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Low-temperature efficient catalysts for the WGS reaction, 
especially those operating under 423 K (1–7), are of interest 
for applications in fuel cells, especially those use H2 
generated by hydrocarbon reforming processes that are 
contaminated with CO, which deactivates the catalysts. For 
the heterogeneous catalysis, besides Cu based catalysts 
which display low activity at low temperature, (8, 9) Pt 
group noble metals and Au supported on reducible metal 
oxides, like ceria (1) or FeOx (10) which contain oxygen-
vacancies, are commonly used. Flytzani-Stephanopoulos and 
co-workers demonstrated that noble metal catalysts 
dispersed on alkali promoted inert supports can also be 
active for WGS, making a reducible oxide support no longer 
a requirement (4, 6). The alkali ion-associated surface -OH 
groups are reactive toward CO in the presence of atomically 
dispersed platinum or gold, giving the catalyst superior 
metal atom efficiency in the WGS reaction. Metal carbide, 
(e.g. hexagonal closest packing (hcp) β-Mo2C) supported 
noble metal catalysts provide similar functionalities and are 
more active for the reaction at low temperature (7, 11, 12). 
However, none of these systems displays an activity higher 
than 0.1 molCO/(molmetal·s) between 393 and 423 K (Table 1). 

In order to achieve high WGS activity at low tempera-
ture, we searched for catalysts that could dissociate water 

efficiently and reform the generated oxygen-containing spe-
cies (reaction of surface oxygen or hydroxyl with CO*) at 
low temperature. We report that Au confined over face cen-
tered cubic (fcc) structured α-MoC is at least one order of 
magnitude more active than previous reports for the WGS 
reaction below 423 K. The α-MoC substrate facilitates epi-
taxially-grown atomic Au layers with altered electronic 
structure for favorable bonding with CO. Its synergy with 
adjacent Mo sites in α-MoC can effectively activate water at 
low temperature. 

Gold supported over pure phase α-MoC catalysts were 
synthesized by a precipitation method followed by sequen-
tial temperature programmed ammonization and carburiza-
tion. For comparative purposes, α-MoC, 2wt%Au/β-Mo2C (13, 
14), 2wt%Au/SiO2 (15) and 2wt%Au/CeO2 (1) catalysts were 
also prepared. The high dispersion of Au for the 2wt%Au/α-
MoC catalyst was evidenced by the lack of x-ray diffraction 
(XRD) peaks associated with Au crystallites. Operando XRD 
studies (1% CO-3% H2O-He, 10 ml/min) revealed that the 
bulk structure of the 2%Au/α-MoC catalyst remained intact 
up to 523 K, beyond which the α-MoC was gradually oxi-
dized by water (Fig. 1A). Ex-situ XRD experiments 
(10.5%CO-21%H2O-20%N2-Ar, GHSV=180,000/h) confirmed 
that at higher water partial pressure, the bulk structure of 
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The water-gas shift (WGS) reaction (CO+H2O=H2+CO2) is an essential process for hydrogen generation 
and CO removal in various energy-related chemical operations. This equilibrium-limited reaction is 
favored at a low working temperature. Potential application in fuel cells also requires a WGS catalyst to be 
highly active, stable and energy-efficient and match the working temperature of on-site hydrogen 
generation and consumption units. We synthesized Au layered clusters on an α-MoC substrate to create 
an interfacial catalyst system for the ultra-low-temperature WGS reaction. Water was activated over α-
MoC at 303 Kelvin (K), while CO adsorbed on adjacent Au sites is apt to react with surface hydroxyl 
groups formed from water splitting, leading to a high WGS activity at low-temperatures. 
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catalysts is stable up to 473 K. Neither the oxidation of α-
MoC nor the aggregation of Au was observed at tempera-
tures up to 473 K (fig. S1). 

