

did not differ between 

groups, successful agers 

showed a significant 

negative relationship 

between amyloid and 

age, such that older 

successful agers were 

less likely to have high 

brain β-amyloid. 

(Harrison et 

al., 2018) 
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SuperAgers SuperAgers 

(n=179, mean 

age=68.43) vs 

Cognitively 

Normal for Age 

(CNFA) (n=179, 

mean age=68.53) 

- One of the 

following tracers 

were used: 

Florbetapir, PIB, or 

Flutemetamol 

“SUVR/BeCKeT 

threshold of 1.40 

was used.” 

 

 

No group differences 

were observed in 

prevalence of amyloid 

positivity. 

(Dang, 

Harrington, 

et al., 

2019a) 

SuperAgers SuperAgers (n=10, 

mean age=83.3) vs 

Healthy age-

matched controls 

(n=10, mean 

age=83.5) vs 

Healthy middle age 

controls (n=10, 

mean age=58.7) 

- PiB-PET 

“an adaptation of the 

AD-signature ROI 

composite (Jack et 

al., 2017) was 

accomplished using 

the average of the 

mean uptake in the 

prefrontal, 

orbitofrontal, 

parietal, temporal, 

anterior and 

posterior cingulate, 

and precuneus 

ROIs.” 

No group differences 

between SuperAgers 

and healthy age-

matched controls in 

amyloid deposition. 

 

(Borelli et 

al., 2019a) 

SuperAgers SuperAgers (n=10, 

mean age=82.1) vs 

Healthy age-

matched controls 

(n=10, mean 

age=84.2) vs 

Healthy middle age 

controls (n=10, 

mean age=58.5) 

- PiB-PET 

“SUVR was 

transformed to CTX 

(Global Cortical 

Target region) using 

the whole 

cerebellum (WC) as 

reference.” 

No group differences 

between SuperAgers, 

healthy controls, or 

middle age controls in 

amyloid SUVR 

 

(de Souza et 

al., 2021) 

 

4.2 Experimental Design And Methods 

Alzheimer's Disease Neuroimaging Initiative (ADNI)  

Participants 

The data used here were obtained from the ADNI database (adni.loni.usc.edu), downloaded on 

June 19, 2022. ADNI was launched in 2003 as a public-private partnership, led by Principal Investigator 

Michael W. Weiner, MD. The primary goal of ADNI has been to test whether serial magnetic resonance 

imaging (MRI), positron emission tomography (PET), other biological markers, and clinical and 
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neuropsychological assessment can be combined to measure the progression of mild cognitive impairment 

(MCI) and early Alzheimer’s disease (AD). For up-to-date information, see www.adni-info.org.  

Using ADNIMERGE, which includes 2,415 participants, we restricted this analysis to baseline 

visits. Individuals were required to be sixty years old and above (60-89 years old) and having at least one 

18F-AV1451 or [18F]-AV45 PET scan. Additionally, participants were required to have a diagnosis 

indicating cognitively normal, as determined by absence of depression, mild cognitive impairment, or 

dementia. Individuals who were missing data in any of the criteria variables, described below, were 

excluded from the analyses. As a result, three hundred and eighteen individuals were selected as a subset 

of the larger ADNI cohort (inclusion criteria found in Figure 4.1A). 

Neuropsychological criteria for group inclusion  

Previous studies of successfully aging cohorts have used neuropsychological tests with specific 

criteria based either on performance being consistent with a younger population or with performance 

being atypically high for their age group. Following the latter, TCPs were required to be in the top 50th 

percentile for both the Wechsler Memory Scale-revised Logical Memory IIA-Delayed Recall (WMS-R 

IIA) and Trails Making Test- Part B (Trails-B). The WMS-R IIA tests verbal and visual modalities and 

asks participants to recall units of a story after a 15 minute delay (Wechsler, 1987). Trails-B engages 

executive function and processing speed by asking the participant to draw a line that connects an ordered 

progression of alternating letters and numbers (e.g. 1 – A – 2 – B – 3 – C…) as quickly as possible 

