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ABSTRACT	OF	THE	DISSERTATION 
	

Finding	signals	in	the	noise:	Elucidating	the	many	sources	of	heterogeneity	in	breast	cancer	
metastasis	using	single-cell	‘omics	

	
by	

Kerrigan	Blake	
Doctor	of	Philosophy	in	Mathematical,	Computational,	and	Systems	Biology	

University	of	California,	Irvine,	2021	
Assistant	Professor	Devon	A.	Lawson,	Chair	

	

	 Despite	 improvement	 in	 screening	 and	 early	 detection,	 breast	 cancer	 remains	 the	

second	 leading	 cause	 of	 cancer	 related	deaths	 among	women	 according	 to	 the	American	

Cancer	Society.	These	deaths	can	be	almost	entirely	attributed	to	metastatic	disease,	which	

is	 far	 more	 difficult	 to	 treat	 than	 local	 disease.	 It	 is	 therefore	 critical	 to	 gain	 a	 deeper	

understanding	 of	what	 drives	 breast	 cancer	metastasis	 and	 how	 the	 cells	 that	 surround	

metastatic	tumors,	known	as	the	metastatic	niche,	respond	to	breast	cancer	cells	to	facilitate	

or	inhibit	their	outgrowth.	In	this	work,	we	use	single-cell	RNA-sequencing	(scRNA-seq)	and	

custom	analytical	pipelines	to	characterize	breast	cancer	metastasis	from	multiple	angles.	

We	start	by	looking	at	pre-neoplastic	breast	epithelial	cells	and	investigate	the	conserved	

lineage	relationships	between	each	epithelial	cell	state	using	a	pseudotime	analysis	pipeline.	

We	next	 look	at	matched	primary	 tumor	and	metastatic	 cells	 from	 triple-negative	breast	

cancer	patient-derived	xenograft	models	and	identify	biomarkers	of	micrometastasis	(very	

small,	early	stage	metastatic	tumors)	using	generalized	linear	models	which	we	validate	are	

prognostically	 useful	 for	 relapse-free	 survival.	 And	 finally,	 we	 characterize	 the	 response	

heterogeneity	of	microglia,	the	brain	resident	macrophage,	to	breast	cancer	brain	metastasis,	

demonstrate	 that	 these	 responses	 are	 conserved	 in	 human	 microglia,	 and	 show	 that	

microglia	facilitate	tumor	regression	using	a	genetic	depletion	model.	In	all	of	these	projects,	
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we	find	that	our	newly	defined	cell	states	and	tissue	heterogeneity	can	be	generalized	across	

patients	and	models,	suggesting	that	much	of	the	noise	seemingly	inherent	to	breast	cancer	

metastasis	 can	be	 understood	by	 asking	 the	 right	 questions.	 Further,	 by	 observing	 these	

systems	at	 the	 single-cell	 level,	we	demonstrate	 the	plasticity	of	breast	 epithelial	 cells	 in	

homeostasis,	 identify	 novel	 biomarkers	 and	 patient	 stratification	 opportunities	 for	 early	

breast	cancer	metastasis	detection,	and	suggest	new	therapeutic	routes	 for	breast	cancer	

brain	metastasis	patients.		
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CHAPTER	1:	Applications	of	scRNA-seq	in	studies	of	the	breast	during	

health	&	disease	

	

1.1	Open	questions	in	mammary	&	breast	biology	

The	 mature	 mammary	 epithelium	 is	 made	 up	 of	 two	 major	 cell	 types,	 basal	 and	

luminal	cells.	Luminal	cells	are	the	secretory,	milk-producing	cells	of	the	breast	and	basal	

and	myoepithelial	cells	surround	the	luminal	cells	and	attach	to	the	basement	membrane	1.	

Mammary	epithelial	cells	together	form	ducts	extending	from	the	nipple	region	that	end	in	

milk-containing	alveoli	which	grow	out	during	pregnancy	and	involve	post-lactation	2.	The	

human	breast	epithelium	has	homologous	cell	types;	however,	the	anatomical	structure	is	

more	complicated,	consisting	of	ducts	that	branch	into	17-30	lobules,	each	of	which	contains	

multiple	 alveoli	 3.	 Within	 the	 luminal	 compartment,	 progenitor,	 hormone	 receptor	 (HR)	

positive,	 and	 HR	 negative	 cell	 states	 have	 been	 established,	 though	 the	 number	 of	

progenitors,	their	positions	in	the	differentiation	hierarchy,	and	their	anatomical	restrictions	

are	 still	 debated	 1,4.	 The	 basal	 compartment	 can	 also	 be	 further	 separated	 into	 mature	

myoepithelial	 cells,	 basal	 progenitors,	 as	well	 as	 a	 small	 number	of	mammary	 stem	cells	

(MaSCs),	a	bipotent	progenitor	state	capable	of	 recapitulating	 the	entire	mammary	gland	

from	a	single	cell	upon	transplantation	into	a	cleared	mammary	fat	pad	1,4.	As	with	luminal	

cells,	 the	basal	hierarchy	 is	 the	subject	of	debate,	especially	 its	connection	 to	 the	 luminal	

lineage	through	MaSCs,	which	some	believe	is	a	state	that	is	no	longer	present	in	adult	basal	

cells	during	homeostasis,	but	can	be	induced	by	systemic	perturbations	1,4.		
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Given	the	multitude	of	cell	types	and	states	in	the	epithelial	hierarchy,	it	is	perhaps	

unsurprising	 that	 breast	 cancer,	 derived	 from	 the	breast	 epithelium,	 also	has	 substantial	

heterogeneity	1.	Breast	cancer	subtypes	are	clinically	stratified	based	on	the	protein-level	

expression	of	hormone	receptors	(estrogen	receptor	(ER)	and	progesterone	receptor	(PR)),	

HER2,	and	the	proliferation	marker	KI67	5.	The	expression	of	these	four	proteins	can	suggest	

therapeutic	 regimens	 and	 secondarily	 predict	 the	 ‘intrinsic’	 subtype	 of	 a	 given	 tumor.	

‘Intrinsic’	 subtypes	 refer	 to	 tumors	 with	 conserved	 gene	 expression	 profiles	 which	

correspond	to	different	patient	outcomes	and	metastatic	proclivities	5–8.	Common	subtypes		

include	 luminal	 A	 ([ER+|PR+]	 HER2-KI67-),	 luminal	 B	 ([ER+|PR+]	 HER2-KI67+),	 Her2-

enriched	 ([ER-PR-]	 HER2+),	 and	 basal-like	 ([ER-PR-]	 HER2-)	 5–8.	 It	 is	 thought	 that	 these	

subtypes	 arise	 in	 breast	 cancer	 because	 oncogenic	 transformation	 can	 occur	 in	 distinct	

epithelial	 cell	 types	 and	 can	 be	 driven	 by	 different	 sets	 of	 mutations	 1,5,6,9,10.	 With	 the	

exception	of	the	rare	and	particularly	aggressive	triple-negative	([ER-PR-]	HER2-)	subtype	

Claudin-low,	hypothesized	to	arise	from	the	MaSC	11,	breast	cancer	is	predicted	to	occur	in	

luminal	cells	in	various	stages	of	differentiation.	Basal-like	breast	cancer,	the	most	common	

triple-negative	subtype,	is	thought	to	derive	from	luminal	progenitors	while	the	hormone-

receptor	 expressing	 luminal	 A	 and	 luminal	 B	 types	 are	 thought	 to	 come	 from	 more	

differentiated,	HR+	luminal	cells	1,6,9,10,12.	The	Her2-enriched	subtype	appears	to	be	primarily	

driven	by	a	genomic	amplification	of	HER2,	so	it	may	not	have	a	single	cell	type	of	origin,	

though	a	luminal	cell	state	only	induced	after	a	full	term	pregnancy	(e.g.	parity	induced)	has	

been	proposed	as	a	possible	origin	based	on	studies	in	mouse	models	12,13.	

More	granular	tumor	subtyping	schemas	have	also	identified	gene	expression	profiles	

suggestive	of	 increased	 immune	 cell	 infiltration	and	 immune	 responses	 in	 subsets	of	 the	
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aforementioned	 intrinsic	 subtypes	 14,15.	 Microenvironmental	 contributions	 from	 immune	

and	stromal	cells	to	tumor	gene	expression	profiles	have	mostly	been	treated	as	separate	

from	 tumor	 intrinsic	 gene	 expression	 and	 genetic	 alterations	 16.	 However,	 the	

microenvironment	can	substantially	contribute	 to	 tumor	heterogeneity	 through	 the	 ‘seed	

and	soil’	hypothesis	of	cancer	metastasis,	which	states	that	breast	cancer	cells	can	be	thought	

of	as	‘seeds’	that	spread	throughout	the	body,	but	only	grow	out	in	appropriately	permissive	

‘soil’	17.	Each	tumor	subtype	in	breast	cancer	has	its	own	‘organotropism’,	referring	to	distal	

organs	to	which	it	will	commonly	metastasize,	supporting	this	idea	of	permissive	and	non-

permissive	microenvironments	18.	Additionally,	these	metastatic	microenvironments	appear	

able	to	adapt,	or	select	for	breast	tumors	of	different	subtypes	than	what	was	seen	in	the	

bulk	of	the	primary	tumor,	a	process	referred	to	as	‘metastatic	switching’	19.	This	switching	

almost	always	gives	rise	to	a	metastatic	tumor	with	a	more	clinically	‘aggressive’	intrinsic	

subtype	than	what	was	seen	in	the	primary	tumor	and	promotes	intra-patient	breast	cancer	

heterogeneity.		

The	 relationship	 between	 the	 microenvironment	 and	 tumor	 subtypes	 in	 breast	

cancer	warrants	additional	investigation,	especially	since	the	‘omics	methods	used	to	define	

breast	cancer	subtypes	were	not	equipped	to	deconvolve	the	phenotypic	contributions	of	

healthy	 and	 neoplastic	 tissues.	 Further,	 while	 intertumoral	 heterogeneity,	 or	 patient	 to	

patient	 variation,	 is	 already	 well-characterized	 in	 breast	 cancer,	 the	 extent	 to	 which	

intratumoral	heterogeneity	influences	breast	cancer	outcomes	has	lagged	behind.	However,	

the	 relatively	 recent	 advent	 of	 single-cell	RNA	 sequencing	 (scRNA-seq)	has	hinted	 at	 the	

answers	 to	 these	 outstanding	 questions.	 Unlike	 prior	 methodologies,	 scRNA-seq	 can	

unbiasedly	 separate	 cell	 types	 and	 states	 and	 distinguish	 signals	 from	 both	 within	 and	
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between	the	microenvironmental	cells	and	tumor	cells.	It	can	also	reveal	both	discrete	and	

continuous	 phenotypic	 changes,	 offering	 a	 more	 comprehensive	 view	 of	 the	 tumor	

ecosystem	 and	 intratumoral	 heterogeneity.	 In	 this	 review,	 we	 will	 discuss	 both	 the	

advantages	 and	 limitations	 of	 scRNA-seq	 for	 answering	 questions	 in	 breast	 biology,	 and	

examine	how	the	single-cell	studies	published	so	far	have	enhanced	our	understanding	of	

cellular	states	and	plasticity	in	breast	homeostasis	and	cancer.			

	

1.2	Single-cell	RNA-seq	methodologies	

1.2.1	Single-cell	library	construction	considerations	

Bulk	RNA-seq	and	microarray	analysis	have	been	useful	for	unbiased	studies	of	the	

mammary	gland	and	breast	cancer,	allowing	us	to	characterize	and	compare	sorted	cell	types	

and	establish	many	of	the	current	tumor	subtyping	schemas	8,14,20.	Using	bulk	sequencing,	

cell	types	must	be	identified	a	priori	by	surface	markers	or	transgenic	reporter	expression	

and	subsequently	separated	using	techniques	like	fluorescence-activated	cell	sorting	(FACS).	

Using	scRNA-seq,	cell	types	can	be	separated	computationally	and	identified	on	the	basis	of	

established	gene	expression	patterns.	Therefore,	it	does	not	require	marker-based	sorting,	

though	this	step	can	still	be	used	for	cell	type	enrichment	if	one	chooses.	However,	scRNA-

seq	requires	the	separation	of	viable	single	cells	from	whole	tissues	which	was	not	necessary	

in	 bulk	 methods,	 and	 technologies	 for	 scRNA-seq	 library	 construction	 can	 be	 broadly	

distinguished	 by	 how	 they	 capture	 these	 cells.	 Three	 common	 types	 of	 cell	 capture	 are	

microfluidic	 circuits	 (e.g.	 Fluidigm	 C1)	 21,	 plate	 based	 capture	 (e.g.	 Smart-seq2)	 22,	 and	

droplet	based	capture	(e.g.	10X	Genomics)	23.	 In	addition	to	cell	capture,	technologies	can	

differ	on	whether	they	sequence	full	length	RNA	molecules	or	only	the	3’	or	5’	ends	of	RNA	
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fragments	24.	Generally,	microfluidic	circuit	and	plate	based	methods	are	part	of	protocols	

that	allow	for	better	gene	capture	while	droplet	based	methods	are	more	scalable	in	terms	

of	cell	numbers.	With	all	of	the	available	technologies,	scRNA-seq	is	prone	to	gene	“dropout”,	

referring	 to	 expressed	 but	 uncaptured	 transcripts	 in	 each	 cell	 25.	 As	 a	 result	 of	 dropout,	

single-cell	 library	 count	 matrices	 contain	 mostly	 zeros	 and	 lowly	 expressed	 genes	 like	

transcription	 factors	can	be	 too	sparsely	captured	to	 interpret.	Despite	 this,	 the	captured	

genes	are	generally	sufficient	to	discriminate	cell	types	and	states,	allowing	for	the	removal	

of	untargeted	cell	populations	in	downstream	analysis	which	was	not	possible	using	bulk	

sequencing	 methods.	 Overall,	 scRNA-seq	 improves	 upon	 the	 accuracy	 of	 cell	 type	

identification	in	transcriptomic	studies	but	has	low	transcriptomic	resolution	compared	to	

bulk	methods	due	to	dropout.	

ScRNA-seq	 results	 in	 much	 “cleaner”	 transcriptomic	 libraries	 than	 bulk,	 but	 it	 is	

important	to	mention	that	scRNA-seq	libraries	still	contain	contaminants	that	can	influence	

data	interpretations.	Minor	background	reads	from	nearby	lysed	cells	or	incomplete	washes	

are	 almost	 always	 sequenced	 with	 each	 cell	 and	 therefore	 one	 should	 ensure	 that	

comparison	groups	and	sequencing	batches	are	non-overlapping.	If	this	is	not	possible,	batch	

correction	algorithms	have	been	developed	specifically	for	scRNA-seq	data	to	mitigate	their	

effects	26.	A	related	issue	that	is	unique	to	scRNA-seq	libraries	is	“doublets”,	which	refer	to	

two	cells	sequenced	under	a	single	identifier.	This	can	generate	populations	of	“cells”	with	

misleadingly	 interesting	properties.	Doublets	represent	a	 few	percent	of	 total	capture	 for	

most	scRNA-seq	technologies	and	are	unlikely	to	be	completely	avoided	23.	Doublet	detection	

using	biological	marker	knowledge	in	combination	with	a	high	unique	gene	number	cutoff	

(since	doublets	tend	to	express	more	unique	genes	than	any	given	single	cell)	seems	to	work	
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well,	and	more	sophisticated	algorithms	have	been	developed	for	doublet	detection	when	

orthogonal	 validation	 is	 warranted	 27–29.	 Finally,	 non-biological	 or	 uninteresting	

transcriptomic	variation	 is	often	present	 in	single-cell	 libraries	due	 to	cell	 cycle	states	or	

stress	 associated	 signatures.	 To	 go	 from	 intact	 tissues	 to	 single	 cells,	 long	 manual	 and	

enzymatic	digestion	protocols	can	be	necessary,	especially	in	tissues	like	the	breast	which	

contains	 a	 dense	 extracellular	 matrix.	 These	 prolonged	 digestions	 can	 result	 in	 the	

expression	of	 stress	or	early	apoptosis	genes	 in	 the	 separated	 cells.	 Similarly,	 scRNA-seq	

studies	 that	 perform	 FACS	 to	 enrich	 for	 live	 cells	 or	 specific	 subpopulations	 of	 interest	

sometimes	find	a	stress	associated	profile	consisting	of	intermediate	early	genes	in	a	portion	

of	their	libraries.	Studies	of	digestion	and	sorting	induced	phenotypes	are	starting	to	emerge	

30–32,	 though	 the	 full	 range	 of	 tissue	 processing	 and	 sorting-associated	 states	 is	 not	 yet	

defined	and	it	remains	difficult	to	distinguish	them	from	related	in	vivo	phenotypes.	All	of	

the	aforementioned	technical	issues	can	be	mitigated	by	careful	experimental	design,	but	not	

fully	removed	without	the	aid	of	computational	tools.	Therefore,	while	scRNA-seq	is	a	mostly	

unbiased	 capture	methodology,	 the	 data	 cannot	 and	 should	 not	 be	 analyzed	 unbiasedly;	

rather,	 biological	 knowledge	 of	 the	 cell	 types	 and	 states	 of	 interest	 must	 be	 utilized	 to	

overcome	technical	limitations	and	identify	relevant	findings.	

	

1.2.2	Overview	of	scRNA-seq	computational	analyses	

ScRNA-seq	data	analysis	often	begins	by	performing	clustering	and	dimensionality	

reduction	(DR)	to	identify	cell	populations	with	distinct	transcriptome	profiles.	In	bulk	RNA-

seq,	 DR	 is	 performed	 primarily	 with	 principal	 component	 analysis	 (PCA)	 or	

multidimensional	 scaling	 (MDS)	 to	 compare	 biological	 replicates	 and	 conditions,	 and	
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transcriptome	similarities	are	directly	associated	with	the	distances	between	libraries	in	the	

plot.	Due	to	dropout	and	highly	distinct	subpopulations	of	cells	found	in	single-cell	datasets,	

scRNA-seq	is	better	visualized	using	non-linear	DR	techniques,	though	linear	DR	techniques	

perform	 equally	 well	 for	 downstream	 statistical	 analyses	 33.	 Non-linear	 DR	 techniques	

reduce	 computational	 outlier	 effects	 compared	 to	 linear	DRs	 and	 result	 in	 visualizations	

where	 groups	 of	 cells	 are	 transcriptionally	 similar	 but	 the	 amount	 of	 space	 between	

populations	 is	 not	necessarily	proportional	 to	 their	 transcriptional	 differences.	The	most	

frequently	 used	 techniques	 for	 non-linear	 DR	 in	 scRNA-seq	 are	 t-distributed	 stochastic	

neighbor	embedding	(tSNE)	34	and	uniform	manifold	approximation	and	projection	(UMAP)	

35.	After	or	 in	conjunction	with	DR,	clustering	 is	performed	 to	 increase	 the	granularity	of	

population	 identification	 and	 label	 cells	 for	 differential	 expression	 testing.	 Graph-based,	

Louvain	 clustering	 methods	 have	 been	 shown	 to	 work	 particularly	 well	 for	 scRNA-seq	

datasets	24,36,	and	this	method	can	be	performed	on	either	the	non-reduced	cell	coordinates	

(for	example,	principal	components	or	full	gene	expression	profiles)	or	the	cell	positions	in	

the	DR	space.	The	advantage	of	performing	clustering	on	non-reduced	cell	coordinates	is	that	

it	offers	orthogonal	validation	for	populations	structures	since	the	labels	should	align	very	

well	 to	 the	reduced	cell	positions	 in	 tSNE	or	UMAP	space,	supporting	that	 the	chosen	DR	

captured	relevant	differences	between	cells.	Overall,	it	is	best	to	think	of	DR	as	a	visualization	

tool	 and	 clustering	 as	 a	 statistical	 analysis	 tool	 which	 together	 reveal	 transcriptionally	

distinct	cell	populations	for	labeling	and	hypothesis	generation.	

Once	populations	are	identified	computationally,	one	must	use	biological	expertise	to	

determine	the	cell	types	and	cell	states	represented	by	each	cluster.	Marker	gene	analysis	is	

a	type	of	differential	expression	analysis	that	looks	at	genes	specifically	upregulated	in	one	
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cluster	compared	to	all	of	the	other	clusters.	Using	marker	genes,	one	can	label	cell	types	and	

phenotypes	through	comparison	to	known	cell	type	markers	and	gene	ontology	terms	37.	The	

phenotype	labels	can	be	refined	by	performing	“gene	scoring”	on	individual	cells	with	bulk	

transcriptome	profiles	from	prior	cell	type	studies	or	curated	gene	lists	for	cell	states.	Briefly,	

gene	scoring	techniques	seek	to	quantify	the	enrichment	of	an	input	transcriptome	profile	in	

aggregate	to	determine	whether	it	is	specifically	expressed	in	a	given	cell	or	population	of	

cells.	 Many	 algorithms	 exist	 for	 this	 purpose,	 but	 a	 popular	 heuristic	 was	 developed	 by	

Tirosh	 &	 Izar	 et	 al	 38	 which	 takes	 as	 input	 a	 list	 of	 genes	 assumed	 to	 be	 regulated	

unidirectionally	(either	up	or	down)	and	compares	the	expression	of	genes	in	this	gene	set	

to	a	random	background	set	of	genes	with	similar	expression	in	the	bulk	of	the	data.	As	a	

result,	a	positive	score	means	that	the	gene	set	is	“upregulated”	in	a	given	cell	and	a	negative	

score	means	that	the	gene	set	is	“downregulated”,	though	the	absolute	value	of	the	scores	do	

not	 have	 a	 clear	 interpretation	 since	 they	 are	 normalized	 within	 the	 dataset	 being	

investigated	and	are	impacted	by	the	algorithm	parameters.	It	is	also	common	to	see	gene	

scoring	 techniques	developed	 for	bulk	sequencing	data	 (e.g.	GSEA	 39)	used	on	scRNA-seq	

data,	 but	 this	 should	 be	 done	 with	 caution	 since	 the	 statistical	 assumptions	 of	 these	

algorithms	do	not	necessarily	hold	in	sparse,	outlier	heavy	single-cell	data.		

After	cell	type	and	cell	state	identification,	one	can	ask	how	certain	cell	types	move	

through	 a	 differentiation	 or	 activation	 process.	 Since	 these	 processes	 are	 often	

conceptualized	as	continuous	rather	than	discrete	behaviors	(i.e.	a	cell	can	be	 ‘more	stem	

like’	 or	 ‘more	 activated’	 rather	 than	 existing	 in	 a	 binary	 ‘stem’	 or	 ‘activated’	 state),	 the	

algorithms	 for	 investigating	 them	 also	 implement	 these	 assumptions.	 This	 analysis	 is	

broadly	referred	to	as	‘pseudotemporal’	analysis	since	it	can	separate	individual	cells	moving	
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through	a	temporally	dependent	process	by	their	differentiation	‘time’	(i.e.	phenotypic	state)	

rather	 than	 relying	 on	 the	 timepoint	 at	 which	 the	 data	 was	 collected.	 This	 can	 be	 done	

separately	from	the	original	DR,	though	PCA	and	UMAP	capture	global	cell	type	similarities	

well	 enough	 to	be	used	as	part	of	pseudotemporal	 algorithms.	Other	 commonly	used	DR	

bases	 for	 pseudotime	 include	 diffusion	 maps	 40	 and	 reversed	 graph	 embedding	 (e.g.	

DDRTree	in	Monocle	2)	41.	After	placing	the	cells	in	two	or	three	dimensions	with	a	globally	

sensitive	DR	algorithm,	a	‘timecourse’	is	added	to	the	DR	as	a	path	through	the	plot	with	a	

start	and	end	point	defined	by	the	user.	There	are	a	few	different	methods	for	drawing	this	

path,	most	of	which	 rely	on	 local	 cell	density	and	minimum	complexity	assumptions	 (i.e.	

avoid	 drawing	 unnecessary	 detours	 between	 groups	 of	 cells)	 to	 determine	 feasible	

trajectories	24,42.	A	relatively	new	addition	to	these	analyses	is	RNA	velocity,	which	seeks	to	

establish	the	direction	and	speed	of	cell	movements	through	a	temporal	process	based	on	

the	ratios	of	spliced	and	unspliced	transcripts	43,44.	This	model	assumes	that	a	higher	than	

expected	ratio	of	unspliced,	or	nascent	transcripts	to	spliced	transcripts	from	a	particular	

state	 suggests	 a	movement	 towards	 that	 state,	while	 the	 opposite	 indicates	 a	movement	

away,	or	a	repression	of	that	state.	These	assumptions	allow	the	algorithm	to	create	a	vector	

field	 of	 cell	 movements	 on	 top	 of	 an	 existing	 single-cell	 trajectory	 which	 can	 guide	 the	

interpretation	 of	 how	 cells	 move	 across	 a	 proposed	 path.	 Additionally,	 it	 can	 serve	 as	

orthogonal	validation	of	hypothesized	start,	end,	or	transition	states	in	a	trajectory	since	it	

relies	on	nascent	RNA	capture	that	was	not	accounted	for	in	the	original	DR	or	trajectory	

inference.		

The	computational	methods	we	have	discussed	so	far	are	frequently	used	algorithms	

for	analyzing	scRNA-seq	datasets	in	the	field	of	breast	and	breast	cancer,	but	we	have	by	no	



 

10 
 

means	given	a	complete	overview	of	the	possible	analysis	techniques.	For	those	interested	

in	more	detail	on	these	methods	or	alternative	options,	Leucken	and	Theis,	2019	provides	

an	excellent	tutorial	of	computational	methods	and	how	they’re	used	in	scRNA-seq	without	

field	 specificity	 24.	 For	 the	 rest	 of	 this	 review,	 we	 will	 occasionally	 refer	 back	 to	 these	

methods	and	their	caveats	as	we	discuss	breast	and	mammary	related	scRNA-seq	findings.	

As	with	other	profiling	methods,	scRNA-seq	is	primarily	used	to	generate	hypotheses	and	

the	data	 is	open	 to	 reinterpretation	as	new	biological	understandings	and	computational	

methods	become	available.	Table	1	provides	a	list	of	the	peer-reviewed	studies	we	will	cover	

in	the	subsequent	sections,	filtered	to	contain	only	in	vivo	derived	libraries,	and	includes	the	

location	of	the	associated	datasets	to	facilitate	their	reuse,	reanalysis,	and	meta-analysis	for	

novel	hypothesis	generation.	

