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Abstract 
This paper presents simulations of eye movements during read-
ing, lexical decision, and naming using Über-Reader, a new 
computational model that aims to provide a complete account 
of the perceptual, cognitive, and motor processes involved in 
reading. The present simulations focused on Über-Reader’s 
word-identification module—an implementation of the Multi-
ple-Trace Memory model (Ans et al., 1998) based on the theo-
retical assumptions of the MINERVA 2 model of episodic 
memory (Hintzman, 1984)—with a vocabulary comprising the 
full corpus of the English Lexicon Project (Balota et al., 2007). 
The model’s lexicon was probed with words and one-letter-dif-
ferent non-words from the Schilling et al. (1998) corpus, and 
outputs of the model were scored to evaluate performance 
against the empirical data. The outcomes of these simulations 
will inform further development of Über-Reader by providing 
the foundation for our ultimate goal of simulating reading, in 
its entirety.  

Keywords: computer modeling; eye movements; reading; lex-
ical-decision task; naming task; visual word recognition; Über-
Reader 

Introduction 
Reading has been the focus of research since the inception of 
psychology (e.g., Huey, 1908) and has proved to be a fertile 
area for computational modeling (see Reichle, 2020). To 
date, the models that have been developed to explain the rep-
resentations and processes involved in reading are typically 
limited to a single level of the reading system. There has been 
a particular focus on modeling isolated word recognition: 
over 40 such models have been published in Psychological 
Review since 1980. This is perhaps unsurprising because 
words are the building blocks of meaning and provide the 
bridge between spoken and written language. Computational 
models of higher-order reading processes have also been de-
veloped, but their scope is typically limited to the construc-
tion of sentence or discourse representations. Although these 
models have stimulated the growth of vast empirical litera-
tures, further theoretical progress requires an integrative ap-
proach to modeling that addresses fundamental questions 
about the architecture of the reading system (i.e., how the 

various components are organized and coordinated during 
natural reading; Andrews & Reichle, 2019). 

Computational models of eye-movement control currently 
provide the closest approximation to models of the reading 
architecture. Unfortunately, existing eye-movement models 
fail to provide a detailed account of any of the component 
processes of reading. For example, one of the most successful 
of these models, E-Z Reader (Reichle et al., 1998; Reichle et 
al., 2012), has been used to simulate all of the major bench-
mark findings related to the eye movements of both skilled 
and developing readers. However, its utility is intrinsically 
limited because it only describes how key variables (e.g., 
word frequency) affect the time required to complete various 
processes (e.g., word identification) without providing a deep 
(computational) account of these processes. Importantly, E-Z 
Reader shares this limitation with other major models of eye 
movements (e.g., SWIFT; Engbert et al., 2005) that provide 
comparable fits to empirical data. This makes it difficult to 
adjudicate between competing theoretical claims, such as 
whether lexical processing occurs serially—for one word at a 
time—or in parallel, for multiple words simultaneously.  

The overarching goal of the current project is to develop 
and test a new computational model of reading in its en-
tirety—Über-Reader (Reichle, 2020; see Figure 1). The full 
Über-Reader model embeds components that process sen-
tences (Van Dyke & Lewis, 2003) and discourse (Kintsch, 
1998) within the framework of the E-Z Reader model which 
coordinates the movements of covert and overt attention. The 
assumptions of the model are based on general principles of 
memory, attention, and language processing, reflecting the 
fact that the reading system “piggy backs” on brain structures 
that evolved for other functions. Thus, in principle, the model 
should be able to simulate all of the tasks used to study read-
ing, including both on- and off-line behaviors (e.g., lexical 
decision, word naming, patterns of eye movements during 
reading, and the recall of propositional content), without 
making any reading-specific assumptions.  

 The first stage of this project—and the specific goal of this 
paper—is to evaluate Über-Reader’s word-identification 
component. To do this we tested the model’s performance in 
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simulating the most commonly used tasks to study isolated 
word identification: lexical decision and naming. Before val-
idating the model’s assumptions concerning sentence and 
discourse processing, it was also critical to verify that directly 
simulating the process of word identification did not compro-
mise the model’s ability to account for benchmark eye-move-
ment effects observed in sentence reading. 

