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Magnetic Field Quality Analysis Using ANSYS*

Domenico Dell'Orco and Yanping Chen
Lawence Berkeley Laboratory
University of California
Berkeley, CA 94720

ABSTRACT

The design of superconducting magnets for particles accelerators requires a high quality of the magnetic
field. This paper presents an ANSYS 4.4A Postl macro that computes the field quality performing a Fourier
analysis of the magnetic field.

The results show that the ANSYS solution converges toward the analytical solution and that the error on
the multipole coefficients depends linearly on the square of the mesh size. This shows the good accuracy of
ANSYS in computing the multipole coefficients.

INTRODUCTION

The design of superconducting magnets for particle accelerators requires a Fourier analysis of the magnetic
field in order to evaluate the field quality. Since ANSYS 4.4A does not have such a built-in capability, we have
developed and tested an internal routine that does it. We have considered three different configurations of
particle accelerator magnets and have performed an error analysis. The element used in this magnetic linear
analysis is STIF 13 [1] and the element shape used is quadrilateral. The results show that the ANSYS results
converge toward the analytical solution and that the error on the multipole coefficients depends linearly on the
square of the mesh size. We have also found that the automatic meshing introduces small errors in the geometry
of the problem and makes the results converge to a slightly different solution. This problem can be corrected by
modifying the nodes locations with the NMODIF command.

The configurations considered for this test are one dipole and two quadrupole magnets with cos(n0)
geometry (see Figures 1 and 2). A perfect dipole magnet gives a uniform field in the magnet bore in order to

- bend the particles, where as a quadrupole magnet has a field that depends linearly on the radius and by the

cosine of the azimuthal angle.

The Fourier analysis of the magnetic flux density is performed along a circumference (r=10 mm)
concentric with the center of the beam particle. A perfect n-pole magnet has only one fundamental multipole
component. In reality since the current flows in cables of simple cross section shape, the magnets will always
have multipole components other than the fundamental. One part of the magnetic design of a superconducting
m%%nct consists in minimizing the unwanted multipole components of the field by varying the layout of the
cables. :

. The multipole components are measured in T/cm(®-1) where n is the order of the multipole component (n=1
for dipole, n=2 for quadrupole, n=3 for sextupole,...). The ratio of the secondary components to the
fundamental must be kept within the specification of the magnet, normally less than 104, This means that a
dipole magnet with central field of 1 T should have all the secondary multipole components less than 10-4
T/cm®-1) while the error in the numerical computation should be ~ 105 T/cm(®-D),

*This work was supported by the Director, Office of Energy Research, Office of High Energy and Nuclear
Physi(c)(s), Division of High Energy Physics, of the U.S. Department of Energy under Contract No. DE-ACO03-
76SF00098.



NUMERICAL FORMULATION
The magnetic field can be described in the following way:
F=By+iBy = .Zl(bn +iag) i 1B eq.(1)
1=

where B is the magnetic flux density, r the radius at which the multipole analysis is performed, 6 the azimuthal
angle on the circumference, a, the skew multipole component and by, the normal multipole component.
From equation 1 it is derived:

2n

an =2—j [Bx cos(n-1)6 - By sin(n-1)8] 1" d@ €q.(2)
2n

by =——~j [By cos(n-1)0 - By sin(n-1)8] r1-n d6 eq.(3)

Considering the definition of the magnetic vector potential ¢:

10 0
Brﬁﬁ Bg = '5% _ eq.(4)

and supposing that the vector potential depends linearly on 6, equations 2-3 can be evaluated numerically in the
following way:

B>

-1 i

ap = - 21‘, —Ké—(sm n6; - sin nei-l)‘ eq.(5)
1

mirn PIRRRAN Ae cos n@;j - cos nbj.1) eq.(6)
1

where i is the node number along the circumference of radius r, Adj=¢;-¢i-1 and A6;=0;-0;-1.

The normal multipole components by are evaluated directly in POST1 using the routine listed in the
appendix. This method of computing the multipole coefficients has the advantage of using directly the magnetic
vector potential and not the flux density B, obtained by differentiating it. The routine in the appendix avoids the
transfer of ANSYS results to an external software (or to the PREP6 in which it is also possible to perform a
Fourier analysis).

