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Vibrio parahaemolyticus is an aquatic halophilic bacterium that occupies estuarine and
coastal marine environments, and is a leading cause of seafood-borne food poisoning
cases. To investigate the environmental reservoir and potential gene flow that occurs
among V. parahaemolyticus isolates, the virulence-associated gene content and genome
diversity of a collection of 133 V. parahaemolyticus isolates were analyzed. Phylogenetic
analysis of housekeeping genes, and pulsed-field gel electrophoresis, demonstrated
that there is genetic similarity among V. parahaemolyticus clinical and environmental
isolates. Whole-genome sequencing and comparative analysis of six representative
V. parahaemolyticus isolates was used to identify genes that are unique to the clinical
and environmental isolates examined. Comparative genomics demonstrated an O3:K6
environmental isolate, AF91, which was cultured from sediment collected in Florida in
2006, has significant genomic similarity to the post-1995 O3:K6 isolates. However, AF91
lacks the majority of the virulence-associated genes and genomic islands associated
with these highly virulent post-1995 O3:K6 genomes. These findings demonstrate that
although they do not contain most of the known virulence-associated regions, some
V. parahaemolyticus environmental isolates exhibit significant genetic similarity to clinical
isolates. This highlights the dynamic nature of the V. parahaemolyticus genome allowing
them to transition between aquatic and host-pathogen states.

Keywords: genomics, Vibrio parahaemolyticus, environment, phylogenomics, O3:K6

Introduction

Vibrio parahaemolyticus is halophilic aquatic bacterium that is ubiquitous in coastal marine and
estuarine environments. The majority of isolates derived from environmental sources, that is water
and sediments, are believed to be non-pathogenic (Depaola et al., 1990; Nair et al., 2007); however,
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some V. parahaemolyticus isolates are capable of causing human
illness, and are primarily associated with food-borne derived gas-
troenteritis and diarrhea. V. parahaemolyticus infection can also
be associated with wound infections and sepsis (CDC, 2007, 2008;
Tena et al., 2010). In 1996, an increase in diarrheal illness in India
associated with V. parahaemolyticus infections were attributed
to the emergence of a novel genetic variant in 1995 that had
the O3:K6 serotype (Okuda et al., 1997). This novel disease-
associated O3:K6 clone rapidly disseminated worldwide and is
considered to be pandemic (Vuddhakul et al., 2000; Myers et al.,
2003; Quilici et al., 2005; Ottaviani et al., 2008). Previously, iso-
lates belonging to the post-1995 O3:K6 clone were identified with
the serotypes O1:Kuk, O1:K25, andO4:K68, indicating the O3:K6
clone has undergone serogroup conversion in the years since the
original clonal expansion (Nair et al., 2007; Chen et al., 2011).The
disease-associated V. parahaemolyticus clinical isolates usually
carry one or both of the thermostable direct hemolysins (tdh
and trh) (Kaper et al., 1984; Nishibuchi et al., 1992; Nishibuchi
and Kaper, 1995; Makino et al., 2003; Nair et al., 2007). In addi-
tion to the hemolysins, two type III secretion systems (T3SS)
have been demonstrated to secrete effectors that induce cytotox-
icity or enterotoxicity (Park et al., 2004; Lynch et al., 2005; Ono
et al., 2006; Caburlotto et al., 2010; Broberg et al., 2011; Ham and
Orth, 2012; Zhang and Orth, 2013). A previous study revealed a
second version of T3SS2, T3SS2β, which was identified in clin-
ical isolates that also possess the trh gene (Okada et al., 2009).
Although the hemolysins and type III secretion have been identi-
fied as a major components of the V. parahaemolyticus virulence
mechanism (Park et al., 2004; Burdette et al., 2008; Caburlotto
et al., 2010; Ham andOrth, 2012; Zhang andOrth, 2013), disease-
associated isolates have been identified that do not encode the
thermostable direct hemolysins (Yu et al., 2006; Bhoopong et al.,
2007; Meador et al., 2007), suggesting there may be additional, as
yet, uncharacterized genes contributing to V. parahaemolyticus
virulence mechanisms.

The genetic diversity of V. parahaemolyticus has been investi-
gated using numerous molecular methods, including the identi-
fication of known virulence genes (Meador et al., 2007; Noriea
et al., 2010; Jones et al., 2012), multi-locus sequence typing
(MLST) (Chowdhury et al., 2004; González-Escalona et al., 2008;
Gavilan et al., 2013; Turner et al., 2013), phylogenetic analysis of
housekeeping genes (Thompson et al., 2005), microarray (Han
et al., 2008), and pulsed-field gel electrophoresis (PFGE) (Parsons
et al., 2007; Ludeke et al., 2014). MLST was used to identify two
new clonal complexes in addition to a clonal complex of the post-
1995 O3:K6 isolates (González-Escalona et al., 2008). The second
clonal complex consisted of O4:K12 and O12:K12 isolates from
the Pacific coast of the United States, and the third clonal com-
plex was comprised primarily of isolates from oysters in the Gulf
of Mexico (González-Escalona et al., 2008).

Genome sequencing and comparative analysis of the post-
1995 V. parahaemolyticus O3:K6 isolate RIMD2210633 (Makino
et al., 2003) revealed seven genomic islands, including four that
are characteristic of post-1995 O3:K6 isolates (Hurley et al.,
2006; Boyd et al., 2008; Chen et al., 2011). Genomic sub-
traction demonstrated that an 80-kb pathogenicity island (Vp-
PAI) encoding T3SS2 was associated with the post-1995 O3:K6

pandemic isolates (Okura et al., 2005). The sequencing of addi-
tionalV. parahaemolyticus genomes has confirmed that the emer-
gence of the post-1995 O3:K6 pandemic isolates coincided with
the acquisition of genomic islands as these regions were mostly
absent from the genomes of pre-1995 O3:K6 isolates (Makino
et al., 2003; Boyd et al., 2008; Chen et al., 2011).

