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ABSTRACT
Motivation: Discrimination between two classes such as
normal and cancer samples and between two types of
cancers based on gene expression profiles is an impor-
tant problem which has practical implications as well as
the potential to further our understanding of gene expres-
sion of various cancer cells. Classification or discrimination
of more than two groups or classes (multi-class) is also
needed. The need for multi-class discrimination method-
ologies is apparent in many microarray experiments where
various cancer types are considered simultaneously.
Results: Thus, in this paper we present the extension to
the classification methodology proposed earlier (Nguyen
and Rocke, 2002b, Bioinformatics, 18, 39–50) to classify
cancer samples from multiple classes. The methodologies
proposed in this paper are applied to four gene expression
data sets with multiple classes: (a) a hereditary breast
cancer data set with (1) BRCA1-mutation, (2) BRCA2-
mutation and (3) sporadic breast cancer samples, (b) an
acute leukemia data set with (1) acute myeloid leukemia
(AML), (2) T-cell acute lymphoblastic leukemia (T-ALL) and
(3) B-cell acute lymphoblastic leukemia (B-ALL) samples,
(c) a lymphoma data set with (1) diffuse large B-cell lym-
phoma (DLBCL), (2) B-cell chronic lymphocytic leukemia
(BCLL) and (3) follicular lymphoma (FL) samples, and (d)
the NCI60 data set with cell lines derived from cancers
of various sites of origin. In addition, we evaluated the
classification algorithms and examined the variability of
the error rates using simulations based on randomization
of the real data sets. We note that there are other meth-
ods for addressing multi-class prediction recently and our
approach is along the line of (Nguyen and Rocke, 2002b,
Bioinformatics, 18, 39–50).
Contact: dnguyen@stat.tamu.edu;
dmrocke@ucdavis.edu

INTRODUCTION
Since the introduction of DNA microarray technology to
quantitate thousands of gene expressions simultaneously
(Schena et al., 1995; Lockhart et al., 1996), there have

been increasing activities in the area of cancer classifica-
tion. For example, Golub et al. (1999) used a weighted
voting scheme for the molecular classification of acute
leukemia. Alon et al. (1999) used a clustering technique
based on the deterministic-annealing algorithm to classify
cancer and normal colon tissues. Scherf et al. (2000) used
average-linkage clustering for tumor tissues from various
sites of origin. Support Vector Machines (SVM) were
applied to the classification of tumor and normal ovarian
tissues by Furey et al. (2000). The use of gene expression
profiles to distinguish between negative and positive for
BRCA1 and BRCA2 mutation in hereditary breast cancer
was described by Hedenfalk et al. (2001). Nguyen and
Rocke (2002a,b) proposed binary classification methods
that combine the use of partial least squares (PLS) as
a dimension reduction method together with Logistic
Discrimination (LD) or Quadratic Discriminant Analysis
(QDA).

The need for multi-class classification methods is ap-
parent in the various microarray gene expression studies
described above. For example, Hedenfalk et al. (2001)
sought to classify primary breast cancers from three classes:
BRCA1 mutation, BRCA2 mutation, and sporadic cancer
cases based on the observed gene expression profiles.
Hedenfalk and co-workers employed the ‘one versus all’
strategy of classification. Multi-class cancer prediction
using gene expression data is an important problem and,
recently, various methods have appeared in the literature.

In this paper we also address this problem of multi-
class cancer classification using multivariate partial least
squares (MPLS) dimension reduction together with PD or
QDA. Microarray experiments are characterized by many
measured variables (genes), p, on only a relatively few
observations or samples N . Hence, the need for dimension
reduction methods. We first describe the methodologies
consisting of the dimension reduction method (MPLS)
and classification methods (PD and QDA) in the Section
Dimension Reduction Methods and the Section Classi-
fication Methods. A preliminary gene screening method
based on pairwise comparison and the analysis of variance
is also described. The classification methods were applied
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to four cancer gene expression data sets (see Results).
We evaluated the classification algorithms and examined
the variability of the error rates. Results were compared
to other classifiers, namely Diagonal Quadratic Discrim-
inant Analysis (DQDA), Diagonal Linear Discriminant
Analysis (DLDA), and classification trees (Dudoit et al.,
2000; Zhang et al., 2001). We also examined the effect
of varying K , the PLS (and PCA) dimension, on classi-
fication performance. Most technical details are deferred
to the Supplemental Appendix, which can be found at
http://stat.tamu.edu/∼dnguyen/supplemental.html.

