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A multicriteria decision analysis framework to measure equitable 
healthcare access during COVID-19 
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b Built Environment Characterization Group, Oak Ridge National Laboratory, Oak Ridge, TN, USA   
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A B S T R A C T   

The ongoing novel coronavirus (COVID-19) pandemic has highlighted the need for individuals to 
have easy access to healthcare facilities for treatment as well as vaccinations. The surge in COVID- 
19 hospitalizations during 2020 also underscored the fact that accessibility to nearby hospitals for 
testing, treatment and vaccination sites is crucial for patients with fever or respiratory symptoms. 
Although necessary, quantifying healthcare access is challenging as it depends on a complex 
interaction between underlying socioeconomic and physical factors. In this case study, we 
deployed a Multi Criteria Decision Analysis (MCDA) approach to uncover the barriers and their 
effect on healthcare access. Using a least cost path (LCP) analysis we quantified the costs asso
ciated with healthcare access from each census block group in the Los Angeles metropolitan area 
(LA Metro) to the nearest hospital. Social vulnerability reported by the Centers for Disease 
Control and Prevention (CDC), the daily number of COVID-19 cases from the Los Angeles open 
data portal and built environment characteristics (slope of the street, car ownership, population 
density distribution, walkability, traffic collision density, and speed limit) were used to quantify 
overall accessibility index for the entire study area. Our results showed that the census block 
groups with a social vulnerability index above 0.75 (high vulnerability) had low accessibility 
owing to the higher cost of access to nearby hospitals. These areas were also coincident with the 
hotspots for COVID-19 cases and deaths which highlighted the inequitable exposure of socially 
disadvantaged populations to COVID-19 infections and how the pandemic impacts were exac
erbated by the synergistic effect of socioeconomic status and built environment characteristics of 
the locations where the disadvantaged populations resided. The framework proposed herein 
could be adapted to geo-target testing/vaccination sites and improve accessibility to healthcare 
facilities in general and more specifically among the socially vulnerable populations residing in 
urban areas to reduce their overall health risks during future pandemic outbreaks.   

1. Introduction 

Access to healthcare is a necessity for equitable distribution of amenities in the face of a pandemic such as the 2019 novel 
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Index; WHO, World Health Organization. 
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coronavirus (COVID-19) (WHO, 2021). Inequitable access to healthcare has been recognized as a strong indicator of discrepancies in 
the spread of COVID-19 (Berger et al., 2020; Gray et al., 2020; Chin et al., 2020) in the United States (US). Previous research has shown 
that the skewed access to healthcare facilities between the urban and rural populations in the US (Rosenblatt and Lishner, 1991; Lovett 
et al., 2002) is due to (i) transportation barrier, a result of limited access to a vehicle and limited network connectivity between 
population centers and healthcare facilities (such as hospitals), and (ii) uneven distribution of healthcare facilities. The limited access 
to healthcare facilities tends to pose a critical challenge to regional health planning and interventions (Todd et al., 1991; Wang, 2012). 

The COVID-19 pandemic underscored the health disparities in the US (Shadmi et al., 2020), specifically, regarding access to testing 
sites, hospitals, and potential vaccination sites (Shen et al., 2021). The African Americans, Hispanics, and Native Americans were 
found to have experienced a disproportionate burden of COVID-19 related infections and deaths (Hooper et al., 2020). These popu
lation groups are not only financially disadvantaged but also tend to work in the service industry which prevented them from working 
from home, thereby increasing their potential exposure to COVID-19. These groups also tend to have underlying health conditions such 
as obesity, diabetes, and cardiovascular diseases that exacerbated the impacts of COVID-19. Hence, improved access to testing fa
cilities, hospitals, and vaccinations sites is crucial to control the spread of COVID-19 in general and specifically, among these 
socio-economically vulnerable populations. It is essential for policy and decision-makers to ensure that every community has equitable 
access to healthcare services (Kang et al., 2020) to control the spread and adverse impacts of COVID-19 among underserved 
populations. 

Access to healthcare facilities can be measured based on several dimensions, such as availability (i.e., adequate healthcare facilities 
and services), geographic/spatial accessibility (i.e., travel impedance between patients and providers), and accommodation (i.e., 
number of beds available at a particular hospital - an indicator of the hospitals where patients could be treated if needed during life- 
threatening situations. Spatial accessibility refers to the ease with which healthcare facilities (e.g hospitals, medical centers etc.) can be 
reached from a location and/or by an individual irrespective of his/her socio-economic condition(s) (Hansen, 1959; Kwan, 1998, 
1999; Luo and Wang, 2003; Kwan and Weber, 2008). Having easy access to healthcare facilities by every individual can reduce the 
spread and impact of COVID-19 among communities. Thus, accurate and reliable methods for identifying deficiencies in accessibility 
to health services is essential for local authorities (McGrail and Humphreys, 2009, 2014; Luo and Qi, 2009). 