The purpose of this study was to investigate the genetic diver-
sity of V. parahaemolyticus isolates from human clinical (stool,
blood, wound specimens, or unknown sample types) or environ-
mental (sediment, water, oysters) sources using multiple molec-
ular methods including a PCR assay of known V. parahaemolyti-
cus virulence-associated genes, phylogenetic analysis of house-
keeping genes, PFGE, and whole-genome sequencing. Inves-
tigation of the genomic diversity of two clinical isolates and
four environmental isolates by whole-genome sequencing and
comparative analysis identified genes that are shared or exclu-
sive to the clinical or environmental isolate genomes sequenced.
These methods highlight the genetic similarity among clinical
and environmental isolates, and the different combinations of
virulence-associated genes demonstrate the dynamic nature of
the V. parahaemolyticus genome.

Materials and Methods

Bacterial Isolates and Media
V. parahaemolyticus clinical isolates included in this study were
provided by the Centers for Disease Control and Prevention
(Atlanta, GA). The V. parahaemolyticus environmental isolates
were cultured from sediment, water, and oysters of Skidaway
Island, GA, and Apalachicola Bay, FL in September 2006, and
Skidaway Island, GA in September 2007 (Hazen et al., 2009).
Additional environmental isolates were obtained from the rhizo-
sphere sediment of a salt marsh in North Inlet, NC (Bagwell et al.,
1998). The environmental isolates were cultured by plating envi-
ronmental samples on thiosulfate citrate bile salts sucrose (TCBS)
agar (Difco) and incubating them overnight at 30◦C. Water sam-
ples were directly plated onto TCBS, while sediment, and oysters
were homogenized with sterile water then plated onto TCBS agar.
Presumptive V. parahaemolyticus colonies that were green on
TCBS were confirmed by PCR by screening for the thermolabile
hemolysin (tl) as previously developed (Bej et al., 1999), which is
characteristic of V. parahaemolyticus (Meador et al., 2007). The
culture collection strain, ATCC 17802, was used as a reference
isolate for molecular characterizations of V. parahaemolyticus.

Serotyping
Serotypes were determined using V. parahaemolyticus Seiken
typing antisera (Denka Seiken, Tokyo, Japan).

PCR Assay of Virulence-Associated Genes
The known V. parahaemolyticus virulence-associated genes were
detected by PCR assay for all V. parahaemolyticus clinical and
environmental isolates examined in this study using primers
listed in Supplemental Table 5. All isolates that were posi-
tive for tl as described above were then PCR screened for
previously-characterized virulence-associated genes. The ther-
mostable direct hemolysins tdh and trh were detected as

Frontiers in Microbiology | www.frontiersin.org 2 March 2015 | Volume 6 | Article 204

http://www.frontiersin.org/Microbiology
http://www.frontiersin.org
http://www.frontiersin.org/Microbiology/archive


Hazen et al. Comparative genomics of V. parahaemolyticus

described (Bej et al., 1999; Meador et al., 2007). In addition,
the ORF8 gene of the pandemic phage f237 was detected using
primers that were previously developed (Myers et al., 2003). The
presence of the T3SS1 and T3SS2 were determined by PCR assay
for two effectors and one gene involved in translocation from
each T3SS. The T3SS1 effectors vp1680 and vp1686 and the struc-
tural gene vp1670 was identified by PCR assay using previously
developed (Vora et al., 2005; Meador et al., 2007) primers, and
additional primers made in this study that are listed in Supple-
mental Table 5. The presence of T3SS2α and T3SS2β was deter-
mined by PCR assay for the effectors vpa1346 and vpa1362, and
the export protein-encoding gene vpa1354 using primers listed in
Supplemental Table 5.

Phylogenetic Analysis of Housekeeping Genes
The genetic similarity was investigated for 116 V. parahaemolyti-
cus clinical and environmental isolates examined in this study
by phylogenetic analysis of a concatenation of four housekeeping
genes (recA, gyrB, pyrC, dtdS) using previously developed primers
(González-Escalona et al., 2008). The genes were PCR amplified
usingNEB Phusion high-fidelity polymerase (NEB; Ipswich,MA)
and purified by separation on a 0.7% Seakem LE agarose gel
(Lonza; Allendale, NJ). The target amplicon was excised from
the gel and the DNA was recovered using the Sigma GenElute
gel extraction kit (Sigma Aldrich; St. Louis MO). Sequencing was
performed with M13 primers at the Georgia Tech Genome Cen-
ter on an ABI 3130 Genetic Analyzer (Applied Biosystems) using
BigDye Terminator chemistry (Applied Biosystems). Sequences
were assembled in BioEdit (v. 7.0.4.1) (Hall, 1999) and aligned
using MEGA5 (Tamura et al., 2011), and all sequences for a
particular gene were trimmed to the same length. The partial
sequences of each housekeeping gene analyzed were concate-
nated in the same order for eachV. parahaemolyticus isolate, gen-
erating a single representative sequence. A maximum-likelihood
phylogeny with 100 bootstrap replicates was generated using
RAxML v7.2.8 (Stamatakis, 2006) and visualized using FigTree
v1.3.1 (http://tree.bio.ed.ac.uk/software/figtree/).

The genetic similarity was further investigated for 52 of the
clinical and environmental isolates by analysis of three additional
genes (dnaE, tnaA, pntA) for a total of seven genes. These three
additional genes were PCR amplified and described above using
previously developed primers (González-Escalona et al., 2008).
Phylogenetic analysis of all seven (recA, gyrB, dnaE, pyrC, dtdS,
tnaA, pntA) of the conserved genes for this subset of clinical and
environmental isolates was performed as described above.

PFGE
Pulsed-field gel electrophoresis of 44 V. parahaemolyticus clini-
cal and environmental isolates was performed according to the
V. parahaemolyticus PulseNet USA standardized protocol (Par-
sons et al., 2007). Restriction endonuclease profiles were gen-
erated using the enzymes SfiI and NotI (Roche, Mannheim,
Germany). Restricted plugs were run on a CHEF Mapper™
electrophoresis system (Bio-Rad Laboratories, Hercules, CA).
Salmonella Braenderup H9812 restricted with 50 U of XbaI
(Roche, Mannheim, Germany) was used as a control strain for gel
normalization. PFGE patterns were analyzed with BioNumerics

v. 5.1 (Applied-Maths, Kortrijk, Belgium) and dendrograms were
generated using the Dice coefficient and unweighted pair group
method with arithmetic averages (UPGMA) with a band position
tolerance and optimization of 1.5% for cluster analysis.

