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ABSTRACT

Autonomous experimentation is an emerging area of research, primarily related to autonomous vehicles, scientific combinatorial discovery
approaches in materials science and drug discovery, and iterative research loops of planning, experimentation, and analysis. However,
autonomous approaches developed in these contexts are difficult to apply to high-dimensional mapping technologies, such as scanning hyper-
spectral imaging of biological systems, due to sample complexity and heterogeneity. We briefly cover the history of adaptive sampling algorithms
and surrogate modeling in order to define autonomous adaptive data acquisition as an objective-based, flexible building block for future biological
imaging experimentation driven by intelligent infrastructure. We subsequently summarize the recent implementations of autonomous adaptive
data acquisition (AADA) for scanning hyperspectral imaging, assess how these address the difficulties of autonomous approaches in hyperspectral
imaging, and highlight the AADA design variation from a goal-oriented perspective. Finally, we present a modular AADA architecture that
embeds AADA-driven flexible building blocks to address the challenge of time resolution for high-dimensional scanning hyperspectral imaging
of nonequilibrium dynamical systems. In our example research-driven experimental design case, we propose an AADA infrastructure for time-
resolved, noninvasive, and label-free scanning hyperspectral imaging of living biological systems. This AADA infrastructure can accurately target
the correct state of the system for experimental workflows that utilize subsequent expensive, high-information-content analytical techniques.

VC 2023 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://
creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0123278
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I. INTRODUCTION
Autonomous experimentation (AE), which is critical for acceler-

ating research and scientific discovery in hyperspectral imaging, is
closely linked to original concepts of artificial intelligence (AI).1 AE,
therefore, inherits two of AI’s recurring and recognized primary chal-
lenges. The first centers around distribution shifts, which occur when
the data used to train the AI have a different distribution than the data
encountered by the AI in either testing or deployment. The second
emerges from difficulties in transfer learning—the reusing or transfer-
ring of information from previously learned tasks to new tasks.2 There
are many potential solutions that can be pursued for user-independent
AE, but a simple alternative is to separate the overarching goal of AE
into actionable components that can each be user-optimized for that
user’s specific structural and functional goals.
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Autonomous adaptive data acquisition (AADA) can be concep-
tualized as a flexible, tunable, “smart” building block that can eventu-
ally be embedded into built environments to create an intelligent
infrastructure. In scanning hyperspectral imaging, as with any applica-
tion that obtains high resolution and high precision chemical informa-
tion of surfaces and materials, there are generally two major
philosophies that dictate implementable AADA design strategies for
the general research community. First: If the experimental system
under ideal instrument performance circumstances can be described
as well-characterized over the course of the researcher’s study, then
the design could integrate machine learning steps toward the creation
and improvement of domain-oriented AI2—as long as an acceptable
level of transfer learning can be achieved. This especially holds true
when there is a large amount of accurately labeled, high quality data
on experimental systems similar to the system being studied; as an
example, the agricultural and materials industries use hyperspectral
imaging for quality control of well-characterized products such as dis-
eased plants3 and silicone rubber damage.4 Computational time asso-
ciated with generating the classification model is a secondary concern;

however, this can be addressed with additional computing resources.
Second: If little is known a priori about the experimental system except
that the system will evolve over the study’s duration, then increased
importance is placed on sampling efficiency that balances feature dis-
covery and characterization while minimizing computational time.

Scanning hyperspectral imaging experiments exhibit both these
properties and, in this review, serve as an ideal proxy to explore
addressing challenges through better AADA design principles. The
broad spectrum of user inputs and varying objectives lead to differ-
ences in the methods, by which domain knowledge and human–com-
puter interactions are integrated into the AADA process. This is
especially true with respect to the availability of cluster computing
resources for computationally demanding edge computing. Figure 1
depicts two practical examples of these challenges, in which hundreds
to thousands of contiguous spectral bands across the electromagnetic
spectrum from the x-ray to the infrared region are used to capture bio-
chemical information in living biological samples.5,6 Figure 1(a) exem-
plifies a case in which AADA could have been used to restrict
sampling to the specimen, substantially decreasing data acquisition

FIG. 1. AADA for addressing challenges in biological hyperspectral imaging. (a) Reproduced with permission from Kopittke et al., Plant Physiol. 178(2), 30108140 (2018).
Copyright 2018 Authors licensed under a Creative Commons Attribution (CC BY) License. Synchrotron-based x-ray fluorescence microscopy (XFM) image (�5� 10.5 mm2)
of calcium (blue), potassium (red), and zinc (green) distributions in a living seedling of heavy metal hyperaccumulator Noccaea caerulescens. Although element concentrations
visibly correlate well with the maturing seedling’s anatomical structures, AADA could have been used to save substantial time during data acquisition by restricting sampling
points to within the seedling. Instead, considerable time was spent scanning the empty space around the seedling’s irregular shape. Scale bar¼ 2mm. (b) Reproduced with
permission from Hazen et al., Science 330, 204 (2010). Copyright 2010 American Association for the Advancement of Science. Synchrotron-based FT-IR spectromicroscopy
spectral images (�60 � 60 lm2) of living microorganisms, oil, and oil degradation products inside a floc from the Gulf Horizon oil spill plume illustrate the bioremediation pro-
cess. (Left) Representative spectral fingerprints for different components. (Right) Heat maps of different spectral components superimposed on the bright-field image of biologi-
cal samples. Scale bar¼ 10 lm. Spatial heterogeneities in oxidation, nitration, and sulfation products of oil (alkane) metabolism, by bacteria in their extracellular matrix
(proteins and carbohydrates), indicate metabolic specialization in regions that are not readily visibly apparent. AADA could have increased sampling and information efficiency
both by avoiding empty areas and by increasing sampling density in more spatially complex regions—for example, the interface between regions producing oxidation products,
nitration products, and sulfation products.
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time. Figure 1(b) portrays an example in which AADA could have
been used to increase sampling density in key transition regions that
were revealed over the course of the experiment to be of importance.
In both hyperspectral imaging studies, the data were obtained nonde-
structively as a two-dimensional grid of raster-scanned data points,
stored digitally and visualized in false color.

