
UCLA
UCLA Previously Published Works

Title
Toward Human-Scale Brain Computing Using 3D Wafer Scale Integration

Permalink
https://escholarship.org/uc/item/92q678vd

Journal
ACM Journal on Emerging Technologies in Computing Systems, 13(3)

Authors
Kumar, Arvind
Wan, Zhe
Wilcke, Winfried W.
et al.

Publication Date
2017-03-01
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/92q678vd
https://escholarship.org/uc/item/92q678vd#author
https://escholarship.org
http://www.cdlib.org/


45

Toward Human-Scale Brain Computing Using 3D Wafer
Scale Integration

ARVIND KUMAR, IBM Thomas J. Watson Research Center
ZHE WAN, University of California at Los Angeles and IBM Albany Nanotech Center
WINFRIED W. WILCKE, IBM Almaden Research Center
SUBRAMANIAN S. IYER, University of California at Los Angeles

The Von Neumann architecture, defined by strict and hierarchical separation of memory and processor, has
been a hallmark of conventional computer design since the 1940s. It is becoming increasingly unsuitable for
cognitive applications, which require massive parallel processing of highly interdependent data. Inspired by
the brain, we propose a significantly different architecture characterized by a large number of highly inter-
connected simple processors intertwined with very large amounts of low-latency memory. We contend that
this memory-centric architecture can be realized using 3D wafer scale integration for which the technology is
nearing readiness, combined with current CMOS device technologies. The natural fault tolerance and lower
power requirements of neuromorphic processing make 3D wafer stacking particularly attractive. In order to
assess the performance of this architecture, we propose a specific embodiment of a neuronal system using
3D wafer scale integration; formulate a simple model of brain connectivity including short- and long-range
connections; and estimate the memory, bandwidth, latency, and power requirements of the system using the
connectivity model. We find that 3D wafer scale integration, combined with technologies nearing readiness,
offers the potential for scaleup to a primate-scale brain, while further scaleup to a human-scale brain would
require significant additional innovations.

CCS Concepts: � Hardware → Die and wafer stacking; Neural systems; System-level fault tolerance;
� Computer systems organization → Neural networks

Additional Key Words and Phrases: Neuromorphic computing

ACM Reference Format:
Arvind Kumar, Zhe Wan, Winfried W. Wilcke, and Subramanian S. Iyer. 2016. Toward human-scale brain
computing using 3D wafer scale integration. J. Emerg. Technol. Comput. Syst. 13, 3, Article 45 (April 2017),
21 pages.
DOI: http://dx.doi.org/10.1145/2976742

1. INTRODUCTION

Fueled by the explosion in the Internet of Things and Social Media, the sheer amount
of data in the world today is growing at a tremendous pace [Kelly and Hamm 2013].
The bulk of new information being created takes the form of unstructured data – e.g.,
images, videos, text, news feeds, spatio-temporal trends – and computing systems are
increasingly being called upon to do insightful and intelligent analysis very different
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from conventional transactional processing on structured data. Examples of these
unstructured computational problems include sensing, learning, and inferring; detect-
ing patterns and anomalies; and predicting and discovering. Along with these new
analysis requirements is the hope that programming can be kept at a minimum: a new
computing system should learn on its own from its surroundings and correspondingly
adapt its model of the world, and communicate with us through natural rather than
programming language.

These new increased demands on computing systems may seem extremely chal-
lenging in light of the expected saturation of Moore’s law scaling [Borkar and Chien
2011]. Indeed, the stunning improvement in computing performance over the last half-
century has been largely fueled by technology scaling accompanied by relatively little
change in the fundamental computational architecture, as described by Von Neumann
and Godfrey [1993]: a central processing unit which retrieves and sequentially car-
ries out instructions on data from a hierarchical memory subsystem. This model has
evolved into the current hierarchy in computing systems, which is still suffering from
a ‘memory wall’ between processor and data, mitigated by a relatively small amount of
low-latency cache kept near the processor along with large amounts of storage requir-
ing very long retrieval times [Freitas and Wilcke 2008]. This paradigm has worked well
for traditional enterprise and high-performance computing applications, but is a poor
foundation for unstructured computational problems in which spatial and temporal
locality of data is weak [Murphy and Kogge 2007]. Hence, the confluence of the end of
technology scaling and the new demands on computing systems can rather be viewed
as an exciting opportunity to fundamentally redesign the architecture in a way that is
more adapted to the new tasks.

Because the human brain is naturally adept at these types of tasks, it serves as an
excellent inspiration about the direction to proceed [Indiveri and Horiuchi 2011]. We
may classify today’s efforts in three categories. The first category consists of Machine
Learning software that runs on a conventional Von Neumann platform, and is usu-
ally designed to perform a specific task based on extensive supervised learning. Deep
learning has made remarkable progress in the last decade [LeCunn et al. 2015], but is
relatively specialized in application and eventually becomes bandwidth- and memory-
limited if we want to apply it to a very general problem with many disparate input
streams. At the other extreme, many laboratories have demonstrated the early stages
of neuromorphic analog devices (see, for example, [Kuzum et al. 2013]) capable of sim-
ulating some important aspects of brain functionality [Azghadi et al. 2014]. While such
progress is very encouraging, it is important to note that such devices suffer from high
variability [Burr et al. 2014] and are thus far from manufacturability, and furthermore
will require a complete rethinking of the deterministic programming model that has
been relied upon for the last half-century.