DESCRIPTION OF THE TEST

We have carried out the test of the routine presented in the appendix for three different magnet
configurations:

a) Dipole magnet with inner radius ry=20 mm, outér radius r9=40 mm and 8=56° (see Figure 1), no automatic
meshing.

b) Dipole magnet with inner radius r;=20 mm, outer radius r,=40 mm and 6=56° (see Figure 1), automatic
meshing.

¢) Quadrupole magnet with inner radius r;=20 mm, outer radius r,=40 mm and 6=20° (see Figure 2), no
automatic meshing.

d) Quadrupole magnet with inner radius r;=20 mm, outer radius r,=40 mm and 6=34° (see Figure 2), no
automatic meshing.
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In all these four configurations the overall current density in the coils is J=400 A/mm? and the radius of the
circular iron yoke is R=45 mm.

In Figures 1 and 2 it is shown one fourth- of the cross section of each magnet. In the case of the two
quadrupole magnets we could also have studied only one eighth of the magnet but we did not do it in order to
check numerical asymmetries.

The element used in this magnetic linear analysis is STIF 13, and the element shape used is quadrilateral.

The error analysis has been performed varying the mesh size. In Figures 3 and 4 the meshes are shown
when the mesh size is arbitrarily considered equal to 1. The mesh sizes used are: 2, 4/3, 1, 2/3, 0.5, 2/5, 1/3.

Since we suppose that the iron has infinite permeability, Neumann boundary conditions have been impo-
sed at the radius R. The boundary conditions are shown in Figures 1 and 2.

The Fourier analysis has been performed at the radius r=10 mm.
ANALYTICAL SOLUTION

The analyﬁcal solutions for the magnets, considered in Figures 1 and 2, are the following [2]:
an = 0 , bn = Cp + dn ' Cq.(7)
In the dipole cp and dp are the following:

1_2-n 2-n
T R
th=2 -1:5— Jm—— sin n@ for n=l, 3,5, 7,... - eq;(8)
2+n 2+n
o T r, - 1 .
dp =2~ - R T n(Zen) sin n@ for n=1, 3,5, 7,... €q.(9)

In the quadrupole ¢y, and dy, are the following:

=2 71n2in 20 eq.(10)
r n
2-n 2-n
Y S S S, for n=6, 10, 14 1
Ch = n n(2-n) sin n or n=6, 10, 14,... eq.(11)
2+4n 2+n
g gt d h = . )
n —4—n—§'2—n' m——sm ne or n=2, 6, 10, 14,... eq.(l )
RESULTS

In Figures 5-8 the flux lines of the magnetic flux density are shown for three magnet conﬁguratlons
considered.

In Tables 1-4 the multipole components versus the mesh size for the four configurations considered are
shown, and in Figures 9-16 the error on the multipole coefficients versus the mesh size square is plotted. In
these tables it is also shown the CPU time in seconds required to run the problem on a Sun Sparcstation I and
the number of elements contained in each model.

In Figures 9-16 it is shown that all the multipole coefficients depend linearly on the square of the mesh size
and that the results converge to the theoretical solution. It is possible to compute very accurately the multipole
coefficients by using two different mesh sizes not very refined and then extrapolating the results.



In Figures 11 and 12 it is shown that, since the automatic meshing introduces small error in the geometry
(the arc lines are substituted by spline curves), the numerical solution does not converge to the theoretical
solution but it has a small error. This problem can be corrected by modifying the nodes locations with the
NMODIF command after using the automatic meshing.

Since an accelerator type magnet normally has the ratio of the secondary multipoles to the fundamental less
than 104, the accuracy required to the analysis is ~10-5, In the dipole example (mesh size = 1/3), the error on
all the multipoles is less than 10-5 T/cm(®-1) and the fundamental is by = 7.75 T.

These results show that ANSYS can be used in computing the magnetic field quality with as good an
accuracy as other software specifically designed for magnetic analysis.