The WGS activity was evaluated under product-free 
(10.5%CO-21%H2O-20%N2-Ar) and full reformate gas feeds 
(11%CO-26%H2O-26%H2-7%CO2-N2). In the product-free gas 
(GSVH=180,000 hours−1), α-MoC shows very low CO conver-
sion (3.4%) at 393 K (Fig. 1B), and none of the reference cat-
alysts achieved > 5% CO conversion < 423 K. However, for 
the 2%Au/α-MoC catalyst, CO conversion was > 95% at 393 
K and reaching 98% at only 423 K. For reaction tempera-
tures to 523 K and beyond, CO conversion dropped, which 
may result from the thermodynamic limitation as well as 
the gradual transformation of α-MoC to molybdenum oxide, 
as confirmed by the operando XRD results (Fig. 1A and fig. 
S2). The Au normalized activity of the 2%Au/α-MoC catalyst 
in product-free gas was 0.012, 0.13, 1.05, 1.66 and 3.19 
molCO/(molAu*s) at 313, 353, 393, 423 and 473 K, respectively, 
this high activity at low temperatures compares favorably 
with other reported WGS catalysts (Table 1, fig. S3, CO con-
version below 15%). Due to the limitation of the water satu-
ration vapor pressure, at low temperature the composition 
of reactant gas was adjusted). We determined that 2% is the 
optimal Au loading for the Au/α-MoC catalyst (fig. S4). 

In full reformate gas feed under similar space velocity, 
the activity dropped slightly (62% activity at 393 K) because 
of product (H2 and CO2) inhibition (Fig. 1D). However, the 
activity of the 2%Au/α-MoC catalyst remained as high as 
0.62 s−1 and 2.02 s−1 at 393 and 473 K, respectively. The ap-
parent barriers Eapp of α-MoC itself is actually low Eapp value 
of 58 ± 10 kJ/mol, and even lower for the 2%Au/α-MoC cata-
lyst, 22 ± 1 kJ/mol. Thus, the addition of Au greatly en-
hanced the low-temperature reactivity of a good WGS 
catalyst (Fig. 1E). Its exceptional activity and high equilibri-
um CO conversion at low temperature can be exploited sim-
ultaneously (fig. S5), and the catalyst shows an excellent 
total turnover number (TTN), reaching up to 385400 
molCO/molAu in a single-run reaction (fig. S6 and table S1). 

We designed a two-step temperature programmed sur-
face reaction (TPSR) experiment to explore the reaction 
route. After pre-activation of the catalysts, 2% H2O/Ar (100 
ml/min, 10 min) was introduced into the reactor at 303 K. 
Production of H2 was immediately observed on both 
2%Au/α-MoC and α-MoC catalysts, indicating the presence 
of a low-temperature water dissociation center on α-MoC 
that led to the formation of H2 and surface OH species (Fig. 
2, A and B; see also figs. S7 and S8). In contrast, no H2 pro-
duction was observed on 2%Au/SiO2 or 2%Au/β-Mo2C cata-
lysts (Fig. 2C and fig. S9). After purging with Ar (100 
ml/min), the system was then switched to 2% CO/Ar (100 
ml/min) at 303 K, and kept at that temperature for 10 min 
and then increased to 523 K at 5 K/min. For the Au/SiO2 

catalyst, only water desorption was observed at ~ 403 K. In 
sharp contrast, CO2 and H2 were detected simultaneously on 
the 2%Au/α-MoC catalyst at around 308 K and their intensi-
ties reached the maxima at 367 K. Thus, the reaction of CO 
with surface OH could occur at very low temperature (308 
K) to form CO2 and additional H2. The reforming reaction 
can also happen on α-MoC catalyst, but initiating at a much 
higher initialing temperature (347 K). 

The co-existence of a low-temperature water dissociation 
center on α-MoC and the low-temperature reforming center 
over the 2% Au/α-MoC catalyst is the key for the extraordi-
nary activity of this catalyst. The Au L3 edge extended x-ray 
absorption fine structure (EXAFS) fitting (table S2 and fig. 
S10) shows a low Au-Au first shell coordination number(CN) 
of 6.9 indicates that the average size of Au species is ~ 1.5 
nm for a hemispherical morphology (16). The Au-Mo CN of 
1.6 is particularly striking given that Au nanoparticles (NPs) 
tend to undergo sintering because of the low Tammann 
temperature (668 K) of bulk Au. (17, 18) Given that this 
sample was activated at 973 K for more than 2 hours, a 
strong metal-support interaction must exist between Au and 
α-MoC. X-ray photoelectron spectroscopy (XPS) (fig. S11) 
revealed that the Au 4f binding energy shifted 0.6 eV to 
higher energy with respect to bulk gold (19), indicating that 
the electronic structure of the Au species is perturbed by the 
substrate. The reaction order of CO of -0.16 (Fig. 1D), also 
indicated that CO was already relatively strongly adsorbed 
on the electronically modified Au surface. 

