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Autonomic Regulation Therapy in Heart Failure

Una Buckley, MD, Kalyanam Shivkumar, MD PhD, and Jeffrey L. Ardell, PhD
Cardiac Arrhythmia Center & Neurocardiology Research Center of Excellence, UCLA David 
Geffen School of Medicine, 100 Medical Plaza, Suite 660, Los Angeles, CA 90095

Abstract

Autonomic Regulation Therapy (ART) is a rapidly emerging therapy in the management of 

congestive heart failure secondary to systolic dysfunction. Modulation of the cardiac neuronal 

hierarchy can be achieved with bioelectronics modulation of the spinal cord, cervical vagus, 

baroreceptor, or renal nerve ablation. This review will discuss relevant preclinical and clinical 

research in ART for systolic heart failure. Understanding mechanistically what is being stimulated 

within the autonomic nervous system by such device-based therapy and how the system reacts to 

such stimuli is essential for optimizing stimulation parameters and for the future development of 

effective ART.
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Introduction

In the United States, 1 in 9 deaths each year is related to heart failure with an estimated 5.1 

million people affected 1. The cost of heart failure is thought to be about 32 billion dollars 

per year as a result of costs to the health service, medications, and absenteeism in the work 

force 2. Heart failure continues to have a high mortality rate, despite advances in 

pharmacological and device therapy, with the Framingham study reporting a median 5 year 
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survival of 25% in men and 38% in women 3. Early diagnosis and treatment may impact the 

morbidity and mortality 4. Given the aging population, increase in obesity, diabetes mellitus, 

and sedentary lifestyle, it is thought that these statistics largely underestimate the 

prevalence 5-7. While these statistics include all forms of heart failure, this review will 

specifically focus on autonomic modulating device therapy in the setting of heart failure 

with reduced ejection fraction.

Structure/function organization of the cardiac neuronal hierarchy

Cardiac control is achieved through a hierarchal network that may be considered in three-

levels 8-10. Level 1: CNS neurons (medullary and spinal cord neurons modulated by higher 

centers); Level 2: Peripheral: extracardiac-intrathoracic neuronal pool; and Level 3: 

Peripheral: the intrinsic cardiac nervous (ICN) system (Figure 1).

The peripheral layers (Levels 2 and 3) form cardio-centric loops, while the CNS (Level 1) 

engages neural mechanisms for cardiac and peripheral vasculature regulation 9, 10. Acting 

together, these hierarchical populations coordinate and regulate regional cardiac electrical 

and mechanical indices throughout each cardiac cycle to assure that cardiac output matches 

blood flow demands 11-13. To understand network interactions within and between levels 

1-3, one must first understand the characteristics of its constituent parts. It is through such 

understanding that rational neuromodulation therapies can be devised.

Afferent neurons—Afferent neurons associated with cardiac and major vascular sensory 

neurites transduce the local mechanical and/or chemical milieu of these tissues 14. The 

somata of these cardiac and vascular sensory neurons are located in: i) nodose ganglia; ii) 

dorsal root ganglia; iii) intrathoracic extracardiac ganglia; and iv) intrinsic cardiac 

ganglia 14. The majority of these somata transduce mechanical distortion, the chemical 

milieu or both to second order neurons in the CNS and periphery 14-16. Cardiac sensory 

information is fed into each of the three ‘levels’ of the neuronal hierarchy, these sensory 

inputs are a primary initiator of responses within and between the different levels of the 

neuraxis 10, 17, 18.

Efferent neurons—Efferent neuronal outflow from the autonomic nervous system to the 

heart depends on central and peripheral mediated neural reflexes 10, 19, 20. Cardiac-related 

parasympathetic efferent preganglionic somata are localized at medullary sites (primarily the 

Nucleus Ambiguus [NA]) and project to post-ganglionic neurons within intrinsic cardiac 

ganglia 21-24. Sympathetic preganglionic efferents for cardiac control are localized at the 

intermedio-lateral cell column of the spinal cord (T1-T5) 24. They project to postganglionic 

neurons located in stellate, middle cervical, superior cervical, mediastinal and intrinsic 

cardiac ganglia 24, 25. Within each nexus point of the neuronal hierarchy for cardiac control, 

from the CNS to intrinsic cardiac ganglia, network interactions within and between levels is 

fundamental to network output function (Fig. 1).