REFERENCES

[1] De Salvo, G.J., and Gorman, R. W., "ANSYS User's Manual", Rev. 4.4, Swanson Analysis Systems,
Inc., Houston PA, (1989). :

[2] R. Perin, Academic Training Programme 1984-1985, Superconducting Components for Accelerators,
CERN-European Center for Particle Research.
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Fig. 1. Dipole magnet cross section and boundary conditions.
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Fig. 2. Quadrupole magnet cross section and boundary conditions.
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myltipole analysis of dipole field

Fig. 3. ANSYS mesh (size=1) for the dipole magnet.

multipole analysis of quadrupole fleld

ANSYS 4.4
COCT 5 1990
19:03:36
PREP? ELEMENTS
TYPE NUM

Vv =
DIST=0,02475
XF  =0.0225
YF  =0,0225

ANSYS 4.4
OCT 5 1990
19:25:37
PREP7 ELEMENTS
TYPE NUM

V=
DIST=0.02475
XF  =0,0225
YF  =0.0225

Fig. 4. ANSYS mesh (size=1) for the quadrupole magnet with 6=20°.
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multipole analysis of dipole field

ANSYS 4.4
OCT 5 1990
18:45:17
POST1 STRESS
STEP=1
ITER=1

MAG
SMX =0,2226

2V =
DIST=0,02475
XF  =0,0225
YF  =0.0225
EDGE

POST1 ELEMENTS
TYPE NUM

vV =1
*#DIST=0,02475
*#XF  =0,0225
*YF =0,0225

EDGE

Fig. 5. Flux lines of the magnetic flux density for the dipole.
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L sultipole analysis of dipole field

ANSYS 4.4
OocT - 5 1990
19:11:25
POST1 STRESS

vV =1 .
DIST=0.02475
XF  =0,0225
YF =0.0225
EDGE

POST1 ELEMENTS
TYPE NUM

2V =1
*DIST=0.02475
*XF =0,0225
*YF =0,0225
EDGE

Fig. 6. Flux lines of the magnetic flux density for the dipole with automatic meshing.
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multipole analysis of quadrupole fleld

ANSYS 4.4
OCT S 1990
19:22:05
POST1 STRESS
STEP=1
ITER=1
MAG
SMN =-0,067456
SMX =0,067456

v =1
DIST=0.02475

POST1 ELEMENTS »
TYPE NUM PN

Zv =t
$D1ST=0.02475
$XF =0,0225
$YF  =0.0225 ¥4
EDGE

Fig. 7. Flux lines of the magnetic flux density for the quadrupole with 6=20°,
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Lﬁmultlpole analysis of quadrupole field

ANSYS 4.4
OCT S5 19%0
16:38:32
POST1 STRESS
STEP=1
ITER=1
MAG
SMN =-0.089728
SMX =0.089728

v =1
DIST=0.02475
XF

YF =0.0225
EDGE

POST1 ELEMENTS
TYPE NUM

v =1
*DIST=0,02475

#XF  =0,0225
*YF  =0.0225
EDGE

Fig. 8. Flux lines of the magnetic flux density for the quadrupole with 6=20°.
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Ansys - theory (10E-4 T/cm**(n-1))

Ansys - theory (10E-4 T/cm**(n-1))

Dipole magnet (theta = 56 deg.)

20
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Fig. 9. Multipole coefficients versus mesh size for the dipole.

Dipole magnet (theta = 56 deg.)
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0 1 2 3 4

mesh size square

Fig. 10. Multipole coefficients versus mesh size for the dipole.
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Dipole magnet (theta = 56 deg.) Automatic meshing
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Fig. 11. Multipole coefficients versus mesh size for the dipole with automatic meshing.

Dipole magnet (theta = 56 deg.) Automatic meshing

0.2

—a— b9

—— Dbl
. ~——— bi13
-0.4 - —o— Dbi5

———  bi17

Ansys - theory (10E-4 T/cm**(n-1))

mesh size square

Fig. 12. Multipole coefficients versus mesh size for the dipole with automatic meshing.
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Quadrupole magnet (theta = 20 deg.)

—— b2
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Ansys - theory (10E-4 T/cm**(n-1))

mesh size square

Fig. 13. Multipole coefficients versus mesh size for the quadrupole with 6=20°.

Quadrupole magnet (theta = 20 deg.)

——f}— b10
——  bi4

~——a3— Dbi8

Ansys - theory (10E-4 T/cm**(n-1))

mesh size square

Fig. 14. Multipole coefficients versus mesh size for the quadrupole with 6=20°.
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Anéys - theory (10E-4 T/cm**(n-1))

Fig.

Ansys - theory (10E-4 T/cm**(n-1))

Quadrupole magnet (theta = 34 deg.)

