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SUMMARY

Fiber photometry is a key technique for characterizing brain-behavior relationships in vivo. 

Initially, it was primarily used to report calcium dynamics as a proxy for neural activity 

via genetically encoded indicators. This generated new insights into brain functions including 

movement, memory, and motivation at the level of defined circuits and cell types. Recently, 

the opportunity for discovery with fiber photometry has exploded with the development of an 

extensive range of fluorescent sensors for biomolecules including neuromodulators and peptides 

that were previously inaccessible in vivo. This critical advance, combined with the new availability 

of affordable “plug-and-play” recording systems, has made monitoring molecules with high 

spatiotemporal precision during behavior highly accessible. However, while opening exciting new 

avenues for research, the rapid expansion in fiber photometry applications has occurred without 

coordination or consensus on best practices. Here, we provide a comprehensive guide to help 

end-users execute, analyze, and suitably interpret fiber photometry studies.
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A BACKGROUND TO FIBER PHOTOMETRY AND OVERVIEW OF THIS 

PRIMER

Our understanding of how the brain works continues to be propelled by the development of 

methods that enable researchers to examine neural mechanisms during behavior. One such 

technique is fiber photometry. Initially, it was primarily used to report calcium dynamics 

as a proxy for neural activity via genetically encoded indicators in behaving animals.1–

3 However, with the development of fluorescent sensors for numerous biomolecules 

including extracellular ligands (neurotransmitters and modulators) and intracellular signaling 

molecules that were previously inaccessible in vivo, interest in the technique has exploded. 

Increasingly, fiber photometry is seen as the technique of choice to measure neurotransmitter 

dynamics in vivo in rodents.

Fiber photometry is an optical technique in which light is used to trigger and measure 

fluctuations in fluorescence that arise from conformational change to an expressed biosensor 

(Figure 1). Briefly, excitation light of a specific wavelength is delivered through an 

implanted optical fiber, and emitted fluorescence is returned via the same fiber to a 

photodetector. A digital optical intensity signal is then generated that is presumed to reflect 

the relative amount of the target bound sensor at the tip of the fiber. As the detected signal 

comes from the tissue around the fiber tip, which may range from 50 to 400 μm, it reflects 

a regional, or “bulk,” readout. However, because biosensors are genetically encoded, their 

expression can be directed to defined circuits and/or cell types where they can be stable 

for several weeks to months. No other in vivo technique permits repetitive recordings over 

such long periods of time. This technique has already enabled unprecedented insights into 

how population activity in particular cell groups relates to components of complex behavior 

including movement, memory, motivation, appetitive and aversive learning, and more.3–6

The rapid increase in popularity of fiber photometry is a testament to its many practical 

advantages over other approaches for in vivo monitoring of neural signals in behaving 

animals (see Table 1). Unlike electrophysiology, fiber photometry can straightforwardly 

provide signals with molecular and cellular specificities. It can have higher spatial 

resolution and much higher temporal resolution than typical microdialysis experiments, 

which usually have sample rates on the order of ~10s of minutes (although see Zhang et 

al.,7 Wang et al.,8 and Ngernsutivorakul et al.9 for recent specialized advances that have 

brought microdialysis resolution down to the sub-minute range). Concurrent within-subject 

recordings of dopamine using photometry and standard microdialysis highlight differences 

in observable temporal dynamics.10 Compared with cyclic voltammetry, photometry can 

offer greater sensitivity for some analytes/environments. For example, measuring dopamine 

in vivo with chronically implanted carbon-fiber microelectrodes using fast scan cyclic 

voltammetry (FSCV) is more challenging in the dorsal compared with the ventral striatum, 

but this is not the case when using dopamine sensors.11 Photometry also provides access 

to molecules for which there are no electrochemical methods available. For example, in 
vivo fluctuations in acetylcholine were previously inferred from amperometric measures 

of choline,12 and it is now known that such signals can be confounded by phasic oxygen 

dynamics.13 Fluorescent biosensors now provide a more direct (and faster) measure of 
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acetylcholine, e.g., Chantranupong et al.14 In terms of its practical application, photometry 

also has several other benefits as follows: the surgical procedures are much less invasive 

than for microscopy-based approaches, and the use of flexible, lightweight optical fibers 

to record signals are less restrictive to natural behavior than many other preparations. An 

increasing number of “plug-and-play” systems are becoming available, many at relatively 

low cost, thus creating opportunities for diverse communities of researchers to conduct 

experiments to characterize brain-behavior relationships at scale. Another advantage of fiber 

photometry over other in vivo techniques is the relatively low size and complexity of 

the raw data compared with electrophysiology, two-photon, or mini-microscope imaging. 

The processing of photometry data requires a solid understanding of the technique and 

careful consideration of possible confounding factors, as outlined in this primer, but there 

is no computationally demanding spike-sorting or single-cell extraction required. Such low 

dimensionality means there are no barriers or limitations to data sharing among groups, 

which, if broadly adopted, will foster replication and reproducibility.Arguably, the greatest 

excitement around fiber photometry is generated by its potential for novel applications. 

Dozens of different biosensors have already been developed and, theoretically, sensors 

for any native molecule can be created. Using multi-channel systems, multiple probes, 

sensors of different wavelengths, and combinations of transgenic lines and viral vectors, 

there are countless opportunities for multiplexed and multi-layered experiments. Linking 

neurotransmitter release to real-time effects on downstream circuits and examining the 

coordination of transmitter release or activity across projections sites, are just some of the 

possible opportunities. Fiber photometry also offers an unparalleled opportunity to monitor 

fluctuations in biomolecules or physiological events for multiple hours and analyze the 

fluctuations across different time scales, ranging from sub-second to tens of minutes. This 

feature may be of critical value in systems neuroscience when the fundamental mechanisms 

of information encoding, or computation are not yet known.

Balanced with this promise are potential methodological pitfalls, which render interpreting 

the data challenging. In theory, or in a test tube or flow cell, dose-response curves make the 

relationship between ligand concentration and fluorescence intensity appear straightforward. 

However, measuring ligand-modulated fluorescence in vivo, where photometric signals are 

neither linear nor absolute measures, is more complicated. Signals are influenced by native 

factors, including local fluctuations in pH and hemodynamics,15–17 and technical factors 

including the expression level and localization of the sensors, excitation wavelengths, 

potential photobleaching, and the stability of the optical path, each of which will be 

discussed. This is complicated by the fact that methods of data collection and analysis 

are legion, and all too often are minimally described, making it problematic to compare or 

integrate findings across different labs.

Therefore, here, we provide a comprehensive guide to the choices end-users will need 

to make when collecting, analyzing, and interpreting information using fiber photometry. 

The goal of this primer was to help the scientific community leverage the transformative 

potential that fiber photometry offers.

Simpson et al. Page 3

Neuron. Author manuscript; available in PMC 2024 March 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



SENSOR SELECTION FOR IN VIVO PHOTOMETRY

A wide range of genetically encoded fluorescent sensors have been developed and validated 

using in vivo fiber photometry. These include multiple classes of sensors with distinct 

molecular designs and spectral properties.18,19 Each of these indicators can be used to parse 

out dynamic changes in a specific biomolecule or physiological event, ideally with little to 

no cross-talk or influence from other aspects of neural activity. Examples of biomolecules or 

physiological events that can be monitored using in vivo photometry range from intracellular 

calcium,2,20,21 to intracellular signaling molecules like cyclic-AMP (cAMP)22,23 and protein 

kinase A (PKA),24,25 to membrane voltage,26,27 and to extracellular ligands, such as 

endogenous neurotransmitters,28–31 neuromodulators,32–40 or exogenously administered 

drugs41 (Table 2). Some of these events are cell intrinsic (e.g., calcium, voltage, cAMP, 

and PKA) and are sometimes utilized as a proxy to gauge neural activity. Others 

represent molecules that are released into extracellular space and can sometimes diffuse 

across micrometer-scale distances (e.g., neurotransmitters and neuromodulators). These two 

distinct classes of events encode information differently. In the first case, the integration 

of multiple events occurs within the confines of each cell of interest; in the second case, 

endogenous receptors on the surface of target cells receive and interpret spatiotemporal 

patterns of multiple neurotransmitters.