 

 
 

Figure 1: Schematic diagram of the full Über-Reader 
model. During reading, episodic memory is probed with the 
orthographic features of the currently attended word to re-
trieve its pronunciation, meaning, and syntactic category. 

Sentences are parsed into phrase structures by a set of pro-
duction rules in procedural memory. A composite pattern of 

the semantic features of key words from the sentence re-
mains active in working memory and can pre-activate up-
coming input. The pattern is encoded into long-term epi-

sodic memory when a sentence boundary is reached. 
 

Overview of Über-Reader’s Lexical Module 
In Über-Reader, each new experience with a word is encoded 
as a discrete memory trace containing a collection of features 
representing the word’s spelling, pronunciation, syntactic 
category, and contextually appropriate meaning. In the for-
malism of the model, these memory traces are vectors of ele-
ments that take on values of 1 or 0 to represent feature pres-
ence versus absence, respectively. For example, an encounter 
with the word “cat” would likely result in the encoding of a 
memory trace with the features corresponding to the letters 

 
1 This somewhat simplistic method of defining semantics was 

adopted for computational expedience. The semantic features lack 
any inherent structure (i.e., cat is as similar to leopard as it is to 
democracy). Thus, the model’s performance at recalling the 

“c,” “a,” and “t” in positions 1-3 being set equal to 1 and fea-
tures corresponding to other letters being set equal to 0. Sim-
ilarly, specific phonological features are encoded. Semantic 
features are defined by setting each of 500 possible features 
equal to 1 with a probability of psemantic. Each word is thus 
represented by a small number (M = 10) of random features 
that denote aspects of the word’s core meaning and likely 
case role(s).1 Finally, syntactic features denote words belong-
ing to seven possible parts of speech: adjectives, conjunc-
tions, determiners, nouns, prepositions, verbs, and an “other” 
category. The model’s lexicon comprises 40,411 words from 
the English Lexicon Project corpus (Balota et al., 2007). 

Über-Reader retains the core assumption of E-Z Reader 
that attention is allocated to words in a strictly serial manner, 
supporting the lexical processing and identification of only 
one word at a time. The model’s “engine” is the system that 
identifies printed words. A word can be identified by using 
its orthographic features to probe memory. This causes 
memory traces to “resonate” or become active to the degree 
that their orthographic features are similar to those in the 
probe. These active traces generate an overall familiarity sig-
nal, or intensity, and then settle into a stable pattern, called 
the content, that represents the words’ spelling, pronuncia-
tion, meaning, and part of speech. This conceptualization of 
word identification is consistent with instance-based models, 
specifically the Multiple-Trace Memory model (Ans et al., 
1998) that borrows extensively from MINERVA 2, a model of 
human memory (Hintzman, 1984). 

Core Assumptions Relating to Word Identification 
A memory trace containing the orthographic features of an 
encoded word probe will become active to the degree that the 
features of the trace are similar to those in the probe. Equation 
1 describes how this similarity is calculated, where i is an in-
dex of the memory traces, j is an index of the N features, and 
Nr is the number of non-zero features in either the probe or 
trace. Because features are limited to taking on values of 1 or 
0, the similarity between a probe and trace can range from 0 
to 1, with the former indicating complete dissimilarity and the 
latter representing perfect similarity. 

 
The similarity values provided by Equation 1 can be used 

to gate the memory traces that will contribute to information 
that is ultimately retrieved from memory (see Dougherty et 
al., 1999). This gating is done using a minimal similarity 
threshold, qsimilarity, to delimit those traces that will become 
active in response to a given probe. 

As Equation 2 shows, the activation of each memory trace 
is an exponential function of its similarity to the probe, as 

meanings of a large corpus of text is likely a conservative estimate 
of how well the model will perform when more realistic assumptions 
about semantic structure are incorporated in future versions of the 
model, e.g., by deriving features from latent semantic analysis.  
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determined by the parameter d. The activation of a trace is 
also weighted by a quantity, wi, which represents the word’s 
frequency of occurrence in printed text (according to the 
HAL frequency norms) scaled against the maximum fre-
quency of any word in the text using Equation 3. Scaling a 
word’s frequency in the interval [0, 1] is consistent with the 
notion that more common words will be encoded more often 
and thus be better represented in memory, and provides an 
approximation to encoding x memory traces for a word of 
frequency x. The scaling also implies that new word experi-
ences are being encoded at a more-or-less constant rate, but 
with the rate of information loss due to forgetting also being 
more-or-less constant.  