Local circuit neurons (LCN)—LCNs are neurons that are not directly transducing 

cardiac indices (cardiac afferent neurons) or having direct motor function, but clearly play a 

role to integrate sensory inputs along with inputs from the central nervous system. These 
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neurons are located throughout all intrathoracic ganglia, including those distributed on the 

heart 10, 12, 26. They receive sensory feedback from the heart and intrathoracic veins and 

arteries that is multi-dimensional since most sensory neurons transduce both the regional 

mechanical and the chemical milieus 12, 27, 28. Their activity is likewise altered by 

autonomic neural inputs 12. This population of neurons represents the dominant sub-class of 

neurons contained within the intrinsic cardiac nervous system and sub-serves major neuronal 

processing within that network 10.

Autonomic dysregulation is central to the evolution of cardiac pathology 17, 18, 29. 

Mechanistically, this reflects reactive and adaptive responses of the cardiac neural hierarchy 

that derive from sensory transduction of the stressed/diseased myocardium 17, 30, 31. Such 

changes in neural processing manifest themselves throughout the neuraxis including at the 

intrinsic cardiac nervous system, intra-thoracic sympathetic ganglia, spinal cord, brainstem 

and multiple central regions up to the insular cortex 10, 15, 19, 32. This functional 

reorganization leads to a conflict between central and peripheral aspects of the 

hierarchy 18, 30, 33. Altered neural processing leads to maladaptive responses that ultimately 

results in excessive sympathetic overdrive; 18, 31, 34, 35 that in turn contributes to the 

development of cardiac disease including fatal arrhythmias and heart failure 17, 29. It is 

through the understanding of such hierarchical control and how it adapts that a rationale 

mechanistic based approach can be devised to effectively target specific neural processing of 

the cardiac nervous system to therapeutically manage cardiac pathology. Figure 1 illustrates 

several of these neural nexus points and serves as the focal point around which device based 

neuromodulation actions/reactions must be considered.

Vagal Nerve Stimulation (VNS)

When considering effects of any bio-electronic approach for neuromodulation one must 

consider both direct and reactive responses. The vagus can be stimulated in many different 

ways, at a number of different levels, and for multiple pathologies 36-38. In each case, one 

must consider the characteristics of the nerves being stimulated (afferent/efferent) and the 

potential impact of stimulation parameters (frequency, intensity, pulse width, waveform and 

duty cycle). Ultimately these factors impact both off-target adverse effects and more 

importantly the efficacy of the applied therapy. With respect to VNS, emerging technologies 

for cardiovascular disease involve either direct implant of electrodes onto the cervical vagus 

or non-invasive stimulation via the auricular branch of the cervical vagus. This is an 

emerging area and our understanding of vagal nerve stimulation is still rudimentary.

VNS preclinical results

In preclinical studies, VNS has documented efficacy to impact cardiac electrical and 

mechanical function. In a rabbit model, VNS damped the cardiac electrophysiological 

restitution curve with a corresponding reduction in potential for ventricular fibrillation 39, 40. 

In a porcine model, VNS applied against the stress imposed by acute ischemia-reperfusion 

was effective in reducing infarct size, stabilizing cardiac electrical function and in protecting 

mitochondrial function 41. In an acute canine model, the effects of VNS were evaluated 

against an elevated sympathetic background as induced by left stellate ganglion (LSG) 

stimulation 42. They demonstrated that LSG stimulation resulted in increased ventricular 
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instability and change in spatial heterogeneity which was reversed with VNS. They also 

showed that LSG stimulation with VNS resulted in a higher VF threshold compared to LSG 

alone. Vanoli et al 43 likewise demonstrated the efficacy of vagal stimulation to prevent 

sudden death in a canine model with healed myocardial infarction. Since heart failure is 

associated with a higher risk for sudden cardiac death, neuromodulation therapies that 

stabilize cardiac electrical function are of obvious clinical importance.

