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Triggered by several head-mounted display (HMD) devices that have come to the market

in recent years, such as Oculus Rift, HTC Vive, and Samsung Gear VR, significant interest has

developed in virtual reality (VR) systems, experiences and applications. However, the current

HMD devices are either tethered with PC/console, or rendering locally on itself (quite clunky to

wear), negatively affecting user experience.

This thesis presents innovative methodologies to enable a truly portable and mobile

VR experience, with lightweight VR glasses wirelessly connecting with edge/cloud computing

devices that perform the rendering. There are two main challenges for this edge/cloud-based

solution: (i) ultra-high bandwidth needed to transmit encoded video, and (ii) ultra-low latency

xvii



needed to avoid user’s dizziness feeling.

To address the challenging requirements of bandwidth and latency, this thesis presents

three methodologies. Firstly, we have investigated and developed a novel hybrid-cast approach to

save bandwidth in a multi-user streaming scenario. We identify and broadcast the common pixels

shared by multiple users, while unicast the residual pixels for each user. We formulate the problem

of minimizing the total bitrate needed to transmit the user views using hybrid-casting and present

a common view extraction approach and a smart grouping algorithm to achieve our hybrid-cast

approach. Secondly, we have explored 360-degree video and three Degrees of Freedom (3DoF)

VR streaming scenario, and proposed a predictive adaptive streaming approach to reduce latency

needed by pre-delivery. By streaming the predicted view with high predictive probability in

relatively high quality according to bandwidth conditions and transmitted in advance, we aim to

address both latency and constrained wireless bandwidth challenges. Thirdly, for six Degrees of

Freedom (6DoF) VR content, we have developed predictive pre-rendering approach to reduce

latency needed. By predicting both head and body motions, our approach can pre-render the

predicted view in advance and thus save latency in 6DoF VR scenarios.

This thesis concludes with a summary of its contributions and open directions for future

research.
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Chapter 1

Introduction

1.1 Background

Virtual reality (VR) systems have triggered enormous interest over the last few years in

various fields including entertainment, enterprise, education, manufacturing, transportation, etc.

However, several key hurdles need to be overcome for businesses and consumers to get fully on

board with VR technology [1]: cheaper price and compelling content, and, most importantly,

a truly mobile VR experience. Of particular interest is how to develop mobile (wireless and

lightweight) head-mounted displays (HMDs), and how to enable VR experience on the mobile

HMDs using bandwidth-constrained mobile networks, while satisfying the ultra-low latency

requirements.

Currently, there are several categories of HMDs [2]: PC VR, standalone VR, and mobile

VR. Specifically, PC VR has high visual quality with rich graphics contents as well as high frame

rate, but the HMD is usually tethered with PC [3,4]; standalone VR HMD has a built-in processor

and is mobile, but may have relative low-quality graphics and low refresh rate [5,6]; mobile VR is

with a smartphone inside, leading to a heavy HMD to wear [7, 8]. Therefore, current HMDs still

cannot offer us a lightweight, mobile, and high-quality VR experience. To solve this problem, we
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propose an edge computing based solution. By performing the rendering on an edge computing

node and streaming videos to users, we can complete the heavy computational tasks on the edge

computing node and thus enable mobile VR with lightweight VR glasses. The most challenging

part of this solution is ultra-high bandwidth and ultra-low latency requirements, since streaming

360-degree video causes tremendous bandwidth consumption and good VR user experiences

require ultra-low latency (<20ms) [9, 10].

Specifically, the total end-to-end latency of edge computing based VR system includes the

following parts: time to transmit sensor data from HMD to edge computing node, time to render

(and encode) on the edge node, time to transmit rendered video from the edge computing node

to HMD, and time to (decode and) display the view on the HMD. The encoding and decoding

are optional according to the specific application design. Once the user moves his/her head or

body position, high-quality VR requires this end-to-end latency as less than 20ms [9, 10] to avoid

motion sickness. For the edge computing based VR system, it is extremely challenging to meet

this requirement.

1.1.1 Challenges

In this section, we look at two types of applications, entertainment/collaboration ap-

plications that are characterized by virtual spaces where multiple virtual users interact, train

and collaborate, and gaming applications which are typically characterized by higher levels of

activity and speed. We develop cloud/edge streaming based representative virtual space (virtual

classroom) and VR gaming applications, and experimentally determine the challenges to enable

such cloud/edge-based VR applications.

Enabling edge/cloud-based wireless virtual spaces can be really challenging. It has been

shown earlier that cloud/edge-based video rendering and streaming (for applications like cloud-

based mobile gaming) requires high cloud and network bandwidth as well as low response time,

satisfying which can be challenging considering dynamic variability of available wireless channel
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conditions and bandwidth [11, 12]. Furthermore, use of HMD for VR experiences makes the

requirements much steeper. Compared to PC monitor, HMDs are closer to human eyes with a

much broader view, so it needs significantly higher bandwidth. Also, HMDs responds to the head

motion, thus it needs higher framerate and lower latency to reduce dizziness.

Table 1.1: Bitrate and latency requirements for a virtual classroom application, under different
types of display devices and motion scenarios.

Display Device Head Motion Framerate & QP Bitrate (1080p) Acceptable Total Latency

PC Monitor − 45fps, QP=20 5.8Mbps 100∼200ms
Oculus − 45fps, QP=15 10.9Mbps 28ms
Oculus

√
75fps, QP=15 28.2Mbps 22ms

Table 1.2: Bitrate and latency requirements for a racing game application, under different types
of display devices and motion scenarios.

Display Device Head Motion Framerate & QP Bitrate (1080p) Acceptable Total Latency

PC Monitor − 45fps, QP=20 16.6Mbps <100ms
Oculus − 45fps, QP=15 33.9Mbps 28ms
Oculus

√
75fps, QP=15 39.7Mbps 22ms

Figure 1.1: Two applications used in our experiments: (a)(c) show a virtual classroom
application while (b)(d) demonstrate a racing game application.

To better understand the requirements and challenges of enabling virtual space experi-

ences using remote rendering (at the cloud or edge), we conducted the following experiments

with a virtual classroom application we developed using Unity [13], which is presented in Fig-

ure 1.1(a)(c). The virtual classroom is rendered remotely on a server, and the rendered video is
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encoded using H.264/AVC encoder at 1080p resolution and GOP of 30. Subjects experience the

virtual classroom on a PC monitor, as well as with Oculus Rift DK2 as VR HMD. Table 1.1 shows

the video bitrate needed and acceptable round-trip response time for a good user experience of

the virtual classroom application, depending on whether PC or Oculus is used for viewing, and

whether the user (Oculus) has head motion. The results validate that when using HMD, very high

data rate and very low latency are required for an acceptably high user experience. Note that the

bitrates shown in Table 1.1 are for a single 1080p video stream (corresponding to a single user

in the virtual space) – the bitrate needed will significantly increase if 4K or higher resolution is

used, and the total requirements will significantly increase depending on the number of virtual

users in the space.

Similarly, we also did the following experiments with a racing game application using

Unity [13], which is demonstrated in Figure 1.1(b)(d). The differences between these two

applications are mainly that virtual classroom can be more static than the racing game in general.

The content change in virtual classroom without head motion generally lies in the movement of

teacher and occasional movement of students, while for racing game the view will be continuously

and significantly changed since the car is almost always moving. Table 1.2 shows the video bitrate

needed and acceptable round-trip response time for a good user experience of the racing game

application, with different types of display devices and motion scenarios (i.e., (i) whether PC

or Oculus is used, and (ii) whether the user has head motion). The results for racing game also

validate that when using HMD, high data rate and low latency are required for an acceptably high

user experience. Comparing Table 1.1 and Table 1.2, we can observe that data rate needed for

racing game is higher than virtual classroom since generally the former can have more content

motion.

To address the dual challenge of requiring very high bitrate and very low latency for

remote server based VR applications (i.e. virtual space and gaming applications), we propose

novel solutions consisting of key innovations in streaming VR rendered videos and rendering
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models. In the following, we describe more details of our proposed techniques and also present

other possible solutions, which can satisfy the ultra-low latency requirement and address the

bitrate/bandwidth challenges.

1.2 This Thesis

This thesis presents innovative optimizations and design methodologies to address band-

width and latency challenges in edge/cloud-based VR. Figure 1.2 illustrates the scope and

organization of this thesis.

To address the challenging requirements of bandwidth and latency, this thesis presents

three methodologies. Firstly, we have investigated and developed a novel hybrid-cast approach to

save bandwidth in a multi-user streaming scenario. We identify and broadcast the common pixels

shared by multiple users, while unicast the residual pixels for each user. We formulate the problem

of minimizing the total bitrate needed to transmit the user views using hybrid-casting and present

a common view extraction approach and a smart grouping algorithm to achieve our hybrid-cast

approach. Secondly, we have explored 360-degree video and three Degrees of Freedom (3DoF)

VR streaming scenario, and proposed a predictive adaptive streaming approach to reduce latency

needed by pre-delivery. By streaming the predicted view with high predictive probability in

relatively high quality according to bandwidth conditions and transmitted in advance, we aim to

address both latency and constrained wireless bandwidth challenges. Thirdly, for six Degrees of

Freedom (6DoF) VR content, we have developed predictive pre-rendering approach to reduce

latency needed. By predicting both head and body motions, our approach can pre-render the

predicted view in advance and thus save latency in 6DoF VR scenarios.

The remainder of this thesis is organized as follows.

• Chapter 2 presents our work towards enabling cloud-based virtual space applications, for

better computational scalability and easy access from any end device, including future

lightweight wireless head-mounted displays (HMDs). In particular, we investigate virtual
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Figure 1.2: Scope and organization of this thesis.

space applications such as virtual classroom and virtual gallery, in which the scenes and

activities are rendered in the cloud, with multiple views captured and streamed to each end

device. A key challenge is the high bandwidth requirement to stream all the user views,

leading to high operational cost and potential large delay in bandwidth-restricted wireless

network. We propose a novel hybrid-cast approach to save bandwidth in a multi-user

streaming scenario. We identify and broadcast the common pixels shared by multiple users,

while unicast the residual pixels for each user. We formulate the problem of minimizing

the total bitrate needed to transmit the user views using hybrid-casting and describe our

approach. A common view extraction approach and a smart grouping algorithm are

proposed and developed to achieve our hybrid-cast approach. Simulation results show

that the hybrid-cast approach can significantly reduce total bitrate by up to 55% and avoid

congestion-related latency, compared to traditional cloud-based approach of transmitting

all the views as individual unicast streams, hence addressing the bandwidth challenges of

cloud, with additional benefits in cost and delay.

• Chapter 3 presents the methodology targeted to the mobile 360-degree video streaming. As

360-degree videos and virtual reality (VR) applications become popular for consumer and
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enterprise use cases, the desire to enable truly mobile experiences also increases. Delivering

360-degree videos and cloud/edge-based VR applications require ultra-high bandwidth

and ultra-low latency, challenging to achieve with mobile networks. A common approach

to reduce bandwidth is streaming only the field of view (FOV). However, extracting and

transmitting the FOV in response to user head motion can add high latency, adversely

affecting user experience. In this chapter, we propose a predictive adaptive streaming

approach, where the predicted view with high predictive probability is adaptively encoded

in relatively high quality according to bandwidth conditions and transmitted in advance,

leading to a simultaneous reduction in bandwidth and latency. The predictive adaptive

streaming method is based on a deep-learning-based viewpoint prediction model we develop,

which uses past head motions to predict where a user will be looking in the 360-degree view.

Using a very large dataset consisting of head motion traces from over 36,000 viewers for

nineteen 360-degree/VR videos, we validate the ability of our predictive adaptive streaming

method to offer high-quality view while simultaneously significantly reducing bandwidth.

• Chapter 4 presents the methodology that can be used for mobile VR application streaming.

As virtual reality (VR) applications become popular, the desire to enable high-quality,

lightweight, and mobile VR can potentially be achieved by performing the VR rendering

and encoding computations at the edge and streaming the rendered video to the VR glasses.

However, if the rendering has to be performed after the edge gets to know of the user’s

new head and body position, the ultra-low latency requirements of VR will not be met

by the roundtrip delay. In this chapter, we introduce edge intelligence, wherein the edge

can predict, pre-render and cache the VR video in advance, to be streamed to the user

VR glasses as soon as needed. The edge-based predictive pre-rendering approach can

address the challenging six Degrees of Freedom (6DoF) VR content. Compared to 360-

degree videos and 3DoF (head motion only) VR, 6DoF VR supports both head and body

motion, thus not only viewing direction but also viewing position can change. Hence, our
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proposed VR edge intelligence comprises of predicting both the head and body motions

of a user accurately using past head and body motion traces. In this chapter, we develop

a multi-task long short-term memory (LSTM) model for body motion prediction and a

multi-layer perceptron (MLP) model for head motion prediction. We implement the deep

learning-based motion prediction models and validate their accuracy and effectiveness

using a dataset of over 840,000 samples for head and body motion.

• Chapter 5 concludes the thesis and gives future directions in edge/cloud-based VR solutions.

1.3 Acknowledgements

Chapter 1 contains the reprint of Xueshi Hou, Yao Lu and Sujit Dey, “Wireless VR/AR

with Edge/Cloud Computing,” Proc. of IEEE International Conference on Computer Communi-

cations and Networks, 2017. The dissertation author is the primary investigator and author of this

paper.
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Chapter 2

Novel Hybrid-Cast Approach to Reduce

Bandwidth and Latency for Cloud-Based

Virtual Space

This chapter presents our work towards enabling cloud-based virtual space applications,

for better computational scalability and easy access from any end device, including future

lightweight wireless head-mounted displays (HMDs). In particular, we investigate virtual space

applications such as virtual classroom and virtual gallery, in which the scenes and activities

are rendered in the cloud, with multiple views captured and streamed to each end device. A

key challenge is the high bandwidth requirement to stream all the user views, leading to high

operational cost and potential large delay in bandwidth-restricted wireless network. We propose a

novel hybrid-cast approach to save bandwidth in a multi-user streaming scenario. We identify and

broadcast the common pixels shared by multiple users, while unicast the residual pixels for each

user. We formulate the problem of minimizing the total bitrate needed to transmit the user views

using hybrid-casting and describe our approach. A common view extraction approach and a smart

grouping algorithm are proposed and developed to achieve our hybrid-cast approach. Simulation
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results show that the hybrid-cast approach can significantly reduce total bitrate by up to 55% and

avoid congestion-related latency, compared to traditional cloud-based approach of transmitting

all the views as individual unicast streams, hence addressing the bandwidth challenges of cloud,

with additional benefits in cost and delay.

2.1 Introduction

In recent years, Virtual Reality (VR) has become increasingly popular and triggered great

interest worldwide. A series of new head-mounted displays (HMDs), with the advancement of

display and system on chip (SoC) technology, are unlocking new applications in various fields

including gaming, education, enterprise, entertainment, manufacturing, media and transportation.

However, due to the high computational requirement of VR applications, current HMDs are

either tethered to a PC (like Oculus Rift [14] and HTC Vive [4]), or attach to a smartphone (like

Samsung Gear VR [15]), thus decreasing their mobility. In order to enable a truly portable and

mobile VR experience, cloud-based approach is of great interest, where views are rendered and

encoded in the cloud, and then transmitted to the end user as video streams over the wireless

network. In this case, with mobile cloud computing techniques [16, 17], the HMDs only need to

decode the video stream, with the possibility of a dramatically simplified and lightweight HMD

design, not tethered to PCs or smartphones.

In this chapter, we explore the possibility of enabling an emerging category of virtual

reality applications, virtual spaces, for better computational scalability and easy access from any

end device. Specifically, we consider two virtual space applications – i.e., virtual classroom and

virtual gallery, where a teacher/guide and students/visitors from different geographic locations

can participate and communicate in the same classroom/gallery session, rendered as avatars in

the same virtual space. A key challenge in enabling such cloud-based virtual space applications

is the high bandwidth requirement to stream multiple views to each of the user, especially in the
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case of wireless VR applications, where all the users may share a limited bandwidth. Hence, we

seek to minimize the total bitrate needed to transmit video streams of all users’ view without

compromising video quality. Note that though we develop and demonstrate our approach on two

specific virtual space applications, virtual classroom and gallery, our algorithms and approach can

be applied to other virtual space applications, such as virtual conference, stadium, campus, etc.

As opposed to general cloud-based streaming applications, where each user’s view is

unique, in a virtual space application, users are usually close-by with views overlapping. For

example, in Figure 2.1, view A and view B are captured from two virtual cameras (i.e. visitors’

views) in a virtual museum application, with large portion of shared pixels. By taking advantage

of this observation, in this chapter, we propose a novel hybrid-cast approach in which not every

pixel of each user’s view rendered on the cloud needs to be encoded and streamed from the cloud

to each user separately. Instead, we broadcast only one copy of common pixels (common view),

and unicast the rest of the pixels (residual pixels or residual views) to each individual user.

Figure 2.1: Two views in the same virtual space application (museum).

Another challenge lies in the selection of common view among multiple users. For better

bandwidth reduction, users should be grouped with large portion of shared pixels so that common

view can be maximized and residual view can be minimized. However, an optimal algorithm for

grouping is computational expensive, and impractical for real-time use, due to the frame-to-frame

view change of each user. In this work, we propose a fast, and effective smart grouping algorithm

with novel metrics to evaluate the quality of grouping. The main contributions of our work can be
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summarized as follows.

• We propose a novel and efficient hybrid-cast approach to reduce the total bandwidth to

stream all the user views in cloud-based virtual space applications, by broadcasting a single

common view and unicasting only the residual views of individual users, without loss of

video quality. Thus, our approach is able to enhance the user experience (i.e. higher video

quality and less latency) by alleviating network congestion. We show that we can reduce

up to 55% total bitrate needed for a virtual classroom and a virtual gallery application, with

latency improvement in a bandwidth-limited wireless network.

• We develop a common view extraction approach to calculate common view and residual

view between any two user views. To the best of our knowledge, we are the first to perform

common view extraction by exploring the pipeline of 3D virtual space rendering.

• We propose an automated, and smart grouping algorithm to assign multiple users to different

groups in order to minimize the total bitrate needed to transmit all user views.

• We propose a new metric to enable fast and accurate calculation of common view between

two views. Compared to the optimal algorithm, we achieve similar solution quality with

hundreds of times speedup.

Note that we have published a conference paper [18] about this work, where we report on

the hybrid-cast approach and some preliminary results. In this chapter, we extend our approach by

proposing a smart real-time grouping algorithm, improving our proposed metrics and conducting

experiments on various virtual space applications.

The remainder of the chapter is organized as follows. In Section 2.2, we review related

work. In Section 2.3, we introduce virtual space applications and describe the architecture of our

proposed hybrid-cast approach. In Section 2.4, we firstly describe the methodology for common

view extraction, problem statement, optimization metrics, and grouping algorithm. Section 2.5

presents our experimental set up and analyze the results. Section 2.6 concludes our work.
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2.2 Related Work

For cloud-based 3D virtual space applications, the main difference compared to a standard

local rendering pipeline [19] is the use and transmission of the entire screen as a video stream [20].

Therefore, reducing total bitrate of the video streams is the key to avoid congestion-related latency

and improve user experience, as stated in Section 2.1. In this section, we review the previous

works addressing the bandwidth challenge, in (i) codec development, (ii) joint optimization for

computer-generated view streaming, and (iii) other techniques.

Upgrading video codec can be the most direct way to reduce bitrate consumption. Video

coding standards have evolved primarily through development by ITU-T and ISO/IEC standard-

ization, from H.261 [21] and H.263 [22] by ITU-T, MPEG-1 [23] and MPEG-4 Visual [24] by

ISO/IEC, to jointly produced H.262/MPEG-2 [25], H.264/MPEG-4 Advanced Video Coding

(AVC) [26] and H.265/MPEG-H High Efficiency Video Coding (HEVC) [27] standards. In recent

years, VP9 [28] and AV1 [29] also appear as strong functional video coding formats due to their

open and royalty free features. However, even if the bit rate can be reduced by using new video

encoding standards, with the increasing resolution of the devices, the bit rate requirements of the

video streams are expected to keep increasing, and particularly in the case of multi-stream VR

applications.

In terms of streaming computer-generated views, joint optimization for both video codec

and graphics engine has proved to be more effective [11, 30, 31]. Wang et al. [11] propose a

rendering adaptation technique to dynamically adjust the richness and complexity of graphic

rendering depending on the network and cloud computing constraints. Liu et al. [30] derive a

content-aware adaptive rendering algorithm to adjust rendering factors depending on current

network conditions, so as to obtain an ”optimal tradeoff” between rendering and encoding quality.

Lu et al. [31] propose a joint asymmetric graphics rendering and video encoding approach for

automatic selection of texture details or view distance settings for the left view and right view.
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However, all these approaches compromise video quality to achieve smaller bitrate and therefore

inappropriate to be used for HMDs due to proximity to the eyes.

Alternatively, Cai et al. [32] propose a peer-to-peer cooperative video sharing solution in

a multi-player scenario to substantially reduce the total bitrate from cloud server to game clients.

However, their approach is only applicable to scenarios such as 2D third-person games, where

game players may share the same bird-view. Hence, their method cannot be applied to 3D virtual

spaces.

In summary, codec-only optimization is limited by not exploring any additional benefits

in computer-generated view streaming. Joint optimization usually tradeoff quality for bandwidth,

which is inappropriate to be applied for HMDs since users are more sensible to the video quality

in VR virtual space applications. Other works explore peer-to-peer streaming, with the limitation

of fixed views of all users. Our work is distinguished from all previous works in that (i) we

propose a hybrid-casting approach to explore the benefits of computer-generated views in virtual

space VR applications to reduce the total bitrate needed, while not sacrificing video quality; (ii)

we develop a common view extraction algorithm by exploring the 3D rendering pipeline; (iii) we

propose an automated and smart grouping algorithm, with fast and accurate real-time evaluation

with empirically validated experimental results.

2.3 Overview

In this section, we first present virtual classroom and gallery applications. Next, we

describe the architecture of our proposed hybrid-cast approach.

2.3.1 Virtual Space Applications

We have developed a prototype implementation of the virtual classroom application using

Oculus [14] and Unity [13]. Compared to the Massive Open Online Course (MOOC) [33], where
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Figure 2.2: (a) Two users’ positions in a virtual classroom; (b) Corresponding views of two
users; (c) Two users’ positions in a virtual gallery; (d) Corresponding views of two users.

students can only watch video without interaction with the teacher and each other, the virtual

classroom offers students a more immersive and interactive experience. Figure 2.2(a) illustrates

the virtual classroom, where each student has a unique view of the classroom. Figure 2.2(b)

shows two views from two students as an example. In our implementation, we place cameras to

represent the students’ views and more views can be easily obtained by placing more cameras. In

such a virtual classroom application, neighboring students may share a common view (the set

of pixels corresponding to same coordinates in the object world between two views), as shown

in Figure 2.2(b). As is stated in Section 2.1, with our proposed approach, we can identify and

broadcast the common pixels shared by multiple users, while unicast the residual pixels for each

user. In this way, our proposed approach can address the bandwidth challenges of cloud, with

benefits in cost and delay.

Similarly, we have developed a virtual gallery application using Unity and conducted the

related experiments on it. Figure 2.2(c) illustrates the virtual gallery, where each visitor has a

unique view of the gallery. Figure 2.2(d) shows two views from two visitors as an example. As is

shown in Figure 2.2(d), two visitors also share a common view.

2.3.2 Hybrid-Cast Approach

Figure 2.3 illustrates the architecture of the hybrid-cast approach. On the cloud, multiple

views are rendered in response to commands from multiple users, and then captured, encoded

and transmitted as video streams. To enable our hybrid-cast approach, we cluster the users into
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different groups based on their views. Within each group, only one user’s view is assigned to be

the primary view, and all the other views are secondary views. For transmission, we broadcast

the entire primary view with full pixel information to all group members, but only unicast the

residual pixels (non-existing in the primary view) for each secondary view. Figure 2.4 gives an

example. Figure 2.4(a) shows a primary view A and Figure 2.4(b) presents a secondary view

B. Secondary view B consists of two parts, common view and residual view. The common view

is part of the view that shares the common pixels between A and B. Figure 2.4(d) shows the

common view of B shared with A and Figure 2.4(c) presents the corresponding shared view from

view A’s perspective. For secondary view B, residual view is defined as the pixels non-existing in

primary view A. Figure 2.4(e) shows the residual view, which can be used to recover secondary

view B (Figure 2.4(f)) by combining with common view (Figure 2.4(d)). We explain the common

view extraction and our grouping algorithm in Section 2.4.1, 2.4.3 and 2.4.4. For instance, in a

virtual classroom like Figure 2.2(a), user A is a student in a back row within the class, sharing

a subset of the view from the students in front of him. With our proposed grouping algorithm,

user A will be clustered into a group, where another student within this group is assigned as the

user with primary view (since only one user is assigned to have primary view in each group). The

primary view may include the blackboard, teacher, walls, etc., while the residual view of user

A may consist of the back of other students in front of him or her, etc. After doing synthesis of

primary view and residual view on the client side, user A can obtain his own secondary view.

The bandwidth savings achieved by our hybrid-cast approach may depend on the location

of the users. Figure 2.3 shows the data flow from the cloud server (cloud), through core network

and gateways (backhaul), to base stations and end users (cellular), consuming different types of

bandwidth – cloud, backhaul and cellular bandwidth – at different stages of the network. The

bandwidth savings achieved by our approach (as reported in Section 2.5.3) are fully translated

to the cloud bandwidth saving achieved, irrespective of the location of users, since transmitting

a single primary view will suffice from the cloud servers. However, the backhaul and cellular
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Figure 2.3: Hybrid-Cast approach.

Figure 2.4: Illustration of common view extraction: (a) primary view A; (b) secondary view B;
(c) common pixels from view A; (d) common pixels from view B; (e) residual view in B; (f)

generated view B from common view and residual view.

bandwidth savings will depend on the location of users. For users associated with the same base

station, clearly the bandwidth savings translate to both the cellular and backhaul, besides cloud

bandwidth savings, as a single primary view can be broadcast to all base stations through the

backhaul, and broadcast to all primary users through the access network (cellular). For users

associated with different base stations which share the same gateway, although cellular bandwidth

cannot be saved through cellular broadcast, backhaul bandwidth saving can be achieved since

a single primary view can be transmitted (multi-cast) through the backhaul to the base stations

for these users. However, for users associated with different base stations which do not share
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Table 2.1: Three types of bandwidth savings.

Bandwidth Savings Feasibility
Cloud Always

Backhaul
For users associated with base stations

connected by same gateway

Cellular
For users associated with same base

station

Table 2.2: Several cases for applications.