In this review, we will briefly summarize how research in adap-
tive sampling algorithms and surrogate modeling across multiple fields
shaped the research community’s approach to AADA before covering
recent AADA implementations for various scanning hyperspectral
imaging experiments. We will discuss each AADA implementation to
showcase conserved concepts along with differences in design philoso-
phy based on the researcher’s objective. We explore a potential intelli-
gent infrastructure with embedded AADA building blocks to
realistically characterize a living biological system’s response in time
for scientifically relevant findings. Our comprehensive understanding
is often minimal in such experimental systems, which serves as a
reminder that artificial intelligence for autonomous experimentation
should ideally be guided by the intuitive researcher rather than logic-
driven AI.7 Therefore, this review focuses on the design and imple-
mentation of AADA for scanning hyperspectral imaging applications
that work toward the development of intelligent infrastructure for AE.
From this perspective, AADA architecture serves as an important tool
both for optimizing efficient sampling-driven characterization of an
experimental system and for refining the precision of experimental
execution.

II. BRIEF HISTORY: ADAPTIVE SAMPLING ALGORITHMS
AND SURROGATE MODELING FOR AADA

Sampling algorithms for autonomous adaptive data acquisition
in scanning hyperspectral imaging arise from the sequential sampling
theory, which addresses the challenge of scanning probe techniques
only acquiring data at a single point in space at a given time. It should
be noted that scanning probe techniques encompass all technologies
in which data are a series of single point measurements; these experi-
mental techniques are not limited to the presence of a physical probe
such as atomic force microscopy (AFM) tips. The general theory for
sequential sampling was first formulated by Wald in 1944,8,9 although
applications of statistical inference based on the sum of a sequence of
random variables are attributed to Bartky in 1943.10 However, it was
not until 1947 that Wald used the foundation established in the early
1940s to propose a general theory for sequential decision functions, in
which the total number of required observations depends on the out-
come of the observations.11 By 1960, Widrow proposed and evaluated
an adaptive sampled data system model containing an adjustable
worker and a supervisor to study the influence of performance feed-
back.12 Although early adaptive sampling centered around sampling
efficiency via performance feedback loops,13 its application to pattern
recognition and feature extraction,14,15 adaptive sampling fre-
quency,16,17 function approximation,18 and optimal adaptive estima-
tion of sampled stochastic processes19 set the stage for adaptive
sampling’s use in affordable model construction to replace computa-
tionally costly simulations of real-world phenomena.

The concept of constructing and implementing metamodels to
replace computationally expensive simulations of real-world phenom-
ena was introduced by Blanning in 1975, although no detailed meta-
model construction methods were presented at the time.20 This

approach became more appealing as time passed between the 1970s
and 1990s, a time in which the research community already acknowl-
edged the prohibitive computational cost and performance limitations
of real-world phenomena simulations. However, the pursuit of model
construction and its subsequent optimization to accurately represent a
sampled data domain led to the realization that parameter estimation
was not trivial.21–24 The goal of parameter estimation with respect to
model optimization was to address the effect of sampled data error on
the parameter values used in the model construction. Additionally,
subsequent model calibration was complicated by model characteris-
tics relating to regions of attraction, minor local optima, roughness,
sensitivity, and shape.25 As a result, researchers focused on developing
and assessing methods for spatial modeling of regional variables in the
mid-1980s to address these calibration challenges. The goal of most
proposed solutions was to offer statistical efficiency in describing a
spatially variable system at the cost of complexity, and these
approaches centered around the development of various weighted
schemes.26–28 This methodology gained more credibility with case
study applications such as that from Cressie and Chan in 1989, in
which they found that spatial trends identify large-scale variation in
the data, whereas the variance and spatial dependence of the data cap-
tured small-scale variation.29

In an attempt to transfer these approaches to high-dimensional
data applications, Friedman proposed using multivariate regression
splines that took inspiration from recursive partitioning methods for
regression. As with other leaders in the field in the early 1990s, he
emphasized that a reasonable approximation for modeling of a system
depends upon an ability to assess its lack of accuracy, and that the
solution to approximating general functions of high dimensionality
was based in adaptive computation.18,30,31 This thought process led to
the restructuring of many model calibration problems into global opti-
mization problems in which the difference or error estimation between
model simulations and corresponding observations was mini-
mized.32,33 This alternative solution became more practical as
advancements in computational technology and its accessibility to the
general research community increased by the mid-1990s, enabling the
spread of metamodeling strategies to a variety of fields to serve as prac-
tical solutions to computationally costly modeling or simulation
problems.

Surrogate modeling, also known as function approximation,
response surface modeling, and metamodeling in other fields involve
emulating a costly simulation where the model is trained via a data-
driven approach. Specifically, it describes the relationship between the
model’s adjustable parameters termed inputs to its output, which often
is evaluated performance of the model via model appraisal informa-
tion and merit functions.34–36 In 2005, Quiepo et al. provided an
extensive overview of surrogate-based analysis and optimization.37

Recently implemented AADA approaches for scanning hyperspectral
imaging have utilized hybrid sequential design strategies for surrogate
model construction38 and Gaussian process (GP) based surrogate
model construction39,40 approaches to date. The commonality con-
served in these approaches is that one can replace costly model simula-
tions with cheaper surrogate model alternatives that can undergo
optimization via adaptive sampling approaches, thereby decreasing the
total computational burden per adaptive sampling loop iteration.