(Tombaugh, 2004). All individuals that did not fit these criteria were classified as non-Top Cognitive 

Performers (non-TCP).   
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Image Data 

In the ADNI cohort, all imaging data were drawn from ADNI-supplied summary metrics.  Details 

on ADNI’s collection and processing methods are described elsewhere (Landau et al., 2021; Landau & 

Jagust, 2015). For the present study, only minor processing was done. For the AV45 (Florbetapir) data, 

the provided SUVRs from all 68 cortical ROIs were used to calculate a weighted average of whole cortex 

amyloid burden to account for the varying sizes of each ROI. For the AV1451 (flortaucipir) data, we used 

the inferior cerebellum as a reference region for all Braak composite SUVRs provided by ADNI. 

Examples of regions included in each composite score are as follows: Braak 1 (entorhinal cortex), Braak 

3 (parahippocampal, fusiform, lingual, and amygdala), Braak 4 (middle temporal, caudal anterior 

 
Figure 4.1: Inclusion flow chart for (A) ADNI and (B) The 90+ Study Participants. Blue box 

reflects the participants included in the final analysis of top cognitive performers (TCP). 
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cingulate, rostral anterior cingulate, posterior cingulate, isthmus cingulate, insula, inferior temporal, 

temporal pole), Braak 5 (superior frontal, lateral orbitofrontal, caudal middle frontal, rostral middle 

frontal, etc.) and Braak 6 (pericalcarine postcentral, cuneus, precentral, and paracentral) (see full list in 

Landau et al., 2021). Braak 2 SUVR data was not included in this analysis as ADNI states this region was 

contaminated by off-target binding in the choroid plexus.  

The 90+ Study 

Participants 

One hundred and eighty five individuals from the larger The 90+ Study cohort were included 

(Figure 4.1B). The 90+ Study, established in 2003, is an ongoing longitudinal investigation of aging and 

dementia in individuals aged 90 and above, consisting of the survivors of the Leisure World Cohort Study 

(Kawas, 2008).  Participants were selected based on the availability of PET measures of amyloid 

(StatROI) and tau (BakerBraak1_2, BakerBraak3_4, BakerBraak5_6) and a cognitively normal diagnosis 

at baseline visit. Cognitively normal was determined by The 90+ Study and refers to a primary diagnosis, 

determined by neurological examiners, where an individual is deemed as normal, absent of impairment in 

any cognitive domains, and able to complete Instrumental activities of daily living (IADL). Individuals 

who contained missing data in any of the criteria variables were excluded from the analyses. 

 

Neuropsychological criteria for group inclusion  

Following NACC & ADNI TCP criteria, The 90+ TCP individuals were required to perform at or 

above the top 50th percentile for their age group on the long-delay recognition portion of the California 

Verbal Learning Test – short form (CVLT) and at or above the top 50th percentile on completion time for 

their age group in the Trails-B. All other individuals that did not fit these criteria were classified as non-

Top Cognitive Performers (non-TCP). 

Image Data 
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As with the ADNI dataset, amyloid estimates were generated using AV45 (Florbetapir) and fully 

processed summary data were provided by the 90+ Study. Details on their processing are available 

elsewhere (Lau et al., 2021). Note that amyloid burden in The 90+ Study (StatROI) is quantified slightly 

differently than in ADNI, here as standard uptake SUVR of posterior cingulate and precuneus regions 

relative to an eroded cerebral white matter mask as a reference region. These regions were chosen by The 

90+ because their mean SUVR distributions were able to distinguish cognitively normal individuals from 

the impaired (Lau et al., 2021). 