Between these two cases lies an intermediate category, in which synaptic states
and weights are stored conventionally in a programmable random access memory, but
the architecture has been optimized for features of brain-inspired computing such as
distributed (de-centralized) processing with large, low-latency memory capacity, and
very high communications bandwidth between processors. Examples in this category
include IBM’s TrueNorth [Merolla et al. 2014] and the SpiNNaker project [Furber et al.
2014]. We propose that a compact and power-efficient path to a massive scaling up of
this type of system can be achieved through the use of 3D wafer-scale integration (3D-
WSI) [Iyer 2015]. Taking a somewhat different approach from the BrainScaleS project
[Schemmel et al. 2012], which uses 3D wafer stacking with mixed-signal (analog and
digital) neuromorphic processors, we contend that existing, digital CMOS devices can
be used, making early realization of a massively scaled up neuronal system feasible
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because the underlying device technology is mature (not even dependent on the latest
technology node).

Because for this highly scaled up system we are interested in a system-level view
of brain functionality, we will illustrate our ideas by using a cortical algorithm such
as the Hierarchical Temporal Memory (HTM) model [Hawkins and Blakeslee 2004].
Nonetheless, many features of the architecture could potentially be used to scale up
other neuronal systems based on different approaches. For example, the SpiNNakker
project [Furber et al. 2014] is based on a massive network of highly-interconnected par-
allel processors with a communications infrastructure optimized for delivery of small
data packets. A second example is the TrueNorth architecture [Merolla et al. 2014]
in which each chip contains 4096 interconnected neurosynaptic cores. Note that both
of these approaches are based on spiking neural networks (SNNs) [Maass 1997], in
contrast to the HTM model. However, all of these architectures have in common fea-
tures that are well suited for scaling up using 3D-WSI: a large network of process-
ing cores (currently realized using digital CMOS), a large aggregate memory band-
width, and message passing between cores supported by a strong communications
infrastructure.

Finally, we note that each of these methods is based on the idea of event-
driven simulation, meaning that information is sent only when an event such as
a neuron spiking (in a SNN) or a cell becoming active (in HTM) occurs. The energy
consumption of event communication depends fundamentally on the sparsity of such
events, not on the underlying model that triggered the event, and the information is
transmitted by a message packet, not a biological spike. Note that if the message to be
transmitted also contains numerical data, then representing it as a long series of spikes
is not very energy efficient as it will require charging and discharging an electrical wire
multiple times to represent the numerical data accurately.

The purpose of this article. is to carry out a feasibility study of 3D-WSI for realizing a
neuronal system and to outline both the strong advantages and significant challenges.
The main contributions of this article are as follows:

—Presentation of a principal embodiment of a neuronal system using 3D-WSI
(Section 2)

—Development of a connectivity model of brain-like function to assess the performance
of the system (Section 3)

—Study of the scaling behavior as the neuron count is increased to a level comparable
to that of the human brain (Section 4)

We then discuss the routing and fault tolerance (Section 5), and conclude with a
discussion of our findings. Table I gives a list of symbols used in this work.

2. 3D WAFER-SCALE INTEGRATION

2.1. Suitability of 3D Wafer-Scale Integration for Neuromorphic Computing

Wafer Scale Integration refers to fabrication of an entire system on a wafer which is
not diced into individual dies. Individual fields on a wafer are connected together by a
metallization level that stitches across the reticle boundaries. If two such wafers are
bonded together, the circuits on the top stratum can be connected to the ones below
using Through Stratum Vias (TSVs), which can be made very dense by thinning the
top stratum [Lin et al. 2014]. Additional wafers can continue to be thinned and bonded
in succession, with each stratum connected to the one below by a network of TSVs.
Although 3D Wafer Scale Integration (3D-WSI) offers the potential for a massively
parallel, highly interconnected system in a compact form factor, past attempts to use
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Table I. List of Symbols

SYMBOL DEFINITION
m number of neurons in the domain of a single processor node
M total number of neurons in the system
bsyn number of bits required to store the address of a synaptic connection and its data
s average number of synapses per neuron
w number of input/output wires per processor node
f bus clock frequency of the parallel data bus
N total number of processor nodes in the system
lsep spacing between neurons if arranged in simple cubic lattice
lloc decay length for connection probability between neurons
q characteristic length ratio associated with a node
R total number of regions comprising the vertices of a Small World Network
k average number of edges per vertex
p probability of rewiring in a ring lattice
C(p) average cluster coefficient
L(p) average path length coefficient
σ metric of small-worldiness of a system
α neuron activity factor
γ fraction of a neuron’s connections that are outside its node
bmsg number of bits in a message, including header and payload
Cw wire capacitance
Vdd supply voltage
G global coordinate of a neuron
x.y.z local coordinates of a neuron

3D-WSI have resulted in failure for several reasons. From a technological point of
view, methods to bond strata with BEOL layers [Skordas et al. 2011] and to achieve
submicron overlay tolerance [Lin et al. 2014] have been found only recently. It is
projected that 1 μm vias, with a pitch of approximately 2 -2.5 μm with better than 10%
overlay tolerance will be possible in a high volume manufacturing environment within
three years [Iyer et al. 2015], giving a density of about 200000 vias/mm2. Moreover, any
application of 3D-WSI has two key requirements. First, the yield of the individual dies
must be very high. Second, 3D-WSI is mainly suited for low-power applications, since
the heat must be removed from the bonded wafer package. Both of these requirements
have been in sharp contrast to the tendency of increasing speed and chip complexity
characteristic of past technology scaling.

However, as initially pointed out by Mead [1990], 3D-WSI is very well-suited for
neuromorphic computing. Rather than trying to build a single, centralized processor,
3D-WSI enables realization of a large network of small processing units which can be
interconnected with each other and with low-latency memory, at very high bandwidth.
Thousands of such small processors can be realized on a single wafer. Because the
processor design is vastly simplified (<4 cores), the expected yield is much higher
than for enterprise server chips. Nonetheless, as discussed in greater detail later, fault
tolerance and repair techniques are a crucial aspect of the design because some defects
in the processing units, their memory units, and the interconnects are inevitable in
such a large system. Indeed, the biggest reason why 3D-WSI is so well-suited for a
neuromorphic computing system is that many neural algorithms, particularly those
that allow connections to be flexibly formed and destroyed [Hawkins and Blakeslee
2004], are remarkably robust to defects (we will show a dramatic example of this), in
stark contrast to transactional processing applications in which a single point of failure
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Fig. 1. One possible embodiment of a neuronal system using 3D-WSI, consisting of separate logic and
memory wafers bonded together and connected using high density TSVs.

can be crippling. Finally, the overall power density is also greatly reduced, due both
to the distribution of processing over the wafer (with simplified processor complexity)
and to lower communication power (from much shorter wires).