DIMENSION REDUCTION METHODS
Suppose that a qualitative response variable y takes on
a finite number of unordered values, say 0, 1, . . . , G of-
ten referred to as classes (or groups). That is, y indicates
the cancer class 0, 1, . . . , or G, for instance. The prob-
lem of multi-class cancer classification is to predict the
cancer class based on a vector of gene expression values
x = (x1, x2, . . . , x p)

′. Most classification methods, such
as classical discrimination analysis or polychotomous dis-
crimination are based on the requirement that there are
more observations (N ) than there are explanatory vari-
ables or genes (p). One strategy to approach the problem
of classification when N < p is to reduce the dimen-
sion of the gene space from p to say K , where K � N .
This is done by constructing K gene components and then
classifying the cancers based on the constructed K gene
components.

The dimension reduction process is illustrated in Fig-
ure 1 using the NCI60 data set consisting of cell lines
derived from cancers of various origins. For illustration,
we have reduced a gene expression matrix, X of size N ×
p = 35 × 167, to three gene components, t1, t2, t3, using
multivariate PLS (see next section). It can be seen from
the 3-dimensional plot (Figure 1, bottom) that the three
MPLS gene components separate the five cancer classes
well (leukemia=*, colon=o, melanoma=+, renal=× and
CNNS=♦).

Multivariate PLS
In the well known method of Principal Components
Analysis (PCA), the goal is to extract gene components
sequentially which maximize the total predictor (gene)
variability, irrespective of how well the constructed gene
components predict cancer classes. In contrast to PCA,
univariate PLS (orthogonal) components are constructed
to maximize the sample covariance between the response
values (y) and the linear combination of the predictor or
gene expression values (X) (see Supplemental Appendix
B or Nguyen and Rocke (2002b) for details on PCA and
univariate PLS). When there are more than one response
variable, the objective criterion for maximization (under

orthogonality constraints) in multivariate PLS is

cov2(Xw, Yc) (1)

where w and c are unit vectors. The MPLS components
are denoted by tk and are linear combinations of the gene
expression values (X) with coefficients given by wk (satis-
fying the maximization criterion (1)). The PLS algorithm
to obtain w (and c) is simple and fast. The algorithm can
be found in Höskuldsson (1988), Garthwaite (1994) and
Helland (1988).

The response matrix Y in (1) consists of continuous re-
sponse variables, which is the setting MPLS was designed
for. However, in the current context, we have a qualita-
tive response variable y consisting of classes 0, 1, . . . , G,
namely, cancer type 0 through cancer type G. We need
to convert or recode the response information indicating
cancer class, namely y, into a response matrix Y. To do
this with the G + 1 cancer classes we created G ‘design
variables’ representation (or ‘reference cell coding’) of y.
That is, we define the N × G response matrix Y with
elements yik = I (yi = k) for i = 1, . . . , N and k =
1, . . . , G. We have used I (A) to denote the indicator func-
tion for event A, so that I (A) = 1 if A is true and it is 0
otherwise. Other strategies for constructing Y are possible.

Thus, K � N multivariate PLS gene components,
t1, . . . , tK , are extracted according to (1) using the orig-
inal gene expression matrix, X, and the response matrix,
Y, constructed from the vector of cancer class indicator y.

CLASSIFICATION METHODS
In this section we describe two classification methods,
which can be applied to make class prediction after
dimension reduction. Polychotomous Discrimination (PD)
is a generalization of logistic discrimination when there
are more than two classes. QDA works for two or more
classes. We also describe in this section a preliminary
ranking and selection of the large number of genes used
for the analyses.

Polychotomous discrimination
Assume that the qualitative response variable y can take
on finite values, y = k, k ∈ {0, 1, . . . , G} ≡ O. The
distribution of y depends on predictors x1, . . . , x p. For
example, the kth cancer type (y = k) depends on the p
gene expression levels x1, . . . , x p in a given experiment.
The response variable y is a G-valued random variable
and assume that π(k | x) = P(y = k | x) > 0 for all
x ∈ X ⊂ Rp+1 and k ∈ O. For convenience we define
the notation

gk(x) = log

(
π(k | x)

π(0 | x)

)
, for x ∈ X and k ∈ O.

(2)
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Fig. 1. Illustration of dimension reduction for NCI60 data. For the NCI60 data, the ‘original’ gene expression data set used here is X35×167
and K = 3 PLS gene components are constructed giving T35×3 = [t1, t2, t3]. The 3-dimensional PLS gene components plot illustrate the
separability of the cancer classes: leukemia=*, colon=o, melanoma=+, renal=× and CNNS=♦.

This is the log of the ratio of the probability of a sample
with gene expression profile x being of cancer type k
relative to cancer type 0. Often this quantity (gk(x)) is
modelled as a linear function of the p gene expressions,
x,

gk(x) = log

(
π(k | x)

π(0 | x)

)
= βk0 + βk1x1 + βk2x2

+ · · · + βkpx p = x′βk . (3)

Thus, the conditional class probabilities are

π(k | x) = exp(gk(x))

1 + ∑K
k=0 exp(gk(x))

, x ∈ X and k ∈ O.