Previous studies have examined the significance of spatial access to primary care (Luo and Wang, 2003; Khan, 1992) in terms of 
linear distance to physicians, number or size of health care facilities relative to the population centers in need of healthcare as well as 
the importance of aspatial factors like the Index of Relative Disadvantage (IRD), social factors like ethnic diversity and income levels 
(Carr-Hill et al., 1994; Field, 2000; Bissonnette et al., 2012), among others. Wang and Luo (Wang and Luo, 2005) integrated spatial and 
aspatial factors to measure accessibility to healthcare facilities but did not consider the vulnerability of geographic regions (i.e., limited 
access to transportation networks) and socioeconomic factors that can and do influence access. Previous studies have also identified 
distance as a major factor that impacts accessibility (Pagano et al., 2007; Exworthy and Peckham, 2006), but the distance does not fully 
explain accessibility, since the interactions between transportation and mobility also pose barriers to health care. Travel time instead 
of distance is a better representation of accessibility during an epidemic as individuals can suddenly fall ill and need immediate 
medical assistance. Essentially, both spatial and aspatial factors influence healthcare access among different demographic groups. 

Decision problems, especially those of a spatial nature, such as the spread of infectious diseases like COVID-19, involve a complex 
interaction of numerous interrelated social, economic, and environmental criteria. Exploring the overarching effect of such combi
nations of factors on accessibility is a challenge faced by researchers. With the availability of a large volume of data from disparate 
sources, novel decision analysis approaches can now be applied to understand spatial problems like accessibility. Existing methods like 
the two-step floating catchment (2SFCA) methods use a top-down approach where predetermined catchment areas are generated to 
understand accessibility. The 2SFCA method is a form of the gravity model (Luo and Whippo, 2012) and involves service to population 
ratio within predetermined catchments of the service location. 

While determining the percent population served by a specific healthcare facility is crucial, the COVID-19 pandemic underscored 
the significance of having access to a healthcare facility to receive testing and treatments. However, there is a gap in available methods 
which combine both geographic and socioeconomic factors to assess healthcare facility accessibility in the face of COVID-19 based on 
travel time considerations (Rader et al., 2020). Without prior knowledge about the catchments, in this study, we implemented a 
data-driven Multi-Criteria Decision Analysis (MCDA) approach to examine spatial accessibility of individuals susceptible to COVID-19 
spread by considering their socioeconomic conditions and exposure which influence the overall cost of accessing healthcare facilities. 
We also compared our results with a 2-SFCA method. 

MCDA is widely used in decision-making processes to identify the best choice from a set of contradicting alternatives. Primarily, 
MCDA enables the ranking of alternatives based on a set of decision criteria, which requires the weighting of each criterion based on 
specific constraints (Jacquet-Lagreze and Yannis, 2001). Several forms of MCDA, such as Analytic Hierarchy Process (AHP) (Saaty, 
1990), preference ranking organization method for enrichment evaluations (Oberschmidt et al., 2010), elimination and choice 
expressing reality (Wang et al., 2009), and Multi-Attribute Utility Theory (Wang et al., 2009) have been developed that account for the 
impact of criteria selection and weights on final decisions (Brugha, 1998; Cervantes and Lorenz, 2009). 

Exploring the conditions that lead to the spread of COVID-19 in urban areas can be challenging as they often manifest local var
iations arising from spatially heterogeneous interactions (Thomas et al., 2020) of several underlying socioeconomic and built envi
ronment factors. Since MCDA allows fragmenting a complex problem into smaller subparts, analysis of each subpart, and their 
integration into a desirable solution, it has been utilized in several interdisciplinary applications, such as in finance (Zopounidis and 
Doumpos, 2002), public policy (Mladineo et al., 1992), resource management (Bonila et al., 2016), siting of emergency shelters (Kar 
and Hodgson, 2008), land use (Chen, 2014), urban planning (Al-Shalabi et al., 2006), ecology (Bunruamkaew and Murayam, 2011; 
Zhang et al., 2015), humanitarian assistance (Curran et al., 2014) as well as in siting of energy infrastructures (Kotikot et al., 2020). 
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MCDA allows spatialization of decision criteria (Ligmann-Zielinska and Jankowski (2012); Rinner and Heppleston (2006) and 
sensitivity analysis (Feick and Hall, 2004; Rinner and Heppleston, 2006) to capture local variants of certain decision rules (Carter and 
Rinner, 2014; Malczewski, 2011; Malczewski and Liu, 2014; Qin, 2013; Şalap-Ayça and Jankowski, 2016). Therefore, MCDA has 
gained popularity among researchers in terms of applications in urban equity studies (Obadia and Rinner, 2021). From a public health 
perspective, MCDA is useful in identifying interventions and evaluation criteria, measuring the interventions against those criteria, and 
combining the scores for each criterion to produce an overall assessment of each intervention (Marsh et al., 2013). 