 

Statistical analysis of PET study participants and SUVR 

For both datasets, statistical analyses were performed using SAS and the Statsmodels 

(https://www.statsmodels.org/) library in Python. ANCOVAs were used to evaluate group differences in 

StatROI (amyloid), whole cortex amyloid, and Braak composites scores (tau). Additionally, unpaired t-

tests were used to evaluate differences in continuous variables (age, education-ADNI, and 

neuropsychological performance) and Fisher's exact test to evaluate gender distribution, across the two 

subject groups. 

4. 3 Results 
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Table 4.2 ADNI Demographics 

 Amyloid PET (n=223) 

 

Tau PET (n=95) 

 TCP (n=58) non-TCP 

(n=165) 

T-Test/ 

Chi-Square 

TCP (n=26) Non (n=69) T-Test/ 

Chi-Square 

Mean Age 

(SD) 

72.5 (6.0) 73.0 (6.2) 0.54 70.5 (4.5) 69.4 (5.1) 0.32 

Number of 

Females (%) 

34 (58.6%) 88 (53.3%) 0.54 18 (69.2%) 41 (59.4%) 0.48 

Education: 

Number of 

years (SD) 

 

17.3 (2.4) 16.3 (2.5) 0.007* 18.0 (1.5) 16.5 (2.3) 0.001* 

Mean WMS-R 

IIA Score 

(SD) 

16.6 (1.8) 12.4 (2.6) <.0001* 17.0 (1.7) 12.4 (3.1) <.0001* 

Mean Trails B 

Score (SD) 

55.2 (12.2) 87.2 (41.2) <.0001* 50 (8.5) 78.6 (37.2) .0002* 

Table 4.3 The 90+ Study Demographics 

 Amyloid PET (n=171) 

 

Tau PET (n=49) 

 TCP (n= 

41) 

non-TCP 

(n=130) 

T-Test/ 

Chi-

Square 

TCP 

(n=13) 

non-TCP 

(n=36) 

T-Test/ 

Chi-

Square 

Mean Age (SD) 91.9 (1.5) 92.3 (2.2) 0.20 91.8 (1.4) 91.5 (1.3) 0.53 

Number of Females (%) 24 (58.5) 80 (61.5) 0.85 9 (69.2%) 17 (47.2%) 0.21 

Education: 

 

   High-school graduate or less (%)  

   Some college to graduate (%)  

   Some graduate school or higher 

(%) 

 

 

 

6 (14.6%) 

18 (43.9%) 

17 (41.5%) 

 

 

21 

(16.2%) 

58 

(44/6%) 

51 

(39.2%) 

 

 

0.90 

 

 

4 (30.8%) 

4(30.8%) 

5 (38.4%) 

 

 

 

6 (16.7%) 

13 (36.1%) 

17 (47.2%) 

n/a 

Mean CVLT Score (SD) 8.5 (0.5) 6.2 (2.0) <.0001* 8.5 (0.5) 5.6 (2.0) <0.0001* 

Mean Trails B Score (SD) 93.2 (18.4) 156.1 

(71.7) 

<.0001* 95.9 

(16.2) 

158.8 

(80.4) 

0.008 
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Demographics And Neuropsychological Performance At Baseline 

As shown in Table 4.2, there were 223 and 95 ADNI individuals who fit our inclusion criteria for 

our amyloid and tau analyses, respectively. For both sets of participants, unpaired t-tests revealed TCP vs. 

non-TCP differences in education (amyloid: t(221)= 2.72, p= 0.007 & tau: t(93)= 3.33, p= 0.001), mean 

performance in memory (amyloid: t(221)= 11.3, p < 0.0001 & tau: t(93)= 7.2, p < 0.0001), and mean 

performance in executive function (amyloid: t(221)= 5.8, p < 0.0001 & tau: t(93)= 3.9, p= 0.0002). The 

latter two are, of course, to be expected given the criteria for TCP group inclusion.  There were no 

differences in age (amyloid: t(221)=0.6, p= .55 & tau: t(93)=1.0, p= 0.32) or sex distribution (amyloid: 

Fisher’s exact p=0.5 & Fisher’s exact p=0.5).  