Cases Description Bandwidth
Savings

1
Students in campus join a virtual gallery application Cloud, backhaul,

(associated with same base station) cellular

2
Users in the same urban region attend a virtual Cloud and

classroom (associated with base stations connected backhaul
by same gateway)

3
Users in distant places participate in a virtual space Only cloud

(e.g. belonging to different networks)

same gateway, while the savings do not translate to the backhaul and access bandwidth, cloud

bandwidth savings can still be achieved as explained earlier. We summarize the three types of

bandwidth savings achieved by our approach under different user locations in Table 2.1.

We provide an estimation of bandwidth savings for several cases in Table 2.2. For case 1,

when students in campus join a virtual gallery application, we can obtain cloud, backhaul and

cellular bandwidth savings. In case 2, for users in the same urban region attending a virtual

classroom, cloud and backhaul bandwidth savings can be gained with our proposed approach.

Since the gateway connected to core network can support from 100 base stations for medium

size urban network (5x5 km coverage) to over 1000 base stations (15x15 km coverage) [34, 35],

the virtual application users within this coverage area will share the same gateway, and hence

will result in backhaul bandwidth savings, though not cellular bandwidth savings as the latter

will depend on the distribution of the users across the base stations. For case 3 where users may

belong to different networks, only cloud bandwidth saving can be achieved.

Note that to maximize gains in bandwidth saving, our proposed method requires multicast

protocols to be employed on the entire end-to-end paths (from the cloud center, through the

core network and all the way to users). Since multicast protocols are not widely employed in
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today’s networks, our approach is developed based on the assumption that multicast protocols

will be well deployed and utilized in the future networks. Next, we briefly discuss the existing

data transmission mechanisms that can be used for access links (cellular) and backhaul links. As

for wireless access link, broadcast and unicast can be realized by using existing LTE Evolved

Multimedia Broadcast Multicast Services (eMBMS) [36] standards, and broadcast/multicast

point to multipoint (PTM) [37] being developed for future 5G access networks. In terms of

transmissions in cloud and backhaul links, advanced IP multicast [38] protocols can be used,

including Pragmatic General Multicast (PGM) [39], Multicast File Transfer Protocol (MFTP) [40],

Real-time Transport Protocol (RTP) [41], and Resource Reservation Protocol (RSVP) [42]. Data

routing, forwarding and associated transmission protocols should be further studied in future

work.

Our approach achieves best performance in reducing bandwidth when users are associated

with the same base station, and only cloud bandwidth saving (no backhaul and cellular) can

be guaranteed when users are distributed in distant places (since users do not share the same

cellular gateway). Moreover, the limitations of our approach mainly come from (a) the difficulty

of large-scale deploying multicast protocols in current networks; (b) our approach only supports

an indoor 3D environment (where views aimed toward the same wall) and does not support a fully

tridimensional environment such as outdoor environments. We propose the following to address

these limitations. For limitation (a), apart from expecting multicast protocols widely deployed

in the future, we can first apply our proposed approach in scenarios where users are associated

with same base station or base stations connected by the same gateway, and take the conventional

method (i.e. unicast the view directly) for transmitting views for users associated with other

distant base stations. For example, the community in a campus or company is such a good

scenario. In terms of limitation (b), in our future work, we will further develop corresponding

metrics to apply our approach in fully tridimensional environments such as outdoor environments.
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Figure 2.5: Architecture of common view extraction.

2.4 Our Approach

In this section, we first describe the methodology for common view extraction and give the

problem statement. Next, we describe our optimization metrics and provide empirical validation.

We then present our grouping algorithm.

2.4.1 Common View Extraction

Figure 2.5 illustrates the common view extraction flow between two users. In the flow,

we assume that user A is assigned the primary view and user B is assigned the secondary view.

To extract the common view, we perform a series of transformations from window space of user

A to the object space, and further to the window space of user B. A common view is the set of

pixels within the window space of A that falls into the window space of B after the above trans-

formation. To better illustrate our approach, we define two series of transformations: (i) forward

transformation, and (ii) backward transformation. For a pixel with coordinate (x,y,z)ob ject in the

object space, the forward transformation calculates the corresponding coordinate (x,y,z)window in

the window space; and vice versa for the backward transformation.

Specifically, the OpenGL [43] pipeline performs the forward transformation from object

space to window space, through four steps [44, 45]. The first step is to transform from the object
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space to the eye space using the ModelView matrix MModelView; then we transform from the eye

space to the clip space use projection matrix MPro jection; next we transform from the clip space

to the Normalized Device Coordinate (NDC) [46] space using perspective dividing MDivide; last,

we transform from the NDC space to the window space by performing viewport transformation

MViewport . (The details of OpenGL pipeline are omitted due to space constraints.) Overall, for a

pixel with coordinate (x,y,z) in the object space, the procedure of transformation to the window

space can be described as the following:

(x,y,z)window = MViewport ·MDivide ·MPro jection

·MModelView · (x,y,z)ob ject

To check the common pixels between two window spaces, as described in Figure 2.5, we

propose to use the inverse transformation matrices for backward transformation (i.e. calculating

corresponding coordinate from the window space to the object space), as described in the

following equation:

(x,y,z)ob ject = M−1
ModelView ·M

−1
Pro jection ·M

−1
Divide

·M−1
Viewport · (x,y,z)window

Therefore, by utilizing both the backward and the forward transformations in serial for

only those pixels in window space A, we can tell if the pixel falls in window space B. Thus, we

can extract the common view. Furthermore, we can also recover the secondary view by using the

primary view and residual view based on the same theory. This procedure is named as synthesis

in the Figure 2.3.
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Table 2.3: Notations used in our formulation.

Notation Meaning
V view

Vcom common view
Vres residual view

n number of users
P[·] number of pixels
R[·] pixel ratio

Pf rame number of pixels in one frame
Ptotal total number of pixels transmitted
Rtotal total pixel ratio transmitted

p primary view
q secondary view
Sp set of primary views
Sq set of secondary views
B binary indicator matrix

bp,q element of binary indicator matrix B
D distance matrix

D(p,q) element of distance matrix D

2.4.2 Problem Statement

We introduce the problem statement in this subsection. The basic notation used in our

formulation is provided in Table 2.3.

Given: All views in the virtual classroom; Dimensions of the virtual classroom, including

the width and length.

Find: An optimal strategy to minimize the total number of pixels transmitted Ptotal for all

views.

minPtotal ⇔min{∑
q∈Sq

P[Vres(q)]+ ∑
p∈Sp

P[V (p)]}

⇔min{∑
q∈Sq

R[Vres(q)]+ ∑
p∈Sp

R[V (p)]}

⇔min{∑
q∈Sq

R[Vres(q)]+ |Sp|}

⇔min{ ∑
p∈Sp

∑
q∈Sq

bp,q ·D(p,q)+ |Sp|} (2.1)
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where

bp,q =


1, if p,q are in the same group

0, otherwise
(2.2)

D(p,q) = R[Vres(q)]= 1−R[Vcom(q)] (2.3)

Equation 2.1 demonstrates our objective to minimize the sum of total number of pixels

transmitted Ptotal for all views. Sp and Sq represent the set of primary views and secondary views,

respectively. P[Vres(q)] and P[Vcom(q)] represent the number of residual and common pixels

within secondary view q, respectively. Note that for each group, there are one user with primary

view and rest of users with secondary views. For each secondary view, only one primary view

is corresponding to calculate P[Vcom(q)] and P[Vres(q)]. P[V (p)] denotes the number of pixels

within primary view p.

Moreover, we define the residual pixel ratio of a secondary view q as

R[Vres(q)] =
P[Vres(q)]

Pf rame

and the common pixel ratio of a secondary view q as

R[Vcom(q)] =
P[Vcom(q)]

Pf rame

where Pf rame is the number of pixels per frame. Since the number of pixels in primary view p is

equal to Pf rame, the pixel ratio R[V (p)] = 1. |Sp| indicates the number of primary views.

In Equations 2.2 and 2.3, the elements of binary indicator matrix B and distance matrix

D are defined as bp,q and D(p,q) respectively. Specifically, the value of D(p,q) equals to the
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Table 2.4: Notations used to build metrics.

Notation Meaning
xVL length of front wall
yVL length of side wall

VLength metric to represent the range of a view in x-axis
xi,yi location for user i in x-axis and y-axis
∆x distance between a user and left side wall in x-axis
∆y distance between a user and front wall in y-axis

cVL metric to evaluate the common ratio between two views
cnVL normalized form of cVL

xfactor length of front and side wall within both views
yfactor squared ratio of distance to the front wall for both views
RmW room width
k,b parameters in linear regression

residual pixel ratio of a secondary view q when the primary view p is selected. The larger the

D(p,q) is, the more the difference between view p and view q is.

2.4.3 Metrics and Evaluation

In our approach, in order to assign multiple users to different groups and minimize the

sum of bitrate across multiple users, we want to develop a strategy to group the views which

have a lot of common parts together. To make the grouping technique fast, we need to avoid the

time-consuming process of conducting common view extraction between all pairs of different

views. Instead, we develop and use an easy to calculate metric to represent how much is common

between two views; we term this metric as common normalized VLength (cnVL), which we define

next. Though we consider the virtual classroom application to develop the metric below, the same

definition will be applicable to other virtual spaces like virtual gallery.

The basic notation used in our proposed metrics is provided in Table 2.4. To be specific,

we define VLength as the sum of xVL and yVL, as shown in Equation 2.4. In this definition, xVL

and yVL denote the length of the front wall and side wall within the current view, respectively.

Figure 2.6(a) illustrates from the top of the classroom an example of xVL and yVL with the view
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(a) Looking from the top. (b) Looking from the side.

Figure 2.6: The model of the virtual classroom and camera view when looking from the top
and side. Lengths of xVL and yVL are shown. (a) presents the boundary of the classroom, seat

positions as well as a demonstration of users’ view. (b) exhibits views (on the right) as
illustrations for student views of 4 different positions on the second row.

Figure 2.7: (a)-(d) show four types of relative positions between classroom boundary and view
boundary. And RmW denotes the width of the classroom in x-axis.

of seat #9. Figure 2.6(b) illustrates from the side of the classroom another example of xVL and

yVL of one student view, which is shown as the first view on the right. Figure 2.6(b) also presents

four actual student views from four different positions in the second row of the classroom. We

can also see the position of far plane, which exceeds the wall of virtual classroom. VLength also

indicates the range of view in x-axis and is defined in Equation 2.4.

V Length = xV L+ yV L (2.4)

To calculate VLength, we summarize four difference types of relative positions between

classroom boundary and view boundary, as shown in Table 2.5. Figure 2.7 also shows these
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Table 2.5: Four different cases.

Case a b c d
Left wall visible X X

Front wall visible X X X X
Right wall visible X X
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Figure 2.8: Four cases of two user views, where the yellow line denotes x f actor.

four types of relative positions as cases (a)–(d). Especially, we note that for case (d), VLength

is obtained separately according to yVL from the left wall (yV Lle f t) and right wall (yV Lright),

respectively, as shown in Equation 2.5.

V Length = xV L+ yV Lle f t + yV Lright (2.5)

We define the Common VLength (cVL) as a metric to evaluate the common ratio between

two views p and q. Equation 2.6 describes cV L, with xfactor and yfactor defined in Equation 2.7

and 2.8 respectively. xfactor is defined as the length of the front and side wall within both

views. Specifically, we assign two users with subscripts 1 and 2 to distinguish them. Subscript

1 represents the user on the left while subscript 2 denotes the user on the right. Condition 1

indicates that two views are of case (a) and (c), respectively; condition 2 indicates that both views

are of case (b); and condition 3 indicates all other case combinations. yfactor is defined as the

squared ratio of the distance to the front wall for both views.

cV L(p,q) = x f actor · y f actor (2.6)

where
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x f actor =



xV L1 + xV L2−RmW if condition 1;

xV L1−|∆x1−∆x2| if condition 2;

min(xV L1,xV L2)+

min((yV Lle f t)1,(yV Lle f t)2)+

min((yV Lright)1,(yV Lright)2)

otherwise (condition 3);

(2.7)

y f actor =


(∆y1/∆y2)

2, if ∆y1 < ∆y2

(∆y2/∆y1)
2, if ∆y1 ≥ ∆y2

(2.8)

Figure 2.8 shows four cases of two user views (for users A and B), where the yellow line

denotes xfactor. The proposed metric cVL is used to represent common pixel ratio between two

views, and our approach can handle arbitrary viewing direction. For instance, when two users

have small or even no common view, the corresponding xfactor and calculated cVL are small or

even zero, representing that the common pixel ratio is small. As described in the next section,

when a user A’s viewing direction may be very different than user B’s, user A may be clustered

into a different group than user B due to their small common pixel ratio.

To evaluate our proposed metric, we compare cVL (Equation 2.6) to the common pixel

ratio (defined in Section 2.4.2) for every pair of views in a virtual classroom with a seat pattern of

2x5 (10 views, 100 pairs of views). Each view has a resolution as 1080p. Figure 2.9(a) illustrates

the correlation between common VLength (cVL) and the common pixel ratio values for the 100

pairs of views, with an overall correlation of 0.8828. To increase the correlation with common
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Figure 2.9: Validation of model parameters, showing the relationship between the common
pixel ratio and cVL as well as cnVL.

pixel ratio, we define common normalized VLength (cnVL) as follows:

cnV L(p,q) =
cV L(p,q)
cV L(p, p)

(2.9)

Figure 2.9(b) illustrates a higher correlation, 0.9207, between cnVL (Equation 2.9) and the

common pixel ratio. We also conduct a linear regression and obtain the results as follows:

R[Vcom(q)]≈ k · cnV L(p,q)+b (2.10)

where k = 1.012 and b =−0.1291.

For instance, Figure 2.10 is a distribution of cnV L in a virtual classroom with a 5x5 seats

pattern (shown in Figure 2.6(a)); the 25 students (views) are indexed index from 1 to 25, p refers

to primary view and q is the secondary view. In Figure 2.10, we can see that the distribution of

cnV L(p,q) reflects the distribution of common ratio between two views p and q. Specifically,

if two views are captured in closer positions, the cnV L tends to be larger; otherwise, cnV L will

decrease. Within these 25 views, cnV L attains 1 when views p and q are selected as the same

view, while the minimum is attained as 0.1 when primary view and secondary view are assigned

as view #25 and view #1 respectively.
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Figure 2.10: The cnVL(p,q) between every two views in a 5x5 seat pattern, where the p and q
represent the primary view index and secondary view index respectively.

The calculation of cnV L values is much simpler and faster compared to obtaining the

actual Common Pixel Ratio between every two views using graphic rendering. Therefore, due to

the high correlation between cnV L and common pixel ratio, we can approximate the common

pixel ratio with the metric cnV L, which greatly saves runtime. Subsequently, we update the

calculation of D(p,q) in our problem formulation (Equation 2.1) as follows:

minPtotal ⇔min{ ∑
p∈Sp

∑
q∈Sq

bp,q ·D(p,q)+ |Sp|} (2.11)

where

D(p,q) = R[Vres(q)]

= 1−R[Vcom(q)]

≈ 1− (k · cnV L(p,q)+b) (2.12)

In this way, we can use the newly defined metric cnV L to estimate the common pixel

ratio R[Vcom] between any pair of views. We can also denote the residual pixel ratio as D(p,q)

between the primary view p and the secondary view q, and calculate D based on metric cnV L as

Equation 2.12.
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2.4.4 Grouping Strategy

In a virtual space with a large number of users, if we have all the users in the same group

(i.e. one primary view and all others have secondary views), then the number of residual pixels

needed may become very large, with some residual views almost equaling the size of the primary

view. On the other hand, if we divide users into too many groups (e.g. each one as a unique

group), then the size of residual views may greatly decrease (e.g. even to 0) but the number of

common pixels may become very large (e.g. even equal to the total pixel number for all views),

thus leading to overall high bitrate needed. Hence the challenge is to identify the most appropriate

partitioning (groups) of the users of the virtual space so overall bitrate needed to transmit their

views is minimized (Equation 2.11). For example, for better bitrate reduction, users should be

grouped with large portion of shared pixels so that common view can be maximized and residual

views can be minimized.

Since finding the optimal groups to minimize the overall bitrate (Equation 2.11) is NP-

Hard, we first propose a heuristic algorithm V S−GRP (presented in Algorithm 1), which we

show in Section 2.5.4 to have linear complexity in terms of number of users. So that we can

evaluate the performance of V S−GRP, we subsequently present an optimal but exponential time

complexity algorithm V S−OPT (shown in Algorithm 2), and compare their performances in

Section 2.5.

We next describe the steps of Algorithm V S−GRP. In Lines 2-11, we make an implement

to take the minimum value of evl∗ (i.e. the value of Ptotal in Equation 2.11), traversing all potential

optimized grouping strategies for K groups for Iw iterations. In Lines 4-5, we use the procedures

Kmeans and Evaluate to obtain optimized groups and calculate their value of evl∗. The Kmeans

procedure consists of three parts: Initialize, Optimization and U pdate.

We use the Initialize(k, iw) procedure to initialize k cluster centers for k groups (i,e, each

group has a cluster center). In iteration number iw = 1, we will give a priority index to each user.

The numbering method is giving the user with smaller y a smaller priority index, and if two users
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Algorithm 1 VS-GRP Algorithm

Inputs: Number of users n, locations (xi,yi) for each user i and distance matrix D.
Output: Binary indicator matrix B, such that bitrate needed for all user views is minimized

(Equation 2.11).
1: evl←+∞

2: for k = 1 : K do
3: for iw = 1 : Iw do
4: B∗← Kmeans(k, iw)
5: evl∗← Evaluate(B∗)
6: if evl > evl∗ then
7: B← B∗

8: evl← evl∗

9: end if
10: end for
11: end for
12: return B
Procedure Kmeans(k, iw):

1: Sp,Sq← Initialize(k, iw)
2: S∗p← [ ]
3: while S∗p 6= Sp do
4: B∗← zeros(n,n)
5: for q ∈ Sq do
6: p← argminp{D(p,q), p ∈ Sp}
7: b∗p,q← 1
8: end for
9: S∗p← Sp

10: Sp,Sq←U pdate(B∗)
11: end while
12: return B∗

Procedure Evaluate(B∗):
1: evl∗← 0
2: for p ∈ Sp do
3: for q ∈ Sq do
4: evl∗← evl∗+(b∗p,q ·D(p,q)+ k)
5: end for
6: end for
7: return evl∗
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Algorithm 2 VS-OPT Algorithm

Inputs: Number of users n, locations (xi,yi) for each user i and distance matrix D.
Output: Binary indicator matrix B, such that bitrate needed for all user views is minimized

(Equation 2.11).
1: evl←+∞

2: v← [1 : n]
3: for k = 1 : n do
4: Ssp ← combntns(v,k)
5: ncomb← size(Ssp ,1)
6: for i = 1 : ncomb do
7: B∗← zeros(n,n)
8: Sp← Ssp(i, :)
9: Sq← setdi f f (v,Sp)

10: for j = 1 : (n− k) do
11: q← Sq( j)
12: p← argminp{D(p,q), p ∈ Sp}
13: b∗p,q← 1
14: end for
15: evl∗← Evaluate(B∗)
16: if evl > evl∗ then
17: B← B∗

18: evl← evl∗

19: end if
20: end for
21: end for
22: return B
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with equal y, we give the user with smaller x a smaller priority index. In this way, each user will

be numbered with a priority index, from 1 to n. In our algorithm, we initialize k cluster centers as

bn
kc,b

2n
k c, . . . ,n. After that, we will carry out the Optimization and Update procedures. Otherwise,

if iteration number iw 6= 1, we initialize k cluster centers randomly by picking k different users

from n users.

Then in Lines 3-11 of Kmeans procedure, we implement the optimization by updating

the users with primary and secondary views continuously until the set of primary views Sp and

the set of secondary views Sq do not change any more. The number of the iterations in Lines

3-11 is denoted as Iu, which will be discussed further in Section 2.5.4. In Optimization procedure

(Lines 5-7 of Kmeans procedure), we will find out the which view p in the set of primary views

Sp has the minimum D(p,q) and then select it as the primary view within this group. In U pdate

procedure, we will update the Sp, Sq by assigning the nearest one to the average location of all

group members as the user with primary view.

In Lines 2-6 of Evaluate procedure, we calculate the value of evl∗ (i.e. the value of Ptotal

in Equation 2.11) by adding up each item in Equation 2.11. With all these procedures, we can

finally obtain the optimized grouping strategy with our algorithm.

As stated earlier, since algorithm V S−GRP is heuristic, so that we can evaluate its per-

formance, we also present an optimal algorithm V S−OPT , which considers forming all possible

groups by using all possible assignments of primary views and secondary views in an exhaustive

manner. Then by comparing the value of Ptotal in Equation 2.11 for every possible assignment

and finding out the groups for which is minimum, we can obtain the optimal groups. Specifically,

we present this algorithm with Matlab implementation. The function combntns(set,n0) returns a

matrix whose rows are the various combinations that can be taken of the elements of the vector

set of length n0 while the function setdi f f (A,B) returns the data in A that is not in B, with no

repetitions. In this way, we can do a traversal of all possible combinations of users assigned with

primary view or secondary view. For every possible combination, we will calculate its value of
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evl∗. Finally, we will obtain the users assignment with the minimum evl∗, which is the optimal

strategy for grouping.

Next, we briefly analyze the time complexity of the optimal exhaustive algorithm V S−

OPT as well as our proposed grouping algorithm V S−GRP. Let n be the number of users in

the virtual space, and k be the desired number of groups. For the optimal exhaustive algorithm

V S−OPT , there are Ck
n possibilities of choosing k primary views (for k groups). After deciding

k users with primary views, we have (n− k) users to be assigned with secondary views. For each

of the unassigned users, there are k possible choices (each view can be assigned to either of the k

groups), leading to a multiplicative factor of kn−k for each Ck
n. Therefore, the time complexity of

the optimal exhaustive algorithm V S−OPT is O(Ck
nkn−k).

In contrast, our proposed grouping algorithm has a computation complexity of O(nKIu),

where n is the number of users, Iu is the number of iterations in Kmeans procedure and K is the

maximum number of groups we traverse. Next, we empirically estimate upper bound for K and

Iu to validate our complexity analysis in Section 2.5.4.

2.5 Experimental Results

In this section, we describe our experimental setup and results. We use an Intel Core i7

Quad-Core processor with 32GB RAM and implement our approach in MATLAB. We demon-

strate the performance of our grouping algorithm (V S−GRP) with our proposed evaluation

metrics side by side to an optimal, exhaustive grouping algorithm (V S−OPT ). We demonstrate

experiments by using (i) the virtual classroom application with a regular students’ seat (view)

pattern; and (ii) the virtual gallery application with the location of visitors (views) randomly

distributed. To further demonstrate the robustness, we also show experiments for a virtual class-

room, with vacant seats (views). Then we present a complexity analysis, and a congestion-related

latency study in this section. Note that we select virtual classroom and virtual gallery applications

34



2 4 6 8 10

Number of Groups k
14

15

16

17

18

19

20

21

R
to

ta
l

I
w

=1

I
w

=20

I
w

=50

Optimal

26
2 4 6 8 10

Number of Groups k
14

16

18

20
R

to
ta

l

I
w

=1

I
w

=20

I
w

=50

Optimal

2 4 6 8 10

2 4 6 8 10

Number of Groups k
16

18

20

22

24

26

R
to

ta
l

I
w

=1

I
w

=20

I
w

=50

Optimal

2 4 6 8 10

Number of Groups k 22

24

26

28

30

32

34

R
to

ta
l

I
w

=1

I
w

=20

I
w

=50

Optimal

2 4 6 8 10

!"# !$# !%# !&#

Figure 2.11: Total number of transmitted pixels divided by number of pixels in one frame,
versus number of groups k for four different seats pattern virtual classrooms. Sub-graphs

present seat patterns of (a) 7x5, (b) 5x7, (c) 7x6, (d) 7x7 respectively.

Figure 2.12: Grouping results of Iw = 1,20,50 and Optimal cases for four different seats
pattern virtual classrooms. Sub-graphs (a)-(d) present seat patterns of 7x5, 5x7, 7x6, 7x7

respectively.

to validate the effectiveness of our approach, since they have different characteristics: the users in

the classroom have a regular distribution pattern while the users in the gallery are more randomly

distributed in the virtual space. For the virtual classroom, we explore two scenarios, without

and with vacant seats, since vacant seats can affect the user distribution pattern and hence the

grouping results.

2.5.1 Virtual Classroom

Without Vacant Seats

To evaluate the effectiveness of our approach, we perform our experiments using the

virtual classroom application, with different seating patterns, and all seats occupied.

We first consider a virtual classroom with a seating configuration having the same horizon-

tal and vertical seat spacings (SpacingV = SpacingH = 2). Figure 2.11 shows the total number
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Table 2.6: Experimental Results for four different seats pattern virtual classrooms.

Space Alg. Run Time k Rtotal Pixel Saving

7x5

Iw = 1 0.0035s 7 14.99 57.2%
Iw = 20 0.0707s 5 14.55 58.4%
Iw = 50 0.1660s 5 14.55 58.4%
Optimal > 1h 5 14.55 58.4%

5x7

Iw = 1 0.0036s 5 15.65 55.3%
Iw = 20 0.0683s 4 15.63 55.3%
Iw = 50 0.1715s 6 15.56 55.5%
Optimal > 1h 5 15.49 55.7%

7x6

Iw = 1 0.0044s 7 17.68 57.9%
Iw = 20 0.0774s 5 17.55 58.2%
Iw = 50 0.1917s 6 17.51 58.3%
Optimal > 1h 6 17.51 58.3%

7x7

Iw = 1 0.0046s 8 23.30 58.4%
Iw = 20 0.0950s 8 23.30 58.4%
Iw = 50 0.2349s 8 23.20 58.6%
Optimal > 1h 8 23.20 58.6%

of pixels (normalized to frame size) to be transmitted with different number of groups. Rtotal

is the ratio of total number of pixels to be transmitted over total number of pixels in one frame.

For example, in a 20-user scenario, Rtotal = 14.99 means that we only need 14.99×Pf rame (e.g.

1920x1080 pixels) instead of 20×Pf rame. We use Iw = 1,20,50 for our proposed algorithm

V S−GRP, and compare to the optimal algorithm V S−OPT (Optimal), using four different seat

patterns – 7x5, 5x7, 7x6 and 7x7. For a given number of groups k, we can see that there is a

tradeoff between solution quality (total number of pixels to be transmitted) and Iw. Larger Iw

benefits the grouping result (closer to optimal Rtotal as well as Ptotal) but also consumes more

runtime, as shown in Table 2.6.