Using the Los Angeles (LA) metropolitan area as a case study site (one of the COVID-19 epicenters), we implemented MCDA to 
integrate built environment (i.e., land use type, road networks), socioeconomic characteristics, and mobility patterns to generate an 
accessibility index. The accessibility index represents the ease of commuting to a healthcare facility (e.g. hospitals) from different 
census block groups. We used the accessibility index in conjunction with social vulnerability indices developed by CDC to answer the 
following questions: 

(i) How does the accessibility index vary across census block groups based on their underlying socioeconomic and built envi
ronment characteristics w.r.t nearest hospitals? and,  

(ii) What is the optimal service area of a specific hospital w.r.t census block groups with a high incidence of COVID-19? 

As discussed above, socioeconomic factors affected the contact rates among individuals across the US. Roy and Kar (2020) also 
found that social distancing was less likely to be maintained among socially disadvantaged communities. The purpose of this study is to 
quantify an accessibility metric for COVID-19 spread based on natural and built environment characteristics. By deploying a stratified 
approach that combines multiple criteria, this study generated a deeper understanding of parameters that contribute to the lack of 
social distancing and higher contact rates but were not previously used in forecasting COVID-19 spread. 

2. Data & methods 

The study area, LA Metro, is the second most populous metropolitan area in the US and within the Los Angeles (LA) county. The 
scope of the study includes the city of Los Angeles, Long Beach, and Beverly Hills, which is referred to as the “LA metro”. The findings 
correspond to the LA metro region beyond the city of LA. The LA Metro is also home to about 10 million people and more than 3.5 
million households (US Census Bureau, 2016) as of 2016. In 2000, the city was occupied by ~3.7 million people (1/3rd of the current 
population) and was the second-largest city in the nation (US Census Bureau, 2016). The distribution of neighborhoods based on 

Fig. 1. Spatial distribution of hospitals with respect to income levels in the Los Angeles metropolitan area. 
*Note: The boundary shapefile was obtained from the Los Angeles city planning map gallery (https://planning.lacity.org/odocument/0541e9db- 
ddb3-4279-a1d8-a271048fcc9d). 
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poverty level forms a distinctive geographic pattern in the city (Fig. 1). Evidently, the poorest neighborhoods are concentrated near the 
downtown area, specifically, in South-Central and East LA, but there are other economically disadvantaged neighborhoods spread out 
sporadically throughout LA Metro. The affluent neighborhoods are concentrated along the coastal areas and in Santa Monica 
Mountains. Although a majority of hospitals are located closer to poorer neighborhoods (Fig. 1), the accessibility to these facilities may 
not be comparable to their locations. Additional analysis is required to understand the drivers of lower access (i.e., number of beds 
available, access to cars, etc.) which probably influenced the spread of COVID in these areas despite the increased availability of 
hospitals. We utilized locations of major hospitals in the LA Metro along with the number of available beds as primary healthcare 
facilities for this study. 

As of July 24th, 2021, the LA County Public Health Department had identified 173,995 positive cases of COVID-19 and a total of 
4360 deaths across LA County (CDC, 2020). Of those who died, information about race and ethnicity was available for 4069 people (LA 
Public Health Dept., 2020). From the 4069 deaths, 48% of deaths occurred among Hispanic residents, 25% among White residents, 
15% among Asian residents, 11% among African American/Black residents, less than 1% among Native Hawaiian/Pacific Islander 
residents, and 1% among residents identifying with other races (LA County Public Health Dept., 2020). According to the LA County 
Public Health Department, the death rates (number of deaths/100,000) were disproportionately higher in some neighborhoods, 
specifically, those present in the northeastern part and near the downtown area of LA city (Fig. 1). 

For this study, we used the following social and built environment criteria – demographic, economic, number of COVID-19 cases, 
and built environment characteristics (slope of the street, transit stop density, proximity to busy intersections, walkability of neigh
borhoods) for the 4263 census block groups in LA Metro as listed in Table 1. We obtained the socio-economic data (representing 
demographic characteristics and income) and social vulnerability characteristics from the US Census Bureau and the Centers for 
Disease Control and Prevention (CDC), respectively. We obtained data sets on transportation (i.e., traffic collision density, transit stop 
density) and road characteristics (i.e., speed limit, walkable conditions) from the LA County open data portal, LA County Department 
of Transportation (LA DOT, 2020), and Open Street Map road network. 

The datasets that were obtained in Excel or CSV format were converted to point layers using latitude and longitude information. We 
created density layers using the point data sets to depict the concentration of collisions and transit stops across the city. The remaining 
data layers were converted to 30 m × 30 m grids represented as raster layers for ease of comparison and analysis. The layers were also 
spatially referenced to UTM Zone 9N and the 1983 North American Datum for co-registration. We used the raster layers to assess the 
accessibility to 44 hospitals in the City of Los Angeles using the MCDA framework. 