(4)

This is the probability that a sample with gene expression
profile x is of cancer class k. We take (4) as the
polychotomous regression model and note that π(k |
x) ≡ π(k | x; β) is a function of ν = G(p + 1)

parameters β ′ = (β ′
1, . . . , β

′
K ) (β ∈ RG(p+1)), with

βk = (βk0, βk1, . . . , βkp)
′.

Estimate of β is obtained by maximum likelihood
estimation (MLE) and it is described in the Supplemental
Appendix A. The MLE of β is denoted β̂ and it can be
obtained (if it exists) when there are more samples than
there are parameters, i.e. when N > ν = G(p + 1). Thus,
after dimension reduction we can use PD by replacing the
full gene profile x by the corresponding gene component
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profile in the reduced space obtained by MPLS or PCA.
From the estimated coefficient vector β̂, the estimated

conditional class probabilities π̂(k | x) k = 0, . . . , K can
be obtained by substituting β̂ into (4). A given sample
with gene expression profile x is then predicted to be of
cancer class k with maximum estimated conditional class
probability π̂(k | x). That is, we classify a sample as a
cancer of class k if the estimated probability of observing
a cancer of this class given the gene expression profile,
x, is higher than the probability of observing any other
class of cancer given the same gene expression profile.
See Hosmer and Lemeshow (1989), Kooperberg et al.
(1997) and Albert and Anderson (1984) for details on
polychotomous regression.

Quadratic discriminant analysis
Another classification method that can be used after
dimension reduction is quadratic discriminant analysis
(QDA). QDA is based on the classical multivariate normal
model for each class: x | y = k ∼ Np(�k, µk), x ∈ Rp

and k = 0, 1, . . . , G (for binary classification, G = 1).
The (optimal) classification regions are Rk = {x ∈ Rp :
pk fk(x) > p j f j (x), j �= k}, where fk is the pdf of
x | y = k given above and pk = P(y = k). The posterior
probability of membership in class k is πk = P(y =
k | x) = exp[qk(x)]/ ∑K

i=0 exp[qi (x)]. As in PD, the
full gene profile, x, is replaced by the corresponding gene
component profile in the reduced space obtained from
MPLS or PCA. For details on QDA and other classical
classification methods the reader is referred to Mardia et
al. (1979), Johnson and Wichern (1992) and Flury (1997).

Preliminary gene screening
For any given classification problem we may also select
the genes which are ‘good’ predictors of the cancer
classes. In the binary case, preliminary selection and
ranking of the genes based on t-scores worked well. For
more than two classes, we ranked and selected the genes
for multi-class prediction as follows. We compared all(G+1

2

)
pairwise (absolute) mean differences, |x̄k − x̄k′ | (for

k �= k′, k, k′ ∈ O), to a critical score

t

√
M SE

(
1

nk
+ 1

nk′

)
. (5)

M SE (mean squared error) is the estimate of variability
from the analysis of variance (ANOVA) model with one
factor and G+1 (cancers) groups and t is the tα/2,N−(G+1)

value of the t-distribution. Each gene ( j = 1, . . . , p)
is ranked according to the number of times the pairwise
absolute mean difference exceeded the critical score.

RESULTS
We summarize the results of multi-class prediction using
the proposed methodologies. The results are described
separately for each of four gene expression data sets
consisting of human cancer samples; (1) hereditary breast
cancer; (2) NCI60 cell lines derived from cancers of
various origins; (3) lymphoma; and (4) acute leukemia.

Hereditary breast cancer data
Hedenfalk et al. (2001) studied gene expression patterns
in hereditary breast cancer (HBC). Many cases HBC
are attributed to individuals with a mutant BRCA1 or
BRCA2 gene. Breast cancers with BRCA1 or BRCA2
mutation have pathologically distinct features (e.g. high
mitotic index, noninfiltrating smooth edges and lympho-
cytic infiltrate, grade level; see Hedenfalk et al. (2001,
p. 539–540)). Furthermore, distinctive features of BRCA1
and BRCA2 cancers are used to distinguish them from
sporadic cases of breast cancers. Previous experimental
evidence indicates that generally cancers with BRCA1
mutation lacks both estrogen and progesterone receptors
but these hormones receptors are present in those with
BRCA2 mutations (Karp et al., 1997; Johannsson et al.,
1997; Loman et al., 1998; Verhoog et al., 1998). Also,
functional BRCA1 and BRCA2 proteins are involved in the
repairing of damaged DNA, hence, cells with the mutant
genes have decreased ability to participate in DNA repair.