Paper	 Organism	 Cell	types	
sequenced	

Microfluidic-
based	

Plate-
based	 Drop-seq	 ScRNA-seq	data	

locations	
Nguyen	&	
Pervolarakis	
et	al,	2018	

Human	 Breast	
epithelia	 Fluidigm	C1	 	 10x	 GSE113197	

Sun	et	al,	
2018	

Mouse	
(FVB)	

Mammary	
epithelia	 Fluidigm	C1	 	 	 Table	S1	

Giraddi	et	
al,	2018	

Mouse	
(C57BL/6)	

Mammary	
epithelia	 Fluidigm	C1	 	 10x	 SAMN07138894,	

GSE111113	
Bach	et	al,	
2017	

Mouse	
(C57BL/6)	

Mammary	
epithelia	

	 	 10x	 GSE106273	

Pal,	Chen,	&	
Vaillant	et	
al,	2017	

Mouse	
(FVB)	

Mammary	
epithelia	 Fluidigm	C1	 	 10x	 GSE98131,	GSE103275	

Wuidart	
&	Sifrim	et	
al,	2018	

Mouse	
(C57BL/6)	

Mammary	
epithelia	

	 SmartSeq2	 	 GSE109711	

Davis	et	al,	
2020	

Human	
(PDX	in	

NOD/SCID)	
Tumor	cells	 	 SmartSeq2	 	 GSE123837	

Karaayvaz	&	
Cristea	et	al,	

2018	
Human	

Tumor,	
stroma,	&	

immune	cells	
	 SmartSeq2	 	 GSE118390	

Chung	&	
Eum	et	al,	
2017	

Human	
Tumor,	
stroma,	&	

immune	cells	
Fluidigm	C1	 	 	 GSE75688	

Bartoschek	
et	al,	2018	

Mouse	
(MMTV-
PyMT)	

Stromal	cells	 	 SmartSeq2	 	 GSE111229	
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Kieffer	
&	Hocine	et	
al,	2020	

Human	 Stromal	cells		 	 	 10x	 EGAS00001004030 

Azizi,	Carr,	
Plitas,	&	
Cornish	et	
al,	2018	

Human	 Immune	cells	 	 	 inDrop/10x	 GSE114727,	GSE114725,	
GSE114725	

Savas	&	
Virassamy	
et	al,	2018	

Human	 Immune	-	T	
cells	

	 	 10x	 GSE110686	

Alshetaiwi	
et	al,	2020	

Mouse	
(MMTV-
PyMT)	

Immune	-	
MDSCs	

	 	 10x	 GSE139125	

Table	1:	ScRNA-seq	papers	 from	 in	 vivo	 studies	 focused	on	 the	mammary	gland,	breast,	 and	breast	
cancer.	 	 Data	 accessions	 beginning	 with	 S	 can	 be	 accessed	 through	 the	 short	 read	 archive	 (SRA),	 those	
beginning	with	G	can	be	accessed	through	the	gene	expression	omnibus	(GEO),	and	those	beginning	with	E	can	
be	accessed	through	the	European	Genome-Phenome	Archive.	MDSC	=	myeloid	derived	suppressor	cell.	

 
1.3	Biological	insights	derived	from	scRNA-seq	studies	

1.3.1	The	healthy	mammary	and	breast	epithelium	

Single-cell	studies	in	the	mammary	gland	so	far	have	been	able	to	unbiasedly	assay	

the	epithelial	cells	from	embryonic	tissue,	pre-puberty,	post-puberty,	pregnancy,	and	post-

pregnancy	involution	45–49.	Notably,	all	single-cell	datasets	showed	one	major	differentiated	

basal	population	and	 two	major	differentiated	 luminal	populations	 (HR+	and	HR-)	 in	 the	

homeostatic	adult	mammary	gland,	as	well	as	the	adult	breast,	which	matches	well	with	the	

expectations	from	flow	cytometry	studies	45–51.	However,	there	was	less	consensus	on	the	

number	and	markers	of	progenitor	populations.		Some	groups	argue	that	their	data	did	not	

suggest	the	persistence	of	a	bipotent	progenitor	resembling	a	MaSC	in	the	adult	mammary	

gland	 45,46,49	 and	 others	 proposed	 CDH5	 48	 or	 luminal-progenitor/basal	 associated	 co-

expression	47	as	data-supported	markers.	Sun	et	al	demonstrated	that	 their	hypothesized	

MaSC	cluster,	marked	by	Procr,	Cldn5,	Pecam1,	and	other	vascular-related	genes,	could	be	

sorted	 using	 CDH5	 and	 that	 CDH5+	 basal	 cells	 had	 a	 greater	 ability	 to	 reconstruct	 the	

mammary	gland	in	transplantation	assays	than	CDH5-	basal	cells	48.		Pal,	Chen,	&	Vaillant	et	
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al	did	not	demonstrate	biopotency	in	their	luminal-progenitor	marked	basal	cells,	but	they	

did	validate	a	novel	marker	of	 luminal	stemness	47.	This	group	noticed	a	small	number	of	

CD55+	epithelial	cells	that	moved	from	the	basal	compartment	in	pre-puberty	to	the	luminal	

compartment	 in	 the	 adult	 mammary	 gland,	 which	 they	 hypothesized	 represented	 an	

intermediate	 luminal	 progenitor	 47.	 They	 demonstrated	 that	 these	 CD14+CD55+	 luminal	

cells	had	a	higher	colony	forming	capacity	 in	Matrigel	 than	CD14-	or	CD55-	 luminal	cells,	

supportive	 of	 increased	 progenitor	 capabilities	 47.	 Embryonic	MaSCs,	 which	 require	 less	

experimental	validation	since	they	are	guaranteed	to	have	stem-like	phenotypes	due	to	their	

differentiation	 timing,	 have	 also	 been	 included	 in	 scRNA-seq	 studies	 of	 the	 epithelial	

hierarchy.	 Interestingly,	 while	 gene	 scoring	 analyses	 supported	 a	 mixed	 basal/luminal	

lineage	 phenotype	 for	 embryonic	 MaSCs,	 neither	 study	 found	 any	 cells	 from	 the	 adult	

mammary	gland	transcriptionally	similar	enough	to	MaSCs	to	cluster	with	them	45,49.			

Unfortunately,	scRNA-seq	did	not	readily	end	any	debates	on	progenitor	populations	

in	 the	 mammary	 epithelium,	 pseudotime	 analyses	 have	 revealed	 interesting	 cell	 state	

dynamics.	 Bach	 et	 al	 focused	 their	 study	 on	 luminal	 cells	 in	 the	 pre-	 and	 post-lactation	

mammary	gland	 46.	 In	 this	 study,	 they	 find	 a	 smooth	 transcriptional	bifurcation	between	

luminal	 progenitors	 and	 HR+	 or	 HR-	 differentiated	 luminal	 cells,	 and	 argue	 that	 their	

diffusion	map	 does	 not	 support	 a	 connection	 between	 the	 basal	 and	 luminal	 lineages	 46.	

Interestingly,	 they	 also	 found	 that	 luminal	 cells	 appear	 to	 ‘remember’	 their	 secretory	

alveolar	 state	 after	 pregnancy,	 since	 the	 HR+	 luminal	 cells	 from	 post-parous	mice	 skew	

towards	 the	 nulliparous	HR-	 luminal	 cells	 rather	 than	 the	 nulliparous	HR+	 luminal	 cells	

when	projected	onto	the	same	diffusion	map	46.	In	the	human	breast,	a	preprint	from	Murrow	

et	al	also	found	that	parity	resulted	in	decreased	hormone-responsiveness	in	HR+	luminal	
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cells	compared	to	nulliparous	samples	based	on	gene	expression	profiles	downstream	of	the	

ER	and	PR	pathways		51.		In	terms	of	the	differention	hierarchy	in	human	breast,	Nguyen	&	

Pervolorakis	et	al	similarly	found	a	smooth	bifurcation	between	luminal	cell	progenitors	and	

HR+	 and	 HR-	 differentiated	 states	 in	 healthy	 reduction	 mammoplasty	 samples	 using	

Monocle2	50.	This	plasticity	and	apparent	memory	of	luminal	cells	seen	in	both	species	may	

be	an	important	source	of	intertumoral	breast	cancer	heterogeneity	and	could	also	help	to	

explain	parity-associated	differences	in	the	incidence	of	breast	cancer	development	across	

subtypes	46,51,52.		

	

1.3.2	Inter-	and	intra-tumoral	heterogeneity	in	breast	cancer	

Before	 the	 advent	 of	 scRNA-seq,	 it	 was	 hypothesized	 that	 luminal	 differentiation	

states	corresponded	to	distinct	 tumor	types	with	aggressive	tumor	subtypes	arising	from	

luminal	 progenitors	 (e.g.	 basal-like)	 and	 less	 aggressive	 tumor	 types	 arising	 from	

differentiated	HR+	 luminal	cells	 (e.g.	 luminal	A	and	 luminal	B).	Single-cell	 studies	 to	date	

have	supported	these	phenotypic	similarities	between	breast	epithelial	cell	types	and	tumor	

subtypes	using	gene	scoring	analyses	on	healthy	epithelial	cells	for	tumor	signatures	as	well	

as	on	tumor	cells	for	healthy	epithelial	signatures	50,53,54.		These	gene	scoring	analyses	also	

revealed	potential	subtype	mixing,	with	each	tumor	having	a	few	cells	classified	as	a	different	

subtype	 than	 the	bulk	of	 the	 tumor	 53,54.	 Subtype	mixing	 is	an	 interesting	and	potentially	

relevant	finding	but	it	is	important	to	remember	that	the	PAM50	7,	METABRIC	14,	and	TNBC	

subtypes	20	were	all	developed	on	bulk	datasets	and	may	be	sensitive	to	gene	dropout.	Chung	

&	Eum	et	al,	who	profiled	 luminal	A,	 luminal	B,	Her2-enriched,	and	triple-negative	tumor	

cells,	 showed	 that	 the	 expression	 of	 subtype-specific	 markers	 and	 related	 pathways	 in	
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single-cells	 align	 very	 well	 with	 their	 matched	 bulk	 RNA-seq	 and	 the	 expected	 tumor	

subtypes	from	pathology	54.	However,	a	few	cells	from	each	tumor	lack	the	expression	of	key	

markers	for	any	subtype,	likely	indicative	of	high	dropout	54.	Unfortunately,	it	is	not	yet	clear	

whether	the	computational	methods	used	for	gene	expression	based	breast	cancer	subtyping	

are	 mislabeling	 low	 quality	 cells	 as	 distinct	 subtypes	 because	 of	 technical	 artifacts	 or	

whether	 they	are	picking	up	on	 true	biological	differences	and	the	hypothesis	of	subtype	

mixing	should	be	taken	lightly.	

While	subtype	identification	may	not	be	optimized	for	scRNA-seq	quite	yet,	single-

cell	studies	have	given	us	a	great	look	into	both	inter-	and	intra-tumoral	heterogeneity	in		

breast	cancer.	Intertumoral	heterogeneity	is	very	apparent	and	well	supported	in	single-cell	

studies,	with	every	group	finding	that	unbiased	clustering	is	primarily	driven	by	cell	type	in	

healthy	cells	and	patient	differences	in	malignant	tumor	cells	54–56.	Interestingly,	Karaayvaz	

&	Cristea	et	al	found	that	genomic	copy	number	variations,	seen	in	both	bulk	whole	exome	

sequencing	as	well	as	inferred	from	their	scRNA-seq	data,	were	highly	correlated	to	patient	

specific	gene	expression	profiles	55.	Thus,	transcriptomic	differences	seen	between	different	

patient’s	 tumors	 may	 be	 largely	 driven	 by	 genomic	 alterations.	 On	 the	 other	 hand,	

intratumoral	heterogeneity,	or	differences	between	individual	cells	within	a	patient	tumor,	

may	 be	more	 impacted	 by	 the	 local	 environment.	 Based	 on	 clustering	 within	 individual	

patient	tumors,	it	does	appear	that	subgroups	of	tumors	are	dominated	by	distinct	biological	

behaviors;	 however,	 non-linear	 DR	 techniques	 sensitive	 to	 global	 changes	 do	 not	 fully	

separate	 these	 populations,	 meaning	 these	 behaviors	 may	 be	 gradiented	 or	 have	 some	

overlap	with	one	another	53,56,57.	Davis	et	al	showed	that	individual	patient-derived	triple-

negative	 xenograft	 tumors	 have	 clusters	 with	 different	 functional	 phenotypes	 based	 on	
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marker	 gene	 ontology	 analysis,	 including	 increased	 metabolism	 (glycolysis	 or	 oxidative	

phosphorylation),	 inflammatory	 responses,	 and	 extracellular	 matrix	 rearrangement	 56.	

Chung	 &	 Eum	 et	 al	 similarly	 show	 that	 individual	 tumor	 cells	 within	 a	 patient	 have	

heterogeneous	expression	of	common	breast	cancer	associated	pathways,	including	HER2	

amplification,	 PI3K/AKT,	 and	 estrogen	 response,	 though	 there	were	 too	 few	 tumor	 cells	

sequenced	 to	 form	 defined	 clusters	 54.	 These	 subtle	 intratumoral	 specializations	may	 be	

driven	by	the	location	of	cells	within	the	tumor	mass,	where	cells	in	hypoxic	regions,	next	to	

the	 tumor	 edge,	 or	 near	 cytokine	 secreting	 immune	 and	 stromal	 cells	 shift	 their	

transcriptomes	to	respond	to	the	relevant	stressors.	No	spatial	follow-ups	were	performed	

in	 the	 scRNA-seq	 papers	 discussed	 so	 far;	 however,	 Jackson	 &	 Fischer	 et	 al	 performed	

imaging	mass	cytometry	on	352	breast	cancer	patient	tumors	and	this	data	supports	that	

intratumoral	heterogeneity	is	a	spatially	segregated	phenomenon	58.		

	

1.3.3	Insights	into	breast	cancer	metastasis	

Metastatic	initiation	has	been	difficult	to	study	due	to	its	seemingly	stochastic	timing	

and	progression,	but	new	insights	on	this	question	have	been	gained	from	single-cell	studies.	

A	major	question	in	metastasis	is	whether	metastatic	tumors	derive	from	a	rare	tumor	cell	

with	definable	properties	or	whether	successful	metastases	are	the	consequence	of	chance	

and	environmental	adaptations.	In	general,	metastatic	tumors	in	breast	cancer	show	more	

aggressive	phenotypes	than	the	primary	tumors	they	arise	 from.	Prior	studies	using	bulk	

sequencing	have	shown	that	metastases	from	primary	tumors	with	the	basal-like	subtype	

almost	 always	 seed	 basal-like	 metastases	 and	 the	 less	 aggressive	 subtypes	 often	 seed	

metastases	with	a	worse	prognosis	(e.g.	luminal	B	to	basal-like)	19.	A	version	of	metastatic	
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switching	was	observed	at	the	single-cell	level	in	Chung	&	Eum	et	al	who	found	that	a	tumor	

with	HER2+ER+	cells,	classified	as	luminal	B,	showed	an	upregulation	of	genes	associated	

with	the	HER2	amplification	pathway	and	a	downregulation	of	estrogen	response	in	lymph	

node	metastases	compared	 to	primary	 tumor	cells,	 indicating	priming	 towards	 the	Her2-

enriched	 phenotype	 in	 metastasis	 54.	 Additionally,	 using	 single-cell	 qPCR,	 Lawson	 et	 al	

demonstrated	 that	 triple-negative	 patient-derived	 xenograft	 micrometastases	 have	

basal/MaSC	associated	gene	expression	profiles	while	primary	and	high	burden	metastatic	

tumors	had	more	 luminal	 like	gene	expression	patterns,	 suggesting	 that	 early	metastasis	

may	be	facilitated	by	the	upregulation	of	epithelial	progenitor	characteristics	59.	Perhaps	the	

most	important	observation	has	been	made	in	multiple	papers;	namely,	Lawson	et	al,	Davis	

et	al,	and	Chung	&	Eum	et	al	all	found	rare	cells	in	the	primary	tumor	reflecting	phenotypes	

of	their	associated	metastatic	tumors,	supporting	the	hypothesis	of	a	non-random	metastatic	

cell	of	origin	54,56,59.	

In	addition	to	supporting	hypothesized	profiles	of	metastasis	in	breast	cancer,	scRNA-

seq	has	revealed	unexpected	connections	between	metabolism	and	metastatic	progression	

in	the	triple-negative	subtype.	Giraddi	et	al	found	fetal	MaSCs	upregulate	a	large	number	of	

metabolism-associated	genes	compared	to	epithelial	cells	from	older	mice,	especially	those	

involved	in	glycolysis	45.	Using	the	metabolism	associated	marker	genes	for	fetal	MaSCs,	they	

develop	a	signature	that	they	find	is	enriched	in	basal-like	breast	tumors	compared	to	other	

proliferative	tumor	subtypes	and	further	note	is	upregulated	in	metastatic	basal-like	tumors	

compared	to	primary	basal-like	tumors	45.	In	contrast,	Davis	et	al	found	that	micrometastatic	

cells	from	triple-negative	patient-derived	xenografts	upregulate	oxidative	phosphorylation	

(OxPhos)	associated	genes	and	downregulate	glycolytic	associated	genes	and	that	metastasis	
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can	 be	 decreased	 by	 blocking	 OxPhos	 with	 Oligomycin	 56.	 Taken	 together,	 these	 two	

observations	suggest	that	OxPhos	is	needed	in	early	metastasis	and	glycolysis	is	beneficial	

in	 late	 metastasis.	 A	 third	 metabolic	 pathway	 relevant	 to	 metastasis	 was	 identified	 in	

Karaayvaz	 &	 Cristea	 et	 al,	 whose	 unbiased	 clustering	 revealed	 a	 glycosphingolipid	

metabolism	signature	conserved	across	their	six	triple-negative	patient	tumors	and	further	

found	 that	 this	 signature	 was	 associated	with	 poor	 survival	 outcomes	 in	 triple-negative	

tumors	from	the	METABRIC	cohort	14,55.	While	it	remains	to	be	seen	how	these	metabolic	

pathways	function	in	metastatic	progression	in	triple-negative	tumors,	 it	seems	clear	that	

these	 tumors	 benefit	 from	 the	 expression	 of	 multiple	 metabolic	 pathways	 as	 well	 as	

metabolic	switching	capabilities.		

	

1.3.4	Microenvironmental	influences	in	breast	cancer	

The	tumor	microenvironment	in	the	breast	consists	of	healthy	epithelial	cells,	stroma,	

and	 immune	 cells.	 The	 immune	 microenvironment	 can	 be	 further	 broken	 down	 into	

lymphoid	and	myeloid	 cells.	Most	myeloid	 cell	 types	 in	 the	 tumor	microenvironment	are	

considered	 supportive	 due	 to	 their	 growth-promoting	 and	 pro-angiogenic	 cytokine	

secretion	and	most	lymphoid	cell	types	are	responsible	for	tumor	cell	recognition	and	killing	

60.	Similar	to	myeloid	cells,	the	stroma	is	considered	pro-tumorigenic	since	it	has	been	shown	

to	 promote	 tumor	 survival	 by	 providing	 growth	 factors	 and	 degrading	 the	 extracellular	

matrix	60.	ScRNA-seq	studies	of	the	tumor	microenvironment	in	breast	cancer	so	far	have	

primarily	 sought	 to	 classify	 non-tumor	 cell	 types	 and	 label	 their	 activation	 states	 using	

known	 markers.	 Despite	 the	 relative	 simplicity	 of	 this	 goal,	 these	 investigations	 have	
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revealed	that	many	‘known’	tumor-associated	phenotypes	in	immune	and	stromal	cells	have	

unexpected	co-expression	patterns	and	novel	prognostic	capabilities.		

Tumor	 associated	 myeloid	 cells,	 including	 monocytes,	 neutrophils,	 macrophages	

(TAMs),	and	monocyte-derived	suppressor	cells	(MDSCs),	are	prevalent	in	the	breast	cancer	

microenvironment	and	their	pro-	or	anti-tumorigenic	behaviors	are	associated	with	distinct	

gene	expression	patterns.	A	slightly	oversimplified	model	states	that	myeloid	cells	with	‘M1’	

signatures	are	pro-inflammatory	and	cytotoxic	T	cell	promoting,	while	myeloid	cells	with	

‘M2’	signatures	are	anti-inflammatory,	pro-angiogenic,	and	T	cell	suppressive	61.	The	studies	

that	 have	 investigated	 TAMs	 in	 breast	 cancer	 using	 scRNA-seq	 have	 all	 noted	 a	 pro-

tumorigenic	 M2	 phenotype	 in	 their	 captured	 macrophages	 based	 on	 gene	 scoring	 and	

marker	gene	 investigations,	 though	Azizi,	Carr,	Plitas,	&	Cornish	et	al	noted	an	 important	

correlate	54,62,63.	This	group	found	that	genes	marking	the	M1	phenotype	were	co-expressed	

with	M2	markers	in	individual	myeloid	cells	from	both	healthy	and	tumor	tissues	across	all	

breast	cancer	subtypes	62.	While	M1	and	M2	signatures	have	been	known	to	have	a	complex	

balance	in	breast	cancer,	this	is	the	first	demonstration	that	a	mixed	signature	is	found	at	the	

single-cell	level	and	it	is	unclear	whether	these	hybrid	cells	will	be	pro-	or	anti-tumoral	64.	

On	 the	 other	 hand,	MDSCs,	 named	based	 on	 their	 ability	 to	 suppress	T	 cell	 function,	 are	

almost	 certainly	 pro-tumorigenic,	 though	 they	 are	 not	 always	 easy	 to	 identify	 in	

transcriptomic	data	due	to	their	similarities	to	non-suppressive	neutrophils	and	monocytes	

65.	To	find	a	more	discriminating	MDSC	gene	signature,	Alshetaiwi	et	al	used	scRNA-seq	to	

compare	 neutrophils	 and	 monocytes	 from	 the	 spleens	 of	 wild	 type	 and	 tumor-bearing	

MMTV-PyMT	mice,	which	are	enriched	for	MDSCs	66.	Using	a	straightforward	clustering	and	

marker	gene	analysis,	 they	 identified	a	conserved	gene	signature	 for	MDSCs	 from	tumor-
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bearing	 mice,	 and	 found	 a	 novel	 flow	 sorting	 marker	 for	 these	 cells,	 CD84,	 which	 they	

validated	marks	neutrophils	with	high	T	cell	suppressive	capacities	in	the	PyMT	mouse	and	

is	 also	 upregulated	 on	 MDSCs	 in	 the	 blood	 of	 human	 breast	 cancer	 patients	 66.	 These	

observations	from	scRNA-seq	studies	of	myeloid	cells	in	breast	cancer	so	far	have	generated	

new	activation	profiles	and	sorting	markers	to	facilitate	improved	functional	studies	in	the	

future.		

T	cell	infiltration	patterns	are	known	to	be	predictive	of	patient	survival	and	response	

to	therapeutics	in	breast	cancers,	so	it	 is	not	surprising	that	their	activation	profiles	have	

been	a	topic	of	interest	in	breast	cancer	related	single-cell	studies	67–69.		Similar	to	myeloid	

cells,	T	cells	can	have	multiple	states,	including	antitumoral	cytotoxic	CD8+	T	cells	and	Th1	

cells	as	well	as	immune	suppressive	Th2	and	T	regulatory	(Treg)	cells.	Savas	&	Virassamy	et	

al	 investigated	T	 cell	 states	 in	 luminal,	Her2-enriched,	 and	 triple-negative	breast	 cancers	

using	 both	 scRNA-seq	 and	 bulk	 RNA-seq	 and	 found	 that	 the	 gene	 signatures	 of	 resident	

memory,	CD103+CD8+	T	cells	in	triple-negative	tumors	is	more	predictive	of	patient	survival	

than	 the	 gene	 signatures	 for	 other	T	 cell	 states,	 suggesting	 that	CD103+CD8+	T	 cells	 are	

particularly	important	for	tumor	clearance	in	this	subtype	70.	While	T	cell	activation	is	vital	

to	 tumor	 clearance,	 prolonged	 activation	 can	 be	 followed	 by	 a	 state	 of	 exhaustion	 with	

increased	expression	of	immune	suppressive	markers	and	Treg	infiltration	that	facilitates	

tumor	 outgrowth	 67,71.	 Interestingly,	 Azizi,	 Carr,	 Plitas,	 &	 Cornish	 et	 al	 modeled	 T	 cell	

activation	in	breast	cancer	with	diffusion	maps	and	revealed	a	positive	correlation	between	

T	cell	activation/exhaustion	and	hypoxia,	connecting	the	local	tumor	environment	to	T	cell	

phenotypes	 62.	 Additionally,	 they	 found	 that	 T	 cell	 clonotypes	 (antigen-specific	 T	 cell	

populations),	determined	by	VDJ	sequencing,	were	aligned	almost	perfectly	with	scRNA-seq	
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driven	 clustering	 in	 those	 same	 T	 cells	 62.	 Therefore,	 there	 appears	 to	 be	 a	 connection	

between	phenotype,	genotype,	and	the	metabolic	environment	in	breast	cancer-associated	

T	cells,	mirroring	what	was	seen	in	the	breast	cancer	cells	themselves.	

Stromal	cells	have	more	recently	been	studied	using	scRNA-seq,	predominantly	in	a	

cancer	context.	In	Bartoschek	et	al,	they	use	the	MMTV-PyMT	mouse	model	to		characterize	

three	 distinct	 populations	 of	 cancer	 associated	 fibroblasts	 (CAFs),	 associated	 with	

vasculature	 (vCAF),	 mammary	 residence	 (mCAF),	 and	 tumor	 cells	 having	 undergone	

epithelial-to-mesenchymal	transition	(dCAF)	72.	They	find	that	the	gene	signature	of	vCAFs,	

very	likely	to	be	a	population	of	pericytes,	 is	associated	with	increased	risk	of	developing	

metastatic	disease	72.	Further,	they	connect	the	mCAF	phenotype	(PDGFRα+/CD146−)	to	the	

specification	 of	 hormone	 negativity	 in	 triple-negative	 breast	 cancers	 based	 on	 previous	

functional	studies	73,74.	Similar	fibroblast	populations	have	been	identified	in	humans	and	

these	studies	have	dug	deeper	into	their	range	of	cell	states.	Using	flow	cytometry,	Pelon	et	

al	 and	 Costa	 et	 al	 characterize	 four	 CAF	 subtypes,	 CAF-1	 (FAPhi	CD29med-hi	SMAhi),	 CAF-2	

(FAPneg	CD29lo	SMAneg),	CAF-3	(FAPneg	CD29med	SMAneg),	and	CAF-4	(FAPneg	SMAhi	CD29hi)	

found	in	metastatic	lymph	nodes	and	primary	tumors	from	breast	cancer	patients75,76.	Two	

of	these	populations,	CAF-1,	most	similar	to	the	mCAFs	described	in	mice,	and	CAF-4,	similar	

to	 the	 vCAFs	 or	 pericytes,	 are	 particularly	 enriched	 in	 triple-negative	 breast	 cancer	 and	

lymph	 node	metastases75,76.	 Since	 Costa	 et	 al	 also	 found	 that	 the	 CAF-1	 population	 was	

associated	 with	 triple-negative	 tumors	 with	 high	 Treg	 infiltration,	 and	 low	 CD8+	 T	 cell	

infiltration,	suggestive	of	a	tumor	supportive	immune	environment76,	Kieffer	&	Hocine	et	al	

investigated	heterogeneity	within	the	CAF-1	subpopulation	in	an	additional	breast	cancer	

patient	 cohort	 using	 scRNA-seq	 to	 determine	 whether	 an	 even	 smaller	 subset	 of	 these	
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fibroblasts	were	driving	 the	observed	microenvironmental	shifts77.	Kieffer	&	Hocine	et	al	

sorted	CAF-1	fibroblasts	from	six	Luminal	A	and	two	triple-negative	breast	cancer	patients,	

which	 identified	 eight	 subclusters	 of	 CAF-1	 fibroblasts,	which	 broadly	 fell	 into	 the	 three	

categories	 of	 myofibroblastic	 (“myCAF”),	 inflammatory	 (“iCAF”),	 or	 antigen	 presenting	

(“apCAF”)	 fibroblasts.	 Interestingly,	 they	 found	that	 two	subpopulations	of	myCAFs,	ecm-

myCAFs,	associated	with	extracellular	matrix	machinery,	and	TGFβ-myCAFs,	associated	with	

TGFβ	signaling,	were	negatively	correlated	with	CD8+	T	cells	and	positively	correlated	with	

CTLA4+CD4+	T	cells	in	a	different	cohort	of	seven	breast	cancer	patients	77.	To	investigate	

whether	these	fibroblasts	were	specifically	associated	with	immunotherapy	resistance,	they	

performed	 GSEA	 using	 their	 scRNA-seq	 derived	 ecm-myCAF,	 TGFβ-myCAFs,	 and	 iCAF	

signatures	 on	 bulk	 RNA-seq	 from	 immunotherapy	 treated	 melanoma	 and	 lung	 cancer	

samples77.	From	this,	they	found	that	both	ecm-myCAF	and	TGFβ-myCAF	signatures	were	

significantly	 associated	with	 non-responders,	while	 only	 one	 of	 the	 four	 iCAF	 signatures	

(wound-iCAFs,	named	due	to	their	wound-healing	associated	gene	expression	profiles)	had	

a	significant	association	with	poor	patient	responses77.	These	are	still	primarily	correlative	

observations,	but	this	work	provides	a	large	amount	of	data-driven	support	for	fibroblasts	

as	a	key	player	in	the	tumor	microenvironment	across	multiple	cancer	types,	and	suggests	a	

convincing	 stratification	 scheme	 for	 immunotherapy	 responses	 that	 could	 facilitate	

improved	clinical	trial	outcomes	for	the	recently	attempted	applications	of	immunotherapy	

in	triple-negative	breast	cancer68,77.	