Aberration-corrected scanning transmission electron mi-
croscopy (STEM) analysis on the 2%Au/α-MoC catalyst 
showed that the catalyst supports were porous assemblies of 
small α-MoC NPs (3 to 20 nm in diameter, fig. S12). High 
resolution STEM Z-contrast imaging (Fig. 2, D and E) re-
vealed two types of Au species on the surface of α-MoC, 
small Au layered clusters epitaxially grown on the α-MoC 
support and atomically dispersed Au. The epitaxial Au clus-
ters had an average diameter of 1 to2 nm and thickness of 2 
to 4 atomic layers (<1 nm), as measured from edge-on clus-
ters occasionally found in profile view (Fig. 2E and fig. S13). 
Detailed crystal structure analysis (fig. S12, C and D) also 
showed that these epitaxial Au clusters strongly aligned 
with the (111) planes of the α-MoC support, with some ex-
posed (200) facets. There were no larger Au NPs present in 
this sample (fig. S14). No obvious structural difference was 
observed between the fresh and the used catalyst samples 
(Fig. 2F), and both types of Au species were retained in the 
tested sample, which is also consistent with the relatively 
good stability of the catalyst noted in the catalytic reaction. 

We used NaCN solution to selectively leach the layered 
Au clusters from the 2% Au/α-MoC catalyst (1, 20). The Au 
loading decreased to around 0.9 wt%, leaving predominant-
ly the atomically dispersed Au atoms, which was confirmed 
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by both STEM and XAFS results (Fig. 2G; fig. S12, E to G; 
and table S2). The Au normalized WGS activity of 0.9% 
Au/α-MoC (NaCN) at 393 and 423 K decreased to around 
1/11 and 1/6 of their original values respectively, but was still 
higher than that of NaCN-leached α-MoC catalyst (with acti-
vation barrier similar to that of fresh α-MoC, Fig. 1E). This 
result indicated that atomically dispersed Au species were 
indeed catalytically active (1), but the catalytic efficacy of 
the layered Au clusters on α-MoC support for low tempera-
ture WGS was even higher than the atomically dispersed Au. 
Furthermore, the Eapp increased to 41 kJ/mol after NaCN 
leaching (Fig. 1E), suggesting some degree blocking of the 
low-temperature reaction route after the removal of layered 
Au clusters. Thus, we attribute the low-temperature WGS 
activity mainly to the epitaxial Au clusters decorating the α-
MoC support. 

We carried out DFT calculations to investigate the WGS 
reaction path on the Au/α-MoC catalyst. Three catalyst 
models (see fig. S15) of Au (111), monolayer Au/α-MoC (111) 
and cluster Au15/α-MoC (111) were constructed to represent 
the different sites on Au/α-MoC, in which Au (111) and mon-
olayer Au/α-MoC (111) simulate large Au NPs and electronic 
property modified Au NPs, respectively. Au15/α-MoC (111) 
represents the interface model of our atomic-layered Au 
cluster over α-MoC (111). Similar to experimental observa-
tions, the Au cluster in Au15/α-MoC has a layered structure, 
with (111) and (200) type exposed facets. 