2.1. Developing the MCDA workflow 

Based on previous research (Kotikot et al., 2020; Thokala et al., 2016, Dell’Ovo et al., 2018), we used an MCDA approach to 
integrate socio-economic characteristics, physical characteristics (topography - slope), and built environment characteristics (popu
lation density and transportation characteristics) to determine the least-cost path to a healthcare facility from each census block group 
centroid within LA Metro. We used the final cost layer generated from using MCDA (Fig. 2) to determine the least-cost path to the 
hospitals from each census block group. This helped us determine the accessibility cost associated with a block group based on the 
number of COVID-19 cases, and concentration of vulnerable population groups, which included low-income population, population 
with low accessibility to vehicles, elderly population above 65 years of age, and racial distribution (CDC, 2020; Flanagan et al., 2011). 

2.2. Scoring mechanism for cost layer generation 

MCDA is used to rank m alternatives based on n decision criteria. Each alternative Ai (where i = 1, 2, …, m) is influenced by all the 
criteria Cj (where j = 1, 2, …, n), and each criterion has a set of normalized value scores Vk (where k = 1, 2, …, m). Typically, high 
scores imply high importance for a criterion. Once the criteria and their corresponding value scores are determined, the next step in 
MCDA is aggregation, which provides an overall value for each alternative based on all criteria and their corresponding weights. The 
aggregation results in a decision matrix given by, D, in the real Euclidean space Rm x n, in which each decision aij corresponds to an 
alternative Ai, which is evaluated by the sum of the value scores for each criterion. The simplest form of MCDA is the linear sum model 
(LSM), which implements an addition function such that each alternative Ai is derived by adding the multiplied output of a criterion Cj 

Table 1 
List of all variables used to compute the overall cost to access the hospitals.  

Category Variable Source Year 

COVID-19 Number of daily COVID-19 cases and deaths LA County Public Health Department 2020 (March 1st – 
July 31st) 

Social 
Vulnerability 

Social Vulnerability Index Centers for Disease Control and 
Prevention 

2020 (Jan 1st – Dec 
31st) 

Healthcare 
facilities 

Hospital locations LA County Location Management 
System 

2017 

Built 
Environment 

The slope of the street, Residential areas, % Green spaces, Population 
near busy streets, Car ownership 

USGS, LA County open data portal , US 
Census Bureau 

2016 

Transportation Walkable neighborhoods, Transit Stop Density, Speed limit, Traffic 
collision density 

LA Department of Transportation 2017  
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and its corresponding value score Vk given by Equation (1). 

Ai =
∑n

j=1

∑m

k=1
Cj.Vk (1) 

Typically, the MCDA criterion Cj requires a weighting mechanism to highlight the importance of one criterion over the others. 
Assigning a weight to each criterion was challenging because there are no specific guidelines or prior studies in the context of COVID- 
19 that could be leveraged and conducting a survey of subject matter experts to determine weights was beyond the scope of the current 
research. Hence, we used an equal weighting approach with weight for each criterion was set to “1”. 

2.3. Quantifying accessibility metric for hospitals 

All the data layers were first resolved to the census block group boundary and then rasterized. The spatial overlay was used to 
match the COVID-19 cases at the census block group, and the data were apportioned using the population weighting scheme such that 
a block group’s entire population was counted if it existed within the overlay polygon. Given the nature of the pandemic, the cost of 
accessing a healthcare facility was assumed to be influenced by travel time, which is subsequently influenced by traffic collisions, 
speed limit, and slope/topography of the transportation network connecting a healthcare facility with census block groups. 

Each of these criteria was classified into 10 categories (Table 2) using Jenks natural breaks classification (Jenks and Caspall, 1971). 
The classified layers were combined using the equal weighting approach discussed above to generate the total cost layer. The value 
within each cell in the cost layer represents the cost per unit distance for moving through the cell to reach a healthcare facility. The cost 
layer was then used to compute a cost metric which was used to determine the overall accessibility to the nearest healthcare facility 
from each census block group. The lease cost path is also influenced by the direction of travel from a source (i.e., the centroid of a 
census block group) to reach a destination (i.e., the healthcare facility). Hence, we multiplied each cell value with the cell resolution 
while compensating for diagonal movement to obtain the total cost of passing through the cell. 

The LCP represented the shortest path (lowest travel time or highest accessibility) to a healthcare facility based on the cumulative 
cost over the entire cost surface from each census block group. The LCPi length was used to calculate the final accessibility metric, 
which is a measure of travel access to the nearest healthcare facility from a census block group normalized by the Social Vulnerability 
Index and the total number of COVID-19 cases (as of November 30th, 2020) as well the number of hospital beds available in destination 
hospitals. 

To compare the MCDA method to well-acknowledged spatial accessibility measures in the transportation literature, we compared 
our results to the two-step floating catchment method. We determined the catchment areas based on a 10-mile radius around hospitals 
which is comparable to a 30-min driving time from a particular healthcare facility using the method proposed by Vo et al. (2015). For 
each catchment, we estimated the total population that the healthcare provider can reach within that drive time and computed a 
provider-to-population ratio (i.e., hospital capacity to total population within the catchment being served) as the first step. In the 
second step, we obtained the provider-to-population ratio of each healthcare facility based on a 30-min drive time and summed up the 

Fig. 2. A workflow describing the MCDA framework for healthcare accessibility.  
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Table 2 
Classification criteria to determine rank normalized value score of each layer.  