From Figure 2.11, we can also find a preference for k as well. Too few groups may

result in many distinct secondary views, thus there is not much common view. Too many groups

may result in too many primary views, leaving insufficient secondary views. Figure 2.12 shows

examples of some grouping results for the four seat patterns. Each diamond denotes a seat and

each color represents a unique group. We can see that as Iw increases, our grouping algorithm
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performs closer to the optimal solution. For instance, Figure 2.12(a) shows that by using Iw = 1

we obtain a grouping strategy (dividing users into 7 groups) while by employing Iw = 20,50

or optimal algorithm V S−OPT we receive the same grouping result (5 groups). Similarly, we

present the grouping results for other 3 seating patterns in Figure 2.11(b)-(d) respectively.

Table 2.6 summaries the quality of results in terms of runtime, Rtotal , and pixel savings

for the four seat patterns. Our proposed approach consumes up to 0.24s for grouping, compared

to one hour of the optimal exhaustive grouping algorithm, while giving at most 0.2% degradation

of bitrate saving when Iw = 50. For a more real-time-critical scenario, we only need 5ms for

grouping when Iw = 1, with a maximum degradation of 1.2% in pixel savings. Overall, our

proposed approach can achieve more than half of the pixel savings for all four seat patterns within

milliseconds. To be specific, as seen from Table 2.6, our proposed algorithm V S−GRP (such

as Iw = 1) with hybrid-cast approach reduces the pixels needed by 57.2%, 55.3%, 57.9% and

58.4% compared to the conventional approach of transmitting all the 7x5, 5x7, 7x6, 7x7 views

as individual unicast streams. Also, our proposed algorithm V S−GRP is able to reduce the

pixels needed only by a marginal 1.2%, 0.4%, 0.4% and 0.2% less than the optimal algorithm

V S−OPT , while ensuring that it can be run in real-time (run-time of 0.0040 seconds on average

when Iw = 1) compared to more than an hour of run-time for the optimal algorithm. The results

when Iw = 20,50 are really similar to optimal results but the run time will be a little more than

the run time when Iw = 1.

Since the above grouping results present a tendency for horizontal grouping (Figure 2.13),

we then perform experiments with a virtual classroom with different seating configuration, where

the spacing between vertical seats is less than spacing between horizontal seats (SpacingV = 1,

SpacingH = 2). Figure 2.13(a)(b) show grouping results for two seat patterns (6x7 and 7x7)

respectively. Each diamond denotes a seat and each color represents a unique group. We can

observe that for the new seat configuration, our proposed grouping algorithm produces more

groups in vertical direction, and in general, groups consisting of both horizontal and vertical
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Figure 2.13: Grouping results of Iw = 1,20,50 and Optimal cases for two different seats pattern
virtual classrooms. The sub-graphs (a)(b) present seat pattern of 7x6 and 7x7 respectively.

neighbors.

Besides showing the real-time performance of our proposed grouping algorithm, we

analyze the end-to-end latency consumed for our cloud-based virtual space approach in Section

2.5.7. Our analysis shows server-side latency of 9.5-19.5 ms and client-side latency of about 5.5

ms, per rendered frame.

With Vacant Seats

To demonstrate the robustness of bitrate savings, we consider a more irregular seat pattern

in the virtual classroom. In our experiment, we use a 7x5 seat pattern, and each seat has a vacant

probability of 20%. (This scenario can match to a virtual class where each student may choose to

drop the class with a fixed probability.) We randomly generate 1000 different vacancy patterns.

Figure 2.14 shows the probability density function and cumulative distribution function for the

1000 vacancy patterns. For each vacancy pattern, we apply our proposed grouping algorithm

V S−GRP. Figure 2.15 shows the results in terms of the number of groups and pixel savings

obtained. The empirical results demonstrate that our algorithm performs well with vacant seats.

We have achieved similar pixel saving ratio compared to a virtual classroom without vacancy.

Interestingly, as shown in Figure 2.15, the average group number grows approximately

linearly with the increase in the number of occupied seats. Also, we can achieve more pixel saving

with more occupied seats, while the exact location of those vacancies does not impact much to

the pixel saving. Overall, we still achieve more than half of pixel savings for all configurations,
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Figure 2.14: The probability density function (PDF) figure (left) and cumulative distribution
function (CDF) figure (right) of occupied seats covering all 1000 samples. The red line shows

the normal distribution fitting.
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occupied seats while the right sub-graph demonstrates the pixel saving versus the number of
occupied sets. Specifically, in the latter, the green line represents the average pixel saving.

indicating the robustness of our algorithm. Specifically, in the right sub-figure of Figure 2.15, the

x-axis is the number of occupied seats and y-axis is the pixel saving. Every blue point presents

the number of occupied seats and the pixel saving achieved by using our proposed approach.

The green line and the triangle point within it represents the average pixel saving corresponding

to the number of occupied seats. For example, the point (20, 0.53) indicates we can achieve

approximately 53% percent pixel saving to transmit all the 20 views (for 20 occupied seats)

with our proposed approach. It is demonstrated that the pixel saving will increase linearly as the

number of occupied seats increases. We can observe that the pixel saving will not be affected by

the position of vacant seats, but rather the number of vacant (as well as occupied) seats.
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Figure 2.16: A virtual gallery scene where the visitors are randomly distributed is demonstrated
in (a); Grouping results for 16 users is presented in (b)(c) while results for 25 users in shown in

(d).

2.5.2 Virtual Gallery

Next, we show results of applying our approach to the virtual gallery application. In the

virtual gallery shown in Figure 2.16(a), visitors (views) are randomly distributed. We conduct

two sets of experiments, with 16 and 25 users, respectively. Two different grouping results for

16 users are presented in Figures 2.16(b)(c), while one grouping result for 25 users is shown

in Figure 2.16(d). Table 2.7 summaries the experimental results in terms of the parameters,

pixel savings obtained, and run time, compared to the optimal algorithm V S−OPT . We can

see that for 16 users (Scene1), our proposed algorithm V S−GRP (Iw = 1) can obtain pixel

saving of 55.0%, with only 1.9% degradation compared to the optimal result, while consumes

only 4.3ms. The corresponding assignment for Iw = 1 and k = 4 is shown in Figure 2.16(b).

The grouping assignments for Iw = 20 and Optimal are the same, and are demonstrated in

Figure 2.16(c). For 25 users (Scene2), the grouping assignments for Iw = 1,20 and Optimal are

the same, shown in Figure 2.16(d). The above results again demonstrate the effectiveness of

our proposed grouping algorithm in a virtual space application with randomly distributed views.

Overall, the pixel savings are similar compared to a virtual classroom application, while suitable

for real-time-critical applications.
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Table 2.7: Experimental results for multiple users in gallery scene.

Scene Alg. k Pixel Saving Run Time

Scene1

Iw = 1 4 55.0% 0.0043s
Iw = 20 3 56.9% 0.0454s
Optimal 3 56.9% > 1h

Scene2

Iw = 1 4 56.8% 0.0056s
Iw = 20 4 56.8% 0.0533s
Optimal 4 56.8% > 1h

2.5.3 High Correlation between Pixel Ratio and Bitrate Saving

In this experiment, we validate the correlation between pixel ratio and bitrate savings. In

our hybrid-cast approach, the total bitrate needed for the video streams is different from the raw

pixel savings in that video streams are encoded in fixed frame size, and then transmitted. Note

that in our case, this is equivalent to exploring whether there is high correlation between pixel

ratio saving and bitrate saving. The reason is that in our experiments, we obtain pixel ratio and

bitrate saving for two approaches (proposed approach and conventional approach) with the same

setting of video resolution and framerate. The pixel ratio saving equals to pixel saving divided

by number of pixel in one frame (e.g. 1920x1080 pixels) while the bitrate saving equals to the

saving in number of bits times the value of framerate. Thus, high correlation (between pixel ratio

saving and bitrate saving) and high correlation (between pixel saving and number of bits saving)

are two equivalent statements in our discussion.

To demonstrate the above, we perform live experiments for the two virtual space applica-

tions. For the virtual classroom application, we assume that there are two students in the same row,

sitting close to each other, and a teacher is walking fast at the front of the classroom. The view

centers of the students keep moving and are always towards the teacher, i.e. focusing continuously

with movement of the teacher. We record 750 frames (30s assuming 25fps). Then we encode

the video using H.264 after applying our approach. In our implementation, we only need to

broadcast primary views and unicast residual views (instead of secondary views). Residual views

are encoded full frame size, with common pixels replaced by black pixels. (Thus, we don’t
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Table 2.8: High correlation between saving in bitrates and saving in pixel ratio.

Space Items Conv. Prop. SavingApproach Approach

VC Total Bitrate 43.7Mbps 26.7Mbps 39.0%
Avg. Pixel Ratio 2.00 1.18 41.0%

VG Total Bitrate 27.6Mbps 23.3Mbps 15.7%
Avg. Pixel Ratio 2.00 1.63 18.5%

explore any further pixel savings by downscaling.) We also perform the live experiment using the

virtual gallery application. In our setup, parameters are set the same except that two visitors stand

further away from each other, and both watch a slowly moving tour guide.

Table 2.8 summarizes the experimental results for the above two scenarios, in terms of the

average pixel ratio of the rendered frames, the total bitrate needed for the resulting encoded video

frames, and the savings achieved by using the proposed approach for both the average pixel ratio

and the total video bitrate. For the virtual classroom application, the saving in average pixel ratio

is 41.0% while the saving in the total bitrate is 39.0%. For the virtual gallery application, our

proposed approach produces 18.5% saving in average pixel ratio while the saving in total video

bitrate is 15.7%. The results show that there is a high correlation between pixel ratio saving and

bitrate saving for both the virtual space applications. And as shown in Section 2.5.6, the bitrate

saving using our approach also leads to substantial saving of cloud cost.

2.5.4 Empirical Results Validating Complexity Analysis

As is mentioned in Section 2.4.4, our proposed grouping algorithm has a computation

complexity of O(nKIu), where n is the number of users, Iu is the number of iterations in Kmeans

procedure and K is the maximum number of groups we traverse. Next, we empirically estimate

upper bound for K and Iu, and show that the complexity of our proposed algorithm can be

practically simplified as O(n). We perform the experiments using the virtual classroom application,

with seat patterns setting from 4x4, to 10x10. For a given seat pattern, we generate 100 different

seat pattern configurations and implement our grouping algorithm. We also calculate the average
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of parameters (i.e. k, Iu, runtime) for these seat pattern configurations.
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Figure 2.17: (a) Number of Groups versus the number of users. The line represents the average
number of groups given the number of users; (b) Number of Iterations as Iu versus the number

of users. The dashed line demonstrates the average Iu considering the number of users.
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Figure 2.18: The run time versus the number of users when Iw = 1,20,50 respectively. The
line represents the average run time given the number of users.

Specifically, Figure 2.17(a) demonstrates the optimal number of groups from our algorithm

versus total number of users. The three lines represent the optimal, average number of groups

across all seat patterns. We observe that the number of groups show similar trends and are

generally smaller than
√

n, across all seat patterns. In our implementation, we empirically bound

the maximum number of groups K = 10.

Figure 2.17(b) shows the number of iterations Iu versus the number of users. The dashed

line demonstrates the average Iu considering the number of users. We can see an increase in Iu

with the increase in n when the Iw = 20 and 50, and similarly for Iw = 1 with some fluctuations.

The results indicate a steady, if not increasing Iu.

In addition, we explore the relation between the runtime and the total number of users.
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Figure 2.19: The available bandwidth of the network in our experiment.

Figure 2.18 shows the runtime vs. the number of users when Iw = 1,20,50. The lines represent

the average runtime across all seat patterns. The results show that the average runtime grows

linearly with the total number of user, i.e., O(nKIu) can be simplified as O(n) in that: (i) K is

bounded to be 10, and (ii) Iu is practically a small constant. Overall, our proposed algorithm

V S−GRP can be executed in real-time with linear time complexity, with similar solution quality

to the optimal algorithm, while consumes negligible runtime. As presented in Section 2.5.8, we

also perform experiments on the virtual gallery application to validate our complexity analysis.

2.5.5 Congestion-related Latency

In this experiment, we show the congestion-related latency improvement by utilizing our

hybrid-cast approach. For the server side, we deploy our model in an Ubuntu 16.04 TLS system

hosted on the Amazon Web Service (AWS) [47] server, equipped with a 2.6GHz Intel Xeon

processor, 16GB RAM and a NVIDIA GRID GPU. For the client side, we simulate a 10-user

scenario by deploying to 10 nodes, each with the same, above mentioned machine configuration.

We assume that there is only one group (i.e. one user with a primary view and nine users with

secondary views). We use DummyNet [48] to emulate the wireless network, specifically network

bandwidth profiles experienced by the virtual space data transmitted from the AWS server.

In order to measure the latency from AWS cloud server to the user’s client, we performed

experiments to record the round-trip delay (RTT) needed with different network bandwidth

profiles. Figure 2.19 shows a fluctuating bandwidth profile (for 55s), with an average available
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Table 2.9: Congestion-related latency in bandwidth-limited network.

Approaches Settings Latency

Conv. Approach
10 users Min≈600ms

(bitrate: 23Mbps*10) Max>1s

Prop. Approach
10 users Min<1ms

(bitrate: 11Mbps*9+23Mbps) Max≈5ms

bandwidth of approximately 200Mbps. We emulate two cases: using conventional method

(all user views unicast) and proposed method (one group with 1 primary view broadcast and 9

residual views unicast). We record a 55s video of one user view (23Mbps) and a 55s video of

its corresponding residual view (11Mbps) separately. We assume that within the 55s period, a

user will receive approximately 11Mbps video as residual view with our proposed hybrid-cast

approach while the user needs to receive 23Mbps with the conventional method. Table 2.9 reports

the latency measured under these two different settings. In the setting using conventional method,

since the realistic bitrate needed is larger than available bandwidth, the latency varies from a low

of around 600ms to a high of larger than 1s. However, with our proposed hybrid-cast approach,

the bandwidth needed is significantly decreased and thus the latency achieved is much smaller

(i.e. <5ms).

Note the above analysis assumes all users are associated with the same base station

(or at least same cellular gateway) and cloud server. Hence the bandwidth savings using our

approach can help in reducing the congestion-related latency. However, as have been described in

Section 2.3.2, if the users are not associated either with the same base station or the same cellular

network gateway, latency reduction may not be achievable using the proposed approach. With the

above assumption, the results demonstrate the significant advantage our proposed hybrid-cast

approach may have to alleviate congestion-related latency in fluctuating and bandwidth limited

wireless networks.
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2.5.6 Cloud Cost Savings

Based on the experiments described in Section 2.5.5, we perform two experiments: (i)

estimating the savings obtained by our proposed approach in terms of cloud bandwidth and the

consequent cloud cost for different number of days, and (ii) calculating total monthly cost for

different number of users. Specifically, we estimate the cloud cost charged using conventional

approach and proposed approach when the service provider of the virtual space application uses

AWS. We experimentally choose to have 10% users with primary views (23Mbps) and 90% users

with residual views (11Mbps). We calculate corresponding cloud cost using the AWS pricing

model in Table 2.10 [49].

Figure 2.20(a) shows the accumulative data transfer and total cost for 10 days (with

assumption of 100 users in the virtual space). We can observe that the total cost (denoted by

orange lines) increases sublinearly when the accumulative data transfer increases linearly due to

segmented pricing in AWS pricing model. The total cost savings are the difference between two

orange lines. We can see that the accumulative data transfer reaches around 240TB and 125TB

respectively by employing conventional and proposed approaches, for 100 users in 10 days. The

corresponding total cost saving is around $5000 for 100 users in 10 days using our proposed

approach.

Figure 2.20(b) presents the total monthly cost versus different number of users. The blue

bar and green bar denote the total monthly cost using conventional approach and our proposed

approach respectively. We can observe that total monthly cost grows continuously with the

increase in the number of users. For 1000 users, the total monthly costs are up to $367,800 and

$170,000 respectively using conventional and proposed approaches, which can translate to a

substantial cloud cost saving of $2.04M annually for the virtual space service provider. Note

the above analysis assumes existence of multicast protocols in the cloud network connecting

cloud servers to core network gateways. While such multicast protocols are being researched and

developed, the service provider savings discussed in Section 2.5.6 will need to wait deployment
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of the such protocols in the future.

Table 2.10: Pricing model per month on Amazon Web Service.

Data Transfer Price
First 1GB $0 per GB

Up to 10TB $0.09 per GB
Next 40TB $0.085 per GB
Next 100TB $0.07 per GB
Next 350TB $0.05 per GB

0 2 4 6 8 10

(a) Number of Days

0

50

100

150

200

250

A
c
c
u

m
u

la
ti
v
e

 D
a

ta
 T

ra
n

s
fe

r 
(T

B
)

0

5K

10K

15K

20K

25K

T
o

ta
l 
C

o
s
t 

($
)

Data Transfer (Conv.)

Data Transfer (Prop.)

Cost (Conv.)

Cost (Prop.)

$5,913$3,332

$40,280
$23,190

$367,800

$196,900

10 100 1000

(b) Number of Users

0

100K

200K

300K

400K

T
o

ta
l 
M

o
n

th
ly

 C
o

s
t 

($
)

Conv. Approach

Prop. Approach

Figure 2.20: (a) Accumulative data transfer (left y-axis) and total cost (right y-axis) versus the
number of days, for 100 users in the virtual space; (b) Total monthly cost versus different

number of users in the virtual space.

2.5.7 Latency on the server and client sides

In this section, we show the latency for tasks on the server side and client side. In terms

of latency for the rendering, encoding and decoding tasks, we give the estimated values according

to their current advanced implementations [50–52]. Then we measure the latency for residual

view calculation and synthesis by ourselves.

Table 2.11 and Table 2.12 present the latency for the various tasks performed on the server

side and client side respectively, besides the latency of our proposed grouping algorithm discussed

earlier. Specifically, on the server side, the tasks performed are real-time rendering, residual view

calculation and encoding, in sequence. Meanwhile, the server will cluster users into different

groups at short intervals (e.g. every 100ms) with our proposed grouping algorithm. On the client
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Table 2.11: Latency for procedures on the server side.

Procedures Latency
Rendering 4-9ms

Residual View Calculation ≈2.5ms
Encoding 3-8ms

Table 2.12: Latency for procedures on the client side.

Procedures Latency
Decoding ≈ 3ms
Synthesis ≈ 2.5ms

side, decoding task will be performed for primary users while decoding and synthesis (of primary

and secondary views) tasks will be performed for secondary users.

Since the fundamental limitation of dumping the frame information in real-time from

Unity [13], we demonstrate the ability of real-time residual view calculation using a separate

program. Our program is written in C++ using 64-thread on a Xeon 2-CPU server. We calculate

the residual view calculation for 1080p frame 100 times and report the average latency in

Table 2.11 and Table 2.12. We can observe the average latency as 2.5ms. When using GPU

parallel implementation (i.e. computation is executed for pixels in a frame in parallel instead of

sequentially), we can expect smaller latency for these two tasks.

2.5.8 Complexity Analysis for Virtual Gallery

To analyze the complexity in the various scenarios, we also perform experiments on the

virtual gallery application. We empirically estimate upper bound for maximum number of groups

traversed K and the number of iterations in K-means procedure Iu, and validate that the complexity

of our proposed algorithm can be practically simplified as O(n). We conduct experiments with

number of users (i.e. 16, 25, 36,. . .100), randomly located in the virtual gallery space as explained

before. For a given number of users, we generate 100 different user topologies and implement

our grouping algorithm on every user topology. We also calculate the average of parameters (i.e.
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Figure 2.21: (a) Number of Groups versus the number of users in virtual gallery. The dashed
line represents the average number of groups given the number of users; (b) Number of
Iterations as Iu versus the number of users. The dashed line demonstrates the average Iu

considering the number of users.

k, Iu, runtime) for these different user topologies.

Figure 2.21(a) shows the optimal number of groups k selected by our algorithm versus

total number of users. The dashed lines represent, for different values of Iw used, the average

number of groups across all user topologies, considering the number of users. We observe that the

number of groups demonstrate similar trends and are generally smaller than
√

n, across all user

topologies. In our implementation, we empirically bound the maximum number of groups K = 10.

Figure 2.21(b) presents the number of iterations needed by our algorithm, Iu, versus the number

of users. The dashed lines demonstrate the average Iu considering the number of users. We can

see a slow increase in Iu with increase in number of users n. The values of number of iteration Iu

are also identical when Iw = 20 and 50, and similarly for Iw = 1 with some fluctuations.

Figure 2.22 presents the runtime versus the number of users in virtual gallery applications.

Compared with the empirical results in virtual classroom, we can see that the average runtime

grows linearly with the total number of users. The difference is that the runtime for gallery

application scenarios is slightly larger than for virtual classroom due to more randomness in user

locations (topologies) in the former. The number of iterations Iu for virtual gallery cases is also

slightly larger than for virtual classroom scenarios, as shown in Figure 2.17(b) and Figure 2.21(b).
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Figure 2.22: The run time versus the number of users when Iw = 1,20,50 respectively in
virtual gallery. The line represents the average run time given the number of users.

2.6 Conclusion

In this chapter, we propose a multi-user hybrid-cast approach to significantly reduce the

total bitrate needed to stream high-quality videos to multiple users in a virtual space application.

Instead of unicasting the video of each user view, we introduce the novel approach which allows

unicasting much lower-bandwidth residual views, together with one or more common view(s).

Then we propose an efficient way of identifying common and residual views. To minimize the

total bitrate, we develop a smart real-time algorithm for grouping the users of the virtual space,

using a novel grouping metric. Our experimental results demonstrate the effectiveness of our

proposed grouping algorithm both in terms of optimal performance and speed. Furthermore,

the results show that the total bitrate needed to transmit multiple user views can be significantly

reduced by up to 55%, and thus provide better user experience (less delay) under constrained

network.

Our future research interests include: (i) integrating our hybrid-cast approach with a real

network (e.g. Wi-Fi or cellular); (ii) studying data routing, forwarding and related protocols

for data transmission in hybrid-cast approach; (iii) considering more complex virtual spaces,

including irregular shapes and topologies; (iv) analyzing the case of having multiple primary

views in the same group and the corresponding performance benefit.
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Chapter 3

Predictive Adaptive Streaming to Enable

Mobile 360-degree and VR Experiences

This chapter presents the methodology targeted to the mobile 360-degree video streaming.

As 360-degree videos and virtual reality (VR) applications become popular for consumer and

enterprise use cases, the desire to enable truly mobile experiences also increases. Delivering

360-degree videos and cloud/edge-based VR applications require ultra-high bandwidth and ultra-

low latency [9], challenging to achieve with mobile networks. A common approach to reduce

bandwidth is streaming only the field of view (FOV). However, extracting and transmitting the

FOV in response to user head motion can add high latency, adversely affecting user experience. In

this chapter, we propose a predictive adaptive streaming approach, where the predicted view with

high predictive probability is adaptively encoded in relatively high quality according to bandwidth

conditions and transmitted in advance, leading to a simultaneous reduction in bandwidth and

latency. The predictive adaptive streaming method is based on a deep-learning-based viewpoint

prediction model we develop, which uses past head motions to predict where a user will be

looking in the 360-degree view. Using a very large dataset consisting of head motion traces from

over 36,000 viewers for nineteen 360-degree/VR videos, we validate the ability of our predictive
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adaptive streaming method to offer high-quality view while simultaneously significantly reducing

bandwidth.

3.1 Introduction

Recently, 360-degree videos and virtual reality (VR) applications have attracted signifi-

cant interest in various fields, including entertainment, education, manufacturing, transportation,

healthcare, and other consumer-facing services. These applications exhibit enormous potential as

the next generation of multimedia content to be adopted by enterprises and consumers via provid-

ing richer, more engaging and more immersive experiences. According to market research [53],

VR and augmented reality (AR) ecosystem is predicted to be an $80 billion market by 2025,

roughly the size of the desktop PC market today. However, several key hurdles need to be over-

come for businesses and consumers to get fully on board with VR technology [1], such as cheaper

price and compelling content, and most importantly a truly mobile VR experience, in line with the

expectation and adoption of mobile experiences in almost all consumer and enterprise verticals

today. Of particular interest is how to develop mobile (wireless and lightweight) head-mounted

displays (HMDs), and how to enable VR experience on the mobile HMDs using bandwidth

constrained mobile networks, while satisfying the ultra-low latency requirements.

Current widely used HMDs approximately include three types [54]: PC VR, console VR,

mobile VR. Specifically, PC VR is tethered with PC [4, 55]; console VR is tethered with a game

console [56]; mobile VR is untethered with PC/console but with a smartphone inside [8,57]. Since

all the above HMDs perform rendering locally either on a smartphone tethered with the HMD, or

on a computer/console tethered to the HMD, today’s user experience lacks portability (when using

a heavy HMD tethered to a smartphone) or mobility (when tethered to computer/console). To

enable lighter mobile VR experience, we propose a cloud/edge-based solution. By performing the

rendering on cloud/edge servers and streaming videos to users, we can complete the computation-
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Figure 3.1: FOV in a 360-degree view.

intensive tasks on the cloud/edge server and thus enable mobile VR with lightweight VR glasses.

The most challenging part of this solution is the ultra-high bandwidth and ultra-low latency

requirements, since streaming 360-degree video causes tremendous bandwidth consumption and

good user experiences require ultra-low latency (<20ms) [9, 10]. Various techniques have been

developed for video content delivery such as adaptive streaming algorithms [58, 59], mobile

edge caching placement algorithms [60] and hybrid multicast-unicast schemes [61, 62], but

these approaches are designed for ordinary videos, and thus have not considered the scenario of

360-degree video streaming.

Motivated by this challenge, in this chapter, we propose a novel approach to enable mobile

VR with prediction for head motions. Our basic idea comes from the following observations: the

field of view (FOV) is 90°×90° for popular HMDs while the 360-degree view is 360°×180° in

size (as is shown in Fig. 3.1). A common approach to reduce bandwidth is streaming only the

FOV. However, extracting and transmitting the FOV in response to user head motion can add high

latency, adversely affecting user experience. This motivates us to predict head motions. With

prediction for head motion, our approach can address both bandwidth and latency challenges.

If we can predict head motion of users in the near future, we can achieve predictive

rendering (in case of VR) and encoding on the edge device, and then stream the predicted view

(i.e., a 360-degree view with more bits for the FOV tiles and less for non-FOV tiles) to the

HMD in advance. Thus, latency needed will be significantly reduced since the view is delivered
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and pre-buffered on the HMD. Moreover, in order to address the challenge of dynamically

varying network bandwidth conditions, we use the viewpoint prediction to guide the bitrate

adaptation of the stream (i.e., allocate more bits for the FOV tiles and less for non-FOV tiles to

compose the predicted view). Thus, good user experience can be achieved under the dynamically

varying network bandwidth conditions. Note that since viewpoint is defined as the center of

FOV, prediction for head motions is equivalent to viewpoint prediction in this case. The main

contributions of this chapter can be summarized as follows:

• We propose a new approach to enable truly mobile VR using wireless HMDs, where the

rendering is performed on edge devices, and the ultra-low latency and high bandwidth re-

quirements are addressed through a novel predictive adaptive streaming approach involving

viewpoint prediction.