Pre-clinical studies have demonstrated efficacy for VNS to impact the progression of heart 

failure. In the rat infarct model with heart failure, VNS improved hemodynamics, left 

ventricular remodelling, and reduced neurohormonal activation 44. This study demonstrated 

a reduction in mortality rate at 140 days from 50% in the sham model to 14% with VNS 

stimulation 44. In this rat study, VNS was applied at 20Hz, 16% duty cycle (10 sec on, 50 

sec off) and at an intensity that decreased the heart rate by 20-30 beats per minute. In the 

canine pacing induced heart failure model, VNS was associated with an improvement in left 

ventricular dimensions and down-regulation of important heart failure-related biomarkers 

including norepinephrine, angiotensin II, and C-reactive protein 45. In that study VN was 

stimulated at 20 Hz, with a 53% duty cycle (14 sec on, 12 sec off) and with an intensity 

sufficient to produce a ~20 beat/min decrease in heart rate. Importantly, more recent 

preclinical studies have demonstrated that therapeutic benefits of VNS against heart failure 

progression can be achieved at levels of VNS that induce minimal changes in heart rate. 

This includes the guinea pig pressure overload model 46 with right cervical vagal stimulation 

(20 Hz, 22% duty cycle [14 sec on, 48 sec off]) and with bilateral non-invasive stimulation 

of the auricular branch of the vagus nerve (20Hz, 50% duty cycle [5 sec on, 5 sec off]) 47, 48. 

In both studies contractile function improved and adverse indices of neurohumoral 

activation reduced towards control.

VNS impacts multiple levels of the hierarchy for cardiac control. Activation of descending 

efferent projections can mitigate sympatho-excitation via neural interactions within the 

intrinsic cardiac nervous system 49, 50, modulate cardio-cardiac reflexes 12 and impart 

cardioprotection via effects on cardiomyocytes 41. Activation of ascending afferents can 

impact central reflexes including those that involve sympathetic and parasympathetic 

efferent outflows to the heart 19, 20, 22, 36. Future pre-clinical studies should expand upon 

these concepts and consider additional factors including: 1) the impact of optimum medical 

therapy on neuromodulation; 2) intermittent versus continuous methodologies; 3) 

differential effects mediated from sites of VNS activation (e.g. intra-thoracic, cervical or 

auricular); and 4) efficacy against different cardiac pathologies including HFpEF (heart 

failure with preserved ejection fraction) and HFrEF (heart failure with reduced ejection 

fraction).

VNS clinical results

The ultimate endgame for preclinical studies in neuromodulation is transitioning to the 

clinical setting. While VNS has a long history in the treatment of epilepsy and 

depression 36, 51, 52 its clinical application for cardiac disease commenced in 2008. In 

patients with NYHA class II-III heart failure and left ventricular ejection fraction <35%, 

stimulation titration on the right cervical vagus commenced at 1-2Hz, synchronized to the 
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cardiac cycle, and with a target heart rate reduction of 5-10 beats per minute 53. Patients 

were followed for 6 months. Results from this initial study included improved left 

ventricular systolic volume, NYHA classification and quality of life 53. This was followed 

by an open-label phase II trial in patients with reduced ejection fraction and NYHA class II-

IV 54. At 6 months there was an improvement in left ventricular ejection fraction, volumes 

and 6 minute walk test which was maintained at one year 54. INOVATE-HF is a 

continuation of this approach, with a target of 650 patients and an expected primary 

completion date of December 2016.

NECTAR-HF (Neural cardiac TherApy foR Heart Failure) was a randomized controlled trial 

with VNS in patients with ejection fraction <35%, increased LV end diastolic dimensions 

(>55mm), NYHA class III-IV, excluding patients with CRT devices, or QRS>130ms 55. All 

patients had a VNS device implanted (Precision ™, Boston Scientific Corporation, St Paul, 

MN, USA) and were randomized in a 2:1 fashion to VNS on or off for 6 months. The 

stimulation parameters used were 20Hz with a 12.5% duty cycle (10 sec on, 50 sec off) with 

an average intensity of 1.42±0.8mA. This study failed to reach its primary end point of 

improvement in left ventricular systolic dimensions and secondary end points of 

improvement in other echocardiographic parameters, and circulating biomarkers. The study, 

however, did show an improvement in quality of life and NYHA classification. It is likely 

that the stimulation parameters, especially intensity, used in this trial may have contributed 

to the lack of efficacy.