 
The summed activation of all of the traces in memory pro-

vides an index of a probe’s intensity, I, as described by Equa-
tion 4. In the context of simulating the eye movements of 
readers, this index of global activation is assumed to be used 
as a heuristic indexing how soon the system will reach a sta-
ble state, allowing the initiation of saccadic programming to 
move the eyes to the next word (cf., the familiarity check—
L1—in E-Z Reader; Reichle et al., 1998, 2012). 

 
The time to generate the intensity of a given probe, t(L1), is 

assumed to be a proportion of the intensity, as described by 
Equation 5. As shown, the logarithm of the intensity, I, is 
used to linearly transform the intensity values into time (ms) 
using two free parameters, a1 and a2. 

 
The process of recalling lexical information uses a subset 

of probe features to construct a composite pattern of features, 
where Cj is the sum across traces of feature j in trace i multi-
plied by the activation of trace i, as described by Equation 6. 
The resulting pattern of features is the content of recall.  

 
The recall content typically exhibits some degree of noise 

because it reflects all of the information contained in 
memory. The noisy content pattern can be ‘cleaned up’ for 
the purpose of, for example, naming the word by normalizing 
the features so that the feature values span the range [0, 1]. 
This is done by first identifying the feature having the maxi-
mal absolute value and then dividing all of the recalled fea-
tures by that value, as described by Equation 7. The resulting 
pattern of features, Nj, is called the normalized content. 

 
The time needed to generate the normalized content is as-

sumed to vary as a function of the maximal difference in the 
pre-normalized feature values [0, |Cj|]. The assumption is 
consistent with the basic intuition that smaller absolute dis-
crepancies among the pre-normalized features will require 
more time to settle into a stable pattern—one that represents, 
for example, the pronunciation of a word with any degree of 
accuracy. The time required to generate the normalized con-
tent, t(L2), is thus the sum of the time required to generate the 
intensity, t(L1), and a term that reflects the maximum absolute 
feature value, max[|Cj|], scaled by two free parameters, a3 
and a4. 

 
Finally, the visual ‘front end’ of Über-Reader is based on 

principles of the Overlap model (Gomez et al., 2008) in that 
the visual evidence supporting the existence of a given letter 
in a particular location is not precise, but is instead normally 
distributed around some true location, as described by Equa-
tions 9 and 10. Equation 9 specifies the strength of evidence 
supporting letter i in position x given that it is located in some 
true position, µ. The degree of uncertainty is determined by 
the variability associated with the evidence, as determined by 
s. As Equation 10 indicates, this variability increases with 
the absolute distance (in character spaces) between the fixa-
tion position (i.e., center of vision) and the true location of 
letter i, as scaled by two free parameters, b1 and b2. Thus, in 
the process of identifying a given word, the features repre-
senting the orthographic input will often reflect some degree 
of uncertainty or noise that will increase with the eccentricity 
of the word. Returning to our previous example of the word 
“cat,” the visual input for letters “c,” “a,” and “t” in letter po-
sitions 1-3 would respectively be 1.0, 1.0, and 1.0 from a fix-
ation on the word, but would drop off to 0.38, 0.35, and 0.32 
from a fixation located 10 character spaces to the left of the 
word. There would also be uncertainty about the precise lo-
cation of each letter; for example, evidence for the letter “t” 
in its true location would be 0.32, but would equal 0.23 for 
the two spatially adjacent locations and 0.09 for the next two 
more distant spatial locations. However, to avoid excessive 
interference due to low-level visual noise, any feature less 
than some threshold value, qfeature, is not included in the probe 
that is used to identify words. 

 
The time required for visual input to propagate from the 

eyes to the mind is delimited by the eye-mind lag. Based on 
Reichle and Reingold’s (2013) empirical estimates the dura-
tion of this eye-mind lag, t(V), is set equal to 60 ms. 
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The model’s assumptions about saccadic programming and 
execution were borrowed from E-Z Reader (Reichle et al., 
2012). Über-Reader includes additional assumptions related 
to the processing of sentences, and encoding, representing, 
and recalling the meaning of a text. Space limitations prohibit 
a full description of these assumptions here (see Reichle, 
2020). In brief, a set of 17 productions (i.e., if-then statements 
in procedural memory that operate on the information ac-
cessed from the words) parse the sentences into phrase struc-
tures so that another set of four productions can then extract 
the meanings of key words. The meanings of these words are 
used to build a composite pattern of semantic features that is 
actively maintained in working memory until a sentence 
boundary is reached; at that time, the pattern can be encoded 
into long-term episodic memory. This pattern can also be re-
called using Equations 1, 2, 6, and 7. 