-100

mesh size square

15. Multipole coefficients versus mesh size for the quadrupole with 8=34°,

Quadrupole magnet (theta = 34 deg.)
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Fig. 16. Multipole coefficients versus mesh size for the quadrupole with 6=34°,
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1/size 0.5 a5 1.0 1.5 2.0 25 3. theory
bl 7.715329 7.75220 7.75183 7.75155 7.75145 7.75141 7.715139 7.75133
b3 0.59793E-1 | 0.60321E-1 | 0.605050E-1 | 0.60637E-1 | 0.60683E-1 | 0.60704E-1 | 0.60716E-1 | 0.60742E-1
bS -0.21801E-1 | -0.22694E-1 | -0.23007E-1 | -0.23230E-1 | -0.23308E-1 | -0.23344E-1 | -0.23364E-1 | -0.23409E-1
b7 0.12097E-2 | 0.13539E-2 | 0.14052E-2 | 0.14421E-2 | 0.14551E-2 | 0.14611E-2 | 0.14643E-2 | 0.14718E-2
b9 0.23159E-3 | 0.23106E-3 | 0.23119E-3 | 0.23138E-3 | 0.23146E-3 | 0.23149E-3 | 0.23151E-3 | 0.23157E.3
bll 0.47381E4 | -0.53917E4 | -0.56875E4 | -0.59179E-4 | -0.60029E-4 | -0.60425E-4 | -0.60642E4 | -0.61143E-4
b13 0.48076E4 | -0.21021E4 | -0.11271E4 | -0.41980E-5 | -0.17069E-5 | -0.54658E-6 | 0.85348E-7 | 0.15200E-5
bl5 -0.60567E-5 | -0.15550E-5 | -0.82721E-7 | 0.94349E-6 | 0.12867E-5 | 0.14518E-5 | 0.15361E-5 { 0.17346E-5
bl17 0.56794E-5 | 0.270997E-5 | 0.14565E-5 | 0.50410E-6 | 0.15008E-6 | -0.87667E-8. | -0.20184E-6 | -0.30177E-6
elements 1728 3888 6912 15552 27648 43200 62208
cpu time (s) 96 227 445 1281 2976 6147 13464
Table 1: Multipole coefficients versus mesh size for the dipole magnet (§ = 56°)
1/size 0.5 5 1.0 15 2.0 2.5 3. theory
bl 7.75329 7.75221 7.15183 7.75155 7.75146 7.75141 7.15139 7.75133
b3 0.59796E-1 | 0.60324E-1 | 0.60508E-1 | 0.60639E-1 | 0.60685E-1 { 0.60706E-1 | 0.60718E-1 | 0.60742E-1
b5 0.217970E-1 | -0.22691E-1 | -0.23003E-1 | -0.23227E-1 | -0.23305E-1 | -0.23341E-1 | -0.23361E-1 | -0.23409E-1
b7 0.11976E-2 | 0.13468E-2 | 0.13999E-2 | 0.14381E-2 | 0.14515E-2 | 0.14577E-2 | 0.14611E-2 | 0.14718E-2
b9 0.21538E-3 | 0.22170E-3 | 0.22425E-3 | 0.22617E-3 | 0.22685E-3 | 0.22717E-3 | 0.22735E-3 | 0.23157E-3
bl -0.64333E4 | -0.5750E-4 | -0.55763E-4 | -54721E-4 | -0.54393E-4 | -0.54259E-4 | -0.54172E-4 | -0.61143E-4
b13 -0.67143E-4 | -0.24807E-4 | -0.96843E-5 | 0.12196E-5 | 0.50597E-5 | 0.68384E-5 | 0.78073E-5 | 0.15200E-5
bl5 -0.65452E-5 | -0.20432E-5 | -0.54692E-6 | 0.46514E-6 | 0.81764E-6 | 0.97319E-6 | 0.10600E-5 | 0.17346E-5
b17 0.61454E-5 | 0.24180E-5 | 0.92735E-6 | -0.22554E-6 | -0.63467E-6 | -0.832830e-6 | 0.636248E-6 | -0.30177E-6
elements 1728 3888 6912 15552 27648 43200 62208
cpu time (s) 107 250 479 1324 3016 6019 10882
Table 2: Muitipole coefficients versus mesh size for the dipole magnet (9 = 56°) and automatic meshing
1/size b2 b6 bl0 bl4 bl8 elements cpu time (s)
0.5 17201 0.11588E-1 0.91391E-5 0.54687E-4 0.59585E-4 1728 96
0.75 1.7238 0.12728E-1 -0.55053E4 0.17564E-4 0.24539E-4 3888 226
1.0 1.7251 0.13127E-1 -0.77582E-4 0.53763E-5 0.13446E-4 6912 441
1.5 1.7260 0.13413E-1 -0.93652E-4 -0.28836E-5 0.58456E-5 15552 1273
20 1.7263 0.13513E-1 -0.99271E-4 -0.56676E-5 0.32612E-5 27648 2967
25 1.726453 0.13559E-1 -0.10187E-3 -0.69365E-5 0.20799E-5 43200 6170
3.0 1.726452 0.13584E-1 -0.10328E-3 -0.76189E-5 0.14395E-5 62208 13517
theory 1.72672 0.13641E-1 -0.10649E-3 -0.91571E-5 -0.83048E-22
Table 3: Multipole coefficients versus mesh size for the quadrupole magnet (8 = 20°)
1/size b2 b6 b10 bl4 bl8 elements cpu time (s)
0.5 2.481 -0.6299E-2 0.1909E-3 -0.1060E-3 0.2267E-4 1728 104
0.75 2.486 -0.6356E-2 0.2382E-4 -0.3918E-4 0.6653E-5 3888 228
1.0 2.488 -0.6377E-2 -0.3360E-4 -0.1763E-4 0.2965E-5 6912 447
1.5 2.490 -0.6393E-2 -0.7422E4 -0.2928E-5 0.9001E-6 15552 1316
20 2.490 -0.6399E-2 -0.8837E-4 0.2061E-5 0.3123E-6 27648 3000
2.5 2.490 -0.6402E-2 -0.9490E-4 0.4345E-5 0.6975E-7 43200 6202
3.0 2.490 -0.6403E-2 -0.9844E4 0.5577E-5. -0.5746E-7 62208 13579
theory 2.491 -0.6407E-2 -0.1065E-3 0.8357E-5 -0.3225E-6