Before ending this section, we comment on the possibility of using a silicon carrier in-
terposer with packaged chips as an alternate method of scaling up. There are two main
issues with this approach: (1) Within the interposer, the chip-to-chip interconnectivity
is still limited by the packaging, whose features have scaled very slowly compared
to the device features [Iyer 2015], (2) The 3D interconnectivity between interposers
is highly limited, as each interposer would need to be mounted on a substrate such
as a PCB, and the interposer-to-interposer communication would effectively become a
board-to-board connection. While an interposer could be an interesting intermediate
step towards full 3D-WSI, it does not allow the ultimate scalability afforded by re-
moving the chip packaging entirely, and hence we choose to focus on 3D-WSI in this
work.

2.2. Principal Embodiment

Figure 1 shows conceptually one embodiment of our idea [Kumar et al. 2015]. In
this embodiment, a logic wafer is fabricated with a few thousand small processors
whose function is to perform the memory-intensive primitive computations required
by neuronal simulations. These processors are specialized and designed to accelerate
a few highly specific tasks. Some examples of these tasks might include:

—Multiply a vector or a matrix with a constant
—Multiply a matrix with a vector
—Determine whether the overlap of two vectors exceeds some threshold value
—Decode synaptic connection addresses stored in memory from a compressed

representation

These examples include operations needed both in traditional machine learning and
in machine intelligence algorithms, such as HTM. For example, the first two are

ACM Journal on Emerging Technologies in Computing Systems, Vol. 13, No. 3, Article 45, Publication date: April 2017.



45:6 A. Kumar et al.

fundamental in back propagation-type machine learning algorithms [LeCunn et al.
2015], while the third is specific to HTM-type algorithms based on sparse distributed
representations [Hawkins and Blakeslee 2004]. The last one is useful in a very large
system where addresses are stored in a compressed representation, as discussed later.

Each small processor, hereafter referred to as a node, has a sizeable private memory
which is directly connected to it, on the memory wafer. Since each node is responsible
for storing information about a number of neurons m in its domain, a substantial
fraction of its memory is dedicated to storage of all the synaptic connections made by
each neuron in its domain. Each connection requires bsyn bits for both the connection
address and some data about the connection, such as its permanence. Therefore, the
minimum memory requirement for the m neurons in the node, if each has an average of
s synaptic connections, is mxsxbsyn bits. For a neuronal system with M total neurons, the
number of address bits required, in an unoptimized representation, is log2M. Note that
the number of address bits (∼34 for 20 billion neurons estimated in the human cortex
[Pakkenberg and Gundersen 1997]) can significantly exceed the number of data bits
(∼8), leading to a highly inefficient ratio of address to data bits and a bloated memory
requirement. As described in the Appendix, an efficient address scheme [Kumar and
Wilcke 2015] can be applied which exploits the observation that the vast majority of
synaptic connections in the brain are local to a given neuron. In the example given there
for a 64-bit addressing scheme, a highly local address is compressed to 25 bits by using
run length encoding for all the leading zeros in the address, which can be optimally
arranged due to the locality. That case would correspond to a biological example of
75000 neurons/mm3, where a neuron would have about 300000 potential connections
in a sphere of radius 1 mm, and the worst-case connection at the edge of the sphere, at
coordinates (+23, −23, +23), would require 25 (rather than 64) bits. We find on average
for this case about 22 address bits are required, which is reasonable considering the
25-bit worst case. Note that this scheme still allows any neuron to connect to any
other neuron, which is essential for long-distance, white-matter communication [Wen
and Chklovskii 2005], and for a flexible number of synaptic connections per neuron
[Hawkins and Ahmad 2015], but keeps the memory requirements tenable. Finally, we
assume 8 data bits (a typical number for the permanence in an HTM-type algorithm),
so bsyn ∼ 30.

We target an average value for s of 1000, based on Hawkins and Ahmad [2015],
which finds that a number in this range would be the minimum necessary for a neuron
with distal synapses along a stretch of a dendrite to act effectively as a local coinci-
dence/pattern detector. Eventually, we would like to grow this to an average s of 10000
to be at the higher end of the commonly accepted range of 1000–10000 for synapses
per neuron in humans [Worobey et al. 2015], but will use 1000 as a good starting point
for the analysis. For bsyn = 30, we find that 1GB of memory can accommodate about
250,000 neurons.

For the memory wafer, we begin our analysis using DRAM because of its technology
maturity. Based on a current estimate of 0.2Gb/mm2 for DRAM density [TechInsights
2013], a 300mm wafer could contain about 1TB of memory, assuming a utilization factor
of 80% for the wafer. Partitioning this into 1GB Sections, we could combine this memory
wafer with a logic wafer containing 1000 nodes. Overall this logic-memory wafer pair
would have about 250 million neurons, about the number in a small mammal. In order
to scale the system up, we could continue to bond multiple logic-memory wafer pairs
together. However, since each node occupies only about 1 mm2, we could reasonably
put ∼7000 nodes on a 300 mm wafer (occupying ∼10% of the wafer area), and still
leave significant area for the wiring and TSVs. This single logic wafer, with ∼7000
nodes, would then need to be paired with 7 DRAM wafers to have the same 1 GB of
memory per processor as before. Via blockage should not be an issue given the high
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via density of ∼200000 vias/mm2. To scale up even more, this stack of 8 wafers could
be stacked with perhaps 1–2 other such stacks, but further stacking will likely be very
challenging. As discussed later, further scaling will require innovations in the memory
density to reduce the number of memory wafers so that the total number of strata is
tenable (<30).