All these sensors share the following two underlying features: they are fully genetically 

encoded and are composed of a sensing domain and a fluorescent reporter domain. In 

general, the sensing domain generates a conformational change in response to ligand 

binding or changes in membrane voltage that is then converted into a photometry-detectable 

fluorescent readout by the fluorescent reporter domain. As a result, sensing domains 

determine the kinetics, affinity, and, where applicable, ligand specificity of the sensor. 

Sensing domains can be made of calmodulin and a Ca2+/calmodulin-binding peptide (e.g., 

M13,66–68 ckkp,46,48 and ENOSP42), as in the case of the widely used GCaMP-type 

calcium sensors.20 Alternatively they can be made of cAMP-binding domains,23,63 kinase-

specific phosphorylation motifs fused to their recognition domains,24,25 rhodopsin voltage-

sensing domains (VSDs),65 periplasmic-binding proteins (PBPs),28 or G-protein-coupled 

receptors.32,52 In specific cases, such as for catecholamines, the ligand selectivity of the 

sensor may not be sufficient to unambiguously assign the nature of the detected signal, 

particularly in brain areas where relative abundance of the two molecules is largely skewed. 

For example, detecting norepinephrine in subregions of the basal ganglia is difficult because 

both neuromodulators are present but dopamine by far dominates. In such cases, specific 

experiments with dual-color recordings involving pairs of dopamine and norepinephrine 

probes may be needed to address this issue.

The fluorescent reporter domains determine the nature of the output signal (i.e., wavelength, 

intensity, or lifetime) and the dynamic range of the sensor. Typically, these are made of a 

circularly permuted fluorescent protein (e.g., circularly permuted green fluorescent protein 

[cpGFP]), which provides a rapid and direct intensiometric readout, chiefly due to the 

modulation of its chromophore’s microenvironment and protonation state.69 Other reporter 

systems generate a change in fluorescence intensity or lifetime during Forster resonance 

energy transfer between a fluorescent protein donor and an acceptor (electrochromic-
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fluorescence resonance energy transfer [FRET] sensors65 or FRET-fluorescence lifetime 

imaging microscopy [FLIM] sensors24,25,64). In particular, “FLIM”-based sensors hold great 

potential for fiber photometry recordings. Although intensity-based photometry measures 

the amounts of photons received from a sample, its lifetime-based counterpart focuses on 

how the photons are distributed in time after excitation with a pulsed laser. Fluorescence 

lifetime measures are thus independent from the total number of collected photons, making 

it insensitive to variation in sensor expression levels, laser power, scattering and reabsorption 

of the tissue, and optical losses in the detection apparatus.69–72 Therefore, FLIM-based 

sensors could provide more robust and reliable signals for comparison across animals and 

time and to better protect the readout from potential unwanted sources of variability.73 

This technique has not yet widely taken off, partly because ready-to-use FLIM-adapted 

photometry hardware is not yet commercially available (see section on advanced hardware 

features).

A comparison of many of these tools in terms of peak spectral excitation and emission 

properties, ligand affinity, sensor dynamic range (i.e., maximal response to ligand), kinetic 

parameters, the animal models in which these tools have been deployed, and considerations 

related to ligand-buffering has been extensively reviewed elsewhere.18,19,37,74,75 Here, we 

focus on other important considerations for selecting the most appropriate sensor for in vivo 
fiber photometry experiments. In particular, we discuss the use of control wavelengths that 

have been spectrally defined to be insensitive to changes in analyte levels, sensor-specific 

control experiments, and challenges and opportunities for multiplexing sensors.

Choice of sensor-specific controls

Interpretation of in vivo fiber photometry signals can be challenging, especially in cases 

where the observed signals are similar in amplitude to background noise. The inclusion of 

appropriate controls will mitigate the risk of data misinterpretation. A common approach is 

to generate a negative control signal—i.e., a signal acquired under the same conditions as 

the experimental signal of interest, but which is not expected to vary with the physiological 

process being measured. This can be used to support the conclusion that the observed 

signals faithfully represent “real” fluctuations in the process under investigation and/or to 

attempt to correct for confounding variation in the signal, such as movement artifacts or 

photobleaching (see section pre-processing).

Depending on the type of sensor used, different types of negative controls have been 

implemented. A simple method to obtain a negative control signal is to use a “stable” 

fluorescent protein, such as GFP,43 YFP,3 mcherry,53 or tdTomato,43 either expressed 

independently or in combination with the sensor if the two can be spectrally resolved.43 This 

is an effective way of generating a control signal for movement artifact correction but limits 

the possibility of multiplexing the sensor with other probes or optogenetic tools (see below). 

Another approach is to illuminate the sensor at its isosbestic wavelength, i.e., the wavelength 

at which sensor fluorescence does not vary with changes in ligand concentration. Exciting 

the sensor at this wavelength therefore results in emitted fluorescence that provides a stable 

reference signal. A list of known isosbestic points of in vivo photometry-compatible sensors 

is shown in Table 2. Isosbestic wavelengths vary substantially across different sensors, over 
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a wavelength range of 350–440 nm. Appropriate excitation light sources and filter sets are 

required for the specific sensor(s) isosbestic wavelength (see section hardware for fiber 

photometry).

For sensor responses that rely on a ligand-binding event, control signals can be obtained 

from sensors in which mutations have been introduced within the sensing domain to 

abolish ligand binding (Table 2). Mutant non-ligand-binding control sensors are particularly 

important for understanding photometry readout when a ligand-binding sensor detects 

ligands that vary on the same slower time courses or low amplitudes as physiological 

artifacts (such as pH or hemodynamic changes). This approach has been extensively utilized 

for several sensors engineered from GPCRs, facilitated by the large amount of structural 

and mutagenesis data available from previous pharmacological studies. Sensing domain 

mutations have also been utilized to generate control PBP-based sensors,33 a cAMP-based 

sensor,23 and a FRET-FLIM sensor,25 demonstrating the general viability of such an 

approach (for details see Table 2). Unlike coexpression of a spectrally resolvable fluorescent 

protein or isosbestic controls, these methods must be performed in separate animals or 

brain regions and thus may not fully recapitulate the same conditions of the experimental 

recordings.

There are two important potential factors to be aware of when using a negative control 

signal (Figure 2). First, the relative contribution of sensor/fluorophore fluorescence and 

autofluorescence (from optical component and brain tissue) will in general be different for 

control and sensor signals, due to differences in excitation/emission wavelengths and/or 

fluorophore brightness. Typically, shorter wavelength excitation light results in a larger 

autofluorescence contribution, and as a large area, diffuse light source, autofluorescence is 

usually less affected by movement artifacts than sensor fluorescence. Autofluorescence will 

also not necessarily photobleach at the same rate as sensor fluorescence. Additionally, as 

light absorption by brain tissue is greater at shorter wavelengths, the volume of tissue from 

which signal is acquired will vary as a function of excitation and emission wavelength.76,77 

Fluctuations in the control channel therefore will not necessarily have the same amplitude 

(in dF/F) as those in the sensor channel caused by the same mechanism.