As seen in Table 4.3, there were 171 and 49 individuals in The 90+ Study who fit our inclusion 

criteria for our amyloid and tau analyses, respectively. In contrast to the ADNI cohort, The 90+ exhibited 

no group differences in any demographics (note, the low sample size precluded testing for differences in 

education for those with tau scans), but did, of course, show the by-definition differences in mean 

performance in memory (amyloid: t(169)=7.5, p < 0.0001  & tau: t(47)=5.3, p < 0.0001) and executive 

function (amyloid: t(169)= 5.6, p < 0.0001 & tau: t(47)=2.8, p= 0.007).  
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Amyloid Burden and Top Cognitive Performance Across the Elderly Lifespan 

 

We used an ANCOVA with factors for TCP status, age group (sixty, seventy, eighty), sex, and 

education to examine whole cortex amyloid SUVR levels in the ADNI dataset (Figure 4.2A). After 

adjusting for age group, sex, and education (Type III sum of squares), the ANCOVA revealed no group 

differences in whole cortex amyloid SUVR (F(1,222)=2.55, p= 0.11; the unadjusted effect was not 

reliable as well). As one might anticipate, after adjusting for the other factors, however, there was an 

effect of age group on SUVR (F(2,222)=4.48, p=0.01) with greater amyloid present in older individuals. 

However, adjusting for sex and education, results showed no interaction between age group and TCP 

(F(2,222)=1.30, p= 0.28; the unadjusted effect was not reliable as well). Additionally, an exploratory 

analysis was conducted to determine if there were regional differences in amyloid by age group. Separate 

ordinary least squares regressions were run using TCP status, age group, sex, and education for each of 

the 68 regions, setting an uncorrected alpha threshold of 0.01 to only mildly correct for multiple 

 
Figure 4.2: No group differences in amyloid burden Bar plots show no group differences in amyloid burden across 
the lifespan. A) Whole cortex amyloid SUVR measures of TCP versus non-TCP in sixty, seventy, and eighty year 

olds from the ADNI dataset. B) StatROI SUVR measures of TCP versus non-TCP in ninety year old’s from The 90+ 

Study.  
* Error bars represent 95% confidence intervals. Each Respective SUVR calculation further described in the methods 

section. 

 



 

69 

 

 

comparisons. Despite this, none of the regions showed any effect of TCP group status on regional SUVR 

levels. Similarly, as shown in Figure 4.2B, data from The 90+ study did not reveal any differences 

between TCP and non-TCP in StatROI SUVRs (F(1,170)=1.04, p= 0.43). 

 

Tau Burden and Top Cognitive Performance Across the Elderly Lifespan 

The same approach was used in the analysis of the tau data, here analyzing the tau load in each 

Braak region set separately. ANCOVA’s in the ADNI dataset did not reveal group difference in the Braak 

ROI 1 SUVR (F(1,94)=0.02, p= 0.89), Braak 3 & 4 composite SUVR (F(1,94)=0.43, p= 0.51), or Braak 5 

& 6 composite SUVR (F(1,94)=0.84, p= 0.36) after accounting for age, sex, and education, as shown in 

Figure 4.3. Unlike in measures of amyloid, there was no effect of age group on any of the Braak ROI 

 
Figure 4.3: No group differences in amyloid burden Bar plots show no group differences in Braak region 

tau burden across the lifespan. TOP: Bar plots representing SUVR measures of TCP versus non-TCP in sixty, 

seventy, and eighty year olds from the ADNI dataset in the A) Braak 1 ROI, B) Braak 3 and 4 composite ROI, 

and C) Braak 5 and 6 composite ROI. BOTTOME: Bar plots representing SUVR measures of TCP versus 

non-TCP in ninety year old’s from The 90+ Study dataset in the A) Braak 1 and 2 composite ROI, B) Braak 3 

and 4 composite ROI, and C) Braak 5 and 6 composite ROI.  