In contrast to a chip-to-chip connection, nodes on a wafer can be interconnected
using a wide parallel bus of metal wires on the wafer, avoiding the multiplexing to
a small number of input-output pins that becomes necessary on a chip for packaging
purposes. The total bandwidth of each node is given by wf bus, assuming 1 bit per
wire (unidirectional), where w is the number of input-output wires at the processor
and f bus is the clock frequency of the data bus, which must be chosen low enough
to avoid skew in the parallel bit stream. For f bus = 100MHz and w = 2000 (half
incoming and half outgoing), the outgoing bandwidth of each node is about 100 Gbps,
and the total system bandwidth would be N times the value per node, a very high value
for N in the thousands.

In addition to the high bandwidth connections between processors, 3D stacking of
the memory on top of the logic processors enables a wide, high-frequency memory
bus interface. High-density TSVs can be used to directly connect each processor to its
memory domain, alleviating the memory wall between processor and memory. This
redesign of the memory hierarchy using a wide memory bus enabled by 3D stacking
can lead to significant speedup and energy savings [Woo et al. 2010].

2.3. Stitching and Local/Express Lanes

The nodes on a wafer must be connected by metal lines that have to cross the field
boundaries in order for them to communicate with each other. This can be done by
adding a final stitching layer between fields. In addition to local connections between
adjacent nodes, wafer scale integration allows additional point-to-point connections
to be made between distant nodes. For example, each node can also be connected to
another node some fixed distance away both in the x-direction and in the y-direction
and even in the z-direction. A network of these express connections greatly reduces the
number of hops required to send a message from one node to a distant one. Although
they are hard-wired, unlike the brain’s flexible connections, they can mimic the brain’s
ability to reduce conduction delays through direct long-range connections, which is a
key feature of its remarkable efficiency [Wen and Chklovskii 2005].

2.4. Current Status of 3D Wafer-Scale Integration

We end this Section with a review of state-of-the-art 3D-WSI [Iyer 2015]. The key
enabler of 3D-WSI is aggressive thinning of the wafer which allows, through preserva-
tion of the TSV aspect ratio, a reduction in TSV feature size and an increase in TSV
density. An innovative feature is implementation of TSVs after thinning and bonding,
allowing for tighter overlay tolerance and greater inter-strata connectivity [Iyer 2015].
Today, multi-stacks of 4 silicon wafers, thinned to 5 μm with 0.25-1 μm TSV features,
have been demonstrated [Lin et al. 2014], as has functional control of memory on one
wafer using logic on another [Batra et al. 2014]. Wafers may be fabricated in paral-
lel and then bonded [Lin et al. 2014] or bonded first and then processed sequentially
[Batude et al. 2015], with different tradeoffs. For this application, we favor the parallel
approach because each wafer can be processed and tested independently, leading to
higher yield and robustness. In particular, logic and memory wafers each have very
different and highly complex fabrication requirements which would make processing
a number of them in series very challenging. Although the sequential approach offers
the potential for extremely high interconnect density and stacking with zero alignment
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Fig. 2. Conceptual view of connectivity model. Regions are functional units with dense local connectivity
(‘grey matter’). Regions have sparse global connectivity to each other (‘white matter’).

overlay, the TSV density offered by the parallel approach (∼200000 vias/mm2) is more
than sufficient for the high-bandwidth requirements discussed later.

3. A SIMPLE CONNECTIVITY MODEL FOR PERFORMANCE EVALUATION

The human brain is characterized by very high neuron count, thousands of synaptic
connections per neuron but overall very sparse connectivity, and connectivity at local
(‘grey matter’) and global (‘white matter’) length scales [Wen et al. 2005]. If our goal
is to design a computing system capable of solving unstructured (brain-like) problems,
we could reasonably expect that it would need a connectivity comparable to the brain,
although of course the actual connectivity will depend on the particular application. In
order to assess the performance of a computing system tasked to solve unstructured
computational problems, we need a connectivity model which will give us an idea of
the networking demands on the system. Figure 2 illustrates a simple model based on
physical (experimentally verified) models of brain connectivity at both short and long
length scales. It consists of several regions, or functional units, with dense connections
between cells within each region, and sparse connections between the regions. We now
discuss this model in greater detail.

3.1. Local Connectivity

We first consider the local (‘grey matter’) connectivity. The connection probability be-
tween two neurons generally decreases with the separation distance lsep between their
cell bodies. Studies on rat brains [Hellwig 2000; Perin et al. 2011] find a local decay
length lloc typically in the 100s of microns, for neuron density ∼75000/mm3, correspond-
ing to lsep ∼ 25μm if the neurons are evenly spaced in a simple cubic lattice. Using this
information, we can calculate how often a neuron connects with other neurons in the
same node, nearest neighbor nodes (one hop away), next nearest neighbor nodes (two
hops away), and so on.

If the m neurons of a processor are arranged in a simple cubic lattice, the length of
one edge of the cube is m1/3 lsep. Any given neuron will typically connect with other
neurons within a distance of a few lloc from the neuron. Since we would like to keep
most of the connections within the same node to minimize network traffic, we can
define a characteristic “nodal length” ratio q = m1/3 lsep/lloc whose value should be >1.
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Fig. 3. Fraction of local connections as a function of the number of hops for three values of the parameter q.
The case of 0 hops means connections within the same node, 1 means connections to all nearest neighbors,
2 means connections to all next nearest neighbors, and so forth. As q decreases, the fraction of connections in
nodes outside the same node increases, requiring more network traffic. The lines are meant only as a guide
to the eye, since the number of hops is discrete.