	

1.4	Conclusions	and	future	directions	
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Taken	 together,	 the	 studies	 reviewed	 in	 this	manuscript	 have	 highlighted	 cellular	

plasticity,	connected	tumor	subtypes	to	their	metabolic	and	cellular	microenvironment,	and	

revealed	novel	cell	states	and	markers.	ScRNA-seq	has	shown	that	cells	in	the	breast	are	even	

more	 dynamic	 than	 we	 expected,	 with	 states	 reflective	 of	 both	 their	 current	 and	 past	

environments.	 It	 has	 also	 become	 clear	 that	 bulk	 transcriptional	 profiles	 cannot	 fully	

characterize	intratumoral	heterogeneity	and	a	reassessment	of	how	we	stratify	patients	may	

be	warranted.	In	particular,	scRNA-seq	facilitates	the	development	of	prognostics	using	rare	

tumor	cells	with	metastatic	risk	markers	and	profiles	identified	from	the	microenvironment,	

both	of	which	require	the	separation	of	individual	cells	from	the	bulk	tumor.	In	addition	to	

supporting	the	use	of	scRNA-seq	in	stratifying	patients	directly,	the	studies	covered	in	this	

review	have	suggested	that	spatial	elements,	such	as	hypoxic	tumor	regions,	could	be	drivers	

of	pro-	or	anti-tumoral	microenvironmental	behaviors	and	 future	works	 in	breast	cancer	

should	consider	using	spatial	transcriptomics	to	test	these	hypotheses.		

ScRNA-seq	has	already	shown	great	promise	in	this	field,	but	we	should	also	discuss	

its	limitations.	As	an	example,	scRNA-seq	may	be	ill-equipped	to	fully	resolve	progenitor	cell	

debates,	especially	ones	regarding	the	MaSC.	MaSC-mimicking	stromal	contaminants	can	be	

sorted	along	with	epithelial	cells	using	standard	epithelial	sorting	strategies	in	the	mammary	

gland	(e.g.	Epcam+,	Cd24mid/hi	CD29hi/lo	)	and	these	accidentally	captured	stromal	cells	can	co-

express	 gene	markers	 of	 basal	 cells	 (e.g.	Acta2,	Vim)	 and	MaSC-associated	markers	 (e.g.	

Procr).	Each	scRNA-seq	dataset	has	natural	variation	in	the	capture	of	these	cell	types	and	

paper	 authors	 have	 different	 interpretations	 of	 the	 captured	 populations;	 unfortunately,	

without	functional	follow	up,	it	is	impossible	to	know	whether	these	“epithelial”	or	“stomal”	

labels	 are	 accurate.	 Further,	 pseudotime	 analysis	 tools	 are	 equipped	 to	 suggest	
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transcriptional	gradients	from	scRNA-seq	data	but	have	no	way	of	contrasting	true	lineage	

relationships	with	other	sources	of	gene	expression	changes,	so	they	are	always	open	for	

reinterpretation.	In	fact,	most	computational	tools	 in	scRNA-seq	give	results	that	must	be	

carefully	contextualized	and	can	be	sensitive	to	noise.		This	was	specifically	mentioned	in	the	

case	of	breast	cancer	subtyping,	where	the	tools	expect	“complete”	gene	expression	profiles	

to	 stratify	 subtypes	 but	 scRNA-seq	 datasets	 are	 unable	 to	 provide	 this.	 Because	 of	 these	

potential	issues,	it	is	important	to	cater	scRNA-seq	analyses	to	specific	questions	and	keep	

hypotheses	grounded	in	functional	data.		

In	our	subsequent	chapters,	included	in	chronological	order,	we	will	see	how	scRNA-

seq	analysis	can	be	catered	to	breast-related	questions,	and	how	these	analyses	led	to	better	

understandings	of	the	breast	in	homeostasis,	breast	cancer	metastasis,	and	the	responses	of	

a	non-breast	resident	microenvironment	to	breast	cancer	cells.	While	we	represent	only	a	

small	subset	of	the	available	literature	mentioned	in	this	review,	our	work	similarly	coveys	

a	 recurrent	 theme	 of	 heterogeneity	 and	 plasticity,	 but	 optimistically	 suggests	 that	 this	

heterogeneity	 is	bounded	and	can	be	generalized,	even	 in	seemingly	stochastic	processes	

like	 breast	 cancer	 metastasis.	 We	 hope	 this	 work	 builds	 a	 foundation	 that	 allows	 us	 to	

connect	each	source	of	breast	cancer	heterogeneity	with	the	others	to	form	a	systems-level	

understanding	of	what	drives	breast	cancer	and	its	often	lethal	metastases.		
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CHAPTER	2:	Identification	of	conserved	gene	expression	changes	in	the	

human	breast	epithelial	hierarchy	

	

2.1	Introduction		

 Breast	 cancer	 arises	 from	 the	 breast	 epithelium,	 which	 forms	 a	 ductal	 network	

embedded	 into	 an	 adipose	 tissue	 that	 connects	 the	nipple	 through	 collecting	ducts	 to	 an	

intricate	system	of	lobules,	which	are	the	milk	producing	structures	during	pregnancy	and	

lactation.	Throughout	the	duct	and	lobular	system,	the	breast	epithelium	is	composed	of	two	

known	 cell	 types,	 an	 inner	 layer	 of	 secretory	 luminal	 cells	 and	 an	 outer	 layer	 of	

basal/myoepithelial	 cells.	 A	 series	 of	 recent	 reports	 have	 indicated	 that	 further	

heterogeneity	exists	within	these	two	cell	layers	in	mice1.	Two	landmark	papers	published	

in	2006	identified	a	functionally	distinct	subpopulation	of	basal	epithelial	cells	that	harbors	

stem	 cell	 capacity	 and	 is	 capable	 of	 reconstituting	 a	 fully	 developed	mammary	 epithelial	

network	when	 transplanted	 into	 the	 cleared	mammary	 fat	pads	of	mice,	 referred	 to	 as	 a	

mammary	 stem	 cell	 (MaSC)	 78,79.	 Moreover,	 a	 subpopulation	 of	 luminal	 progenitor	 cells	

identified	by	high	expression	of	KIT	as	well	as	a	subpopulation	of	mature	luminal	cells	have	

been	 identified	 using	 flow	 cytometry	 (FACS)	 isolation	 strategies80,81.	 It	 remains	 to	 be	

determined	 if	 other	 distinct	 cell	 types	 exist	within	 the	 breast	 epithelium	 and	 how	 these	

different	 epithelial	 populations	 relate	 to	 the	 well-characterized	 heterogeneity	 of	 breast	

cancer.	

The	goal	of	the	present	study	is	to	generate	a	molecular	census	of	cell	types	and	states	

within	 the	 human	 breast	 epithelium	 using	 unbiased	 scRNA-seq.	 Focusing	 on	 the	 breast	
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epithelium,	our	work	provides	a	critical	first	impetus	toward	generating	large-scale	single	

cell	atlases	of	the	tissues	comprising	the	human	body	as	part	of	the	international	human	cell	

atlas	 initiative.	 This	 molecular	 census	 can	 shed	 light	 on	 lineage	 relationships	 and	

differentiation	trajectories	in	the	human	system	and	how	it	relates	to	breast	cancer.		To	that	

end,	we	also	propose	a	novel	heuristic	procedure	to	optimize	the	identification	of	conserved	

differentiation-associated	 genes	 for	pseudotime	 inference	 from	our	 scRNA-seq	data.	This	

procedure	 allowed	 us	 to	 generate	 a	 data-driven	 lineage	 trajectory	 of	 the	 human	 breast	

epithelium	in	homeostasis	which	will	serve	as	a	valuable	resource	to	understand	how	the	

system	changes	during	early	tumorigenesis	and	tumor	progression.	

	

2.2	Results	

2.2.1	scRNA-seq	of	cell	types	and	states	in	the	breast	epithelium	

	 To	investigate	the	cell	types	and	states	present	in	the	human	breast	epithelium,	we	

utilized	a	droplet-mediated	scRNA-seq	platform	(10X	Genomics	Chromium)23	on	reduction	

mammoplasty	 samples	 from	 four	 nulliparous	 women,	 who	 were	 chosen	 to	 reduce	 the	

variability	 associated	 with	 pregnancy-related	 changes	 of	 the	 breast.	 We	 isolated	 both	

luminal	 and	 basal	 cells	 together	 (EpCAM+/CD49fhi/lo)	 by	 flow	 cytometry	 and	 sequenced	

them,	averaging	5000	cells	per	sample	(Fig	2.1A).	We	sequenced	a	total	of	24,646	cells	from	

four	 individuals	 (Ind4-7)	 at	 an	 average	~60,000	 reads	 per	 cell.	 Cells	were	 subsequently	

filtered	to	remove	any	cells	with	low	gene	detection	(<500	genes)	and	high	mitochondrial	

gene	coverage	(>10%).		

	 We	determined	cell	types	by	first	analyzing	a	single	individual	(Ind4)	and	identified	

three	main	epithelial	cell	types,	namely	Basal	(KRT14+),	Luminal	1	(L1;	KRT18+/SLPI+)	and	
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Luminal	2	 (L2;	KRT18+/ANKRD30A+),	 and	what	we	 suspect	 are	unintentionally	 captured	

stromal	and	endothelial	cells	which	we	refer	to	as	Unassigned	(X;	VIM+/ESAM+)	(Fig	2.1B).	

A

B

C

D E
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Generally,	 it	appears	 that	Luminal	1	represents	 the	secretory,	milk	producing	cells	of	 the	

breast	 (LTF+/SAA2+)	 and	 Luminal	 2	 represents	 the	 hormone	 responsive	 population	

(AGR2+).	We	compared	these	Ind4	derived	clusters	to	clusters	identified	in	each	of	our	other	

three	individuals	using	gene	scoring,	which	revealed	that	Luminal	1	could	be	further	broken	

into	two	generalizable	states	that	we	refer	to	as	Luminal	1.1	(L1.1)	and	Luminal	1.2	(L1.2).	

Further,	we	separated	basal	cells	into	two	states	we	refer	to	as	Basal	(B)	and	Myoepithelial	

(Myo)	based	on	the	increased	expression	of	genes	associated	with	contractile,	myoepithelial	

cell	function	(e.g.	ACTA2,	TAGLN,	KRT14)	in	a	subset	of	the	basal	population	(Fig	2.1C).	All	

four	 individuals	 were	 then	 combined	 into	 a	 single	 dimensionality	 reduction	 with	 cells	

labeled	by	the	conserved	epithelial	states	(Fig	2.1D)	and	common	marker	genes	for	each	cell	

state	were	identified	using	the	Wilcoxon	rank	sum	test	(Fig	2.1E).	

	 We	 then	 investigated	 the	 spatial	 localization	 of	 these	 epithelial	 cell	 types	 using	

immunofluorescent	(IF)	analyses.	KRT14	expression	is	a	standard	marker	for	basal	cells,	and	

our	differential	gene	expression	analysis	confirmed	that	KRT14	is	predominantly	expressed	

within	basal	cells.	However,	it	exhibited	surprising	variability	across	basal	cell	populations	

in	the	scRNA-seq	data	with	particularly	high	expression	 in	the	Myoepithelial	cell	state.	 IF	

analysis	for	KRT14	confirmed	this,	and	revealed	that	KRT14	high	cells	localized	to	the	basal	

cell	layer	within	ductal	regions,	while	lobular	basal	cells	generally	displayed	lower	and	more	

Figure	 2.1	 scRNA-seq	 reveals	 conserved	 cell	 types	 and	 states	 in	 the	 breast	 epithelium	 (A)	
Overview	for	droplet-enabled	scRNA-seq	approach	as	described	above;	basal	and	luminal	epithelial	cells	
were	sorted	together	and	subjected	to	combined	scRNA-seq	analysis	using	the	droplet-based	scRNA-seq.	
(B)	Data	from	individual	four	was	analyzed	using	Seurat	and	the	distinct	clusters	(0–10)	are	displayed	
in	tSNE	projection	with	selected	marker	gene	for	each	cluster,	and	main	epithelial	cell	types	(Basal,	L1,	
L2)	are	outlined.	Feature	plots	of	characteristic	markers	for	the	three	main	cell	types	are	shown	on	the	
right	showing	expression	levels	as	gradient	of	purple.	(C)	Heatmaps	showing	gene	scoring	results	using	
marker	genes	for	Ind4	clusters	(0–10;	on	bottom	of	heatmap)	in	all	clusters	from	Ind5,	Ind6,	and	Ind7.	
(D)	 Combined	 tSNE	 projection	 of	 all	 individual	 datasets	 (outlined)	 is	 shown	 including	 the	 cell	 state	
identity	marked	by	different	colors.	(C)	Heatmap	showing	the	expression	pattern	of	the	top	ten	markers	
per	cell	state	with	selected	markers	indicated	(yellow = high	expression;	purple = low	expression).	Full	
figure	reprinted	and	adapted	with	permission	from	Nguyen	&	Pervolarakis	et	al,	2018,	Nat	Commun.	
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variable	 staining	 for	 KRT14	 (Fig	 2.2A).	 The	 scRNA-seq	 analyses	 also	 revealed	 that	 the	

luminal	compartment	harbors	two	discrete	epithelial	cell	types	(L1,	L2).	To	determine	if	L1	

and	L2	correspond	to	ductal	and	lobular	anatomical	location	within	the	tissue,	we	stained	

for	specific	markers	for	L1	(SLPI)	and	L2	(ANKRD30A).	Interestingly,	these	analyses	showed	

that	both	L1	and	L2	are	located	next	to	each	other	within	both	ducts	and	lobules	(Fig	2.2B)	

with	 no	 apparent	 anatomical	 skewing.	 Thus,	 the	 Myoepithelial	 cell	 state	 may	 have	

transcriptome	differences	to	the	Basal	state	driven	by	its	ductal	localization,	but	Luminal	1	

and	Luminal	2	transcriptome	differences	are	likely	to	arise	from	a	non-anatomical	source.		

	

2.2.2	Reconstruction	of	the	breast	epithelial	hierarchy	in	individual	patients	

	 	To	understand	how	these	observed	cell	types	and	states	are	related	to	each	other,	we	

next	 reconstructed	differentiation	 trajectories	by	pseudotemporal	ordering	of	 single	cells	

using	Monocle2	82	in	each	individual.	Our	ordering	genes	for	every	patient	were	the	top	20	

marker	 genes	 for	 each	 of	 the	 conserved	 cell	 type	 and	 states	 for	 that	 individual,	 which	

A B

Figure	2.2:	Spatial	integration	of	cell	types	and	states	in	the	breast	epithelium.	(A)	KRT14	and	
KRT8	double	 immunostaining	 revealed	 highest	 expression	 of	KRT14	 in	 ductal	 basal	 cells,	while	
lobular	basal	cells	show	more	diverse	KRT14	positivity.	Scale	bar	=75	µm.	(B)	Immunofluorescence	
analysis	 of	NY-BR-1	protein	 (ANKRD30A)	expression	 (green)	 in	 combination	with	 basal	marker	
SLPI	(red)	and	DNA	stain	using	DAPI	(blue)	within	tissue	sections	from	primary	human	reduction	
mammoplasty	 samples	 revealed	 that	 NY-BR-1	 (ANKRD30A)	 and	 SLPI	 are	 markers	 for	 distinct	
luminal	subpopulations.	Scale	bar	=	25	µm.	Full	figure	reprinted	and	adapted	with	permission	from	
Nguyen	&	Pervolarakis	et	al,	2018,	Nat	Commun.	
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resulted	 in	 a	 relatively	 consistent	 trajectory,	 where	 the	 Basal	 and	Myoepithelial	 lineage	

appear	on	one	branch,	and	luminal	cells	have	two	branches	with	either	Luminal	1	or	Luminal	

2	 cells	 (Fig	 2.3).	

However,	 Individual	 5	

shows	 a	 very	 different	

trajectory	 which	 has	

Myoepithelial	 cells	

branching	 into	 one	

Basal	 state	 and	 one	

single,	 tangled	 luminal	

state	 (Fig	 2.3).	 Given	

that	myoepithelial	 cells	

are	 expected	 to	 be	 a	

more	 differentiated	

basal	 cell	 state83	 and	

that	 we	 have	 seen	 a	

clear	 separation	 of	

luminal	states	1	and	2	in	other	clustering	and	dimensionality	reduction	methods,	this	is	most	

likely	a	cell	type	capture	artifact.	This	patient	has	far	more	cells	from	the	basal	lineage	than	

the	 luminal	 lineage	 and	 therefore	 the	 algorithm	 is	 picking	 up	 on	minute	 basal	 cell	 state	

differences	 while	 missing	 the	 major	 distinctions	 between	 luminal	 states.	 To	 generate	 a	

combined	 trajectory	 and	 ensure	 that	 our	 hypothesized	 lineage	 relationships	 are	 indeed	

conserved,	we	developed	a	novel	heuristic	procedure	to	generalize	a	list	of	ordering	genes	

Figure	 2.3:	 Reconstruction	 of	 the	 breast	 epithelial	 hierarchy	 in	
individual	patients.	Monocle2	generated	pseudotime	trajectories	for	each	
individual	ordered	based	on	the	top	20	marker	genes	for	their	labeled	cell	
sates.	Data	is	previously	unpublished.	
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across	patients	that	will	be	less	sensitive	to	cell	type	capture	and	individual	gene	expression	

differences	(Appendix	A).		

	

2.2.3	Steps	in	the	identification	of	a	maximally	conserved	gene	list	for	breast	epithelial	

differentiation	

Before	discussing	our	heuristic,	it	is	important	to	discuss	our	chosen	pseudotemporal	

analysis	software,	Monocle2,	in	more	detail41	Monocle2	takes	as	input	a	count	matrix	and	a	

user-defined	gene	list	of	“differentiation”	associated	genes	to	use	for	ordering.	Its	underlying	

algorithm,	DDRTree,	uses	reversed	graph	embedding,	which	seeks	to	simultaneously	map	a	

high	 dimensional	 dataset	 to	 a	 low	 dimensional	 space	 and	 learn	 a	 fundamental	 graph	

structure	which	allows	for	branch	points	 in	the	data	to	separate	transcriptionally	distinct	

cell	types	or	states.	The	reversed	graph	embedding	process	is	computationally	intensive,	so	

it	requires	that	an	scRNA-seq	dataset	be	subset	to	a	minimally	noisy,	maximally	informative	

gene	list,	which	it	uses	for	defining	the	graph	and	dimensionality	reduction.	Monocle2	also	

offers	 an	 unbiased	 feature	 selection	 heuristic,	 dpFeature,	 which	 combines	 multiple	

dimensionality	 reduction	and	cluster	marker	 identification	methods	 to	optimize	an	 input	

gene	list	 for	trajectory	inference.	However,	when	dimensionality	reduction	and	clustering	

are	driven	by	individual	differences	as	they	are	in	our	dataset	(see	Fig	2.1D),	this	method	is	

unable	to	separate	cell	state	associated	gene	expression	changes	from	individual	driven	gene	

expression	 changes.	 We	 therefore	 developed	 the	 heuristic	 pipeline	 that	 orders	 each	

individual	based	on	their	own	cell	state	markers,	and	then	identifies	gene	modules	that	are	

internally	 correlated	 across	 all	 four	 individual’s	 Monocle2	 trajectories.	 This	 forces	 us	 to	

remove	 genes	 that	 have	 inconsistent	 co-expression	 patterns	 across	 separate	 individuals,	
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which	 are	 likely	 to	 result	 in	 some	 degree	 of	 individual-driven	 branching	 in	 a	 combined	

trajectory	 and	 are	 less	 likely	 to	 be	 biologically	 meaningful	 pathway	 changes.	 Below,	 we	

explain	each	step	in	our	procedure,	with	its	associated	rationale	and	example	computations	

where	we	felt	it	informative.		

1. For	 each	 individual	 or	 biological	 replicate,	 create	 a	Monocle2	 trajectory	 using	 an	

individual-specific	marker	gene	list	for	the	conserved	cell	states	as	input.		

2. Identify	 genes	 differentially	 expressed	 across	 Monocle2-defined	 States	 for	 each	

individual’s	 Monocle2	 trajectory.	 Continue	 analysis	 with	 genes	 found	 to	 be	

significantly	differentially	expressed	(FDR<0.05)	between	States	in	all	individuals.		

Rationale:		States	are	determined	by	branch	points,	so	the	cells	found	together	on	a	

terminal	 branch	 or	 between	 two	 branch	 points	 constitute	 a	 cluster.	 We	 are	 only	

interested	in	genes	that	vary	between	branches,	and	further,	only	interested	in	genes	

that	vary	between	branches	in	all	individuals.		This	is	because	we	expect	that	varied	

genes	are	in	some	way	important	to	determining	transition	points	and	driving	cell	

fates.	

3. Estimate	the	expression	of	each	of	the	shared	differentially	expressed	genes	from	step	

two	in	the	States	for	every	individual	trajectory.	Note	that	this	analysis	was	originally	

performed	with	Monocle	2.2.0	default	parameters	which	‘over-branch’	compared	to	

later	default	parameter	sets,	and	the	following	steps	will	work	best	if	each	individual’s	

data	is	broken	into	a	large	number	of	small	groupings	(i.e.	over-clustering	the	data	is	

likely	optimal	to	avoid	misleading	averaging	or	Simpson’s	paradox).	

Rationale:		Single-cell		data		has		a		very		high		false		drop-out		rate		(zeros		that		should		

not	 	be	 	 zero)	 	 and	 therefore,	 	 looking	 	 at	 	 average	 	 expression	 	of	 	 genes	 	 in	 	 cell		
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subpopulations		can		vastly		reduce		the		noise	levels	of	our	data.		Monocle2	defines	

States	based	on	the	transcriptome	similarity	of	cells;	because	of	this,	we	hypothesize	

that	we	can	treat	all	the	cells	in	a	State	as	a	cellular	subtype	and	use	pseudo-bulk	data	

(generated	 through	 gene	 expression	 averaging	 across	 cells	 in	 a	 State)	 for	 our	

downstream	analysis.		

Example	computation:	If	we	have	63	branches	in	our	trajectory	and	3,000	genes	kept	

from	our	previous	differential	expression	analysis,	we	will	generate	a	3000x63	matrix	

where	each	row	is	a	gene,	each	column	is	a	State,	and	every	position	has	the	average	

expression	of	 the	 listed	gene	 in	 the	 listed	State.	All	 individuals	will	have	 the	same	

number	of	rows,	but	a	different	number	of	columns	based	on	how	many	branches	

were	found	for	that	individual’s	trajectory.	

4. Generate	correlation	matrices	for	each	individual	across	all	genes.	

Rationale:	 	We	want	to	find	sets	of	genes	that	are	always	expressed	together	both	

within	and	between	individuals.	We	predict	that	identifying	correlated	sets	of	genes	

will	provide	another	mechanism	for	reducing	dropout	associated	noise	since	we	can	

rely	on	multiple	genes	to	represent	the	same	transition	or	terminal	state.		

5. Average	 all	 individual	 correlation	 matrices	 from	 step	 four	 into	 a	 single	 “average	

correlation”	matrix.		

Rationale:		We	want	to	ensure	that	the	genes	we	choose	will	behave	the	same	way	on	

average	 across	 all	 individuals	 and	 therefore,	 we	 want	 to	 work	 with	 the	 average	

correlation	value	rather	than	the	four	correlation	matrices	separately.	

Example	Computation:		Each	individual	will	have	a	correlation	between	genes	A	and	

B.	Say	that	the	correlations	are	the	following	for	each	individual:	(0.8,-0.4,0.5,-0.5).		
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The	 corresponding	 position	 in	 our	 “average	 correlation”	 matrix	 will	 be	

(0.8+−0.4+0.5+−0.5)/4=	 0.1.	 	 This	 process	 is	 intended	 to	 diminish	 the	 correlation	

value	for	gene	sets	that	show	inconsistencies	across	individuals	because	they	are	less	

likely	to	be	meaningful	modules.	

6. Reduce	the	number	of	genes	in	our	average	correlation	matrix	to	only	genes	highly	

correlated	(in	our	data,	we	used	a	Pearson	correlation	>0.8)	with	at	least	one	other	

gene.	

Rationale:	 	 This	 step	 is	 a	 logical	 addition	 to	 step	 four,	 which	 assumes	 that	 gene	

modules	will	help	eliminate	dropout	noise.	We	do	not	want	to	keep	genes	that	have	

no	close	connection	to	another	gene	since	their	expression	changes	are	more	likely	to	

be	driven	by	technical	artifacts	than	a	biologically	meaningful	pathway.		

7. Further	filter	the	genes	in	the	average	correlation	matrix	to	only	keep	genes	that	were	

cell	state	markers	from	our	individual	trajectory	inferences	in	step	one.	This	is	the	

final	gene	list	which	should	be	used	as	input	for	a	combined	Monocle2	trajectory.	

Rationale:		Our	primary	goal	for	this	ordering	is	the	same	as	it	was	for	individuals;	

take	cell	state	clusters	and	place	them	into	a	differentiation	trajectory.		Therefore,	we	

want	to	stick	to	cluster	markers	and	remove	genes	that	drive	differences	across	cells	

not	related	to	the	major	cell	states	defined	in	our	original	clustering,	since	these	are	

often	meaningful,	but	not	interesting	(e.g.	proliferation	status	or	sorting	stress).		

8. Cluster	 average	 correlation	 matrix	 into	 gene	 modules	 and	 assess	 gene	 module	

correlation	 consistencies	 across	 individuals	 both	 before	 and	 after	 a	 combined	

ordering.	This	should	look	similar	to	Fig	2.4.			
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Rationale:	 	 This	 step	 is	 not	 necessary	 for	 gene	 identification	 or	 generating	 a	

combined	trajectory,	but	it	provides	a	sanity	check	that	the	process	gave	a	reasonable	

gene	set.		For	example,	we	should	find	that	many	of	the	cell	state	marker	genes	made	

it	 past	 filtering	 (sanity	 check	 one),	 genes	 for	 different	 cell	 states	 predominantly	

appeared	in	different	clusters	(sanity	check	two),	and	that	the	genes	in	a	combined	

trajectory	have	a	 similar	 correlation	 structure	 to	 the	average	of	 the	 individuals	 to	

demonstrate	that	cell	state	differences	are	stronger	than	any	individual	differences	

(sanity	check	three).			

	

2.2.4	 Combined	 pseudotemporal	 analysis	 supports	 smooth	 transitions	 between	

breast	epithelial	cell	types			

We	utilized	the	conserved	gene	list	 identified	in	the	previous	section	to	generate	a	

pseudotemporal	 trajectory	 including	 cells	 from	 all	 four	 individuals.	 This	 revealed	 three	

major	branches	(Basal,	Luminal	1,	and	Luminal	2)	where	Basal	and	Myoepithelial	cells	share	

a	branch	with	a	few	Luminal	1.2	cells,	and	Luminal	1.2	cells	span	a	branch	between	Luminal	

1.1	or	Luminal	2	states	(Fig	2.5A).		We	found	that	while	individuals	are	slightly	separated	

based	 on	 their	 contributed	 cell	 states	 for	 each	 epithelial	 cell	 type,	 the	 trajectory	 was	

reasonably	 well-covered	 in	 each	 patient	 and	 clearly	 separated	 cell	 states	 more	 than	
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individuals	(Fig	2.5B).	It	is	notable	that	in	this	analysis,	we	did	not	remove	the	small	number	

of	suspected	stromal	cells,	and	we	see	that	this	stromal	population	is	enriched	between	basal	

and	luminal	cell	types.	It	has	been	hypothesized	that	bipotent	basal	cells	(MaSCs)	resemble	

mesenchymal-like	stromal	cells1,4,	so	while	we	still	do	not	believe	these	populations	are	of	

epithelial	 origin,	 our	 proposed	 trajectory	 supports	 the	 idea	 of	 a	 mesenchymal	 gene	

expression	 profile	 acting	 as	 an	 intermediate	 between	 basal	 and	 luminal	 gene	 expression	

profiles.	Since	Monocle2	requires	manual	identification	of	a	starting	point	for	its	pseudotime	

calculation,	we	also	set	this	to	be	the	small	branch	between	the	basal	and	luminal	populations	

since	the	MaSC	is	hypothesized	to	be	the	most	stem-like	population	in	the	breast.	