As shown in fig. S16, H2O is hard to dissociate on Au 
(111) and monolayer Au/α-MoC (111) thermodynamically and 
kinetically, with barriers of 1.91 and 1.66 eV, and the reac-
tions are endothermic by 1.57 and 1.15 eV, respectively. In 
contrast, when we investigated the first step of WGS, name-
ly water dissociation, on Au15/α-MoC (111), we found that at 
lower coverage (Fig. 3A), two H2O molecules could be easily 
dissociated and form two H atoms and two OH species with 
the effective barrier of 0.77 eV (CO + 2H2O → CO + 2OH + 
2H), and the two OH can immediately react (and without 
barrier), forming a surface O atom (CO + 2OH + 2H → CO + 
H2O + O + 2H, it is exothermic by 0.38 eV). These results 
indicate that some surface domains of α-MoC could be oxi-
dized by water during the reaction, which has been con-
firmed by XPS and 18O nuclear magnetic resonance 
experiments (figs. S7 and S8). After the surface was partially 
decorated with oxygen (Fig. 3B), the calculations found that 
surface O atoms could further promote water dissociation. 
The successive O-assisted water dissociation (CO + 3O + 
H2O → CO + 2O + 2OH) on the boundary of Au15 and α-MoC 
(111) had a much lower barrier of 0.22 eV, indicating that 
the first O-H bond of water could be easily broken at low 
temperature by this bifunctional catalyst. 

The formed surface OH species on the Mo site was apt to 
react with CO adsorbed on the adjacent Au surface, which 

has the right geometry (triangular) to enable a low reaction 
barrier. Indeed, at low CO coverage (Fig. 3A), the effective 
barrier for the reforming of CO on Au and OH on α-MoC 
(111) is 0.72 eV, including a migration barrier of 0.22 eV and 
the reaction barrier of 0.50 eV. At high CO coverage (Fig. 
3C), the reforming barrier was even lower, i.e. 0.52 eV, 
demonstrating that the reaction between adsorbed CO and 
surface OH species on the peripheral interface of Au and α-
MoC (CO+OH=CO2+ ½H2) was apt to proceed. Although the 
reforming process was facile, it still had a higher barrier 
than the first step of the WGS reaction, i.e., water dissocia-
tion on partially oxidized α-MoC. Thus, the rate-determining 
step of the WGS process over Au15/α-MoC is the reforming 
process, which is in good agreement with our TPSR observa-
tions (Fig. 2). The interfacial nature and optimum bonding 
of this α-MoC confined Au nanostructure that confers the 
catalyst with outstanding WGS reactivity at low tempera-
ture. 
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 Temp 
(K) Gas feed composition 

Mass specific 
activity 

[μmolCO/(gcat∙s)] 

Metal normalized 
activity 

[molCO/(molmetal∙s)] 

Apparent 
activation 

energy 
(kJ/mol) 

Ref 

Reducible oxide supports 

Au/CeO2 523 11%CO-26%H2O-26%H2-7%CO2-He 4.8 0.13 37  (1) 
Pt/CeO2 523 11%CO-26%H2O-26%H2-7%CO2-He 22 0.17 75  (1) 
Ir1/FeOx 573 2%CO-10%H2O-He 1.2 2.32 50  (21) 
Au/FeOx 598 11%CO-26%H2O-26%H2-7%CO2-He 11 0.31 49  (22) 

Alkali promoted inert supports 

Au-Na/MCM41 423 11%CO-26%H2O-26%H2-7%CO2-He 0.8 0.067 44  (5) 
Pt-Na/SiO2

 523 11%CO-26%H2O-26%H2-7%CO2-He 12 0.24 70  (4) 
Pt-Na/CNT 473 2%CO-10%H2O-He 1.25 0.024 70  (23) 

Molybdenum carbide supports (β-Mo2C) 

Pt/Mo2C 513 11%CO-21%H2O-43%H2-6%CO2-N2 221 1.42 53  (11) 
Pt/Mo2C 393 7%CO-22%H2O-37%H2-8.5%CO2-Ar 1.8 0.023 48  (12) 
Au/Mo2C 393 7%CO-22%H2O-37%H2-8.5%CO2-Ar 1.6 0.021 44  (12) 

Homogeneous catalysts 

Ru3(CO)12 373 1 bar CO/NaOH solution 0.12 2.6 E-5 -  (24) 