Figure 3 shows the fraction of neuronal connections as a function of the number of
hops, using the Gaussian parameterization suggested in Hellwig [2000], for various
values of q. The number of hops represents whether the connection is in the same node
(i.e., number of hops = 0), in a nearest neighbor node (i.e., number of hops = 1), and so
forth. Note that for m = 250,000 and lloc = 620μm, the longest range found by [Hellwig
2000], q = 2.6 and about 73% of the connections are within node and 24% to nearest
neighbors, which is a reasonable design point allowing most of the network to be used
for the long-range connections to be discussed later.

The curves for different q in Figure 3 can be viewed either as changing lloc for fixed
m or as changing m for fixed lloc. However, since q only depends weakly on m as m1/3,
the design is only very weakly dependent on this initial choice. For example, the three
curves represent more than a 100× variation in m for lloc = 620μm. This insensitivity is
fortunate because, while greatly increasing m may seem beneficial, it also increases the
demands on the internal processor, its memory pipe, and on the outgoing bandwidth
for synaptic connections that are not local.

Finally, we point out two sources of error in our simplistic model. First, pyramidal
neurons are arranged in mini-columns [Buxhoedeven and Cassanova 2002] and pref-
erentially connect to other pyramidal neurons in the same mini-column, so neither
neuron arrangement nor connection probability is isotropic. Of course, we could have
parameterized each direction by its own lloc and lsep, and our conclusion would be the
same provided each lloc is large compared to its lsep. Second, the tails of the connection
probability are likely to be underestimated by the Gaussian parameterization. How-
ever, in the next section, we will present a global connectivity model with a parameter
reflecting the fraction of long distance connections, so any underestimation of the tails
can be incorporated by adjusting this parameter upwards. Therefore, neither of these
simplifications is expected to have a major effect on our estimates.
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Fig. 4. Cluster C(p) and path length L(p) coefficients as a function of rewiring probability p, normalized to
the regular network case of p = 0, using definitions for C(p) and L(p) from Watts and Strogatz 1998]. Pictures
indicate rewiring procedure on a 1D ring lattice to obtain a SWN and random network from a regular one.

3.2. Global Connectivity

The brain may be structurally and functionally divided into many regions which com-
municate with each other through a network of global (‘white matter’) connectivity.
While mapping the neural pathways that underlie human brain function is a hugely
complex undertaking (see, for example, [NIH Brain Initiative website]), there exists a
simple yet widely accepted model that can be used to simulate the inter-region connec-
tivity properties of the brain. As summarized in Bassett and Bullmore [2006], numerous
studies in cat and macaque brains have found that the functional connectivity exhibits
attributes of a Small World Network (SWN), as first proposed in a classic paper [Watts
and Strogatz 1998]. Subsequent work using diffusion MRI in humans [Hagmann et al.
2007] has also found global organization in the form of a SWN.

The essential idea of a SWN is illustrated using the concrete example shown in
Figure 4. Each vertex of a regular lattice of R = 512 vertices, arranged in a one-
dimensional ring lattice, is connected to its nearest neighbors by k = 16 edges per
vertex. (The pictures in the figure are meant only to illustrate the various regimes and
have many fewer vertices and edges.) Traveling clockwise, each edge of each vertex is
allowed to be rewired to another randomly chosen destination vertex with probability p.
For small p, the existence of just a few of these rewired connections greatly diminishes
the average path length to traverse the network, but the network retains the high
degree of local connectivity (‘cliquishness’) in the original regular lattice (p = 0). This
regime of high clustering and short path length, which occurs for a surprisingly wide
range of p, is called a SWN, and has been found to describe the behavior of many highly
disparate systems [Bassett and Bullmore 2006]. For large p, the network becomes
randomly connected, marked by short path length and poor clustering. Figure 4 shows
these regimes using the average clustering coefficient C(p) and path length L(p) (as
defined in Watts and Strogatz [1998]) as a function of p.
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Fig. 5. (a) Distribution of the number of hops, divided into grey- and white-matter connections. For the
example shown here, 90% of the connections are chosen to be grey-matter, so the area under the grey-matter
curve is 9 times that under the white-matter curve. (b) Maximum number of hops as a function of the length
of the express lane (in local hops). The inset shows an illustration of express lanes for one node (similar
connections for other nodes are not shown for clarity).

3.3. Application of the Connectivity Model

In order to formulate a reasonable model of the networking demands in our computing
system, we must consider both long-range and short-range connectivity. This is biologi-
cally plausible since a given neuron might be expected to have a mixture of short-range
and long-range connections though proximal and distal arborizations [Ruppin et al.
1993]. However, since the brain seeks to minimize the energy expended on communica-
tion, the connectivity is dominated by short-range connections [Hasler and Marr 2013].
We choose to study the behavior of our system treating the proportion of short-range
vs. long-range connections as a parameter. While an assumption of <10% long-range
connections is likely to be typical, we extend our study to 50% long-range connections
to study the bandwidth, latency, and power implications in an extreme worst-case
scenario.

To apply the global connectivity model, we first group some number of nodes into a
region, or functional unit, such that there are a total of R regions in the network. For
every edge in a simulated network with R vertices, with k and p chosen to be in the SWN
regime as illustrated above, we calculate the total number of hops (local and express)
needed to make the connection. By combining this with the local connectivity model in
some proportion (here chosen to be 90% short-range (grey matter) and 10% long-range
(white matter)), we obtain a distribution such as the one shown in Figure 5(a) for the
case of 512 regions, 13824 nodes. While the vast majority of connections belong to grey
matter and hence require at most 2 hops, the worst-case network latency is set by the
relatively small number of connections requiring >20 hops.