• We develop a viewpoint prediction method using deep learning to predict where a user will

be looking into in the 360-degree view based on their past behavior. Using a very large

dataset of real head motion traces from VR applications, we show the feasibility of our

long short-term memory (LSTM) model with high accuracy.

• To address fluctuating and constrained wireless bandwidth available, we propose a novel

predictive adaptive streaming algorithm. Given the available bandwidth constraint, it selects

proper video encoding settings for each tile based on the viewpoint prediction such that

user experience is maximized, i.e., PSNR in user FOV is maximized, where user FOV is

defined as the actual user field of view in size of 90°×90°.

• While adaptive streaming of 360-degree and VR videos has been proposed before, to the

best of our knowledge, this is the first predictive adaptive streaming method proposed in the

literature. Using a large-scale real head motion trace dataset, we demonstrate significant

bandwidth savings while ensuring very high PSNR in the user FOV. We also demonstrate

significant quality, bandwidth and network capacity benefits compared to streaming without
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bitrate adaptation, and a recent adaptive streaming method which does not utilize prediction

like our method does.

Note that a preliminary version of our work was published recently at a workshop [63],

where we report on the predictive LSTM model and some preliminary results. In this article,

we extend our approach by proposing a smart real-time predictive adaptive streaming algorithm,

improving our proposed view generation strategy and conducting experiments on various 360-

degree/VR videos.

The remainder of the chapter is organized as follows. In Section 3.2, we review related

work. Section 3.3 introduces the system overview and problem definition. Section 3.4 describes

our dataset and its characteristics. Section 3.5 and Section 3.6 describe our proposed predictive

LSTM model and predictive adaptive streaming algorithms. We present our experimental results

in Section 3.7 and conclude our work in Section 3.8.

3.2 Related Work

In this section, we review current work in the following topics related to our research.

FOV-guided streaming: Current FOV-guided 360-degree video streaming studies mainly

consist of two types to address bandwidth challenge: tiling and versioning [64]. As for tiling,

360-degree video is spatially divided into tiles and only tiles within FOV are streamed at high

quality while remaining tiles are streamed at lower qualities or not delivered at all [65–67]. In

terms of versioning, the 360-degree video is encoded into multiple versions which have a different

high-quality region, and viewers receive the appropriate version based on their own viewing

direction [68]. The above methods are based on knowing the actual viewpoint of the user as it

happens. Hence, while they can reduce bandwidth requirement of streaming 360-degree video,

they cannot reduce the latency as rendering and encoding still need to be done in real-time after

user FOV is determined. In contrast, our method aims to predict the user viewpoint and deliver the
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predicted FOV in advance, thus eliminating the need for rendering (in case of VR) or extracting

FOV (in case of 360-degree videos) and transmitting from servers over mobile networks after

the user has changed viewpoint, and hence addressing the ultra-low latency requirement besides

significantly reducing bandwidth.

Streaming with novel schemes: Some studies [69, 70] recognized ultra-low latency and

ultra-high bandwidth challenges in the transmission of 360-degree videos and VR applica-

tions. [69] proposed a multipath cooperative routing scheme with software-defined networking

architecture to reduce the delay and energy consumption of VR wireless transmissions in 5G

small cell networks. [70] also studied a new link scheduling and adaptation scheme to reduce

system latency and energy consumption in VR video streaming. By contrast, we are addressing

the latency and bandwidth challenges with our proposed adaptive streaming approach, which can

be applied on any existing wireless network without any special modification or provisioning of

the network required by [69, 70].

Sequence prediction: Viewpoint prediction and related mobility prediction (since view-

point prediction is equivalent to prediction for viewpoint mobility) both belong to the problem

of sequence prediction, which is defined as predicting the next value(s) given a historical se-

quence [71]. We roughly summarize the approaches for sequence prediction as two types:

traditional machine learning and deep learning methods. On one hand, traditional machine

learning approaches such as randomized decision trees and forest [72, 73] have proven fast and

effective performance for many sequence prediction tasks [74,75]. Bootstrap-aggregated decision

trees (BT) [72] is one of the most efficient methods among them. On the other hand, deep

learning methods such as recurrent neural networks (RNN) and their variants including LSTM

networks [76] and gated recurrent units (GRU) [77] have proven to be successful for sequence

prediction tasks [78, 79]. Apart from RNN and their variants, there are also some studies [80, 81]

using deep neural networks including deep belief networks (DBN) [82] and stacked sparse autoen-

coders (SAE) [83] to achieve sequence prediction. Among these deep learning methods, LSTM
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recurrent neural networks show a good potential to capture the transition regularities of human

movements since they have memory to learn the temporal dependence between observations (i.e.,

training data) [78, 79]. Inspired by this advantage, we design an LSTM model which can learn

general head motion pattern and predict the future viewpoint position based on the past traces.

Our prediction model shows promising results on a large-scale real head motion trace dataset.

Head motion prediction: Some studies [84–86] explore the feasibility of head motion

prediction. Most of them used relatively simple models with euler angles or angular velocity

as input without a tile-based perspective. Our proposed multi-layer LSTM model benefits from

the design of our tile-based representation and the large-scale dataset, and thus performs better.

Some studies [87, 88] also investigate more complicated prediction models to benefit 360-degree

video experience. [87] achieves gaze prediction using the saliency maps and gaze trajectories

(collected by an extra eye tracker), while [88] studies fixation prediction employing the saliency

maps, motion maps, and head motion. However, the gaze prediction technique [87] cannot

be implemented directly since most of current HMDs cannot track gaze, and the prediction

models in [87,88] are more time-consuming (i.e., 47ms and 50ms respectively) than our proposed

prediction model (i.e., <2ms) because it needs more processing time of extracting image saliency

maps and motion maps from videos. Our proposed prediction method achieves high accuracy

in real time by using only head motion information, and thus are more efficient and concise

for our current 360-degree video streaming scenarios to address the ultra-low latency challenge.

Furthermore, these current studies [84–88] do not further consider the possibility of doing adaptive

streaming using head motion prediction.

Adaptive streaming: Several techniques have been proposed for adaptive streaming for

360-degree videos [68, 89, 90]. [89] proposed to stream the 360-degree video based on average

navigation likelihood, while [90] considered optimization based on expected quality distortion,

spatial quality variance and temporal quality variance to do the 360-degree video streaming. [68]

proposed to stream one of multiple representations of the same 360-degree video, where each
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representation has a different quality emphasized region in the 360-degree view, such that bitrate

fits the available throughput and a full quality region matches user’s viewing. However, the

above techniques [68, 89, 90] do not consider the problem of adaptive streaming in advance using

prediction of user head motion to minimize latency.

To the best of our knowledge, we are the first to consider the problem of streaming

predictively in advance of the actual user view so as to ensure ultra-low latency requirement

of 360-degree video/VR, and using viewpoint prediction to guide the bitrate adaptation of the

stream so that the highest user experience can be achieved under the dynamically varying network

bandwidth conditions.

3.3 System Overview

In this section, we present an overview of our system. Note that our predictive adaptive

streaming approach works for both 360-degree videos and cloud/edge-based VR applications,

since it refers to (i) adaptively selecting encoded tiles (in case of 360-degree videos), and (ii)

rendering the view and adaptively encoding tiles (in case of cloud/edge-based VR) depending on

the predicted probability of each tile to belong to the user’s actual FOV and bandwidth conditions.

User’s head motion as well as other controlling commands will be sent to the edge device, which

performs viewpoint prediction and predictive rendering. The edge device can be either a Mobile

Edge Computing node (MEC) in the mobile radio access or core network (Fig. 3.2(a)), or a

Local Edge Computing node (LEC) located in the user premises or even his/her mobile device

(Fig. 3.2(b)). Note that each of the above choices has tradeoffs. Use of MEC will allow for

greater mobility of the VR user as compared to LEC, unless LEC is the user’s mobile device,

in which case the additional (computing) challenge of having to do predictive view generation

in the mobile device will need to be addressed. On the other hand, use of MEC will add to

more transmission delay of the rendered video than the use of LEC. Use of cloud servers can

59



Glasses

Controller
Cloud Server

 

WiFi/Millimeter
Wave Control VideoData

LEC 
(Predictive FOV

Generation)

Glasses

Controller
Cloud Server

 
MEC 

(Predictive FOV

Generation) 

Cellular
ConnectionControl VideoData

(a)

(b)

View

View

Figure 3.2: System overview.

User UserServer
Head Motion

Data
Encoded
Video

Viewpoint
Prediction

Adaptive
Streaming

Figure 3.3: Proposed predictive adaptive streaming procedure.

also be considered to perform predictive view generation; this will allow complete mobility

of VR users but will be more challenging in decreasing latency than the use of either MEC or

LEC. This chapter will not specifically address the above tradeoffs and select either MEC or

LEC. Instead, the predictive adaptive streaming technique we propose will apply to either of the

edge device options. Note that the primary novelty of our approach in addressing the ultra-low

latency requirement is in accurately predicting the user’s view in advance and pre-delivering the

predictive view so additional rendering (in case of VR) or extracting FOV (in case of 360-degree

videos) and transmission time is avoided; our approach does not make any special use of edge

devices, except that use of edge devices is recommended as opposed to cloud computing devices

so as to reduce additional round-trip transmission latency between the computing device and the

HMD.

Based on past few seconds of head motion and control data received from the user and

using the viewpoint prediction model developed, the edge device will perform predictive adaptive
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Table 3.1: VR Dataset statistics.

Categories #Video Video Instances
Movie Trailer 6 Kong VR, Batman Movie
Documentary 6 Fashion Show, Life on Mars
Scenery 4 Whale Encounter, Floating Markets
Entertainment 3 Roller Coaster, Bungee Jump

streaming algorithm, and stream the predicted view (i.e., a 360-degree view with more bits for

the FOV tiles and less for non-FOV tiles) to the user HMD in advance. Later, the predicted

view will be displayed on HMD and latency needed will be significantly reduced since the view

is delivered and pre-buffered on the HMD before it is needed. The key to achieving efficient

predictive adaptive streaming is to first solve the problem stated below.

Problem Statement: A viewpoint can occur in up to K different tiles in each time point

(e.g., every 200ms). We decompose the whole predictive adaptive streaming method into two

subtasks: viewpoint prediction and adaptive streaming, shown in Fig. 3.3. In viewpoint prediction,

given previous and current viewpoint locations, our goal is to predict one or multiple tiles that the

viewpoint will be in for the next time point. In adaptive streaming, according to the prediction

results obtained from viewpoint prediction, we maximize user experience by smartly selecting

proper video encoding (quantization step) settings of the video for each tile under dynamically

varying network bandwidth conditions and do the streaming. After that the predicted view will be

delivered to users.

3.4 Dataset and Its Characteristics

In this section, we first describe the dataset we use, and then show characteristics of the

dataset using certain metrics we define.

To investigate viewpoint prediction in 360-degree videos, we conduct our study on a real

head motion trace dataset that was collected by Samsung Electronics Company. The trace consists
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Figure 3.4: Statistics of dataset.

of head motion data from over 36,000 viewers during the week of November 2 – November 8,

2017, for 19 VR videos. Specifically, the frequency of head pose data was every 200ms on each

HMD. The information reported includes the content ID, session timestamp, content timestamp,

user ID and euler angles of HMD. The session timestamp and content timestamp refer to the

time counted since application launches and the location in the video being played respectively,

in milliseconds. Basic statistics of our head motion trace data are shown in Table 3.1. This

dataset contains head pose data for 19 online VR videos, which are available on the Samsung VR

website [91] and watched by a large number of viewers worldwide using their own HMD. We

aggregate these videos by categories, i.e., movie trailer, documentary, scenery and entertainment.

In Fig. 3.4, we plot the cumulative distribution function (CDF) of video duration and the number

of viewers for each video. We can observe that over 80% of videos have more than 100s for

duration and around 85% of videos have more than 1000 viewers. The large diversity and number

of VR videos in the dataset, and the large number of viewers for each video, makes the dataset

very suitable for developing and validating our viewpoint prediction method.

To depict key characteristics of the head motion and viewpoint changes in the dataset

quantitatively, we offer the following definitions.

Definition 1— Head Motion Vector: Consider a viewer watching a video in certain

time-points t1 and t2, where t1 < t2. We have corresponding head poses, which are denoted

by (x(t1),y(t1)) and (x(t2),y(t2)) respectively. Then the head motion vector (4x,4y) can be

represented as (x(t2)− x(t1),y(t2)− y(t1)).

Definition 2— Head Motion Speed: The head motion speed v is defined as the distance
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Figure 3.5: Head motion speed versus time in Kong VR.

the head moved divided by time.

v =

√
4x2 +4y2

t2− t1
(3.1)

For Kong VR video in our dataset, we draw a boxplot in Fig. 3.5 to analyze head motion

speed versus time. Fig. 3.5 shows head motion speed distribution for over 1500 viewers during

60s with this boxplot. Every dark blue strip represents the head motion speed distribution with

an x-axis width of 1 (i.e., a width 1s in video time), whereas the height of a blue strip in the

y-axis indicates the interquartile range of the head motion speed, reflecting the variability of the

head motion speed. Additionally, each light blue line represents the corresponding maximum and

minimum values and red symbols indicate the median head motion speed. From this boxplot, we

observe that the distribution exhibits different properties when time changes. For instance, at the

time point of 3s, the median head motion speed is as high as 35°/s, while 25 percent of viewers

have a head motion speed larger than 75°/s and 75 percent of viewers have a head motion speed

larger than 10°/s approximately. At another time point as 45s, median head motion is around

10°/s, while 25 percent of viewers have a head motion speed larger than 47°/s. The whole boxplot

presents the challenging situation of predicting head motion since viewers may change viewing

direction fast as well as frequently. Moreover, we can see interquartile range of head motion

speed during 30-40s is around 5°/s-40°/s while during 50-60s interquartile range of head motion

speed is 10°/s-50°/s approximately. Thus, we take the sequence of 30-40s as an example of

medium motion sequence and the sequence of 50-60s as an instance of high motion sequence. As

results presented in Section 3.7 show, viewpoint prediction and FOV generation for high motion
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sequences are relatively more challenging than for medium motion sequences, resulting in either

less FOV prediction accuracy, or larger FOV and hence less bandwidth savings.

Definition 3— Attention Map: For n viewers, content timestamps cts1,cts2 (cts1 < cts2)

denote the video clip the viewers are watching. Attention map is defined as a series of probability

that a viewpoint is within a tile for n viewers during time-period from cts1 to cts2. When we

have K tiles in one 360-degree view, we have K elements (i.e., probabilities) in the attention

map and the total sum of these probabilities is 1. When there are more tiles with relatively

high probabilities, viewpoint prediction will be more challenging since different users may have

multiple points of interest and require various FOVs.

Fig. 3.6 shows an example of attention map, demonstrating users’ attention distribution

(for over 1500 viewers) during 1s within the high motion sequence in Kong VR video [92]

mentioned above. The value in legend represents the probability that a viewpoint is within a tile

for n viewers during the given time-period. According to the legend, we can observe that the

yellow tiles attract most attention and viewers are more likely to look at these areas. The yellow

and red colors indicate that the probability that a viewpoint is within the corresponding tile is

around 0.1 and 0.05 respectively for all n viewers during the given time-period, meaning this tile

is of high interest for users. The attention map in Fig. 3.6 points to the feasibility of performing

viewpoint prediction, since there are always areas attracting more attention than remaining areas

within a 360-degree view. On the other hand, the attention map in Fig. 3.6 shows multiple tiles (as

high as 11 tiles) have relatively high probabilities (0.05-0.1), indicating the difficulty of predicting
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Figure 3.7: The viewpoint representation, projected into coordinates in equirectangular map.

viewpoint accurately. By visualizing a series of consecutive attention maps in a given sequence,

we can observe the changes of viewpoint (as well as user attention) continuously. With proposed

metrics such as head motion speed and attention map, we can characterize the viewpoint as well

as user attention from both temporal and spatial perspectives.

3.5 Viewpoint Prediction

In this section, we describe our methodology of viewpoint prediction. Given previous

and current viewpoint locations, our goal is to predict one or multiple tiles that the viewpoint

will be in for the next time point. In our dataset, head motion files include user information,

timestamp (time in video content), euler angles (pitch, yaw, roll), etc. Euler angles are shown in

Fig. 3.7(a)) and timestamps appear each 200ms. We transform euler angles into the variables x,y

in the equirectangular map [93] for 360-degree view, which is presented in Fig. 3.7(b). Variables

x and y are within (−180,180] and [−90,90] degrees respectively.

We use tile-based format for viewpoint feature representation. With each grid size as

30°×30°, the 360-degree view can be divided into 72 tiles. We select 2s as the prediction

time window (i.e., predict viewpoint according to viewpoint traces in past 2s), since it achieves

better performance than 3s, 4s and 5s based on our experiments. Note our selection of 2s is in

line with the observation made by [68]. For training the model, we design a one-hot encoding

representation [94, 95] for viewpoint as a 72×10 matrix V . Each element of V is 0 or 1. The
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Figure 3.8: LSTM model used for viewpoint prediction.

dimensions of V correspond to the 72 tiles in a 360-degree view for possible viewpoint positions,

and 10 timestamps corresponding to 2s. Thus, the element vi, j of matrix V equals to 1 when

the viewpoint is within the i-th tile at the j-th timestamp, and equals to 0 when viewpoint is not

within the corresponding tile. Another simple representation for viewpoint is a 1×10 vector,

where each element equals to i when viewpoint is in the i-th tile. With the two representations

above, we can obtain viewpoint features from previous and current viewpoint locations.

Inspired by the good performance of LSTM to capture transition regularities of human

movements since they have memory to learn the temporal dependence between observations

[78, 79], we design a multi-layer LSTM model which can learn general head motion patterns and

predict the future viewpoint position based on the past traces. Fig. 3.8 shows the LSTM model we

designed and used in our training, where first and second LSTM layers both consist of 128 LSTM

units, and the fully connected layer contains 72 nodes. Our LSTM model predicts the next tile

within which the viewpoint will be, given the previous sequence of viewpoint tiles. The outputs

are the predicted probabilities over the 72 possible tiles. The proposed model learns parameters

by minimizing cross-entropy and we train with mini-batches of size 30. Note that the settings

including 128 LSTM units, 72 nodes and 30 as mini-batch size are selected during experiments

and proved to be good by empirical results.
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Figure 3.9: Example of generating predicted FOV.

We can use the viewpoint prediction probabilities of the tiles to generate an FOV, such that

the probability that the actual user view in the next time point will be within the predicted FOV is

maximized. In that case we will be able to ”predictively stream” the generated FOV in advance

of the user’s actual user view in the next time point, instead of the entire 360-degree/VR video,

thus ensuring no additional latency at the next time point, while at the same time minimizing

bandwidth consumption of the FOV transmitted (minimizing pixels/bitrate of FOV). We define

FOV prediction accuracy as the probability that actual user view will be within the predicted FOV

(generated from one or multiple tiles).

In our preliminary work [63], we select m tiles with highest probabilities predicted by the

LSTM model, compose the predicted FOV as the combination of FOVs for each selected tile,

and transmit the predicted FOV with high quality while leaving the rest of tiles blank. Fig. 3.9

shows an example of FOV generation when we select the top two highest probability tiles (i.e.,

m = 2) provided by the LSTM model, where yellow area illustrates the predicted FOV consisting

of 26 tiles (i.e., the combination of FOVs for two selected tiles). In our current method, we build

120°×120° FOV around the center of the selected tile. By doing this, we can guarantee that when

the viewpoint is within the predicted tile, the actual FOV is larger than 90°×90° in size (i.e.,

90°×90° when the viewpoint is at the corner of predicted tile and 120°×120° when the viewpoint

is in the center of predicted tile). We can use choice of m to achieve the desired trade-off between

FOV prediction accuracy and bandwidth consumed in transmitting the predicted FOV.

As we show in Section 3.7.1, a very high FOV prediction accuracy can be obtained using
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the above method, while also saving significant bandwidth compared to transmitting the entire

360-degree video. However, the above predictive streaming approach may not work, as the

wireless network bandwidth available may not be always sufficient to transmit the predicted FOV

with high accuracy (that is, considering high enough number of ”m” tiles), thereby necessitating

the predictive adaptive streaming approach we propose and describe in Section 3.6.

3.6 Predictive Adaptive Streaming Algorithm

While predictive streaming of FOV generated using viewpoint prediction in advance of

the user actually looking at the FOV can address the ultra-low latency requirement of immersive

360-degree or VR experience, as mentioned earlier we also need adaptive streaming to address

the challenge of fluctuating network bandwidth conditions. Hence in this section we propose a

novel predictive adaptive streaming method. We investigate how viewpoint prediction can also be

used to develop an effective adaptive streaming technique for 360-degree and VR videos, such

that user experience can be maximized under dynamically varying network bandwidth conditions.

Note that our predictive adaptive streaming algorithm will be executed every time slot (e.g.,

200ms) using the network bandwidth at the beginning of the time slot. This way, our approach

can address dynamically changing network bandwidth conditions.

We define FOV probability as probability of a given tile to belong to the user’s actual

FOV, where the actual user FOV refers to the actual user field of view in size of 90°×90°. Our

proposed algorithm aims to maximize user experience (i.e., maximize the quality of tiles with high

FOV probability) by smartly selecting proper video encoding (quantization step) settings of the

video for each tile. We can find an optimal solution for maximizing user experience (minimizing

impairment I) given a bandwidth limit BW (t) for time slot t. Finally, we give an analysis of the

algorithm complexity. The notations used in our approach are described in Table 3.2.
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Table 3.2: Notations used.

Notation Meaning
BW (t) network bandwidth limit for time slot t
p f ov(k) predicted FOV probability for tile k

K total number of tiles
qp quantization parameter (QP)
L number of levels in quantization parameter
q quantization step

I(V E) impairment caused by video encoding (VE)
qk optimal quantization step for each tile k

MSE(q)
mean square error (MSE) between encoded tile video data
and corresponding raw video data for quantization step q

R(q) bitrate for quantization step q
a,b,θ,γ parameters in bitrate and MSE models

pv viewpoint probability
i, j,k index parameters for tiles
qmin minimum boundary of quantization step setting
Rmax bitrate when encoding with setting of qmin

MSEmin MSE when encoding with setting of qmin

3.6.1 Problem Formulation

We formulate the problem as an optimization problem as follows. Since minimizing

impairment I caused by video encoding (VE) equals to maximizing user experience, we set

our optimization target as minimizing I, where I is defined as I(V E) = ∑
K
k=1 p f ov(k)MSE(qk),

MSE(q) represents mean square error between the encoded tile video data and the corresponding

raw video data for quantization step q, and qk denotes the optimal quantization step for each tile

k. And qp1 as well as qpL are the minimum and maximum boundaries of quantization step (QP)

settings used for an application. This optimization problem aims to minimize impairment caused

by video encoding under constraint of the bandwidth limit.

Given:

1) Network bandwidth limit BW (t) for time slot t
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2) Predicted FOV probability p f ov(k) for each tile k, and total number of tiles K

3) Quantization parameter set {qp1,qp2, . . . ,qpL}

4) Model parameters including a,b,θ,γ

Find:

The optimal quantization step qk for each tile k to minimize impairment

IOPT = min
qk

I(V E) = min
qk

K

∑
k=1

p f ov(k)MSE(qk) (3.2)

s.t.
K

∑
k=1

R(qk)≤ BW (t) (3.3)

qk = (2(1/6))QPl−4, k ∈ {1,2, . . . ,K} (3.4)

QPl ∈ {qp1,qp2, . . . ,qpL}, l ∈ {1,2, . . . ,L} (3.5)

MSE(qk) = a ·qk +b (3.6)

R(qk) =
θ

qγ

k
(3.7)

3.6.2 Viewpoint Probability and FOV Probability

From our predictive LSTM model described in Section 3.6, we can obtain the viewpoint

probability for each tile. In this subsection, we study how to calculate the FOV probability based

on viewpoint probability. Note that FOV probability p f ov is defined as the probability of a given

tile to belong to the user’s actual FOV, while viewpoint probability pv is defined as whether the

user viewpoint is within a given tile. Equation 3.8 describes the relationship between p f ov and

pv. We use Fig. 3.10, a frame in an example 360-degree video, as an instance to illustrate how to
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Figure 3.10: Illustration for the calculation of FOV probability p f ov from viewpoint probability
pv.

Instance of calculating the “weight” (!"#$)

1

(a) !% for each tile (b) !&'% for each tile

!"#$ = ∑* !(,)+ 0.5∗ ∑/ !(0) + 0.25 ∗ ∑6 !(7)

Figure 3.11: Instances (a) left, pv for each tile (b) right, p f ov for each tile.

calculate p f ov from pv.

p f ov = ∑
i

pv(i)+0.5∗∑
j

pv( j)+0.25∗∑
h

pv(h) (3.8)

where p f ov and pv refer to the FOV probability and viewpoint probability corresponding to a tile,

and i, j,k are index parameters for tiles surrounding this given tile. For example, consider the red

dashed tile (tile #1) in Fig. 3.10; in this case, tile i belongs to tiles #1-#9, tile j belongs to tiles

#10-#21, and tile h belongs to tiles #22-#25. This equation describes that the probability of the

red dashed tile (tile #1) will belong to the actual user FOV (including both totally- and partially-

within cases) equals to the probability of user viewpoint is within the total colored area (including

purple, orange and yellow area), since we assume that the user FOV is 3×3 tiles corresponding

the size of 90°×90°. Specifically, the former refers to the left side of the equation, while on the

right side, the first, second and third terms represents the probability of the viewpoint is within

purple, orange and yellow area respectively. Note that the second and third terms assume that

the viewpoint has the average probability distribution within the same tile. Fig. 3.11 presents an

instance for the pv for each tile and the corresponding p f ov for each tile using Equation 3.8.
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Table 3.3: Experiment Setting.

Settings Experimental Values
QP 15, 20, 25, 30, 33, 37, 40

Corresponding q 3.5, 6.5, 11, 20, 28, 44, 64

Resolution
4K (3840x2160) for two views, 3840x1080
for each view

GOP and Framerate GOP: 12, framerate: 60fps

3.6.3 Bitrate and MSE Models

In this subsection, we study and model the relationship between video encoding setting

used for the 360-degree/VR video (quantization step q) and the resulting bitrate (R) as well as

mean square error (MSE), terms used in the problem formulation in Section 3.6.1.