* Error bars represent 95% confidence intervals. Each Respective SUVR calculation further described in the 

methods section. 
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SUVRs (all p’s > 0.1). Additionally, there were no interactions of age group by TCP in each SUVR (all 

p’s >0.2). Similarly, data from The 90+ Study showed no differences in Braak ROI 1 & 2 composite 

SUVR (F(1,48)=0.01, p= 0.98), Braak 3&4 composite SUVR (F(1,48)=0.05, p= 0.82), or Braak 3&4 

composite SUVR (F(1,48)=0.42, p= 0.52). 

 

4. 4 Discussion 

The goal of this chapter was to assess whether TCPs, a cohort of successful aging individuals, 

exhibited group differences in Alzheimer’s related pathology when compared to their peers. Given the 

literature, it was hypothesized Top Cognitive Performers would reflect resilience and show similar 

pathology to their non-TCP peers rather than showing less pathology (in the form of amyloid or tau 

loads). It was possible, however, that being a TCP, or having a combined increased performance in two 

key cognitive domains, was a function of there being little to no pathology. Gefen and colleagues, for 

example, found that SuperAgers exhibited lower neurofibrillary tau and amyloid plaque counts in the 

pregenual anterior cingulate anterior midcingulate cortex when compared to elderly controls in a small 

subset of participants (Gefen et al., 2015). While ‘amyloid deposition and neurodegeneration has been 

documented in about 50–60% of cognitively healthy elderly individuals (aged 60 years or older)’, some 

individuals in their 70s can be absent of both (Burnham et al., 2016; Jack et al., 2012). The Mayo Clinic 

Study of Aging (MCSA) showed that 43% of their 450 participants were classified as stage 0, defined as 

cognitively normal subjects who did not present any evidence of AD biomarkers (Jack et al., 2012). 

Similarly, Burnham and colleagues (2016) found that 54% of cognitively normal individuals did not 

display AD pathology or neurodegeneration, measured by Aβ deposition and hippocampal volume 

respectively. These individuals exhibited slower cognitive decline and slower hippocampal atrophy when 

compared to those who showed positive signs of AD pathology and neurodegeneration.  

In line with the majority current literature highlighted in Table 4.1, results from this chapter 

confirm that TCP individuals do not exhibit group differences in measures of amyloid, and these 
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relationships persist in the oldest-old. Despite conflicting reports, most studies have shown that 

successfully aging individuals did not differ from other cognitively normal elderly controls in amyloid 

burden (Borelli et al., 2019b; Dang, Harrington, et al., 2019a; de Souza et al., 2021; Harrison et al., 2018), 

despite maintaining high levels of cognition. These data suggest that intact cognitive performance does 

not reflect resistance to AD-related pathology, contrary to the notion that increased amyloid deposition is 

correlated to cognitive decline. Given individual differences in pathology at large and the above-

mentioned competing theories, it is possible that structural characteristics, such as cortical thickness, act 

as a compensatory mechanism that aid in coping with typical age-related insults. The accumulation of 

amyloid has been repeatedly associated with abnormalities in functional and structural imaging. fMRI 

studies have shown a difference in functional connectivity between amyloid positive and negative groups 

in key regions such as the precuneus, hippocampus, and anterior cingulate cortex, similar to comparisons 

with individuals diagnosed with AD (Sheline et al., 2010). Structural studies have shown reduced grey 

matter volume (Oh et al., 2011) and cortical thinning with increased amyloid deposition (Becker et al., 

2011). These findings show that amyloid deposition is associated with poorer cognition, faster cognitive 

decline, and vast brain abnormalities, even in asymptomatic individuals. 