ANTHEM-HF (Autonomic Neural regulation Therapy to Enhance Myocardial function in 

Heart Failure; Cyberonics, Houston, TX, USA) investigated VNS of the right or left cervical 

vagus in 60 patients 56. The main inclusion criteria was ejection fraction less than 40%, LV 

end diastolic dimensions 50-80mm, and QRS <150ms. Patients were followed up over a 6 

month period with up titrations of VNS over 10 weeks to an average intensity of 2.0 ± 

0.6mA at 10Hz stimulation, and with a duty cycle of 17.5% (14 sec on, 66 sec off). There 

was an improvement in left ventricular ejection fraction by 4.5% but the left ventricular end 

systolic volume did not decrease significantly. There was again an improvement in quality 

of life, exercise capacity, and NYHA classification. There was no significant difference 

between left or right cervical vagus stimulation.

In summary, VNS has proven to be safe and feasible for use in humans in the setting of 

HFrEF. Future studies on VNS should focus on optimization of parameters of stimulation, 

patient selection and its transition where indicated into standard of care.

Spinal Cord Stimulation

Spinal Cord stimulation (SCS) has a clinical history of 20 years for the treatment of chronic 

pain and refractory angina pectoris 57-59. While initially put forward based upon the gate 

control theory of pain 60, subsequent work has demonstrated that SCS is not a masking 

phenomenon, but instead fundamentally alters the neural-end organ interface. It is usually 

implemented by placement of a multi-pole electrode over the dorsal column of the thoracic 

cord and stimulation at parameter sets of 50 Hz, 200 μs pulse width, and intensities of 90% 

motor threshold 59, 61. Early clinical studies speculated that the anti-anginal effects were a 

reflection of changes in supply/demand at the heart; however, subsequent preclinical studies 
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determined that SCS doesn't modulate/alter coronary blood flow or LV dynamics during 

ischemic stress 62, at least in the acute setting. Beyond its anti-anginal effects 61, SCS exerts 

multi-factorial cardio-protective influences including reducing atrial and ventricular 

arrhythmias 63-65, and the apoptotic potential 66, 67, while helping to preserve contractile 

function 11, 65. In the acute setting its efficacy is optimum when applied pre-emptively 67, 

but reactive and chronic SCS therapy is also cardioprotective 63, 65.

SCS pre-clinical results

Cardiac sympathetic afferents transduce information responding to mechanical and chemical 

stimuli via the intrathoracic (T1-6) and cervical (C8-9) paravertebral sympathetic ganglia to 

the dorsal root ganglia and subsequently to the spinal cord and higher centers 14, 15, 19. The 

cell bodies that convey the sympathetic afferent visceral input to the brain stem are found in 

lamina I, V, VII, and X in the C8-T9 dorsal horn 14, 15, 19. Central and peripheral reflex 

processing of that afferent signal likewise contributes to the underlying sympatho-excitation 

of cardiac disease and the progression into heart failure 17, 18, 29. As demonstrated in Figure 

1, the spinal cord is one primary nexus point from which such processes can potentially be 

regulated with appropriate bioelectric medicine.

SCS impacts autonomic reflexes at multiple levels of the cardiac nervous system to impact 

basal cardiac function and its response to imposed stress. At the spinal cord itself, SCS 

induces the release of neuromodulators such as dynorphin, blunts the release of primary 

afferent related neurotransmitters such as substance P, and alters activity with sympathetic 

preganglionic neurons contained within the intermediolateral cell column 68, 69. As such it 

thereby alters ascending signals to higher centers 15, 57, 58 and alters autonomic efferent 

outflows to peripheral aspects of the cardiac nervous system. Within extracardiac 

sympathetic ganglia the reflex sympatho-excitation imposed by transient myocardial 

ischemia is blunted while its basal function remains unaltered 11. Within the intrinsic cardiac 

nervous system, a similar blunting of reflex responses to transient ischemic stress is also 

present, but its basal activity is reduce by SCS 70; an effect that is manifest over time 71. 

Subsequent studies have identified local circuit neurons as a primary target for SCS 

mediated therapy 64 and that SCS modifies synaptic function without directly targeting 

transmembrane properties of individual IC neuronal somata 63. Overall, such influences can 

be best characterized as reflex stabilization across the neuraxis for cardiac control.

SCS modulation/stabilization of autonomic responsiveness is reflected in cardioprotection. 