We	 then	 revisited	 the	 cell	 type	markers	we	 expected	 to	 drive	 cell	 type	 and	 state	

differences	and	investigated	how	their	expression	changed	over	pseudotime	(Fig	2.5C).	This	

analysis	agreed	well	with	our	expectation	since	the	marker	genes	remained	associated	with	

Figure	 2.4:	 Identification	 of	 a	 maximally	 conserved	 gene	 list	 for	 breast	 epithelial	
differentiation.	 (A)	 Correlation	 matrices	 for	 all	 genes	 identified	 in	 our	 heuristic	 procedure	 in	
individual	 trajectories	 (left)	 and	 the	 average	 of	 those	 matrices	 (right),	 ordered	 based	 on	 the	
clustering	results	 from	the	average	correlation	matrix	 (EM	algorithm,	MClust	package).	The	 final	
ordering	genes	for	a	combined	pseudotime	trajectory	would	be	additionally	filtered	from	the	average	
gene	correlation	matrix	 to	only	 include	marker	genes	of	our	cell	 states	of	 interest.	 (B)	The	gene	
correlation	matrix	from	a	combined	pseudotime	trajectory	that	includes	all	four	individuals	and	was	
ordered	using	the	filtered	cell	state	markers	as	described	in	our	heuristic.	Genes	shown	are	the	same	
genes	and	cluster	orders	as	(A)	to	facilitate	a	direct	comparison.	Data	is	previously	unpublished.	

Average gene correlation matrix
Gene correlation matrix in

combined pseudotime orderingIndividual gene correlation matrix
A B
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their	labeled	branches	and	increased	as	cell	state	maturity	was	expected	to	increase,	though	

it	was	surprising	that	hypothesized	markers	of	luminal	progenitor	cells	(ELF5/KIT),	were		

found	at	the	terminal	end	of	the	Luminal	1	branch	rather	than	the	starting	point	80,84	(Fig	

2.5B,C).	There	are	a	few	possible	interpretations	of	this	result.	One	possibility	is	that	both	

Luminal	1.2	and	Luminal	1.1	cells	are	progenitors,	and	that	luminal	cells	can	take	multiple	

D
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Figure	 2.5:	 Combined	 pseudotemporal	 analysis	 supports	 smooth	 transitions	 between	 breast	
epithelial	 cell	 types.	 (A)	 Monocle-generated	 pseudotemporal	 trajectory	 of	 a	 randomly	 subsampled	
population	of	cells	(n	=1000)	from	each	of	our	four	individuals	analyzed	using	droplet-mediated	scRNA-
seq	is	shown	colored	by	cell	state	designation.	(B)	Trajectories	show	cells	split	and	colored	by	individual.	
(C)	Heatmap	shows	the	scaled,	average	expression	of	key	marker	genes	of	basal	and	luminal	cell	types	in	
each	State,	ordered	by	their	average	pseudotime	value,	and	split	across	each	of	the	major	three	visual	
branches.	The	start	of	pseudotime	was	set	 to	be	 the	small	branch	 (State)	between	B	and	L1.2	 labels.	
(D)	Proposed	model	 summarizing	 the	 lineage	hierarchies	within	 the	breast	epithelium	based	on	one	
continuous	differentiation	trajectory	from	basal	stem	cells	to	three	distinct	differentiated	cell	types	with	
overlaid	marker	genes	of	interest	shown	(black	on	gray	bars).	Subfigures	(A)	and	(D)	were	reprinted	and	
adapted	with	permission	from	Nguyen	&	Pervolarakis	et	al,	2018,	Nat	Commun.	Subfigures	(B)	and	(C)	
are	previously	unpublished.	
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paths	 to	 reach	 differentiated,	 secretory	 (L1)	 and	 hormone	 responsive	 (L2)	 populations.	

Another	 option	 is	 that	 Luminal	 1.1	 cells	 have	 progenitor	 capacities	 under	 perturbed	

conditions	 but	 that	 they	 do	 not	 perform	 this	 function	 in	 tissue	 homeostasis.	 Without	

extensive	follow	up	experiments,	we	cannot	distinguish	these	cases,	and	therefore	present	

our	model	as	a	unidirectional	trajectory	with	the	Luminal	1.1	cells	as	an	endpoint	(Fig	2.5D).	

Taken	 together,	 our	 computationally-derived	 trajectory	of	 the	breast	 epithelial	 hierarchy	

supports	 the	 existence	 of	 a	 shared	 progenitor	 for	 basal	 and	 luminal	 cells,	 as	 well	 as	 a	

bipotent,	intermediate	luminal	progenitor	(Luminal	1.2)	which	can	generate	both	secretory	

and	hormone	responsive	populations.	

	

2.3	Discussion	

	 In	this	work,	we	have	described	a	heuristic	for	the	identification	of	a	conserved	gene	

list	to	be	used	in	pseudotemporal	reconstruction	of	scRNA-seq	data	and	demonstrated	its	

utility	in	a	novel	scRNA-seq	dataset	of	healthy	human	breast	epithelial	cells.	We	identified	

three	major	cell	 types	(Basal,	Luminal	1,	Luminal	2),	and	 five	conserved	cell	states	 in	 the	

human	breast	epithelium	(Basal,	Myoepithelial,	Luminal	1.1,	Luminal	1.2,	Luminal	2)	across	

four	 reduction	mammoplasty	 samples.	We	 next	 generated	 a	 lineage	 trajectory	 for	 these	

healthy	breast	epithelial	populations,	which	supported	a	mesenchymal-like	MaSC	cell	type	

between	the	basal	and	 luminal	 lineages	 in	 the	adult	breast,	as	well	as	smooth	transitions	

between	secretory	(Luminal	1)	and	hormone	responsive	(Luminal	2)	luminal	cells.			

	 While	it	is	tempting	to	treat	our	scRNA-seq	derived	trajectory	as	solid	evidence	of	in	

vivo	lineage	relationships	unmarred	by	the	perturbation	effects	one	might	find	using	mouse	

models,	there	are	still	many	confounders	in	Monocle2.	One	major	issue	is	that	this	algorithm	
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cannot	on	its	own	differentiate	between	lineage	and	other	causes	of	phenotypic	gradients.	

Spatial	 relationships	 are	 the	most	 likely	 source	 of	 non-lineage	 gradients,	 and	 sometimes	

these	trajectories	are	interpreted	as	“pseudospace”	rather	than	“pseudotime”.	In	the	breast	

epithelium,	it	is	possible	that	spatial	gradients	are	contributing	to	our	trajectory,	but	it	must	

be	more	complicated	than	simple	ductal/lobular	anatomy.	Specifically,	we	saw	that	Luminal	

1	and	Luminal	2	cell	states	comingled	in	ducts	and	lobules	in	the	tissue	while	they	cleanly	

branched	in	our	trajectory,	suggesting	that	this	branch	point	is	driven	by	a	non-anatomical	

source.	Another	potential	concern	is	the	inability	of	Monocle2	to	break	its	trajectory,	which	

could	force	basal	and	luminal	populations	together	when	they	do	not	have	any	meaningful	

lineage	connection	in	the	adult	breast.	We	cannot	fully	eliminate	this	possibility,	but	we	can	

note	Monocle2	tends	to	have	a	large	amount	of	sparsity	between	truly	unrelated	lineages	in	

a	trajectory.	In	our	combined	trajectory,	almost	no	gap	is	present.	Further	the	cells	that	do	

reside	between	basal	and	luminal	cells	in	our	trajectory	are	similar	to	cells	that	have	been	

shown	to	have	bipotent	basal-luminal	progenitor	capacities	both	in	vivo	and	in	vitro,	which	

makes	our	trajectory	consistent	with	demonstrated	biology	1,4.		

Our	lineage	reconstruction	of	the	breast	epithelium	from	single-cell	transcriptomic	

profiles	 has	 provided	 support	 for	 a	 hierarchy	 involving	 multiple	 shared	 progenitor	

populations,	but	further	functional	experiments	will	be	necessary	to	prove	or	disprove	each	

transition	point.	To	facilitate	these	experiments,	we	also	identified	a	conserved	list	of	genes	

that	drive	the	breast	epithelial	cell	state	transitions	we	discussed	and	provide	this	list	to	the	

community	as	part	of	our	study.	These	genes	now	serve	as	good	candidates	for	perturbation	

in	mechanistic	investigations	of	the	human	epithelial	hierarchy.	Further,	the	clustering	of	our	

gene	modules	can	assist	in	the	identification	of	intrinsic	or	extrinsic	factors	that	drive	these	
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co-regulated	expression	changes	across	the	trajectory.	This	could	help	to	deconvolve	spatial,	

lineage,	and	other	signaling	gradient	effects.	Overall,	this	dataset	and	analysis	have	brought	

us	a	few	steps	closer	to	understanding	how	the	incredibly	plastic	breast	epithelium	functions	

in	homeostasis	and	will	allow	us	to	better	identify	any	lineage-related	transitions	that	occur	

during	breast	cancer	tumorigenesis	and	metastatic	adaptation.	

	

2.4	Materials	&	methods	

Origin	of	tissue	samples.		

Anonymous	reduction	mammoplasty	samples	were	acquired	from	NCI	Cooperative	Human	

Tissue	 Network	 (CHTN)	 and	 from	 Department	 of	 Surgery,	 Feinberg	 School	 of	 Medicine,	

Northwestern	University.	Other	investigators	may	have	received	specimens	from	the	same	

tissue	specimens	obtained	through	NCI	CHTN.	Specimens	were	anonymized	then	collected	

and	distributed	by	CHTN,	specimens	are	covered	under	collection/distribution	of	tis-	sues	

under	consent	or	waiver	of	consent.	Samples	were	washed	in	PBS	(Corning	21-031-CV)	and	

mechanically	dissociated	using	a	razor	blade.	Dissociated	samples	were	digested	overnight	

in	DMEM	(Corning	10-013-CV)	with	Collagenase	Type	I,	2	mg/mL	(Life	Technologies	17100-

017).	Viable	organoids	were	separated	using	differential	centrifugation	and	viably	frozen	in	

50%	FBS	(Omega	Scientific	FB-12),	40%	DMEM,	and	10%	DMSO	(Sigma-Aldrich	D8418)	by	

volume.	

	

Single-cell	RNA	sequencing.		

Viable	organoids	were	thawed	and	washed	using	DMEM,	and	digested	with	0.05%	trypsin	

(Corning	25-052-CI)	containing	DNase	(Sigma	Aldrich	D4263-5VL)	 to	generate	single	cell	
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suspension.	 Cells	were	 stained	 for	 FACS	 using	 fluorescently	 labeled	 antibodies	 for	 CD31	

(eBiosciences	 48-0319-	 42),	 CD45	 (eBiosciences	 48-9459-42),	 EpCAM	 (eBiosciences	 50-

9326-42),	CD49f	(eBiosciences	12-0495-82),	and	SytoxBlue	(Life	Technologies	S34857).	We	

only	proceeded	with	samples	showing	at	least	80%	viability	as	measured	using	SytoxBlue	in	

FACS.	

For	droplet-enabled	scRNA-seq,	flow	cytometry	sorted	cells	were	washed	in	PBS	with	

0.04%	BSA	and	resuspended	at	a	concentration	of	~1000	cells/µl.	Library	generation	

for	10×	Genomics	v1	chemistry	was	performed	following	the	Chromium	Single	Cell	3ʹ	

Reagents	Kits	User	Guide:	CG00026	Rev	B.	Library	generation	for	10×	Genomics	v2	

chemistry	were	performed	following	the	Chromium	Single	Cell	3ʹ	Reagents	Kits	v2	

User	Guide:	CG00052	Rev	B.	Quantification	of	cDNA	libraries	was	performed	using	

Qubit	dsDNA	HS	Assay	Kit	(Life	Technologies	Q32851)	and	high-sensitivity	DNA	chips	

(Agilent.	 5067-	 4626).	Quantification	 of	 library	 construction	was	performed	using	

KAPA	qPCR	(Kapa	Biosystems	KK4824).	For	droplet-enabled	scRNA-seq,	we	used	the	

Illumina	HiSeq4000	platform	to	achieve	an	average	of	50,000	reads	per	cell.	

	

Processing	of	scRNA-seq	data.		

Cluster	identification	using	Seurat.	For	cluster	identification	in	droplet-enabled	scRNA-seq	

datasets,	we	utilized	the	Seurat	R	package	version	2.0.0	85.		Data	was	read	into	R	as	a	counts	

matrix	and	transformed	into	log-space.	Due	to	the	difference	in	gene	detection	across	the	

two	platforms,	differences	in	chemistry	for	the	library	prep,	as	well	as	sequencing	depth	per	

cell,	a	minimum	cutoff	of	500	and	a	maximum	cut-off	of	6000	genes	per	cell	for	this	dataset	
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was	used.	In	addition,	cells	with	a	percentage	of	total	reads	that	aligned	to	the	mitochondrial	

genome	 (referred	 to	 as	 percent	mito)	 greater	 than	 10%	were	 removed,	 since	 increased	

detection	 of	mitochondrial	 genes	 can	be	 associated	with	 cells	 undergoing	 stress	 and	 cell	

death.	To	account	for	the	possibility	of	individual	cell	complexity	driving	cluster	separation,	

we	employed	Seurat’s	“RegressOut”	function	to	reduce	the	contribution	of	both	the	number	

of	UMI’s	and	the	percent	mito.	Variable	genes	were	then	determined	for	subsequent	PCA	for	

each	separate	individual.	For	tSNE	projection	and	clustering	analysis,	we	used	the	first	ten	

principal	components.	We	used	the	feature	plot	function	to	highlight	expression	of	known	

marker	genes	for	basal	(e.g.,	KRT5,	KRT14)	and	luminal	cells	(e.g.,	KRT8,	KRT18)	to	identify	

which	clusters	belonged	to	which	epithelial	cell	type.	The	specific	markers	for	each	cluster	

identified	by	Seurat	were	determined	using	the	“FindAllMarkers”	function.	

		

Cluster	comparisons	and	assignment.		

Cluster	specific	marker	genes	from	the	individual	library	analyses	were	used	as	input	lists	to	

the	previously	described	gene	scoring	method	(described	in	more	detail	below)	to	compare	

cluster	 signatures	 in	 a	 pairwise	manner	 between	 individuals.	 To	 visualize	 pairwise	 gene	

scoring	results,	we	generated	heatmaps	displaying	averaged	gene	scoring	results	for	each	

cluster.	We	 overlaid	 individual-specific	 cluster	 designations	 onto	 these	 heatmaps	 to	 find	

which	 individual	clusters	best	match	to	each	other.	Clusters	were	merged	together	 in	the	

case	 that	multiple	 clusters	 scored	highly.	We	performed	a	 separate	Seurat	analysis	using	

combined	basal	 cells	 from	all	 four	 individuals,	 and	 then	matched	 clusters	using	 the	gene	

scoring	method	on	a	set	of	genes	curated	to	represent	a	myoepithelial	cell	fate83	to	score	and	

classify	the	clusters	as	either	Basal	(B)	or	Myoepithelial	(Myo)	cell	state.	
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Gene	scoring.		

To	 compare	 gene	 signatures	 and	 pathways	 in	 epithelial	 sub-	 populations,	 we	 utilized	

individual	 gene	 scores	 as	 described	 previously12.	 Briefly,	 each	 score	 was	 generated	 by	

calculating	total	gene	expression	for	each	of	the	analyzed	genes	and	separating	them	into	25	

bins	of	similar	expression.	For	every	gene	in	each	target	pathway	or	signature,	100	“control”	

genes	 were	 selected	 from	 its	 corresponding	 bin	 and	 added	 to	 a	 “control”	 pathway.	 The	

resulting	“control”	pathway	contained	an	equivalent	expression	distribution	as	 the	 target	

pathway	and	its	average	represents	an	equivalent	sampling	of	100	pathways	of	equal	size	to	

the	 target	 pathway.	 The	 expression	 of	 genes	 in	 the	 target	 pathway	 and	 the	 “control”	

pathways	was	averaged	across	each	cell	 to	generate	a	 target	 score	 (STarget)	and	control	

score	(SCtrl).	The	cell’s	score	for	the	target	pathway	(SPath)	is	the	difference	between	the	

target	score	and	control	score:	SPath	=	STarget	−	SCtrl.	To	determine	statistical	significance,	

we	used	the	unpaired	Wilcox	test	with	a	95%	confidence	interval.	

	

Immunofluorescence	analysis.		

Tissues	 were	 fixed	 in	 4%	 formaldehyde	 for	 24	 h,	 dehydrated	 in	 solutions	 of	 increasing	

concentrations	of	ethanol,	cleared	with	xylene,	and	embedded	in	paraffin.	Slides	of	10-μm	

sections	 were	 prepared	 using	 a	 Leica	 SM2010	 R	 Sliding	 Microtome	 (Leica	 Biosystems,	

Wetzlar,	Germany).	Slides	were	heated	at	65	°C	for	1	h,	followed	by	two	5-min	incubations	

in	 Histo-Clear	 (National	 Diagnostics,	 Cat.	 No.	 HS-200,	 Atlanta,	 Georgia,	 USA)	 for	 paraffin	

removal.	Tissues	were	rehydrated	with	solutions	of	decreasing	concentrations	of	ethanol,	

washed	 in	 double-distilled	 H2O	 and	 PBS,	 and	 subjected	 to	 antigen	 retrieval	 using	 a	
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microwave	pressure	cooker	with	10mM	citric	acid	buffer	(0.05%	Tween	20,	pH	6.0).	Tissues	

were	blocked	in	blocking	solution	(0.1%	Tween	20	and	10%	Goat	Serum	in	PBS)	for	20	min	

at	room	temperature,	incubated	with	primary	antibodies	prepared	in	blocking	solution	at	4	

°C	overnight,	washed	in	PBS,	incubated	with	secondary	antibodies	diluted	in	PBS	for	1	h	at	

room	temperature,	and	washed	in	PBS.	Slides	were	mounted	with	VECTASHIELD	Antifade	

Mounting	Medium	with	DAPI	(Vector	Laboratories,	Cat.	No.	H-1200,	Burlingame,	California,	

USA)	and	micrographs	were	taken	with	the	BZ-X700	Keyence	fluorescent	microscope.	For	

quantification	of	 staining	 (e.g.,	 ZEB1	and	KRT14	 staining),	we	manually	 counted	positive	

cells	 as	 signal	 around	 nuclei	 (DAPI)	 and	 utilized	 the	 BZH	 Hybrid	 Cell	 Count	 software	

(Keyence)	 in	 at	 least	 three	 different	 fields	 of	 view	 using	 a	 40×	 objective	 in	 at	 least	 two	

different	samples.	Primary	Antibodies:	Estrogen	Receptor	(ER)	rat	mAb	diluted	1:50	(Cat.	

No.916201);	KRT14	rabbit	pAb	diluted	1:500	(Cat.	No.	PRB-155P)	(Biolegend,	San	Diego,	CA,	

USA);	 SLPI	 goat	 pAb	 diluted	 1:200	 (R&D	 Systems,	 Cat	 No.	 AF1274-SP,	Minneapolis,	MN,	

USA);	 KRT18	 rabbit	 pAb	 diluted	 1:500	 (Cat.	 No.	 GTX112978)	 (GeneTex,	 Inc.,	 Irvine,	

California,	USA);	NY-BR-1	mouse	mAb	diluted	1:500	(Cat.	No.	MS-1932-P0);	KRT14	mouse	

mAb	diluted	1:100	 (Cat.	No.	MA511599);	 and	KRT18	mouse	mAb	diluted	1:100	 (Cat.	No.	

MA512104)	(Thermo	Fisher	Scientific	Inc.,	Carlsbad,	California,	USA).	Secondary	Antibodies:	

Donkey	anti-mouse	Cy5.5-conjugated	IgG	(Novus	Biologicals,	Cat.	No.	NBP1-73774,	Littleton,	

CO,	USA);	Goat	anti-rabbit	IgG	conjugated	with	Alexa	Fluor	568	and	488	(Cat.	No.	A21069	&	

A11034);	Goat	anti-	mouse	IgG	conjugated	with	Alexa	Fluor	568	and	488	(Cat.	No.	A11004	&	

A11001);	Goat	anti-rat	IgG	conjugated	with	Alexa	Fluor	488	(Cat.	No.	A11006);	Donkey	anti-

rabbit	FITC-conjugated	IgG	(Cat.	No.	A16030);	and	Donkey	anti-goat	IgG	conjugated	to	FITC	
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and	Alexa	Fluor	568	(Cat.	No.	A16006	&	A11057)	(Thermo	Fisher	Scientific	Inc.,	Carlsbad,	

California,	USA).	

	

Code	availability.		

Custom	scripts	are	available	at:		

https://github.com/kessenbrocklab/Nguyen_Pervolarakis_Nat_Comm_2018.	

	

Data	availability.		

The	authors	declare	that	all	data	supporting	the	findings	of	this	study	are	available	within	

the	article	and	its	supplementary	information	files	or	from	the	corresponding	author	upon	

reasonable	request.	All	scRNA-seq	data	quantified	data	matrices	along	with	their	associated	

meta	data	have	been	deposited	in	the	GEO	database	under	accession	code	GSE113197.	

	
	
	
	
	

	
	

	
	
	
	
	

	
	
Portions	of	the	Introduction,	Results	(2.2.1,	2.2.4),	and	Methods	in	this	section	were	reprinted	
and	adapted	with	permission	from:	
	
Nguyen,	Q.H.,	Pervolarakis,	N.,	Blake,	K.	et	al.	Profiling	human	breast	epithelial	cells	using	single	
cell	 RNA	 sequencing	 identifies	 cell	 diversity.	Nat	 Commun	9,	2028	 (2018).	
https://doi.org/10.1038/s41467-018-04334-1	
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CHAPTER	3:	Biomarkers	of	micrometastasis	in	triple-negative	breast	

cancer	

	

3.1	Introduction	

 Despite	 major	 advances	 in	 the	 detection	 and	 treatment	 of	 early	 stage	 disease,	

metastasis	 remains	 the	 cause	 of	 nearly	 all	 mortality	 associated	 with	 breast	 cancer86,87.	

Previous	work	 suggests	 that	metastasis	 can	 be	 seeded	 by	 rare	 primary	 tumor	 cells	with	

unique	biological	properties	that	enable	them	to	surpass	each	step	in	the	metastatic	cascade,	

though	the	exact	mechanism	of	metastasis	is	not	yet	known	in	breast	cancer	and	it	is	still	

possible	that	metastasis	is	a	fully	random	process	88–90.	Although	the	properties	promoting	

cell	 motility	 and	 migration	 have	 been	 well	 studied,	 the	 mechanisms	 governing	

micrometastasis	seeding	and	dormancy	 in	distal	 tissues	are	poorly	understood.	This	 is	 in	

part	because	metastatic	seeding	cannot	be	studied	in	humans	and	because	it	is	technically	

challenging	to	detect	and	analyze	rare	cells	at	this	transient	stage	in	animal	models.	Further	

insights	into	the	mechanisms	driving	the	seeding	and	maintenance	of	clinically	undetectable	

micrometastases	 are	 critical	 to	 inspire	 new	 strategies	 for	 the	 prevention	 of	 metastatic	

spread	and	reduction	in	mortality	of	patients	with	breast	cancer.		

	 We	 have	 developed	 a	 robust	 approach	 for	 the	 capture	 and	 analysis	 of	 individual	

cancer	 cells	 during	 the	 seeding	 of	 micrometastasis	 in	 human	 patient-derived	 xenograft	

(PDX)	models	using	single-cell	RNA	sequencing	(scRNA-seq)	technology.	Using	this	data,	we	

were	able	 to	 identify	novel	markers	of	micrometastatic	 tumors,	and	developed	a	 forward	

selection,	 logistic	regression	model	to	prioritize	potential	biomarkers	for	 follow	up.	From	

this	 procedure,	 we	 found	 PHLDA2	 and	 BHLHE40	 were	 conserved	 markers	 of	
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micrometastasis	and	primary	tumors	respectively,	with	prognostic	capabilities	for	relapse-

free	survival	in	breast	cancer	patients.	Further,	in	situ	validation	of	PHLDA2	identified	rare	

micrometastatic-like	cells	in	the	primary	tumor,	supporting	the	possibility	of	non-random	

metastatic	progression	in	breast	cancer.		

	

3.2	Results	

3.2.1	Single-cell	RNA	sequencing	of	matched	primary	tumors	and	micrometastases.		

 To	 identify	 fundamental	 properties	 of	 micrometastasis	 in	 breast	 cancer,	 we	

investigated	transcriptome	programs	uniquely	expressed	by	cancer	cells	during	the	seeding	

and	 establishment	 of	 micrometastatic	 lesions.	 We	 utilized	 three	 previously	 established	

patient-derived	 xenograft	 (PDX)	 models	 of	 triple-negative	 breast	 cancer	 (TNBC),	

HCI001,HCI002,	and	HCI010,	which	have	been	shown	to	both	possess	and	maintain	intra-

tumoral	 heterogeneity	 in	 mice.59,91,92	 As	 is	 seen	 in	 many	 patients	 with	 breast	 cancer,	

metastatic	progression	is	slow	and	sporadic	in	these	models,	where	most	animals	display	

dispersed	micrometastases	in	the	lung	and	lymph	nodes	and	very	low	metastatic	burden	at	

endpoint.59,91	 This	 enabled	 us	 to	 investigate	 the transcriptional	 changes	 associated	 with	

early	events	in	the	seeding	and	establishment	of	micrometastasis.	We	utilized	a	previously	

developed	 protocol	 for	 the	 isolation	 of	 metastatic	 cells	 from	 PDX	 models	 using	 flow	

cytometry	with	 human	 (CD298)	 and	mouse	 (MHC-I)	 species-specific	 antibodies59,	 sorted	

individual	cancer	cells	from	the	lungs,	lymph	nodes,	and	primary	tumors	from	PDX	mice	into	

96-well	PCR	plates,		and	performed	full-length	scRNA-seq	using	an	optimized	version	of	the	

Smart-seq2	protocol	22	(Fig	3.1A,B).			
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After removing cells with low gene detection (<2500 genes) or a high mitochondrial 

percentage (>50%),	we	analyzed	1,119	matched	tumor	and	micrometastatic	cells	from	nine	

PDX	 mice	 across	 our	 three	 PDX	 models.	 	 Dimensionality	 reduction	 using	 t-distributed	

stochastic	 neighbor	 embedding	 (tSNE)34	 revealed	 a	 strong	 transcriptional	 separation	 of	

Figure	3.1:	Single-cell	RNA	sequencing	of	matched	primary	 tumor	and	micrometastatic	cells.	 (A)	
Overview	of	the	experimental	workflow.	The	primary	tumor,	lungs	and	lymph	nodes	of	each	PDX	animal	
were	digested	to	make	single-cell	suspensions.	Single	CD298+MHC-I−	human	tumor	cells	were	isolated	by	
flow	 cytometry,	 deposited	 into	 individual	 wells	 of	 96-well	 plates	 and	 single-cell	 cDNA	 libraries	 were	
prepared	using	Smart-seq2	chemistry.	Matched	primary	tumor	and	micrometastatic	cells	from	nine	mice	
and	three	PDX	models	(HCI001,	HCI002	and	HCI010)	were	analyzed,	and	1,119	cells	passed	quality-	control	
filtering.	 (B)	 Left,	 flow	 cytometry-based	 strategy	 for	 the	 isolation	 of	 human	 CD298+MHC-I−	 cells	 from	
micrometastatic	(bottom)	and	primary	tumor	(top)	cells.	(C)	T-distributed	stochastic	neighbor	embedding	
(tSNE)	plot	showing	all	metastatic	and	primary	tumor	cells	from	the	HCI001,	HCI002	and	HCI010	models.	
Reprinted	and	adapted	with	permission	from	Davis	et	al,	2020,	Nat	Cell	Biol.	