The number of required hops in Figure 5(a) benefits greatly from the presence of
express lanes, as discussed earlier and illustrated in the inset of Figure 5(b). Figure 5(b)
shows that a dramatic reduction in the maximum number of hops, compared to no
express lanes (0 on the x-axis) is achievable. This benefit is comparable to that seen
in the SWN through the rewiring of a few random links, but is of course more costly
since it involves hard-wiring an express channel for every node. While an optimal value
for express lane length of ∼9 is apparent, it is noteworthy that the large reduction in
maximum number of hops has only a weak dependence on this choice.

3.4. Cortical Algorithm

The unified model above tells us of the required connectivity, but understanding the
network demands requires an algorithm that will tell us how much and how often
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Table II. Scaling Study Cases

Case Cells Synapses Nodes Nodes per wafer Logic wafers DRAM wafers Regions
1-base 4.5 × 108 4.5 × 1011 1728 1728 1 2 64
2-primate 3.6 × 109 3.6 × 1012 13824 6912 2 16 512
3-human 2.9 × 1010 2.9 × 1013 110592 6912 16 128 4096

Case Vertices Edges per vertex Probability p C(p) L(p) σ

1-base 64 4 0.12 0.35 2.99 9.69
2-primate 512 16 0.03 0.64 3.88 14.19
3-human 4096 128 0.00375 0.74 3.00 15.74

data will flow on the network. As an example, we use the Hierarchical Temporal
Memory (HTM) algorithm of cortical processing [Hawkins and Blakeslee 2004]. While
a full explanation of HTM is beyond the scope of this work, we provide a very brief
summary that should help to understand the network demands. During the course of
a single HTM iteration, each functional region activates a number of cells based on
input from the outside world or other regions and sends a message to each activated
cell’s connections. While the messages are traveling throughout the network, each
node’s processor evaluates and updates the state of the synapses of all its affected
neurons based on its input. It may create new synapses, or destroy weak ones, which
is how it “learns”. By the time the next iteration begins, all of the messages must
have reached their destinations in order for the network latency to remain effectively
“hidden” behind the computation time, and therefore the time of one iteration sets
the time scale for data flow on the network. To estimate the time of a single iteration,
we have carried out numerous HTM simulations on ARM A9 processors, and found a
typical range of 50–200ms per iteration, depending on the number of synapses, which
changes as the simulation proceeds. This estimation is also dependent on processor
performance (here we have assumed a frequency of 1GHz) on specified tasks. We will
later show that the condition for keeping the latency hidden behind the compute cycle
is well satisfied for a timestep in the ms range, but note that this condition could be
violated if the processors can be greatly accelerated. In that limit, the system will
become dominated by the network latency rather than the compute cycle.

4. A SCALING STUDY

This section explores the bandwidth, latency, and power implications of scaling up to
human brain levels of neuron count using the 3 cases shown in Table II. Case 2 is an 8x
scaleup in total neuron count over Case 1, and Case 3 is an 8x scaleup in total neuron
count over Case 2. The average number of synapses per neuron is kept fixed at 1000.
Hence, the number of DRAM wafers in Case 2 is 8x that of Case 1, and the number in
Case 3 is 8x that of Case 2. In each case, a region is assumed to consist of 27 nodes, or
about 7 million neurons, which is in the right range for primate brains [Collins et al.
2010].

The bottom part of Table II shows the SWN parameters used for each case. The
values of C(p) and L(p) for the chosen values of p are in the range of biological
examples [Bassett and Bullmore 2006]. The last column shows the value of σ =
(C(p)/C(1))/(L(p)/L(1)), which is a metric of the “small-worldiness” of the system
[Humphries et al. 2006]. The ratio σ should be well above 1 if the system is in the
small-world regime since clustering should be high compared to the random case of p
= 1 (C(p) >> C(1)) while average path length should be comparable (L(p) ∼ L(1)). For
the larger cases (Case 2 and Case 3), we have maintained a high value of σ by scaling
up the number of edges k and scaling down the probability p by the same factor as the
number of regions R is scaled up.
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Fig. 6. (a) Outgoing bandwidth per node as a function of the fraction of connections that are long-range
(white-matter). (b) Connection-weighted average and maximum number of hops for the 3 cases. (c) Power
consumption per node for Case 3 as a function of white-matter fraction and breakdown into logic, memory,
and communication power.

4.1. Bandwidth and Latency

The network traffic can be estimated as follows: In a given iteration of the underlying
cortical algorithm, a fraction α of all neurons, or αxm neurons per node, become active.
We assume that only those neurons whose state has changed since the previous itera-
tion need to send a message to each of their s synaptic connections, leading to (αxmxs)
messages to be sent per node in each iteration. If a fraction γ of these connections
are outside the node (mainly long-range, but also a few short-range connections), then
each node sends γ x(αxmxs)xbmsg bits onto the network in each iteration. Here bmsg is
the number of bits contained in a message packet, including the header and payload,
and is significantly larger than the bsyn bits that was used to store just the address in
compressed format and the data bits. Some of those messages (by far the white-matter
ones) contain multiple hops and thus need to be rerouted several times during the iter-
ation. Figure 6(a) shows the outgoing bandwidth per node as a function of the fraction
of connections that are white-matter (long-range) for the three cases, assuming a itera-
tion of 100ms and an activity factor α = 0.01. For Case 3, even for an extreme example
of 50% white matter, the 25Gbps is comfortably within our 100 Gbps estimate earlier.
Since the curves in Figure 6(a) scale with activity factor α, the outgoing bandwidth
could approach the bandwidth capability for high activity factors, as might occur at a
few very active nodes, but a very high activity factor is not consistent with biological
energy constraints [Lennie 2003]. Also shown in Figure 6(a) is a breakup of the out-
going bandwidth for Case 3 into grey- and white-matter components. Except when the
white-matter fraction is very small (below 4%), the network traffic is dominated by the
white matter, as it should be for a well-designed system.