SCS reduced aberrant electrophysiological activity within the myocardium in chronic animal 

models with reduced coronary reserve 72. SCS in a heart failure canine model was effective 

at reducing ventricular arrhythmias 73, improving left ventricular contractile function, and 

reducing heart failure65. A porcine model of ischemic heart failure showed similar results 

with improved left ventricular function and myocardial strain with SCS 74. Together, these 

studies have demonstrated safety and efficacy for SCS for treatment of cardiac pathology.

SCS clinical results

The Defeat-HF trial (NCT01112579), was a randomized, multicenter single blind study of 

66 patients with systolic heart failure. The investigators used a single lead in the T2-T4 
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epidural region with patients randomized 3:2 ratio of stimulation ‘on’ or ‘off’, with the 

spinal cord stimulation for 12 hours per day. After 6 months the controls crossed over to 

therapy. The inclusion criteria were left ventricular ejection fraction ≤ 35%, NYHA class III, 

QRS duration less than 120ms, left ventricular end diastolic dimensions of 55mm to 80mm 

on stable heart failure treatments. The preliminary results failed to show an improvement in 

left ventricular function and dimensions but the device was found to be safe and SCS 

feasible to do 75. There was no difference in freedom from heart failure or hospitalization 

between the two groups. The lack of efficacy of this trial, compared to preclinical 

experience, was likely due to sub-optimum stimulus paradigms, especially leaving patients 

untreated for 12hr/day.

The Spinal Cord Stimulation Heart study was a multicenter, prospective, pilot trial involving 

SCS in patients with systolic heart failure 76. Inclusion criteria were patients with left 

ventricular ejection fractions around 20-30%, and NHYA class III. Eligible patients had 

spinal cord stimulators implanted in the T1-T3 epidural space. The stimulation parameters 

were 50Hz for 24 hours a day. Of the 15 patients that completed the 24 month follow up, 

there was an improvement in NYHA classification, quality of life, left ventricular end 

systolic volume and peak oxygen consumption. The study was also found to be safe in the 

setting of severe systolic heart failure.

In summary, preclinical and clinical studies both substantiate the safety of SCS for 

management of both cardiac arrhythmias and progression of heart failure. Future studies on 

SCS should focus on optimization of parameters of stimulation and patient selection. 

Additional mechanistic studies are likewise required to delineate the precise mechanisms by 

which SCS exerts its effects on central and peripheral aspects of the cardiac nervous system. 

Further studies are also required to determine what intracellular pathways are engaged by 

SCS to render cardiomyocytes stress resistant to ischemic and non-ischemic cardiac 

stressors.

Baroreceptor Stimulation

The baroreflex is a negative feedback system that is a primary controller of arterial blood 

pressure. Its afferent input signal derives from mechanoreceptors located in the carotid sinus 

and aortic arch. Indices of blood pressure are sensed by changes in vessel stretch as 

transduced by the sensory neurites enveloping both regions. Soma for the aortic arch 

mechanoreceptors are localized within the nodose ganglion while soma for the carotid sinus 

afferents are localized to the petrosal ganglia 14. These signals are transmitted to the Nucleus 

Tractus Solitarius from which secondary projections arise for control of sympathetic and 

parasympathetic outflows 19. Baroreceptor sensitivity is depressed in heart failure due to 

persistent enhancement of the sympathetic activity, possibly related to central angiotensin II 

levels 18, 77. Impairment in baroreceptor sensitivity in heart failure is associated with 

increased mortality 30, 78, 79. Baroreceptor neurons are adaptive and in the presence of 

persistent neurohormonal and cardiovascular responses the baroreceptors incompletely reset 

leading to long term alterations in sympathetic activity and arterial pressure 18, 80.

Avoidance of activation of the carotid body chemoreceptors with baroreceptor stimulation is 

imperative given their role in progression of heart failure by contributing to respiratory 
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instability and oscillatory breathing (changes in tidal volume and respiratory frequency) 81. 

This can further exacerbate tonic and chemo-reflex evoked activation of the sympathetic 

nervous system by causing changes in pH, circulatory delay, and a decrease in systemic 

oxygen transport 81.