Adaptive surrogate modeling-based optimization (ASMO)
method assessments were systematically evaluated in simulated
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experiments in 2014 by Wang and Duan.41 ASMO-related AADA
procedures that calibrate models via optimization are similar in struc-
ture to the generalized schematic depicted in Fig. 2, which is built
upon the ASMO procedures and modified to include a simplistic
instrument-related performance feedback loop for practical imple-
mentation of autonomous adaptive data acquisition. Prior to the ini-
tialization of ASMO, a domain expert should assess the effects of each
input parameter for the experimental system, allowing for careful
parameter screening and selection to increase the accuracy of the con-
structed and eventually optimized surrogate model.42 For AADA
implementation in the scanning hyperspectral imaging cases, parame-
ter selection is highly dependent upon the analytical technique to
which AADA is applied as well as the experimental system that is
being characterized.38,40,43,44

Autonomous adaptive data acquisition that incorporates ASMO
framework can be summarized in several general steps. After parame-
ter selection, a set of initial sample points are acquired according to a
design of experiments (DoE) method; one such robust DoE candidate
that leads to accurate convergence is the low-discrepancy quasi-Monte
Carlo method.41 These sample points are subsequently used to gener-
ate the simulation model, and at each sample point, objective function
values are calculated. A surrogate model is then constructed to esti-
mate the simulation model’s response surface, which is usually built by
fitting a statistical model to the performance metric of the generated

simulation model at the previously selected points. New sample points
are selected based on the chosen adaptive sampling strategy, and these
points are subsequently incorporated into the simulation model to
update the surrogate model corresponding to the response surface. For
each generation of the updated response surface in an implemented
AADA case, a termination check is performed to determine whether
instrument time should be used for further sample characterization.
These termination criteria may vary greatly, being a function of many
potential factors including experimental systems, techniques, and even
time availability when user facility instrumentation is required. If ter-
mination criteria are not met, then a convergence check is executed on
the updated response surface. If at least one pre-specified convergence
criterion is met, the final response surface is used to obtain an optimal
parameter set, and a new simulation model is generated with these
determined optima. The new objective function value is recorded and
compared to the previous objective function value. Generally, if the
new value is better than the old value, then the new optimal parame-
ters are used for model simulation step. If the new value is worse, then
new adaptive sampling locations are generated until the modeled
response surface performance meets the convergence criteria.

Although the general ASMO procedure is conceptually con-
served, the optimal selection of surrogate model type is case-
dependent, and its selection criteria are related to instrument-specific
and user-specific research goals. As a practical example, the common
consensus is that the Gaussian process method is computationally
costly in the maximum-likelihood estimation calculation phase due to
a need to compute and decompose a dense n� n covariance matrix
[Oðn3Þ operations] at each iteration.45 However, data-parallel
approaches coupled with access to high performance computing
(HPC) resources can reduce the computational time without lowering
the computational cost. This enables an AADA user who performs
scanning hyperspectral imaging to potentially construct a lower-
fidelity surrogate of their sample’s ground truth with high accuracy
for their experimental system type,46,47 allowing for undetermined
hyperparameters to be tuned to the user’s experiments. These hyper-
parameters may potentially be saved across the user’s similar experi-
ments when AADA incorporates appropriate machine learning
approaches.48 Recent implementations of AADA have chosen surro-
gate model construction methods based upon experimental system
study goals, the physical limitations of techniques as the instrument
interacts with the experimental system, access to high performance
computing resources, and the available time period for modeling and
subsequent adaptive sampling location determination.38–40,43,49–51

III. AUTONOMOUS ADAPTIVE DATA ACQUISITION
FOR SCANNING HYPERSPECTRAL IMAGING

Recent autonomous experimentation use cases are primarily
implemented in the fields of autonomous vehicles,52,53 scientific com-
binatorial discovery approaches in fields similar to materials science
and chemical synthesis,54–57 and iterative research loops of planning,
experimentation,43 and analysis.58,59 However, the first public autono-
mous adaptive data acquisition for scanning hyperspectral imaging
was only publicly implemented for real-data acquisition in 2020.38,43

This delay in implementation is due not only to the maturing of
hardware technologies that were required to achieve acceptable signal-
to-noise levels for high quality real-data generation, but also to the
tailoring of autonomous adaptive data acquisition design to the

FIG. 2. General workflow of ASMO and its integration into AADA for a software-
physical system. Blue boxes represent behavior embedded into the AADA design
(software system aspect), whereas white boxes represent behaviors that are
instrument-specific to the implementation case (physical system aspect). Resampling
criteria can be set with respect to instrument performance expectations.
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experimental techniques and to the interest of those who use the tech-
nique for scientific study.

Three major challenges were identified from the recent imple-
mentation of surrogate modeling coupled with adaptive sampling
approaches in order to more efficiently create information-rich data
sets that reduce redundant information storage. These challenges for
practical implementation emerge from (1) instrument noise, (2)
dimensionality of the parameter space, and (3) definition of the experi-
mental goal. Roughly, analogous terms from related fields to describe
these challenges would be (1) distribution shifts that are difficult to
simulate in silico, (2) computational cost and time, and (3) complica-
tions with transfer learning or defining the scope of what should be
learned per experimental run. Each recent implementation case
attempted to address the relevant challenges through different meth-
odologies, which we broadly categorize into two general discussion
topics.