Scores 1 2 3 4 5 6 7 8 9 10 

Category Very Low Low Medium High Very High 

Green Spaces (%) 2.8–13.0 13.1–22.5 22.6–30.1 30.2–37.7 37.8–46.8 46.9–57.1 57.2–65.8 65.9–75.6 75.7–85.1 85.2–96.1 
Population near busy 

roads (%) 
0–338 338–794 794–1139 1139–1502 1502–1910 1910–2359 2359–2888 2888–3625 3625–5421 5421–8072 

Slope (degrees) <3.7 3.7–8.8 8.8–14.9 14.9–20.3 20.3–25.1 25.1–29.8 29.8–34.3 34.3–39.4 39.4–46.9 >46.9 
Speed Limit (km/hr) <15 15–25 25–40 40–45 45–55 55–65 65–70 70–75 75–80 >80 
Traffic Collisions 

density (per km) 
<0.1 0.1–0.2 0.2–0.3 0.3–0.5 0.5–0.6 0.6–0.8 0.8–1.0 1.0–1.2 1.2–1.5 >1.5 

Vehicles Owned 0.36–0.86 0.87–1.25 1.26–1.56 1.57–1.84 1.85–2.06 2.07–2.30 2.31–2.88 2.89–3.74 3.75–4.43 4.44–4.76 
Walkable 

neighborhoods 
(%) 

0.44–0.47 0.48–0.52 0.53–0.57 0.58–0.60 0.61–0.65 0.99–0.70 0.71–0.73 0.74–0.78 0.79–0.83 0.84–0.87 

Transit Stop Density 
(KDE) 

0–71.17 71.18–213.52 213.53–403.32 403.33–664.30 664.31–1067.63 1067.63–1660.75 1660.76–2372.50 2372.51–3297.77 3297.78–4555.20 4555.21–6073.60  

A
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provider-to-population ratios of all hospitals. We used the maximum number of beds available for each hospital as the capacity of each 
hospital to admit patients infected by COVID-19 and requiring medical attention. 

3. Results 

We used the criteria listed in Table 2 to quantify the spread of COVID-19 infections and deaths in LA Metro. For instance, the 
availability of green spaces and walkable neighborhoods ensure that people can maintain social distancing guidelines provided by the 
CDC thereby reducing exposure to the virus. Likewise, neighborhoods with a high volume of transit stops, reduced traffic collisions, 
and speed limits ensure the safe travel of residents to hospitals using public transit options even if they lack personal vehicles. The 
topography of a neighborhood, such as the slope of the road, contributes to the ease of driving to a healthcare facility as well as the 
travel time. Likewise, vehicle ownership ensures a resident can travel to a hospital based on personal needs, which may not be possible 
for residents who rely on public transit systems. The social and built environment criteria jointly contribute to the overall cost of 
accessing hospitals in LA Metro. We generated a cost layer using the MCDA workflow (Fig. 2) and eight variables corresponding to the 
demographic, built environment, safety, and vulnerability criteria (Fig. 3). 

The cost layer shown in Fig. 4 represents the total cost associated with accessing a healthcare facility throughout LA Metro. Using 
an equal weighting approach, the total cost was calculated by aggregating all the evaluated factors in Fig. 3 and using the linear sum 
approach based on values listed in Table 2. 

The summation of all the ranked layers resulted in total cost ranging between 12 and 44. The final layer shown in Fig. 4 represents 
the cost of traveling from the centroid of a census block group to any healthcare facility in LA Metro. Evidently, the cost is higher for 
residents in the LA downtown area as opposed to those residing in the surrounding block groups. The higher score represents lower 
access to hospitals and those regions need more attention from local authorities to facilitate more testing and vaccinations. The cost 
layer was used to generate the LCP from the centroid of each census block group (source) to the nearest healthcare facility (destination) 
which accounts for barriers to access (the criteria used in MCDA - Fig. 1). 

The length of the potential LCPs ranged from a minimum of 2.1 miles to a maximum of 80.3 miles across LA Metro (Fig. 5). The LCP 
was found to be higher in the LA downtown and Westfield area where the Social Vulnerability Indices for the block groups are also very 
high (Fig. 5). These areas have a disproportionately higher number of low-income neighborhoods, a high density of Hispanic and 
African American population as well as an increased number of COVID-19 cases. Fig. 5 depicts the overall spatial distribution of the 

Fig. 3. Normalized ranks of spatial layers for all factors considered important for accessibility.  

A. Roy and B. Kar                                                                                                                                                                                                     



Journal of Transport & Health 24 (2022) 101331

8

Social Vulnerability Index (CDC, 2020) (SVI) generated by CDC for each census block group along with the LCPs. The SVI combines 
social, economic, and demographic indicators to identify the most socially vulnerable populations in each census block group. The SVI 
also accounts for a high unemployment rate, population below poverty levels, lower educational levels (i.e., below high school 
diploma), and a lack of homeownership. 