Hedenfalk et al. (2001) monitored the global expression
patterns of 7 cancers with BRCA1 mutation, 8 with BRCA2
mutation, and 7 sporadic cases of primary breast cancers
using cDNA microarrays. There were 6512 cDNA used
which represent 5361 unique genes. Selected for analysis
were p = 3226 genes and these are available publicly. We
considered multi-class classification methods to predict
each sample as a breast cancer with BRCA1 mutation,
BRCA2 mutation or as sporadic breast cancer based on the
observed gene expression profiles.

Preliminary ranking and selection of the genes for anal-
ysis was carried out as described in the Section Classi-
fication methods. The number of genes with 0, 1, 2 or
3 pairwise absolute mean differences exceeding the crit-
ical score is 2269, 541, 405, or 11 respectively. Thus, of
the 3226 genes 2269 showed no pairwise absolute mean
difference and only 11 genes showed all 3 pairwise differ-
ences. The subset of genes selected for analysis is denoted
by p∗. We considered two analyses based on p∗ = 11
(genes with all 3 pairwise differences) and p∗ = 416
(genes with at least 2 pairwise differences).

We applied multivariate PLS and PCA to reduce the
dimension from p∗ = 11 or p∗ = 416 to K =
3 MPLS gene components and 3 PCs respectively. All
analyses were based on standardized log expression
ratios. Prediction of each of the N = 22 samples as
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BRCA1, BRCA2, or as sporadic was carried out using
PD and QDA based on the constructed gene components.
Prediction results were based on leave-out-one cross-
validation (LOOCV). The results are summarized in Table
1A0 (left). PD using MPLS gene components correctly
classified all 22 samples using either p∗ = 11 or p∗ = 416
genes. For p∗ = 416 MPLS components in QDA and
PCs in PD also correctly predicted all samples into their
cancer classes. For this data set MPLS gene components
performed better than PCs in both PD and QDA.

An interesting sporadic sample misclassified by PCs
using QDA (p∗ = 416) is sample 20. When classifying
all samples as either BRCA1-mutation-positive versus
negative (binary classification) Hedenfalk et al. misclas-
sified this sporadic sample as having a BRCA1 mutation.
We obtained similar results using the method reported
in (Nguyen and Rocke, 2002b) for binary classification.
(results not shown here). Studies have suggested that
abnormal methylation of the promoter region is indicative
of inactivation of the BRCA1 gene (Catteau et al., 1999;
Esteller et al., 2000); therefore, such samples show sim-
ilar phenotypes as samples with BRCA1 mutation. Thus,
such samples are potential candidates for misclassification
when using data at the molecular level. However, expres-
sion patterns (or lack thereof) of an inactivated gene is not
identical to that of a mutated gene.

NCI60 data: cell lines derived from various cancer
sites
This data set is from (Ross et al., 2000) and Scherf
et al. (2000). For illustration of the multi-class cancer
classification methods we considered classification of 6
cancer types: leukemia (n1 = 6), colon (n2 = 7),
melanoma (n3 = 8), renal (n4 = 8), and CNS (n5 =
6). We used a subset of 1376 genes and 40 individually
assessed targets (p = 1416) analyzed by Scherf et al.
(2000) relative to drug activities of the same cell lines,
which is publicly available. For this data set there are some
missing gene expression values. Genes with 2 or fewer
missing values (out of 35) were included for analysis by
replacing the (1 or 2) missing values with the median of
the gene’s expression. This resulted in a subset of 1299
genes which we used for analysis.

Applying the preliminary gene ranking procedure re-
sulted in the following ranking of the genes: 167 (0), 76
(1), 115 (2), 119 (3), 266 (4), 148 (5), 241 (6), 109 (7),
53 (8), 5 (9), 0 (10). That is 167 genes showed no pairwise
absolute mean difference, 76 genes showed 1 pairwise dif-
ference, etc. We pooled all genes showing at least 8 pair-
wise differences (p∗ = 58) and also all genes showing
at least 7 pairwise differences (p∗ = 167) for analysis.
As before dimension reduction via MPLS and PCA and
classification using PD and QDA were then used to predict
the cancer class of each sample. The classification results

based on LOOCV are displayed in Table 2A0 (left). With
p∗ = 58 genes 3 MPLS gene components and PCs cor-
rectly classified all cancer classes using PD. Three MPLS
gene components constructed from p∗ = 167 genes also
correctly classified all cancer classes with PD. These com-
ponents are plotted in Figure 1. QDA did not perform as
well with one misclassification when using MPLS gene
components (both p∗ = 58 and 167). This commonly mis-
classified sample (#14), a melanoma sample, is marked in
Supplemental Figure 1 (bottom) and it can be seen that this
sample do not group with the other melanoma samples.