Table 4: Multipole coefficients versus mesh size for the quadrupole magnet (§ = 34°)
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APPENDIX

Routine to perform the Fourier analysis of the magnetic field in a n-pole magnet.

This routine that runs on ANSYS 4.4A requires to have nodes on the circumference r=argl, to specify the
considered fraction (in the examples shown it is 1/4) of the magnet cross section and to use the MKS system.

*create, intg
/com THIS ROUTINE COMPUTES THE NORMAIL MULTIPOLE COEFFICIENTS OF THE
/com MAGNETIC FIELD IN A N-POLE MAGNET

/com

/com Authors: Domenico Dell'Orco & Yanping Chen é
/com Lawrence Berkeley Laboratory

/com 1 Cyclotron road M.S. 46-161 \
/com Berkeley, CA 94709 "
/com Usa

/com telephone (USA): (415)-486-7226

/com

/com IMPORTANT: only the allowed normal multipoles are correct.

/com

bl=0 $b2=0 S$b3=0 Sb4=0 35b5=0 $b6=0
b7=0 $b8=0 $b9=0 $bl0=0 $bll=0 $bl2=0
b13=0 $bl4=0 $b15=0 $bl16=0 $bl7=0 $b18=0

csys, 1

dsys, 1 )
ra=argl the multipoles are computed at the radius argl
fr=arg2 arg2 is the frdction of the magnet cross section

¥ % % *

pi=4.*atan(1l.)
rcm= (ra*x100)
nsel, x,ra
enode
ite=1
nelem
nrsel, x,ra
nsort,y, 1
*get,yml,min
nrsel,y,yml,yml
*get,nl, ndmx
:1la2
*if,ite,eq,1, :1lal
nl=n2
yml=ym2
:lal
nelem
nrsel, x,ra
nusel,y,0,yml
*get,mx, ndmx $*get,mn, ndmn
dn= (mx-mn)
nsort,y,1
*get,ym2,min
nrsel, y,ym2, ym2
*get,n2,ndmx
/com COMPUTE THE MULTIPOLE COEFFICIENTS bn
nsel,,nl
nasel, ,n2 )
*get,mal,mag,nl $*get,ma2,mag,n?2
*get,tel,y,nl $*get,te2,y,n2
tel=(tel/180) Stel=(tel*pi) %
te2=(te2/180) Ste2=(te2*pi)
dcl=(cos ({(1*te2))~cos((1l*tel)))
dc2=(cos ({2*te2))-cos((2*tel)))
de3=(cos ((3*te2) ) -cos ((3*tel)))
dcd= (cos((4*te2))~cos((4*tel)))