A B

C



 

48 
 

patients,	but	relatively	little	separation	of	tumor	and	micrometastatic	cells	within	patients	

(Fig	1C).	This	large	amount	of	inter-tumoral	heterogeneity	is	consistent	with	findings	from	

prior	single-cell	studies,	and	may	be	due	to	distinct	copy	number	variations	driving	global	

gene	expression	shifts	across	patients.38,55	Thus,	these	data	suggest	that	investigating	intra-

tumoral	 heterogeneity	 and	 the	 differences	 between	 tumor	 and	 micrometastatic	 cells	

requires	individual	patient	analyses.		

	

3.2.2	Transcriptional	diversity	in	micrometastatic	and	primary	tumor	cells.	

Performing	 dimensionality	 reduction	 and	 unbiased	 clustering	 for	 each	 patient	

separately	revealed	distinct	populations	of	tumor	and	micrometastatic	cells	with	biologically	

meaningful	 behaviors,	 including	 metabolic	 specializations	 (e.g.	 OXPHOS,	 Glycolysis,	 and	

Fatty-acid	 metabolism),	 epithelial-to-mesenchymal	 transition	 (EMT),	 and	 extracellular	

matrix	modulation	(ECM)	(Fig	3.2.1	A,	B).	This	intra-tumoral	heterogeneity	and	the	specific	

biological	 specializations	 were	 well-conserved	 across	 patients,	 xenograft	 passages,	 and	

tissue	of	origin,	though	not	of	equal	abundance	in	each	condition	(Fig	3.2.2A-C).	While	no	

clusters	were	purely	of	tumor	or	micrometastatic	origin,	we	could	identify	skewing	towards	

OXPHOS	in	micrometastatic	cells	(A1,	B1,C2,	C3)	as	well	as	an	enrichment	of	EMT	or	ECM	

modulation	 in	 primary	 tumor	 cells	 for	 patients	 HCI002	 (B3,	 B5)	 and	 HCI010	 (C4)	 (Fig	

3.2.2A,B).	 A	 requirement	 to	 undergo	 EMT	 for	 migration	 and	 MET	 (mesenchymal-to-

epithelial	 transition)	 for	metastatic	outgrowth	has	been	 characterized93,	 though	a	 role	of	
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OXPHOS	in	micrometastasis	is	novel	and	it	is	not	yet	apparent	how	these	extremely	small	

micrometastatic	tumors	develop	or	maintain	the	level	of	heterogeneity	seen	here.	Taken	as	

a	 whole,	 these	 data	 suggest	 that	 triple-negative	 breast	 cancers	 are	 transcriptionally	

heterogeneous	 both	 between	 and	 within	 tumors.	 However,	 there	 also	 appears	 to	 be	

Figure	 3.2.1:	 Transcriptional	 diversity	 in	 micrometastatic	 and	 primary	 tumor	 cells.	
(A)	 	Clustering	of	cells	from	the	HCI001	(top;	n	=	247	cells),	HCI002	(middle;	n	=	401	cells)	and	
HCI010	(bottom;	n	=	471	cells)	PDX	models	shown	in	tSNE	plots.	The	cells	are	colored	according	to	
their	cluster	identity.	The	biological	features	defining	each	population	identified	by	GO	term	analysis	
of	marker	genes	are	indicated.	Chol.	=	cholesterol.	(B)	Heatmaps	show	the	top	marker	genes	in	each	
cluster	in	(A)	based	on	average	log	fold	enrichment	and	the	Wilcoxon	rank	sum	test	(P	<	0.05).	Select	
marker	genes	are	listed	for	each	cluster	on	the	left.	Reprinted	and	adapted	with	permission	from	
Davis	et	al,	2020,	Nat	Cell	Biol.	
	

BA
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conserved	 biological	 specializations	 driving	 intra-tumoral	 heterogeneity	 across	 different	

patient	models.	

	

3.2.3	Micrometastatic	cells	display	a	distinct	transcriptome	program.	

	 To	determine	a	set	of	conserved	markers	for	micrometastatic	cells,	we	performed	a	

supervised	differential	expression	analysis	between	micrometastatic	cells	and	tumor	cells	

using	the	tobit	test94	with	patient	as	a	latent	variable	to	reduce	the	effects	of	inter-tumoral	

heterogeneity	(Fig	3.3	A).	This	identified	330	significantly	differentially	expressed	genes	(P	

<	 0.05,	 average	 log	 fold	 change	 >	 0.25)	 including	 116	 genes	 specifically	 upregulated	 in	

micrometastatic	cells	across	all	three	PDX	models	(Fig	3.3	B,C).	The	genes	upregulated	in	

micrometastasis	included	heat	shock	proteins	(HSPB1,	HSPE1,	HSPA8),	known	to	have	a	role	

in	apoptotic	and	stress	response95,	as	well	as	multiple	cytokeratins	(KRT7,	KRT14,	KRT16,	

Figure	3.2.2:	Cluster	associations	for	individual	mice	and	tumor	cell	origins.	 tSNE	plots	display	
individual	 patient	 analyses,	 colored	 by	mouse	 of	 origin	 (left)	 and	 tissue	 of	 origin	 (right)	 from	 PDX	
models	 (A)	 HCI001	 (n	 =	 247	 cells),	 (B)	 HCI002	 (n	 =	 401	 cells)	 and	 (C)	 HCI010	 (n	 =	 471	 cells).	
Additionally,	cluster	designations	are	overlayed	with	colors	and	names	corresponding	to	Fig	3.2.1A.	
Reprinted	and	adapted	with	permission	from	Davis	et	al,	2020,	Nat	Cell	Biol.	

A B
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KRT17)	which	are	intermediate	filaments	which	have	roles	in	epithelial	tissue	integrity	and		

mechanical	stress	responses96.	We	also	identified	genes	marking	micrometastases	that	have	

not	been	previously	identified	in	a	metastasis	context	(e.g.	PHLDA2),	or	were	shown	to	have	

A

B CB

D

Figure	 3.3:	Micrometastatic	 cells	 display	 a	 distinct	 transcriptome	 program.	 (A)	 Schematic	 of	 the	
analysis	method	to	identify	genes	that	were	differentially	expressed	between	micrometastatic	and	primary	
tumor	 cells,	 conserved	 in	 all	 three	 PDX	 models.	 All	 of	 the	 cells	 in	 the	 dataset	 were	 classified	 as	
micrometastatic	or	 tumor	cells	and	 the	differential	gene	expression	between	 the	groups	was	calculated	
using	the	tobit	test	in	Seurat	with	the	patient	ID	as	a	latent	variable;	330	differentially	expressed	genes	were	
identified	(P	<	0.05,	min.pct	=	0.1,	average	log	fold	change	>	0.25).	(B)	Volcano	plot	showing	all	genes	that	
were	 differentially	 expressed	 between	micrometastases	 (Met)	 and	 tumors.	 (C)	 Heatmap	 of	 the	 top	 20	
marker	genes	for	micrometastatic	and	primary	tumor	cells.	The	average	log	fold	change	of	each	gene	(x	
axis)	 in	 micrometastatic	 relative	 to	 primary	 tumor	 cells	 was	 plotted	 for	 each	 mouse	 (y	 axis).	 Yellow	
indicates	higher	expression	in	micrometastatic	cells	and	purple	indicates	higher	expression	in	tumor	cells.	
(D)	tSNE	plots	show	expression	of	select	marker	genes	in	all	cancer	cells.	Clustering	was	performed	based	
on	expression	of	the	top	30	genes	differentially	expressed	between	tumor	and	metastatic	cells	from	(A).	
Subfigures	(A)-(C)	reprinted	and	adapted	with	permission	from	Davis	et	al,	2020,	Nat	Cell	Biol.	Subfigure	
(D)	is	previously	unpublished.	



 

52 
 

the	opposite	effect	in	other	cancers,	such	as	Metastasis	Inhibition	Factor	Nm23	(NME1)	(Fig	

3.3B,C).		

	 To	 further	 investigate	how	well	 these	genes	separated	 tumor	and	micrometastatic	

cells	across	patients,	we	performed	a	dimensionality	reduction	using	only	the	top	30	gene	

markers	of	tumor	and	micrometastatic	cells	as	input	(Fig	3.3D).	From	this,	we	found	that	

patients	were	still	clearly	distinguishable	in	the	shared	space;	however,	the	micrometastatic	

cells	for	each	patient	were	pulled	together	(Fig	3.3D).	This	likely	indicates	that	some	of	our	

tumor	 markers	 have	 patient-specificity	 while	 the	 micrometastatic	 markers	 are	 more	

conserved.	Visualizing	individual	marker	genes	support	this	hypothesis,	where	we	see	that	

a	 few	 tumor	 markers	 were	 specific	 to	 patients	 (e.g	 APOC1	 and	 HCI002)	 while	 others	

convincingly	span	all	three	patient	models	(e.g.	BTG2)	(Fig	3.3D).	This	data	indicates	that	we	

have	effectively	narrowed	down	a	 list	of	biomarkers	upregulated	 in	micrometastasis,	but	

further	filtering	for	genes	downregulated	in	micrometastasis	(i.e.	upregulated	in	tumor	cells)	

across	patients	may	provide	improved	prognostic	capabilities	and	biological	insights.		

	

3.2.4	 Improved	feature	selection	using	a	predictive	classifier	for	micrometastases	

	 We	built	a	logistic	regression	model	using	forward	selection	to	optimize	biomarker	

identification	from	our	330	differentially	expression	genes	using	balanced	data	from	all	nine	

mice	as	input	(i.e.	equal	numbers	of	tumor	and	micrometastatic	cells	from	each	mouse)	(Fig	

3.4A).	 We	 repeated	 this	 procedure	 using	 ten	 uniform	 cell	 subsamplings,	 and	 at	 each	

subsampling,	five	top	genes	were	identified	since	this	best	minimized	the	Akaike	information	

criterion	(AIC)	(Fig	3.4A).	Three	genes	were	repeatedly	selected	in	>70%	of	sampling	events,	

indicating	they	were	robustly	predictive	across	cell	subsamplings	(Fig	3.4B).	PHLDA2	was	
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identified	as	the	top	gene	predictive	of	micrometastatic	status,	and	BHLHE40	and	LDHA	were	

identified	 as	 top	 genes	predictive	 of	 tumor	 status	 (Fig	3.4B).	We	 subsequently	 used	 our	

model	 to	predict	 the	 tumor	or	micrometastatic	 identity	of	 individual	 cells	based	on	 their	

expression	of	only	these	three	genes	(Fig	3.4C).	We	assessed	the	model	on	all	1,119	cells	in	

our	dataset	and	found	that	it	demonstrated	an	overall	accuracy	of	74.6%	(split	at	0.5),	where	

it	correctly	classified	metastatic	cells	81.5%	of	the	time	and	primary	tumor	cells	67.7%	of	

the	time	(Fig	3.4C).	Interestingly,	when	we	dug	further	into	the	cell	type	classifications	of	

high	confidence	(>.75	for	micrometastatic	label	or	<0.25	for	tumor	label),	we	found	again	

that	far	more	tumors	were	misclassified	as	micrometastases	than	vice	versa	(Fig	3.4D).		

	 To	interrogate	the	prognostic	capabilities	of	these	label-predictive	genes,	we	utilized	

KM	plotter,	 a	 large	 online	 database	 of	 breast	 cancer	 patient	 samples	with	matched	 gene	

expression	 and	 clinical	 information97.	We	 investigated	 the	 effects	 of	 our	micrometastatic	

(PHLDA2)	and	tumor	predictive	(LDHA,	BHLHE40)	genes	on	RFS	and	found	that	high	levels	

of	PHLDA2	resulted	in	a	worse	prognosis	(HR	=	1.42)	and	high	levels	of	BHLHE40	resulted	in	

an	improved	prognosis	(HR=0.7)	(Fig	3.4E).	High	levels	of	the	transcription	factor	BHLHE40	

has	previously	been	shown	to	inhibit	tumor	invasion98,	while	PHLDA2	is	known	to	regulate	

placental	growth,	improve	engraftment	in	xenograft	models,	and	improve	invasive	capacities	

of	tumor	cells	in	vitro99.		In	contrast,	LDHA	did	not	follow	the	expected	pattern	of	prognostic	

improvement,	which	we	hypothesize	is	due	to	its	known	role	in	glycolysis,	which	may	cause	

it	to	mark	more	proliferative,	aggressive	tumor	types	with	an	indistinguishable	relationship	

to	metastasis	associated	phenotypes100.		We	next	looked	at	the	RFS	predictive	capabilities	of	

PHLDA2	and	BHLHE40	together,	and	found	a	small,	but	notable	improvement	(HR=1.55)	(Fig	

3.4E).		
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  Because	 PHLDA2	 was	 a	 top	 gene	 identified	 for	 both	 single-cell	 classification	 and	

predicting	RFS	in	patient	cohorts,	we	further	evaluated	its	expression	in	primary	tumor	and	

micrometastases	using	fluorescence	in	situ	hybridization	technology	(RNAscope).	We	found	
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that	 the	 levels	 of	 PHLDA2	 transcripts	 were	 at	 least	 twofold	 higher	 in	 micrometastases	

relative	to	primary	tumors	and	only	rare	tumor	cells	were	found	to	express	the	gene	in	any	

capacity	(Fig	3.4F,G).		It	is	tempting	to	speculate	that	these	rare	tumor	cells	may	represent	

the	 cells	 misclassified	 in	 our	 logistic	 regression	 model,	 and	 perhaps	 do	 possess	 higher	

metastatic	 capacities	 than	 unmarked	 cells.	 Overall,	 these	 data	 highlight	 our	 dataset	 and	

methodology	 as	 a	 resource	 for	 the	 identification	 of	 drivers	 of	 metastatic	 seeding	 and	

biomarkers	to	predict	metastatic	progression	in	patients	with	breast	cancer.	

	

3.3	Discussion	

	 In	 this	 work,	 we	 collected	 a	 scRNA-seq	 dataset	 of	 matched	 tumors	 and	

micrometastatic	 cells	 across	 three	 PDX	models	 and	 nine	 xenograft	 passages,	 and	 from	 it	

identified	novel	biomarkers	of	micrometastasis	using	multilayered	regression	models.	We	

performed	a	simple	differential	expression	between	tumor	or	micrometastatic	cells	using	

the	 tobit	 test,	which	 identified	330	significantly	differentially	expressed	genes,	and	many	

Figure	 3.4:	 Improved	 feature	 selection	 using	 a	 predictive	 classifier	 for	 micrometastases	
(A)	 Schematic	 for	 the	 construction	 of	 a	 stepwise	 logistic	 regression	 model	 to	 identify	 top	 biomarker	
candidates	descriptive	of	primary	 tumor	or	micrometastatic	 cells.	The	data	was	 subsampled	 to	analyze	
equal	 numbers	 of	 micrometastatic	 and	 tumor	 cells	 from	 each	 mouse.	 The	 model	 was	 run	 on	 10	
subsamplings	of	the	data,	with	the	number	of	genes	in	each	model	determined	by	AIC	(n=5).	(B)	Bar	plot	
showing	the	number	of	model	appearances	for	each	gene	out	of	10	data	subsamplings.	(C)	Result	of	logistic	
regression	using	PHLDA2,	BHLHE40,	and	LDHA.	Each	cell	was	classified	as	tumor	or	micrometastatic	based	
on	its	expression	of	the	three	genes.	Cells	assigned	a	probability	of	>0.5	were	classified	as	‘micrometastatic’	
(Met),	while	cells	assigned	a	probability	of	<0.5	were	classified	as	 tumor.	 (D)	Quantification	of	 the	total	
model	accuracy,	subset	to	cells	classified	with	<0.25	or	>0.75	model	probability.		(E)	Kaplan-Meier	curves	
of	relapse-free	survival	(RFS)	based	on	primary	tumor	expression	of	PHLDA2,	BHLHE40,	or	both	in	breast	
cancer	 patient	 cohorts.	 Data	 for	 all	 breast	 cancer	 subtypes	 is	 shown	 (n=1,402).	 	HR=	 hazard	 ratio.	 (F)	
Representative	 fluorescent	 in	 situ	 hybridization	 for	 PHLDA2	 (RNAscope)	 on	 primary	 tumor	 (n	 =	 3	
biologically	 independent	 samples;	 right)	 and	 lung	 micrometastases	 (n	 =	 2	 biologically	 independent	
samples;	 left)	 from	the	PDX	model	HCI001.	 Insets,	higher	magnification	of	 individual	puncta.	The	white	
arrow	 indicates	 a	 tumor	 cell	with	 high	 expression	 of	 PHLDA2.	 Scale	 bars,	 50	 μm.	 (G)	Normalized	 total	
fluorescent	 intensity	 (TFI)	of	PHLDA2	 in	primary	 tumor	and	micrometastatic	cells	 from	the	PDX	model	
HCI001	(n	=	2	lungs,	>15	lesions;	n	=	3	tumors,	22	fields).	Data	are	shown	as	the	mean	±	s.e.m.	Subfigures	
(A),(B),(F),	and	(G)	reprinted	and	adapted	with	permission	from	Davis	et	al,	2020,	Nat	Cell	Biol.	Subfigures	
(C)-(E)	are	previously	unpublished.	
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conserved	 markers	 of	 micrometastases	 related	 to	 stress	 response.	 We	 then	 added	 in	 a	

forward	selection,	 logistic	 regression	 to	narrow	our	 list	of	330	markers	 to	one	candidate	

marker	 for	micrometastasis	(PHLDA2)	and	two	potential	markers	 for	non-invasive	tumor	

cells	(BHLHE40,	LDHA),	the	former	of	which	was	unconfounded	by	other	fundamental	tumor	

characteristics.	PHLDA2	and	BHLHE40	were	both	independently	and	together	found	to	be	of	

prognostic	 value	 for	 RFS	 in	 a	 separate	 patient	 cohort.	PHLDA2	 has	 not	 been	 extensively	

studied	 in	metastasis,	and	our	data	and	 in	situ	experiment	validated	that	 it	 is	enriched	 in	

micrometastatic	 cells	 compared	 to	 primary	 tumor	 cells,	 and	 further	 suggested	 that	 rare	

primary	tumor	cells	show	expression	comparable	to	that	of	micrometastases.		

	 From	 a	methodology	 standpoint,	 it	 is	 important	 to	 note	 that	while	we	 tested	 the	

predictive	capabilities	of	our	forward	selection,	logistic	regression	model	on	our	data,	it	was	

not	trained	to	act	as	a	predictor	for	new	data	and	its	only	proposed	function	is	 in	feature	

selection.	It	did	successfully	identify	genes	robust	to	noise	within	our	own	dataset,	and	from	

a	practical	standpoint,	this	ended	up	being	genes	with	minimal	to	no	dropout	across	both	

individual	cells	and	our	three	patient	models.	The	forward	selection	element	also	helps	to	

present	only	 the	 “best”	marker	of	each	highly	correlated	gene	set	or	pathway	 for	 further	

investigation.	We	 propose	 that	 this	 addition	 to	 a	 standard	 differential	 expression	 test	 is	

generally	useful	for	narrowing	down	biomarker	candidates	in	scRNA-seq	data,	and	in	our	

case,	resulted	in	us	following	up	on	a	gene	we	otherwise	would	have	looked	past	since	it	was	

neither	the	top	marker	in	our	differential	expression	analysis	nor	was	it	a	well-characterized	

protein.		

Interestingly,	our	logistic	regression	model	misclassified	a	far	larger	number	of	tumor	

cells	as	micrometastasis	than	it	misclassified	micrometastatic	cells	as	tumors.	This	may	be	
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biologically	meaningful,	as	it	is	possible	that	some	cells	in	the	primary	tumor	are	primed	for	

metastasis,	and	our	gene	signature	may	help	identify	them.	The	additional	observations	that	

rare	tumor	cell	are	high	for	PHLDA2	and	this	gene	had	prognostic	utility	for	RFS	data	based	

on	 primary	 tumor	 samples	 suggests	 that	 PHLDA2	 may	 represent	 an	 early	 marker	 for	

metastatic	capacity	 in	 tumor	sections.	The	additional	of	a	separate	predictor	of	 low/non-

metastatic	cells	(e.g.	BHLHE40)	could	also	improve	in	situ	investigations	since	‘high’	and	‘low’	

expression	levels	of	any	single	gene	can	vary	widely	across	patients,	while	a	two-gene	ratio	

may	have	more	direct	interpretability.	Generally,	the	utility	of	these	two	genes	as	predictors	

of	 patients	with	 a	 high	 likelihood	 of	 having	metastasis	 below	 clinical	 detection	warrants	

more	investigation,	as	there	are	currently	very	few	strategies	for	this	and	early	therapeutic	

intervention	could	save	lives.		

	

3.4	Materials	&	methods	

PDX	models		

The	samples	from	patients	were	provided	by	A.	L.	Welm	at	the	Department	of	Oncological	

Sciences	at	 the	Huntsman	Cancer	 Institute	(HCI).	All	of	 the	 tissue	samples	were	collected	

with	informed	consent	from	individuals	being	treated	at	the	Huntsman	Cancer	Hospital	and	

the	University	of	Utah	under	a	protocol	approved	by	the	Institutional	Review	Board	of	the	

University	of	Utah91.	HCI001	was	acquired	from	a	primary	tumor	biopsy	of	a	female	patient	

diagnosed	 with	 Stage	 IV	 ER−PR−Her2−	 basal-like	 invasive	 ductal	 carcinoma	 with	 no	

previous	systemic	treatment.	HCI002	was	acquired	from	a	primary	tumor	biopsy	of	a	female	

patient	diagnosed	with	Stage	IIIA	ER−PR−Her2−	basal-like	medullary-type	invasive	ductal	

carcinoma	 with	 no	 previous	 systemic	 treatment.	 HCI010	 was	 acquired	 from	 a	 pleural	
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effusion	 of	 a	 female	 patient	 diagnosed	with	 Stage	 IIIC	 ER−PR−Her2−	 basal-like	 (PAM50)	

invasive	 ductal	 carcinoma	 treated	 with	 several	 rounds	 of	 chemotherapies12.	 Additional	

clinical	details	of	each	patient	tumor	can	be	found	in	Supplementary	Table	1	of	ref	91.	The	

samples	were	collected	and	deidentified	by	the	Huntsman	Cancer	Institute	Tissue	Resource	

and	Application	Core	facility	before	being	obtained	for	implantation.	The	study	is	compliant	

with	all	of	the	relevant	ethical	regulations	regarding	research	involving	human	participants.	

	

Animal	experiments	

The	 Institutional	 Animal	 Care	 and	 Use	 Committee	 of	 the	 University	 of	 California,	 Irvine	

reviewed	 and	 approved	 all	 of	 the	 animal	 experiments.	 Orthotopic	 transplants	 of	 serially	

passaged	human	tumor	samples	were	performed	on	immunocompromised	three-	to	four-

week-old	 NOD/SCID	 mice	 after	 clearing	 the	 mammary	 fat	 pads	 following	 established	

protocols101.	Tumor	growth	was	monitored	by	weekly	caliper	measurements	and	volumes	

were	calculated	as:	length	×	width2×	0.51.	The	animals	were	euthanized	and	tissues	were	

harvested	when	the	tumors	reached	a	length	or	width	of	2.0–2.5	cm.	The	study	is	compliant	

with	all	of	the	relevant	ethical	regulations	regarding	animal	research.	

	

Tissue	harvest	and	dissociation.		

Animals	 at	 the	 endpoint	were	 euthanized	 by	 asphyxiation	with	 CO2	 followed	 by	 cervical	

dislocation	and	perfusion	with	10	mM	EDTA	in	D-PBS.	Evan’s	Blue	(Sigma-Aldrich,	cat.	no.	

E2129-10G)	 was	 injected	 into	 the	 footpads	 and	 ears	 of	 the	 anaesthetized	 mice	 before	

perfusion	to	aid	visualization	of	the	lymph	nodes.	The	solid	tissues	from	the	mice—which	

included	the	primary	tumor,	lungs	and	lymph	nodes—were	processed	for	flow	cytometry	by	
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mechanical	chopping	with	blades,	followed	by	collagenase	IV	(Sigma-Aldrich	cat.	no.	C5138-

1G)	 digestion	 in	 medium	 (DMEM–F12	medium	with	 5%	 FBS,	 5	 µg	 ml−1	 insulin	 and	 1%	

penicillin/streptomycin	 solution)	 for	45	min	at	37	 °C.	The	cell	 suspensions	were	washed	

with	2	µg	ml−1	DNAse	I	(Worthington	Biochemical,	cat.	no.	LS002139)	for	5	min	and	further	

dissociated	 with	 0.05%	 trypsin	 for	 10	 min.	 Following	 a	 wash	 with	 Hanks	 balanced	 salt	

solution	 with	 2%	 FBS,	 the	 cells	 were	 passed	 through	 a	 70-µm	 filter.	 Lung	 and	 primary	

tumour	cells	were	treated	with	1×RBC	lysis	buffer,	followed	by	resuspension	in	DMEM–F12	

with	10%	FBS	for	FACS.	

	

Flow	cytometry	

We	used	the	human-specific	antibody	CD298	(diluted	1:100;	PE;	BioLegend,	cat.	no.	341704)	

and	the	mouse-specific	antibody	MHC-I	(diluted	1:150;	APC;	Thermo	Fisher	Scientific,	cat.	

no.	17-5957-80).	Flow	cytometry	was	performed	using	a	BD	FACSAria	Fusion	cell	sorter.	Cell	

viability	was	determined	by	negative	 staining	with	SYTOX	blue	 (diluted	1:1,000;	Thermo	

Fisher	Scientific,	cat.	no.	S34857).	The	forward-scatter	area	by	forward-scatter	width	(FSC-

H	 ×	 FSC-A)	 and	 side-scatter	 area	 by	 side-scatter	 width	 (SSC-H	 ×	 SSC-A)	 was	 used	 to	

discriminate	 single	 cells	 from	 doublet	 and	multiplet	 cells.	Mouse	 cells	were	 excluded	 by	

gating	 out	 CD298−MHC-I+	 cells.	 Human	 primary	 tumor	 cells	 and	 metastatic	 cells	 were	

selected	by	gating	on	Sytox−CD298+MHC-I−	cells.		

	

Generation	of	scRNA-seq	data	

Single	 cells	 were	 sorted	 directly	 into	 each	 well	 of	 a	 skirted	 96-well	 PCR	 plate	 (Fisher	

Scientific,	 Eppendorf,	 cat.	 no.	 E951020443)	 containing	 lysis	 buffer	 (0.2%	 Triton	 X-100	
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(Sigma-Aldrich,	 cat.	 no.	 T9284),	 2	 U	 µl−1	 RNAseOUT	 (Thermo	 Fisher	 Scientific,	 cat.	 no.	

10777019),	 10	 µM	 oligo-dT30VN	 and	 10	 µM	 dNTPs	 (Thermo	 Fisher	 Scientific,	 cat.	 no.	

18427088))	as	described	previously22.	The	plates	were	snap	frozen	on	dry	ice	and	stored	at	

−80	°C	until	further	processing.	Total	RNA	was	converted	into	complementary	DNA	using	

the	Smart-seq2	protocol	and	prepared	for	Illumina	sequencing	using	the	Nextera	XT	DNA	

library	preparation	kit	(Illumina,	cat.	no.	FC-131-1096).	The	cells	were	sequenced	at	a	depth	

of	1	×	106	reads	per	cell	on	a	HiSeq	2500	system.	