Simulating Word-Identification Tasks 
This section describes the task-specific assumptions required 
to simulate three commonly used word-identification tasks 
that share a common lexical-processing component: natural 
reading, lexical decision, and word naming. 

Two key assumptions allow patterns of eye movements 
during reading to be simulated. First, the intensity of a given 
word provides a signal to the oculomotor system that the 
identification of that word is imminent, causing the system to 
initiate the programming of a saccade to move the eyes to the 
next viewing location (which in most instances is the next 
word). The second key assumption is that the information 
contained in the normalized content is sufficient for further 
semantic and syntactic processing and, as such, causes atten-
tion to be shifted to the next word. Thus, the times required 
to initiate saccadic programming versus the shifting of atten-
tion are respectively given by t(L1) and t(L2). Über-Reader’s 
distinction between intensity and content, which is inherited 
from MINERVA 2, corresponds to the two stages of lexical 
processing in E-Z Reader—the familiarity check (L1) and the 
completion of lexical access (L2), respectively.  

The times required to perform other word-identification 
tasks reflect the mental operations involved in making deci-
sions and the motoric operations required to execute re-
sponses. The details of these operations are not simulated 
here; instead, only the mean times required to make deci-
sions, t(D), and execute responses, t(R), are specified. The 
values of these two parameters are sampled from gamma dis-
tributions with means equal to t(D) and t(R), respectively, and 
standard deviations equal to 0.22 of the means. Thus, as 
Equation 11 shows, the response time, RT, to name a word or 
to make a lexical decision about a string of letters is the sum 
of four components: the eye-mind lag, t(V), the time required 
to resolve whatever lexical features are required to make a 
response, t(L2), the decision-making time, t(D), and the re-
sponse-execution time, t(R). 

 
 

 
In simulating lexical decision and naming, any lexical fea-

ture exceeding the noise threshold, qfeature, are considered vi-
able in making overt responses. Features that are mutually in-
compatible are assumed to compete in a ‘winner-take-all’ 
manner in making those responses. For example, in generat-
ing the pronunciation for the word “cat,” the values of the 
phoneme features (e.g., those corresponding to the phonemes 
/k/, /æ/, and /t/) are recalled in the normalized content. Those 
features and any others that exceed the noise threshold are 
then compared, and the most active feature in each phoneme 
position is selected for inclusion in the response. This method 
is consistent with the assumption that mutual inhibition 
among competing features is sufficient to dampen all but the 
most active features in a winner-take-all manner (see Ans et 
al., 1998.) The operations required to actually make the re-
sponse are not simulated, but the response is scored for the 
purposes of assessing the model’s response accuracy by cal-
culating the proportion of features correctly recalled. Any re-
sponse exceeding some criterion of accuracy, qresponse, is then 
scored as being correct. 

Using the above assumptions, the lexical-decision task 
(LDT) is simulated by scoring the orthographic features that 
are recalled at time t(L2); an orthographic pattern that equals 
or exceeds some threshold of accuracy (qresponse = 0.9) is 
scored as being a ‘word’ response and the response latency is 
the time specified by Equation 11. An orthographic pattern 
that does not exceed the response threshold is conversely 
scored as a ‘non-word’ response. In a similar manner, the 
naming task is simulated by scoring the phonological features 
that are recalled at time t(L2); a phonological pattern that 
equals or exceeds some threshold of accuracy (qresponse = 1) is 
scored as having been correctly pronounced and the response 
latency is also the time specified by Equation 11. Finally, in 
simulating reading, the proportion of correctly recalled se-
mantic features must exceed a threshold (qresponse = 0.5) for 
the word to be considered “identified.”   