Second, physiological signal variation in the sensor channel can bleed-through into the 

control channel. When a control fluorophore is used, bleed-through can occur due to the 

overlap of emission spectra with the sensor. Significant bleed-through from green indicators 

(e.g., GCaMP) to red control channels can occur if continuous illumination is used, but this 

can largely be eliminated by using modulated excitation light (see section hardware for fiber 

photometry; Figure 2). With an isosbestic control, bleed-through of physiological signals 

will occur if the excitation wavelength used does not accurately match the isosbestic point 

of the indicator. This may result in either positive or negative contamination of the control 

channel by the physiological signal. As movement artifacts or other confounding signals 

are typically small relative to sensor fluorescence changes, even a small amount of bleed-

through from sensor to control channels can end up dominating variation in the control 

channel at behaviorally relevant frequencies (Figure 2), preventing accurate estimation of 

motion artifacts or other confounds (see pre-processing section).
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Depending on the specific experimental design, additional control experiments may be 

required. A unique and useful feature of GPCR-based sensors is their intrinsic sensitivity 

to drugs targeting the receptor subtype they are based upon. Systemic administration of 

sensor-specific antagonists can drastically lower evoked sensor response during in vivo 
recordings.32,35,36,38,52,57 With careful planning, this approach can be used to obtain within-

animal control recordings that can help qualify the nature of the observed signals. An 

important caveat of this approach is that drugs often have pleiotropic effects on an animal’s 

physiological functions, both central and peripheral. Thus, knowledge of the effects of 

the chosen drug on the animal’s physiology will aid interpretation. Factors to consider 

include direct and indirect effects on the neuromodulatory pathway under investigation 

(e.g., in the case of drugs affecting neuromodulator reuptake or autoreceptor mechanisms40) 

and alterations to other parameters, which may affect photometry readouts. For example, 

receptor antagonists that alter intracellular pH or produce hemodynamic changes could 

result in artifactual signals.

Multiplexing

Some of the most exciting and useful in vivo applications of fiber photometry involve 

spectral multiplexing. Spectrally resolvable sensors may be expressed in the same brain area 

and excited via the same optic fiber to determine the relationship between multiple dynamic 

factors, e.g., calcium activity and neuromodulator release from the same or different 

genetically identified populations. Sensors may also be combined with fluorescence-based 

actuators to interrogate input-output relationships. The availability of a large color palette of 

optogenetic actuators78,79 and a growing color palette of optogenetic sensors21,27,33,34,46,48 

enables an ever-increasing number of mix-and-match applications. For successful examples, 

see section current opportunities.

Multiplexing options are currently somewhat restricted at present by the limited availability 

of spectrally resolvable sensors for distinct aspects of neural activity since most sensors 

are based on GFP (see control sensors available in Table 2). In the near future, further 

expansion of the color palette of sensors based on fluorescent proteins with excitation 

shifted to red, far-red, or near-infrared wavelengths, along with the development of new 

photometry systems equipped for recording at these wavelengths, will make it possible to 

achieve spectral multiplexing of 3 or more fluorescence-based tools simultaneously.

Biosensor delivery

In addition to selecting biosensor(s) with desired intrinsic properties, the method of 

biosensor delivery will impact the obtained signal, qualitatively and quantitatively. A 

biosensor may be constitutively or conditionally expressed in transgenic mouse strains. 

Transgenic expression of calcium sensors in some reporter mice can alter physiology75; 

hence, care must be taken to test for such undesired effects. More typically, biosensors 

are expressed episomally from viral vectors which provide a multiplicity of options. First, 

the choice of viral serotype may affect the spatiotemporal dynamics of the reported signal 

because serotypes differ in their tropism,80–83 the cell types they preferentially infect and 

therefore the density, cell type, neuronal class, and subsequently the subcellular localization 

of biosensor presentation governing distances between ligand and sensor.11,84 Next, within 

Simpson et al. Page 7

Neuron. Author manuscript; available in PMC 2024 March 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



the viral construct, the choice of promoter that drives expression of the sensor can further 

restrict the cell-type specificity of expression. Due to vector size constraints, only a limited 

number of promoter-targeted constructs have been successfully developed. A more tractable 

way to direct expression is by injecting a conditional (e.g., Cre-dependent) construct into 

a transgenic mouse line expressing Cre recombinase under a cell-type-specific promoter. 

Using a viral vector that undergoes anterograde or retrograde transport allows for monitoring 

biosensor activity in the soma or axons of a specific projection. Combining these methods 

allows projection and cell-type specificity, for example, monitoring calcium dynamics in 

mesoaccumbal11 or striatonigral84 dopamine axons.

Whichever delivery approach is taken, the sensor expression level must be considered. If 

the viral titer is very high, a GPCR-based receptor may theoretically saturate the membrane 

or large quantities of fluorescent proteins may be detrimental to some sensitive cells.85–87 

The intensity of expression within cells and the density of expressing cells or axons will 

impact the signal-to-noise ratio and therefore the effective dynamic range of the sensor. 

Comparisons of the tropism and efficacy of different adeno-associated virus (AAV)-based 

vectors have been reviewed elsewhere.81,88 One tool available to help identify an appropriate 

serotype, promoter, and titer for AAV vectors for a specific experiment is the AAV Data 

Hub hosted by Addgene (a popular source for viral vectors). Despite the influence that virus 

serotypes, promoters, and titers have on photometry data, these details are not consistently 

reported in publications. It would be helpful if they were.

HARDWARE FOR FIBER PHOTOMETRY

A user’s choice of photometry system design depends on the technical capabilities required 

for their particular experiments. Within the given requirements, the time, effort, expertise, 

and money required to get a system working are important considerations. Currently, 

there are several companies selling photodetector-based or camera-based fiber photometry 

systems that are virtually plug-and-play. Alternatively, labs may design and build their 

own custom systems, making significant cost savings.89,90 A popular in-between approach 

that requires less time and expertise, but still affords flexibility, is to build a system by 

integrating a few different modular components. An advantage to buying or building a 

CCD, CMOS, or sCMOS camera-based system is that they can be used to collect data 

from fiber bundles, allowing simultaneous measurements from many separate sites and/or 

animals without amplifying the expense of costly photodetectors. However, cameras may 

be slower, less sensitive, or noisier than some photodetectors, which may be an important 

consideration, depending on the application. Here, we first note hardware factors that must 

be considered to ensure compatibility with common types of experimental design. We then 

introduce hardware options for advanced and emerging fiber photometry applications.

Experiment-specific hardware considerations

Spectral channels—Most photometry systems record fluorescence signals from one 

or more discrete spectral channels defined by an excitation wavelength and emission 

wavelength (in practice both will be a range not single wavelength). Many systems 

incorporate a channel with excitation at ~470 nm and emission at ~520 nm for use with 
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green fluorescent sensors. Additional channels allow for simultaneous measurement of 

multiple sensors with different excitation and emission spectra, and/or inclusion of a control 

channel to correct for movement artifacts (see section pre-processing). A typical dual-color 

photometry system uses 470 nm and 565 nm filters for the excitation light source for green 

and red fluorophores, respectively. Emission filters at ~520 and ~590 nm are then used to 

direct the fluorescence signal from each fluorophore to separate photodetectors. The optical 

hardware required for dual systems is more complicated and expensive. For experiments 

involving only a single sensor, a common way of obtaining a control signal is a channel that 

uses the same emission wavelength as the main channel (simplifying the hardware), but a 

different excitation wavelength chosen to be at the isosbestic point of the chosen sensor (see 

also section choice of sensor-specific controls).

To differentiate fluorescence excited at different wavelengths but emitted at the same 

wavelength, e.g., for an isosbestic control, excitation light is modulated to separate the 

emission evoked by each light source in either time (by alternately turning on each light 

source in turn) or frequency (by sinusoidally modulating each light source at a different 

frequency). These two solutions are typically referred to as time-division or frequency-

division illumination, respectively. The recorded signal is then processed to demodulate 

(i.e., separate) the emission evoked by each excitation wavelength. These methods can 

also be useful even when spectral channels have different emission wavelengths because 

fluorescent sensors typically have broad emission spectra that can cause bleed-through 

between channels. Time- or frequency-division illumination can greatly reduce this issue by 

enabling both excitation and emission spectra to contribute to channel separation (Figure 2).

Signal bandwidth—The signal bandwidth is the frequency range of signals the system 

can record, typically from DC (0 Hz) to a maximum frequency. The signal bandwidth is 

determined both by the light detector hardware, and, if modulated excitation light is used, 

the filtering needed to demodulate the signals. For many applications, signal bandwidth is 

unlikely to be a limiting factor because fluorescence signals from most sensors are relatively 

slow (>>1 ms rise time), and signals will typically be low-pass filtered well below the 

system’s signal bandwidth during pre-processing to reduce noise. However, some specialist 

applications like membrane voltage sensors or fluorescent lifetime imaging involve much 

faster signals, making the system bandwidth an important consideration.