Baroreceptors can be stimulated at different points but clinically the easiest point of 

stimulation is at the level of the carotid sinus. While early studies with carotid sinus 

implants were associated with structural damage to implanted areas 82, recent advances in 

biotechnology have overcome such problems. Current devices are implanted with electrodes 

positioned in the carotid perivascular space around the sinus of the carotid arteries with a 

lead to a pulse generator positioned in the infraclavicular region 83, 84. They are usually 

placed bilaterally. The premise for such therapy is that stimulation of the peripheral 

baroreceptors fibers increase afferent activity transduced to the Nucleus Tractus Solitarius, 

which is interpreted as an increase in blood pressure. In reflex response to that afferent 

signal efferent outflows (sympathetic down and parasympathetic up) are modified leading to 

reduction in blood pressure and heart rate.

Baroreceptor stimulation preclinical results

Preclinical studies support proof of concept for utilizing bioelectric approaches as applied to 

the carotid sinus to treat cardiac disease. Such stimulation was correlated with lower plasma 

norepinephrine, angiotensin II levels, and reduced mortality in a heart failure induced canine 

model 84. Improvements in left ventricular function have been demonstrated in a canine 

heart failure infarct model with advanced heart failure at 3-months. Bilateral activation of 

the carotid sinus nerves improved left ventricle systolic and diastolic function and reduced 

heart rate compared to no-treatment controls 83. Adverse structural remodelling was likewise 

mitigated in the treated group. No major safety issues were identified in preclinical studies 

utilizing carotid sinus stimulation and these studies laid the preclinical foundation for 

ongoing clinical trials.

Baroreceptor stimulation clinical results

Clinical trials have been taking place to determine the outcomes of the use of baroreceptor 

stimulation therapy in both systolic and diastolic heart failure. The use of implantable 

carotid sinus stimulator device (Rheos System) was initially used in hypertension (DEBuT-

HT trial – Device Based Therapy in Hypertension Trial) showed a sustained blood pressure 

drop up to 4 years out and improvement in cardiac function 85, 86. To corroborate this data, 

the Rheos Pivotal Trial, a double-blind randomized placebo-controlled trial, showed 88% 

maintenance in blood pressure reduction response at a 12 month period 87. A recent study 

looking at baroreflex activation therapy in advanced systolic heart failure, in the setting of a 

narrow QRS, randomized patients to BAT or standard medical therapy. They showed an 

improvement in quality of life scores, NYHA classification, and NT-pro-BNP but did not 

show any change in left ventricular function with therapy 88.

In summary, utilization of the carotid sinus nerve stimulation to modulate baroreflex control 

mechanisms has proof-of-concept as a safe therapy for heart disease, but with limited 

experience in the clinical realm. It is likely that treatment efficacy is critically dependent on 
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underling pathology, so patient selection is critical. Future studies should focus on electrode 

interfaces, stimulus paradigms, and the potential for closed-loop feedback.

Renal axonal modulation and heart failure

The role of modulation of afferent renal sympathetic neurons has been investigated in 

preclinical and clinical studies in the setting of heart failure. Renal modulation was 

accomplished by catheter ablation of the renal arteries under fluoroscopic and/or 

electroanatomic mapping guidance, after confirmation of the absence of any baseline renal 

artery stenosis. Renal sympathetic modulation in a rat model with compensated high output 

heart failure secondary to atrio-venous fistula formation resulted in attenuated sodium 

excretion after sodium loading 89. In post myocardial infarction rats, renal sympathetic 

modulation resulted in increased sodium excretion and decreased LV filling pressure with 

improved left ventricular function 90. In a rabbit pacing induced heart failure model, renal 

sympathetic modulation modified angiotensin II release, and preserved renal flow and reno-

vascular resistance 91. In a canine model, renal sympathetic modulation in the setting of a 

pacing induced heart failure model reduced circulating angiotensin II, aldosterone, BNP, 

endothellin-1, and renalase 92. Similarly, another canine high rate pacing induced heart 

failure model demonstrated reduced ventricular substrate remodelling and circulating 

angiotensin II and TGF-β with renal sympathetic modulation compared to controls 93. They 

subsequently demonstrated that renal sympathetic modulation resulted in attenuation of 

substrate and electrical remodelling with less inducibility of ventricular fibrillation 94.

Renal axonal modulation clinical results

Small case series have demonstrated a reduction of arrhythmia post renal nerve 

denervation 95, 96. Although this benefit is for arrhythmia burden reduction and not 

specifically to provide an improvement in left ventricular function there is a significant 

overlap. In other words, frequent lethal ventricular arrhythmias occur in the setting of LV 

dysfunction and congestive cardiomyopathy could result in deterioration in heart failure 

status.