Genome Sequencing and Assembly
Following the molecular characterization of the V. para-
haemolyticus clinical and environmental isolates, we generated
high-quality draft genome sequences of two clinical isolates
(K1275, K1461) and four environmental isolates (AF91, SG176,
J-C2-34, 22702) (Table 2). The clinical isolates analyzed have
unique combinations of the known virulence-associated genes
compared to the epidemic post-1995 O3:K6 isolates (Sup-
plemental Table 1). The environmental isolates analyzed by
genome sequencing were obtained from samples of three differ-
ent states (NC, GA, FL) (Supplemental Table 1). The V. para-
haemolyticus isolates analyzed by whole-genome sequencing
were grown overnight in Luria Bertani (Difco) at 37◦Cwith shak-
ing (225 rpm). Genomic DNA was isolated from the overnight
cultures using the Sigma GenElute genomic kit (Sigma Aldrich;
St. Louis MO). The genome sequences of V. parahaemolyticus
isolates K1461, K1275, SG176, J-C2-34, and AF91 were gen-
erated using the Roche 454-Titanium sequencing platform at
the Centers for Disease Control and Prevention. The 454 reads
were assembled into high-quality draft genomes at the Insti-
tute for Genome Sciences, using the Mira assembler (Chevreux
et al., 1999), and the assemblies were filtered to contain
contigs ≥500 bp.

The genome sequence of V. parahaemolyticus 22702 was
generated using paired-end libraries with 300 bp inserts on
the Illumina HiSeq2000 at the Institute for Genome Sciences,
Genome Resource Center. The Illumina reads generated for
22702 were assembled into a high-quality draft genome using
the Velvet assembly program (Zerbino and Birney, 2008)
with kmer values determined using VelvetOptimiser v2.1.4
(http://bioinformatics.net.au/software.velvetoptimiser.shtml),
and the assembly was filtered to contain contigs≥500 bp.

Information regarding the genome assembly size, number of
contigs, and the GenBank accession numbers for each of the
genomes sequenced in this study are listed in Table 2.

Comparative Genomics
Phylogenomic analysis of the V. parahaemolyticus genomes
sequenced in this study compared to previously sequenced
V. parahaemolyticus genomes available in the public domain,
was performed as previously described (Sahl et al., 2011). The
genomes were aligned using Mugsy (Angiuoli and Salzberg,
2011), and the aligned regions were concatenated then used to
construct a maximum-likelihood phylogeny with 100 bootstrap
values using RAxML v7.2.8 (Stamatakis, 2006), and visualized
using FigTree v1.3.1 (http://tree.bio.ed.ac.uk/software/figtree/).

BLAST score ratio (BSR) analysis was performed as previ-
ously described (Rasko et al., 2005) and used to identify the
presence of virulence-associated genes in each of the genomes
analyzed (Table 2). Briefly, the predicted amino acid sequences
of virulence-associated genes and genomic regions (Hurley et al.,
2006; Chen et al., 2011; Salomon et al., 2013) were compared
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using TBLASTN (Gertz et al., 2006) to all the V. parahaemolyti-
cus genomes analyzed in this study. The protein-encoding genes
that were considered present with significant similarity had BSR
values ≥0.8.

Genetic similarity of chromosomes I and II of the O3:K6 iso-
late RIMD2210633 to genes in each of the genomes sequenced in
this study was determined using BLASTN (Altschul et al., 1990)
BSR analysis as previously described (Rasko et al., 2005). A circu-
lar display of the BLASTN BSR values was generated using Circos
0.65 (Krzywinski et al., 2009).

Large-scale BSR analysis (Hazen et al., 2013; Sahl et al.,
2013, 2014) was used to identify the shared and unique features
present in the six genomes sequenced in this study compared
with eight previously sequenced genomes listed in Table 2. Each
protein-encoding gene was considered present with high iden-
tity (BSR value≥0.8), present but with sequence divergence (BSR
value ≥0.4, ≤0.8), or absent (BSR value <0.4). A representative
sequence of each predicted protein-encoding gene is included
in Supplemental Data Set 1. The predicted function of protein-
encoding genes was identified using the RAST annotation server
(Overbeek et al., 2014).

Plasmid and Phage Analyses
The number of extrachromosomal elements (plasmids and
prophage) was determined for a subset of the isolates using a
modified acid phenol extraction method (Kieser, 1984; Sobecky
et al., 1997). PCR amplification for sequencing was performed
using NEB Phusion high-fidelity polymerase reaction mix with
GC buffer and reaction and cycle conditions as recommended
by the manufacturer (NEB; Ipswich, MA). Primers used to
PCR amplify rstA are listed in Supplemental Table 5. The M13
sequence at the 5′ end of each rstA primer was used for sequenc-
ing. Sequencing was performed as described for the housekeep-
ing genes. The sequences were aligned using MEGA5 (Tamura
et al., 2011), and a maximum-likelihood phylogeny using the
Kimura 2-parameter model (Kumar et al., 2004) and 1,000 boot-
strap replications was constructed using MEGA5 (Tamura et al.,
2011). Bootstrap values≥50 are shown.

Nucleotide Sequence Accession Numbers
All individual gene sequences generated in this study are
deposited in GenBank under the accession numbers FJ847518-
FJ847829. The genome sequences are deposited in Gen-
Bank under the accession numbers JMMO00000000, JMMP00
000000, JMMQ00000000, JMMR00000000, JMMS00000000, and
JMMT00000000.