Sensitivity/noise level—Noise is inherent in any acquisition system and determines the 

smallest signals that can be accurately recorded. System sensitivity is most critical for 

experiments where the details of the biology result in very weak fluorescent signals, but 

sensitivity is desirable for all experiments as reduced noise allows lower excitation light 

power, and hence less photobleaching, for a given signal-to-noise (S/R) ratio.

Manufacturers of photodetectors typically report the noise equivalent power (NEP) of the 

device, given in watts per square root of hertz (W/√Hz). NEP is defined as the input 

signal power that gives a S/R of 1 after filtering the output to reduce its bandwidth to 1 

Hz, which allows a meaningful comparison of noise levels between systems with different 

bandwidths. In contrast, camera manufacturers report noise using different measures that 

have not been standardized, making it difficult to compare across devices. Ideally, vendors 
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of plug-and-play photometry systems with photodetectors or cameras would report the NEP 

for the complete signal path, from optical input to digitized output, but in practice, different 

vendors report different and not always very informative measures of system sensitivity, 

making meaningful comparisons difficult.

Rotary joints—A rotary joint (fiber-optic commutator) between the photometry system 

and the animal allows for freely moving experiments to be undertaken without the optic 

fiber getting twisted. Unfortunately, it currently appears to be very difficult to manufacture 

robust and reliable fiber-optic rotary joints that have the very low signal variation required 

for photometry at low cost. Some designs work better than others. For example, motor-

assisted multi-channel pigtailed rotary joints offer superior stability, although this can add 

a substantial expense to the setups. One option is to simply not use a rotary joint but 

instead use a long patch cord to minimize constriction and twisting. An alternative approach 

offered in some commercial systems (that could also be custom built) is to mount all optical 

components including light sources and photodetectors, below an electrical rotary joint, such 

that the entire optical system rotates with the animal and optical signals do not need to pass 

through a rotary joint.

For experiments involving behavioral measures that are incompatible with tethering, some 

commercial wireless fiber photometry systems have been developed. However, some of 

these system designs are too large for mice, are limited to a single fiber, and comprise a 

single LED source and detector for GFP-like sensors only, lacking a control channel (see 

choice of sensor-specific controls section). To alleviate this problem, a dual-wavelength 

wireless platform was recently described.91

Multimodal experiments—For experiments that combine photometry with optogenetics, 

in addition to the spectral channels for acquiring signals, the system must be configured to 

allow light for optogenetic stimulation to be delivered through the same fiber. A suitable 

system may be purchased pre-configured or custom-built using published methods papers 

(e.g., Sych et al.,92 Qi et al.,93 and Formozov et al.94). Photometry systems compatible with 

simultaneous electrophysiology recordings are also commercially available or can be custom 

built (e.g., Patel et al.95).

Advanced hardware features

Recently, some exciting applications of fiber photometry have emerged to address 

limitations, resolve confounding factors, or expand sampling dimensions associated with 

typical fiber photometry. These applications require specialist hardware with concomitant 

increases in cost and technical complexity. We anticipate that with further hardware 

development, these applications will become more popular so we briefly describe them 

here.

Spectrally resolved photometry—Spectrally resolvable sensors can be multiplexed, 

but if one sensor is markedly brighter than the other, there may be significant cross-talk 

between the two sensors. To overcome this limitation, Meng et al.43 developed spectrally 

resolved fiber photometry. Rather than recording signals at discrete wavelengths using a 
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photodetector or camera, a spectrometer is used to record the full emission spectrum. 

By using known concentrations of fluorophores with different emission wavelengths, the 

contributions of each fluorophore to the collected spectrograms can be determined and 

used to generate a spectral linear unmixing algorithm. Although this technique requires 

more complex pre-processing of the data, it potentially allows better separation of sensors 

with different fluorophores and other sources of signal variability. For example, Zhang 

et al.15 used spectral fiber photometry to estimate the effects of changes in hemoglobin 

concentration on photometry signals. Oxy- and deoxy-hemoglobin have different absorption 

coefficients at the wavelengths typically used in fiber photometry, affecting the accuracy 

of photometry data. Using spectral fiber photometry, Zhang et al.15 accounted for, and 

corrected, changes in GCaMP6f responses in the somatosensory cortex that were driven by 

changes in blood oxygen level.

Depth-resolved photometry—Fiber photometry is typically done using flat-cut fibers. 

A flat-cut fiber allows fluorescence collection from the tissue immediately below the fiber 

face, estimated to be ~200 μm for a 200 μm fiber.77,96 By contrast, depth-resolved fiber 

photometry97 uses tapered fibers to collect light from a larger range (up to 2 mm) along 

the fiber axis. Furthermore, this method can be used to record from multiple sites using a 

single tapered fiber. The application uses galvanometric mirrors to systematically project 

laser beams into the tapered fibers at different angles resulting in laser beams exiting at 

distinct fiber locations. Recording depth is then resolved using a time-division multiplexing 

scheme. Another advantage of tapered fibers is that they minimize tissue damage compared 

with flat-cut fibers. However, depth-resolved fiber photometry requires more sophisticated 

hardware, which increases the system’s price and makes it more complicated to assemble in 

individual labs. At the time of writing this article, only one commercial solution is available 

for depth-resolved fiber photometry.

FLiP—Sensors that report changes in fluorescence lifetime provide an absolute 

measurement of ligand binding, which simplifies making comparisons across sessions and 

subjects compared with signals obtained with intensiometric sensors but require specialized 

hardware. An example setup for single fiber fluorescence lifetime photometry (FLiP) 

consists of a laser that provides ~50-Mhz-pulsed illumination, filters that separate emission 

from excitation light before focusing the fiber face on a high-speed photomultiplier tube that 

is connected to a time-correlated single photon counting board, which detects the time delay 

between the pulsed excitation and the photon detection by the photomultiplier tube. Such 

systems have been used to perform FLiP measures of multiple sensors to report real-time 

biochemical changes in vivo.24,64

DATA PRE-PROCESSING AND ANALYSIS

Fiber photometry data are typically first pre-processed to remove noise and artifacts from 

the signals and convert them into meaningful units for comparison across recordings and 

subjects. The processed signals are then analyzed to understand how they covary with other 

experimental variables such as behavior. Next, we unpack each step in order.
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There are many software options for implementing these steps. Commercial software is 

typically limited, and whether using pre-assembled hardware or a custom-built system, many 

users require more flexibility. Those with programming experience may write their own 

custom software in their language of choice. Alternatively, there are open-source packages 

that require little programming experience. Some versions are streamlined for handling 

data generated by specific commercial setups.98 Of the two most popular open-source 

photometry software packages, pMAT99 is more user-friendly, and GuPPY100 has the most 

flexibility (see Marquardt101 for detailed comparison). An advantage of all open-source 

software packages is that users benefit from pre-written code and can efficiently adapt it as 

needed. For others to understand and evaluate results generated using custom or modified 

code, the code must be publicly available in a well-documented form.

Pre-processing

Pre-processing involves multiple steps. It is very helpful to observe raw data and 

intermediate stages of processing, both at the timescale of the entire session and zoomed into 

short time windows. This helps identify artifacts or problems with the data and generates 

an understanding of how each processing step modifies the signals. Small changes to the 

pre-processing should not result in qualitative changes to the results; examining the data 

after each processing step will help diagnose problems should they occur.