	

Processing	of	scRNA-seq	data	

Files	from	the	HiSeq	2500	were	demultiplexed	and	converted	to	FASTQ	files.	Paired-end	100	

bp	 reads	 were	 aligned	 to	 the	 Gencode	 21	 human	 transcriptome	 using	 Bowtie	 2	 and	

quantified	using	RSEM	with	the	following	parameters:	rsem-calculate-expression	-p	$CORES	

—bowtie2	—paired-	 end	 READ1	 READ2	 gencodehg21.	 The	 expression	 values	 were	 log-

transformed	 into	 log[transcripts	 per	 kilobase	 million	 +	 1]	 matrices	 and	 loaded	 into	 the	

Seurat	analysis	package	with	the	following	parameters:	p10<-	CreateSeuratObject(raw.	data	

=	 p10.mat,	 min.cells	 =	 8,	 min.genes	 =	 1,000,	 project	 =	 ‘HCI010’).	 We	 removed	 any	 cells	

identified	 as	 visual	 outliers	 by	 library	 complexity	 (<2,500	 genes	 per	 cell)	 or	

overrepresentation	of	mitochondrial	gene	expression	(>50%)	as	a	further	quality	control.	In	

addition,	we	removed	any	genes	that	were	not	represented	in	a	robust	population	of	cells	

(<8	cells	per	gene)	from	the	downstream	analysis.	This	resulted	in	a	final	analysis	of	1,119	

single-cell	 profiles.	 Using	 the	 RegressOut	 feature	 in	 Seurat,	 we	 calculated	 the	 z-score	

residuals	using	nGene	and	percent.mito	as	co-variates,	which	was	used	to	perform	principal-
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component	analysis	and	tSNE.	A	G1/S	and	G2/M	score	was	calculated	using	the	gene	score	

method	described	below	and	regressed	out	as	well	for	HCI001	and	HCI010.	

	

Dimensionality	reduction,	cell	cluster	identification	and	differential	gene	expression	

analysis	

Dimensionality	reduction	and	differential	gene	expression	was	performed	using	the	Seurat	

analysis	package	version	2.1.0.	For	the	main	combined	and	individual	patient	analysis,	highly	

variable	 genes	 in	 our	 dataset	 were	 identified	 using	 the	 MeanVarPlot	 function	 with	 the	

following	 parameters:	 FindVariableGenes(object	 =	 comb,	 mean.function	 =	 ExpMean,	

dispersion.	function	=	LogVMR,	x.low.cutoff	=	0.0125,	x.high.cutoff	=	3,	y.cutoff	=	0.5).	For	the	

combined	analysis	for	only	micrometastatic	and	tumor	differentially	expressed	genes,	the	

top	 30	 markers	 of	 tumor	 or	 micrometastatic	 status	 were	 used	 as	 direct	 input	 into	 the	

principal-component	analysis	 instead.	These	variable	genes	were	then	used	for	principal-

component	analysis.	The	principal	components	generated	were	then	used	to	perform	tSNE	

of	the	data.	For	the	individual	patient	analysis,	using	the	FindClusters	function	in	Seurat	and	

a	granularity	parameter	of	1.0,	we	 identified	distinct	 subpopulations	and	defined	marker	

genes	for	each	of	them	with	the	FindAllMarkers	function	in	Seurat	with	the	default	settings	

for	the	FindAllMarkers	function	and	the	‘bimod’	statistical	test.	For	the	generation	of	the	330-

micrometastatic-gene	signature,	metastatic	cells	from	all	PDX	models	were	grouped	together	

separate	from	tumor	cells	and	we	calculated	a	differential	expression	test	in	Seurat	using	the	

‘tobit’	test	with	the	following	parameters:	comb<-	FindAllMarkers(object	=	comb,	only.pos	=	

TRUE,	min.pct	=	0.1,	logfc.threshold	=	0.25,	test.use	=	‘tobit’,	latent.vars	=	‘orig.ident’).	The	

‘orig.ident’	command	in	the	‘latent.vars’	variable	represents	the	patient	ID	(that	is,	HCI001,	
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and	so	on).	By	including	this	variable,	 the	tobit	model	 identifies	conserved	marker	genes.		

The	 ‘min.pct’	 variable	 in	 Seurat’s	 differential	 expression	 (DE)	 tobit	 test	 is	 defined	 as	 the	

minimum	 percent	 of	 cells	 per	 group	 that	must	 express	 a	 gene	 (log(TPM	 +	 1)	 >0)	 to	 be	

considered	in	the	output	of	the	test.	Gene	Ontology	analysis	was	performed	using	the	Enrichr	

web	resource102,103,	where	the	input	gene	set	for	each	population	was	the	markers	identified	

by	FindAllMarkers.		

	

Development	of	logistic	regression	model	for	identifying	candidate	biomarkers		

The	 classification	 model	 was	 calculated	 beginning	 from	 1,119	 single	 cells	 and	 330	

differentially	 expressed	 genes	 as	 calculated	with	 a	 generalized	 additive	model	 (tobit)	 in	

Seurat’s	FindAllMarkers()	function.	Patient	ID	was	used	as	a	latent	variable	when	calculating	

differential	expression.	The	gene	expressions	were	normalized	across	all	cells	such	that	each	

gene	had	a	mean	expression	of	zero	and	a	standard	deviation	of	one.	For	model	fitting	the	

data	was	sampled	equally	ten	times	from	each	mouse	and	origin	(tumor	vs	micrometastasis)	

category	to	avoid	systematic	bias.	For	each	sampling,	a	stepwise	regression	with	forward	

selection	was	performed	where	at	each	step,	the	model	that	minimized	the	AIC	was	chosen	

to	be	used	as	a	base	model	for	the	next	step.	Proceeding	in	this	fashion	the	p-value	of	each	

marginal	gene	included	in	the	model	was	recorded	as	well	as	the	area	under	the	receiver	

operating	curve	(AUC).	It	was	noted	that	the	Bonferroni	corrected	p-value	of	the	coefficient	

for	each	marginal	gene	fell	outside	of	a	0.01	cutoff	by	the	fifth	gene	that	was	included	in	the	

model.	 Thus,	 the	 genes	 included	 in	 the	 ten	 five-gene	 models	 were	 tabulated.	 From	 this	

tabulation	it	is	apparent	that	the	most	frequently	occurring	genes	are	LDHA,	PHLDA2,	and	

BHLHE40	occurring	in	eight,	eight,	and	seven	of	the	ten	models	respectively	and	a	final	model	
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was	 constructed	 by	 using	 those	 three	 genes	 in	 all	 cells	 to	 calculate	 a	 logistic	 regression	

classifier	for	tissue	source	(tumor	vs	micrometastasis).	

	

Relapse-free	survival	analysis		

For	 the	 relapse-free	 survival	 analysis,	 we	 generated	 Kaplan–Meier	 survival	 curves	 on	

primary	tumor	microarray	data	of	patients	with	all	subtypes	of	breast	cancer	from	the	KM	

Plotter	database97.	To	generate	 the	combined	survival	analysis,	we	calculated	a	weighted	

average	of	PHLDA2	and	-1*BHLHE40	using	the	‘Use	Multiple	Genes’	function	in	KM	Plotter.	

All	Kaplan–Meier	plots	are	displayed	using	the	‘auto	select	best	cutoff’	parameter.	

 

Histology		

Tumor	 and	 lung	 tissues	 from	 the	 PDX	 mouse	 models	 were	 fixed	 overnight	 in	 4%	

paraformaldehyde	and	 then	dehydrated	and	processed	 for	paraffin	embedding	 in	a	Leica	

tissue	 processor	 using	 standard	 protocols.	 The	 paraffin	 blocks	were	 cut	 into	 5-µm-thick	

sections	using	a	Leica	microtome,	rehydrated	and	then	stained	with	haematoxylin	and	eosin.	

Bright-field	imaging	was	performed	using	a	BZ-X700	Keyence	microscope.	

	

Fluorescent	in	situ	hybridization		

Fluorescent	 in	 situ	 hybridization	 was	 performed	 on	 formalin-fixed	 paraffin-embedded	

sections	using	 the	RNAscope	multiplex	 fluorescent	 reagent	 kit	 v2	 (ACD,	 cat.	 no.	 323110)	

according	to	the	manufacturer’s	instructions.	Briefly,	the	formalin-fixed	paraffin-embedded	

sections	were	rehydrated	in	Histoclear	and	100%	ethanol	before	antigen	retrieval	using	the	

RNAscope	antigen	retrieval	solution	and	mild	boiling	at	100	°C	for	15	min.	PHLDA2	probe	
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(ACD,	 cat.	 no.	 551441)	 amplification	 was	 performed	 according	 to	 the	 manufacturer’s	

instructions	 with	 the	 TSA	 plus	 cyanine	 3	 (diluted	 1:1,000;	 PerkinElmer,	 cat.	 no.	 PN	

NEL744001KT)	fluorophore,	stained	with	DAPI	and	mounted	with	Prolong	Gold.	The	slides	

were	visualized	using	a	Zeiss	LS700	confocal	microscope.	Image	analysis	was	performed	in	

ImageJ.	The	normalized	total	fluorescence	intensity	of	the	PHLDA2	probe	was	calculated	on	

regions	of	interest	across	at	least	five	different	fields	of	view	on	two	mouse	lungs	and	three	

tumors	from	HCI001	according	to	the	following	equation:	Normalized	TFI	=	(Fluorescence	

integrated	 density)/(Area	 of	 region	 of	 interest).	 The	 surrounding	 mouse	 stroma	 was	

excluded	from	the	analysis	for	the	quantification	of	lung	micrometastatic	regions	of	interest	

and	the	necrotic	regions	or	mouse	stroma	were	excluded	from	the	analysis	for	the	tumor	

regions	of	interest.	

	

Data	availability		

All	RNA-seq	data	files	along	with	their	associated	metadata	have	been	deposited	in	the	GEO	

database	under	the	accession	code	GSE123837.		

	

Code	availability		

Custom	scripts	are	available	at	https://github.com/lawsonlab/Single_Cell_	Metastasis	

	
	
	
	
Portions	of	the	Introduction,	Results,	and	Methods	in	this	section	were	reprinted	and	adapted	
with	permission	from:	
	
Davis,	R.T.,	Blake,	K.,	Ma,	D.	et	al.	Transcriptional	diversity	and	bioenergetic	shift	in	human	
breast	cancer	metastasis	revealed	by	single-cell	RNA	sequencing.	Nat	Cell	Biol	22,	310–320	
(2020).	https://doi.org/10.1038/s41556-020-0477-0	
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CHAPTER	4:	Microglia	heterogeneity	in	breast	cancer	breast	metastasis	

	

4.1	Introduction	

Breast	 cancer	 brain	 metastasis	 (BCBM)	 is	 increasing	 in	 incidence	 and	 rapidly	

emerging	as	a	critical	clinical	problem	in	breast	cancer.	15-30%	of	metastatic	breast	cancer	

patients	develop	brain	metastasis,	and	autopsy	and	imaging	studies	indicate	an	additional	

30%	of	patients	are	likely	to	develop	brain	metastasis	as	treatments	for	peripheral	disease	

improve	 and	 patients	 live	 longer	 104,105.	 This	 is	 alarming	 since	 there	 are	 no	 effective	

treatments	for	brain	metastasis	and	median	survival	is	only	a	few	months	106–109.	There	is	

growing	 interest	 in	 immunotherapeutic	 strategies	 to	 treat	 central	 nervous	 system	 (CNS)	

cancers,	 given	 that	 immune	cells	 enter	 the	brain	during	disease	while	most	 conventional	

therapies	 are	 precluded	 by	 the	 blood	 brain	 barrier	 (BBB)	 110,111.	 However,	 greater	

understanding	of	the	immune	response	to	BCBM	will	be	needed	to	develop	immunotherapy	

strategies	effective	in	the	unique	immune	microenvironment	of	the	CNS.		

The	brain	immune	microenvironment	is	principally	composed	of	specialized	tissue	

resident	macrophages	called	microglia	that	tile	the	brain	and	play	diverse	functions	in	CNS	

homeostasis	 and	 disease	 112–114.	 	 Microglia	 represent	 a	 prime	 immunotherapeutic	 target	

because	they	are	the	first	line	of	defense	to	disease	in	the	CNS	and	have	the	power	to	direct	

the	 initial	 immune	 response.	 BCBMs	 are	 heavily	 infiltrated	 with	 tumor	 associated	

macrophages	 (TAMs),	 which	 may	 be	 comprised	 of	 microglia,	 border-associated	

macrophages	 (BAMs),	 as	 well	 as	 bone	 marrow	 derived	 monocytes	 and	 macrophages	
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(BMDMs)	115–119.	Functional	studies	using	genetic	and	pharmacologic	approaches	to	deplete	

TAMs	overwhelmingly	support	a	tumor	promoting	role	for	these	cells.	Depletion	of	TAMs	

with	CSF1R	inhibitors	results	in	tumor	reduction	and	decreased	metastasis	in	glioblastoma	

and	 melanoma	 models	 120–124.	 TAM	 depletion	 using	 a	 CX3CR1-targeted	 genetic	 ablation	

model	similarly	results	in	decreased	BCBM	125.	However,	it	is	unclear	whether	microglia	or	

other	types	of	TAMs	produce	the	tumor	promoting	effects	observed	in	these	studies.	CSF1R	

inhibitors	 have	 been	 shown	 to	 preferentially	 deplete	microglia,	 but	 also	 attenuate	 other	

myeloid	 cells,	 and	 microglia	 ultimately	 repopulate	 the	 brain	 when	 treatment	 ceases.	

Likewise,	 CX3CR1	 is	 expressed	 by	 diverse	 myeloid	 cell	 populations	 and	 upregulated	 by	

BMDMs	upon	entry	into	the	brain	125,126.	Therefore,	the	impact	of	brain	resident	microglia	on	

tumor	initiation	and	their	potential	as	an	immunotherapy	target	remain	unclear.		

We	combined	single	cell	RNA-sequencing	(scRNA-seq)	with	newly	developed	genetic	

and	humanized	mouse	models	to	show	for	the	first	time	that	microglia	exert	a	potent	tumor	

suppressive	 effect	 on	 BCBM	 initiation.	 ScRNA-seq	 of	 >75,000	 cells	 from	 three	 different	

models	 revealed	 that	 microglia	 mount	 a	 robust	 pro-inflammatory	 response	 to	 BCBM.	

Subclustering	 of	 pro-inflammatory	 microglia	 showed	 further	 specialization	 of	 their	

response,	 where	 distinct	 populations	 of	 microglia	 upregulate	 programs	 for	 antigen	

presentation,	 IFN	response,	phagocytosis,	 cytokine	production,	and	glycolysis.	 ScRNA-seq	

showed	that	these	discrete	microglia	substates	were	conserved	in	a	humanized	mouse	model	

of	BCBM,	suggesting	that	human	microglia	have	the	capacity	to	respond	similarly	to	disease	

initiation	 in	 BCBM	 patients.	 Finally,	 we	 investigated	 the	 function	 of	 microglia	 in	 BCBM	
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initiation	 using	 an	 innovative	 new	 genetic	 model	 that	 specifically	 lacks	 microglia	 while	

retaining	other	myeloid	cells	127.	We	find	that	the	absence	of	microglia	results	in	decreased	

survival	and	increased	BCBM	progression,	showing	that	microglia	play	an	important	role	in	

tumor	 suppression.	 This	 contrasts	with	 the	 pro-tumorigenic	 function	 reported	 for	 other	

types	of	TAMs	in	CNS	cancer,	and	highlights	the	potential	of	harnessing	the	natural	tumor	

suppressive	function	of	microglia	to	treat	brain	metastasis.	

	

4.2	Results	

4.2.1	BCBM	are	extensively	infiltrated	with	activated	TAMs	

During	homeostasis,	the	brain	is	home	to	microglia	that	tile	the	parenchyma	as	well	

as	 BAMs	 that	 reside	 in	 the	meninges,	 choroid	 plexus,	 and	 perivascular	 surface	 of	 blood	

vessels	(Fig	4.1.1A).	During	inflammation,	there	can	be	substantial	 infiltration	of	BMDMs	

that	express	similar	markers,	making	it	difficult	to	determine	the	origin	and	function	of	TAMs	

in	BCBM	(Fig	4.1.1A).	We	first	investigated	TAM	activation	and	localization	in	human	patient	

BCBM	 by	 immunofluorescence	 (IF)	 staining	 for	 the	 canonical	 activation	 marker	 ionized	

calcium-binding	 adaptor	 molecule	 1	 (IBA1),	 which	 is	 expressed	 lowly	 by	 homeostatic	

microglia	and	highly	by	activated	microglia	and	macrophages	(Fig	4.1.1A)	128.	As	expected,	

we	find	that	IBA1+	cells	are	evenly	spaced	throughout	normal	brain	and	display	small	cell	

bodies	and	ramified	morphology	typical	of	homeostatic	microglia	(Fig	4.1.1B).	In	contrast,	

we	find	that	BCBM	are	heavily	infiltrated	with	IBA1+	cells	that	display	ameboid	morphology	

typical	 of	 activated	 microglia	 and	 macrophages.	 We	 subsequently	 turned	 to	 a	 well-

established	mouse	model	of	BCBM,	MDA-MB-231-BR2	(231BR)	for	further	investigation	of	
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TAM	origin	and	function	129,130.	We	performed	 intracardiac	(i.c.)	 injections	of	213BR	cells	

stably	expressing	firefly	luciferase	and	AcGFP	reporters	into	Foxn1nu/nu	mice	(Fig	4.1.1C).	

Consistent	with	prior	reports,	231BR	cells	arrest	in	blood	vessels	and	cross	into	the	brain	

two	to	seven	days	after	injection,	then	grow	along	blood	vessels	and	form	micrometastases	

by	day	14	and	parenchymal	metastasis	by	day	28	(Fig	4.1.1D)131,132.	Interestingly,	IF	analysis	

shows	 that	 IBA1+	 cells	 surround	 and	 directly	 interface	 with	 cancer	 cells	 by	 day	 seven,	

showing	they	interact	with	cancer	cells	at	the	initial	stages	of	micrometastasis	initiation	(Fig	

4.1.1D).	We	further	find	that	day	28	parenchymal	metastases	are	densely	infiltrated	with	

IBA1+	 cells,	 in	 contrast	 to	 regions	 of	 normal	 tissue	 distal	 to	 metastases	 (Fig	 4.1.1D).		

Quantification	 of	 IBA1	 fluorescence	 intensity	 shows	 4-fold	 higher	 signal	 in	 parenchymal	

metastases	compared	to	control	brains	(p<0.0001)	(Fig	4.1.1E).	These	data	show	that	TAMs	

immediately	interact	with	metastatic	cells	and	become	progressively	activated	in	mouse	and	

human	BCBM.	
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Figure	 4.1.1:	 BCBM	 are	 extensively	 infiltrated	 with	 activated	 TAMs.	 (A)	 Schematic	 (left)	 of	 brain	
resident	and	bone	marrow-derived	macrophage	cell	types	present	in	the	normal	and	inflammatory	brain	
microenvironment	and	 their	 relative	expression	of	 canonical	markers	 (right).	BAM	=	border-associated	
macrophage.	(B)	 IF	 staining	shows	 IBA1+	 cells	 (red)	 in	normal	human	brain	and	 three	resected	patient	
BCBM	tumors.	Insets	show	cell	morphology.	Scale	bar	=	50μm.	(C)	Schematic	showing	disease	progression	
in	mouse	231BR-Foxn1nu/nu	BCBM	experimental	metastasis	model.	500,000	AcGFP-Luc	labeled	231BR	cells	
were	injected	into	the	left	cardiac	ventricle	of	Foxn1nu/nu	mice	and	harvested	28	days	later.	Whole	mount	
brightfield	and	fluorescence	microscopy	images	show	a	representative	brain	with	AcGFP+	metastatic	foci	
(green).	(D)	IF	staining	shows	IBA1+	cells	(red)	in	control	and	metastatic	brains	at	7,	14,	and	28	days	post	
231BR	cell	injection.	Metastatic	cells	are	AcGFP+	(green).	Boxes	indicate	representative	peritumoral	(peri.),	
distal	and	control	(cont.)	regions	for	IBA1	quantified	in	(E).	Scale	bar	=	50μm.	(E)	Quantification	of	IBA1	
expression	 in	 control	 (n=4)	 and	 metastatic	 (n=4)	 brains	 28	 days	 post	 231BR	 cell	 injection.	 IBA1	
fluorescence	intensity	per	pixel	was	quantified	in	control	(cont.,	n=115	fields),	peritumoral	(peri.,	n=127	
fields)	and	distal	(n=96	fields)	regions	as	shown	in	(D).	P	values	were	generated	using	a	two	sided,	unpaired	
Welch’s	t-test	and	error	bars	show	standard	deviation.		
 



 

70 
 

4.2.2	Microglia	display	a	robust	pro-inflammatory	response	to	BCBM	initiation		

We	 used	 scRNA-seq	 to	 investigate	 the	 specific	 function	 of	microglia	 in	 BCBM	 and	

discriminate	them	from	other	TAM	populations.	Cells	were	dissociated	from	control	(n=3)	

and	 metastatic	 brains	 (n=3)	 by	 automated	 heated	 mechanical	 and	 enzymatic	 digestion	

followed	 by	 density	 centrifugation	 to	 remove	 myelin	 (Fig	 4.2.1A,	 Fig	 4.1.2A).	 Live	

metastatic	 (CD45-GFP+)	 and	myeloid	 cells	 (CD45+CD11b+)	were	 subsequently	 isolated	by	

flow	cytometry	 (Fig	4.1.2B).	Astrocytes	 (CD45-ASCA2+)	were	also	sorted	since	 they	have	

been	previously	 implicated	 in	BCBM	 132–134(Fig	4.1.2B).	 Isolated	cells	were	captured	and	

prepared	for	sequencing	using	droplet-based	technology	(Chromium)	(Fig	4.2.1A).		

Mouse	 cells	were	 identified	 by	 aligning	 to	 a	merged	human	 (GRCh38)	 and	mouse	

(mm10)	genome,	where	cells	were	identified	as	mouse	if	>87.5%	of	reads	aligned	to	mm10	

(Fig	4.1.2C).	We	also	removed	poor	quality	cells	and	doublets	by	excluding	cells	with	<500	

genes,	>2000	genes,	or	a	mitochondrial	gene	percentage	>10%	(Fig	4.1.2D).	The	remaining	

cells	were	integrated	across	sequencing	batch	using	the	mutual	k-nearest	neighbors	(kNN)	

algorithm	adaptation	in	the	Seurat	pipeline	135,136.	Analysis	of	the	42,891	cells	that	passed	

further	filtering	revealed	seven	distinct	cell	types	identified	by	lineage-specific	markers	and	

visualized	by	t-distributed	stochastic	neighbor	embedding	(tSNE)	(Fig	4.2.1B,	Fig	4.1.2E,F).	

This	 included	 the	 targeted	 cell	 types,	 astrocytes	 (Aldoc,	 Atp1a2),	 microglia	 (Tmem119,	

P2ry12)	 and	 non-microglia	 myeloid	 cells	 including	 dendritic	 cells,	 monocytes	 and	

macrophages	(Lyz2,	Plac8)	(Fig	4.2.1B,	Fig	4.1.2E,F).	We	also	recovered	small	numbers	of	

ependymal	 cells	 (Ccdc153,	 Rarres2),	 oligodendrocytes	 (Mbp,	 Ptgds),	 vascular	 cells	 (Cldn5,	
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Vtn),	 and	 lymphocytes	 (Cd3g,	Gzma)	 (Fig	4.2.1B,	Fig	4.1.2E-F).	Peripheral	 immune	cells,	
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mount	brightfield	and	fluorescent	microscopy	images	of	metastatic	brains	(Met1-3)	used	to	generate	the	
scRNA-seq	dataset	described	in	Fig	2.	Metastatic	lesions	are	AcGFP+	(green).	(B)	Representative	FACS	plots	
show	gating	for	single,	live	(Sytox	negative)	myeloid	cells	(CD45+CD11b+),	astrocytes	(CD45-ASCA2+)	and	
231BR	 cells	 (CD45-GFP+)	 isolated	 for	 scRNA-seq.	 (C)	 Identification	 of	 mouse	 and	 human	 cells	 by	 the	
frequency	of	reads	that	align	to	the	mm10	mouse	genome.	Cutoffs	used	to	identify	mouse	cells	(>0.875	
aligned,	n=51,418	cells),	human	cells	(<0.05	aligned,	n=7336	cells)	and	doublets	(0.05-0.875	aligned,	n=913	
cells)	are	shown.	(D)	Violin	plots	 show	cell	distributions	 for	key	quality	control	metrics	pre-	and	post-	
filtering	 and	 removal	 of	 poor	 quality	 cells.	 Cells	 were	 removed	 that	 displayed	 <500	 or	 >2000	 genes	
(nFeature_RNA),	or	>10%	of	genes	mapped	to	the	mitochondrial	genome	(percent	mito	genes).	(E)	Dot	plot	
shows	 top	marker	genes	for	each	cell	 type	ranked	by	 the	average	natural	 logFC	and	determined	by	 the	
Wilcoxon	rank	sum	test.	Dot	size	represents	the	percentage	of	cells	that	express	the	gene,	and	dot	greyscale	
represents	the	average	expression	level.	(F)	Bar	chart	showing	the	frequency	of	cells	contributed	by	each	
mouse	that	localize	to	each	cell	type	in	(E).	
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namely	non-microglia	myeloid	populations	and	lymphocytes,	were	found	preferentially	in	

the	metastatic	condition	(Fig	4.1.2E,F).		
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Figure	 4.2.1:	 Microglia	 display	 a	 robust	 pro-inflammatory	 response	 to	 BCBM	 (A)	
Schematic	showing	experimental	design	for	generation	of	scRNA-seq	dataset.	Foxn1nu/nu	mice	
were	injected	with	500,000	AcGFP-Luc	labeled	231BR	cells	and	brains	were	harvested	28	days	
later.	 Three	metastatic	 (Met1-3)	 and	 three	 control	 (Con1-3)	 and	brains	were	 digested,	 and	
myeloid	cells,	astrocytes	and	231BR	cells	were	isolated	by	flow	cytometry	for	droplet-based	
scRNA-seq.	(B)	 tSNE	 plot	 shows	mouse	 cells	 that	 passed	 filtering	 (n=42,891),	 colored	 and	
labeled	by	cell	 type.	(C)	 tSNE	plot	shows	clustering	of	myeloid	cells	 (n=24,348),	colored	by	
condition.	(D)	tSNE	plot	shows	each	myeloid	cell	colored	by	its	MG-score,	the	core	microglia	
gene	signature	from	Bowman	et	al	(2016).	Scores	were	calculated	using	the	AddModuleScore	
function	in	Seurat.	Top	marker	genes	(gray)	for	each	myeloid	cell	type	were	identified	using	
the	 Wilcoxon	 rank	 sum	 test	 in	 Seurat	 v3.	 mDC	 =	 mature	 dendritic	 cell;	 Mono/Macro	 =	
monocytes	and	macrophages.	(E)	Bar	plot	shows	selected	top	GO	terms	identified	for	microglia	
from	control	(n=3,083	genes,	adj.	p<0.05)	and	metastatic	(n=609	genes,	adj.	p<0.05)	brains.	
Differentially	expressed	genes	were	determined	using	the	Wilcoxon	rank	sum	test.	GO	terms	
were	determined	using	MouseMine	and	select	terms	with	Holm-Bonferroni	adjusted	P	values	
<0.05	were	retained.	(F)	Scatter	plots	showing	gene	scores	 for	M1	or	M2	macrophage	gene	
signatures	in	microglia	from	control	and	metastatic	brains	based	on	the	lists	from	Azizi	et	al	
(2018).	Control	mice	were	used	to	draw	boundaries	for	positive	or	negative	M1	and	M2	scores.	
(G)	Feature	plots	show	relative	expression	in	each	cell	for	key	marker	genes	associated	with	
top	GO	terms.	
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Figure S2. Astrocytes display regional heterogeneity but limited response BCBM, Related to Figure 2.
(A) tSNE plot shows clustering of astrocytes (n=15,288) colored and labeled by brain region. (B) Feature plots
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diencephalon (Agt) and cerebellum (Gdf10). (C) Dot plot shows top marker genes for each cluster ranked by
average natural logFC and determined by the Wilcoxon rank sum test. Dot size represents the percentage of
cells that express the gene, and dot greyscale represents the average expression level. See Table S2. (D) Bar
chart shows the frequency of cells contributed by each mouse that localize to each cluster in (C). (E) tSNE plot
of astrocytes colored by condition. (F) Volcano plot shows genes differentially expressed (n=6,542) between
astrocytes from control and metastatic brains determined by Wilcoxon rank sum test, (P < 0.01). See Table S2.
Select genes with an absolute value average natural logFC >0.35 are colored and labeled. The y-axis
represents the -log10 of Bonferroni corrected P values, and the x-axis represents average natural logFC
between conditions.
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Further	analysis	of	the	231BR	cells	showed	limited	heterogeneity	beyond	cell	cycle	

differences.	We	found	substantial	heterogeneity	amongst	astrocytes,	but	it	was	principally	

associated	with	regional	localization	(Fig	4.2.2A,B).	Consistent	with	prior	work,	astrocytes	

formed	discrete	 subpopulations	associated	with	 the	 telencephalon	 (Mfge8),	 diencephalon	

strong	transcriptomic	shifts	associated	with	BCBM	using	unbiased	clustering	or	supervised	

differential	expression	analysis	(Fig	4.2.2E,F).	