According to Fig. 5a and b, the higher number of COVID-19 cases appear to be occurring in areas with SVI above 0.75 and these 
areas have a high elderly population (aged 65 or older), low income (poor neighborhoods), and less access to private motor vehicles. 
The social, economic, and demographic factors that contribute to a high Social Vulnerability Index are determined from the scoring 
mechanism defined by Flanagan et al. (2011). Using the total number of COVID-19 cases and SVI in each census block group, we 
derived the final weighted normalized accessibility index (Table 4) to hospitals in LA Metro and mapped the overall MCDA accessi
bility across LA Metro (Fig. 6a), and compared it with spatial accessibility using 2SFCA (Fig. 6b). 

The accessibility index was computed as a normalized value from 0 to 1 by applying a second level of MCDA by combining the LCP, 
the number of available beds in each hospital, the total number of confirmed COVID-19 cases, and the Social Vulnerability Index at the 
census block group level using a linear sum of scores from 1 to 10 (Table 3). Figs. 5 and 6 jointly highlight some of the underlying 
factors influencing lower accessibility to hospitals in the South-Central part of LA. The variability in accessibility indices across all 44 
facilities revealed that the higher Social Vulnerability is directly related to low access to healthcare. The findings revealed that the most 
accessible areas where people have easy access to hospitals are in Panorama City as well as in a small section of downtown and central 
part of LA city. It is also evident that the following neighborhoods - Encino, Woodland Hills, Westwood, Del Rey. Harbor City, Elysian 
Park, and Echo Park have the least access to hospitals. 

Table 4 shows the overall variation in accessibility indices and least-cost paths based on SVI and COVID-19 case incidence. It is 
important to note that the socially disadvantaged neighborhoods not only lack appropriate access to hospitals but also had a high 
number of COVID-19 cases. Additionally, the distance to healthcare facility and Social Vulnerability Indices had direct correlations to 
the overall cost to access (Supplementary Fig. S1). The lowest accessibility between 0.08 and 0.09 occurs in the regions with high and 
very high SVI values indicating how social vulnerability adds to the overall cost of access. 

Based on the 2-SFCA approach we found that the highest spatial accessibility was observed in the northern and central parts of LA 
Metro (Fig. 6b). The downtown area and southern parts of the LA Metro were prone to medium and low accessibility as hypothesized 
and shown by the MCDA approach as well. Hence our results proved to be conclusive in terms of identifying areas of lower access. 
However, MCDA further unfolds the underlying factors that might have contributed to the lack of access. The low to medium access 
areas are also densely populated and have a significantly high SVI between 0.40 and 0.70 on average. However, it is interesting to note 
that highly accessible areas also do overlap with high SVI values indicating that some portions of the socially vulnerable population do 
have more access than other areas. 

Fig. 4. A cost weighted distance layer for Los Angeles derived from MCDA to measure accessibility.  
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A previous study by Chen et al. (2017) has defined accessibility as qualitative classes like low, medium-high based on accessibility 
scores. A study by Luo et al. (2003) has defined a range of accessibility scores specific to the study whereas other studies by Stentzel 
et al. (2018) and Brondeel et al. (2014) have defined travel times as a measure of accessibility based on the 2SFCA approach. However, 

Fig. 5. Maps showing the least-cost path to each hospital along with (a) number of confirmed daily COVID-19 cases and (b) Social Vulnera
bility Indices. 

Fig. 6. Map showing (a) MCDA accessibility indices and (b) spatial accessibility using 2SFCA associated with the hospitals in the LA Metro area.  
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Table 3 
The scoring criteria for different variables used to generate the accessibility index.  

Scores 1 2 3 4 5 6 7 8 9 10 

Variables Very Low Low Medium High Very High 

LCP (miles) 0–4.71 4.72–13.5 13.6–22.3 22.4–30.7 30.8–39.5 39.6–46.4 46.5–53.9 54.0–64.6 64.7–74.9 75.0–80.3 
SVI 0–0.05 0.05–0.14 0.14–0.24 0.2–0.35 0.35–0.46 0.46–0.57 0.57–0.68 0.68–0.79 0.79–0.89 0.89–1.00 
# Beds 16–112 112–196 196–287 287–363 363–456 456–558 558–632 632–721 721–831 831–885 
#COVID Cases 0–82 82–190 190–304 304–470 470–688 688–927 927–1207 1207–2617 2617–4934 4934–7960  
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there are no specified and well-defined qualitative classes to define accessibility. Based on these previous studies and to avoid sub
jective bias, in this study, we quantified accessibility based on MCDA scores and compared those with ranges from traditional 2SFCA 
approaches, and have developed a nomenclature that may be used in future work using a similar technique with five different cat
egories namely Very Low, Low, Medium, High and Very High. 