1) Bitrate Model and Validation

Next, we introduce how we perform experiments to validate the model of relationship

between the bitrate and quantization step q. Several techniques have been proposed to model

the bitrate of the encoded video as a function of the video encoding parameters. [96] proposed

models of bitrate R using quantization step q and video frame rate t. Since in this chapter, we do

not consider the influence of different frame rate to bitrate, we fix the frame rate and thus we can

simplify the model in [96] as follows.

R(q) =
θ

qγ
= Rmax(

q
qmin

)−γ (3.9)

In order to derive and validate this bitrate model, we encoded videos for 72 tiles respec-

tively with different quantization parameter (QP) settings from Table 3.3. Using the H.265/HEVC

standard definition that q = (2(1/6))QP−4 [96], the corresponding q values are 3.5, 6.5, 11, 20,

28, 44, and 64. For each video, we encode it by using x265 encoding library and record the

bitrate under each q value. We set Rmax to be the bitrate when encoding with qmin and calculate

normalized bitrate R(q)/Rmax.
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Figure 3.12: Tiles selected for model validation of bitrate and MSE.
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Figure 3.13: Validation of model equation for bitrate (a) left, bitrate versus q (b) right,
normalized bitrate versus q.

We randomly pick several tiles shown in Fig. 3.12 as tiles a, b and c, and present results

in Fig. 3.13(a)(b), where x-axis of the figures is q and y-axis are the bitrate and normalized bitrate

in (a) and (b) respectively. The results of videos for each tile are represented by a specific color.

Bitrates are shown as circles for the different tiles of videos and the average value of all 72 tiles,

we also plot a line for each video tile to represent the model equation. The parameter γ is obtained

by minimizing mean square error between the model predicted and measured bitrates for each

video of tiles. Table 3.4 shows the corresponding parameter γ for the four lines in Fig. 3.13,

and we can also calculate the parameter θ in Equation 3.9 accordingly. From Fig. 3.13, we can

conclude that Equation 3.9 can model the bitrate of 360-degree video tiles using H.265/HEVC

standard with high accuracy. Moreover, we do the validation of bitrate estimation for the tile.

Fig. 3.15(a) shows the bitrate estimation results comparing the estimated bitrate for tile versus

actual bitrate for tile using another 18 3s-tile video clips encoded with different QPs (i.e., QP =

15, 20, 30). The correlation is 0.9979 indicating the high accuracy of the proposed model (i.e.,

power law relationship between q and bitrate).
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Table 3.4: Parameters for relationship between q and bitrate.

Tile γ

Tile a 1.056
Tile b 1.131
Tile c 1.244

Avg. of all tiles 1.195

2) Model Validation for MSE

We investigate the relationship between the mean square error (MSE) and quantization

step q, where the MSE refers to mean square error between the encoded tile video data and the

corresponding raw video data for the tile. MSE reflects the average deviation of encoded tile

pixels from their raw data counterparts. We adopt the linear model [97] between q and MSE, and

investigate modeling how quantization step q influence encoding distortion MSE as follows.

MSE(q) = a ·q+b = MSEmin(a1 ·
q

qmin
+b1) (3.10)

In order to validate the relationship between MSE and quantization step q for videos of

different tiles, we follow the same encoding settings in Section 3.6.3 1), then calculate the MSE

and pick three tiles in Fig. 3.12 for illustration. In Fig. 3.14, we use markers to show different data

points and plot a line for each video tile to represent the fitted model equation. We set MSEmin to

be the MSE when encoding with qmin and calculate normalized MSE as MSE(q)/MSEmin. The

parameters a1 and b1 are also obtained by minimizing the mean square error between the model

predicted and measured MSE for each video of tiles. Table 3.5 shows the parameters obtained in

our experiments, and we can also calculate the parameters a and b in Equation 3.10 accordingly.

From Fig. 3.14, we can see that Equation 3.10 can model the MSE of 360-degree video tiles

using H.265/HEVC standard with high accuracy. In particular, for higher quantization step q,

larger distortion (i.e., higher MSE) can be observed for tiles with more dynamic content (e.g.,

Tile c), while relatively smaller distortions are obtained for relatively static content (e.g., Tile

b). Furthermore, we do the validation of MSE estimation for the tile. Fig. 3.15(b) shows the
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Figure 3.14: Validation of model equation for MSE (a) left, MSE versus q (b) right, normalized
MSE versus q.

Table 3.5: Parameters for relationship between q and MSE.

Tile a1 b1
Tile a 0.6939 0.7825
Tile b 0.6169 0.9127
Tile c 0.7207 0.6791

Avg. of all tiles 0.7603 0.6806

MSE estimation results comparing the estimated MSE for tile versus actual MSE for tile using

another 18 3s-tile video clips encoded with different QPs (i.e., QP = 15, 20, 30). The correlation

is 0.9923 indicating the high accuracy of the proposed model (i.e., linear relationship between q

and MSE). Note that in our experiments, we employ the parameters obtained for average of all

tiles to calculate the bitrate as well as MSE.

9

(a) (b)

Figure 3.15: Validation of bitrate and MSE estimation for tile (a) left, results for bitrate (b)
right, results for MSE.
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3.6.4 Algorithm Description

We first describe the key ideas and insights of how we analyze the problem and develop

the algorithm. Then we discuss the detailed steps of the algorithm.

First, notice that the problem we are to solve contains K discrete variables (i.e., one

variable for each tile). If quantization step q has L levels, then we have LK combinations for all qk

variables (k ∈ {1,2, . . . ,K}). In our experiment, we choose L = 3 resulting in 372 combinations

in total when the total number of tiles as K = 72. A brute-force algorithm based on exhaustive

enumeration of the exponential number of combinations will be prohibitively expensive and

cannot be applicable in real-time to perform adaptive streaming responding to real-time changes

in network bandwidth. Hence, we propose a heuristic greedy algorithm to select the q level

for each tile, such that impairment I is minimized (Eq. 2) subject to the bandwidth and other

constraints (Eqs. 3-7).

- VR-PAS Algorithm

In order to solve the above problem, we first propose a heuristic greedy algorithm, VR

Predictive Adaptive Streaming (VR-PAS) algorithm, which runs periodically (in this chapter we

set the period to be 200ms). At the beginning of each time period, we will obtain the inputs of

this algorithm: 1) network bandwidth limit BW (t) for time slot t; 2) predicted FOV probability

p f ov(k) for each tile k, total number of tiles K, quantization parameter set {qp1,qp2, . . . ,qpL},

and model parameters (a,b,θ,γ). We use p f ov(k) and model parameters with Equation 3.7 to

estimate the bitrate consumption in the next time period. The output of the algorithm will be the

optimal quantization step qk for each tile k.

This problem can be formulated as a variant of discrete knapsack problem [98], in

which the bitrate consumed by each tile k can be interpreted as its weight (i.e., w(k) = R(qk));

and the video encoding impairment caused by each tile k can be regarded as its price (i.e.,

v(k) = p f ov(k)MSE(qk)). The problem can be restated as, for total K groups (K tiles), with each

group having L objects (L quantization steps), select the optimal object (quantization step) for
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Algorithm 3 VR-PAS Algorithm
Inputs:

1) Network bandwidth limit BW (t) for time slot t
2) Predicted FOV probability p f ov(k) for each tile k, and total number of tiles K
3) Quantization parameter set {qp1,qp2, . . . ,qpL}
4) Model parameters including a,b,θ,γ

Output: The optimal quantization step qk for each tile k to minimize impairment.
1: Initilization: for each tile k, set qk to be qmax (i.e., l(k)← 1, low quality), calculate the current

bandwidth needed BWcur and impairment Icur
2: while (BW cur < BW (t))&&!(all q == qmin) do
3: BWper← BWcur; Iper← Icur
4: for k = 1 : K do
5: l(k)← l(k)+1; qk← (2(1/6))qpl(k)−4

6: calculate BWcur and Icur
7: ∆BW k← BWcur−BWper
8: ∆Ik← Icur− Iper

9: l(k)← l(k)−1; qk← (2(1/6))qpl(k)−4

10: end for
11: Find k which has the maximum value of ∆Ik/∆BW k
12: Set the change of qk of tile k as

l(k)← l(k)+1; qk← (2(1/6))qpl(k)−4

13: Calculate the new bandwidth needed BWcur and Icur, check if the new BWcur > BW (t) then
revert qk as previous value

14: end while
15: return qk for each tile k

each group (tile), such that the total weight of these selected objects does not exceed the limit

(BW (t) for time slot t), and the total price (impairment) is minimized.

The underlying principle of the VR-PAS algorithm is as follows:

Algorithm 3 shows the pseudo-code of the VR-PAS algorithm. Initially we set the encoding

quality of all tiles to be Low (l = 1, quantization step max). Then we keep adjusting the encoding

quality of tiles using a while loop, as long as the total bitrate does not exceed the bitrate budget

(BW (t) for time slot t). During each iteration, the algorithm will first iterate over all the tiles, and

for each tile k, the algorithm computes the possible degradation in its encoding impairment (∆Ik),

and the possible increase in the consumed bandwidth (∆BW k), if we set its encoding quality to be

one level higher (corresponding to Line 5). Among all tiles, the algorithm will choose the one
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with the highest ratio of ∆Ik/∆BW k. Note that the encoding impairment is calculated based on

predicted FOV probability p f ov and MSE, thus a higher p f ov may lead to a higher ∆Ik/∆BW k

when parameters including MSE and bitrate R are fixed. Therefore, for a tile with higher p f ov, our

algorithm will be more likely to choose this tile in the while loop and assign it with high quality.

Algorithm will stop when 1) there is no more bandwidth available or 2) all tiles set encoding

quality to be High. The proposed VR-PAS algorithm has a run time of less than 70ms with a

Quad-core i7 processor, and thus can meet the real-time execution requirement of our predictive

adaptive streaming method.

- VR-OPT Algorithm

To be able to compare the performance of our proposed real time heuristic algorithm

VR-PAS, we next present a dynamic programming based algorithm, VR-OPT, which can produce

an optimal solution for the adaptive streaming problem (Equation 3.2), though the latter has high

runtime and hence cannot be used in practice. The core formula for the dynamic programming is

as follow:

f [k][c] = min{ f [k−1][c−w[l]]+ v[l] | ob ject l ∈ group #k}

where f [k][c] denotes the minimum price for the first k groups using cost c (condition: 0 < c≤

BW (t),1≤ k≤K,1≤ l ≤ L), and different object l in group k corresponding to different encoding

quality for a tile. The minimum f [K][:] corresponds to the final solution. Note that this formula

requires BW (t) for time slot t and all w[i] are integrals, assuming in our experiments the w[i] can

be as small as 0.06Mbps, then we magnify them 100 times simultaneously to make them become

integral value. In this algorithm shown in Algorithm 4, Lines 3-20 achieve the core formula

described above, which are solving the problems by breaking it apart into a sequence of smaller

decisions. Specifically, we calculate the value of f [k][c] for each combination of variables k and c

(condition: 1≤ k ≤ K, 0 < c≤ BW (t)), which means solving the problem of the minimum price

for first k groups using cost c and obtaining the optimal solutions of all these smaller decisions.
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Then by considering all these smaller decisions, the algorithm gets the minimum f [K][:] as the

final solution, corresponding to the minimum impairment achieved with a total bitrate within

the bandwidth limit. Finally, in Line 21, Procedure FindQuality is a function tracing back the

selected quantization step (i.e., selected quality) for each tile in the optimal solution.

3.6.5 Complexity Analysis

Since this problem is a variant of knapsack problem, it is also a NP-complete problem.

Our proposed heuristic algorithm VR-PAS has the worst-case time complexity of O(K ·K(L−1)).

The worst-case happens when the bandwidth limit equals to or larger than the bandwidth needed

for highest quality for the whole 360-degree view. In this case, the iteration (i.e., Lines 2-14

of VR-PAS) will be conducted for K(L−1) times, where one of the tiles is set one-level quality

better during each iteration and finally all tiles are set with highest quality. As for the VR-OPT

algorithm, the worst-case time complexity is O(K ·100BW (t) ·L) due to the three nested loops

in Lines 3, 4, and 6 (whose number of iterations are K, 100BW (t), and L respectively). This

algorithm can obtain optimal results but will be much more time-consuming than VR-PAS, which

will be further discussed in the next section.

3.7 Experimental Results

In this section, we report on experiments conducted to evaluate the performance of

our proposed predictive LSTM model, as well as our proposed predictive adaptive streaming

algorithms. We also do an end-to-end timeline analysis of our predictive adaptive streaming

approach.
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Algorithm 4 VR-OPT Algorithm
Inputs:

1) Network bandwidth limit BW (t) for time slot t
2) Predicted FOV probability p f ov(k) for each tile k, and total number of tiles K
3) Quantization parameter set {qp1,qp2, . . . ,qpL}
4) Model parameters including a,b,θ,γ

Output: The optimal quantization step qk for each tile k to minimize impairment.
1: f ← zeros(K,BW (t)∗100)
2: mark← zeros(K,BW (t)∗100)
3: for k = 1 : K do
4: for c = 0 : 0.01 : BW (t) do
5: temp← INT MAX
6: for l = 1 : L do
7: q← (2(1/6))qpl−4

8: w[l]← R(q)
9: v[l]← p f ov(k)MSE(q)

10: if c−w[l]≥ 0 then
11: ftemp← f [k−1][100∗ (c−w[l])]+ v[l]
12: if ftemp < temp then
13: temp← ftemp
14: mark[k][c]← l
15: end if
16: end if
17: end for
18: f [k][100∗ c]← temp
19: end for
20: end for
21: Get qk from FindQuality()
22: return qk for each tile k

Procedure FindQuality():
1: pre← BW (t)∗100
2: for k = K :−1 : 1 do
3: tilel ← mark[k][pre]
4: Set the change of quantization step setting of tile k as

l(k)← tilel; qk← (2(1/6))qpl(k)−4

5: Denote bandwidth needed for the tile k as bw and calculate the new pre as pre← pre−
bw∗100

6: end for
7: return qk for each tile k
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(b) High Motion Sequence

Figure 3.16: (a)(b) show FOV prediction accuracy and pixel saving versus number of tiles
selected for FOV (for two sequences in Kong VR).

3.7.1 Predictive LSTM Model

Next we present the experimental results for our predictive LSTM model, including the

experimental setup. We use 90% of the dataset for training the LSTM viewpoint prediction model,

and 10% for testing, ensuring the test data is from viewers which are different than those in

training data. Specifically, we have 32400 samples as training data and 3600 samples as test

data for both medium motion and high motion sequences in Fig. 3.16 and Table 3.6, while we

take 45000 samples as training data and 5000 samples as test data for each of three sequences in

Table 3.7. As for the experimental setup, we use an Intel Core i7 Quad-Core processor with 32GB

RAM and implement our approach in Python using Keras [99]. We compare the performance of

our LSTM model with state-of-the-art methods as follows:

• Stacked sparse autoencoders (SAE): We use SAE [83, 100] with tile information during 10

timestamps as input to predict the tile where the viewpoint is within for next timestamp.

The SAE model contains two fully-connected layers with 100 and 80 nodes respectively

for training.

• Bootstrap-aggregated decision trees (BT): Following the work of [72], we also compare

against BT using 10-timestamp tile information as input. The BT model ensembles with 30
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bagged decision trees, which reduces the effects of overfitting and improves generalization.

• Weighted k-nearest neighbors (kNN): We implement a kNN [101] using 10-timestamp tile

information as input and set 100 as the number of nearest neighbors.

Note that while the training time for BT and kNN are less than 20 minutes for the above training

set for a 10-second sequence, the training time for the deep learning models including LSTM and

SAE are up to one hour.

After training the various models with both two representations described in Section 3.5.1,

we decide on using the one-hot encoding representation to train SAE and LSTM models, while

using the simple representation for BT and kNN, since the simple representation works better for

the latter two approaches in our experiments.

Table 3.6: Experimental results for two sequences in Kong VR.

Model Medium Motion Sequence High Motion Sequence
FOV Accuracy(%) Pixel Saving(%) FOV Accuracy(%) Pixel Saving(%)

SAE 95.0 34.0 95.0 3.9
LSTM 95.5 55.7 95.0 43.7
BT 95.0 14.8 95.2 14.4
kNN 94.8 12.0 95.3 12.0

Table 3.7: Experimental results for three video sequences.

Model Fashion Show Whale Encounter Roller Coaster
FOV Accuracy(%) Pixel Saving(%) FOV Accuracy(%) Pixel Saving(%) FOV Accuracy(%) Pixel Saving(%)

SAE 95.4 52.7 95.1 46.8 95.3 29.9
LSTM 95.2 69.7 95.5 66.8 95.2 71.0
BT 95.3 19.1 95.0 18.6 95.2 48.9
kNN 94.9 12.0 95.2 10.3 95.1 21.2

Note in Fig. 3.16, Table 3.6 and Table 3.7, FOV accuracy refers to FOV prediction

accuracy. We first show results of experiments with the medium and high motion sequences of

Kong VR in Fig. 3.16 and Table 3.6. We show the FOV prediction accuracy and pixel savings

obtained when selecting different number of tiles (i.e., the choice of m) to generate FOV. The

blue plots show the FOV prediction accuracy achieved by each of the models for specific number

of tiles (i.e., the choice of m) selected to generate the FOV, while the green plots show the
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corresponding pixel saving of the generated FOV compared to the whole 360-degree view. Lines

with blue triangle markers, blue square markers, blue cross markers and blue point markers

represent FOV prediction accuracy for SAE, LSTM, BT and kNN models respectively while lines

with green triangle markers, green square markers, green cross markers and green point markers

represent corresponding pixel saving for these models.

From Fig. 3.16, we observe the following. As number of tiles m increases, the FOV

prediction accuracy continuously increases and pixel saving simultaneously decreases. This

shows the tradeoff between FOV prediction accuracy and pixel saving. Furthermore, we can

see that our proposed LSTM model outperforms the other three methods. For instance, in

both Fig. 3.16(a) and (b), the line with blue square markers (denoting FOV prediction accuracy

achieved by LSTM) is significantly higher than the other three blue lines when the number of

selected tiles (i.e., the choice of m) is larger than 5. We also observe that high FOV prediction

accuracy can be achieved by LSTM (and other models) with smaller FOV and hence higher

pixel savings for medium motion sequences compared to high motion sequences. For example,

in Fig. 3.16(a), LSTM achieves a high FOV prediction accuracy of 95.5% when selects 8 tiles

(i.e., m = 8) to generate FOV, leading to pixel savings of 55.7%, while in Fig. 3.16(b) to achieve

a comparable FOV prediction accuracy of 95.0%, LSTM needs a larger FOV generated by 13

tiles (i.e., m = 13) with lower pixel savings of 43.7%. Table 3.6 summarizes the experimental

results shown in Fig. 3.16. When we set FOV prediction accuracy as around 95%, we can observe

that our LSTM model achieves significantly larger pixel savings than the other three models,

achieving 55.7% and 43.7% pixel savings for medium and high motion sequences respectively.

In our experiments, the inference time for all the models including LSTM is less than 2ms.

We further perform more experiments on three relatively low motion video sequences

including Fashion Show, Whale Encounter and Roller Coaster in our dataset to evaluate our

LSTM model. It corresponds to the fact that for instance in Fashion Show sequence, viewers have

similar area of interest (e.g., the stage) and seldom change viewpoint out of this area to other tiles.
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Table 3.8: QP and total bandwidth needed for different quality.

Quality QP Total Bandwidth Needed
Low 30 8.64Mbps

Medium 20 28.2Mbps
High 15 57.6Mbps

Similarly, in Roller Coaster sequence, viewers tend to look towards front more time than other

directions when roller coaster keeps up high speed. Moreover, note that we select 10s-duration for

each sequence to keep consistency with experiments done with Kong VR. The inference time for

all the models including LSTM is still less than 2ms. Table 3.7 exhibits the experimental results

for the three video sequences. Our LSTM model can achieve a very high FOV prediction accuracy

of approximately 95% with selecting 4 tiles (i.e., m = 4) to generate FOV and corresponding

pixel savings of around 70% for Fashion Show and Roller Coaster, and choosing 5 tiles (i.e.,

m = 5) to generate FOV and corresponding pixel savings of 66.8% for Whale Encounter. Note

that the above savings are significantly higher than achieved by the other three models. Therefore,

our experimental results above demonstrate that our LSTM model and FOV generation approach

can achieve very high FOV prediction accuracy while significantly reducing pixels needed. In a

separate work involving different VR applications, we have shown empirically that there is a high

correlation between pixel and bitrate savings [102]. Thus, our experimental results also illustrate

the tradeoff between FOV prediction accuracy and bandwidth savings.

While the above results demonstrate the accuracy and bandwidth savings potential of

our viewpoint prediction and FOV generation approach, the network bandwidth available may

not be sufficient to transmit the predicted FOV, thereby necessitating the predictive adaptive

streaming approach we described in Section 3.6. We next describe experiments we conducted to

evaluate our proposed predictive adaptive streaming algorithm VR-PAS, including comparison

with the optimal algorithm VR-OPT as well as a recent related work on adaptive 360-degree video

streaming.
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Figure 3.17: LTE bandwidth trace (a) top, bandwidth for outdoor (b) middle, bandwidth for
indoor location I (c) bottom, bandwidth for indoor location II.

3.7.2 Predictive Adaptive Streaming

We first collect 4G-LTE network traces by using network bandwidth testing software

Speedtest [103] to record the bandwidth. Fig. 3.17 shows the bandwidth measured during 180s in

one outdoor location and two indoor locations respectively (for indoor environment, we select two

indoor locations under different bandwidth conditions). We can see the average bandwidth for

outdoor location, indoor location I, and indoor location II are 49.8Mbps, 38.7Mbps and 27.4Mbps

respectively. The bandwidth in outdoor location is relatively largest among three locations while

the bandwidth in indoor location II is more limited than in indoor location I. Table 3.8 presents the

bandwidth needed for the video sequence called Fashion Show if all tiles are encoded in different

quality (QP high, medium and low). We take it as an example to do our experiments and similar
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Figure 3.18: In outdoor location, average percentage of different quality view in actual FOV (a)
left, predictive adaptive streaming (b) middle, adaptive streaming (c) right, no adaption

streaming.
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Figure 3.19: In indoor location I, average percentage of different quality view in actual FOV (a)
left, predictive adaptive streaming (b) middle, adaptive streaming (c) right, no adaption

streaming.

results can be obtained for other videos. From Table 3.8, we can see that all tiles can be encoded

in high quality when bandwidth limit is larger than or equal to 57.6Mbps. In our experiments, for

each time slot (e.g., 200ms), we consider the bandwidth value at the beginning of the time slot in

the network traces in Fig. 3.17(a)(b)(c) as the ongoing bandwidth limit for the current time slot,

and run our proposed algorithm with head motion traces.

In addition, for comparison reason, we also implemented two more algorithms as follows:

1) Adaptive streaming: We implement the adaptive streaming method, which is called

viewport-driven rate-distortion optimized streaming from [89]. This method enables the

adaptive video streaming according to the heatmaps that capture the likelihood of navigation

of different spatial segments of a 360-degree video over time. Specifically, during one GOP

(e.g., 1s), corresponding to 30 frames, for each tile k they count the number of times that

the tile is occupied by user FOV, denoted as wk. This technique computes the likelihoods
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Figure 3.20: In indoor location II, average percentage of different quality view in actual FOV
(a) left, predictive adaptive streaming (b) middle, adaptive streaming (c) right, no adaption

streaming.

of navigating different tiles during the given GOP as wk
∑k wk

and then do the bitrate allocation

(assign video quality) for tiles based on these likelihoods.

2) Non-adaptive streaming: We also compare against non-adaptive streaming method, which

is the normal approach to stream the whole 360-degree view in the same quality (e.g.,

low/medium/high) according to the bandwidth condition.

Fig. 3.18, Fig. 3.19, and Fig. 3.20 show the results for the three different network band-

width traces in outdoor location, indoor location I, and indoor location II respectively. We

employ following metrics to evaluate the performance of our algorithm: P(QHigh) is defined as

percentage of tiles in the actual user FOV which are encoded with High quality (i.e., low QP),

while P(QMedium) and P(QLow) are defined as percentage of tiles in the actual user FOV which

are encoded with Medium quality (i.e., medium QP) and Low quality (i.e., high QP) respectively.

Using 1000 head motion traces for the video sequence called Fashion Show, we calculate the

P(QHigh), P(QMedium), P(QLow) and PSNR (Equations 3.11 and 3.12) in actual user FOV under

different bandwidth conditions. In Equations 3.11 and 3.12 [104], MSEavg represents the average

MSE of the actual user FOV while MSEH , MSEM, and MSEL denotes the average MSE of high,

medium, low quality tile respectively.

PSNR = 10log10
2552

MSEavg
(3.11)
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MSEavg =P(QHigh)MSEH+

P(QMedium)MSEM +P(QLow)MSEL (3.12)

Fig. 3.18(a), Fig. 3.19(a), and Fig. 3.20(a) plot the average P(QHigh) for all these traces

while Fig. 3.18(b), Fig. 3.19(b), and Fig. 3.20(b) plot the average P(QMedium) and Fig. 3.18(c),

Fig. 3.19(c), and Fig. 3.20(c) plot the average P(QLow). The corresponding PSNR in the actual

FOV is also illustrated in Fig. 3.21 for these three locations. In each figure, we compare the

performance of the three algorithms (our proposed VR-PAS as the predictive adaptive streaming

method, adaptive streaming method [89] and non-adaptive streaming method). From the figures,

we can make the following observations:

1) From Fig. 3.18 and Fig. 3.19, we can observe that our predictive adaptive streaming achieves

high average P(QHigh) (i.e., larger than 99%) in outdoor location and indoor location I. In

Fig. 3.20, our predictive adaptive streaming also achieves high average P(QHigh) (i.e., larger

than 80%) in indoor location II, while both adaptive and non-adaptive streaming produces

significantly lower user experience with P(QHigh) less than 65% and 0 respectively.

2) In all three locations, our predictive adaptive streaming algorithm VR-PAS performs signifi-

cantly better (result in higher P(QHigh) and PSNR) compared to adaptive streaming [33]

and non-adaptive streaming. For example, in Fig. 21(c), our predictive adaptive streaming

achieves an average PSNR more than 1dB and 4dB larger compared to adaptive streaming

and non-adaptive streaming respectively.