A. AADA implementation with high performance
computing

Many techniques for constructing surrogate models exist, but his-
torically radial basis function (RBF) and Gaussian process (GP) meth-
ods have performed well under several different modeling criteria.60

Therefore, it is understandable that large user facilities such as syn-
chrotrons are actively investigating GP-driven AADA design and
implementation—an AADA application where instrument time rather
than computational cost is the limited resource. In these cases, the GP-
scaling challenge that may drive the computational cost of model con-
struction upward to prohibitive levels can be addressed by efficient use
of HPC facilities.61,62 The first recent implementation of GP-driven
autonomous adaptive data acquisition was performed by Noack et al.
for the materials sciences. They used Gaussian priors and likelihoods
to inform the decision-making process and subsequently classified
their approach as a Bayesian optimization (BO) variant.43 Their gen-
eral workflow upstream of their surrogate modeling and adaptive sam-
pling in their application to a small-angle x-ray scattering (SAXS)
experiment involved:

(1) Obtaining a transmission SAXS pattern on an area detector
with one intensity channel per pixel on a 1475 � 1679 array,

(2) Fitting the intensity profiles to extract three analysis-derived
quantities of:
(i) The degree of anisotropy for the in-plane inter-nanorod

alignment,
(ii) A factor incorporating the azimuthal angle, and
(iii) The grain size of the ordered domains,

(3) Calculating the best-fit values and associated variances and
using these parameters to construct their redefined GP models,
and

(4) Using the GPR algorithms to adaptively select SAXS sampling
points as a function of surface coordinates (x,y).

Notably, they proposed two modifications to their surrogate
model construction to address instrument noise. They incorporate
non-identically distributed observation noise by redefining their likeli-
hood while also redefining the kernel function to incorporate the
allowance of anisotropy. Although this design decision may increase
computational cost in an attempt to increase model accuracy while

decreasing uncertainty, they clearly convey that this approach is
viewed as necessary for practical implementation of AADA for SAXS
on their specific instrument. When executing their experiment, they
divided the sampling time into two phases. The first 4 h (N< 464 sam-
ples) utilized the adaptive sampling workflow described above, while
the second phase of the experiment lasting 11 h (464�N� 1520)
aimed for the feature maximization mode. In summary, their first
phase of sampling is an efficient approach to understanding the total
search or mapped space, while the second phase utilized a weighted
value approach to implement constraint concepts for their feature
maximization mode.43,50 For their experimental study goals, the
autonomous adaptive data acquisition time was notably shorter than
the gold standard acquisition method while enabling the researchers
to spend the majority of their instrument time on spatially characteriz-
ing their sample’s highly ordered regions.43,51

More recent implementations of autonomous adaptive data
acquisition for materials science emphasize the concept of building a
foundation for fully automated future experimentation. In an example
that incorporates edge computing, Vasudevan et al. use a GP Bayesian
optimization (GP-BO) algorithm that is implemented with a cost-
effective multi-point sampling batch design for exploration of ferro-
electric systems using band excitation piezoresponse spectroscopy.40

This batch-sampling approach decreases model error per sampled
region by incorporating more sample points to describe the ground
truth of the sampled region while balancing the cost of moving the
AFM probe to a new region for subsequent data acquisition.
Conceptually, similar to the previous case, acquired multichannel data
are fitted to statistical models to obtain analysis-derived quantities of
amplitude, phase, frequency, and Q-factor for every sampled point.63

These quantities were used to determine hysteresis loops, and the cal-
culated loop areas were selected as the objective for maximization via
Bayesian optimization (BO) routines.64,65 Their approach does not
adjust their kernel function like the previous publication, but they
experimentally explore the dependency of hyperparameters on their
instrument-specific GP-BO data acquisition. Sampling efficiency was
calculated in time, where AADA took only 20% of the time required
for the gold standard approach.40 Additionally, the authors investigate
a concept of prior knowledge incorporation into the sampling by using
a convolutional neural network with four layers that is trained along
with the GP model, and they found that physical sample drift and
computational efficiency caused complications with this approach.
Although both methods increase sampling efficiency in comparison to
the gold standard method for their experimental technique, they con-
cluded that sampling efficiency can be improved to an even greater
degree by incorporating domain knowledge and prior physics knowl-
edge to the sampling process.40,66

Vasudevan’s and Kalinin’s experimentally verified findings were
further supported by development of active learning methods for 4D-
STEM imaging that prioritized balancing the efficient data collection
from regions of interest with the exploration and exploitation of char-
acterizing observable physical phenomena.44 Roccapriore et al. used a
GP-BO sampling strategy for their AADA implementation, and simi-
lar to Vasudevan and Kalinin, they incorporated deep kernel learning
via a deep neural network to investigate prior knowledge incorpora-
tion into their GP-BO sampling.40,44 Importantly, Roccapriore men-
tions the sampling constraints of 4D-STEM imaging and potentially
beam-sensitive materials—highlighting that each implementation of
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AADA will likely require future tailoring to the instrument, the imag-
ing technique, and the experimental system being studied.44

B. AADA for high-dimensional data acquisition
with computational efficiency

For experimental techniques that can acquire data on a rapid
timeframe with respect to computational time, it is important to prior-
itize sampling and computational efficiency in the space and time
domains, respectively. This can be interpreted as placing a constraint
on calculation time while emphasizing a relatively accurate spatial and
spectral interpolation-based representation of the assessed experimen-
tal system. These constraints are relevant when instrument manufac-
turers are able to acquire more sample points per unit time using a
uniform-grid scanning approach due to designed synergies between
software and automated hardware protocols considerations. Hence, to
avoid underperformance of implemented AADA on such systems,
computational expense of the AADA-based calculations should be
minimized while retaining an understanding of sequentially sampled
space for subsequent adaptive data acquisition.