We also found that TCP did not exhibit any group differences in measures of tau throughout the 

full elderly lifespan. To our knowledge, only one study has examined in-vivo tau in relation to 

SuperAging. While there is also a difference in our samples, Hoenig & colleagues employed a voxel wise 

analysis of four specific meta ROIs (inferior temporal, precuneus, entorhinal cortex, middle occipital, and 

orbitofrontal). It is possible they identified a network of individual regions that reflect resistance to 

pathology that might explain their preserved cognition. For reasons of comparison with The 90+ Study, 

we utilized composite SUVR values of Braak ROIs. Though their significant regions (inferior temporal 

lobe and precuneus) are encompassed within our tau SUVRs, they are included amongst other key ROIs 

in a composite measure, listed in the methods section. Thus, future directions include conducting a 

regional analysis of tau SUVR to possibly capture specific areas that may be associated with TCP. 
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Lastly, an exploratory analysis was conducted to assess if there were regional differences in 

amyloid. Baran and colleagues (Baran et al., 2018) were able to show that though their Supernormals did 

not exhibit any differences in whole cortical amyloid, there was a difference in the isthmus cingulate 

following a 68 ROI analysis across the cortex. They noted, though, that since the isthmus cingulate is a 

small ROI and their FreeSurfer segmentations were done manually, their analysis was ‘vulnerable to 

subjectivity in the correction of topological defects’ (Baran et al., 2018). Our analysis revealed no 

differences in any of the age groups in amyloid burden, suggesting that even regionally, amyloid is not 

associated with TCP. 

Limitations 

We acknowledge the limitations on the generalizability of the results of this chapter. As described 

in Chapter 2 and 3, inclusion criteria and recruitment, amongst other factors, have led to a more 

heterogenous population in ADNI and The 90+ Study participants, which tend to be mostly Caucasian 

and of both high socioeconomic and education status. We also acknowledge that the lack of a standard 

successful aging definition, as highlighted in Table 1.1, makes comparisons between studies difficult. 

Given the nature of data availability in ADNI and The 90+ Study, even we had to use different measures 

of delayed memory. As previously mentioned, the WMS-R IIA and CVLT were chosen as tests of 

delayed recall to mirror SuperAging standard as closely as possible, limited by what data is available in 

each dataset. 

Like the results in this chapter, it is important to note that some of the studies highlighted in Table 

4.1 are cross-sectional and only represent a snapshot of an individual’s cognition and pathological profile. 

One successful aging study that did include longitudinal data found that while amyloid burden did not 

differ between Harvard Aging Brain Study’s optimal and typical performers, those who maintained their 

cognition over 3 years (e.g., maintainers) displayed lower amyloid burden at baseline when compared to 

those that did not. Dekhtyar and colleagues suggested that individuals who did not maintain their optimal 
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performance may be representative of a preclinical trajectory (Dekhtyar et al., 2017). Preclinical 

Alzheimer’s disease, first described as cognitively normal individuals that exhibit pathology at autopsy,  

is the stage before diagnosis and noticeable symptoms appear (Dubois et al., 2016; Hubbard et al., 1990). 

Longitudinal studies show amyloid deposition measured by PET 15 years before symptom onset 

(Bateman et al., 2012a). Similar to Dekhtyar and colleagues’ theory, it is possible that since we are 

studying baseline visits, we are capturing individuals on the preclinical trajectory to Alzheimer’s disease. 

Though participants were required to have a diagnosis of cognitively normal, we don’t yet fully 

understand which of these individuals are set to convert. Thus, future directions include incorporating the 

diagnosis of subsequent visits to assess if the lack of group differences between our cohorts are really a 

reflection of the preclinical trajectory. 
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Chapter 5 

 

5.1 Conclusions 

As described in Chapter 1, many cognitive domains are subject to age-related decline and these 

changes in performance are often correlated with changes seen in the brain. There are some individuals, 

though, that are able to avoid the deleterious effects of rising aging and exhibit superior or maintained 

cognition, uncharacteristic of peers similar in age. This dissertation aimed to capture this phenomenon 

and further examine which structural and pathological measures, established as biomarkers of normal and 

disease related declines, are related to this preserved cognition. Using data from ADNI, NACC, and The 

90+ Study, we were able to test the utility of cortical thickness, cortical volume, white matter 

hyperintensity volume, amyloid, and tau in modeling Top Cognitive Performance, defined here by 

performance in the Top 50th percentile of both memory and executive function, two hallmark domains of 

cognition that are effected by dementia. spread of data available allowed us to test these relationships in 

the young- and oldest-old, thus informing us on which biomarkers are useful across the older adult 

lifespan. A summary of this dissertation is as follows: 

Chapter 2: Is cortical thickness of the cingulate cortex key in predicting successful aging?  