Results and Discussion

Identification of Virulence-Associated Genes in a
Collection of Clinical and Environmental V.
Parahaemolyticus
As a measure of the virulence potential of V. parahaemolyticus
clinical and environmental isolates analyzed, we detected com-
mon markers of virulence including: the ORF8 gene of the fila-
mentous vibriophage, the hemolysins (tdh and trh), the type III
secretion systems of chromosome I (T3SS1), and chromosome
II (T3SS2α and T3SS2β) (Table 1). These genes have been pre-
viously identified in association with illness-associated V. para-
haemolyticus, and the hemolysins and T3SS2 were characterized
for their role in pathogenesis (Kaper et al., 1984; Nishibuchi and
Kaper, 1995; Nasu et al., 2000; Park et al., 2004; Lynch et al.,
2005; Ono et al., 2006; Nair et al., 2007; Broberg et al., 2011;
Ham and Orth, 2012; Zhang and Orth, 2013). The ORF8 gene
encoded by the filamentous vibriophage f237, which has pre-
viously been linked to the post-1995 O3:K6 pandemic clinical
isolates (Nasu et al., 2000), was identified in 32% of the clini-
cal isolates, and none of the environmental isolates in this study
(Table 1). The ORF8 gene was identified in all post-1995 O3:K6
isolates analyzed, and only 13% of the non-O3:K6 clinical iso-
lates (Table 1; Supplemental Table 1). The T3SS1 genes and tl
were detected among all V. parahaemolyticus isolates, which is
consistent with previous reports that these genes are universal
among V. parahaemolyticus isolates (Vora et al., 2005) (Table 1,
Supplemental Table 1). The T3SS2α genes were present in 93%
(13/14) of the O3:K6 clinical isolates and 100% (4/4) of the O4:K8
clinical isolates, but only 25% (12/49) of the clinical isolates

TABLE 1 | Identification of V. parahaemolyticus virulence-associated genes in a collection of V. parahaemolyticus clinical and environmental isolates
using PCR assays.

Source Serotype No. isolates No. of isolates with virulence genes (%)

ORF8 tdh trh T3SS1 T3SS2α T3SS2β

Clinical O3:K6 14 14 (100) 13 (93) 0 (0) 14 (100) 13 (93) 0 (0)

O4:K8 4 0 (0) 4 (100) 0 (0) 4 (100) 4 (100) 0 (0)

O4:K12 10 1 (10) 10 (100) 9 (90) 10 (100) 0 (0) 9 (90)

Other serotypes 48 9 (19) 29 (60) 14 (29) 48 (100) 12 (25) 22 (46)

Total clinical All serotypes 76 25 (32) 57 (74) 23 (30) 77 (100) 29 (38) 31 (40)

Environmental O3:K6 1 0 (0) 0 (0) 0 (0) 1 (100) 0 (0) 0 (0)

Other serotypes 56 0 (0) 0 (0) 2 (3) 56 (98) 0 (0) 2 (3)

Total environmental All serotypes 57 0 (0) 0 (0) 2 (3) 57 (100) 0 (0) 2 (3)
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that had other serotypes (Table 1). T3SS2β was detected in 90%
(9/10) of the O4:K12 isolates, and 46% (22/48) of the clinical iso-
lates with other serotypes (Table 1). Included in this study were
10 clinical isolates with the O4:K12 serotype, and all but one
(K4358) of these isolates were tdh+/trh + /T3SS2β+ (Table 1,
Supplemental Table 1). Similar virulence-associated gene con-
tent (tdh+/trh+ /T3SS2β+) was identified in clinical isolates of
six other serotypes (O4:K53, O4:K63, O1:K56, O8:K21, O6:K18,
O11:Kuk) (Supplemental Table 1). While T3SS2α was not iden-
tified in any of the environmental isolates, including the O3:K6
environmental isolate AF91, T3SS2β was present in two environ-
mental isolates that were trh+ (Table 1, Supplemental Table 1).
V. parahaemolyticus environmental isolates that possess T3SS2
have been demonstrated to adhere to eukaryotic cells and disrupt
membrane tight junctions (Caburlotto et al., 2010). This study
demonstrated that V. parahaemolyticus isolates residing in the
environment that possessed some of the known virulence factors
also had the potential to cause disease.

There were also clinical isolates that had an atypical combi-
nation of virulence genes, or were missing most of the known
virulence-associated genes. Several clinical isolates contained
only tdh (K0071, F5828, K4358, K4279), or both tdh and trh genes
(K5067), but lacked detectable T3SS2 genes (Table 2). In addi-
tion, the clinical isolates K4763, K3528, and K4305 contained tdh
and T3SS2β genes, which is unusual as the tdh gene is typically
associated with T3SS2α (Sugiyama et al., 2008). It is possible these
isolates may have contained both tdh and trh, similar to O4:K12,
and they may have lost trh during infection or during labora-
tory passage. None of the isolates analyzed contained the trh gene
and also the T3SS2α genes. Three clinical isolates (F8950, F8937,
K4377) contained T3SS2α but lacked tdh and trh, and five clin-
ical isolates (K0456, K4237, K4638, K5323G, K5330) contained
T3SS2β but lacked tdh and trh (Supplemental Table 1). The pres-
ence of T3SS2 genes and the absence of hemolysins in clinical iso-
lates has been previously described (Meador et al., 2007). There
were 12 clinical isolates (K1275, K0851, K0850, F9974, F6658,
F8132, F7979, F6179, K4434, F8190, K4981, K1000) that did not
encode tdh, trh, or the T3SS2 genes (Supplemental Table 1).
These isolates were obtained from blood (K1275), wound infec-
tions (F8132, K4434), or unknown clinical sample types (F6658,
F6179, F8190, K4981, K1000). Although the V. parahaemolyticus
clinical isolates that lacked the hemolysin and/or T3SS2 genes
were obtained from clinical specimens, they may have been co-
occurring in the host with other V. parahaemolyticus isolates
that did encode the hemolysins or T3SS2 genes and were the
primary cause of illness. A previous study demonstrated that
multiple V. parahaemolyticus isolates were present in disease-
associated samples; however, some of these isolates lacked the
hemolysin genes (Bhoopong et al., 2007). Another possible expla-
nation is that these isolates may have contained the hemolysin
genes and T3SS2 genes and may have lost them following pas-
sage through a host or during passage in the laboratory. This
was previously observed for the enteropathogenic Escherichia coli
isolate E2348/69, which exhibited loss of the EPEC virulence plas-
mid in a subset of culturable isolates following passage through
adults in a clinical trial (Levine et al., 1985). Also, it may be
possible that some of these V. parahaemolyticus isolates have as

yet uncharacterized virulence factors. Further research is neces-
sary to determine whether these V. parahaemolyticus clinical iso-
lates are capable of causing disease without the hemolysin genes
and/or T3SS2 genes. These findings highlight the many combina-
tions of virulence-associated genes in V. parahaemolyticus clini-
cal isolates, demonstrating the dynamic nature of the virulence
repertoires of V. parahaemolyticus isolates.