Holman and Fang addressed this computational cost challenge
when implementing their autonomous adaptive data acquisition
approach that prioritized the data acquisition efficiency with respect to
computation time for high-dimensional spatiochemical hyperspectral
imaging. They designed their AADA approach with computer accessi-
bility in mind—their proof-of-concept experimental cases were per-
formed on computer hardware that is commonly tied with available
FT-IR spectral microscopes of the past decade.38 In their instrument-
specific circumstance, their analytical technique’s output was a contin-
uous infrared (IR) spectrum per spatial point in an x-y plane—each IR
spectrum defined by more than 1000 multichannel intensity values
that (1) are not necessarily independent from one another and (2)
exhibited experimental system-specific behavior due to the physico-
chemical information contained in the mid-IR spectral domain.

To minimize the computational cost associated with AADA,
Fang designed an alternative global surrogate modeling method called
two-dimensional (2D) barycentric linear interpolation with Voronoi
tessellation (LIV),38 which was inspired by and based on previously
established hybrid sequential design strategies implemented for global
surrogate modeling67 and robust error-pursuing sequential sampling
approaches for global metamodeling.68 These previous strategies share
the goal of creating a model that best approximates the behavior of the
simulator over the entire domain (global surrogate modeling) rather
than using local models to guide an optimization algorithm toward a
global optimum (local surrogate modeling). Hybrid sequential design
strategies for model construction achieve this goal by defining two dif-
ferent criteria: one for exploration and one for exploitation.67,69 For
reference, Crombecq et al. use a Monte Carlo Voronoi approximation
for their exploration criterion due to its computational efficiency and
simplicity; for their exploitation criterion, they introduce an algorithm
that selects sampling points by identifying those with significant devia-
tions from a local linear approximation (LOLA) of the function.69,70

By drastically reducing the model construction cost, autonomous
adaptive data acquisition could be driven by leave-one-out cross-
validation (LOOCV)37,71 for rapid and accurate error approximation
per sampled point in the experimentally mapped space.38,72 To briefly
summarize the generalized adaptive sampling workflow (where n¼ 5
in their implemented experimental cases),

(1) Initial sample points are acquired by selected design of
experiments,

(2) Operational mode selection (none vs. domain knowledge incor-
poration) and IR spectral processing occurs,

(3) Acquired and processed IR spectra is dimensionally reduced via
principal component analysis (PCA) to n components,

(4) At each point, n components are used to construct the LIV-
based surrogate models,

(5) The surrogate model’s sensitivity is quantified per point
through the associated and adjusted leave-one-out error at each
sampled point (see described methods38,73),

(6) The Voronoi area or tile associated with the largest Voronoi-
weighted leave-one-out error is selected for subsequent sam-
pling,72,74 and

(7) Steps 2–6 are iterated until termination criterion or criteria are
met (e.g., pre-determined total samples, acceptable error thresh-
old, etc.).

All operational modes of the IR spectral processing module exe-
cuted rubberband baseline correction to each IR spectrum in order to
reduce parameter input error—since scattering is a physical rather
than chemical system phenomena.75 When operating under the inclu-
sion of researcher’s domain knowledge, the IR spectral processing
module enabled parameter (channel value) selection after a prelimi-
nary screening of reference experimental system data. This implemen-
tation of the parameter screening and selection stage of data
processing can improve the quality of the constructed model. By
excluding regions of the IR spectrum that are sensitive to scattering
and other physical attributes of an experimental system, the researcher
can reduce parametric input error by excluding known parameters
that exhibit high sensitivity to noise and signal contamination while
exhibiting low sensitivity to the chemical composition of the research-
er’s sample. This version of researcher-informed parameter screening
and selection when coupled with the carefully designed AADA infra-
structure allowed for rapid identification, characterization, and poten-
tial spatiochemical surveillance of regions of interest while avoiding
sampling convergence to an easily characterized and potentially chem-
ically irrelevant subspace of the spectral parameter space.38 Holman
and Fang assessed the performance of their experimental LIV-based
AADA cases using instrument usage in time and their mean Voronoi-
weighted leave-one-out error to quantify model accuracy. Specifically
in their complex biological system case where domain knowledge was
applied to confine the mapping region boundaries, LIV-based AADA
efficiently obtained data over the same mapping region in 45min,
whereas the gold standard uniform-grid sampling required with
�4.9 h. They also noted that LIV-based AADA provided more com-
prehensive spatiochemical understanding of the total mapping region
at any given time interval for their scanning hyperspectral imaging
case, though they explicitly select 11min time intervals to exhibit this
concept.38 More broadly speaking, the IR spectral processing module
allows for this act-observe-update-decide cycle to function in a similar
manner to a human–computer team or an eventual multi-agent sys-
tem;76 this enables implementation for high performance AADA,
while the research community works toward generating specific
domain-based strains of AI that realistically and robustly represent
domain expert’s decision-making for the future AE development.2,77

In 2021, Noack et al. investigated the feasibility of implementing
GP-BO AADA to FT-IR spectromicroscopy, and they reported their
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findings with respect to its sampling efficiency in minimizing the total
number of sampled points to describe a 2D IR spectral map. Although
baseline correction, parameter screening, and parameter selection
were not performed, they also included dimensionality reduction using
via PCA (n¼ 3) to address the high dimensionality of the technique’s
data output.39 Utilizing the strengths of the GPR surrogate model,
they also introduced a feature-finding capability by defining a custom-
ized acquisition function to enforce the consideration of the correla-
tion coefficient between a given reference spectrum (feature) and the
reconstructed spectrum in real time.39 From their findings of this
high-dimensional feasibility study, the authors conclude that for near-
future GP-driven AADA implementation scanning hyperspectral
imaging, (1) the development and use of tools for HPC-based edge
computing optimization and (2) the communication of constraints for
acquiring scientifically relevant data require further research and
development.39 To directly address these challenges in 2022, Noack
and Krishnan proposed an algorithm that exploits the natural sparsity
of GPs in their native form in order to leverage heterogeneous HPC
architectures for scalable parallelism across graphics processing units
(GPUs), central processing units (CPUs), and tensor processing units
(TPUs) to reduce computational time.61,65