Many have found that cortical thickness in the cingulate cortex, a region involved in information 

processing, memory, and attention, distinguish those with exceptional cognitive abilities when compared 

to their cognitively more typical elderly peers (Fjell et al., 2006; Gefen et al., 2015; Harrison et al., 2018; 

Sun et al., 2016b). Though the cingulate has proven to be important in successful aging, the structural 

integrity of other regions and networks have also been identified in preserved cognitions. This chapter 

assessed if cortical thickness of the cingulate as a localized a priori network sufficiently predicted 

successful aging versus a more data driven selection of regions. We were able to show that whole brain 

network level models outperformed the popular cingulate model in predicting TCP, suggesting the need 

for a more network style approach.  
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Chapter 3:  What factors other than cortical thickness can predict Top Cognitive Performance?  

Expanding on Chapter 2, this section aimed to assess structural features that have some diagnostic 

ability in predicting future decline and distinguishing cognitively normal individuals from those that have 

Alzheimer’s disease (Brickman et al., 2008, 2015; Schwarz et al., 2016). This chapter additionally 

examined the robustness of our TCP definition, testing other cognitive domains (memory, executive 

function, language, and attention) and cut points for group inclusion (performance with in the Top 25th 

versus Top 50th percentile). Results showed that cortical thickness and cortical volume performed 

relatively similar in predicting TCP, with cortical thickness yielding a slightly higher AUC in some 

models. This in combination with past literature showing its lacking relationship with TIV (Schwarz et 

al., 2016) suggests the continued use of cortical thickness as a reliable measure of TCP, especially in large 

populations where effects of age and sex may be of interest. We also observed some evidence for regional 

cortical thickness in predicting memory SDTP in 80 year olds, where the Top 25th percentile yielded a 

higher AUC. Though the reliability of this result needs to be further assessed, it is possible that this is 

capturing the relevance of age and how brain maintenance becomes more meaningful in cognitive 

preservation later in life. Lastly, though we saw some group differences in total white matter 

hyperintensity volume, it did not perform well in predicting TCP across all criteria and age groups. Given 

this relationship, it is possible that regional white matter hyperintensity volume may be key rather than 

total burden as lesions in specific areas such as periventricular white matter have been shown to be 

independently related to dementia. In summary, we were able to show that structural neuroimaging 

biomarker measures, such as cortical thickness and volume, are related to Top Cognitive Performance in a 

network-like regional manner that is sufficient in predicting these successfully aging individuals. 

Chapter 4: Do Top Cognitive Performers exhibit lower levels of Alzheimer’s disease related pathology 

throughout the lifespan? 
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In line with current literature, results from Chapter 2 & 3 highlight the importance of structural 

measures in predicting successful aging. In addition to structure, one study showed that SuperAgers have 

a 69%–73% reduced risk to disease progression in comparison to their cognitively normal age matched 

peers (Dang, Harrington, et al., 2019a; Dang, Yassi, et al., 2019). Despite this, there are conflicting 

reports on whether successful aging individuals also exhibit lower disease-related pathology, with the 

majority of research leaning to lack of group differences. Thus, this chapter aimed to examine group 

differences in amyloid and tau, two hallmark markers of Alzheimer’s disease. In line with most of the 

literature, results showed no reliable differences in whole cortical amyloid or tau, indicated by the SUVR 

of Braak composite regions, across all age groups. Given that TCP did not display differential levels of 

Alzheimer’s disease related burden, this further confirms that successful aging individual may reflect 

resilience rather than resistance, given their maintained cognition in the face of such brain insults.  