In	 contrast	 to	 astrocytes,	 tSNE	 visualization	 of	 myeloid	 cells	 showed	 strong	

separation	 of	 control	 and	metastatic	 conditions	 (Fig	 4.2.1C,	Fig	 4.2.3E).	 Microglia	were	

distinguished	 from	 other	 myeloid	 populations	 by	 scoring	 cells	 for	 the	 core	 microglia	

signature	 (MG-score)	 developed	 in	 Bowman	 et	 al	 (2016),	 which	 compared	 microglia	 to	

BMDMs	using	bulk	RNA-seq	from	lineage	labeled	mice	(Fig	4.2.1D)	126.	Marker	gene	analysis	

confirmed	the	presence	of	two	major	microglia	populations	(Tmem119,	P2ry12)	(Fig	3.1.1A,	

Fig	4.2.1D,	Fig	4.2.3A-B),	where	one	contained	microglia	from	both	control	and	BCBM	and	

the	other	was	almost	fully	from	BCBM	(Fig	4.2.1C).	We	also	identified	two	small	populations	

of	microglia	that	display	an	increased	stress	response	(Fig	4.2.3D),	which	is	common	post	

tissue	 manipulation	 30,	 as	 well	 as	 populations	 of	 neutrophils	 (Camp,	 S100a9),	

monocytes/macrophages	(Ly6c2,	Lyz2),	mature	dendritic	cells	(Ccr7,	Flt3),	and	B	cells	(Igkc,	

Figure	4.2.2:	Astrocytes	display	regional	heterogeneity	but	limited	response	to	BCBM.	(A)	tSNE	plot	
shows	clustering	of	astrocytes	(n=15,288)	colored	and	 labeled	by	brain	region.	 	(B)	Feature	plots	show	
relative	 expression	 in	 each	 cell	 for	 key	 marker	 genes	 of	 astrocytes	 from	 the	 telencephalon	 (Mfge8),	
diencephalon	(Agt)	and	cerebellum	(Gdf10).	(C)	Dot	plot	shows	top	marker	genes	for	each	cluster	ranked	
by	average	natural	logFC	and	determined	by	the	Wilcoxon	rank	sum	test.	Dot	size	represents	the	percentage	
of	 cells	 that	 express	 the	gene,	 and	dot	 greyscale	 represents	 the	average	expression	 level.	 (D)	Bar	 chart	
shows	the	frequency	of	cells	contributed	by	each	mouse	that	localize	to	each	cluster	in	(C).	(E)	tSNE	plot	of	
astrocytes	colored	by	condition.	(F)	Volcano	plot	shows	genes	differentially	expressed	(n=6,542)	between	
astrocytes	 from	control	and	metastatic	brains	determined	by	Wilcoxon	rank	sum	test,	 (p	<	0.01).	Select	
genes	with	an	absolute	value	average	natural	logFC	>0.35	are	colored	and	labeled.	The	y-axis	represents	
the	 -log10	 of	 Bonferroni	 corrected	 P	 values,	 and	 the	 x-axis	 represents	 average	 natural	 logFC	 between	
conditions.	
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Cd79a)	 (Fig	 4.2.1D,	 Fig	 4.2.3A-D).	 The	 latter	 were	 predominantly	 recovered	 from	

metastatic	 animals	 (Fig	 4.2.1C,	Fig	 4.2.3C),	 suggesting	 they	 are	 recruited	 to	 the	 CNS	 in	

response	to	metastatic	outgrowth.	

To	identify	gene	expression	changes	in	microglia	associated	with	BCBM,	from	here	on	

called	BCBM-response	(BCBM-R)	microglia,	we	performed	differential	gene	expression	and	

pathway	 analyses.	 Supervised	 analysis	 revealed	 3,715	 genes	 differentially	 expressed	

between	microglia	from	control	mice	and	mice	with	BCBM	(adjusted	p<0.05).	Gene	Ontology	

(GO)	analysis	of	this	BCBM-R	signature	identified	‘cytokine	production,’	‘antigen	processing	

and	presentation,’	‘cellular	response	to	IL-1,’	‘response	to	IFN-gamma,’	and	‘response	to	IFN-

beta’	 as	 top	 GO	 terms,	 suggesting	 that	 microglia	 undergo	 a	 primarily	 pro-inflammatory	

response	to	brain	metastasis	(Fig	4.2.1E)	137.	This	is	further	supported	by	scoring	each	cell	

for	a	list	of	genes	associated	with	pro-inflammatory	(also	known	as	M1)	versus	alternatively	

activated,	anti-inflammatory	(M2)	macrophage	responses62.	Microglia	from	two	of	the	three	

mice	 with	 BCBM	 (Met2	 and	 Met3)	 showed	 a	 strong	 M1	 upregulation	 with	 minimal	 M2	

upregulation	 in	all	mice	 (Fig	4.2.1F).	Most	M2	markers	 that	were	expressed	 in	 the	brain	

during	BCBM	(e.g.	Cd163,	Ccl17,	Mrc1)	were	enriched	in	non-microglia	TAM	populations	(Fig	

4.2.3F).	
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Examination	 of	 the	 genes	 associated	 with	 each	 GO	 term	 showed	 that	 BCBM-R	

microglia	upregulate	a	series	of	IFN-beta	(Type	I)	response	genes	typical	of	an	inflammatory	

response,	 including	 Bst2,	 Ifitm3,	 Isg15,	 and	 Stat1	 (Fig	 4.2.1G).	 BCBM-R	 microglia	 also	

Figure	4.2.3:	Identification	of	myeloid	cell	types	in	BCBM.	(A)	tSNE	plot	shows	myeloid	cells	(n=15,288)	
colored	and	labeled	by	cell	type.	mDC	=	mature	dendritic	cell.	(B)	Dot	plot	showing	top	marker	genes	for	
each	cell	type	ranked	by	average	natural	logFC.	Dot	size	represents	the	percentage	of	cells	that	express	the	
gene,	and	dot	greyscale	represents	the	average	expression	level.	(C)	Bar	chart	showing	the	frequency	of	
cells	contributed	by	each	mouse	that	localize	to	each	cell	type	in	(B).	(D)	Feature	plots	show	myeloid	cells	
colored	 by	 top	 lineage-specific	 marker	 genes	 or	 features.	 Stressed	 cells	 were	 identified	 by	 increased	
expression	 of	 mitochondrial	 genome	 (percent.mito)	 genes,	 and	 decreased	 number	 of	 genes	 detected	
(nFeature_RNA).	(E)	tSNE	plot	of	myeloid	cells,	colored	by	mouse.	(F)	Heatmaps	show	M2-associated	genes	
differentially	expressed	between	microglia	and	BMDM	in	homeostasis	and	BCBM.	Differentially	expressed	
genes	 (unadjusted	P	 <	 0.01)	were	 determined	 using	 the	Wilcoxon	 rank	 sum	 test	 and	 are	 displayed	 as	
average	natural	logFC.	BMDMs	include	neutrophils,	mono/macro,	and	mDC.		
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upregulate	extensive	genes	associated	with	antigen	presentation,	including	the	MHC-I	genes	

H2-D1	and	H2-K1,	the	MHC-II	genes	H2-Ab1	and	Cd74,	as	well	as	the	proteasome	activator	

subunits	Psme1	and	Psme2	(Fig	4.2.1G).	Additionally,	they	upregulate	key	pro-inflammatory	

cytokines	 Il1b,	Tnf,	Mif,	and	Spp1,	as	well	as	many	chemokines	that	promote	 immune	cell	

recruitment	138,	including	Ccl2	and	Ccl12	for	inflammatory	monocyte	trafficking,	Ccl3,	Ccl4	

and	 Ccl5	 for	 macrophage	 and	 NK	 cell	 migration,	 and	 Cxcl9	 and	 Cxcl10	 for	 CD8	 T	 cell	

recruitment	 for	 a	 Th1	 response139.	 These	 data	 show	 that	microglia	mount	 a	 robust	 pro-

inflammatory	response	to	BCBM,	characterized	by	increased	IFN	response	genes,	cytokine	

production,	and	antigen	presentation	machinery.		

	

4.2.3	The	microglia	pro-inflammatory	response	is	conserved	in	diverse	BCBM	models	

We	investigated	the	microglia	pro-inflammatory	response	in	three	BCBM	models,	the	

human	231BR	(Foxn1nu/nu)	and	two	mouse	immune	competent	models,	4T1	(BALB/c)	and	

EO771	 (C57BL/6)	 125,130,140–142.	We	 evaluated	 protein	 expression	 of	 three	 representative	

markers	by	 flow	cytometry;	 the	 IFN-beta	 response	gene	bone	marrow	stromal	 antigen	2	

(BST2),	and	major	histocompatibility	complex	II	(MHC-II)	and	CD74	which	are	critical	for	

antigen	presentation	143–146.	In	the	231BR-Foxn1nu/nu	model,	tissues	were	harvested	28	days	

post	 injection	 and	 microglia	 were	 identified	 by	 gating	 on	 CD45loCD11b+Ly6C-	 cells	 (Fig	

4.3.1A)	147,148.	Remarkably,	we	found	a	10-fold	increase	in	the	frequency	of	CD74	(p=0.001)	

and	BST2	(p=0.0001),	as	well	as	a	20-fold	increase	in	MHC-II	(p=0.04)	positive	microglia	in	

metastatic	 (n=14)	 versus	 control	 (n=7)	 brains	 (Fig	 4.3.1A),	validating	 our	 findings	 from	

scRNA-seq.	 In	 situ	 IF	 analysis	 further	 showed	 that	 the	 response	 is	 specific	 to	 microglia	

proximal	 to	 metastatic	 lesions.	 Co-staining	 of	 CD74	 with	 the	 microglia-specific	 marker,	
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transmembrane	 protein	 119	 (TMEM119)	 (Fig	 4.1.1A),	 showed	 that	 CD74	 is	 specifically	

upregulated	by	microglia	that	directly	 interface	with	micrometastatic	 lesions,	while	distal	

microglia	remain	CD74	negative	(Fig	4.3.2A)	118,149.	
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The	 immune	 competent	 models	 also	 displayed	 marked	 expansion	 of	 pro-

inflammatory	microglia.	In	the	4T1-BALB/c	model,	GFP-labeled	4T1	cells	were	injected	i.c.	

and	tissues	were	analyzed	two	weeks	later	(Fig	4.3.2B,C).	IF	analysis	showed	infiltration	of	

metastatic	 lesions	with	 IBA1+	 cells	 similar	 to	 the	 231BR	model	 (Fig	 4.3.2D).	 Analysis	 of	

CD45loCD11b+Ly6C-	microglia	by	flow	cytometry	showed	a	3.8-fold	increase	in	the	frequency	

of	BST2	 (p=0.004)	 and	a	3.5-fold	 increase	 in	MHC-II	 (p=0.01)	 in	metastatic	 (n=9)	versus	

control	 (n=7)	brains,	but	no	 increase	 in	 the	 frequency	of	CD74+	 cells	 (Fig	4.3.1B).	 In	 the	

EO771-C57BL/6	model,	GFP-labeled	EO771	cells	were	injected	intracranially	according	to	

previously	 established	 protocols	 and	 analyzed	 two	 weeks	 later	 (Fig	 4.3.2E,F)121,123.	 IF	

analysis	showed	similar	infiltration	of	tumor	lesions	with	IBA1+	cells	(Fig	4.3.2G).	However,	

flow	cytometry	analysis	showed	a	remarkably	robust	response	in	this	model,	with	>20	fold	

increase	 in	CD74	 (p=0.003),	BST2	 (p=0.0004),	 and	MHC-II	 (p=0.0004)	positive	microglia	

from	metastatic	(n=14)	versus	PBS-injected	control	(n=8)	brains	(Fig	4.3.1C).	These	data	

show	 that	 the	microglia	 pro-inflammatory	 response	 is	 conserved	 in	 three	 distinct	 BCBM	

Figure	4.3.1:	The	microglia	pro-inflammatory	response	is	conserved	in	diverse	BCBM	models.	(A)	
Flow	 cytometry	 analysis	 of	 CD74,	 BST2	 and	 MHC-II	 in	 microglia	 harvested	 28	 days	 post	 intracardiac	
injection	of	231BR	(500,000)	cells	into	Foxn1nu/nu	animals.	Representative	plots	show	gating	for	single,	live	
(Zombieneg)	 CD45loCD11b+Ly6C-	microglia	 (left	 panel)	 followed	by	 analysis	 for	 CD74,	BST2,	 and	MHC-II	
(middle	panel).	Bar	graph	(right	panel)	shows	the	percent	of	microglia	that	express	each	marker	in	control	
(n=7)	and	metastatic	(n=14)	brains.	P	values	were	generated	by	an	unpaired	two-sided	Student’s	t-test,	and	
error	bars	indicate	standard	deviation.	(B)	Flow	cytometry	analysis	of	CD74,	BST2	and	MHC-II	in	microglia	
harvested	 14	 days	 post	 intracardiac	 injection	 of	 4T1-GFP	 (100,000)	 cells	 into	 BALB/c	 animals.	
Representative	plots	are	gated	as	in	3A.	Bar	graph	(right	panel)	shows	the	percent	of	microglia	that	express	
each	marker	in	control	(n=7)	and	metastatic	(n=7)	brains.	P	values	were	generated	by	an	unpaired	two-
sided	Student’s	 t-test,	 and	error	bars	 indicate	standard	deviation.	(C)	Flow	cytometry	analysis	of	CD74,	
BST2	and	MHC-II	in	microglia	harvested	14	days	post	intracranial	injection	of	EO771-GFP	(100,000)	cells	
into	C57BL/6	animals.		Representative	plots	are	gated	as	in	3A.	Bar	graph	(right	panel)	shows	the	percent	
of	 microglia	 that	 express	 each	 marker	 in	 control	 (n=8)	 and	 metastatic	 (n=14)	 brains.	 P	 values	 were	
generated	 by	 an	 unpaired	 two-sided	 Student’s	 t-test,	 and	 error	 bars	 indicate	 standard	 deviation.	 (D)	
Representative	tSNE	plots	of	microglia	gated	from	(A-C).	Colored	cells	indicate	those	gated	as	positive	for	
CD74	(orange),	BST2	(red)	and	MHC-II	(brown)	in	the	231BR-Foxn1nu/nu,	4T1-BALB/c	and	EO771-C57BL/6	
models.	
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models.	The	less	robust	response	observed	in	the	4T1-BALB/c	model	is	consistent	with	prior	

reports	of	proclivity	towards	Th2	over	Th1	immunity	in	the	BALB/c	background	strain	150.		

	

	

Figure	4.3.2:	Disease	progression	and	microglia	activation	in	the	4T1-BALB/c	and	EO771-C57BL/6	
models.	(A)	Representative	images	show	IF	analysis	of	CD74	in	microglia	from	the	231BR-Foxn1nu/nu	model	
(n=3).	Arrowheads	indicate	CD74+	(white)	and	TMEM119+	(TMEM,	red)	microglia	surrounding	metastatic	
lesions	 (green).	Scale	bar=	50μm.	 (B)	Schematic	shows	4T1-BABL/c	 i.c.	 experimental	metastasis	model.	
100%	of	animals	(7/7)	develop	brain	metastasis	two	weeks	after	injection	of	100,000	GFP	labeled	4T1	cells.	
(C)	Whole	mount	brightfield	and	fluorescence	microscopy	images	show	metastatic	lesions	(green)	in	brains	
from	representative	control	and	metastatic	animals.	(D)	Representative	images	show	IF	analysis	for	IBA1	
in	 control	 and	 4T1-BALB/c	 metastatic	 brains.	 White	 arrowheads	 indicate	 metastatic	 lesions	 (green)	
surrounded	by	IBA1+	(red)	microglia.	Scale	bar	=	100μm.	(E)	Schematic	shows	EO771-C57BL/6	intracranial	
injection	model.	73%	of	animals	(14/19)	develop	tumors	2	weeks	after	injection	of	100,000	GFP	labeled	
EO771	 cells.	 (F)	Whole	mount	brightfield	 and	 fluorescence	microscopy	 images	 show	 tumors	 (green)	 in	
brains	from	representative	control	(PBS	injected)	and	tumor-bearing	(EO771)	animals.	(G)	Representative	
images	show	IF	analysis	for	IBA1	(red)	in	control	and	EO771-C57/BL/6	(green)	injected	brains.	Scale	bar	=	
100μm.	
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Finally,	 we	 investigated	 whether	 the	 microglia	 response	 to	 metastasis	 is	

homogeneous	or	heterogeneous	by	determining	whether	the	protein	markers	are	expressed	

by	the	same	or	different	cells.	We	plotted	microglia	using	tSNE	to	visualize	the	expression	of	

BST2,	MHC-II,	and	CD74	in	each	individual	cell.	Interestingly,	this	shows	extensive	overlap	

of	the	markers	but	also	reveals	subpopulations	of	microglia	that	express	only	one	or	two	of	

the	individual	markers	(Fig	4.3.1D).	For	example,	 in	the	EO771-C57BL/6	model,	the	IFN-

response	protein	BST2	is	only	expressed	by	a	subpopulation	of	CD74+MHC-II+	microglia.	This	

shows	that	the	microglia	response	to	metastasis	is	heterogeneous,	and	raises	the	question	of	

whether	there	are	discrete	substates	of	microglia	that	carry	out	distinct	functions	in	BCBM.		

	

4.2.4	 BCBM-R	 microglia	 are	 heterogeneous	 and	 display	 specialized	 responses	 to	

metastasis	

We	 further	 investigated	 heterogeneity	 within	 BCBM-R	 microglia	 at	 the	 whole	

transcriptome	level	using	an	iterative	analysis	of	our	single	cell	dataset	(Fig	4.4A).	To	find	

conserved	 substates,	 we	 first	 performed	 sequencing	 batch	 correction	 using	 Seurat’s	

integration	protocol	on	myeloid	cells	from	all	three	animals	with	BCBM	and	then	unbiasedly	

clustered	the	integrated	cells	(Fig	4.4A)	135,136.	We	next	used	the	MG-score	to	discriminate	

microglia	 from	 other	 myeloid	 cells,	 and	 subsequently	 identified	 BCBM-R	 microglia	 by	

scoring	for	genes	significantly	upregulated	in	our	metastatic	condition	compared	to	control	

(Fig	4.4A).	This	identified	two	clusters	of	BCBM-R	microglia,	which	we	extracted	and	further	

subclustered	to	investigate	heterogeneity	(Fig	4.4A).		

	 Our	 iterative	 analysis	 revealed	 six	 distinct	 subpopulations	 of	 BCBM-R	 microglia,	

which	we	named	Cycling,	IFN	responsive,	APC,	Secretory,	Glycolytic,	and	Homeostatic	(Fig		
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4.4B).	 The	 Homeostatic	 cluster	 was	 named	 as	 such	 because	 it	 displayed	 high	 levels	 of	

canonical	 microglia	 markers	 (Fig	 4.1.1A)	 (Tmem119,	 P2ry12)	 and	 appeared	 similar	 to	

-0.1
0.0
0.1
0.2

0 1 2 3 4 5 6 7 8
seurat clusters

M
G
sc
or
e

tSNE_1 UMAP_1

U
M
A
P
_2

tS
N
E
_2

BCBM-R clustersmicroglia clusters

0.2

0.4

0.6

0 1 2 3 6
seurat clusters

B
C
B
M
-R
sc
or
e

A

C

E F

D

B

Homeostatic

Cycling

IFN
responsive

Secretory

APC

Glycolytic

Tm
em
11
9

A
rh
ga
p4
5

P
2r
y1
2

C
d3
3

AC
14
90
90
.1

C
ry
bb
1

Yp
el
3

S
tm
n1

P
cl
af

B
irc
5

To
p2
a

H
m
gb
2

H
2a
fx

H
is
t1
h2
ap Ifi
t3

R
tp
4

Ifi
44

Is
g1
5

C
cl
12 Ju
n

Fo
s

C
cl
3

Fa
m
20
c

A
tf3

C
cl
4

N
ea
t1

R
gs
1

S
pp
1

C
cl
5

C
xc
l9

H
2−
A
b1

H
2−
E
b1

C
xc
l1
3

H
2−
A
a

C
xc
l1
0

R
pl
41

Ft
h1

G
ap
dh

C
d5
2

M
if

C
st
7

-1 0 1 2
average expression percent expressed

25 100

Cluster myeloid cells from
metastatic condition to

identify conserved populations
Determine BCBM-assocaited microglia clusters
using BCBM-R gene signature (from Fig 2)

Subcluster BCBM-R microglia
to characterize

BCBM-associated heterogeneity

Figure 4

Cycling

Homeostatic

APC
Glycolytic

IFN
responsive

Secretory

UMAP_1

U
M
A
P
_2

0

1

2

3

4

AP
C

Cy
cli
ng

Gl
yc
oly
tic

IFN
res
p.

Se
cre
tor
y

%
of
ca
pt
ur
ed
m
ic
ro
gl
ia

Met1 Con1 Con2 Con3Met2 Met3

microglia cluster

tSNE_2

Control conditionMetastatic condition

tSNE_2

tS
N
E
_1

B cell pDC mDC Mono/macro

Homeostatic Stressed Cycling APC

Glycolytic IFN responsive Secretory
microglia

non-microglia

E
xp
re
ss
io
n

Low

High

Spp1 Il1b Tnf Csf1

Cytokines Exosome Factors

H2-Ab1 Cd74 Psme2

Antigen Presentation

Isg15Bst2

Cd63Cd9

Interferon Response

PkmLdha

Glycolysis

Pcna Mki67

Cell Cycle



 

83 
 

control	microglia	other	than	upregulation	of	MHC-II	genes	(Fig	4.4C,D).	The	Cycling	cluster	

was	marked	by	proliferation	genes,	such	as	Top2a,	Mki67,	and	Pcna	(Fig	4.4C,D).	The	IFN	

responsive	 (Bst2,	 Ifitm3,	 Isg15)	 and	 APC	 (H2-Ab1,	 Cd74,	 Psme2)	 clusters	 showed	

upregulation	of	the	classic	M1	pro-inflammatory	genes	identified	in	our	BCBM-R	signature	

(Fig	4.4C,D).	The	Secretory	and	Glycolytic	clusters	displayed	unique	expression	programs	

not	strongly	captured	by	the	BCBM-R	signature.	The	Secretory	cluster	was	marked	uniquely	

by	cytokines	(Spp1,	Tnf,	Il1b,	Csf1)	and	exosome	factors	(Cd9,	Cd63)	and	shared	markers	of	

lipid	metabolism	(Lpl,	Apoe)	and	phagocytosis	 (Trem2,	Tlr2)	with	 the	APC	subpopulation	

(Fig	4.4C,D).	This	suggests	that	the	Secretory	cluster	may	represent	more	classic	microglia	

functions,	which	include	supporting	the	local	inflammatory	environment	with	cytokines	and	

phagocytosing	dead	or	dying	cells,	leading	to	eventual	antigen	presentation.	The	Glycolytic	

cluster	 showed	 a	 shift	 towards	 increased	 glycolysis	 (Pkm,	 Ldha,	 Gapdh),	 which	 is	 a	 key	

feature	of	inflammatory	macrophages	and	has	been	shown	to	increase	metabolic	output	for	

microglia	 proliferation	 and	 cytokine	 production	 during	 neuroinflammation	 (Fig	 4.4C,D)	

151,152.	Interestingly,	clustering	of	control	microglia	showed	very	limited	heterogeneity,	and	

label	transfer	in	Seurat	to	the	control	condition	showed	that	the	BCBM-R	subclusters	were	

Figure	4.4:	BCBM-R	microglia	are	heterogeneous	and	display	specialized	responses	to	metastasis.	
(A)	Schematic	overview	of	 iterative	approach	for	BCBM-R	microglia	selection	for	subclustering	analysis.	
Briefly,	myeloid	cells	from	mice	with	BCBM	were	reclustered	and	microglia	were	identified	using	the	MG-
score.	Next,	microglia	were	scored	for	the	BCBM-R	microglia	signature	to	identify	most	robust	responders.	
Finally,	these	microglia	were	separated	and	subclustered	to	investigate	heterogeneity	within	the	BCBM-R	
microglia.	 Note	 that	 Fig	 2	 refers	 to	 Fig	 3.2.1	 in	 this	 manuscript.	 (B)	 UMAP	 of	 BCBM-R	 microglia	
subpopulations,	colored	by	cluster	label.	(C)	Dot	plot	shows	top	marker	genes	for	each	cluster	ranked	by	
average	natural	logFC	and	determined	by	the	Wilcoxon	rank	sum	test.	Dot	size	represents	the	percentage	
of	cells	that	express	the	gene,	and	dot	greyscale	represents	the	average	expression	level.	(D)	Feature	plots	
show	relative	expression	in	each	cell	for	key	marker	genes	associated	with	each	BCBM-R	microglia	cluster.	
Arrows	 indicate	regions	of	high	expression	 for	 indicated	genes.	(E)	 tSNE	plots	show	myeloid	cells	 from	
metastatic	(left)	and	control	(right)	animals,	integrated	by	sequencing	batch	and	colored	by	cell	types	and	
states.	Control	cell	labels	were	determined	using	label	transfer	from	the	metastatic	condition	in	Seurat	v3.	
(F)	Barplots	 show	 the	 average	 percentage	 of	microglia	 in	 each	 subcluster	 that	 came	 from	 control	 and	
metastatic	animals.	Points	represent	individual	mice	
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specifically	enriched	in	mice	with	BCBM	with	very	few	cells	observed	in	control	mice	(Fig	

4.4E,F).	 These	 data	 show	 that	 the	microglia	 response	 to	 BCBM	 is	 heterogeneous,	where	

microglia	 demonstrate	 distinct,	 specialized	 responses	 to	 metastasis	 that	 are	 unlikely	 to	

derive	from	pre-existing	subtypes	of	microglia.		