As long as the system is not bandwidth-constrained, the latency will be determined
by the maximum number of hops, which is set by the long-range connections. Fig-
ure 6(b) shows the maximum number of hops as well as the connection-weighted
average number of hops for the three cases. We can estimate a time per hop as the
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sum of the transit time across the hop and the processing time at each intermediate
node where the message has to be rerouted. For the short distances between nodes, the
transit time (due to RC) is small compared to the rerouting time. Conservatively esti-
mating the rerouting time as 100ns per hop, the worst case of 40 hops would require on
the order of a few μs, so the assumption of latency hiding during the 100 ms iteration
is valid, provided the system is not bandwidth-constrained.

4.2. Power Consumption

The total system power can be approximated as the sum of the processor power, mem-
ory power, and communication power. Since typical low-end processors consume in the
10’s of μW per MHz (see, for example, [ARM website]), a reasonable estimate of the pro-
cessor power might be 0.5W per node at 1GHz, as we need to add some power for the
drivers of the communication lines (explained below). The power consumption of a 1GB
DRAM can be estimated from standard datasheets (see, for example, [Micron website])
and from Vogelsang [2010] as approximately 100mW (including refresh), assuming a
1% neuron activity factor which means about 1% of the data will be pulled (random
access) per iteration. The communication power can be estimated from 1/2CwV2 based
on the capacitance Cw per wire, supply voltage Vdd, and the number of connections.
For Vdd = 1 V and typical BEOL wiring capacitance ∼2 pF/cm, a local hop of ∼0.3 cm
would require ∼0.3 pJ = 0.3 mW/Gbps, and an express hop of ∼3 cm would require
∼3 pJ = 3 mW/Gbps. Figure 6(c) shows the total power per node and its breakup into
these 3 components as a function of the white-matter fraction for Case 3 (Cases 1 and
2 are similar). Adding these three components together yields a power estimate of
about 600 mW per node, or a total of 1 kW for Case 1, 8 kW for Case 2, and 66 kW for
Case 3. We have carried out thermal simulations which find, for a stack of 10 wafers,
that 1 kW/wafer is sustainable using air cooling and 10 kW/wafer is sustainable using
water cooling [Sikka et al. 2015]. Thus, the thermal challenges even for a “human-like”
system are manageable.

5. ROUTING AND FAULT TOLERANCE

During each iteration, messages must be passed from one node to another, according
to a message passing protocol. This protocol may be deterministic for simplicity, or
adaptive to mitigate the congestion of the system. One example of adaptive routing for
this system is the algorithm of May et al. [1997], which alleviates traffic congestion by
routing a message from one node to another through a randomly selected intermediate
node. The routing algorithm must be able to deal with defects and failures, which we
now discuss in detail.

Resilience to faults is essential for a wafer-scale system as pre-existing defects during
fabrication and real-time failures during operation are inevitable. Fault tolerance can
be realized through a combination of redundancy, repair techniques, and algorithms
that route around defects, borrowing from a long history of known techniques for
mesh networks. However, probably the single most important factor in alleviating
vulnerability to failures is the remarkable ability of many neural algorithms to be
naturally resilient to faults. We examine each of these in turn.

Redundancy and repair techniques [Arzubi 1973; Robson et al. 2007] play a crucial
role in dealing with fabrication defects. For example, because TSVs are freely available
due to the high density [Lin et al. 2014], sparse TSV faults can be tested and repaired
using redundancy after integration [Chi et al. 2013]. While the processor yield is ex-
pected to be very high due to its relative simplicity, extra processors can be added
without substantial area penalty. If necessary, power domains can be used to shut off a
block of processors containing a fault that could otherwise be fatal to the entire system.
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Fig. 7. Effect on performance (average reward) of suddenly disabling 50% or 75% of the columns after 7000
decision epochs in an HTM-type algorithm. Although the performance shows an initial drop, it is able to
reconfigure its resources autonomously and recover to nearly its original performance level. Reprinted with
permission from J. Marecki.

Unfixable defects on a wafer, such as non-functional nodes, can be addressed us-
ing well-known routing algorithms, in some cases extensions of mature 2D routing
algorithms such as those used for Network-on-Chip. Because the TSVs of the stacked
wafers have RC characteristics comparable to the planar wiring load [Lin et al. 2014],
the routing algorithm can treat the TSVs in the vertical dimension the same as the
wiring in the x and y directions on the wafer from the graph point of view. Many known
techniques for fault avoidance as deadlock-free and livelock-free routing [Boppana and
Chalasani 1995] can also be adopted in 3D. Routers for 3D need two more ports due to
the addition of +z and –z directions, but the area and power consumption will be in the
same scale [Bahmani et al. 2012]. The third dimension is also beneficial in providing
additional paths to route around faults.

Due to the robustness of neural algorithms, the presence of a few faults, which may
occur during operation, will not substantially affect the performance of the system.
Figure 7 is a simulated result showing a dramatic illustration of this robustness. Here
an HTM-like cortical algorithm is subjected to a sudden disabling of a large percentage
(50% or 75%) of the mini-columns, each of which contains a group of cells. Although
the performance shows an initial drop, the system shows a remarkable resilience to
reconfigure its resources autonomously and recover to nearly its original performance
level within a reasonable time. Behind this ability to recover is the ability of the system
simply to form new synapses when existing ones are destroyed.

6. DISCUSSION AND CONCLUSION

The purpose of this work has been to do a feasibility study of using 3D-WSI to realize
a neuronal system approaching human brain levels of neuron count and connectivity.
We now review our findings to understand where the biggest gaps and challenges are.