Table 1 provides a summary of the model’s parameters, 
along with their values and short descriptions of their inter-
pretations. The simulations reported below use the Schilling 
et al. (1998) corpus, which includes item-level data for lexi-
cal decision, naming, and various eye-movement measures 
for the same 48 target words, comprising 24 high-frequency 
(HF; M = 10.32 Log HAL) and 24 low-frequency (LF; M = 
5.93) words. The target words are 6-9 letters in length and 
contain 1-4 syllables.  

For the simulations of the LDT, non-words were created by 
randomly replacing a single letter in each of the target words 
to create one-letter-different non-words as used in the Schil-
ling et al. study. The simulations of lexical decision and nam-
ing were each conducted with 100 simulated subjects. 
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Table 1: Über-Reader parameter values used in simulating 
the LDT, naming task, and sentence reading. 

 
Parameter Value Description 
a1 200/87 Time to generate intensity, 

t(L1), intercept (ms) Note: 
LDT & naming = 200; read-
ing = 87 

a2 50/19 Time to generate intensity, 
t(L1), slope (ms) Note: LDT 
& naming = 50; reading = 19 

a3 50/32 Time to generate normalized 
content, t(L2), intercept (ms) 
Note: LDT & naming = 50; 
reading = 32 

a4 60/24 Time to generate normalized 
content, t(L2), slope (ms) 
Note: LDT & naming = 60; 
reading = 24 

b1 0.05 Letter-position uncertainty 
gradient intercept (character 
position) 

b2 0.05 Letter-position uncertainty 
gradient slope (character po-
sition) 

d 17 Similarity gradient for trace 
activation 

psemantic 0.02 Probability of semantic fea-
ture being active 

qsimilarity 0.9 Minimal probe-trace similar-
ity for trace activation 

qfeature 0.1 Feature activation threshold 
qresponse 0.9/1/0.5 Goodness-of-response 

threshold Note: LDT = 0.9; 
naming = 1; reading = 0.5 

t(D) 100 Mean decision time (ms) 
t(R) 100 Mean response time (ms) 
t(V) 60 Eye-mind lag (ms) 

 

Simulation Results 

Lexical Decision  
The results of the simulation of the LDT are presented in Fig-
ure 2. As shown, Über-Reader accounted for a good propor-
tion of the item-level variance in lexical-decision RTs (R2 = 
0.58). The simulated data also clearly reproduced the fre-
quency effect on lexical decision latencies. The model was 
100% accurate at discriminating the 48 Schilling et al. target 
words from one-letter-different non-words. In contrast, Schil-
ling et al. reported accuracy of 97% for HF words and 89% 
for LF words. 

Word Naming  
The results of the simulation of word naming are presented in 
Figure 3. Über-Reader was again found to account for a good 
proportion of the item-level variance in naming latencies (R2 

= 0.52) and reproduced the frequency effect on naming laten-
cies. The model was also 100% accurate at naming the 48 
Schilling et al. target words. In contrast, Schilling et al. re-
ported accuracy of 98% for HF words and 97% for LF words. 
 

 
 

Figure 2: Item-level mean LDT RTs for the Schilling et al. 
(1998) targets vs. Über-Reader simulated data. 

 

 
 

Figure 3: Item-level mean naming latencies for the Schil-
ling et al. (1998) targets vs. Über-Reader simulated data. 

 

Sentence Reading  
Figure 4 shows six observed (Obs) and simulated (Sim) eye-
movement measures as a function of word frequency, with all 
calculated using first-pass eye movements (i.e., excluding 
fixations following inter-word regressions back to earlier 
parts of the text). Panel A shows: (1) first-fixation duration 
(FFD), the duration of the first of possibly several fixations 
on a word; (2) single-fixation duration (SFD), the duration of 
the fixation on a word that is fixated exactly once; and (3) 
gaze duration (GD), the sum of all first-pass fixations. Panel 
B shows the: (4) probability of fixating a word exactly once 
(Pr1); (5) probability of fixating a word two or more times 
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(Pr2+); and (6) probability of skipping a word (PrS). As 
shown, the model provided good fits to all of these measures; 
for example, as word frequency increases, both the probabil-
ity of fixating a word and the durations of those fixations 
tends to decrease. 
 

 
 
Figure 4: Mean observed and simulated: (A) fixation-dura-
tion and (B) fixation-probability measures for the Schilling 

et al. (1998) sentences. 
 