Molecular Analysis of the Genetic Similarity of
Clinical and Environmental V. parahaemolyticus
Phylogenetic analysis of housekeeping genes was used to inves-
tigate the genetic similarity of V. parahaemolyticus clinical
and environmental isolates representing diverse serotypes, iso-
lation sources, and date of isolation (Figure 1, Supplemental
Table 1). This approach has previously been used to inves-
tigate the evolutionary relationships of isolates within a sin-
gle Vibrio species (Chowdhury et al., 2004; Boyd et al., 2008;
González-Escalona et al., 2008; Turner et al., 2013), and among
isolates belonging to multiple Vibrio species (Thompson et al.,
2005, 2007, 2008; Sawabe et al., 2007, 2013; Lin et al., 2010).
A phylogeny analyzing the genetic relatedness of 52 V. para-
haemolyticus isolates (42 clinical, 10 environmental) was con-
structed using the partial nucleotide sequences of seven house-
keeping genes (Figure 1). The phylogeny contained three distinct
clades (colored boxes), which were primarily comprised of iso-
lates with the O4:K12, O3:K6, and O4:K8 serotypes (Figure 1).
Notably, all but two of the isolates (AF91 and BB22OP) that
formed these three clades were derived from clinical sources
(Figure 1). The other 18 isolates analyzed that were outside of
these three clades included a mixture of clinical and environ-
mental isolates that have diverse serotypes, and these isolates
exhibited considerable phylogenetic diversity (Figure 1). Fur-
thermore, this demonstrated that clinical isolates with serotypes
other than O3:K6, O4:K12, and O4:K8 had genetic similarity to
the environmental isolates analyzed in this study (Figure 1).

To further investigate the genetic diversity observed for the
clinical and environmental isolates that had serotypes other than
O3:K6, O4:K12, and O4:K8, we analyzed partial sequences of
two housekeeping genes of chromosome I (recA and gyrB), and
two housekeeping genes of chromosome II (pyrC and dtdS)
in a larger collection of 116 V. parahaemolyticus clinical and
environmental isolates (Supplemental Figure 1). In a phylo-
genetic analysis of the concatenation of all four genes, there
were four clinical isolates that formed a sub-clade with a long
branch. To investigate whether the long branch of this sub-
clade resulted from sequence divergence within a particular ana-
lyzed gene we generated individual phylogenies for each gene.
Three of these genes (gyrB, pyrC, and dtdS) had similar topolo-
gies to the concatenated phylogeny, while the recA phylogeny
demonstrated there was additional sequence divergence within
recA for the four clinical isolates with the longer branch. There-
fore, we analyzed the diversity of these four housekeeping genes
by constructing a phylogeny for three of the genes (Supple-
mental Figure 1A), compared with a separate phylogeny of
only recA sequences (Supplemental Figure 1B). Overall, phylo-
genetic analysis of the three genes (gyrB, pyrC, dtdS) indicated
the clinical and environmental isolates analyzed have extensive
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FIGURE 1 | Maximum-likelihood phylogeny of V. parahaemolyticus
clinical and environmental isolates analyzed in this study compared to
V. parahaemolyticus isolates that have been previously characterized
by complete or draft genome sequencing and are available in the
public domain. The nucleotide sequences of seven conserved genes (recA,
gyrB, pyrC, dtdS, tnaA, dnaE, and pntA) were concatenated for each
V. parahaemolyticus isolate, and V. campbellii ATCC BAA-1116 was included
as an outgroup. The phylogeny was constructed using RAxML (Stamatakis,
2006) with 100 bootstrap replications, and visualized using FigTree v1.3.1
(http://tree.bio.ed.ac.uk/software/figtree/). Only bootstrap values ≥50 are

shown. The scale bar represents 0.03 nucleotide substitutions per site. The
genomes that were sequenced in this study or in previous studies that are
available in the public domain are indicated in bold and are listed in Table 2.
The post-1995 V. parahaemolyticusO3:K6 isolates are indicated by an orange
box, the O4:K12 isolates are indicated by a purple box, and the O4:K8 isolates
are indicated in yellow. The V. parahaemolyticus isolates obtained from
environmental sources are indicated in green, while the isolates from clinical
sources are indicated in black. The presence of the virulence-associated
thermostable direct hemolysins, tdh and trh, in each of the genomes is
indicated by symbols.
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genetic diversity (Supplemental Figure 1). Previous studies have
demonstrated there is considerable genetic diversity of V. para-
haemolyticus isolates from around the world (Chowdhury et al.,
2004; González-Escalona et al., 2008).

The genetic relatedness of V. parahaemolyticus clinical and
environmental isolates was also investigated using PFGE, which
is a cost-effective method for routine identification of disease-
associated bacteria, includingV. parahaemolyticus (Parsons et al.,
2007). PFGE was performed on a total of 37 clinical isolates
and 7 environmental isolates (Supplemental Figure 2). Analysis
of the SfiI and NotI patterns of these isolates demonstrated the
presence of three main clades corresponding to those identified
based on phylogenetic analysis of the housekeeping genes and
the phylogenomic analysis (Figure 1, Supplemental Figure 1).
A notable exception is that of the O3:K6 environmental isolate,
AF91, which was not present in the O3:K6 clade by PFGE anal-
ysis as it was in the housekeeping gene phylogenies (Figure 1,
Supplemental Figure 1). Similar to the housekeeping gene phy-
logenies, PFGE also demonstrated there is considerable genetic
diversity among the clinical and environmental isolates analyzed
that had serotypes other than those of the three main clades
(O3:K6, O4:K12, andO4:K8) (Supplemental Figure 2). The PFGE
pattern of the V. parahaemolyticus environmental isolate AF91
was different from the O3:K6 clinical isolates and the other envi-
ronmental isolates examined. The NotI pattern of AF91 was sim-
ilar to that of other V. parahaemolyticus isolates; however, the
SfiI pattern had multiple large bands that ranged from approx-
imately 485- to 693-kb. In addition, the SfiI pattern of this strain
was missing four or more small bands that were present in the
SfiI patterns of the other V. parahaemolyticus isolates. The pres-
ence of the larger bands in the SfiI pattern of AF91 suggested the
absence of several SfiI restriction sites that may correlate with the
absence of the genomic islands of the post-1995 O3:K6 isolates
(Hurley et al., 2006).