To evaluate the bandwidth savings and thereby wireless network capacity gain that can

be achieved by VR-PAS, we measure P(QHigh), P(QMedium), P(QLow) and PSNR of streaming

using VR-PAS, and compare with adaptive and non-adaptive streaming. Fig. 3.22 and Fig. 3.23
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Figure 3.21: PSNR results (a) top, bandwidth for outdoor (b) middle, bandwidth for indoor
location I (c) bottom, bandwidth for indoor location II.

illustrate the results for different bandwidth limits (x-axes) using three algorithms. Fig. 3.22

presents the P(QHigh), P(QMedium), P(QLow) under different bandwidth limits while Fig. 3.23

shows the PSNR of actual user FOV under different bandwidth limits. We provide a summary of

key observations as follows:

1) Fig. 22 shows that our predictive adaptive streaming method has an average P(QHigh) of

around 98% using 25Mbps while 57.6Mbps is the total bandwidth needed for the whole
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10 20 30 40 50
Bandwidth Limit (Mbps)

0

50

100

60

80

100

Pe
rc

en
ta

ge
 (%

)

P(QHigh) P(QMedium) P(QLow)

(b) Adaptive Streaming

10 20 30 40 50
Bandwidth Limit (Mbps)

0

50

100

60

80

100

Pe
rc

en
ta

ge
 (%

)

P(QHigh) P(QMedium) P(QLow)

(c) Non-adaptive Streaming
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Figure 3.22: Percentages of different quality in actual user FOV under different fixed
bandwidth limits (a) left, predictive adaptive streaming (b) middle, adaptive streaming (c) right,

no adaption streaming.
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Figure 3.23: PSNR results versus the different fixed bandwidth limits.

360-degree view in High quality (Table 3.8), meaning that the user can have around 98%

view in High quality with 56.6% bandwidth savings. This shows that VR-PAS can lead

to significant bandwidth savings while ensuring very high user experience and satisfying

ultra-low latency requirement due to accurate viewpoint prediction and advanced streaming.

2) In Fig. 23, we can observe that significantly lower bandwidth is needed by VR-PAS to

produce the same high-quality experience compared to adaptive and non-adaptive streaming.

For example, to achieve PSNR of 50dB in actual user FOV, from Fig. 23, VR-PAS requires

around 14Mbps while the adaptive and non-adaptive streaming methods need around

20Mbps and 30Mbps respectively. Thus, our proposed predictive adaptive streaming

method can provide more than 53.3% bandwidth saving compared to normal streaming

(i.e., non-adaptive streaming) to offer the user FOV with PSNR of 50dB.

The bandwidth savings achieved by the predictive adaptive streaming method can enable

network operators to significantly improve capacity of their network, being able to serve

significantly more users their 360-degree/VR video applications. For example, 2X more

users can be served a high-quality experience of 50dB PSNR, compared to adaptive and

non-adaptive techniques. This in turn can significantly improve the economics of delivering

wirelessly 360-degree/VR experiences by service providers and/or network operators, while

ensuring high user experience including visual quality and ultra-low latency requirements.
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Next, we do a comparison for predictive adaptive streaming algorithms VR-PAS and VR-

OPT in Table 3.9. Similar impairment I(V E) is achieved by both algorithms while our VR-PAS

algorithm can be completed within around 70ms and VR-OPT cannot be finished in real time (e.g.,

runtime is 8.3s approximately when bandwidth limit is 40Mbps). This shows that our VR-PAS

algorithm is a real time algorithm and can generate similar results compared to the optimal results

obtained by VR-OPT algorithm.

Table 3.9: Comparison for predictive adaptive streaming algorithms VR-PAS and VR-OPT.

Bandwidth Limit Algorithm I(VE) Runtime

10Mbps
VR-PAS 21.807 13.9ms
VR-OPT 21.807 2051ms

20Mbps
VR-PAS 7.929 27.8ms
VR-OPT 7.877 4116ms

30Mbps
VR-PAS 5.501 39.4ms
VR-OPT 5.496 6159ms

40Mbps
VR-PAS 5.224 51.3ms
VR-OPT 5.223 8294ms

50Mbps
VR-PAS 5.186 63.4ms
VR-OPT 5.186 10398ms

3.7.3 Timeline Analysis

In this subsection, we give an analysis of the timeline for our proposed predictive adaptive

streaming method in Table 3.10. Specifically, we can see that the latency for transmission from

HMD to edge and from edge to HMD depend on distance between them. Thus, our proposed

predictive adaptive streaming algorithm VR-PAS can run in real-time, with less than 70ms runtime

as shown in Table 3.9; with added round-trip transmission latency of under 25ms and the other

delays due to viewpoint prediction and decoding (Table 3.10), our algorithm can be executed in

real-time about every 100ms. Since we predict the user view 200ms in advance, we have adequate

time to send the predicted view in advance and display the needed view for users on the HMD with

no additional latency, hence satisfying the ultra-low latency requirement of 360-degree video and

VR immersive experiences. Note that Table 3.10 does not include the time of encoding tiles since
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Table 3.10: Time needed for different procedures.

Procedure Time Needed
Transmission from HMD to edge Depends on distance

Viewpoint Prediction < 2ms
Predictive Adaptive Streaming Alg. < 70ms
Transmission from edge to HMD Depends on distance

Decoding ≈ 3ms

video tiles are known and have been encoded before streaming in the current 360-degree video

streaming scenario; the time consumption of encoding tiles will have to be added if real-time tile

encoding is needed.

3.8 Conclusion

In this chapter, we propose a predictive adaptive streaming approach in order to reduce the

latency and bandwidth needed to deliver 360-degree videos and cloud/edge-based VR applications,

leading to better mobile VR experiences. We present a multi-layer LSTM model which can learn

general head motion pattern and predict the future viewpoint based on past traces. Our method

outperforms state-of-the-art methods on a real head motion trace dataset and shows great potential

to reduce bandwidth while keeping a good user experience (i.e., high PSNR).
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Chapter 4

Motion Prediction and Pre-Rendering at

the Edge to Enable Ultra-Low Latency

Mobile 6DoF Experiences

This chapter presents the methodology that can be used for mobile VR application

streaming. As virtual reality (VR) applications become popular, the desire to enable high-quality,

lightweight, and mobile VR can potentially be achieved by performing the VR rendering and

encoding computations at the edge and streaming the rendered video to the VR glasses. However,

if the rendering has to be performed after the edge gets to know of the user’s new head and body

position, the ultra-low latency requirements of VR will not be met by the roundtrip delay. In this

chapter, we introduce edge intelligence, wherein the edge can predict, pre-render and cache the

VR video in advance, to be streamed to the user VR glasses as soon as needed. The edge-based

predictive pre-rendering approach can address the challenging six Degrees of Freedom (6DoF)

VR content. Compared to 360-degree videos and 3DoF (head motion only) VR, 6DoF VR

supports both head and body motion, thus not only viewing direction but also viewing position

can change. Hence, our proposed VR edge intelligence comprises of predicting both the head
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and body motions of a user accurately using past head and body motion traces. In this chapter,

we develop a multi-task long short-term memory (LSTM) model for body motion prediction

and a multi-layer perceptron (MLP) model for head motion prediction. We implement the deep

learning-based motion prediction models and validate their accuracy and effectiveness using a

dataset of over 840,000 samples for head and body motion.

4.1 Introduction
Virtual reality (VR) systems have triggered enormous interest over the last few years in

various fields including entertainment, enterprise, education, manufacturing, transportation, etc.

However, several key hurdles need to be overcome for businesses and consumers to get fully on

board with VR technology [1]: cheaper price and compelling content, and, most importantly,

a truly mobile VR experience. Of particular interest is how to develop mobile (wireless and

lightweight) head-mounted displays (HMDs), and how to enable VR experience on the mobile

HMDs using bandwidth-constrained mobile networks, while satisfying the ultra-low latency

requirements.

Currently, there are several categories of HMDs [2]: PC VR, standalone VR, and mobile

VR. Specifically, PC VR has high visual quality with rich graphics contents as well as high frame

rate, but the HMD is usually tethered with PC [3,4]; standalone VR HMD has a built-in processor

and is mobile, but may have relative low-quality graphics and low refresh rate [5,6]; mobile VR is

with a smartphone inside, leading to a heavy HMD to wear [7, 8]. Therefore, current HMDs still

cannot offer us a lightweight, mobile, and high-quality VR experience. To solve this problem, we

propose an edge computing based solution. By performing the rendering on an edge computing

node and streaming videos to users, we can complete the heavy computational tasks on the edge

computing node and thus enable mobile VR with lightweight VR glasses. The most challenging

part of this solution is ultra-high bandwidth and ultra-low latency requirements, since streaming

360-degree video causes tremendous bandwidth consumption and good VR user experiences
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Figure 4.1: Illustration of rendering and streaming pipeline to show how our predictive
pre-rendering approach reduces latency: (a) Without encoding and decoding; (b) With encoding

and decoding.

require ultra-low latency (<20ms) [9, 10].

Specifically, the total end-to-end latency of edge computing based VR system includes the

following parts: time to transmit sensor data from HMD to edge computing node, time to render

(and encode) on the edge node, time to transmit rendered video from the edge computing node

to HMD, and time to (decode and) display the view on the HMD. The encoding and decoding

are optional according to the specific application design. Once the user moves his/her head or

body position, high-quality VR requires this end-to-end latency as less than 20ms [9, 10] to avoid

motion sickness. For the edge computing based VR system, it is extremely challenging to meet

this requirement.

Motivated by the ultra-low latency requirement challenge, in this chapter, we introduce

edge intelligence for mobile VR, wherein the edge can predict, pre-render and cache the VR video

in advance, to be streamed to the user VR glasses as soon as needed. Specifically, we consider six

Degrees of Freedom (6DoF) VR experiences, which support both the head and body motions, thus

both the viewing direction and viewing position can change. Hence, in order to pre-render the

view, edge intelligence is needed to predict both the head and body motions of a user accurately.

By predicting head and body motion of users in the near future with edge intelligence, we can do

a predictive pre-rendering on the edge computing node and then stream (even pre-deliver) the

predicted view to the HMD. The difference between stream and pre-deliver is that stream means

holding the pre-rendered frame until determining whether prediction is ’correct’ or not using
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the actual motion, while pre-deliver refers to sending the pre-rendered frame immediately to the

user without this determination. Note that both stream and pre-deliver choices can significantly

reduce latency: one does pre-rendering and the other does both pre-rendering and pre-delivery.

The latter reduces more latency than the former but (i) needs a technique on HMD to buffer the

predicted view and determine whether the predicted viewing position and direction are correct; (ii)

transmits extra content when the prediction is inaccurate, leading to more bandwidth consumption.

Hence, we adopt the former method, where the latency can be significantly reduced since the

pre-rendered view will be transmitted if the predicted viewing position and direction are ’correct’

(i.e., the error is less than a given ultra-low value); otherwise, latency remains the same with

traditional streaming method because the actual view will be rendered and transmitted to the

HMD. Fig. 4.1 illustrates the latency reduced by our pre-rendering approach compared to the

traditional approach, in terms of rendering and streaming pipeline (from edge computing node

to HMD). The key to achieving this efficient edge-based predictive pre-rendering approach is

predicting body and head motion in advance accurately, and then pre-rendering the predicted

view accordingly.

In our earlier work [63], we proposed techniques for head motion prediction in 360-degree

videos and three Degrees of Freedom (3DoF) VR applications. In this work, we address the

more challenging 6DoF VR content. Compared to 360-degree videos and 3DoF (head motion

only) VR, 6DoF VR supports both head and body motions, thus not only viewing direction but

also viewing position changes. Hence, our proposed VR edge intelligence has to comprise of
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predicting both the head and body motions of a user accurately using past head and body motion

traces. Specifically, for head motion prediction in 360-degree videos and 3DoF VR, a certain

prediction error is allowed, because the error can be handled by delivering a larger field of view

(FOV) with high quality or rendering larger FOV. Note that FOV is around 90◦×90◦ for Samsung

Gear VR and 110◦×110◦ for HTC Vive while the 360-degree view is 360◦×180◦ in size (as is

shown in Fig. 4.2). Compared to 360-degree videos and 3DoF VR, the motion prediction in

6DoF VR is much more challenging, where the body motion prediction needs high precision to

pre-render the user’s view (otherwise may cause dizzy feeling). For 360-degree videos and 3DoF

VR, the 360-degree view at a time point is known and unchanged by any head motion, but for

6DoF VR it can be totally different due to the body motion. Therefore, this chapter will explore

the feasibility of doing motion prediction with high precision in 6DoF VR using edge intelligence,

and its main contributions can be summarized as follows:

• For 6DoF VR applications, we propose a new edge-based predictive pre-rendering approach

involving both body and head motion prediction, in order to enable high-quality, lightweight,

and mobile VR with low latency.

• We develop a prediction method using edge intelligence to predict where a user will be

standing (i.e., viewing position) and looking into (i.e., viewing direction) in the 360-degree

view based on their past behavior. Using a dataset of real head and body motion traces

from VR applications, we show the feasibility of our multi-task long short-term memory

(LSTM) model for body motion prediction and multi-layer perceptron (MLP) model for

head motion prediction with high precision.

• We propose a FOV selection technique for pre-rendering a larger FOV to further reduce

head motion prediction error, and a motion error determination technique as the system

mechanism of our edge-based predictive pre-rendering approach.

• To the best of our knowledge, we are the first to come up with this edge-based predictive
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pre-rendering idea using edge intelligence for 6DoF VR applications and show good results

on a real motion trace dataset in the VR applications. We demonstrate the potential of our

approach with high accuracy of head and body motion prediction.

Note that a preliminary version of our work has been published in [105], where we

reported on edge-based predictive single-task models for head (MLP model) and body (LSTM

model) motions, and some preliminary results. In this article, we develop (i) a new multi-task

LSTM model for body motion prediction to reduce body motion prediction error, (ii) head and

body motion prediction based FOV selection for pre-rendering, such that the selected FOV

minimizes the effects of motion prediction error while also minimizing the selected FOV size,

and (iii) motion error determination as the system mechanism of our edge-based predictive

pre-rendering approach. Note that the methodology proposed in this chapter applies to single-user

scenarios, and we plan to further study more complex multi-user scenarios as part of future work.

The rest of the chapter is organized as follows. Section 4.2 reviews related work. Sec-

tion 4.3 presents a system overview and problem definition. Section 4.4 describes our dataset.

The methodology for head and body motion prediction is described in Section 4.5. We present

our experimental results in Section 4.6 and conclude our work in Section 4.7.

4.2 Related Work

In this section, we review current work in the following topics related to our research.

Enable High-Quality Mobile VR: Some recent studies [106–110] explore solutions to

enable lightweight and mobile VR experiences, and improve the performance of the current VR

system. To provide high-quality VR on a mobile device, [106] presents a pre-rendering and

caching design called FlashBack, which pre-renders all possible views for different positions as

well as orientations at each 3D grid point with a density of 2-5cm, stores them on a local cache,

and delivers frames on demand according to current position and orientations. This method may

lead to high inaccuracy and overwhelming storage overhead of pre-caching all possible views

98



(e.g., 50GB for an app). [107] introduces a parallel rendering and streaming mechanism to reduce

the add-on streaming latency, by pipelining the rendering, encoding, transmission, and decoding

procedures. This method focuses on minimizing streaming latency, thus the latency for rendering

part remains the same as the traditional rendering method. [108] presents a collaborative rendering

method to reduce overall rendering latency by offloading costly background rendering to an edge

computing node and only performing foreground rendering on the mobile device. In contrast, our

method proposes to pre-render based on head and body motion predictions, reducing the latency

of rendering more drastically. To reduce latency needed, [109] proposes to stream VR scenes

containing only the user’s FOV and a latency-adaptive margin area around the FOV. [110] aims

to address the ultra-high bandwidth challenge in high-quality mobile VR by adaptively reusing

the redundant VR pixels across multiple VR frames. The reason these two methods cannot be

applied to our scenario is that [109] cannot address 6DoF VR content and [110] reduces network

transmission latency to some extent but also brings the larger rendering latency.

Human Motion Prediction: Learning statistical models of human motion are challenging

due to the stochastic nature of human movement to explore the environment, and many works [78,

111–114] propose methods to address it. Based on classical mechanics, there are some studies [78,

111, 112] showing the efficiency of linear acceleration model (Lin-A) by doing motion prediction

or estimation with an assumption of linear acceleration, especially in a small time interval (e.g.,

order of tens of milliseconds). [111] describes a good performance of a simple first-order linear

motion model for tracking human limb segment orientation, and [78,112] reveal acceptable results

when employing the linear model as a baseline to predict human trajectory. Meanwhile, deep

learning approaches [78, 112–114] for human body prediction have also achieved remarkable

accomplishments. Specifically, [78, 112] propose their LSTM models to predict human future

trajectories, but their models aim to learn general human movement from a massive number of

videos and the corresponding precision of predicted position does not achieve the requirement

of pre-rendering in VR scenarios. [113, 114] propose various recurrent neural network (RNN)
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models for human motion prediction to learn human kinematics from skeletal data. But these

models are designed to learn the patterns from a series of skeletal data and cannot be applied to

our VR scenarios directly.

Moreover, [63, 84, 85, 115] also explore the feasibility of doing head motion prediction,

however, head motion prediction in 6DoF is quite different than 360-degree video (3DoF), since

in the latter, for each time point, the whole 360-degree view displayed for viewers is fixed and

more regularity and pattern exist in their viewing directions. By learning viewers’ traces, for

3DoF applications, the models can well predict the viewing position since at a certain time point,

there are always some areas attracting most attention and viewers are more likely to look at them.

Head motion in 6DoF is more difficult to predict because both position and viewing direction may

continuously change, and there is a much larger virtual space to explore for users. Therefore, the

above approaches cannot be used to address our scenario: we aim to explore the high-precision

human body and head motion prediction in 6DoF VR applications for pre-rendering.

Multi-task Learning: Multi-task learning aims to improve learning efficiency and pre-

diction accuracy for each task, compared to training a separate model for each task. Some recent

studies [116–118] explore solutions to improve prediction accuracy by learning multiple tasks

from a shared representation, and formulate the multi-task learning problems which involve

joint learning of various regression and classification tasks with different units and scales. [116]

shows that a shared representation with multi-task learning can improve accuracy on depth

regression and instance segmentation over separately trained single tasks because of cues from

other tasks. [117] presents that multi-task learning benefits and achieves better results compared

with single-task models on event detection in social media by doing text analysis with Twitter

datasets. [118] proposes a multi-task RNN for simultaneous recognition of surgical gestures

with kinematic signals, and demonstrates that the recognition performance improves with the

multi-task learning model compared with single-task models. The reason why we cannot use

above methods for body motion is that most of these methods [116, 118] address computer vision

100



Timestamp t

Tracking

Decoding

Displaying

Head & Body

Motion

Motion 

Prediction

dHead≤ϵH
dBody≤ϵB

Pre-rendering

YesRendering

Exact FOV

No

Controlling Command

Encoded Frames

Predicted

Motion

Edge Device

Encoded

Frames

Motion

Decision

Actual

Motion

Timestamp t-1

Bandwidth

Info

Controller

FOV Selection

Encoding

VR Glasses

Network

Head & Body Motion, 

Controlling CommandTrackingDisplaying

New

Techniques:

Figure 4.3: System overview.

recognition problem instead of predicting variables ahead of time and [117] considers event

detection based on texts in social media which also cannot be applied to body motion prediction

scenario. Our proposed multi-task model distinguishes from the above methods by addressing

the real-time body motion prediction problem using real motion traces in the VR scenario and

aiming for an ultra-low prediction error.

4.3 System Overview
In this section, we describe our system overview. In Fig. 4.3, a user’s head motion, body

motion as well as other controlling commands will firstly be sent to the edge, which performs the

edge-based predictive pre-rendering approach. Based on the past few seconds of head motion,

body motion and control data received from the user, the edge device will do three things: (i)

perform motion prediction (motion prediction); (ii) do pre-render based on the predicted viewing

position and direction (motion decision and pre-rendering); (iii) cache the predicted frames in

advance. Later, if the predicted viewing position and direction are ’correct’ (i.e., the error is

less than a given ultra-low value), the cached predicted frames can be streamed from the edge

device to the HMD and displayed on HMD immediately; otherwise, the actual view will be

rendered by the edge device and transmitted to the HMD. For the former case, latency needed

will be significantly reduced since the view is pre-rendered and cached on the edge computing
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node before it is needed; for the latter, latency remains the same with the conventional method

of streaming from the edge computing node. Note that although the controller can affect the

rendered frame by pointing at a certain place to teleport in virtual space, we do not need to

predict for the new location triggered by the controller, as in this case, users will expect much

larger latency than 20ms. We will describe motion prediction, FOV selection, and motion error

determination (highlighted in green in Fig. 4.3) with more details in Section 4.5.

Note that the edge device can be either a Mobile Edge Computing node (MEC) in the

mobile radio access or core network, or a Local Edge Computing node (LEC) located in the user

premises or even his/her mobile device, connecting to the HMD through WiFi or WiGig. While

each of the above choices has tradeoffs, this chapter will not specifically address these tradeoffs

and select either MEC or LEC. Instead, we focus on developing accurate head and body motion

prediction techniques, which can be used for the edge-based predictive pre-rendering approach

shown in Fig. 4.3, and will apply to either of the edge device options.

Problem Statement: In each time point, the user can have a specific viewing position

and viewing direction, corresponding to the body and head motion. Given previous and current

viewing directions and viewing positions, our goal is to predict viewing direction and position for

the next time point. After rendering pixels based on predicted viewing position and direction,

frames can be further encoded to a video and delivered to users. Specifically, we describe

the problem formulation for motion prediction below. The notations used in our approach are

described in Table 4.1.

4.3.1 Problem Formulation

Trajectory Sequence: Spatiotemporal point qt is a tuple of time stamp t, viewing position

b, and viewing direction h, i.e., qt = (t,b,h). The trajectory sequence from time point tw to time

point tw+n−1 is a spatiotemporal point sequence, which can be denoted as S(tw, tt+n−1) = qtwqtw+1

. . .qtw+n−1 .
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Table 4.1: Notations used.

Notation Meaning
t Timestamp (time counted since application launches)

RT T Round-trip latency
(α,β,γ) Euler angles for head pose (pitch α, yaw β, roll γ)
(x,y,z) Position for body pose
~vhead Head motion speed (vα,vβ,vγ)
~vbody Body motion speed (vx,vy,vz)
dhead Angular distance between actual and predicted head poses
dbody Distance between actual and predicted body positions

dα,dβ,dγ dhead in α,β,γ-axis
dx,dy,dz dbody in x,y,z-axis

ε1,ε2 Thresholds of acceptable head and body prediction errors
Li Objective loss function for individual task i
wi Weight for individual task i

Ltotal Loss function for multi-task learning model
θh,θv Horizontal FOV and vertical FOV
θ′h,θ

′
v Selected new horizontal FOV and vertical FOV

nw Number of frames in a sliding window in FOV selection
d̂α, d̂β, d̂γ Estimated value of dα,dβ,dγ in FOV selection

I1, I2 Two grayscale intensity images
Idi f (i) Difference between two intensity images for pixel i
Rdi f Percentage of mismatched pixels
Ndi f Number of pixels having difference in grayscale intensity

N f rame Total number of pixels per frame

Thus, the problem can be formulated as follows:

- Input: a trajectory sequence from time point tw to time point tw+n−1, i.e., S(tw, tt+n−1) =

qtwqtw+1 . . .qtw+n−1;

- Output: predicted spatiotemporal point q̂tw+n at time point tw+n;

In this chapter, we aim to predict the viewing position b and viewing direction h for the

next time point using current and previous viewing positions and directions.
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4.3.2 Time Analysis

In this subsection, we give an analysis of the time taken for the various tasks of our

proposed edge-based predictive pre-rendering method, as shown in Table 4.2. Specifically, we

can see that the latency for transmission from HMD to the edge and from edge to HMD depends

on the distance between them. Since we predict the user view 11ms in advance (1 frame ahead,

assuming 90 frames/second), we have adequate time to (i) predict motion and do FOV selection

(i.e., < 1ms, which is described in details in Section 4.6.4) and (ii) pre-render the predicted view

(i.e., 5ms−10ms) in advance with no additional latency, hence satisfying the ultra-low latency

requirement of 6DoF VR immersive experiences. The round-trip transmission latency, latency

of rendering, latency of encoding, and latency of decoding can be denoted as RT T , Trendering,

Tencoding, and Tdecoding respectively.

As for the conventional method, the latency without motion prediction and pre-rendering

is

RT T +Trendering +Tencoding +Tdecoding,

where the lower boundary and upper boundary of latency are RT T + 11ms and RT T + 21ms

respectively. Thus, given added round-trip transmission latency of around 9ms, the end-to-end

latency for conventional method is 20ms−30ms.

For our proposed edge-based predictive pre-rendering approach, the latency with ’correct’

motion prediction is

RT T +Tencoding +Tdecoding,

where the lower boundary and upper boundary of latency are RT T + 6ms and RT T + 11ms

respectively. Otherwise, when the motion prediction is not ’correct’, the latency is the same with

conventional method. Thus, given added round-trip transmission latency of around 9ms, the

end-to-end latency for the proposed edge-based predictive pre-rendering approach is 15ms−20ms

with ’correct’ motion prediction and 20ms−30ms with ’incorrect’ motion prediction. We present
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experimental results in Section 4.6 which shows high accuracy of our proposed motion prediction

techniques, achieving ’correct’ motion predictions in most of the time points during 6DoF VR

applications.

Table 4.2: Time needed for different procedures.

Procedure Time Needed
Transmission from HMD to edge Depends on distance

Rendering 5ms−10ms
Encoding 3ms−8ms

Transmission from edge to HMD Depends on distance
Decoding ≈ 3ms

Motion Prediction & FOV Selection < 1ms

4.4 Dataset and Its Characteristics

In this section, we first describe the dataset we use and then show characteristics of the

dataset using certain metrics we define.

4.4.1 Dataset

To investigate head and body prediction in 6DoF VR applications, we conduct our study

on a real motion trace dataset we collected from 20 users using HTC Vive to experience two

6DoF VR applications called Virtual Museum [119] and Virtual Rome [120] in our laboratory.

The system setup will be described in Section 4.6.1. The trace consists of 840,000 sample points

of head and body motion data collected from the users. Fig. 4.4(a)(b) show the illustration of the

two virtual applications, where Virtual Museum has three exhibition rooms and Virtual Rome

contains larger space including different courtyards and halls. The walkable area is restricted

by the size of the tracked space in the room and constrained to a fixed regular shape. Users can

explore each virtual space by walking in the walkable area or teleporting by pointing at a place

with a controller. The top subplot in Fig. 4.4(c) uses light blue lines to show the boundary of

the walkable area in the VR. As shown in Table 4.3, we set three sessions respectively for each
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Figure 4.4: Illustration of two virtual applications and other settings: (a) Virtual Museum and
(b) Virtual Rome; (c) Boundary of walkable area, and coordinates for head and body motions.

Table 4.3: Experimental settings for different sessions in the Virtual Museum and Virtual Rome.