Figure 5 shows three other simulated “benchmark” eye-
movement findings, all of which are shown as a function of 
both word length and initial fixation landing position (with 0 
being the blank space to the left of a word). Panel A shows 
the simulated fixation landing-site distributions, which are 
approximately normal in shape due to the fact that the eyes 
are directed towards the centers of words but often miss their 
mark due to both systematic and random error (McConkie et 
al., 1988). Panel B shows the probabilities of making a refix-
ation, which are U-shaped but asymmetrical due to the fact 
that words are most likely to be refixated following an initial 
fixation near the beginning of a word (McConkie et al., 
1989). Finally, Panel C shows SFDs as a function of their lo-
cation; as has been observed, SFDs are longer for fixations 
near the centers than ends of words, resulting in inverted op-
timal-viewing position (IOVP) effects (Vitu et al., 2001). 
These simulated results are important because they demon-
strate that the direct simulation of the sequence of processes 
required for word identification operates sufficiently quickly 
to yield the trade-offs that occur between lexical processes 
and the programming and execution of saccades that manifest 
themselves in the empirical phenomena depicted in Figure 5. 

 
 
Figure 5: Three simulated “benchmark” eye-movement phe-
nomena: (A) fixation landing-site distributions; (B) refixa-

tion-probability distributions; and (C) IOVP effects. 
 

Discussion 
The present work represents the first attempt to simulate three 
tasks that have been extensively used to study reading using 
the instance-based, word-identification component of Über-
Reader. Nevertheless, Über-Reader accounts for an impres-
sive proportion of the item-level variance in the Schilling et 
al. (1998) corpus for all three tasks.  

The simulations of sentence reading produced comparable 
fits of the eye-movement data to E-Z Reader, and Über-
Reader replicated several benchmark eye-movement effects. 
This was important to verify because, despite the assump-
tions about saccade planning and execution being inherited 
from its predecessor, Über-Reader makes additional assump-
tions about the processes and time-course of word identifica-
tion and directly simulates the retrieval of lexical content 
from long-term memory. These simulations therefore demon-
strate that an instance-based model of word identification can 
successfully be incorporated into the architecture of an 
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existing model of eye-movement control and account for pat-
terns of eye movements in reading. Furthermore, the distinc-
tion between intensity and content in Über-Reader, and the 
interface of this resonance-retrieval process with saccadic 
planning and attention shifting, addresses a key limitation of 
E-Z Reader in which the equivalent distinction between the 
two stages of lexical processing (L1 and L2) that is central to 
the model’s account remains theoretically underspecified. 

This demonstration must be interpreted with some caution, 
however. The fact that different values of the lexical-pro-
cessing parameters provided optimal fits to the data from 
tasks that were performed by the same set of participants may 
reflect limitations in how the parameter values were selected 
(via grid-searches of the parameter spaces using relatively 
few statistical subjects due to the fact that each required ap-
proximately 2.75 minutes on a 2.3 GHz Intel Xeon W proces-
sor). However, it is perhaps unsurprising that the parameter 
values differed between isolated word-identification tasks 
and sentence reading. In contrast to lexical decision or nam-
ing, identifying words in sentences involves the contribution 
of top-down information derived from the context, even in 
unconstraining sentences, which likely makes markedly dif-
ferent demands on the word-identification component com-
mon to the three tasks. The next stage of this project will re-
fine the sentence- and discourse-processing assumptions of 
the model to simulate higher-level contextual effects on word 
identification and confirm these task differences.  

Additional assumptions may also be required to capture RT 
distributions. One notable feature of the LDT and naming 
simulations was that the model was 100% accurate for the 48 
Schilling et al. target words. While human performance was 
effectively at ceiling in the naming task for these items, the 
model substantially outperformed participants in lexical de-
cision accuracy for the LF items. One possible solution to this 
discrepancy would be to incorporate an evidence accumula-
tor for making the word/nonword decision in the LDT. Addi-
tional modelling work that is not reported here tested a ver-
sion of the model that included such an evidence accumulator 
but resulted in unacceptable trade-offs between word/non-
word discrimination performance and fits to the item-level 
RT data. Other possibilities would be the addition of noise to 
the decision and/or response execution stages of the LDT, or 
trial-by-trial adjustments to the response threshold parameter 
on the basis of previous trial response accuracy. 
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