Comparative Genomics of Clinical and
Environmental V. parahaemolyticus
To investigate whether there are shared or exclusive genome
features of V. parahaemolyticus clinical and environmental iso-
lates, we generated high-quality draft genome sequences of six
V. parahaemolyticus isolates (K1461, K1275, SG176, J-C2-34,
AF91, and 22702) that had diverse isolation sources, serotypes,
and virulence factor content (Supplemental Table 1). Phy-
logenomic analysis of the six V. parahaemolyticus genomes
sequenced in this study compared to previously sequenced
V. parahaemolyticus genomes (Table 2) demonstrated there is
considerable genomic diversity among isolates from clinical and
environmental sources (Figure 2). Three of the environmental
isolate genomes (22702, SG176, and J-C2-34) grouped together
in the whole-genome phylogeny, while the other two environ-
mental isolate genomes (AF91, BB22OP (Jensen et al., 2013)
were within a larger group that contained the clinical isolate
genomes (Figure 2). The phylogenomic analysis further con-
firmed that the O3:K6 environmental isolate, AF91, was more
related to the post-1995 O3:K6 genomes than to the pre-1995
O3:K6 isolate genomes that have been previously sequenced
(Figure 2).

In silico identification of the known V. parahaemolyticus
virulence-associated genes and genomic islands (Hurley et al.,
2006; Boyd et al., 2008) in the clinical and environmental
genomes sequenced demonstrated that these regions were pri-
marily identified in the post-1995 O3:K6 genomes (Table 2).
However, some but not all of the genes in a few of these regions
(VPaI-2, VPaI-3, and VPaI-7 encoding T3SS2α) were identi-
fied in some of the other clinical or the environmental isolate
genomes (Table 2). This finding is similar to previous studies that
demonstrated the T6SS gene cluster of chromosome I (T6SS1) is
more frequently associated with V. parahaemolyticus clinical iso-
lates than environmental isolates (Yu et al., 2012). The genes of
T6SS1 were identified in nearly all the clinical isolate genomes,
except the pre-1995 O3:K6 isolate AQ3810, and they were not
identified in the genomes of the environmental isolates except
for AF91 and BB22OP, which encode genes with similarity to
those of T6SS1 (Table 2). However, AF91 and BB22OP have the
serotypes O3:K6 and O4:K8, respectively, which are serotypes
that have been linked to cases of human illness (Okuda et al.,
1997; Matsumoto et al., 2000; Chowdhury et al., 2013; Ma et al.,
2014). Further investigation is necessary to determine whether
these environmental isolates may be more likely to cause disease
than other environmental isolates that do not possess the T6SS1
genes.

Comparison of the V. parahaemolyticus genome content was
analyzed using large-scale BLAST score ratio (LS-BSR) (Sahl
et al., 2014) and further demonstrated the extent of the overall
genome similarity among the clinical and environmental iso-
late genomes analyzed (Table 3). There were a total of 7782
genes identified in the 14 genomes analyzed in this study, 3494
of these genes were present with significant similarity (LS-BSR
value ≥0.8) in all of the genomes analyzed (Table 3). Of the total
genes identified there were 755 that were present in one or more
of the clinical isolate genomes with significant similarity (LS-BSR
value ≥0.8) that were not identified (LS-BSR value <0.4) in any
of the environmental genomes sequenced (Table 3, Supplemental
Table 2). Among these were genes encoding T3SS proteins, which
likely belong to T3SS2 since these genes were not identified in any
of the environmental isolates sequenced (Table 2). Also included
among these genes were a multidrug resistance efflux pump and
a putative RTX toxin (Supplemental Table 2). There were a sim-
ilar number of genes (838) that were identified in one or more
of the environmental isolate genomes that were not identified
in any of the clinical isolate genomes (Table 3, Supplemental
Table 2).

There were no genes identified in all of the clinical isolate
genomes that were not present in one or more of the environ-
mental isolate genomes, or vice versa (Table 3). This is likely due
to significant genetic similarities between clinical and environ-
mental isolate genomes such as the O3:K6 environmental isolate
AF91 and the O3:K6 clinical isolates (Figures 1, 2). The inability
to identify genes that are exclusive to all clinical isolate genomes
also can likely be attributed to the inclusion of the environmen-
tal isolate BB22OP, which encodes known virulence-associated
genes such as tdh (Jensen et al., 2013). However, upon exclusion
of the AF91 and BB22OP genomes from the analysis, there were
26 genes that were highly-conserved (LS-BSR values ≥0.8) in all
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FIGURE 2 | Phylogenomic analysis of the six V. parahaemolyticus
clinical and environmental isolates sequenced in this study (indicated
in bold) compared to eight V. parahaemolyticus genomes that have
been previously sequenced (Makino et al., 2003; Boyd et al., 2008;
Chen et al., 2011; Gonzalez-Escalona et al., 2011; Jensen et al., 2013)
and are available in the public domain. The genomes were aligned using
Mugsy (Angiuoli and Salzberg, 2011), and an approximately 4.0 Mb region of
each genome that aligned was concatenated to generate a single sequence
for each isolate as previously described (Sahl et al., 2011).

A maximum-likelihood phylogeny with 100 bootstrap replicates was
constructed using RAxML (Stamatakis, 2006) and visualized using FigTree
v1.3.1 (http://tree.bio.ed.ac.uk/software/figtree/). Bootstrap values ≥80 are
indicated by a circle. The genomes of V. parahaemolyticus isolates from
environmental sources are indicated in green, while the isolates from clinical
sources are indicated in black. The post-1995 O3:K6 isolates are identified
by the orange box, and the O4:K12 isolates are indicated by a purple box.
The presence of the virulence-associated thermostable direct hemolysins,
tdh and trh, in each of the genomes is indicated by symbols.

clinical isolate genomes that were divergent (LS-BSR values<0.8,
≥0.4) or absent (LS-BSR values < 0.4) from the three remain-
ing environmental isolate genomes (22702, J-C2-34, SG176), and
20 that were highly-conserved (LS-BSR values ≥0.8) in the three
environmental isolate genomes that were divergent (LS-BSR val-
ues <0.8, ≥0.4) or absent (LS-BSR values <0.4) from the clinical
isolate genomes (Table 3). The small number of genes that were
universal to clinical or environmental isolates could also be a

result of the genetic diversity or misclassification of the clinical
and environmental isolates (Figures 1, 2).