Lymphoma data
The lymphoma data set was published by Alizadeh et al.
(2000) and consists of gene expressions from cDNA ex-
periments involving three prevalent adult lymphoid ma-
lignancies: Diffuse Large B-Cell lymphoma (DLBCLL;
n1 = 45), B-Cell Lymphocytic Leukemia (BCLL; n2 =
29) and Follicular Lymphoma (FL; n3 = 9). We ana-
lyzed the standardized log relative intensity ratios, namely
the log(Cy5/Cy3) values. We consider multi-class cancer
classification of all 3 classes simultaneously here. We an-
alyzed a subset of the data consisting of p = 4151 genes.
Preliminary ranking resulted in 2168 genes with 0 pair-
wise absolute mean difference, 1003 with 1, 896 with 2,
and 84 with all 3 pairwise absolute mean expression dif-
ferences.

Using LOOCV, each sample was predicted to be DL-
BCL, BCLL, or FL based on 3 gene components con-
structed from p∗ = 84 genes (with all 3 pairwise mean
differences) and p∗ = 980 genes (with at least 2 pairwise
mean differences). The results are given in Table 3A0 (left)
For PD MPLS gene components performed better than
PCs with two misclassifications (97.6%). However, for
this data set QDA performed best with only one misclassi-
fication (98.8%). A BCLL sample (#51) was misclassified
by all (eight combinations) of the methods. MPLS gene
components performed better than PCs for p∗ = 84 and
the results are equal for p∗ = 980.

Acute leukemia data
The data set used here is the acute leukemia data set
published by Golub et al. (1999). The original training
data set consisted of 38 bone marrow samples with 27
Acute Lymphoblastic Leukemia (ALL) and 11 Acute
Myeloid Leukemia (AML) (from adult patients). The
independent (test) data set consisted of 24 bone marrow
samples as well as 10 peripheral blood specimens from
adults and children (20 ALL and 14 AML). It has been
noted that global expression patterns of T-cell ALL (T-
ALL) and B-cell ALL (B-ALL) are distinct and can
be used to differentiate between the two sub-classes of
ALL (Golub et al., 1999). Thus, for multi-class cancer
discrimination we pooled the two data sets to obtain N =
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Table 1. Hereditary breast cancer data. N = 22, n1 = 7 (BRCA1), n2 = 8 (BRCA2), and n3 = 7 (sporadic). Given (left side) are the proportion of
misclassification out of N = 22 samples from classification studies A0, A1, and A2. Note that in study A2 the genes are reselected N times, each time with
one sample left out, so under the column p∗ the numbers given are the min–mean–max of the number of genes over the N reselections (also, under column
p∗, in parentheses, is the number of pairwise absolute mean differences). For comparison classification studies A0, A1, and A2 were repeated (right side)
using DQDA and DLDA from Dudoit et al. (2000). Note that DQDA and DLDA are special cases of QDA with �g = diag{σ 2

g1, . . . , σ 2
gp} for g = 0, 1, . . . , G

and �g = diag{σ 2
1 , . . . , σ 2

p} (not depending on cancer class g) respectively. The samples misclassified from study A0, with superscript 1, 2 and s indicating

BRCA1, BRCA2 and sporadic respectively, are given at the bottom of the table.

p∗ PD QDA DQDA DLDA
MPLS PCA MPLS PCA MPLS PCA MPLS PCA

A0
11 (3) 0.000 0.046 0.091 0.136 0.046 0.000 0.046 0.000
416 (≥ 2) 0.000 0.000 0.000 0.091 0.000 0.000 0.000 0.000

A1
11 (3) 0.136 0.000 0.227 0.591 0.091 0.591 0.046 0.182
416 (≥ 2) 0.000 0.000 0.091 0.555 0.000 0.591 0.000 0.000

A2
8-11-15 (3) 0.409 0.318 0.364 0.591 0.364 0.500 0.409 0.273
343-391-438 (≥ 2) 0.318 0.364 0.318 0.500 0.409 0.727 0.273 0.272

Samples misclassified from A0.
p∗ = 11 p∗ = 416
MPLS–PD MPLS–PD
PCA–PD (#16s ) PCA–PD
MPLS–QDA (#21, 152) MPLS–QDA
PCA–QDA (#21, 132, 21s ) PCA–QDA (#16s , 20s )

Table 2. NCI60 data: 5 cancer classes. N = 35, n1 = 6 (leukemia), n2 = 7 (colon), n3 = 8 (melanoma), n4 = 8 (renal) and n5 = 6 (CNS). For details see
Figure 1 caption. The samples misclassified from studies A0, with superscript le, co, me, re, and cn indicating leukemia, colon, melanoma, renal, and CNS
respectively are given at the bottom of the table.