The outcomes of multiple ongoing trials in relation to renal denervation actually directly 

benefiting left ventricular function will be very interesting. There is evidence to suggest 

benefits in preserved ejection fraction, probably as a result of an anti-hypertensive effect 

resulting in less structural remodelling 97. This may not translate to a reduced ejection 

fraction heart failure model given that the majority of these patients have normal or reduced 

systolic blood pressure.

The REACH- Pilot study 98 was a feasibility study in 7 patients with NYHA class III-IV 

already on maximum medical therapy. These patients had heart failure with left ventricular 

ejection fractions (EF) of 43±15%. This study failed to show an improvement in left 

ventricular function but there was a reported improvement in symptoms. The REACH-Trial 

(NCT01639378) is an ongoing prospective, double blind, randomized control trial looking at 

safety and efficacy of renal sympathetic modulation in chronic heart failure. Another 

ongoing feasibility study is Symplicity-HF (NCT01392196) which aims to recruit about 40 

NYHA class II-III patients, with EF<40%, impaired renal function and the primary end 
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point is safety. A smaller trial from the Czech Republic (NCT01870310) is a randomized, 

controlled trial in chronic heart failure with EF<35%, with primary end points of NT-

proBNP levels, and secondary endpoints of hospitalization, and death due to cardiovascular 

causes.

Other novel methods of ANS modulation

Initiation and progression of cardiac disease is at its foundation critically dependent upon 

changes in afferent signalling. Modulation of such afferent signalling is an emerging target 

for autonomic regulation therapy. In a preclinical study, Wang et al. 35, demonstrated that 

they can mitigate the cardiac afferent mediated sympatho-exciatory reflex by administering 

Resinferatoxin (RTX) to the epicardium of an ischemic heart failure rat model. RTX works 

by blocking the transient receptor potential vallinoid 1 receptor and appears to reduce the 

cardiac afferent response. They demonstrated in comparison to sham model that RTX 

prevented increased left ventricular diastolic pressures, lung edema, cardiac hypertrophy, 

and partially reduced left ventricular dimensions in the failing heart. They also showed that 

by removing the afferent input there was attenuation in cardiac fibrosis, apoptosis, and 

reduced expression of fibrotic markers such as TGF-β in the RTX treated group.

Conclusion

Modulation of the autonomic nervous system is an emerging therapy to treat heart failure. It 

is predicated on using targeted bioelectric approaches to mitigate the maladaptive and 

excessive neurohumoral response to cardiac disease that are endogenously engaged to help 

maintain adequate cardiac output. These neurohumoral imbalances result in structural and 

functional changes within the various elements of the cardiac nervous system and in the 

cardiac tissues they innervate. Stabilization of imbalances within select elements of the 

cardiac neuronal hierarchy can reduce arrhythmogenesis and maintain myocardial viability 

in the setting of ischemic and non-ischemic heart disease. What is essential for this field to 

move forward is a mechanistic understanding of the induced changes in the neural hierarchy/

cardiac interface in pathological conditions and from that knowledge to design and 

implement the optimum interfaces and stimulation paradigms to mitigate such adverse 

responses.
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Figure 1. 
This figure demonstrates the complexity of the neuronal hierarchy for cardiac control. 

Autonomic regulation therapy (ART) can target different structures in the cardiac neuronal 

hierarchy with promising results utilizing carotid sinus (CSN), dorsal column spinal cord 

(SCS), and cervical vagus electrical stimulation (VNS). Autonomic control can likewise be 

impacted by interrupting aberrant cardiac afferent signalling with Resinferatoxin (RTX) or 

by renal denervation. Sympath: sympathetic; Parasym: parasympathetic; LCN: local circuit 

neuron; DRG: Dorsal root ganglia; Aff. – afferent; T1-T4: first to 4th level of thoracic cord; 

Ang: Angiotensin; β: beta adrenergic receptor; M: muscarinic receptor; Gs and Gi: g 

proteins ; AC: adenylate cyclase; ATP: adenosine triphosphate; cAMP: cyclic-adenosine 

monophosphate; Neurite: sensory endings embedded in myocardium; decent: 

decentralization.
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