The number of genes that were exclusive (LS-BSR values≥0.8,
and <0.4 in all other genomes) to the six V. parahaemolyticus
genomes sequenced in this study ranged from 20 to 173 (Supple-
mental Table 3). The fewest number of exclusive genes (20) was
identified in the genome of the O4:K12 isolate K1461, which can
be attributed to the significant genomic similarity of this isolate

Frontiers in Microbiology | www.frontiersin.org 9 March 2015 | Volume 6 | Article 204

http://tree.bio.ed.ac.uk/software/figtree/
http://www.frontiersin.org/Microbiology
http://www.frontiersin.org
http://www.frontiersin.org/Microbiology/archive


Hazen et al. Comparative genomics of V. parahaemolyticus

TABLE 3 | LS-BSR analysis of the genomic similarity of select
V. parahaemolyticus clinical and environmental isolates.

Genomes No. of genomes No. of gene clusters

All ≥ 1c

All genomes analyzed 14 3473 7782

All clinical isolate genomes 9 0 (26)b 755 (407)d

All environmental isolate genomes 5 0 (20)b 838 (230)d

Clinical Isolate Genomes

Post-1995 O3:K6 (including AF91)a 5 17 423

Post-1995 O3:K6 (not including AF91)a 4 78 198

Pre-1995 O3:K6 2 26 391

O4:K12 2 169 244

aThis comparison group includes an O4:K68 isolate that is a seroconversion from O3:K6,
and the environmental isolate AF91 where indicated in parentheses.
bGenes are highly conserved (LS-BSR ≥0.8) in all genomes of the group and divergent
(LS-BSR <0.8, ≥0.4) or absent (LS-BSR < 0.4) in the other genomes. The number of
gene clusters in parentheses is conserved in all genomes when BB22OP and AF91 are
not included.
cGenes that are highly conserved (LS-BSR ≥ 0.8) in one or more of the genomes of the
group and divergent or absent (LS-BSR < 0.8) in the other genomes.
dThe number of gene clusters that are highly-conserved (LS-BSR ≥0.8) in one or more
genomes of this group, and absent (LS-BSR <0.4) from the other genomes. The number
in parentheses is the number of gene clusters that are highly-conserved (LS-BSR ≥0.8)
in one or more genomes of this group, but are divergent (LS-BSR <0.8, ≥0.4) in one or
more of the other genomes.

to the previously sequenced genome of the O4:K12 isolate 10329
(Gonzalez-Escalona et al., 2011) (Figure 2). The genome of the
V. parahaemolyticus clinical isolate that was tdh−/trh−/T3SS2−,
K1275, encoded 150 genes that were exclusive to this isolate (Sup-
plemental Table 3). Among these unique genes were many hypo-
thetical proteins and other genes that lacked similarity to any
previously characterized genes, which suggests there is exten-
sive genomic diversity that has yet to be characterized from
V. parahaemolyticus isolates (Supplemental Table 3).

Many of the genes identified as exclusive to a particular
genome were hypothetical or were similar to genes of mobile
genetic elements including plasmids and phage (Supplemental
Table 3), highlighting the contribution ofmobile elements such as
plasmids and phage to the diversification of V. parahaemolyticus.
In addition to being present in the post-1995 O3:K6 genomes,
the protein-encoding genes of the filamentous vibriophage f237
of RIMD2210633 were identified in the genomes of two environ-
mental isolate genomes (22702, SG176) (Table 2). Sequence anal-
ysis of partial nucleotide sequences of the vibriophage replication
protein-encoding gene, rstA obtained from V. parahaemolyti-
cus clinical and environmental isolates revealed these sequences
had 95–100% nucleotide identity to the rstA of the filamen-
tous phage f237 (Nasu et al., 2000). Phylogenetic analysis of the
partial nucleotide sequences of rstA, demonstrated there is no
discernible pattern of genetic similarity of the filamentous vibrio-
phage based on serotype, isolation source, or geographical loca-
tion, with the exception of the O4:K12 isolates and the post-1995
O3:K6 isolates (Supplemental Figure 3).

In addition to the identification of genetic similarity of fila-
mentous vibriophage from clinical and environmental isolates,
there was an approximately 90-kb phage-like element identified

in the genome sequences of the O4:K12 clinical isolate K1461,
and the environmental isolate and J-C2-34. Analysis of the plas-
mid content of K1461 and J-C2-34 using a modified acid-phenol
extraction method (Kieser, 1984; Sobecky et al., 1997) demon-
strated that both of these isolates contain a single large extra-
chromosomal element that is approximately 90-kb, which is
likely the prophage identified in the genomes of these isolates.
Sequence characterization of these prophage demonstrated they
encode numerous phage-like genes with a conserved organiza-
tion that exhibited 80–100% nucleotide identity to each other
(Supplemental Figure 4). This finding provides additional evi-
dence of the horizontal transfer of similar prophage-like ele-
ments among V. parahaemolyticus clinical and environmental
isolates. These phage-like elements also exhibited divergent sim-
ilarity (BSR values ≥0.4, <0.8) to genes encoded by a previ-
ously sequenced plasmid, p0908, from V. fluvialis (Hazen et al.,
2007) and the bacteriophage P1 (Lobocka et al., 2004), suggesting
they belong to a phage family that has relatives in other enteric
bacteria.

Genomic Similarity of the O3:K6 Environmental
Isolate, AF91, to Pre- and Post-1995 O3:K6
Isolates
Phylogenomic analysis demonstrated that the 2006 O3:K6 envi-
ronmental isolate, AF91, exhibited greater genomic similarity
to the post-1995 O3:K6 isolate genomes (Makino et al., 2003;
Chen et al., 2011) than to the two pre-1995 O3:K6 isolate
genomes (Boyd et al., 2008; Chen et al., 2011) (Figure 2). A PCR-
based assay and in silico analysis of the AF91 genome demon-
strated that AF91 does not encode the hemolysins or T3SS2
that are typically found in V. parahaemolyticus clinical isolates
(Table 2, Supplemental Table 1). The AF91 genome was also
missing most of the genomic islands of the post-1995 O3:K6
isolate RIMD2210633 (Table 2, Figure 3). However, AF91 did
contain genes with similarity to those encoded by the genomic
island VPaI-3 (Table 2), which was previously identified in post-
1995 O3:K6 isolates and related isolates (AN5034) that have
undergone seroconversion (Boyd et al., 2008; Chen et al., 2011)
(Table 2). AF91 also encoded genes with significant similarity
to genes of T6SS1 (Table 2, Figure 3), which has primarily been
identified inV. parahaemolyticus clinical isolates (Yu et al., 2012).
Their findings demonstrated that the T6SS1 genes exhibited bac-
teriolytic activity against other bacteria when grown in conditions
similar to the marine environment, suggesting T6SS1 provides a
fitness advantage that allows the disease-associated isolates to be
competitive and persist in marine environments (Salomon et al.,
2013). T6SS1 may have contributed to the emergence and spread
of the post-1995 O3:K6 isolates (Okuda et al., 1997; Matsumoto
et al., 2000).