p∗ PD QDA DQDA DLDA
MPLS PCA MPLS PCA MPLS PCA MPLS PCA

A0
58 (≥ 8) 0.000 0.086 0.029 0.143 0.029 0.057 0.029 0.057
167 (≥ 7) 0.000 0.000 0.029 0.086 0.000 0.029 0.029 0.029

A1
58 (≥ 8) 0.000 0.229 0.086 0.543 0.029 0.571 0.029 0.057
167 (≥ 7) 0.029 0.029 0.057 0.543 0.029 0.457 0.029 0.057

A2
41-54-69 (≥ 8) 0.429 0.229 0.257 0.514 0.171 0.486 0.143 0.114
148-159-189 (≥ 7) 0.257 0.057 0.200 0.400 0.114 0.400 0.086 0.057

Samples misclassified from A0.
p∗ = 58 p∗ = 167
MPLS–PD MPLS–PD
PCA–PD (#29re, 31cn , 34cn ) PCA–PD
MPLS–QDA (#14me) MPLS–QDA (#14me)
PCA–QDA (#14me, 26re, 29re, 31cn , 34cn ) PCA–QDA (#1le, 14me, 30cn )

72 samples with three cancer classes: (1) AML (n1 = 25),
(2) B-ALL (n2 = 38) and (3) T-ALL (n3 = 9).

We log transformed the gene expressions to have mean
zero and standard deviation one across samples. For
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Table 3. Lymphoma data. N = 83, n1 = 45 (DLBCL), n2 = 29 (BCLL), and n3 = 9 (FL). For details see Figure 1 caption. The samples misclassified from
studies A0, with superscript D, B and F indicating DLBCL, BCLL and FL respectively, are given at the bottom of the table.

p∗ PD QDA DQDA DLDA
MPLS PCA MPLS PCA MPLS PCA MPLS PCA

A0
84+ (3) 0.024 0.060 0.036 0.072 0.048 0.060 0.048 0.048
980 (≥ 2) 0.048 0.048 0.012 0.012 0.012 0.048 0.036 0.024

A1
84+ (3) 0.036 0.060 0.036 0.470 0.048 0.386 0.048 0.193
980 (≥ 2) 0.048 0.145 0.012 0.554 0.012 0.265 0.036 0.145

A2
70-84-112 (3) 0.024 0.084 0.048 0.458 0.060 0.422 0.072 0.205
878-971-1168 (≥ 2) 0.072 0.169 0.024 0.566 0.024 0.265 0.036 0.169

Samples misclassified from A0.
p∗ = 84 p∗ = 980
MPLS–PD (#9D, 51B ) MPLS–PD (#9D, 32D, 48B , 51B )
PCA–PD (#9D, 11D, 18D, 51D, 55D) PCA–PD (#9D, 32D, 48B , 51B )
MPLS–QDA (#5D, 11D, 51B ) MPLS–QDA (#51B )
PCA–QDA (#9D, 11D, 18D, 51B , 55B , 75F ) PCA–QDA (#51B )

+ Model without intercept.

the subsequent analyses we used a subset of p =
3490 genes. Preliminary ranking resulted in 1945 genes
with 0 pairwise absolute mean difference, 732 with
1719 with 2, and 84 with all 3 pairwise absolute mean
expression differences. As before, using LOOCV, each
sample was predicted to be AML, B-ALL, or T-ALL
based on 3 gene components constructed from p∗ = 94
genes (with all 3 pairwise mean differences) and p∗ =
813 genes (with at least 2 pairwise mean differences).
The results are given in Table 4A0 (left) Classification
methods compared similarly as for the lymphoma data set.
Best classification results come from QDA with MPLS
components constructed from p∗ = 813 genes (all
correct) and from p∗ = 94 genes (1 incorrect). In all
eight analyses combined there were 4 samples which were
misclassified: two B-ALL (# 12, 17), one AML (#66), and
one T-ALL (#67).

Assessment of classification algorithm
The classification results given in Tables 1A0–4A0 (left)
is based on the following classification algorithm:

Algorithm A0

1. Select Genes: Select a set, S , of p∗ genes as described
by (5) giving an expression matrix, X, of size N × p∗.

2. Dimension Reduction: Fit PLS (or PCA) to obtain
PLS gene components matrix, T, of size N × K .

3. Classification/Prediction: Classification is based
on LOOCV.

FOR i = 1 to N DO
Leave out sample (row) i of T. Fit classifier to the
remaining N − 1 samples and use the fitted
classifier to predict left out sample i .