Session Virtual Museum (VM) Virtual Rome (RM)
VM1 VM2 VM3 RM1 RM2 RM3

With Guidance 4 4

Use Controller 4 4

application: (i) in session 1, users are given rough guidance of taking a stroll about the room

at the beginning of the session, without a controller in their hand; (ii) in session 2, users walk

around freely in the room, without a controller in their hand; (iii) in session 3, users walk around

freely in the room and have a controller in their hand; the controller allows them to teleport to any

position in virtual space by pointing at that place, and the position of the walkable area in VR

also changes accordingly.

Motion traces include the user ID, session timestamp, euler angles for the head pose

(pitch α, yaw β, roll γ), and position for body pose (x, y, z). The session timestamp refers to

the time counted since application launches in milliseconds, and timestamps appear each 11ms

(corresponding to 90Hz, which is the refresh rate of HTC Vive). The middle and bottom subplots

of Fig. 4.4(c) exhibit the coordinates for head pose using euler angles and for body pose using

position.

4.4.2 Dataset Characteristics

To depict key characteristics of the head motion and viewpoint changes in the dataset

quantitatively, we offer the following definitions.
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Head Motion Vector: The corresponding head poses at time points t1 and t2 (where

t1 < t2) are denoted by (α(t1),β(t1),γ(t1)) and (α(t2),β(t2),γ(t2)) respectively. Head motion

vector (4α,4β,4γ) = (α(t2)−α(t1),β(t2)−β(t1),γ(t2)− γ(t1)).

Head Motion Speed: Head motion speed~vhead is defined as the angular distance the head

moved divided by time, i.e.,~vhead = (vα,vβ,vγ) = ( 4α

t2−t1
, 4β

t2−t1
, 4γ

t2−t1
).

Body Motion Vector: The corresponding body poses at time points t1 and t2 (where

t1 < t2) are denoted by (x(t1),y(t1),z(t1)) and (x(t2),y(t2),z(t2)) respectively. Body motion

vector (4x,4y,4z) = (x(t2)− x(t1),y(t2)− y(t1),z(t2)− z(t1)).

Body Motion Speed: Body motion speed~vbody is defined as the distance the body moved

divided by time, i.e.,~vbody = (vx,vy,vz) = ( 4x
t2−t1

, 4y
t2−t1

, 4z
t2−t1

), and the value of it is

vbody = |~vbody|=
√

vx2 + vy2 + vz2. (4.1)

Table 4.4: Description of variables.

Variable Seq. Unit

Measured
Timestamp 4 Millisecond (ms)

Euler angles 4 Degree (◦)
Position 4 Meter (m)

Derived
Head Motion Speed 4

Degree per
Millisecond (◦/ms)

Body Motion Speed 4
Centimeter per

Millisecond (cm/ms)

Table 4.4 presents the description of variables. Apart from measured variables in the

dataset, for each sample point, we can obtain the derived variables including head motion speed

and body motion speed using definitions above. In Fig. 4.5, we plot the cumulative distribution

function (CDF) of body motion speed in each axis (i.e., vx,vy,vz) and head motion speed in

each axis (i.e., vα,vβ,vγ) for different sessions. We can see that (i) over 95% of vx,vy,vz are

less than 0.8m/s, 0.8m/s, and 0.15m/s respectively, and around 90% of vα,vβ,vγ are less than

30◦/s, 100◦/s, and 25◦/s respectively; (ii) for the body motion speed distribution, the speed in
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Figure 4.5: CDF of motion speed for different sessions: (a)(b)(c) for body motion; (d)(e)(f) for
head motion.

each session is as follow from high to low: RM1>VM1>RM2>VM2>VM3>RM3; and (iii)

for the head motion speed distribution, the speed in each session is as follow from low to high:

VM1<RM1<RM2&VM2<RM3&VM3. Thus among six sessions of two applications, there are

more body motion and less head motion in Session 1 (i.e., RM1, VM1) while less body motion

and more head motion in Session 3 (i.e., RM3, VM3).

4.5 Our Approach

In this section, we describe our proposed approach of preprocessing and modeling for

head and body motion predictions.

4.5.1 Preprocessing

We aim to remove noise within head and body motion in the preprocessing step. We

first calculate head motion speed and body motion speed for each time point. Fig. 4.6 presents

the body motion and head motion speed in x,y,z,α,β,γ-axis respectively for a sample in the

motion trace of one user in the Virtual Museum application. The blue line in each subplot shows
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Figure 4.6: Motion speed obtained before and after the preprocessing step: (a)(b)(c) for body
motion; (d)(e)(f) for head motion.

there can be at times significant noise in each of motion speed, due to sensor noise and other

measuring errors from HTC Vive HMD and base stations. This noise is identifiable since the

speed cannot change so rapidly and intensively within several milliseconds. To remove the noise

in body motion and head motion, we propose to use the Savitzky-Golay filter method [121]

because of its high accuracy and efficiency. This filter approximates (using least-square fitting)

the underlying function within the moving window by a polynomial of a higher order. The blue

and red lines in Fig. 4.6 show the speed before and after the preprocessing step. We can see the

noise is significantly reduced after preprocessing step.

4.5.2 Predictive Modeling

To represent motion features, we select 60 time points as the prediction time window

(i.e., predict head and body speed according to speed traces in the latest 60 time points), since it

achieves better performance than 40, 50, 70, 80, 90 time points based on our experiments. For

training the model, we choose a simple representation for motion as a 1×60 vector, where each

element equals to i when the speed is i at that time point, and the dimension of 60 corresponds to

60 time points.
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1) Single-task Model

We investigate a LSTM model as well as an MLP model to be trained for single task

separately, where the single task refers to prediction for body motion speed in each axis (i.e., x,y,

or z-axis) or head motion speed in each axis (i.e., α,β, or γ-axis).

LSTM Model: Inspired by the success of the RNN Encoder-Decoder in modeling

sequential data [122] and good performance of LSTM to capture transition regularities of human

movements since they have memory to learn the temporal dependence between observations [78,

79], we implement an Encoder-Decoder LSTM model which can learn general body motion as

well as head motion patterns, and predict the future viewing direction and position based on the

past traces. Fig. 4.7(a) shows the LSTM model we designed and used in our training, where first
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and second LSTM layers both consist of 60 LSTM units, and the fully connected layer contains 1

interconnected node. Note the interconnected node refers to the general neuron-like processing

unit a = φ(∑ j w jx j +b), where x j are the inputs to the unit, w j are the weights, b is the bias, φ is

the nonlinear activation function, and a is the unit’s activation [123].

Our Encoder-Decoder LSTM model predicts what the motion speed will be for next time

point, given the previous sequence of motion speed. The outputs are the values of predicted speed

for next time point. Note that the settings including 60 LSTM units and 60 time points as window

length are selected during experiments and proved to be good by empirical results. For the head

and body motion prediction, we use the mean square error (MSE) as our loss function:

Loss =
1

|Ntrain| ∑
y∈Strain

L

∑
t=1

(yt− ŷt)
2, (4.2)

where |Ntrain| is the number of total time steps of all trajectories on the train set Strain, and L is

the total length of each corresponding trajectories. The proposed LSTM model learns parameters

by minimizing the mean square error.

Specifically, encoder and decoder sections work as follows. Given the input sequence

X = (x1, . . . ,xt, . . . ,xT ) with xt ∈Rn, where n is the number of driving series (e.g., dimension

of feature representation), the encoder learns a mapping from xt to ht with

ht = f (ht−1,xt), (4.3)

where ht ∈ Rm is the hidden state of the encoder at time t, m is the size of the hidden state,

and f is a non-linear activation function of LSTM unit. As shown in Fig. 4.8, each LSTM unit

has (i) a memory cell with the cell state st, and (ii) three sigmoid gates to control the access to

memory cell (forget gate ft, input gate it and output gate ot). We follow the LSTM structure
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from [122, 124]:

ft = σ(Wf [ht−1;xt]+bf ), (4.4)

it = σ(Wi[ht−1;xt]+bi), (4.5)

ot = σ(Wo[ht−1;xt]+bo), (4.6)

st = ft�st−1 + it� (tanh(Ws[ht−1;xt]+bs)), (4.7)

ht = ot� tanh(st), (4.8)

where [ht−1;xt]∈Rm+n is a concatenation of the previous hidden state ht−1 and current input xt.

Wf , Wi, Wo, Ws ∈Rm×(m+n) as well as bf , bi, bo, bs ∈Rm are parameters to learn. Notations

of σ and � are the logistic sigmoid function and element-wise multiplication. After reading the

end of input sequence sequentially and updating the hidden state as above, the hidden state of

LSTM is a summary (i.e., encoded vector c) of the whole input sequence. Subsequently, the

decoder is trained to generate the target sequence (y1, . . . ,yt , . . . ,yT ) by predicting yt given hidden

state dt of LSTM units in decoder at timestep t. Note that yt ∈ R, and dt ∈ Rp, where p is the

size of the hidden state in decoder. The update of hidden state is denoted by

dt = f (dt−1,yt−1,c). (4.9)

Since the nonlinear function is the LSTM unit function, similarly, dt can be updated as:

f ′
t = σ(W ′

f [dt−1;yt−1;c]+b′f ), (4.10)

i′t = σ(W ′
i [dt−1;yt−1;c]+b′i), (4.11)

o′t = σ(W ′
o[dt−1;yt−1;c]+b′o), (4.12)

s′t = f ′
t �s′t−1 + i′t� (tanh(W ′

s[dt−1;yt−1;c]+b′s)), (4.13)

dt = o′t� tanh(s′t), (4.14)

where [dt−1;yt−1;c]∈Rp+m+1 is a concatenation of the previous hidden state dt−1, decoder input

112



Motion Features 
for !!

Motion Features 
for !"

Motion Features 
for !#

"#$%&'($&'(

LSTM Layer

LSTM Layer

LSTM Layer

!
!
"!#! Multi-task 

Loss

!)

!*

!+

Fully Connected 
Layer

Fully Connected 
Layer

Fully Connected 
Layer

Fully Connected 
Layer

Fully Connected 
Layer

Fully Connected 
Layer

L1

L2

L3

")
"*
"+

!!
!"
!#

"#$%&'($&'(

Fully Connected 
Layer

Fully Connected 
Layer

Fully Connected 
Layer

Predicted Speed
for !!

Predicted Speed 
for !"

Predicted Speed 
for !#

Figure 4.9: Multi-task LSTM model for body motion prediction.

yt−1, and encoded vector c. W ′
f , W ′

i , W ′
o, W ′

s ∈Rp×(p+m+1) as well as b′f , b′i, b
′
o, b′s ∈Rp are

parameters to learn. Subsequently, the output of the decoder is further fed to the fully connected

layer.

MLP Model: Apart from the LSTM model, we propose to use an MLP [123] model

presented in Fig. 4.7(b) to do motion prediction. Using the same representation and loss function

described above, this model takes the motion speed during the latest 60 time points as input to

predict the motion speed for next time point. The MLP model contains two fully-connected

layers with 60 and 1 interconnected nodes respectively for training. The MLP model also learns

parameters by minimizing the mean square error.

We build up single-task models including LSTM and MLP models for body motion and

head motion speed in x,y,z,α,β,γ-axis respectively. Given the current and previous speed traces,

our predictive models can predict the speed for next time point and thus predict the viewing

position b and viewing direction h for next time point (described in Section 4.3.1).

2) Multi-task Model

Motivated by achieving better body motion prediction to reduce the potential adverse

effect on user experience caused by prediction error, we explore more models to predict body

motion more accurately. Since single-task models in Section 4.5.2 1) predict body motion speed

of each axis separately (using the information in one axis), we explore multi-task models to take

advantage of body motion speed in all three axes to predict the body motion for each axis. We

investigate a multi-task LSTM model as well as a multi-task MLP model, sharing some layers to
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determine common features between multiple tasks, where each task refers to the prediction for

body motion speed in each axis (i.e., x,y, or z-axis).

Multi-task LSTM Model: We implement a multi-task LSTM model that can learn a

shared representation for body motion pattern, and predict the body motion speed (corresponding

to viewing position) for the next time point based on the past traces. Fig. 4.9 shows our proposed

multi-task LSTM model that we have designed and used for training, where the first three LSTM

layers after the three motion features layers consist of 60, 60, and 60 LSTM units (Fig. 4.8)

respectively, and the three fully-connected layers after a concatenate layer contain 1, 1, and 1

interconnected node. Our multi-task LSTM model predicts what the body motion speed in x,y

and z-axis will be for the next time point, given the previous sequence of the body motion speed.

The outputs are the values of predicted speed (i.e., vx, vy, vz) for the next time point. Note that

the settings including 60 LSTM units and 60 time points as window length are selected during

experiments and proved to be good by empirical results. For the body motion prediction, we

define the multi-task loss function as the weighted linear sum of the losses for each individual

task:

Ltotal = ∑
i

wiLi, (4.15)

where wi is the weight for individual task i and Li is the single task loss function for individual

task i (defined as the MSE, which is described before in the LSTM model subsection 4.5.2 1).

Specifically, as shown in Fig. 4.9, tasks 1, 2, and 3 refer to the prediction for body motion speed

in x, y, and z-axis respectively. In our training, we use w1 = w2 = w3 = 0.333 as the task weight

setting based on good empirical performance and following theoretical observation. Specifically,

for body motion prediction, the distance between actual body motion and predicted motion can

be defined as

d =

√
dx

2 +dy
2 +dz

2, (4.16)
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Figure 4.10: Multi-task MLP model for body motion prediction.

where dx, dy, dz are the distance between actual body motion and predicted body motion in the

x,y,z-axis respectively. Thus, the theoretical observation is that with the setting of w1 = w2 = w3,

minimizing the multi-task learning loss function for body motion prediction is equivalent to

minimizing the square of distance d between the actual viewing position (obtained from body

motion) and predicted viewing position. Note that the proposed multi-task LSTM and MLP

models learn parameters by minimizing the multi-task loss function. Note that we have considered

and conducted experiments to models of sharing LSTM layer and fully-connected layer between x,

y, and z, but their performances are worse than the performance of our proposed model (Fig. 4.9).

Multi-task MLP Model: Apart from the multi-task LSTM model, we also implement a

multi-task MLP model for comparison to do body motion prediction. Using the same representa-

tion and multi-task loss function described above, this model also takes the body motion speed

during the latest 60 time points in x,y,z-axis as input to predict the body motion speed in the

next time point. Our proposed multi-task MLP model has a similar structure like the multi-task

LSTM model, shown in Fig. 4.10, where the first three fully-connected layers after the three

motion feature layers consist of 60, 60, and 60 interconnected nodes respectively, and the three

fully-connected layers after a concatenate layer contain 1, 1, and 1 interconnected node. The

multi-task MLP model predicts what the body motion speed in x, y, and z-axis will be for the next

time point, given the previous sequence of the body motion. The outputs are values of predicted

speed (i.e., vx,vy,vz) for the next time point.

Given the current and previous speed traces, we build up our multi-task models including

multi-task LSTM and multi-task MLP models to predict the body motion speed in three axes for

115



Predicted

Act
ual

Pr
ed
ict
ed

#!

##
#"

90° ~110°
depend on kind of HMD

#$

#%

(a) (b)

Larger FOV

La
rg

er
 FO

V

Actual

Figure 4.11: Selected FOV for two different types of relative positions between predicted FOV
and actual FOV: (a) to address dα and dβ, (b) to address dγ.

the next time point and thus predict the viewing position b for the next time point (described in

Section 4.3.1).

4.5.3 FOV Selection

After predicting body and head motion, we propose a sliding window based FOV selection

method for pre-rendering, such that the selected FOV minimizes the effects of motion prediction

error while also minimizing the selected FOV size. This method is also head motion prediction

based since it selects the FOV size according to the estimated prediction error calculated by recent

head motion prediction errors. Note that the method can only be applied to address head motion

error since body motion prediction error can only be reduced by exploring better prediction

models with higher precision (e.g., multi-task models presented in Section 4.5.2 2). Fig. 4.11

shows several different types of relative positions between predicted FOV and actual FOV, where

blue square, orange square, and dashed green rectangle represent the actual FOV, predicted

FOV, and pre-rendered larger FOV. The size of FOV is determined by the kind of HMD device,

represented as the horizontal FOV of θh times vertical FOV of θv (e.g., 90◦×90◦ for Samsung

Gear VR, 110◦×110◦ for HTC Vive).

Fig. 4.11(a) exhibits the angular distance between the actual and predicted FOVs in α and
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β-axis as dα and dβ, with no angular distance in the γ-axis. We can see that the actual FOV can

be covered by the pre-rendered larger FOV via increasing the horizontal FOV to θh +2dβ and the

vertical FOV to θv +2dα. Fig. 4.11(b) demonstrates the angular distance between the actual and

predicted FOVs in the γ-axis as dγ without any angular distance in α and β-axis. The actual FOV

can be covered by the pre-rendered larger FOV via increasing the horizontal FOV to θh +2d2

and the vertical FOV to θv +2d1. Since d1 ≤ dγ and d2 ≤ dγ (due to Pythagoras theorem [125])

shown in Fig. 4.11(b), in this case, we can select a larger FOV by increasing the horizontal FOV

to θh +2dγ and the vertical FOV to θv +2dγ. This is the minimal increase in FOV size compared

to predicted FOV such that it minimizes adverse effects due to head motion prediction error.

Therefore, by selecting a larger FOV of θh + 2dβ + 2dγ as horizontal FOV and θv + 2dα + 2dγ

as vertical FOV, the actual FOV can be completely covered, eliminating the adverse effect of

head motion prediction error. The new selected horizontal FOV θ′h and vertical FOV θ′v can be

represented as follows in Equations 4.17 and 4.18:

θ
′
h = θh +2dβ +2dγ, (4.17)

θ
′
v = θv +2dα +2dγ. (4.18)

Note that when performing the FOV selection task before pre-rendering the view, the

exact head motion prediction error for the next frame is unknown. Hence, in our sliding window

based FOV selection method, we propose to use a sliding window of nw frames and nw denotes

the sliding window size. Then we define the estimated value of dα, dβ, dγ (i.e., d̂α, d̂β, d̂γ) as the

average head motion prediction error dα, dβ, dγ of the past nw frames (i.e., frames in the sliding

window) so as to calculate the new selected horizontal FOV θ′h and vertical FOV θ′v.

4.5.4 Prediction Error Determination

In Fig. 4.3, when the head and body motion, as well as the controlling command, arrive at

the edge device, the actual motion can be obtained immediately after the motion decision and
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there will be a prediction error determination comparing the actual motion with the prediction

motion. We will see whether the head motion and body motion prediction error is within the

thresholds using the following steps. For head motion, since we pre-render a larger FOV than

actual FOV to reduce the effect of head motion prediction error. The determination of dHead ≤ εH

will be achieved by checking whether |d̂α−dα|, |d̂β−dβ|, |d̂γ−dγ| are all within a given threshold

ε1. For body motion, the determination of dBody ≤ εB will be achieved by checking whether

dx,dy,dz are all within a given threshold ε2. To be sure that the actual view always within the

pre-rendered view, the thresholds should be selected as low as possible. However, this will

increase the probability of error determination, and hence doing the rendering and encoding again

live, thereby increasing latency. On the other hand, setting this threshold too large may cause that

the extreme case (e.g., having large head motion prediction error) cannot be efficiently identified.

We empirically discuss different choices of given thresholds ε1,ε2 in Sections 4.6.3, 4.6.4, and

4.6.5.

4.6 Experimental Results

In this section, we describe our system setup, evaluation metrics, and experimental results.

4.6.1 System Setup and Dataset

The system setup of our experiments is shown in Fig. 4.12, where the rendering edge

device is an Intel Core i7 Quad-Core processor with GeForce RTX 2060. It is equipped with a

WiGig card connecting with the HTC Vive’s link box using a cable. This link box is within the

user’s room and transmits rendered frames in a video format from the rendering edge device to

the HMD. On the user side, there are the link box and two HTC lighthouse base stations in the

room. Users were wearing an HTC Vive HMD equipped with Vive wireless adaptor [126] and

using a controller if needed. Note the wireless adaptor and link box aim to transmit and receive

the rendered frames using WiGig communications, while the HTC lighthouse base stations are set
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Figure 4.12: System setup.

Table 4.5: Dataset statistics.

Virtual Session #Samples #Samples
Application for Training for Testing

Museum
VM1 41,600 10,354
VM2 80,484 20,076
VM3 195,197 48,754

Rome
RM1 24,912 6,183
RM2 48,586 12,103
RM3 280,540 70,091

for capturing 6DoF motions (e.g., including head and body motion). The walkable area is around

3m×3m of free space in our experiments, which cannot exceed 4.5m×4.5m since the maximum

distance between base stations is 5m [127]. All head and body motions on HMD were captured

accurately using this HTC Lighthouse tracking system while the controller detected the user’s

controlling commands. For a software implementation, we implement our proposed techniques

based on SteamVR SDK [128], OpenVR SDK [129] as well as the Unity game engine [13] for

data collection, and use Keras [99] in Python for motion prediction.

We use 80% of the dataset for training the prediction model, and 20% for testing, ensuring

the test data is from viewers which are different than those in training data. Table 4.5 presents

the number of samples used as training data and testing data for each type of session of the two

applications Virtual Museum and Virtual Rome (described in Section 4.4 and listed in Table 4.3).

Moreover, in our experiments, proposed single-task LSTM and single-task MLP models learn

parameters by minimizing mean square error, and training is terminated after 50 epochs in our

experiments, while proposed multi-task LSTM and multi-task MLP models learn parameters by
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minimizing multi-task loss function and training is terminated after 20 and 50 epochs respectively

with a batch size of 32.

4.6.2 Evaluation Metrics and Baselines

Evaluation Metrics: We choose several popular metrics in sequential modeling to evalu-

ate the performance on our prediction task:

• Root Mean Square Error (RMSE):

RMSE =

√√√√ 1
|Ntest | ∑

y∈Stest

L

∑
t=1

(yt− ŷt)2, (4.19)

• Mean Absolute Error (MAE):

MAE =
1
|Ntest | ∑

y∈Stest

L

∑
t=1

(yt− ŷt), (4.20)

where |Ntest | is the number of total time steps of all trajectories on the test set Stest .

Baselines: We consider the following baselines to compare against the performance of

our proposed model:

• Linear Acceleration Model (Lin-A): Following the work of [78, 111, 112], we compare

against this linear regression model, which extrapolates trajectories with an assumption of

linear acceleration. The Lin-A model employs the motion speed of the latest 3 time points

to predict the expected motion speed.

• Equal Acceleration Model (Eql-A): The Eql-A model is our modified version of Lin-A,

where we assume the acceleration is approximately equal during a small time interval

(e.g., 22ms). The advantage of this modification is as follows: by employing a smaller

number of time points, the acceleration estimated may approach more the actual value for

the following 11ms, than is achieved by the Lin-A model. We implement the Eql-A model
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using motion speed of the latest 2 time points to predict the expected motion speed of the

next time point.

4.6.3 Prediction Accuracy

1) Single-task Model

Tables 4.6, 4.7, 4.8, and 4.9 exhibit the results of our body motion and head motion

prediction for the two applications respectively. Specifically, Tables 4.6 and 4.8 show the distance

between actual and predicted body position in x,y,z-axis (denoted as dx,dy,dz), while Tables 4.7

and 4.9 present the angular distance between actual and predicted head pose in α,β,γ-axis

(denoted as dα,dβ,dγ). Note that we use MSE as the loss function when doing training. In each

table, we compare four models and can make the following observations:

• Tables 4.6 and 4.8, which report on the accuracy of body motion prediction, show that our

LSTM model achieves smallest RMSE in each session and smallest MAE in most sessions

except VM2 compared to Lin-A, Eql-A, and MLP models. It demonstrates the effectiveness

of using our proposed LSTM model to predict body motion positions.

• Tables 4.7 and 4.9, which report on the accuracy of head motion prediction, show that while

the LSTM model has smallest RMSE for session 1, the MLP model performs better (results

in smaller RMSE) than other three models in sessions 2 and 3 for both the applications.

Compared to session 1 (where users take a stroll about the room and have a relatively fixed

trajectory), sessions 2 and 3 are more general and closer to normal 6DoF VR scenario.

Thus, we can see that MLP is a more feasible model to do head motion prediction in general

cases.

We can observe that (i) LSTM model achieves a better performance in every session of

body motion prediction and session 1 of head motion prediction. These sessions have a relatively

small range (e.g., body motion speed is mostly smaller than ±1m/s), gradual variation and more
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Table 4.6: Body motion prediction for Virtual Museum.

Session Model dx (mm) dy (mm) dz (mm)
RMSE MAE RMSE MAE RMSE MAE

VM1
Lin-A 0.139 0.068 0.167 0.061 0.030 0.018

(w/ Guidance;
Eql-A 0.079 0.037 0.096 0.033 0.021 0.013

w/o Controller)
MLP 0.083 0.051 0.080 0.037 0.025 0.018
LSTM 0.061 0.035 0.074 0.030 0.019 0.013

VM2
Lin-A 0.094 0.045 0.099 0.041 0.048 0.021

(w/o Guidance;
Eql-A 0.053 0.025 0.056 0.023 0.029 0.013

w/o Controller)
MLP 0.044 0.029 0.047 0.030 0.032 0.015
LSTM 0.039 0.021 0.046 0.029 0.026 0.013

VM3
Lin-A 0.063 0.035 0.074 0.037 0.024 0.015

(w/o Guidance;
Eql-A 0.036 0.020 0.042 0.022 0.017 0.011

w/ Controller)
MLP 0.032 0.021 0.034 0.021 0.017 0.012
LSTM 0.032 0.021 0.033 0.019 0.015 0.010

Table 4.7: Head motion prediction for Virtual Museum.

Session Model dα (′) dβ (′) dγ (′)
RMSE MAE RMSE MAE RMSE MAE

VM1
Lin-A 0.64 0.34 0.96 0.43 0.48 0.21

(w/ Guidance;
Eql-A 0.47 0.29 0.57 0.27 0.33 0.18

w/o Controller)
MLP 0.51 0.35 0.77 0.48 0.40 0.27
LSTM 0.44 0.28 0.54 0.30 0.30 0.17

VM2
Lin-A 0.80 0.35 1.31 0.52 0.41 0.23

(w/o Guidance;
Eql-A 0.49 0.27 0.78 0.34 0.32 0.19

w/o Controller)
MLP 0.47 0.30 0.64 0.41 0.31 0.18
LSTM 0.66 0.34 0.72 0.42 0.55 0.28

VM3
Lin-A 0.61 0.35 1.38 0.61 0.33 0.21

(w/o Guidance;
Eql-A 0.45 0.29 0.82 0.39 0.26 0.17

w/ Controller)
MLP 0.41 0.27 0.66 0.37 0.22 0.15
LSTM 0.48 0.30 0.99 0.55 0.28 0.17

regularity. (ii) MLP model performs better in sessions 2 and 3 of head motion prediction. These

two sessions have a large value range (e.g., head motion can be up to ±300◦/s), quicker variation

and more frequent fluctuations (e.g., head motion speed vβ has a large and abrupt change from

−180◦/s to 200◦/s within 1s, shown in Fig. 4.6(e)). Note that although RMSE of head motion

prediction achieved by MLP model is quite small, we still need to use proposed FOV selection

method to address the possible challenging case (the extreme case where head motion prediction

error is large) in head motion prediction, and minimize effects of motion prediction error while

also minimizing selected FOV size.
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Table 4.8: Body motion prediction for Virtual Rome.