Comparative analysis of the O3:K6 genomes using LS-BSR
demonstrated there were only 17 gene clusters identified in
all post-1995 O3:K6 isolates, including the O3:K6 environ-
mental isolate AF91 (Table 3) that were divergent (LS-BSR
value <0.8, ≥0.4) or absent (LS-BSR value <0.4) from the
other genomes. However, there were 78 gene clusters present
with significant similarity in all of the post-1995 O3:K6 isolate
genomes when AF91 was not included (Table 3). This finding
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FIGURE 3 | Circular display of the BLASTN BSR values demonstrating
the genetic similarity of each gene of RIMD2210633 in the genome of
the pre-1995 O3:K6 isolate AQ4037 (Chen et al., 2011), and the
genomes sequenced in this study. The previously described putative
pathogenicity islands (Hurley et al., 2006) and other regions of interest (Chen
et al., 2011) in the genome of RIMD2210633 (Makino et al., 2003) are
indicated in the outermost track. The genomes in tracks labeled 1–7 are as
follows: (1) AF91, (2) AQ4037, (3) K1275, (4) K1461, (5) SG176, (6) J-C2-34,
and (7) 22702. The location of the O3:K6 O-antigen lipopolysaccharide

region is indicated by “O3:K6.” An “E” designates the location of
RIMD2210633 genes that are present with greater similarity in the
environmental isolate genomes than in the clinical isolate genomes. A “C”
designates the location of RIMD2201633 genes that are present in the
clinical isolate genomes analyzed and not in the environmental isolate
genomes, with the exception of AF91. The circular display of the BSR values
was generated using Circos (Krzywinski et al., 2009). Blue indicates genes
were present with significant similarity, yellow indicates the genes were
present but divergent, and red indicates genes were absent.

demonstrates that although AF91 has the O3:K6 serotype and
was isolated a decade after the emergence and spread of the
O3:K6 pandemic clone (Okuda et al., 1997; Vuddhakul et al.,
2000; Myers et al., 2003; Quilici et al., 2005; Ottaviani et al., 2008),
the genome of AF91 exhibits genetic differences compared to
other post-1995 O3:K6 isolate genomes. Not surprisingly, many
of these genes were encodedwithin the genomic regions that were
previously described as unique to the post-1995 O3:K6 genomes

(Hurley et al., 2006; Chen et al., 2011) (Supplemental Table 4). In
addition to the 78 genes that are divergent or missing (LS-BSR
value <0.8) from the AF91 genome compared to other post-
1995 O3:K6 genomes, there were 173 genes that were identi-
fied by LS-BSR as being unique to the AF91 genome compared
to the other genomes analyzed (Table 3). The genes that were
unique to AF91 included integrases and transposases, putative
transcriptional regulators, a GGDEF domain-containing protein,
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and many genes encoding proteins with unknown functions
(Supplemental Table 3).

This study describes an environmental O3:K6 isolate that
exhibits significant genetic similarity to the post-1995 O3:K6 iso-
lates, yet does not encodemost of the known virulence-associated
genes of these isolates. Due to the genomic similarity of this
O3:K6 environmental isolate to the post-1995 O3:K6 isolates,
this isolate may have originally carried the missing genomic
islands, and after entering the environment may have begun to
transition to an environmental niche by losing the virulence-
associated genomic regions. For example, genomic islands of the
uropathogenic Escherichia coli isolate 536, a strain isolated from
a urinary tract infection, were demonstrated to be unstable (Mid-
dendorf et al., 2004; Soto et al., 2006). Interestingly, two of the
E. coli 536 genomic islands, including one island that encoded a
hemolysin, were lost in response to altered environmental con-
ditions such as lower temperature and higher cell density (Mid-
dendorf et al., 2004). Further experiments would be necessary
to determine whether AF91 would have a fitness advantage over
other V. parahaemolyticus environmental isolates, and whether
the absence of the other post-1995 O3:K6 genomic islands and
virulence-associated regions gives it an additional advantage for
surviving in the environment. Another possibility is that AF91
may represent an intermediate isolate that was involved in the
emergence of the post-1995 O3:K6 isolates, and AF91 may have
persisted without acquiring the post-1995 O3:K6 genomic islands
due to a fitness advantage for surviving in the environment. Fur-
ther experiments are needed to determine if AF91 would have
a similar pathogenic potential as other post-1995 O3:K6 isolates,
following the acquisition of the post-1995 O3:K6 genomic islands
and other virulence-associated regions.

Previous research investigating the disease-causing poten-
tial of V. parahaemolyticus in the environment has typically

examined the presence of prevalent clinical serotypes and known
virulence-associated genes. However, we have demonstrated that
investigating the genetic diversity of environmental isolates
that do not carry the known virulence-associated genes can
yield insight into the emergence of human disease-associated
V. parahaemolyticus. Sequencing and characterization ofV. para-
haemolyticus AF91, an O3:K6 environmental isolate, demon-
strated that environmental isolates that do not carry the known
virulence-associated genes can have significant genetic similarity
to disease-associatedV. parahaemolyticus clinical isolates, includ-
ing the pandemic post-1995 O3:K6 isolates. Additional genome
sequencing of V. parahaemolyticus clinical and environmental
isolates that have diverse serotypes and unique combinations of
known virulence-associated genes and genomic regions would
yield further insight into the ability of V. parahaemolyticus iso-
lates to transition from an environmental niche and to emerge as
pathogens.
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