END

Note that for a given expression matrix, X, steps 1 (gene
selection) and 2 (dimension reduction) are fixed with re-
spect to LOOCV in algorithm A0. Thus, the effect of gene
selection and dimension reduction on the classification can
not be assessed. Based on a large simulation study of al-
gorithm A0, using randomizations of the real data sets
(BRCA, NCI60, Lymphoma, and Leukemia), the classi-
fication error rates were more optimistic than the expected
error rates (results not shown). The potential sources of
this problem may be with the gene selection (step 1) and/or
the dimension reduction (step 2).

To assess the effects of gene selection and dimension re-
duction on classification we considered two modifications
to algorithm A0. The first modification, given as algo-
rithm A1 below, is to assess the affects of the dimension
reduction step. In algorithm A1, the gene selection step is
still fixed, but now the dimension reduction as well as the
classifier is refitted N times, one for each sample left out.

Algorithm A1

1. Select Genes: Select a set, S , of p∗ genes as
described by (5) giving an expression matrix, X, of
size N × p∗.
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Table 4. Acute leukemia data. N = 72, n1 = 25 (AML), n2 = 38 (B-ALL), and n3 = 9 (T-ALL). For details see Figure 1 caption. Tthe samples misclassified
in study A0, with superscript A, B and T indicating AML, B-ALL and T-ALL respectively, are given at the bottom of the table.

p∗ PD QDA DQDA DLDA
MPLS PCA MPLS PCA MPLS PCA MPLS PCA

A0
94 (3) 0.056 0.056 0.014 0.042 0.028 0.042 0.028 0.042
813 (≥ 2) 0.042 0.056 0.000 0.028 0.014 0.042 0.014 0.042

A1
94 (3) 0.056 0.111 0.028 0.222 0.028 0.181 0.042 0.042
813 (≥ 2) 0.056 0.153 0.028 0.417 0.028 0.319 0.042 0.083

A2
69-90-100 (3) 0.056 0.111 0.056 0.236 0.056 0.264 0.056 0.111
710-804-850 (≥ 2) 0.056 0.167 0.042 0.431 0.042 0.306 0.056 0.111

Samples misclassified from A0.
p∗ = 94 p∗ = 813
MPLS–PD (#12B , 17B , 66A, 67T ) MPLS–PD (17B , 66A, 67T )
PCA–PD (#12B , 17B , 66A, 67T ) PCA–PD (#12B , 17B , 66A, 67T )
MPLS–QDA (#12B ) MPLS–QDA
PCA–QDA (#12B , 66A, 67T ) PCA–QDA (#12B , 67T )

+ Model without intercept.

FOR i = 1 to N DO
Leave out sample (row) i of expression matrix X,
say X−i .

2. Dimension Reduction: Fit PLS (or PCA) using X−i
to obtain PLS gene components matrix, T−i .

3. Classification/Prediction: Fit classifier to the
remaining N − 1 samples, i.e. using T−i . Use the
fitted classifier to predict left out sample i .

END

However, the choice of the gene set used for classi-
fication can have a large affect on classification. Thus,
the second modification, given as algorithm A2 below,
involves reselecting the gene set for classification each
time a sample is left out.

Algorithm A2

FOR i = 1 to N DO
Leave out sample (row) i of original expression matrix
XO (N × p).

1. Select Genes: Select a set, S−i , of p∗ genes as
described by (5) giving an expression matrix,
X−i , of size N − 1 × p∗.

2. Dimension Reduction: Fit PLS (or PCA) using X−i
to obtain PLS gene components matrix, T−i .

3. Classification/Prediction: Fit classifier to the
remaining N − 1 samples, i.e. using T−i . Use the
fitted classifier to predict left out sample i .

END

Classification was repeated on each of the four data sets
using algorithm A1 and A2 to assess the effects of dimen-
sion reduction and gene selection. The results are given in
Tables 1–4 under A1 and A2 (left). For the breast cancer
(BRCA) and the NCI60 data (both small sample sizes)
the effect of the set of genes selected (A2) for classifi-
cation is large. The percentage of misclassification varies
from 31.8–40.9% for the BRCA data and 5.7–42.9% for
the NCI60 data. Refitting the dimension reduction (A1)
had less effect, with classification error rates relatively low
for all four data sets, with the exception of QDA using
principal components (QDA–PCA) where the classifica-
tion error rates are high whether the genes were reselected
(A2) or not (A1). However, the effect the gene choice ap-
peared to be diminished for the lymphoma and leukemia
data (both with larger sample sizes) where classification
error rates from A1 and A2 appear to be quite similar and
relatively low. In fact the error rates from A1 and A2 are
similar to those from A0 for the leukemia and lymphoma
data, again, with the exception of QDA–PCA.