The importance of a computationally fast yet efficiently sampled
domain is key in high-dimensional scanning hyperspectral imaging,
and it serves as a potential foundation for time-resolved, noninvasive,
label-free spatiochemical imaging of dynamic experimental systems.
Noack and his coauthors focused on reducing computational time by
efficiently harnessing HPC resources to reach computed solutions
more quickly when using HPC architectures. Meanwhile, Holman’s
and Fang’s solution to reduce computational time was achieved by
decreasing the overall computational cost of their implemented
AADA by carefully selecting a surrogate modeling method that met
their technique’s criteria38 while incorporating their data processing
module to enable flexible human–computer coordination and com-
munication to tackle complex experimental system uncertainties.78

Both design philosophies have their strengths and weaknesses, and
perhaps a mixture of the two philosophies will offer a third variant of
computational time efficiency for future high-dimensional AADA
applications. In conclusion, it is important to understand the specific
research community’s needs and resources prior to designing and
implementing goal-oriented AADA for intelligent experiment
infrastructure.

IV. EXPANDING HIGH-DIMENSIONAL AADA
TO BIOLOGICAL SYSTEM STUDIES

Biological systems are often composed of complex subassemblies
that contain compartmentalized chemistries.79 These systems have
classically been characterized with either extremely targeted or high-
information-content yet destructive approaches. Targeted methods
conceptually involve either genetically encoding the reporter protein
sequence or binding a target of interest with a small-molecule
reporter—a common application of small-molecule fluorophores
being the targeted super-resolution imaging of subcellular pro-
cesses.80–83 Recent high-information-content methods such as directed
multi-omics approaches can generate comprehensive single-cell RNA,
DNA, and proteomic profiles on a biological system but are limited to
pseudo-temporal system characterization, in which dynamics are
inferred from a series of static measurements.84–86 However, these

now widely used approaches do not address the sensitivity of biological
systems,87,88 which is especially true in living systems that use nonequi-
librium dynamics to achieve not only apparent steady states88 such as
phenotypes but also perturbation-specific behavioral evolution.

Spatiochemical imaging techniques that can directly characterize
the experimental system in either its native or a largely unaltered state
are important for studies ranging from the environmental sciences6 to
biomedicine.89 As shown in Fig. 3(a), many biological studies seek to
characterize their chosen experimental system’s response to a variety
of stimuli, such as heat, chemical, and even in some circumstances,
electrical and magnetic stressors.90,91 Mid-infrared (mid-IR) and
Raman spectroscopies are at the forefront of label-free and noninva-
sive spatiochemical imaging, as both techniques generate molecular
fingerprint vibration spectra through measurements of linear IR
absorption or inelastic Raman scattering, respectively. However, due
to the very small cross section of spontaneous Raman scattering, which
limits the label-free bioimaging speed to tens of minutes per frame,92

the research community has turned toward Fourier transform infrared
(FT-IR) spectromicroscopy to noninvasively93,94 capture the dynamics
of living biological systems.95–97

FT-IR spectromicroscopy is a powerful tool for label-free and
noninvasive chemical analysis that merges visible light microscopy to
match physical morphology with chemical and molecular information
obtained from IR absorption spectral data. In this manner, mid-IR
spectra provide molecular insight into unlabeled chemical targets for a
more complete understanding of the organism’s evolving global bio-
chemical landscape as it responds to its local environment.98,99 A sim-
plified schematic of this concept is shown in Fig. 3(b), where spectral
interpretation complexity is reduced to an absolute change in specific
IR absorption intensities that accurately correlate with system behav-
ioral emergence ðt ¼ ti) and the establishment of a new nonequilib-
rium steady state ðt ¼ tn) that is distinct by some metric from its
native state ðt ¼ t0). As an example, previously published IR spectral
monitoring reveals spatially resolved chemical and temporal changes
in PC12 cell colonies responding to nerve growth factor [Fig. 3(c)].100

From a time-resolved spatiochemical mapping perspective [Fig. 3(d)],
the researcher would be interested in monitoring this change in 2D IR
spectral maps over space and time with a goal of having higher spatio-
temporal resolution in the regions of the system where chemical
change is occurring, or when t 2 ½ti; tn]. Therefore, we can construct a
time-resolved scanning hyperspectral imaging AADA design by
decomposing the problem into two independently solvable parts.

A solution for the first solvable part should address the goal of
obtaining a global understanding of the domain; in our biological sys-
tem example, the domain is defined as the 2D IR spectral map that is
acceptably described by some minimum number of M sample point
locations that we can describe as

P ¼ xk; ykð Þ 2 R2 jk 2N : k � M
n o

:

For simplicity, we can determine locations P using the previously
described LIV-based AADA solution38 to avoid prohibitive HPC
requirements in the construction of our tiered AADA architecture.
Building upon this efficient sampling foundation, we then can calcu-
late an optimal sampling path that minimizes total acquisition time
per 2D IR spectral map, this pathing solution dependent on practical
constraints of the specific instrument and its scanning probe. Optimal
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FIG. 3. Schematic of a generalized living biological system study to develop AADA for time-resolved scanning hyperspectral imaging of dynamic systems. (a) Cartoon depicting
a general experimental design that monitors an experimental system for unknown behavioral response to a stimulus. (b) A simplified depiction of spectral change with respect
to time of an otherwise high-dimensional space of broadband IR spectra. Representative t-values are described in the main text. (c) Reproduced with permission from
Loutherback et al., Anal. Chem. 87, 4601 (2015). Copyright 2015 American Chemical Society. Multiday IR spectral progression measurements of PC12 cell colonies showing
spatiochemical and spatiotemporal differences between cells in the center (left) and at edge (right) of the colony. Insets show peak area of glycogen and glycoprotein
(1190–930 cm�1), amide II (1580–1480 cm�1), and –CH2,3 (3000–2800 cm