4. Discussion 

The MCDA approach is a decision support technique that allows evaluating multiple alternatives with transparency and stakeholder 
participation using several quantitative and qualitative criteria (Hongoh et al., 2011). Our study highlights the usability of MCDA in 
assessing accessibility to hospitals based on transportation, built environment, and socio-economic indicators. Our results indicate that 
the cost associated with travel (Fig. 4) was the highest in and around downtown LA. Given the higher number of COVID-19 cases and 
mortality in this area, it can be concluded that the risk of getting infected by COVID-19 is elevated among the demographic groups that 
lack personal vehicles and are reliant on walking or using public transportation for their daily activities (Fig. 3). These areas are also 
hotspots for regular traffic collisions and are interspersed with freeways and arterials with considerably higher speed limits between 55 
and 75 mph. The higher traffic collision density (Fig. 3) and high-speed limit (above 65 mph) in this area is also a contributor to the 
increased overall cost of reaching a healthcare facility by the low-income population groups residing in the downtown area (Fig. 3). By 
contrast, the areas resided by higher-income households with personal vehicles have higher accessibility to hospitals in general. These 
areas also overlap with regions of low COVID-19 cases as reported by the health department indicating a higher incidence of cases, 
which could be attributed to lower accessibility to hospitals and subsequent community spreading due to lack of treatment. 

It is interesting to note that the 2SFCA and MCDA results (Fig. 6) are inverse since 2SFCA uses catchments based on travel times, 
which were derived using just speed limits and distances traveled without taking into account the socioeconomic factors (used to 
determine the distribution of vulnerable population groups) and immediate built environment characteristics (used to determine the 
accessibility constraints to hospitals) that contribute to additional barriers in access. The MCDA approach accounted for the underlying 
social, environmental and geographic context that adds to the overall cost of access. Hence, the MCDA approach allowed the iden
tification of block groups that are closest to hospitals distance-wise but were homes to vulnerable populations (due to socio-economic 
conditions) with barriers to access owing to vehicle access, safety, or lack of walkability. 

The low accessibility in the southern part of LA City (red box in Fig. 5) in 2SFCA indicates that given the presence of one hospital, 
the majority of the block groups within the box are farther away from the hospital to be reached within 30-min (travel time constraint 
used in this study). The cost of accessibility according to the MCDA (Fig. 4) based on socioeconomic and built environment constraints 
is moderate to low for majority of the block groups within the red box. According to Fig. 5, social vulnerability is high to moderate for 
block groups in the northern part but is very low to moderate in the block groups located in the southern part in the box. The block 
groups in the northern part have high traffic collisions, moderate to low vehicle ownership, are less walkable, and have low green 
space. Hence, despite their proximity to the hospital, these constraints reduced the accessibility of the block groups but increased the 
accessibility of the block groups located in the southern part. While 2SFCA provides a general picture of accessibility based on distance 
and travel time, MCDA provides the variation in accessibility within a region based on social and built environment characteristics. 

Our results highlight the importance of social measures of access (Farrington and Farrington, 2005) that exacerbate the cost of 
accessing hospitals in addition to the geographic distance. The relationship between the cost and distance varies positively with each 
other (Supplementary Fig. S1) indicating that higher cost is associated with longer distances. The higher cost also relates to higher 
social vulnerability (Supplementary Fig. S1), which indicates that lower accessibility is pronounced in disadvantaged neighborhoods. 
Previous studies (Wang and Luo, 2005) have tried to capture the interactions among the social and economic indicators (McGrail and 
Humphreys, 2009) which add to the barriers to healthcare services beyond the typical geographic distance measure to quantify 
accessibility. Other than being in line with these studies, the results highlight the significance of accessibility for COVID-19 patients in 
terms of their social vulnerability, which determines the ’opportunity’ to travel (Morris et al., 1979) to hospitals. 

The socially vulnerable areas with SVI above 0.75 appear to have lower access to hospitals owing to the higher unemployment rate, 
low income, low education (i.e., below high school diploma), lower homeownership, and less access to personal vehicles. The LCP was 
predominantly higher in the census block groups with daily confirmed COVID-19 cases between 1000 and 5000 (Fig. 5). Although 

Table 4 
List of Accessibility index along with least cost path, SVI, and COVID-19 cases.  

Variable Values Accessibility Index (Ai) Least Cost Path (LCPi) 

Mean S.D. Mean S.D. 

COVID-19 Daily Cases Very Low 0.13 0.10 19.24 9.38 
Low 0.34 0.40 26.49 11.79 
Medium 0.22 0.27 22.38 13.35 
High 0.09 0.07 21.59 14.40 
Very High 0.06 0.04 16.12 5.49 