Before describing processing steps in detail, it is useful to consider the components that 

make up the photometry signal and drive its variation. Light that reaches the detector 

comes from multiple sources: fluorescence from the indicator(s), autofluorescence from 

the patch cord and other optical components, autofluorescence from brain tissue, and 

potentially bleed-through of excitation light and/or background illumination. Depending 

on the biological preparation and hardware, fluorescence from the indicator may be only 

a small fraction of the total light detected. Likewise, multiple sources contribute variation 

to the signal: change in fluorescence of the indicator due to the physiological process(es) 

of interest (e.g., fluctuation in calcium or neuromodulator concentration), photobleaching of 

the indicator, photobleaching of the patch cord and optical components, physical movement, 

local changes in blood flow, and noise from the detector hardware. Preprocessing aims 

to correct confounding sources of variability to yield an accurate assessment of the 

physiological signal of interest.

There is substantial variability across studies in preprocessing methods used, and there has 

been little systematic comparison of different approaches. Our aim here was to outline 

widely used approaches, comment on their benefits and limitations, and highlight areas 

where a systematic comparison of different methods would be useful.

Preprocessing typically involves applying some or all of the following sequence of steps: 

filtering, bleaching correction, movement correction, and normalization. The effects of 

each step on sample data are presented in Figure 3. The code and example data for the 

pre-processing steps shown in Figure 3 are available as an IPython notebook; see the data 

and code availability statement.
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Filtering—In most experiments, the kinetics of the indicator are slow relative to the 

sampling rate the recording system is capable of. Meaningful physiological signals are 

therefore only present in the low-frequency components of the recorded signal, whereas 

noise is present at all frequencies. The S/R ratio can then be improved by low-pass filtering. 

The optimum low-pass cutoff frequency will depend on the indicator; for example, 2–10 

Hz is typically used for GCaMP6f and dLight1. Zero-phase filters, which change the 

amplitude but not the phase of frequency components, avoid distorting the signal. This can 

be implemented by functions like the Matlab/Scipy function filtfilt, which filters the signal 

first in the forward, then the reverse direction, canceling out phase shifts.

The high-gain amplifiers in photodetectors can pick up electrical noise, and some noise 

sources such as mobile phones can result in large amplitude, short-duration noise spikes. If 

present, these artifacts can often be largely removed by median filtering using a window ~5× 

longer than the duration of the noise spikes prior to any other filtering.

Bleaching correction—Photobleaching—a reduction in fluorescence over prolonged 

exposure to light—occurs both to the fluorescent indicator being measured and to 

autofluorescence from optical hardware and brain tissue. Bleaching of the indicator reduces 

the baseline level of the signal and the amplitude of physiological signal variation, whereas 

bleaching of the autofluorescence reduces only the baseline signal.

One approach to bleaching correction exploits the fact that bleaching occurs on a slow 

timescale relative to most physiological processes of interest. Therefore, the time course of 

bleaching can be estimated from the slowest components of the signal, either by filtering or 

curve fitting. The challenge is to provide enough flexibility in the estimate to capture the 

dynamics of the bleaching, but no more than necessary to avoid overfitting to physiological 

signal. Fitting a double exponential decay is a good compromise, as a single exponential 

can be too restrictive, given that different sources of fluorescence may bleach with different 

timescales, although filtering or fitting more complex curves could easily overfit.

Once the time course of bleaching has been estimated, it can be corrected for either by 

subtraction or division from the raw signal. These two options reflect different assumptions. 

If the bleaching is dominated by autofluorescence, then it will affect the baseline but not the 

amplitude of physiological variation, so should be corrected by subtraction. If bleaching is 

dominated by the indicator, then it will affect both baseline and signal amplitude and should 

be corrected by division. We are not aware of any systematic characterization of this and 

different studies use subtraction102 or division50,103 for photobleaching correction. Note that 

if division is used, this converts the signal into units of dF/F (see normalization below).

Another approach to estimating the time course of bleaching is to use an isosbestic control 

channel, which should not be affected by physiological signal variation (see section choice 

of sensor-specific controls). One caveat to this approach is that the relative contributions 

of autofluorescence and indicator fluorescence to the isosbestic and signal channels are 

likely to be different, as shorter wavelength isosbestic illumination typically excites more 

autofluorescence, and is less efficient at exciting the indicator than light at the peak of 
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the excitation spectrum. This could potentially cause the time course of bleaching to differ 

between control and signal channels.

In behaviors that have a discrete trial structure, a third approach is to estimate the baseline 

separately for each trial (for example, from the signal in the preceding inter-trial interval) 

and subtract this from the signal on that trial. This approach should be used with caution 

during behavioral experiments because the level of physiological signal during the inter-trial 

interval may vary meaningfully across trials, meaning that trial-by-trial baselining may give 

a misleading picture.

Movement correction—Physical movement of the animal can generate signal variation 

through movements of the brain relative to the optic fiber or changes in light transmission 

due to the movement of connectors, rotary joints, or patch cords. Movement artifacts are 

minimal (although not necessarily eliminated) in head-fixed preparations, but in freely 

moving experiments, care must be taken to either verify movement artifacts are negligible 

or correct for their effect on photometry signals. As movement artifacts occur on a similar 

timescale to physiological signals, they cannot be separated using filtering; instead, they 

must be estimated using a separate control channel. The two options commonly used are 

as follows: (1) co-expression of a control fluorophore (e.g., red fluorescent protein) with 

different excitation and emission spectra from the indicator or (2) exciting the indicator at its 

isosbestic wavelength where fluorescence is independent of the physiological signal.

The size of movement artifacts relative to baseline fluorescence will in general be different 

between the signal and the control channel (see section choice of sensor-specific controls). 

It is therefore necessary to scale the movement signal from the control channel to match 

movement artifacts in the signal channel. This is typically achieved using linear regression 

to predict the signal channel from the control channel, with the rationale being that the 

component of the signal that can be predicted is movement artifact. This assumption will 

not be perfect as movement artifacts may be partially correlated with physiological signals 

but is a reasonable approximation. However, it will not hold if variation in the movement 

channel is dominated by signal bleed-through or if the common variation in both channels 

is dominated by photobleaching. For this reason, photobleaching correction should be done 

prior to, and independently from, movement correction, and it is important to verify that 

any signal bleed-through in the movement control channel is small relative to movement 

artifacts. This can be done by plotting the average movement channel response to behavioral 

events that generate large signal transients (see, e.g., Figure 2).

Normalization—In most experiments, it is necessary to combine data across multiple 

sessions and/or subjects. This is complicated by the fact that indicator expression may 

vary both between subjects and over the course of a multi-day experiment. Additionally, 

different intensities of excitation light may be used for different sessions, different hardware 

setups may vary in how efficiently they convert emitted light to signal and level of 

autofluorescence, and these hardware properties may change over time, particularly if 

components are replaced. Normalizing the data to remove variation across subjects and 

time points that are not of experimental interest is therefore desirable, and there are various 

methods available.
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One approach is to convert signals into units of dF/F, i.e., the change in fluorescence signal 

divided by the baseline signal level. This is widely used in two-photon calcium imaging 

where the baseline fluorescence is closely related to the amount of indicator present104 but 

may be less effective in photometry due to autofluorescence. The relative contribution of 

indicator fluorescence and autofluorescence will be different between the signal (dF) and 

baseline (F), with the signal hopefully dominated by changes in indicator fluorescence, but 

the baseline potentially includes a large contribution from autofluorescence. Computing 

dF/F will therefore not necessarily correct accurately for different levels of indicator 

expression or differences in autofluorescence across setups, although it will correct for 

different levels of excitation light or efficiency in converting emitted light to signal.

Another approach is to Z score the signal for each session, i.e., subtract the mean and 

divide by the standard deviation. This will remove the influence of any factors that either 

scale the signal size (e.g., differences in indicator expression or excitation light intensity) 

or affect the baseline (e.g., the level of autofluorescence) between sessions. The limitation 

is that this may remove variation of experimental interest, such as changes in signal across 

learning over multiple sessions or fixed trait differences between subjects that might reflect 

the genetic manipulation of a mechanism under test or a transgenic model of disease versus 

a control group. Such differences may, however, be resolvable in Z-scored signals if they 

manifest in the response to specific behavioral events/temporal epochs of interest.