�1). (d) Concept of temporally resolved spatiochemical mapping corresponding to the system’s
evolution timeframe in (a) and (b). In this case, the Voronoi areas (red) indicated spatiochemical change through a selected spectral metric detectable by models f x; y; tð Þ for
t � ti when compared to the 2D IR spectral map modeled by fðx; y; t0Þ.
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path data acquisition (optimized map sampling) can be iterated for all
Voronoi cell locations represented by P to generate 2D IR spectral
maps that serve as high-fidelity surrogates of the experimental system’s
ground truth, since they are by definition physically based granular
models101 that preserve the main body of processes exhibited by the
real experimental system.102 By resampling at every location in P, we
can establish time-course IR spectral data per Voronoi cell to identify
when spatiochemical changes begin to occur in the experimental
system.

A solution for the second portion of the original problem is
inspired by event-sensing strategies used to monitor rare-event propaga-
tion in wireless sensor networks. Generally, their objective-oriented pro-
tocols are designed to detect, monitor, and handle specific scenarios,
and these protocols can be activated upon detection of the appropriate
event. As a practical example fromHarrison et al., burst aware protocols
(BAP) respond to and handle a burst of network traffic from multiple
stationary nodes when a rare event is detected by multiple sensors. In
the BAP case, the goal is to avoid introducing unnecessary detection
delay during these burst events, and such protocols often incorporate a
carefully configured component deactivation element.103 Similarly for
our time-resolved FT-IR spectromicroscopy case, each sample point
location described by P can be viewed as a stationary node that gener-
ates an IR spectrum for each time t ¼ t0; t1;…; tn;…f g. However, our
goal is to increase the spatiochemical and spatiotemporal resolution of
map regions that are represented by nodes that show an evolution of
behavior over time. In living biological systems, it is common for the
system to exhibit an overall response to an external stimulus, but even
this response behavior can differ within a colony of the same cell type
depending upon the spatial location of the individual cell [Figs. 3(c)
and 4(a)].100 A detectable event or evolution of system behavior will
begin to emerge in a region of the 2D IR spectral map that can be repre-
sented by the red subset of sampling locations U � P, as conceptualized
in Fig. 4(b). This spatiochemical difference between two 2D IR spectral
maps can be detected by performing IR image analysis using established
chemometrics104,105 such as PC-LDA106 and MCR-ALS107 on each 2D
IR spectral map prior to evaluating and quantifying their differences. As
in Fig. 4(c), the most recently acquired 2D IR spectral map by optimized
map sampling will always be compared to the initial 2D IR spectral map
that closely represents the assessed experimental system’s steady state
f x; y; t0ð Þ. When the change is detectable in the comparison of
f x; y; tið Þ and f x; y; t0ð Þ, our sampling-switching architecture should
prioritize a protocol that is computationally inexpensive and provides
rapid, dense region of interest (ROI) sampling at locations URRS that are
spatially contained within the Voronoi areas represented byU .

Uniform-grid (UG) sampling meets the criteria for our rapid
ROI sampling and can quickly obtain high spatial sampling levels that
are necessary for achieving diffraction-limited spatial resolution via
improved image contrast.108,109 By decreasing the computational cost
with respect to the rapid sampling phase of our data acquisition, we
can invest our computing resources into high-dimensional hyperspec-
tral image analysis approaches to quantitatively compare and assess
the uncertainty in our comparison of two temporally proximal 2D IR
spectral maps.110 If HPC is available, more comprehensive approaches
to uncertainty modeling can be achieved either through tailored,
study-specific Bayesian formulations111 or by maintaining necessary
data granularity112 to describe the spatial and spectral uncertainty in
time113 and to avoid system under modeling in time.

Accurate modeling of spectral uncertainty in time is key in deter-
mining whether the spatiochemical change has occurred in the sam-
pled experimental system over time. This implies that both
experimental system and uncertainty modeling attributes directly
affect the performance sensitivity of our proposed time-resolved

FIG. 4. Proposed sampling-switching architecture for data acquisition that builds
upon established AADA for high-dimensional scanning hyperspectral imaging of
biological (dynamic) systems. (a) Reproduced with permission from Loutherback
et al., Anal. Chem. 87, 4609 (2015). Copyright 2015 American Chemical Society.
Hierarchical cluster analysis (HCA) maps of a multiday synchrotron IR experiment
on living PC12 cells as they respond to a nerve growth factor stimulus. Each pixel
is colored by HCA cluster assignment, and empty pixels were filtered from the data
analysis and colored dark blue. Scalebar is 30 lm. (b) A representative cartoon of
time-course 2D IR spectral maps that are acquired to describe a dynamic experi-
mental system. When t > ti , Voronoi diagrams use red tiles to represent spatio-
chemical change from baseline IR spectral map defined by fðP; t0Þ. At time tn when
detectable spatiochemical evolution stops, new sample point locations indicated
with new Voronoi diagram color-coding are acquired to efficiently describe the
domain of the 2D IR spectral map in spatial and spectral space. (c) Visualization of
hypothetical switch-based architecture to achieve time-resolved AADA with multiple
sampling tiers that can be selected modularly. Comparisons between models (pur-
ple arrows—directional relationship drawn from newly acquired model to reference
model) are performed in a sampling-dependent manner. Qualitative x-axis repre-
sents evolving time-course surrogates that are generated by switch-based sampling
methods (color-coded for clarity as horizontal lines). Qualitative time y-axis aids in
describing the evolution of model-comparison framework as our time-resolving
AADA architecture for surveillance-based scanning hyperspectral imaging operates
in time.
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AADA architecture for high-dimensional scanning hyperspectral
imaging. These attributes control the automated decision-making
behind (1) exiting rapid ROI sampling (exploitation—loop 1, part 2)
and (2) returning to a sampling mode that favors global surveillance of
the experimental system (balanced exploration and exploitation—loop
1, part 1; loop 2, part 2). As shown in Fig. 4(b), this requires ending
the sampling loop that was defined by sampling locations URRS, per-
forming AADA-driven selection of new sampling locations Q that effi-
ciently describe the spatiochemical distribution of the system’s new
apparent steady state, and calculating the optimal probe path to mini-
mize total data acquisition time over the locations defined by Q. For
our time-resolved AADA design case, we emphasized computational
cost minimization at all steps prior to our eventual computational
resource investment in the time-dependent, high-dimensional, spectral
uncertainty modeling step.