))

))

»)

(1/2, 1/4...)
radius in cm

deS=(cos ((5*te2)) ~cos((5*tel)
dc6=(cos ((6*te2))~cos((6*tel)
dc7=(cos {{(7*te2))—-cos((7*tel)

-14-



dc8=(cos ((8*te2))~cos((8*tel)))
dc9=(cos ((3*te2)) ~cos ({9*tel)))
dcl0=(cos((10*te2))-cos((10*tel)
dcll=(cos(({ll*te2))-cos((11l*tel)
dcl2=(cos ((12*te2))-cos((12*tel)
dcl3=(cos ((13*te2))-cos((13*tel)

dcl5=(cos ((15*te2))~cos ((15*tel)
dclé=(cos((l6*te2))-cos((1l6*tel)
dcl7=(cos ((17*te2))-cos((17*tel)

))
))
»)
))
dcild=(cos((14*te2))-cos((1l4*tel)))
))
»)
))
))

dcl8=(cos((18*te2))-cos((18*tel)

dma=(ma2-mal)
dte=(te2-tel)
dmdt=dma/dte
bl=(bl+ (dmdt*dcl))
b3=(b3+ (dmdt *dc3))
b5=(b5+ (dmdt *dc5) )
b7=(b7+ (dmdt*dc7))
b= (b9%+ (dmdt*dc9) )

$b2=(b2+ (dmdt*dc2))
$b4=(bd+ (dmdt *dc4) )
$b6=(b6+ (dmdt*dc6) )
$b8= (b8+ (dmdt *dc8))
$b10=(b10+ (dmdt*dcl0))

bll=(bll+ (dmdt*dcll)) $bl2=(bl2+ (dmdt*dcl2))
bl3=(b13+ (dmdt*dcl3)) $bld=(bl4d+ (dmdt*dcld))
b15=(b15+ (dmdt*dcl5)) $blé=(bl6+ (dmdt*dcl6))
bl17=(bl7+(dmdt*dcl7)) $bl8=(bl8+ (dmdt*dcl8))

ﬁ

*if,dn,eq, 0, :1a3
ite=ite+l

*go, :1az2

:1a3

nall

cof=100
cof=((cof/fr) /pi)

*stat
*end

*use,intqg,0.01,0.25

* display all (!)

* convert mag. potential from T*m to T*cm

the parameters

bl=((bl*cof) /1) $bl=(bl/rcm**1) * dipole
b2=( (b2*cof) /2) $b2=(b2/rcn**2) * quadrupole
b3=((b3*cof) /3) $b3=(b3/rcm**3) * sextupole
‘bd=((bd*cof) /4) $béd= (b4 /rcm**4) * octupole
b5=( (b5*cof) /5) $b5= (b5/rcm**5) * decapole
bé=( (b6*cof) /6) $bé=(b6/rcm**6) * 12-pole
b7=((b7*cof) /7) $b7=(b7/rcm**7) * 14-pole
b8=( (b8*cof) /8) $b8=(b8/rcm**8) * 16-pole
b9= ( (b9*cof) /9) $b9=(b9/rcm**9) * 18-pole
bl10=( (bl0*cof) /10) $b10=(bl0/rcm**10) * 20-pole
bll=((bll*cof)/11) $bll=(bll/rcm**11) * 22-pole
bl2=((bl2*cof) /12) $bl2=(bl2/rcm**12) * 24-pole
b13=((bl3*cof) /13) $b13=(bl3/rcm**13) * 26-pole
bl4=((bld*cof)/14) $bld4=(bld/rcm**14) * 28-pole
bl15=(({bl5*cof) /15) $bl5=(b15/rcm**15) * 30-pole
bl6=({bl6*cof)/16) $bl6=(bl6/rcm**16) * 32-pole
bl7=((bl7*cof)/17) $bl7=(bl7/rcm**17) * 34-pole
bl8=((bl8*cof)/18) $b18=(bl8/rcm**18) * 36~pole

*argl=radius arg2=cross section fraction
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