An alternate approach to account for differences in expression levels of sensors across time, 

brain regions, or animals could come from the development of new sensors that employ a 

cpGFP-based indicator directly fused with a spectrally orthogonal fluorescent protein (e.g., 

a red fluorescent protein) to generate a ratiometric sensor. This approach has been proven to 

work in the case of a voltage sensor, where the red and green FPs were located on opposite 

sides of the cell membrane. In the case of GPCR-based sensors, achieving this would require 

careful re-design of the probe to ensure that the two FPs do not give rise to FRET upon 

sensor activation and that the properties of the sensor (e.g., surface expression, affinity, and 

dynamic range) are unaffected. A detailed characterization of the effect of this fusion on 

the properties of the indicator would be required. Sensors created in this way would be 

excitable at two separate wavelengths leading to two distinguishable emissions, only one of 

which (the green one) would be ligand-modulated, allowing for a ratiometric readout that 

would in theory be independent of inter-subject and inter-session variation. This approach 

also comes with the following caveats: (1) the two FPs may exhibit different bleaching 

kinetics; (2) if the red channel had a substantial contribution from autofluorescence or 

other background sources, its efficacy in normalizing the signal from the green channel 

would be impaired; and (3) multiplexing with a second red-shifted indicator would not be 

possible. Currently, the existing sensors for obtaining absolute measures include FRET- and 

FRET-FLIM-based sensors (see section sensor selection for in vivo photometry), although 

they require specialized equipment (see section advanced hardware features).

Combining processing steps—A preprocessing approach widely used with isosbestic 

control channels (e.g., Mohebi et al.50 and Saunders et al.103) combines bleaching 

correction, movement correction, and normalization into a single operation. The control 

channel is first fit to the signal using a least-squares linear fit, and then, the processed 
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signal is calculated by subtracting the fitted control from the signal, then dividing by the 

fitted control. The rationale is that the subtraction corrects for movement artifacts and 

changes in baseline due to photobleaching, and then the division corrects for changes 

in signal amplitude due to photobleaching and converts to dF/F. Combining movement 

and photobleaching correction in this way implicitly assumes that the relative size of 

movement artifacts between signal and control channels is the same as the relative size 

of photobleaching artifacts between the two channels. This assumption will in general not 

hold exactly, as the relative contributions of autofluorescence and sensor fluorescence will 

be different for isosbestic and sample channels, and these two sources of fluorescence will 

be differentially affected by movement and bleaching (see above). In practice, variation 

in isosbestic control channels is typically dominated by photobleaching; hence, this will 

determine the linear fit to the signal, prioritizing the accuracy of photobleaching correction 

above that of movement correction.

We are not aware of any systematic quantification (e.g., using a non-ligand-binding control 

sensor) of how effectively different control channels and preprocessing methods correct for 

artifacts in photometry signals, but this would be a valuable contribution to the literature.

Analysis and statistical testing

There are many ways to analyze photometry signals. The most appropriate analytic approach 

will be determined by the structure of the experiment and the experimental questions being 

tested, which will determine the relevant signal comparisons to be made. Here, we describe 

approaches that have been used successfully and indicate the conditions under which they 

may, or may not, be suitable.

As with any experimental method, appropriate experimental design is necessary to ensure 

that the effect of different variables of interest can be differentiated from each other and 

possible confounds. A photometry-specific consideration is that changes in signal on a very 

slow timescale may be hard to conclusively differentiate from imperfect photobleaching 

correction. It is therefore good practice to ensure that different experimental conditions of 

interest are distributed evenly across the session.

Event-aligned analysis—Aligning photometry signals to an event of interest, such as 

reward presentation or omission, and averaging the data by trial type are widely used 

approaches to visualize how the signal is modulated around events. This can be followed by 

summary statistics, such as comparing peak signal amplitude or measuring the area under 

the curve (AUC) for a defined interval. It is important to note that the latter is sensitive 

to the selected time window, and therefore, this kind of analysis requires principled prior 

assumptions based on the nature of the photometry signals.

Many behavioral tasks include multiple events of interest. If events happen at fixed times 

(e.g., auditory cue followed by a fixed delay followed by a reward), time locking to one 

event will inherently time lock to the other events. However, this is not the case when 

trials are self-paced by the subject or variable intervals are imposed. In such cases, different 

approaches have been used as follows: (1) separately align the signal to each event of 

interest or (2) align to all the events in a trial by time-warping the signal between events. 
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Time-warping is a useful method to visualize the response to all events across a trial (e.g., 

trial initiation, choice, and outcome) in decision tasks102,105 and can also be used to account 

for the variable duration of spontaneous behaviors.106 However, it is necessary to confirm 

that time-warping the signal does not introduce artifacts in the data, by separately aligning to 

the self-paced events.

Linear regression—In situations where multiple behavioral variables are expected to 

influence the signal, particularly where these may be correlated (e.g., reward prediction and 

trial outcome, see Figure 4), a multiple linear regression provides a simple but powerful 

approach to quantifying which behavioral variables account for signal variation at different 

time points. This method has been extensively used to analyze neural data, including 

fMRI,107,108 electrophysiology,109–112 one- and two-photon113–117 excitation microscopy, 

and, more recently, photometry data.14,25,102,118 In Python, for example, linear regression 

can be implemented using the sklearn.linear_model module from the scikit-learn library.119

The general approach is to model variation in the signal as a linear combination of a 

set of predictors generated from behavioral variables of interest. An important choice in 

implementing a regression analysis of photometry data is how the varying influence of 

variables over time is modeled. For data with a discrete trial structure, one approach is to run 

a separate regression analysis at each time point across the trial (Figure 4B), using predictors 

that take the same value for all time points on a given trial but vary from trial to trial. 

Such predictors are usually categorical or binary and indicate what happened on each trial. 

For example, the trial outcome could be coded as a binary reward predictor, set to “1” if a 

reward was obtained or “0” if no reward was obtained (Figure 4B). This approach yields a 

β coefficient for each predictor at each time point across the trial, such that plotting the βs 

for a given predictor gives a time series showing when, in which direction, and how strongly 

that predictor explains variance in the signal.

A second approach is to model all time points in a single regression analysis. As discrete 

behavioral events typically produce a temporally extended and delayed response in the 

photometry signal, the time course of the predictors associated with these events needs to 

capture this. This can be achieved by convolving the sequence of event times with one 

or more temporal basis functions designed to capture the expected time course of signal 

variation due to a single event, for example, a B-spline basis, as implemented by the bs 
and patsy packages in R and Python, respectively (see, e.g., Engelhard et al.114). Using a 

single basis function represents a fixed assumption about the time course of signal variation 

associated with each event, whereas using a set of basis functions (each with its own β) can 

model any time course that is a linear combination of those bases. Sometimes, the influence 

of a continuously changing variable, such as the subject’s speed of movement, may be of 

interest. If a linear relationship is expected between the variable value and the photometry 

signal, the variable may be used directly as a predictor, potentially with a lag to capture the 

delay between changes in the variable and the signal.

A potential caveat to be aware of in any regression analysis is that variance can be 

incorrectly modeled in situations where there are correlations between variables and not 

all of the variables are included in the model. For example, Figure 4C shows an analysis of 
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dopamine activity in a probabilistic reward-guided decision-making task, using the approach 

of running separate regressions at each time point to obtain a time -series of β coefficients, 

in which the only predictor included was the trial outcome (rewarded or not). This appears 

to show highly significant positive βs at time points before the outcome was revealed, 

when the outcome of that trial was not known and so should not be able to influence the 

recorded signal. This occurs because dopamine activity at these time points is influenced 

by the subject’s prediction of the outcome, which is correlated with the actual outcome; 

the spurious loading disappears when additional predictors capturing the subject’s outcome 

prediction is included (Figure 4D).