Social Vulnerability Index Very Low 0.62 0.46 31.91 15.71 
Low 0.20 0.12 24.38 11.07 
Medium 0.16 0.03 28.08 9.13 
High 0.08 0.04 18.63 5.13 
Very High 0.09 0.10 16.82 10.73  
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some census block groups have a low number of reported cases, the LCP for these tracts is higher due to a lack of a sufficient number of 
hospitals within a driving radius of 30 min. According to the accessibility index (Fig. 6), the most vulnerable areas were associated with 
very low access to hospitals as opposed to the less vulnerable populations residing in Northeast LA, Woodland Hills, and Encino areas. 
Although some areas with high accessibility also facilitate socially vulnerable populations (Fig. 7b) there are existing inequities in the 
number and distribution of hospitals which further widens the gap of access in the context of pandemics like COVID-19. Policymakers 
should specifically work towards increasing the number of facilities in proportion to the population density and amount of socially 
vulnerable populations residing in areas with low and very low access – which are often neglected. These areas will not only need 
access to pharmacies and urgent care but more emergency facilities in case of COVID-like situations where the respiratory health of the 
vulnerable populations is severely affected. Both travel times as well as least-cost paths to healthcare facilities like hospitals as 
highlighted in this study can be effectively integrated into planning new sites for hospitals and emergency vans during a public health 
crisis. 

In areas with high social vulnerability more targeted efforts are required by the local authorities in terms of ensuring performing 
frequent testing. The health professionals could arrange for mobile testing vans and/or provide more number of ambulance services in 
case of severe respiratory conditions arising due to COVID-19. 

Our results also align with previous research conducted in the LA Metro region which have highlighted the social inequities which 
arise from the complex interactions of underlying factors like income (Oronce et al., 2020), transportation access (Chen et al., 2020), as 
well as housing affordability (Garde and Song, 2021) which have contributed to the low access to healthcare facilities. The factors 
explored in this study however add a new dimension to accessibility research in the context of COVID-19 and how the built envi
ronment and socioeconomic characteristics explored through MCDA could be leveraged to quantify the barriers to healthcare access 
among disadvantaged populations. 

Although further analysis is required to examine the drivers of lower access in certain tracts, socio-economic conditions were major 
contributors to the spreading of COVID-19. Given the tracts with lower access have highly vulnerable population groups, it is crucial to 
identify those tracts before determining the barriers to access and developing strategies in terms of testing, future mobile vaccination, 
and basic healthcare support to reduce the spread and mortality from COVID-19. This information could also be used in case of other 
public health situations. 

The primary focus of this study is to understand the rate of access to hospital beds among vulnerable communities. The pilot study 
conducted helps identify the factors which influence accessibility, and these factors can be used in the future for a predictive model. 
The current scope does not account for many other factors associated with the built environment, environmental conditions beyond 
social systems. We used only a subset of socioeconomic characteristics to understand the relationship between accessibility, COVID 
cases. 

In the future, more qualitative analysis on top of the MCDA approach could be through questionnaires, interviews, and surveys to 
understand and prioritize the contributing factors that determine the overall cost of access. Additional predictive modeling approaches 
will also be used to identify census block groups that may need more attention in terms of urgent care and life support for vulnerable 
populations. Using these efforts could help researchers come up with a more streamlined approach for determining weights associated 
with each layer – that can help come up with a more nuanced model for computing the LCP. Additionally, travel times could be used as 
an indicator of accessibility as well, however, due to the lack of such high resolution and accurate speed limit data, we were not able to 
integrate it in our study. In the future, it might be beneficial to have travel time-based factors as an additional layer to determine the 
overall cost. 

5. Conclusion 

The study highlights that accessibility is shaped by factors such as affordability (El-Geneidy et al., 2016), employment availability 
(Geurs and Wee, 2004), gender (Akyelken, 2017), age (Ryan et al., 2015) as well as disability (Casas, 2007). Additional analyses 
(Supplementary Figs. S2 and S3) also indicate that these areas have residents with co-morbidities due to asthma and diabetes. Such 
information is useful for local authorities to plan for resource allocation (i.e., testing and vaccination site location) to ensure equitable 
healthcare access to all demographic groups. 

Nearly 33% of census block groups which are disproportionately non-white with Hispanic and African- American populations in LA 
Metro accounted for 87.6% of COVID-19 deaths in Los Angeles during the study duration (February to July 2020). These epidemic hot 
spots appear to be based on the socioeconomic divide and inequitable access to critical infrastructures (transportation and healthcare 
facilities). The lack of testing as well as increased traffic congestion and speed limit may have contributed to the increase in COVID-19 
cases and deaths. Hence, more geo-targeted resource planning, such as public transportation, rideshare, and/or use of high-speed lanes 
for patients with severe respiratory symptoms and establishment of testing and vaccination sites, is essential for the socially disad
vantaged populations. 

A major contributor to this study is the framework that accounts for both spatial and aspatial factors to determine healthcare 
accessibility, which could be used by the local authorities for resource planning as discussed above. Given the susceptibility of certain 
demographic groups to COVID-19, this framework can also be used to identify potential areas of COVID-19 spread based on 
demography and social vulnerability information as well as for policy deployment, such as the opening of schools in certain locations. 
Future studies will focus on deploying this framework in other COVID-19 hotspots to examine if equity exists in terms of access to 
healthcare facilities among different population groups in terms of vaccinations and planning preventive measures for future 
outbreaks. 
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Fig. 7. Boxplots showing variability in (a) population density and (b) social vulnerability indices for each category of MCDA accessibility.  
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