 

5.2 Future Directions 

In addition to structural and neuropathological measures that are related to both disease-related 

decline and successful aging, it is also possible that other health and lifestyle factors are significant 

contributors and/or predictors of TCP. For example, one study that loosely mirrors our definition for TCP 

found that SuperAgers were less likely to have a history of cardiac problems, which they suggest might be 

a proxy of lower vascular risk (Villar et al., 2021). Early SuperAging studies in a small set of individuals 

(n=10) found that SuperAgers found had a lower likelihood of having APOE4 (Rogalski et al., 2013b).  

Interestingly, one study suggested that a cohort of individuals with high performance in Repeatable 

Battery for the Assessment of Neuropsychological Status (RBANS) tended to live a work-filled socially 

isolated lifestyle. Thus, I aim to characterize the individuals included in these analyses to assess if there 

are any contributing group differences in factors such as APOE4 status and exercise. 

As described in some of the conclusions above, each one of these datasets are cross-sectional and 

can only represent a snapshot of cognition. Examples of issues this introduces are: (1) individuals 
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included in these analyses developed cognitive symptoms shortly after their initial visit, (2) the cognitive 

scores they received do indeed represent a drop from an untested period of time, or (3) some individuals 

included in these analyses were just born with larger brains, blurring comparisons of cortical thinning. 

Thus, a future direction of this dissertation is to incorporate longitudinal data to either calculate the degree 

of TCP maintenance over several visits and assess if baseline measures such as cortical thickness can 

predict it early on, or, assess changes in the brain over time using multiple scans and see its relationship to 

maintaining top performance. Gefen and colleagues showed that SuperAgers did not show any significant 

differences in tests of memory, attention, language, or executive function following a 1.5 year follow up 

(Gefen et al., 2014). Though this aim introduces new limitations such as the influence of practice effects, 

both questions assess a more robust measure of successful aging as it captures maintenance where there 

should be an increase in decline as a function of age. 

Cortical measures were used as our first predictor of interest given it popularity in the literature, 

but a few studies also assessed the relationship of subcortical volumes such as hippocampus with 

successful aging. On one side, hippocampal atrophy has been shown to predict future memory decline in 

the elderly (Gorbach et al., 2017) and conversion to MCI and dementia (Csernansky et al., 2005; 

Eckerström et al., 2008; Jack et al., 1999). On the other side, researchers found that SuperAgers have 

greater hippocampal volumes when compared to normal peers (Dekhtyar et al., 2017; Harrison et al., 

2018; Sun et al., 2016b). A small trending result was also found in the amygdala of SuperAgers when 

compared to younger adults (Sun et al., 2016b). Given these findings on both sides of the aging spectrum, 

future directions include examining the relationship of subcortical structures, such as those included in the 

limbic system, in predicting Top Cognitive Performance 

Lastly, data from NACC and ADNI present a possible mode of replication for Chapters 1 and 2. 

Given our modest sample sizes in both datasets, it is important to assess the generalizability of our results 

and see if similar relationships persist. Thus, we aim to repeat these analyses in the data available. 
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5.3 Closing Remarks 

In summary, we were able to show that structural neuroimaging biomarker measures, such as 

cortical thickness, are related to Top Cognitive Performance in a network-like regional manner that is 

sufficient in predicting these successfully aging individuals. Contrary to this pathologically, we were able 

to show that, unlike clear difference seen in structural characteristics of the brain, our cohort of TCP were 

similarly vulnerable to Alzheimer’s disease related burden, despite their maintained cognition. 

Determining the exact structural and pathological properties that protect against aging-related cognitive 

decline will enable us to develop therapies that target these protective features. These results take us one 

step closer to identifying biomarkers that may aid in uncovering the path to avoiding the onset of 

cognitive decline.  
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