Another potential issue in regression analyses, termed Collin-earity, occurs where one 

predictor is highly correlated with another predictor or a linear combination of other 

predictors. This makes the fit very sensitive to small changes in the data, as different 

βs yield very similar predictions for the signal. Regularization—i.e., adding an additional 

term to the cost function that penalizes large βs—can break this degeneracy but should be 

used with caution as the fitted βs can then reflect the effect of regularization rather than 

structure in the data itself. L1 regularization (also called Lasso) promotes sparseness in 

the coefficients, whereas L2 regularization spreads the influence of each coefficient more 

evenly. If regularization is used, it is important that regressors are standardized or centered at 

0; hence, the penalty used is the same across all the regressors. This also allows comparison 

of the magnitude of the influence on the signal across regressors.

Statistical testing—Different methods can be used for statistical testing of any 

photometric measures. Typically, ANOVA or t tests with correction for multiple comparisons 

to control for false discovery rates are used. Alternatively, confidence intervals and 

bootstrapping may be used (see Jean-Richard-dit-Bressel et al.120).

For between-subject comparisons, it should not be assumed that data points are independent 

and identically distributed; incorrectly assuming so can result in inflated false positives. 

Mixed-effect models overcome these limitations by capturing dependencies in the data 

through their random effect structure.121 In R, mixed-effect models can be implemented 

using lmer or afex packages. Some drawbacks of mixed-effect models are that they are 

computationally costly and can have problems with convergence. Moreover, it has not yet 

been resolved what the best approach to define the random effects structure should be.122–

124 Although future research should help clarify this, a simple workaround that has been 

shown to produce comparable results is to perform two-stage summary statistics125,126: first, 

a regression model is run for each subject separately, followed by a second stage in which 

all individual means (or the individual means combined with within-subject variances) are 

used to produce estimates of between-subject variance and enable group inferences. This 

approach is widely used with fMRI data (see Mumford and Poldrack127).

LOOKING FORWARD

Over the past decade, fiber photometry has become an established, core technique that, 

coupled with developments in behavioral profiling, has the potential to revolutionize our 

understanding of how dynamic changes in neurotransmission relate to rich repertoires of 

Simpson et al. Page 18

Neuron. Author manuscript; available in PMC 2024 March 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



animal behavior. Here, we summarize the opportunities that fiber photometry currently 

offers, describe the new tools for fiber photometry that are in development, and consider 

what may be achieved in the future.

Current opportunities

A truly groundbreaking opportunity to understand the neurobiological mechanisms of neural 

communication and causal mechanisms of behavior comes from combining photometry 

with other techniques. Manipulating neural activity with opto-genetics while simultaneously 

recording the consequences via photometry provides information that was completely 

unattainable with previous methods.32–34,38,39,52,128 Successful examples include activation 

or inhibition (at the level of soma or terminals) of one cell type (e.g., dopamine, orexin, 

or oxytocin neurons), and simultaneous measurement of modulator release from those same 

neurons.129 Alternatively, the influence of activity in one type of neuron on the release 

of a different neuromodulator can be determined, e.g., the effect of GABAergic activity 

on serotonin release117 or the effect of cholinergic activity on dopamine release.130 In 

addition, by combining two spectrally resolvable sensors researchers can determine temporal 

correlations in the dynamic activity of up to two distinct aspects of neural activity, for 

example, dopamine release in the nucleus accumbens and the activity of accumbens D1-

expressing spiny projection neurons or intracellular PKA activity in D1 or D2-expressing 

spiny projection neurons.25

Combining photometry with other methods can also be used to improve experimental 

approaches. Photometric readouts of manipulations like optogenetics or focused ultrasound 

can facilitate calibration of stimulation parameters to understand the effects on different 

cell types131 or more accurately match endogenous release patterns.132 The recapitulation 

of behaviors using neuromodulation that is optimized using photometry provides validation 

that photometrically recorded biosensor signals are physiologically relevant. For example, 

optogenetic stimulation calibrated to photometrically reward responses is sufficient to 

produce conditioned place preference.133

The relative simplicity of photometry and the small size of optic fibers make it ideally 

suited to use in combination with other (non-fluorescence-based) recording techniques. This 

already has been used to better understand the effect of signaling in defined cell types 

and neurotransmitter release on blood-oxygen-level-dependent (BOLD) fMRI signals134–136 

and, conversely, in combination with electrophysiology, to identify the potential source of 

calcium fluctuations recorded in striatal neurons using photometry.137

Emerging directions

A newly emerging topic of research dependent on fiber photometry is the identification of 

the different timescales over which neurotransmitters and neuromodulators act and how 

these fluctuations on different timescales relate to the temporal dynamics of different 

behavioral actions or behavioral states. In contrast to microdialysis, which lacks sufficient 

temporal resolution to pick up sub-minute fluctuations, or cyclic voltammetry, which 

typically is better suited to detecting rapid but not sustained changes in neurotransmitter 

levels, fiber photometry can quantify events occurring both on sub-second timescales 
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tied to specific task events and sustained changes that are modulated over many 

minutes.10,102,138,139

While opening up this fascinating new dimension, it is imperative to interrogate slower 

changes carefully, given the potential for these to be influenced by artifacts such as 

photobleaching or, in reward-guided tasks, confounded by endogenous changes such as 

satiety. Moreover, signals of interest may be contaminated by changes in pH140–143 and 

hemodynamics,15–17 which will usually fluctuate on slower timescales. It will therefore 

be important to implement appropriate experimental designs to obviate some confounds 

(e.g., by decorrelating anticipated slower changes from drift over the session), and where 

necessary, test sensors with ligand-binding site mutations. Further work characterizing the 

relationship between slower fluctuations resolved with fiber photometry and gold-standard 

measurements such as microdialysis will also be informative.10

On even longer timescales, fiber photometry provides an unprecedented opportunity to 

conduct longitudinal studies. Both the expression of biosensors and the functioning of 

implanted optical fibers can be relatively stable across months. Therefore, changes in 

signals can be tracked over extended time periods as animals learn complex tasks and 

adapt to different environmental contingencies, and as the brain circuits mature, cellular 

aging occurs, and disease models develop. Again, analytic methods must prevent the 

contamination of long-term changes by artifactual drifts. Developments of fluorescence 

lifetime-based measurements and sensors hold promise for improving longitudinal studies as 

their readouts are independent of sensor expression levels,4,64,144 although currently setups 

are often bespoke and therefore come at a cost of increased technical complexity.

Another potential avenue for development is to harness molecular specificity to restrict the 

location or functional activity of biosensors to select subcellular compartments. Currently, 

commonly used membrane-bound biosensors are not spatially confined to the synapse; 

hence, differentiating between synaptic and extrasynaptic signals requires high-resolution 

imaging in combination with synaptic markers. However, if the location or function of 

membrane-bound biosensors could be restricted or excluded from synapses generally or 

synapses of certain cell types, then fiber photometry could be used to gather more detailed 

information about neurotransmitter signaling.

Across different scales of time and space, the versatility of photometry offers unprecedented 

opportunities to broaden research into the link between neural dynamics, interacting 

neurotransmitters, and complex, naturalistic behavior. Photometry has already successfully 

been used to track cell-type-specific effects of ethologically relevant behaviors such as social 

interaction, maternal behavior, mating, and feeding3,62,145–151 and help dissect transitions 

between different action motifs during behavioral sequences.6,106 As technology advances 

to allow wireless60 and even implantable photometry systems,152 alongside innovations in 

behavioral monitoring of groups of animals in semi-natural contexts,153 the capability to 

tackle deep questions about the relationships between the environment, neural activity, and 

complex behavior in health and disease will become ever more tractable.
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Progress in understanding universal brain-behavior relationships will be accelerated by 

the ability to use photometry across a range of model species, including birds154 and non-

human primates,155 and rodents. However, although photometry should be equally suited 

to any mammalian or avian species when selecting sensors and promoters, testing must be 

performed to ensure that expression is robust and stable. It cannot be a priori assumed that 

what works in a mouse will necessarily translate directly even to other rodent species.

Conclusions

The ability to run photometry experiments at scale and increasingly low cost as more open-

source hardware becomes available has the potential to be transformative for neuroscience. 