Evaluation of classification results: randomization
studies
The reliability of classification results is an important issue
and we further address this issue in relation to the small
sample size associated with microarray data, especially in
cancer microarray data. As can be seen from the previous
section, for the BRCA and NCI60 data, both with small
sample sizes, the variation of the observed classification
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Fig. 2. Classification of NCI60 data under randomization—A1 & A2. Each histogram is of B = 100 classification error rates from B
randomized data sets using algorithm A1 (columns 1, 2) and A2 (columns 3, 4). The observed gene expression profiles were randomly
assigned cancer labels (leukemia, colon, melanoma, renal, or CNS). Class sizes (the ni s) were the same as the original data set. The
corresponding observed error rates given in Table 2.A1 and Table 2.A2 are indicated by the solid lines in the histograms.

error rates can be large.
As a minimum, we checked to see whether the observed

classification error is lower that classification on ‘random’
data. That is, randomly assign the cancer labels (cancer
group 0, 1, . . . or G) to each gene expression profile
(sample) to generate a ‘new’ permuted data set, say X∗.
We randomly generated B = 100 permuted data sets,
X∗

(1), . . . , X∗
(B) and obtained corresponding classification

error rates e1, . . . , eB using both algorithm A1 and A2.
The observed classification error rate from the original
(real) data set, say eobs (given in Tables 1A1–4A2 and
1A2–4A2), can be compared to the distribution of error
rates obtained from randomization (the ei s). This was
carried out on all four data sets for every subset of genes
and methods combination used.

For example, the distribution (histogram) of error rates
from randomization corresponding to observed error rates
in Table 1A2 (NCI60 data) is given in Figure 2. This
distribution of error rates was obtained by fixing the
gene set and refitting the dimension redution step as
described by algorithm A1. The histogram is of B = 100
error rates. This was repeated by reselecting the genes
and refitting the dimension at each step (algorithm A2;
Figure 2). Similar disribution of error rates for the breast
cancer, lymphoma, and acute leukemia data are given in
Supplemental Figures 1–6.

The results displayed in Figure 2 and the Supplemental

Figures 1–6 suggest that, in all cases, the observed
classification error rate is significantly less than would be
expected under randomization. Finally, we also note that
the simulation studies given here only suggest that the
observed classification rates reported in Tables 1–4 are
much lower than would be expected at random, which
is obvious. As with any other analytical method, further
validation based on new real data will shed more light on
its usefulness.

Comparisons to DQDA, DLDA and classification
tree
Comparing classification performances from various meth-
ods is often of interest. Classification results from DQDA
and DLDA using algorithms A0, A1, and A2 are summa-
rized in the right side of Tables 1–4 (A0, A1, and A2). The
‘simplest’ classifier DLDA, particularly DLDA–MPLS,
performed very well and other results are similar to those
reported in the earlier section. We also compared to the re-
cursive partitioning (classification tree) method of Zhang
et al. (2001). The overall leave-one-out cross-validated
classification errors for the leukemia, lymphoma, NCI, and
BRCA data sets were 15.2%, 10.84%, 22.86% and 90.9%.
For a more detailed description of these comparisons see
the Supplemental Appendix D.
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Selecting the number of gene components
We have chosen K = 3 gene components to fit classifiers.
This is based on a study of K as a ‘tuning’ parameter.
Increasing K above 5 does not drastically improve classifi-
cation results. K = 3, 4, or 5 often provide similar results,
so the simpler choice of K = 3 is more desirable. Details
of the study of K is given in the Supplemental Appendix
E and Supplemental Figure 7.

DISCUSSION
We have proposed multi-class cancer classification meth-
ods in this paper, which are extension of the methods
proposed in an earlier paper for binary tumor classifica-
tion. The utility of the methods will be further evaluated as
more experimental data becomes available. An advantage
of the methodologies proposed is that other classification
methods can be utilized (other than PD and QDA) after
dimension reduction via MPLS, for instance. As discussed
in the Supplemental Appendix, numerical methods are
needed to obtain the MLE in PD and the existence of the
MLE depends on the data configuration. One disadvantage
of using PD is when there is quasi-complete separation in
the data. Detection of quasi-complete separation is numer-
ically burdensome and classification is usually poor. (See
Supplemental Appendix A for details.) Also, inversion
problems can be encountered in the Newton–Raphson
algorithm when searching for the MLE.

We have also provided a careful evaluation of the clas-
sification algorithm and demonstrated how the error rates
are highly influenced by gene selection and LOOCV (of-
ten used with small sample sizes). Supplemental Appendix
C contains a brief discussion of an alternative gene selec-
tion and normalization issues.
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