Many encountered challenges of label-free noninvasive FT-IR
spectromicroscopy for biological systems emerge from either the phys-
icochemical nature of the spectral data or the sample heterogeneity
exhibited by complex biological systems. However, these challenges
can be minimized effectively through sample preparation, appropriate
instrument settings, and IR spectral output screening, correction, and
selection protocols.38 This permits a logic-driven approach to a
switch-based adaptive sampling architecture to tackle the high-
dimensional data problem, which requires increasing information
granulation to accurately and precisely detect minute IR spectral
changes in time. Implementing a time-resolved AADA workflow for
FT-IR spectromicroscopy furthers biological system study accuracy
and comprehensiveness, especially those studies that generate targeted
and high-information-content data on rare-event phenomena. In this
case, FT-IR spectromicroscopy can serve as a noninvasive, real-time
analytical surveillance tool to identify when a studied biological system
starts to transition away from its apparent steady state. As soon as this
transition occurs, the biological sample can be removed from the
microscope stage and processed for the researcher’s subsequent high-
information-content experimental modalities. Some examples would
be downstream spatial114 or multi-omics115 methods that, while capa-
ble of providing rich information about a biological system, are often
destructive and, therefore, unsuitable for real-time longitudinal sur-
veillance. Time-resolved guidance by FT-IR spectromicroscopy has
the potential to drastically increase the chances of successful capturing
cellular information relevant to the emerging biological event.116,117

V. CONCLUSION AND OUTLOOK

Autonomous adaptive data acquisition for scanning hyperspec-
tral imaging broadly has many solutions. Only exceedingly rarely does
one specific approach work as an ideal solution for all cases. Instead,
conserved concepts emerge when decomposing each solution into its
modular subparts and viewing each module from an objective-centric
lens. Modular subcomponents can be tailored to synergistically
address a plethora of instrument-, experimental system-, or study-
specific constraints. These considerations include but are not limited
to acquisition time per sampled point for appropriate signal-to-noise,
dimensionality of the acquired data, noise and signal contamination
minimization, the estimated cost of probe movement over varying dis-
tances, sample preparation variation, adjustment of AADA architec-
ture for multi-probe parallelization, and even contextually defining
efficient data acquisition, which can be both field-dependent and user-

dependent. Some of these constraints also appear in other fields such
as geostatistics, engineering, and game theory, fields which have used
mathematics, computation, and statistics to develop and assess the
performance of many surrogate modeling methods, parameter estima-
tion challenges relating to sampled data noise handling, and adaptive
sampling strategies. This implies that as long as solutions to conserved
challenges have been addressed in a similarly modular manner in
other fields, these approaches can be deconstructed, modified, and
transferred in a piece-wise, objective-based manner to accelerate
AADA development and speciation for scanning hyperspectral imag-
ing applications.

For discovery-based biological studies involving high-dimensional,
scanning probe spectromicroscopy, AADA architecture can be seen as a
surveillance and protocol-based tool—especially when applied to living
biological systems. Since little is known a priori about the experimental
system, global understanding of the mapping region is valued along
with the ability to spatiotemporally capture the emergence and propaga-
tion of event-based processes. In the case of FT-IR spectromicroscopy,
recent technological advancements in IR-compatible microfluidics devi-
ces for living biological system studies,118–120 model-based correction
algorithms for complex tissue-substrate systems,121 platform-mediated
hyperspectral data connection with machine learning,122 and novel
method developments to bypass IR detector limitations such as that of
highly multimode quantum nonlinear interferometry123 work toward
addressing the historical hardware limitations of this analytical tech-
nique. With the development of these technologies, the incorporation of
FT-IR spectromicroscopy into workflows relating to autonomous exper-
imentation is becoming more feasible, suggesting that the research com-
munity first needs to develop various AADA architectures that can
serve as building blocks for the intelligent infrastructure of the future.

A user-friendly platform that supports a visual programming lan-
guage124 to construct these AADA architectures would catalyze the
development of the next generation AADA framework. This frame-
work would be necessary for a future of intelligent infrastructure that
supports not only hypothesis-driven AE but also discovery-driven AE
for complex systems. By increasing the accessibility of AADA architec-
ture development via visual programming languages, researchers can
adjust and store AADA architectures that meet their user-specific and
field-specific goals of experimentation. Meanwhile, those involved
with AE from an AI standpoint will benefit from the platform invest-
ment since researchers will be providing workflows that represent and,
therefore, communicate their decision-making process that is driven
by domain expertise. By storing and accruing this information over
time, trends in user-specific and system-specific decision-making can
be analyzed to not only aid the researcher in improving their experi-
mental workflows but also to generate data on researcher-driven deci-
sion-making processes—a necessary set of data to work toward AI that
can optimize human–computer interactions for AE-centric intelligent
infrastructure. We expect that such optimized AADA will help hyper-
spectral imaging reach its full potential to provide incisive analysis of
biological systems.
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