Our results 

2% Au/α-MoC 

313 3%CO-6%H2O-20%N2-Ar 1.22 0.012     

333 
5%CO-10%H2O-20%N2-Ar 

5.91 0.06 
  

- 

353 13.06 0.13 

393 

10.5%CO-21%H2O-20%N2-Ar 

103 1.05 

22† 423 167 1.66 

473 325 3.19 

2% Au/α-MoC 

333 
5%CO-10%H2O-10%H2-3%CO2-N2 

2.39 0.02 
  

- 

353 9.20 0.09 

393 

11%CO-26%H2O-26%H2-7%CO2-N2 

53 0.62 

27 423 106 1.05 

473 213 2.02 

0.9% Au/α-MoC 
(NaCN) 

393 

10.5%CO-21%H2O-20%N2-Ar 

9.07 0.09 

41 - 423 26.6 0.26 

473 73.1 0.72 

2%Au/β-Mo2C 

393 

11%CO-26%H2O-26%H2-7%CO2-N2 

2.06 0.02 

38 - 423 4.29 0.04 

473 14.4 0.14 

α-MoC 

393 

11%CO-26%H2O-26%H2-7%CO2-N2 

2.05   

64 - 423 8.57   

473 56.7   

2% Au/SiO2 673 10.5%CO-21%H2O-20%N2-Ar 0.24 2.4 E-3     

2% Au/CeO2 423 11%CO-26%H2O-26%H2-7%CO2-N2 1.1 0.01     

 

  

Table 1. Comparison of the activities over the representative catalytic systems for low-temperature WGS 
reaction. 
 

*The operating pressure of the catalysts listed is 1 bar.  †The activation energy was also determined by another method, see fig. S17. 
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Fig. 1. Catalytic properties and structural characterization of 2% Au/α-MoC catalyst. 
(A) In-situ XRD (λ=0.3196 Å) of 2% Au/α-MoC catalyst under WGS reaction conditions at 
various temperatures. (B) CO conversion on different catalysts at various temperatures. 
(Reaction condition: 10.5% CO, 21% H2O, 20% N2 in Ar; GHSV: 180,000 hours−1). (C) The 
activity of different catalysts (unit molCO/(molmetal.s), (measured at CO conversion below 
15% in 11% CO-26% H2O-26% H2-7% CO2-30% N2). (D) Kinetic orders of the reactants and 
products. (E) Apparent activation energy Eapp of various catalysts in 10.5% CO-21% H2O-
20% N2-Ar balance. 
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Fig. 2. Mechanism study and electron microscopy characterization. Water adsorption (at 303 K) followed 
by CO-TPSR on 2% Au/α-MoC (A), α-MoC (B) and 2% Au/SiO2 (C). Signals of H2 (m/z=2), H2O (m/z=18), CO 
(m/z=28) and CO2 (m/z=44) were detected. (D and E) High-resolution HAADF-STEM images of 2% Au/α-MoC 
fresh catalyst, with single atoms of Au marked in blue circles and Au layered-structures highlighted in yellow. 
The Au clusters were further identified by elemental analysis (figs. S18 and S19). (F) HAADF-STEM image of 
2% Au/α-MoC catalyst after reaction in which sample still contains both single-atom Au and Au layered-
clusters. (G) HAADF-STEM image of the NaCN leached 2% Au/α-MoC catalyst, showing predominantly single 
atom Au, most of which overlap with Mo sites in the support lattice. Note that the very bright features in this 
image are caused by overlapping MoC particles, as confirmed by elemental mapping (figs. S18 and S19). 
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Fig. 3. The reaction paths for the water-gas shift reaction on 
Au15/α-MoC(111). (A) H2O dissociation and CO reforming at lower 
coverage, (B) O-assisted H2O dissociation on the boundary oxidized by 
3 O atoms and (C) CO reforming at high coverage. The energies of 
gaseous molecules have included the zero-point energy (ZPE) and 
entropy correction at 423 K. Au, Mo, C, O and H atoms are shown in 
gold, cyan, gray, red and white, respectively; while in order to make a 
distinction for the C atom from CO, it is represented by dark gray. 
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