First, it can help democratize research into brain-behavior relationships, facilitating a wide 

range of groups to ask creative questions, and not just those in the most highly resourced 

institutions.156 Second, it will support increased reproducibility, which in turn will facilitate 

further technical and theoretical innovations. However, continued progress depends crucially 

on the community being cognizant of the potential limitations of the method, understanding 

how best to design experiments within these constraints, and collect and interpret the data 

appropriately. We hope this guide will provide the signposts to facilitate this.

Fiber photometry continues to evolve rapidly. The catalog of sensor domains is expanding, 

including hard-to-study molecules such as neuropeptides. New fluorescent reporter domains 

and detection modalities are also being developed to provide better quantification of 

ligand concentration or with longer wavelengths for better spectral resolution in multiplex 

experiments. Also, at longer wavelengths, excitation light is less scattered and absorbed in 

tissue, potentially increasing the depth of signal collection. Recent innovations in hardware 

will make capabilities like multi-site and multi-sensor recordings ever more accessible. 

Combined, these developments will allow investigators to ask new questions, such as how 

does the release of one transmitter alter the activity or the release of another molecule 

locally, or simultaneously across a whole brain structure, or at multiple nodes within a 

circuit? What roles do molecules play in coordinating activity within and between brain 

regions, and how does that coordination relate to behavior? Because of all the described 

features, fiber photometry will continue to grow in popularity as a go-to tool to monitor 

the rich dynamics of biomolecules and physiological events over different temporal scales 

during complex behavior.
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Figure 1. 
Schematic of the setup of a generic rodent in vivo fiber photometry experiment
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Figure 2. Control signals and their caveats
Comparison of different movement control signal methods, acquired in the same subject and 

experimental setting. GCaMP6f and tdTomato were expressed in VTA dopamine neurons, 

and signals were recorded during exploration of novel objects. In all recordings the GCaMP 

signal was measured using 470 nm excitation and 525 nm emission filters. Three different 

methods were used to generate the movement control signal: left panels, using “isosbestic” 

illumination of the GCaMP (405 nm excitation and 525 nm emission), using time-division 

illumination (alternatively pulsing the 405 and 470 nm LEDs) to separately acquire the 

control and GCaMP signal; middle panels, by measuring the tdTomato fluorescence (560 nm 

excitation and 640 nm emission) with the LEDs for both the GCaMP and tdTomato channels 

on continuously; right panels, by measuring the tdTomato fluorescence, but using time-

division illumination (alternately pulsing the 470 and 560 nm LEDs). Top row. Example 

GCaMP signal (blue) and control signal (magenta) over a 5-min recording. Middle row. 

Average GCaMP and control signals aligned on the peaks in the GCaMP signal indicated 

by the red dots in top row. Bottom row. Scatterplot of the GCaMP signal against the 

control signal, with linear fit whose slope is indicated on the figure. Note that the isosbestic 

control signal has significant negative bleed-through of the GCaMP signal, due to 405 

nm excitation not exactly matching the isosbestic point for GCaMP6f. This is evident as 

a negative peak in the event-aligned average and results in a strong negative correlation 

between the control and GCaMP channel. The tdTomato-continuous signal shows positive 

bleed-through of the GCaMP signal, due to overlap of the GCaMP emission spectra with 
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the emission filter on the tdTomato channel, resulting in strong positive correlation between 

the signals. As variation in both these control signals is dominated by signal bleed-through, 

they could not be used to estimate movement artifacts in the signal channel. Using time-

division illumination for the tdTomato channel greatly reduces cross-talk, as the GCaMP 

is not excited when the tdTomato signal is acquired, resulting in no evidence of signal 

bleed-through in the event-aligned traces, and a weak positive correlation between the 

channels consistent with a contribution only from small movement artifacts. Note also that 

the slope of the linear fit is <1, indicating that the movement artifacts in the GCaMP 

signal are smaller in dF/F terms than those in the tdTomato channel, consistent with a 

larger movement-insensitive autofluorescence contribution to the GCaMP channel due to the 

shorter wavelength illumination.
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Figure 3. Data preprocessing stages
Schematic diagram with example data describing the principal data preprocessing workflow 

used to remove noise and artifacts from raw photometry signals and convert them into 

appropriate units for comparison across sessions and subjects. Each box describes the 

function and methods for implementation of a discrete preprocessing stage. Example 

data are from photometry recordings targeting the nucleus accumbens core of wild-

type C57BL/6 mice co-expressing dLight1.1 (pAAV5-CAG-dLight1.1) and a tdTomato 

control (pssAAV-2/5-hSyn1-chI-tdTomato-WPRE-SV40p(A)), during performance of a 

flexible, reward-guided decision-making task. Example input and output signals from each 

preprocessing stage (direction indicated by arrows) illustrate how the signals are modified 

at each step in the process. When multiple implementation options exist for a given stage, 

the method applied to the example data is indicated in the description. Where useful for 
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illustrating the impact of a given preprocessing stage on both long and short timescales, both 

session data (approx. 90 min session, left plots) and a zoomed-in view of a 60-s window 

(right plots, with gray background) are plotted side-by-side. The onset of reward cues is 

indicated by blue ticks and triangles in session and 60-s window plots, respectively. dLight 

signals are plotted in green with units indicated on the left y axis, and tdTomato (control) 

signals plotted in red with units indicated on the right y axis. The double exponential fits of 

the denoised signals used to estimate photobleaching are overlaid in black. The correlation 

between tdTomato (control) and dLight signals at each time point in the session was used 

to estimate motion artifacts (right of movement correction box). The estimated signal due to 

motion artifacts (blue trace, offset by −0.04 for ease of viewing) is plotted along with the 

final motion-corrected signal. The normalized units (Z score) of the final, motion-corrected 

signals are indicated on the left y axis, and raw units (volts) on right y axis.
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Figure 4. Analysis of photometry data using linear regression
Analysis of photometry signals using linear regression, illustrated using calcium activity 

(GCaMP6f) in ventral tegmental area dopamine neurons during a multistep decision making 

task from Blanco-Pozo et al.102

(A) Diagram showing the sequence of events on each trial. Signals were aligned across trials 

by time-warping the activity to align the times of the trial events to match the median timing 

across trials.

(B) Mean Z scored dopamine activity across the trial, split by outcome (reward or omission); 

shaded area indicates cross-subject standard error of the mean. Note that the average 

dopamine signal on reward and omission trials separates before the outcome cue (green bar), 

i.e. before information about the outcome was available, due to the influence of subject’s 

reward expectation.

(C) Schematic of the regression model. A separate linear regression was run for each 

timepoint in the trial aligned activity. Each regression models the activity at that timepoint 

as weighed sum of predictors, where each predictor has a β coefficient that indicates how 

strongly and with what sign the predictor explains variance in the activity. The predictors 

take different values from trial-to-trial but the same value for all timepoints in a given trial.

(D and E) Plotting the time-course of β coefficients for a given predictor indicates when 

in the trial the predictor explains variance. Separate regression analyses were run for each 

subject; traces show cross-subject mean, shaded areas cross-subject standard error. Dots 

above the traces show time-points where the β coefficient was significantly different from 0, 

assessed using a t test on the cross-subject distribution with Benjamini-Hochberg correction 

for comparison of multiple timepoints. In (D), the regression analysis included only a single 
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predictor coding for the trial outcome. This regression has significant positive coefficients 

for the outcome predictor before information about the outcome is available (red shaded 

area). This is because the subjects’ expectation of reward drives variation in the signal which 

is correlated with the trial outcome (as seen in B). (E) By including additional predictors in 

the regression, which in this example relate to the value of the actions taken, state reached 

on the trial, and the recent rate of rewards over the past 8 trials (see Blanco-Pozo et al.102 

for details), we can both resolve the influence of these different behavioural variables at 

different timepoints and remove the spurious loading on the outcome predictor before the 

outcome cue, as variance in the signal due to reward expectation is now captured by the 

other predictors.
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