Session Model dx (mm) dy (mm) dz (mm)
RMSE MAE RMSE MAE RMSE MAE

RM1
Lin-A 0.174 0.086 0.299 0.084 0.046 0.022

(w/ Guidance;
Eql-A 0.100 0.051 0.172 0.047 0.031 0.017

w/o Controller)
MLP 0.118 0.075 0.098 0.062 0.024 0.018
LSTM 0.032 0.021 0.073 0.044 0.024 0.019

RM2
Lin-A 0.125 0.053 0.145 0.048 0.036 0.020

(w/o Guidance;
Eql-A 0.074 0.032 0.085 0.030 0.025 0.015

w/o Controller)
MLP 0.066 0.037 0.064 0.030 0.064 0.021
LSTM 0.058 0.030 0.065 0.032 0.025 0.015

RM3
Lin-A 0.074 0.041 0.077 0.041 0.034 0.019

(w/o Guidance;
Eql-A 0.044 0.025 0.046 0.025 0.023 0.013

w/ Controller)
MLP 0.040 0.025 0.041 0.026 0.077 0.040
LSTM 0.040 0.024 0.040 0.024 0.023 0.013

Table 4.9: Head motion prediction for Virtual Rome.

Session Model dα (′) dβ (′) dγ (′)
RMSE MAE RMSE MAE RMSE MAE

RM1
Lin-A 0.71 0.47 1.32 0.61 0.40 0.27

(w/ Guidance;
Eql-A 0.55 0.38 0.79 0.39 0.30 0.21

w/o Controller)
MLP 0.55 0.38 0.80 0.49 0.30 0.21
LSTM 0.53 0.36 0.73 0.47 0.29 0.22

RM2
Lin-A 0.92 0.57 2.53 0.66 0.56 0.34

(w/o Guidance;
Eql-A 0.66 0.43 1.48 0.44 0.39 0.26

w/o Controller)
MLP 0.63 0.42 1.34 0.46 0.37 0.25
LSTM 0.64 0.43 1.52 0.55 1.23 0.30

RM3
Lin-A 0.88 0.50 1.57 0.72 0.44 0.27

(w/o Guidance;
Eql-A 0.63 0.38 0.98 0.49 0.33 0.21

w/ Controller)
MLP 0.57 0.36 0.82 0.43 0.28 0.18
LSTM 0.60 0.39 0.89 0.52 0.35 0.25

Next, we study what the values of ε2 should be in the prediction error determination

technique (Section 4.5.4), where the prediction motion is compared with actual motion when

the head and body motion, as well as controlling command, arrive at the edge device. The

determination of body motion prediction error is checking whether dx,dy,dz are all within a given

threshold ε2. Fig. 4.13 presents the body motion prediction error using the LSTM model in the

RM3 session. In Fig. 4.13, body motion prediction using the LSTM model achieves that around

99.99% (i.e., 0.9999) of time points satisfy the dx <0.6mm, dy <0.7mm, dz <0.45mm. Thus,

we can observe that if we set the given threshold ε2 as 1mm, less than 99.99% of time points
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Figure 4.13: Body motion prediction error using the LSTM model in the RM3 session.

can be determined as ’correct’ for body motion prediction in the proposed system, meaning that

there is less than 1 frame on average among 10,000 pre-rendered frames will be ’incorrect’ while

the rest of more than 9,999 pre-rendered frames will pass the body motion error determination

successfully.

2) Multi-task Model

Fig. 4.14(a) and (b) exhibit the results of our body motion prediction for two application

sessions VM1 and VM3 respectively. In each figure, we compare six models (single-task and

multi-task models) and can make the following observations.

• Fig. 4.14(a) shows the RMSE of d for body motion prediction error in VM1, where we can

see the multi-task LSTM model achieves 56.2%, 23.7%, 18.5%, 3.2%, 26.7% improvement

compared to Lin-A, Eql-A, MLP, LSTM, multi-task MLP models. Our proposed multi-task

LSTM model achieves the smallest RMSE of d (i.e., 0.096mm) compared to other models.

• Fig. 4.14(b) presents the RMSE of d for body motion prediction error in VM3, where we can

see the multi-task LSTM model achieves 53.5%, 19.7%, 6.4%, 4.4%, 10.5% improvement

compared to Lin-A, Eql-A, MLP, LSTM, multi-task MLP models respectively. Our proposed

multi-task LSTM model achieves the smallest RMSE of d (i.e., 0.046mm) compared to
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other models. In Fig. 4.14(a)(b), the reason that the prediction error for body motion in

VM1 is larger than VM3 is that users continuously walk without stopping by any place

in VM1 while they tend to have less body motion and teleport to other place using the

controller in VM3.

• Similarly, in other sessions such as RM3, for RMSE of d for body motion prediction error,

the multi-task LSTM model achieves 46.6%, 11.9%, 37.5%, 1.3%, 5.9% improvement

compared to Lin-A, Eql-A, MLP, LSTM, multi-task MLP models. The multi-task LSTM

model still works better than other five models. Moreover, in some cases like VM2,

the multi-task LSTM model achieves the same RMSE of d for body motion prediction

error with LSTM model (i.e., multi-task LSTM model has 54.1%, 19.3%, 8.0%, 0%, 6.2%

improvement in RMSE of d compared to Lin-A, Eql-A, MLP, LSTM, multi-task MLP

models). The multi-task LSTM model has a smaller RMSE of dy (i.e., 0.042mm) compared

to the LSTM model (i.e., 0.046mm) as well as a larger RMSE of dx and dz. To achieve the

smallest RMSE of d for body motion prediction error, in this case, we can consider using

multi-task LSTM model to predict body motion in the y-axis and two single-task LSTM

models to predict body motion in the x and z-axis, so that the RMSE of d for this combined

models choice is 0.063mm, smaller than 0.066mm obtained by single-task LSTM models as

well as multi-task LSTM model. Thus, we can always improve the performance by combing

three trained models (multi-task LSTM with single-task LSTM models) if each of them has

the smallest RMSE of dx, dy, and dz to achieve the smallest RMSE of d.

4.6.4 Runtimes

Training and Prediction Times

Next, we briefly discuss the training times and inference times taken by our proposed

prediction models on the edge device selected (Intel Core i7 Quad-Core processor with GeForce

RTX 2060). Note that the training for a proposed model is done offline only once for a session
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Figure 4.14: Body motion prediction error in VM1 and VM3 sessions comparing the multi-task
LSTM model with other predictive models.

with the training samples for that session, and the prediction (testing) is done online for new users,

however one frame ahead to predict motion in advance. Hence, the training times do not affect

the end-to-end latency of the system. Since the prediction is done for the user’s head and body

motion one frame ahead in advance, the prediction time as well as FOV selection time have to be

less than 1ms (presented in Table 4.2).

The training time can be different for each session depending on the number of training

samples used. In our experiments, for RM3 (which has the largest training data size among all

sessions), the training times of one epoch for each single-task LSTM and single-task MLP models

are around 150 seconds and 40 seconds respectively, while the training times of one epoch for the

multi-task LSTM and multi-task MLP models are around 270 seconds and 45 seconds respectively.

Thus for RM3, the training times for each single-task LSTM model and multi-task LSTM model

are around 2 hours and 1.5 hours respectively, while the training times for each single-task MLP

model and multi-task MLP model are around 0.55 hours and 0.6 hours respectively. The training

times for all the other applications/sessions are lower than RM3 (e.g., for VM1, the training time

for each single/multi-task LSTM/MLP model is lower than 18 minutes).

The prediction (testing) times, on the other hand, only marginally varies between different

applications and sessions. The average prediction times over all the application sessions consid-
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Figure 4.15: Average estimated error in α,β,γ-axis caused by different choices of sliding
window size in RM1 and RM3 sessions.

ered in our experiments are the following: 0.09ms for each single-task LSTM model, 0.04ms

for each single-task MLP model, 0.38ms for the multi-task LSTM model, and 0.04ms for the

multi-task MLP model. The above shows that our proposed head and body motion prediction

models can execute in real-time on the edge node, and since they are well below the time of 1ms

(described in the next paragraph), the predictions are feasible to be performed in advance for the

user’s head and body motion of next time point.

Total Times of Prediction and FOV Selection

Prediction time consists of head and body motion predictions: head motion prediction

using three single-task MLP (i.e., 0.12ms) and body motion prediction using either option (a)

multi-task LSTM (i.e., 0.38ms) or option (b) multi-task LSTM combined with one or two single-

task LSTM models (i.e., 0.38+0.09ms or 0.38+0.18ms). Thus prediction time for head and body

motions is 0.5ms – 0.68ms. FOV selection includes two parts: two simple addition operations

to calculate horizontal FOV and vertical FOV in Equations 4.17 and 4.18, and three averaging

operations to calculate the estimated value of dα, dβ, dγ (i.e., d̂α, d̂β, d̂γ) as the average head

motion prediction error dα, dβ, dγ of the past nw frames. FOV selection can be achieved in

0.00016ms when nw = 5 (proved to be a good choice in Section 4.6.5). Thus, the total times of

prediction and FOV selection is within 1ms.
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Figure 4.16: CDF of estimated error in α,β,γ-axis when the sliding window size nw = 5 in
RM1 and RM3 sessions.

4.6.5 FOV Selection

Next, we evaluate the performance of our proposed sliding window based FOV selection

method, described in Section 4.5.3. As mentioned before, a sliding window of nw frames (nw

denotes sliding window size) is used to estimate and obtain the new dα,dβ,dγ, the new selected

horizontal FOV θ′h, and vertical FOV θ′v before pre-rendering. We have described how to calculate

the estimated value of dα, dβ, dγ (i.e., d̂α, d̂β, d̂γ) in Section 4.5.3. Fig. 4.15 shows the absolute

value of the average estimated error in each axis (i.e., average |d̂α−dα|, |d̂β−dβ|, |d̂γ−dγ|) caused

by different choices of sliding window size nw (ranging from 1 to 20 frames) in RM1 and RM3

sessions. We can see that the smallest average estimated error can be achieved when nw = 5 in

both the sessions. The average estimated error can be as low as less than 5.5×10−3 degree in

each axis, showing the efficiency of our approach. By achieving the low average estimated error,

we can have a better estimation of dα,dβ,dγ, so that can finally reduce the adverse effect of head

motion prediction error.

We also study what the values of ε1 should be in the prediction error determination

technique (Section 4.5.4), where the prediction motion is compared with actual motion when

the head and body motion, as well as controlling command, arrive at the edge device. The

determination of head motion prediction error is checking whether |d̂α−dα|, |d̂β−dβ|, |d̂γ−dγ|
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are all within a given threshold ε1. Fig. 4.16 shows the CDF of estimated error in α,β,γ-

axis when the sliding window size nw = 5 in RM1 and RM3 sessions respectively. Thus, we

can observe that if a given threshold ε1 is set as 1◦, the estimated errors in each axis (i.e.,

|d̂α−dα|, |d̂β−dβ|, |d̂γ−dγ|) are smaller than ε1 all the time for both RM1 and RM3 sessions,

meaning that the head motion prediction is always ’correct’ in this case.
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Figure 4.17: (a) Overlap of pre-rendered predicted view with actual FOV versus head motion
prediction error in α and β-axis, (b) Overhead ratio versus head motion prediction error in α

and β-axis.

For further performance evaluation, we compare our proposed sliding window based FOV

selection method (Section 4.5.4) with method (a) selected FOV is a fixed larger FOV, and method

(b) using predicted FOV as the selected FOV. Specifically, for our proposed sliding window

based FOV selection method, we use experimental results that average estimated in α,β-axis are

4.8×10−3 and 5.5×10−3 degrees respectively, shown in Fig. 15. For method (a), the fixed larger

FOV has the size of (110+60)◦×(110+60)◦ to cover potential prediction error within 30◦. For

method (b), the selected FOV is predicted FOV in size of 110◦×110◦. As for evaluation metrics,

we calculate (i) overlap of pre-rendered predicted view with actual FOV (e.g., 110◦×110◦ for

HTC Vive), and (ii) overhead ratio for pre-rendering computation and network bandwidth needed

to transmit rendered FOV from edge device to VR glasses, defined as the pre-rendering view size

divided by the actual FOV size. For instance, when the pre-rendering view size is 120◦×120◦, the

overhead ratio for pre-rendering computation and network bandwidth needed can be calculated
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as 1.19 according to our definition.

As described in Section 4.6.3, our proposed sliding window based FOV selection method

can address the extreme cases where head motion prediction error is large. We compare the

above three methods when dealing with head motion prediction error ranging from 0 to 30◦ in

α and β-axis. Fig. 4.17(a)(b) show the overlap of pre-rendered predicted view with actual FOV

and overhead ratio versus head motion prediction error in the α and β-axis (the coordinate of

head motion shown in Fig. 4.4(c)). Note that when the x-axis of Fig. 4.17(a)(b) equals to 10◦,

we consider the situation of head motion prediction error in α and β-axis (i.e., dα,dβ) are both

10◦ and no head motion prediction error in the γ-axis (i.e., dγ). In Fig. 4.17, we can see that our

proposed sliding window based FOV selection method achieves (i) the overlap with actual FOV

as high as 99.991% (which is close to 100% achieved by method (a) and better than method (b)),

and (ii) the corresponding overhead ratio is always smaller than method (a).

For example, in our experiments, we observe that when the prediction errors in α and β-

axis equal to 5◦, our proposed sliding window based FOV selection method achieves an overhead

ratio of 1.19, compared to an overhead ratio of 2.39 for method (a), which corresponds to around

50% reduction of overhead ratio and 47% saving of bitrates (bandwidth needed) compared to

method (a). Thus, the high overlap with actual FOV and small overhead ratio illustrate that our

proposed sliding window based FOV selection method has a good user experience (almost no

miss of actual FOV) and low overhead ratio for pre-rendering computation as well as network

bandwidth needed to transmit rendered FOV from edge device to VR glasses, compared to

methods (a) and (b).

4.6.6 Effect on User Experience

To evaluate the effect on user experience caused by the prediction error between the actual

view and the predicted view which will be pre-rendered and delivered to the user, we propose

following metric. Assume that we have two views V1 and V2 in the RGB format. Firstly, we
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! " #

Figure 4.18: (a) Actual user’s view; (b) Predicted user’s view with x-axis error ∆x = 0.1m; (c)
Idi f obtained from views in (a)(b).

convert the RGB images (V1 and V2) to grayscale intensity images I1 and I2 by eliminating the hue

and saturation information while retaining the luminance [130]. For each pixel i in the grayscale

intensity images, we calculate the difference between the two intensity images, Idi f , as follows.

Idi f (i) =


I1(i)− I2(i), if I1(i)≥ I2(i)

0, otherwise
(4.21)

Note that we set the Idi f as 0 in the second case of Equation 4.21, because otherwise the motion

change of the same object will be presented in Idi f twice: positive and negative respectively. Thus

we only keep the positive one (i.e., the first case in Equation 4.21) to evaluate the difference

between the two views. Fig. 4.18 presents an example of two views and the corresponding Idi f .

In Fig. 4.18(c), we can see that most of pixels in the view have the intensity value of 0 while

the residual pixels have intensity values larger than or equal to 1. We define the percentage of

mismatched pixels as

Rdi f =
Ndi f

N f rame
, (4.22)

where Ndi f represents the number of pixels which have difference in grayscale intensity and

N f rame is the total number of pixels per frame.

Fig. 4.19 illustrates the average percentage of mismatched pixels caused by body motion

prediction error. Due to the large number for each session in the test dataset, we calculate this

value by doing body motion prediction and rendering corresponding predicted as well as actual
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VM1 VM2 VM3 RM1 RM2 RM3
Lin-A 4.6715 7.1169 1.5341 5.1809 4.3222 1.4069
Eql-A 3.366 4.3619 1.0436 3.5506 3.4853 0.905
MLP 2.6546 4.0139 1.2941 4.8654 2.4308 3.5167
LSTM 2.2613 3.7975 0.9837 3.2844 2.2741 0.8675

Multi-task MLP 3.4 4.11 1.32 4.9 2.5 3.65
Multi-task LSTM 2.2 3.797 0.94 3.28 2.3 0.856

3 0 4 ~0 + 1.3

0

2

4

6

VM1 VM2 VM3 RM1 RM2 RM3

Average Percentage of Mismatched Pixels (%)

Lin-A Eql-A MLP LSTM Multi-task MLP Multi-task LSTM

Figure 4.19: The average percentage of mismatched pixels for different models during each
session.

views for 300 randomly selected samples from test data for every session. Fig. 4.19 demonstrates

that compared to other models in each session, our proposed multi-task LSTM and LSTM models

achieves less adverse effect on user experience caused by the body prediction error (denoted with

green and yellow bars). Using the multi-task LSTM model, the average percentage of mismatched

pixels can be smaller than 1% in both VM3 and RM3 sessions.

Next, we define the percentage of pixels as

Rp =
Np

N f rame
, (4.23)

where Np represents the number of pixels and N f rame is the total number of pixels per frame.

For each pixel, it can have a value of grayscale intensity difference in Idi f (which equals to a

integer between 0 to 255). Apart from discussion in Section 4.6.3 1), by using this metric of

the percentage of pixels, we further study what the values of ε2 should be in the prediction error

determination technique (Section 4.5.4), where the prediction motion is compared with actual

motion. The determination of body motion prediction error is checking whether dx,dy,dz are all

within a given threshold ε2. Fig. 4.20 shows an example of the percentage of pixel versus different

dx, dy, and dz in Virtual Museum application. We can observe that when dx = 1mm, dy = 1mm,

dz = 1mm, the percentage of pixels is more than 97%, 95%, 97% respectively corresponding to

pixel difference less than 3 (pixel difference = 0, 1, or 2), which means ε2 = 1mm can be a good
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Figure 4.20: The percentage of pixels having pixel difference for versus dx, dy, and dz.
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Figure 4.21: The percentage of pixels versus time points achieved by the multi-task LSTM
model during VM2.

choice for the body prediction error determination.

Furthermore, for our proposed multi-task LSTM model, we evaluate the adverse effect

caused by body motion prediction error using metric of the percentage of pixels. Fig. 4.21 presents

the percentage of pixels versus the time points achieved by the multi-task LSTM model during

the VM2 session. We can see that most of the time, the percentage of pixels for pixel difference =

0 is larger than 96% (equivalent to the average percentage of mismatched pixels smaller than 4%).

The average percentage of pixels for pixel difference = 0, 1, 2, 3, 4, 5 equals to 97.43%, 2.49%,

0.03%, 0.009%, 0.006%, 0.002% respectively, illustrating that the difference between actual view

and predicted view is very small. Thus, our proposed multi-task LSTM model performs well in

terms of small adverse effect caused by body motion prediction error.
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4.6.7 Latency Measurement

We first collect network traces by doing ping tests to record roundtrip transmission latency.

Fig. 4.22 shows the roundtrip transmission latency measured during 60s in two indoor locations

respectively. Specifically, we ping www.google.com in Location 1 using wired wide area network

(WAN) with WiFi connection, and www.taobao.com in Location 2 using wired WAN. We can

see the average roundtrip transmission latency for Locations 1 and 2 as 10.93ms and 9.17ms

respectively. We also collect a rendering latency trace in Virtual Museum using Unity. Fig. 4.23

presents the rendering latency during 60s, where the average rendering latency is around 6.66ms.

Figure 4.22: Roundtrip transmission latency traces (a) for Location 1, and (b) for Location 2.

Figure 4.23: Rendering latency trace in Virtual Museum.

As described in Section 4.5.4 and Fig. 4.3, the prediction error determination is imple-

mented with the parameter setting of ε1 and ε2. Fig. 4.24 shows the determination results for two

settings of ε1 and ε2 in VM2 session, covering around 20k time points. From Fig. 4.24, we can

see that the accuracy for ’correct’ cases is larger than 99.99% (i.e., number of ’incorrect’ equals

to 3 within 20076 time points) for ε1 = 1◦ and ε2 = 1mm, and is larger than 99.94% (i.e., number

of ’incorrect’ equals to 13 within 20076 time points) for ε1 = 1◦ and ε2 = 0.5mm respectively.
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Figure 4.24: Determination results for two settings of ε1 and ε2 in VM2 session.

In our experiments, for each time point (e.g., 11ms as time slot), we consider the roundtrip

transmission latency and rendering latency values at the beginning of time slot in the roundtrip

transmission latency traces of Fig. 4.22(a)(b) and rendering latency trace of Fig. 4.23 as the

ongoing roundtrip transmission latency and rendering latency condition for the current time slot,

and run our proposed algorithm with head and body motion traces. Note that we emulate the

roundtrip transmission latency and rendering latency condition for 20k time points in Fig. 4.24

(corresponding to around 220s) by repeating latency values of 60s-traces in Figs. 4.22 and 4.23.

We also assume the latency of encoding and decoding as 6ms and 3ms.

Figs. 4.25 and 4.26 present total latency results for Locations 1 and 2 respectively with

two parameter settings of ε1 and ε2. The blue line represents the total latency for the conventional

method, while the green line represents the actual total latency for our proposed predictive pre-

rendering method. The yellow dashed line represents the ideal total latency using our proposed

method with 100% prediction accuracy in motion prediction. From the figures, we can make the

following observations:

1) From Figs. 4.25 and 4.26, we can observe that our proposed predictive pre-rendering

achieves around 25% reduction of total latency compared to the conventional method in

both Locations 1 and 2. Specifically, from Figs. 4.25(a) and (b), for Location 1, we can see

that the average total latency for our proposed predictive pre-rendering is 19.935ms and
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Figure 4.25: Total latency for Location 1 with two settings of ε1 and ε2 in VM2 session.
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Figure 4.26: Total latency for Location 2 with two settings of ε1 and ε2 in VM2 session.

19.939ms respectively, achieving a latency reduction of 25.05% and 25.04% compared to

the conventional method. Moreover, for Location 2, Figs. 4.26(a) and (b) also demonstrate

that the average total latency for our proposed predictive pre-rendering is 18.175ms and

18.179ms respectively, achieving a latency reduction of 26.83% and 26.81% compared to

the conventional method.

2) In Locations 1 and 2, our predictive pre-rendering method performs significantly better

(less total latency) than the conventional method, and achieves similar average total latency

compared to the ideal results of predictive pre-rendering (i.e., no more than 0.005ms

difference in average total latency).
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4.7 Conclusion

In this chapter, we propose a head and body motion prediction model for 6DoF VR

applications, to enable predictive pre-rendering using edge intelligence and thus address latency

challenge in edge computing-based 6DoF VR. We present a multi-task LSTM model and an MLP

model to learn general head and body motion patterns and predict the future viewing direction

and position based on past traces. We also develop a FOV selection technique for pre-rendering a

larger FOV to reduce head motion prediction error and the motion error determination technique

as part of the system mechanism. Our method shows good performance on a real motion trace

dataset with high precision and a reduction of around 25% for average total latency compared to

the conventional method.
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Chapter 5

Conclusion

This thesis has presented several methodologies to address existing challenges in enabling

high-quality, lightweight, and mobile VR experiences. The presented methodologies help to

address the ultra-high bandwidth and ultra-low latency challenges in edge/cloud-based VR

solution.

Chapter 2 has presented a multi-user hybrid-cast approach to significantly reduce the

total bitrate needed to stream high-quality videos to multiple users in a virtual space application.

Instead of unicasting the video of each user view, we introduce the novel approach which allows

unicasting much lower-bandwidth residual views, together with one or more common view(s).

Then we propose an efficient way of identifying common and residual views. To minimize the

total bitrate, we develop a smart real-time algorithm for grouping the users of the virtual space,

using a novel grouping metric. Our experimental results demonstrate the effectiveness of our

proposed grouping algorithm both in terms of optimal performance and speed. Furthermore,

the results show that the total bitrate needed to transmit multiple user views can be significantly

reduced by up to 55%, and thus provide better user experience (less delay) under constrained

network.

Chapter 3 has presented a predictive adaptive streaming approach in order to reduce the
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latency and bandwidth needed to deliver 360-degree videos and cloud/edge-based VR applications,

leading to better mobile VR experiences. We present a multi-layer LSTM model which can learn

general head motion pattern and predict the future viewpoint based on past traces. Our method

outperforms state-of-the-art methods on a real head motion trace dataset and shows great potential

to reduce bandwidth while keeping a good user experience (i.e., high PSNR).

Chapter 4 has presented a head and body motion prediction model for 6DoF VR ap-

plications, to enable predictive pre-rendering using edge intelligence and thus address latency

challenge in edge computing-based 6DoF VR. We present a multi-task LSTM model and an MLP

model to learn general head and body motion patterns and predict the future viewing direction

and position based on past traces. We also develop a FOV selection technique for pre-rendering a

larger FOV to reduce head motion prediction error and the motion error determination technique

as part of the system mechanism. Our method shows good performance on a real motion trace

dataset with high precision and a reduction of around 25% for average total latency compared to

the conventional method.

In the future, we would like to extend our research in the following directions. Firstly, for

360-degree video streaming, we would like to study and develop more comprehensive models

considering the video content including saliency map and video type to improve viewpoint

prediction accuracy further. We would also like to explore various tile as well as projection

options, develop further refined formulation and algorithms for adaptive bitrate streaming, and

perform more detailed timing analysis considering real-time tile encoding.

Secondly, for live streaming of 6DoF VR applications, we plan to further develop and

evaluate the proposed edge-based predictive pre-rendering approach from latency perspectives.

Besides, we would like to explore predicting more time points and pre-delivering from edge

to HMD, and consider multiple users and more possible gaming effects of the controller in

applications, so as to address more challenging latency scenario.

Thirdly, we would like to perform subjective studies to understand and quantify user
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experience using our proposed approaches for 3DoF and 6DoF VR experiences. Apart from

using the metrics such as PSNR and MSE of video content to evaluate encoded video distortion,

we plan to implement subjective tests to study the possible effect on user experience caused by

prediction error or fluctuation of total latency.

Finally, we would like to explore more streaming options or strategies within the FOV.

According to the observation that a user can be more focusing on the central area of FOV when

moving (i.e., different sensibility), we would like to consider streaming relatively high quality for

central view and low quality for the rest of FOV. For the size of central area, we plan to study

how the motion speed can impact the acceptable central area size for users. All of these issues

need to be considered and explored in our future work.
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