Using a simple model to emulate network connectivity, we found that the high band-
width afforded by metal lines directly on the wafer and by TSVs between wafers is
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quite adequate for the expected traffic. When compounded over the entire system
with thousands of nodes, the total bandwidth capability compares very favorably to
the bandwidth capability of the human brain which has been estimated at 1Tbps
[Laughlin and Sejnowski 2003]. Communication latency also appears to be very low
in our system. Aided by express channels, the latency can be well hidden during the
compute cycle even for the worst case. Interestingly, it appears that the human brain is
possibly more limited by the communication time (with axonal propagation times in the
20 ms range [Wen and Chlovskii 2005]) while the 3D-WSI system is more constrained
by the compute time because of its inability to parallelize below the level of a single
node. Still, the iteration time in the 10’s of ms should allow for sensory perception on
the time scale of a second. Finally, the estimated power consumption in the 10’s of kW,
while high, is manageable if advanced cooling techniques are used.

The biggest challenge appears to be in the memory requirements since we desire
storage-class density with access time typical of volatile memories. The primate-like
case described above, requiring 2 logic wafers and 16 DRAM wafers, is still feasible at
today’s DRAM densities, using wafer bonding techniques which to date have demon-
strated stacks of 4 wafers. However, scaling up to the human-scale case using 128
DRAM wafers at today’s density would not be feasible, pointing out the need for fur-
ther memory innovation which would become even more important due to the slower
scaling of DRAM feature size compared to digital CMOS. For the human-scale case,
a 10x increase in density would be needed to bring the number of wafers down to a
feasible level (<30) for 3D-WSI. These density increases may be possible with advances
in emerging memory technologies [Meena et al. 2014]; one promising example is given
in Cappelletti [2015].

Before advocating for the use of 3D-WSI, it is worthwhile to ask whether this sys-
tem could practically be realized using the conventional method of packaged chips
mounted on boards. While it is possible to achieve a comparable bandwidth using
high-speed SERDES MGTs (multi-gigabit transceivers) [Kimura et al. 2014], the very
high bandwidth consumes significant power to drive the high capacitance chip-to-
chip and board-to-board connectors [Hasler and Marr 2013] and to maintain synchro-
nization. Using Kimura et al. [2014], in which 28Gbps is achieved with 560mW in a
28nm technology, we estimate an added 4W per node just for the high bandwidth com-
munications, resulting in an added 400kW for a human scale system. Each SERDES
operation also adds a delay of ∼100ns for serialization and deserialization to the time
for each hop. The beauty of not serializing lies in the inherent simplicity and power
savings of parallel communication: power is consumed only when used, not all the
time as is needed in a SERDES MGT to maintain clock synchronization. Finally, with
approximately 25 chips on a board, the human scale system would require a roomful
of racks to implement. The 3D-WSI system would be much more compact, even when
control and input/output chips, power supply, and cooling system are included.

Finally, while we believe that 3D-WSI represents a strong next step in advancing
brain computing, we comment on what could be next steps in a neuromorphic roadmap
for further scaleup. First, as discussed, we have chosen as a starting point an average
of 1000 synaptic connections per neuron, while a 10x increase to an average of 10000
per neuron would be desirable to improve the contextual capabilities of the system
[Hawkins and Ahmad 2015]. In addition to much higher memory requirements, the
network traffic would also increase markedly. As a possible futuristic enhancement,
optical interconnects (see, for example, Schow et al. [2010]) offer one possible solution
to greatly increasing the bandwidth-distance product. In addition, they offer the pos-
sibility of a freespace interconnect that can be flexibly reconfigured to meet changing
network demands [Katayama et al. 2013].
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Fig. 8. Example of address compression for a single synaptic connection in a 64-bit addressing space. The top
frame shows the original representation of the connection using its absolute address. The middle frame shows
some improvement when the relative address is used along with run length encoding. The bottom frame
shows significant additional improvement when relative address, run length encoding, and rearrangement
are used. In the bottom frame, msb refers to most significant bit, smsb to the second most significant bit,
and so forth.

In conclusion, we have found that 3D-WSI offers a feasible path for realization of
a next-generation computing system with significant cognitive capabilities that could
complement today’s enterprise servers. The ability to tackle unstructured computation
problems would have significant impact on a wide variety of fields such as cybersecurity,
healthcare, public safety, economics and finance, and robotics.

APPENDIX

This Appendix describes a method to store the addresses of synaptic using a highly
compressed representation (run length encoding) that takes advantage of the observa-
tion that the overwhelming majority of a neuron’s connections are located in the local
vicinity of the neuron. Naively, for M total neurons in the system, log2M address bits
are required to specify an absolute address for each synaptic connection. If M is very
large, the number of address bits can significantly exceed the number of data bits being
stored with the address, resulting in a highly inefficient ratio of address bits to data
bits. However, we can improve on this situation by storing, for a given neuron, the ad-
dress of each of its connections relative to the address of the given neuron, rather than
as an absolute address. Since the vast majority of connections are local, the relative
addresses will contain a large number of leading zeros which can be stored compactly
by noting only the number of nonzeros in the relative address.

Figure 8 gives a concrete example for the case of 64-bit addressing. First, the original
absolute address is divided into 4 fields consisting of a 16-bit global address field
G of 16 bits and three 16-bit local address fields, x,y, and z. Suppose that a given
neuron, whose relative address we take to be all 0’s, makes a connection with another
neuron located in the same region, but +23 units away in x, −23 units away in y, and
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+23 units away in z, which we denote as (+10111,−10111,+10111) in binary. As a first
compression, we could represent this address, consisting of 27 leading zeros followed
by 37 bits of information, using 47 bits (6 bits for the number of leading zeros, 37 bits
of information, and 4 bits for the sign of each address field), instead of the original 64
bits. However, if we regroup the x, y, z subfields such that we take the most significant
bit of each, then the second most significant bit of each, and so forth, we can increase
the number of leading zeros from 27 to 49, requiring only 25 bits to store (6 bits for the
number of leading zeros, 15 data bits, and 4 bits for the sign of each address field).
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