	

4.2.5	The	pro-inflammatory	response	to	BCBM	is	conserved	in	human	microglia	

Since	it	is	difficult	to	study	how	microglia	respond	to	metastasis	initiation	in	BCBM	

patients,	we	developed	a	humanized	mouse	model	of	BCBM	which	allowed	us	to	control	the	

timing	of	tumorigenesis	and	investigate	the	full	range	of	human	microglia	responses	using	

scRNA-seq.	We	utilized	 the	MITRG	mouse	model	 in	which	human	CSF1,	 IL3	 and	TPO	 are	

knocked	 into	 a	 Rag2−/−Il2rg-/-	 background	 to	 support	 the	 engraftment	 of	 human	

monocytes	 and	 macrophages	 153.	 In	 prior	 work,	 transplantation	 of	 human	 induced	

pluripotency-derived	 hematopoietic	 progenitor	 cells	 (iHPSCs)	 into	 the	 postnatal	 brain	 of	

MITRG	mice	was	 shown	 to	 result	 in	 differentiation	 into	microglia	 and	CNS	macrophages	

154,155.	We	injected	MITRG	mouse	pups	with	GFP-labeled	iHPSCs,	allowed	engraftment	for	10	

weeks,	and	injected	them	i.c.	with	mCherry-labeled	231BR	cells	(Fig	4.5.1A).	Control	(n=3)	

and	metastatic	(n=3)	mice	were	harvested	three	weeks	later	and	analyzed	by	whole	mount	

fluorescence	microscopy,	which	confirmed	the	engraftment	of	GFP+	human	microglia	and	

mCherry+	231BR	metastases	(Fig	4.5.2A).	Dissociated	cells	from	each	sample	were	indexed	

using	the	MULTI-seq	method	and	mouse	cells	were	subsequently	removed	using	anti-mouse	

MHC-I	 magnetic	 beads	 (Fig	 4.5.1A)	 156.	 The	 remaining	 human	 cells,	 consisting	 of	 both	

myeloid	and	cancer	cells,	were	then	captured	for	sequencing	using	droplet-based	technology	

(Fig	4.5.1A).	
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Figure	 4.5.1:	 The	 pro-inflammatory	 response	 to	 BCBM	 is	 conserved	 in	 human	 microglia.	 (A)	
Schematic	 shows	experimental	 design	 for	 scRNA-seq	of	 human	microglia	 from	humanized	MITRG	mice	
transplanted	with	 231BR	 cells.	MITRG	mouse	 pups	were	 injected	with	GFP-labeled	 iHPSCs,	 aged	 to	 10	
weeks	and	injected	i.c.	with	mCherry-labeled	231BR	cells.	Brains	from	control	(n=3)	and	metastatic	(n=3)	
mice	were	digested	to	make	single	cell	suspensions	three	weeks	later.	Dissociated	cells	from	each	sample	
were	indexed	using	the	MULTI-seq	method.	Mouse	cells	were	removed	using	anti-mouse	MHC-I	magnetic	
beads,	 and	 recovered	 cells	were	 collected	 and	 pooled	 into	 two	 samples	 for	 scRNA-seq,	metastatic	 and	
control.	 (B)	 tSNE	 plot	 shows	 cells	 (n=21,353)	 colored	 by	 condition	 and	 labeled	 by	 cell	 type.	
pvMacro=perivascular	macrophages.	(C)	Bar	plot	shows	selected	top	GO	terms	identified	for	microglia	from	
metastatic	 (n=4,146	genes,	adj.	p<0.05)	brains.	GO	terms	were	determined	using	MouseMine	and	select	
terms	 with	 Holm-Bonferonni	 adjusted	 P	 values	 <0.05	 were	 retained.	 (D)	UMAP	 of	 BCBM-R	 microglia,	
colored	by	cluster	 label.	BCBM-R	microglia	were	 identified	 for	subclustering	analysis	using	the	 iterative	
approach	described	in	Fig	4.4A.	(E)	Feature	plots	show	relative	expression	in	each	cell	for	key	marker	genes	
associated	with	 each	 BCBM-R	microglia	 cluster.	 (F)	 UMAP	 plots	 show	 similarity	 of	 human	 and	mouse	
microglia	substates	by	gene	scoring	analysis.	Each	human	cell	from	(D)	was	scored	for	gene	signatures	for	
the	mouse	microglia	 substates	 identified	 in	Fig	 4.4.	 Scores	were	 calculated	 using	 the	AddModuleScore	
function	in	Seurat.	Gene	signatures	were	translated	from	mouse	to	human	using	the	biomaRt	package	in	R.	
See	Appendix	B.	(G)	Barplots	show	the	average	percentage	of	microglia	in	each	labeled	cluster	that	came	
from	control	and	metastatic	animals.	Points	represent	individual	mice	(H)	Representative	images	showing	
IF	 analysis	 of	 HLA-DR	 (white)	 in	 human	 microglia	 (green)	 near	 231BR	 metastatic	 cells	 (mCherry)	 in	
transplanted	MITRG	mice	from	(A).	Scale	=	1000μm.	hMG=human	microglia.		
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Figure S5. Experimental design, quality control and cell type identification for scRNA-seq cell libraries
from transplantedMITRGmice, Related to Figure 5. (A) Whole mount brightfield and fluorescence microscopy
images show brains from MITRG mice transplanted with GFP-labeled iHPSC cells and mCherry-labeled 231BR
cells. See Fig 5A. (B) Identification of mouse and human cells by the frequency of reads that align to the mm10
mouse genome. Cutoffs used to identify mouse cells (>0.95 aligned, n=641 cells), human cells (<0.1 aligned,
n=25,287 cells) and doublets (0.1-0.95 aligned, n=387 cells) are shown. (C) Violin plots show cell distributions
for key quality control metrics pre- and post- filtering and removal of poor quality cells. Cells were removed
that displayed >20% of genes mapped to the mitochondrial genome (percent mito genes). (D) tSNE plot shows
clustering of human cells (n=21,353) from MITRG brains colored by mouse ID. Mouse ID was assigned to
each cell based on MULTI-seq barcode analysis. (E) tSNE plot shows human cells, colored by cluster and
labeled by cell type. pvMacro=perivascular macrophages, Cycling = cycling myeloid cells. See Table S5. (F)
Dot plot shows top marker genes for each cell type determined by the Wilcoxon rank sum test and ranked by
average natural logFC. Dot size represents the percentage of cells that express the gene, and dot greyscale
represents the average expression level. See Table S5. pvMacro=perivascular macrophages. (G) Bar chart
shows the frequency of cells contributed by each mouse to the cell types shown in (F).
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Figure	4.5.2:	Experimental	 design,	 quality	 control	 and	 cell	 type	 identification	 for	 scRNA-seq	 cell	
libraries	 from	 transplanted	MITRG	mice.	 (A)	Whole	mount	 brightfield	 and	 fluorescence	microscopy	
images	 show	brains	 from	MITRG	mice	 transplanted	with	GFP-labeled	 iHPSC	 cells	 and	mCherry-labeled	
231BR	cells.	See	Fig	4.5.1A.	(B)	Identification	of	mouse	and	human	cells	by	the	frequency	of	reads	that	align	
to	the	mm10	mouse	genome.	Cutoffs	used	to	identify	mouse	cells	(>0.95	aligned,	n=641	cells),	human	cells	
(<0.1	aligned,	n=25,287	cells)	and	doublets	(0.1-0.95	aligned,	n=387	cells)	are	shown.	(C)	Violin	plots	show	
cell	distributions	for	key	quality	control	metrics	pre-	and	post-	filtering	and	removal	of	poor	quality	cells.	
Cells	were	 removed	 that	displayed	>20%	of	genes	mapped	 to	 the	mitochondrial	 genome	 (percent	mito	
genes).	(D)	tSNE	plot	shows	clustering	of	human	cells	(n=21,353)	from	MITRG	brains	colored	by	mouse	ID.	
Mouse	ID	was	assigned	to	each	cell	based	on	MULTI-seq	barcode	analysis.	(E)	tSNE	plot	shows	human	cells,	
colored	by	cluster	and	labeled	by	cell	type.	pvMacro=perivascular	macrophages,	Cycling	=	cycling	myeloid	
cells.	(F)	Dot	plot	shows	top	marker	genes	for	each	cell	type	determined	by	the	Wilcoxon	rank	sum	test	and	
ranked	by	average	natural	logFC.	Dot	size	represents	the	percentage	of	cells	that	express	the	gene,	and	dot	
greyscale	 represents	 the	 average	 expression	 level.	 pvMacro=perivascular	 macrophages.	 (G)	 Bar	 chart	
shows	the	frequency	of	cells	contributed	by	each	mouse	to	the	cell	types	shown	in	(F).	
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Human	 cells	were	 further	distinguished	bioinformatically	 by	 aligning	 to	 a	merged	

human	 (GRCh38)	 and	mouse	 (mm10)	 genome,	which	 identified	25,287	human	 cells	 (Fig	

4.5.2B).	Cells	that	were	identified	as	doublets,	contained	no	MULTI-seq	index,	or	displayed	

a	 mitochondrial	 gene	 percentage	 >20%	 were	 removed	 from	 downstream	 analysis	 (Fig	

4.5.2C).	Clustering	and	marker	gene	analysis	of	the	21,353	human	cells	that	passed	filtering	

showed	limited	batch	effects	(Fig	4.5.2D),	and	revealed	a	distinct	population	of	231BR	cells	

(VIM)	and	several	populations	of	myeloid	cells	(Fig	4.5.1B,	Fig	4.5.2E-G).	These	included	

clusters	 of	 human	 perivascular	 macrophages	 (CD163),	 microglia	 (TMEM119),	 and	 a	

population	of	proliferating	myeloid	cells	(MKI67)	(Fig	4.5.2E-G).	

Supervised	analysis	of	genes	differentially	expressed	between	human	microglia	from	

the	 control	 and	 metastatic	 conditions	 revealed	 GO	 terms	 similar	 to	 the	 mouse	 BCBM-R	

signature,	including	cytokine	response,	interferon	response,	and	antigen	presentation	(Fig	

4.5.1C).	 Strikingly,	 subclustering	 of	 the	 BCBM-R	 human	 microglia	 also	 revealed	 similar	

substates	as	observed	in	mouse	microglia	(Fig	4.5.1D).	Using	the	same	iterative	analysis	as	

described	in	Fig	4.4A,	we	identified	four	distinct	subclusters	marked	by	the	same	top	genes	

that	delineated	APC	(HLA-DRB1,	PSME2),	IFN	responsive	(ISG15,	IFITM3),	Secretory	(SPP1,	

IL1B,	CD9,	CD63),	and	Glycolytic	(LDHA,	PKM)	microglia	in	the	mouse	(Fig	4.5.1D,E).	Gene	

scoring	for	subpopulation	markers	of	each	mouse	microglia	substate	further	supported	this	

finding	and	showed	that	signatures	derived	from	mouse	BCBM-R	microglia	can	be	directly	

applied	to	human	microglia	to	determine	their	phenotypic	state	(Fig	4.5.1F,	Appendix	B).	

However,	 the	 BCBM-R	 substates	 showed	 less	 relative	 expansion	 in	 the	 human	 than	 the	

mouse	models	(Fig	4.5.1G).	IF	staining	for	the	APC	gene	HLA-DR	confirmed	upregulation	at	

the	 protein	 level,	 and	 showed	 the	 response	 is	 strongest	 in	 microglia	 proximal	 to	 BCBM	
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lesions	(Fig	4.5.1H).	Overall,	these	data	show	that	human	and	mouse	microglia	demonstrate	

similar	pro-inflammatory	responses	to	BCBM	and	suggest	that	human	microglia	may	have	

the	same	capacity	to	respond	to	metastasis	initiation	in	BCBM	patients.		

	

4.2.6	Microglia	demonstrate	a	potent	tumor	suppressive	effect	on	BCBM	initiation		

Prior	work	using	pharmacologic	and	genetic	depletion	strategies	has	shown	a	clear	

pro-tumorigenic	 role	 for	TAMs	 in	BCBM	and	CNS	cancers	 122–125.	 These	 studies	primarily	

utilized	CSF1R	 inhibitors	and	CX3CR1-targeted	genetic	ablation	strategies	 that	can	 target	

microglia	as	well	as	other	TAM	populations,	 leaving	 the	specific	role	of	microglia	unclear	

123,125,157,158.	A	new	genetic	model	was	recently	developed	that	specifically	and	completely	

lacks	microglia	due	to	deletion	of	a	newly	discovered,	highly	conserved	super-enhancer	in	

the	 CSF1R	 locus	 called	 the	 fms-intronic	 regulatory	 element	 (FIRE)	 (Fig	 4.6.1A)	 127.	 The	

Csf1rΔFIRE/ΔFIRE	(FIRE-KO)	model	lacks	microglia	while	retaining	BAMs	and	BMDMs,	making	

it	an	important	new	tool	to	specifically	explore	microglia	function	in	disease	127.		
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We	investigated	the	role	of	microglia	in	BCBM	using	FIRE	mice	and	the	E0771	model.	

We	 first	 compared	 the	 immune	 composition	 of	 FIRE-KO	 and	 FIRE-WT	mice.	 IF	 and	 flow	

cytometry	analysis	confirmed	a	complete	absence	of	microglia	and	retention	of	BAMs	in	non	

tumor-bearing	 FIRE-KO	 animals	 (Fig	 4.6.1B,C).	 We	 observed	 the	 same	 phenomenon	 in	

tumor-bearing	animals	by	scRNA-seq.	CD45+	cells	from	E0771-injected	FIRE-WT	(n=4)	and	

FIRE-KO	(n=4)	brains	were	isolated	by	flow	cytometry,	pooled	and	captured	for	sequencing	

using	droplet-based	technology.	Clustering	and	marker	gene	analysis	of	the	10,827	cells	that	

passed	 quality	 control	 filtering	 identified	 11	 immune	 cell	 types,	 including	 one	 cluster	 of	

microglia	 (Fig	4.6.2A).	As	expected,	microglia	were	only	observed	 in	FIRE-WT	mice	 (Fig	

4.6.2A,C).	The	proportions	of	other	immune	cell	types	were	also	not	skewed	between	FIRE-

WT	and	FIRE-KO	mice,	excluding	this	as	a	confounding	variable	in	future	experiments	(Fig	

4.6.2D).	 Importantly,	 this	 contrasts	 with	 the	 Cx3cr1CreERT/+:ROSA26iDTR/+	 model	 used	 by	

Figure	 4.6.1:	Microglia	 demonstrate	 a	 potent	 tumor	 suppressive	 effect	 on	 BCBM	 initiation.	 (A)	
Schematic	depiction	of	Csf1rΔFIRE/ΔFIRE	mouse	model.	Deletion	of	FIRE	super-enhancer	in	FIRE-KO	mice	leads	
to	loss	of	CSF1R	protein	expression	and	lack	microglia	development.	(B)	IF	staining	shows	IBA1+	cells	in	
FIRE-WT	and	FIRE-KO	mouse	brains.	Green	 arrows	 show	choroid	plexus	macrophages	 in	 FIRE-KO	and	
FIRE-WT,	and	white	arrows	show	microglia	only	in	FIRE-WT.	Scale	bar	=	50μm.	(C)	Representative	flow	
cytometry	plots	show	the	percentage		of	CD45loCD11b+	microglia	and	CD45hi	immune	cells	gated	from	live	
(sytox	 negative),	 single	 cells	 in	 FIRE-WT	 (n=2)	 	 and	 FIRE-KO	 (n=2)	 mouse	 brains.	 (D)	 Schematic	 of	
experimental	design	to	compare	disease	progression	in	FIRE-WT	and	FIRE-KO	mice.	FIRE-WT	(red,	n=19)	
and	FIRE-KO	 (yellow,	n=14)	mice	were	 injected	 intracranially	with	100,000	GFP	and	 luciferase	 labeled	
EO771	 cells.	 Control	 FIRE-WT	 mice	 (n=8)	 were	 also	 injected	 with	 PBS.	 Animals	 were	 imaged	 for	
luminescence	(IVIS)	every	three	days	before	dissection	at	endpoint	on	day	14.	(E)	Kaplan-Meier	plot	shows	
survival	in	FIRE-WT	(19/19,	100%)	and	FIRE-KO	(9/14,	64%)	mice	from	(D).	P	value	determined	by	log-
rank	(Mantel-Cox)	test.	(F)	Bar	graph	shows	percentage	body	weight	change	for	each	PBS	injected	(n=	8),	
FIRE-WT	(n=19),	and	FIRE-KO	(n=9)	animal	from	(D)	at	day	14	relative	to	day	0.	P	values	determined	by	
unpaired	 two-sided	Student’s	 t-test	 and	error	bars	 represent	 standard	deviation.	 (G)	 IVIS	 images	 show	
luminescence	signal	change	over	time	in	FIRE-WT	and	FIRE-KO	animals	from	(D).	Representative	animals	
that	displayed	continuous	signal	increase	(tumor	growth,	solid	line)	vs.	signal	decrease	(tumor	regression,	
dashed	line)	are	shown.	Pseudocoloring	of	luminescence	shows	quantification	of	radiance	(p/sec/cm2/sr).	
(H)	Line	graphs	show	quantification	of	luminescence	signal	change	over	time	in	all	FIRE-WT	and	FIRE-KO	
animals	from	(D).	Solid	lines	indicate	animals	that	demonstrated	tumor	growth	and	dashed	lines	indicate	
those	that	showed	tumor	regression.	Growth	was	defined	by	signal	increase	over	time,	and	regression	was	
defined	as	either	baseline	signal	(<106)	or	>5-fold	decrease	in	signal	relative	to	maximum.		(I)	Bar	graph	
summarizes	the	frequency	of	animals	that	displayed	tumor	growth	and	tumor	regression	in	FIRE-WT	and	
FIRE-KO	backgrounds.	P	value	was	determined	by	Fisher’s	exact	test.		
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Guldner	et	al	(2020)	which	found	a	pro-tumorigenic	function	for	TAMs	in	BCBM.	Reanalysis	

of	 scRNA-seq	 data	 from	 these	 mice	 showed	 retention	 and	 potentially	 enrichment	 of	

microglia	in	depleted	vs.	control	animals	(Fig	4.6.2B,E).	Depleted	animals	also	demonstrated	

a	decrease	in	the	proportion	of	macrophages	and	Ly6chi	monocytes	(Fig	4.6.2E).	These	data	

confirm	the	specificity	of	microglia	depletion	in	FIRE-KO	mice	and	emphasize	the	value	of	

the	model	for	studies	of	microglia	function.		
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Figure S6. Analysis of immune cell composition and tumor burden in FIRE-WT and FIRE-KO animals,
Related to Figure 6. (A) ScRNA-seq analysis of immune cell composition in FIRE-WT and FIRE-KO mice.
FIRE-WT (n=4) and FIRE-KO (n=4) mice were injected intracranially with 100,000 EO771 cells and harvested
14 days later. Immune cells (CD45⁺) were isolated by flow cytometry and pooled for droplet-based capture and
sequencing. The genotype of each cell was determined using Souporcell. tSNE plots (n=10,827 cells) show
cells labeled by cell type (left) and condition (right). See Table S6. (B) tSNE plots show reanalysis of single cell
CITE-seq data collected from Cx3cr1CreERT/+:ROSA26iDTR/+ (CNS-myeloid depleted) and Cx3cr1CreERT/+ (control
non-depleted) mice as described in Guldner et al, (2020) (GSE139971). Left plot shows cells colored by cell
type, which was assigned by label transfer from the FIRE dataset in (A). Right plot shows cells colored by
genotype using Souporcell, which were cross-referenced with HTO-barcodes from the CITE-seq dataset. (C)
Barplot shows the frequency of each immune cell type captured from FIRE-WT and FIRE-KO mice in the
scRNA-seq experiment from (A). Stars indicate microglia. Replicates 1 and 2 indicate two separate pooled
samples generated for droplet capture (rep1, n=5,466; rep2, n=5,361). (D) Barplot shows the frequency of each
immune cell type as in (C) but excluding microglia (MG). (E) Barplots show the frequency of each immune cell
type out of total immune cells captured from the blood and brain of Cx3cr1CreERT/+:ROSA26iDTR/+ (CNS-myeloid
depleted, dep) and Cx3cr1CreERT/+ (non-depleted, non-dep) mice from Guldner et al. (2020) (GSE139971) as
shown in (B). Cells were assigned to mouse stains and tissue type based on HTO-barcodes from CITE-seq
dataset. (F) Ex vivo whole brain luminescence of FIRE-KO (n=9) and FIRE-WT (n=19) mice that survived to
endpoint (day 14) relative to PBS injected controls. Pseudocoloring of luminescence is shown in counts(p/s).
(G) Barplots show the quantification of total flux for brains shown in (F). P value was determined by unpaired
two-sided t-test.



 

93 
 

	

We	 next	 compared	 BCBM	 progression	 in	 FIRE-KO	 and	 FIRE-WT	 mice.	 FIRE-WT	

(n=19)	and	FIRE-KO	(n=14)	mice	were	injected	with	GFP	and	luciferase-labeled	EO771	cells	

and	monitored	by	IVIS	every	three	days	until	endpoint	at	day	14	(Fig	4.6.1D).	Surprisingly,	

many	FIRE-KO	mice	quickly	developed	overt	 clinical	 symptoms	of	 advanced	disease	 (Fig	

4.6.1E,F).	Five	of	14	FIRE-KO	mice	died	before	endpoint	(36%	mortality),	while	all	19	FIRE-

WT	 survived	 (0%	mortality)	 (p=0.0034)	 (Fig	 4.6.1E).	 Surviving	 FIRE-KO	mice	 displayed	

>20%	decrease	in	body	mass	compared	to	FIRE-WT	(p=0.0002),	also	indicating	increased	

morbidity	in	mice	lacking	microglia	(Fig	4.6.1F).	Analysis	of	tumor	growth	over	time	by	IVIS	

revealed	interesting	differences	in	the	kinetics	of	tumor	progression	between	FIRE-WT	and	

FIRE-KO	 animals	 (Fig	 4.6.1G-I).	 After	 initial	 engraftment,	 we	 observed	 a	 decrease	 in	

luciferase	signal	in	eight	of	19	FIRE-WT	mice	over	time	(42%	mice	decrease),	while	signal	

continued	 to	 increase	 in	 all	 14	 FIRE-KO	 animals	 (0%	 mice	 decrease)	 (p=0.01036)	 (Fig	

4.6.1G-I).	 This	 indicates	 that	 tumors	 regress	 in	 FIRE-WT	 but	 not	 FIRE-KO	 animals,	

Figure	 4.6.2:	Analysis	 of	 immune	 cell	 composition	 and	 tumor	 burden	 in	 FIRE-WT	 and	 FIRE-KO	
animals.	 (A)	 ScRNA-seq	 analysis	 of	 immune	 cell	 composition	 in	 FIRE-WT	and	FIRE-KO	mice.	 FIRE-WT	
(n=4)	and	FIRE-KO	(n=4)	mice	were	injected	intracranially	with	100,000	EO771	cells	and	harvested	14	days	
later.	 Immune	cells	 (CD45+)	were	 isolated	by	 flow	cytometry	and	pooled	 for	droplet-based	capture	and	
sequencing.	The	genotype	of	each	cell	was	determined	using	Souporcell.	tSNE	plots	(n=10,827	cells)	show	
cells	labeled	by	cell	type	(left)	and	condition	(right).		(B)	tSNE	plots	show	reanalysis	of	single	cell	CITE-seq	
data	collected	 from	Cx3cr1CreERT/+:ROSA26iDTR/+	 (CNS-myeloid	depleted)	and	Cx3cr1CreERT/+	 (control	non-
depleted)	mice	as	described	in	Guldner	et	al,	(2020)	(GSE139971).	Left	plot	shows	cells	colored	by	cell	type,	
which	 was	 assigned	 by	 label	 transfer	 from	 the	 FIRE	 dataset	 in	 (A).	 Right	 plot	 shows	 cells	 colored	 by	
genotype	using	Souporcell,	which	were	cross-referenced	with	HTO-barcodes	from	the	CITE-seq	dataset.	(C)	
Barplot	shows	the	frequency	of	each	immune	cell	type	captured	from	FIRE-WT	and	FIRE-KO	mice	in	the	
scRNA-seq	experiment	from	(A).	Stars	indicate	microglia.	Replicates	1	and	2	indicate	two	separate	pooled	
samples	generated	for	droplet	capture	(rep1,	n=5,466;	rep2,	n=5,361).	(D)	Barplot	shows	the	frequency	of	
each	 immune	cell	 type	as	 in	 (C)	but	excluding	microglia	 (MG).	 (E)	Barplots	show	the	 frequency	of	each	
immune	cell	type	out	of	total	immune	cells	captured	from	the	blood	and	brain	of	Cx3cr1CreERT/+:ROSA26iDTR/+	
(CNS-myeloid	depleted,	dep)	and	Cx3cr1CreERT/+	(non-depleted,	non-dep)	mice	from	Guldner	et	al.	(2020)	
(GSE139971)	as	shown	in	(B).	Cells	were	assigned	to	mouse	stains	and	tissue	type	based	on	HTO-barcodes	
from	CITE-seq	dataset.	(F)	Ex	vivo	whole	brain	luminescence	of	FIRE-KO	(n=9)	and	FIRE-WT	(n=19)	mice	
that	 survived	 to	endpoint	 (day	14)	 relative	 to	PBS	 injected	controls.	Pseudocoloring	of	 luminescence	 is	
shown	in	counts(p/s).	(G)	Barplots	show	the	quantification	of	total	flux	for	brains	shown	in	(F).	P	value	was	
determined	by	unpaired	two-sided	t-test.	
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suggesting	microglia	suppress	BCBM	specifically	through	tumor	rejection.	Consistent	with	

this	hypothesis,	ex	vivo	analysis	of	tumors	at	endpoint	confirmed	the	presence	of	tumors	in	

9/9	of	the	surviving	FIRE-KO	animals	(eight	parenchymal	and	one	meningeal)	and	14/19	

FIRE-WT	mice	 (Fig	 4.6.2F).	 But	 no	 difference	 in	 tumor	 size	 was	 observed	 between	 the	

groups	(p=0.77),	showing	that	the	absence	of	microglia	attenuates	the	animal’s	capacity	for	

tumor	 rejection	 rather	 than	 for	 slowing	 tumor	growth	 (Fig	4.6.2G).	Taken	 together	with	

previous	 work,	 these	 findings	 suggest	 that	 microglia	 are	 innately	 pro-inflammatory	 and	

tumor	 suppressive,	 while	 other	 TAM	 populations	 are	 anti-inflammatory	 and	 tumor	

promoting.	This	highlights	the	importance	of	developing	therapeutic	approaches	that	target	

specific	TAM	populations	in	order	to	effectively	treat	BCBM	and	other	CNS	cancers.		

	

4.3	Discussion	

	 We	utilized	a	diverse	array	of	approaches	to	investigate	the	role	of	microglia	in	the	

development	of	BCBM.	ScRNA-seq	analysis	of	whole	 transcriptome	profiles	allowed	us	 to	

discriminate	brain	resident	microglia	from	other	types	of	TAMs,	a	longstanding	challenge	in	

CNS	diseases.	This	enabled	us	to	discover	that	microglia	upregulate	a	pro-inflammatory	(M1)	

response	 to	 BCBM,	 in	 contrast	 to	 prior	 dogma	 that	 they	 and	 other	 TAMs	 favor	 an	

alternatively	 activated	 (M2)	 response.	 We	 further	 describe	 heterogeneity	 within	 pro-

inflammatory	microglia,	where	we	find	that	distinct	subpopulations	of	microglia	upregulate	

programs	for	proliferation,	 IFN	response,	cytokine	and	exosome	secretion,	glycolysis,	and	

antigen	presentation.	We	validated	 the	pro-inflammatory	response	at	 the	protein	 level	 in	

three	distinct	models	of	BCBM,	as	well	as	in	human	microglia,	showing	the	response	is	highly	

conserved	and	highlighting	its	relevance	in	human	BCBM.	Most	importantly,	we	utilized	the	
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newly	 developed,	 genetically	 engineered	 FIRE-KO	 mouse	 model	 that	 completely	 and	

specifically	lacks	microglia	to	investigate	their	impact	on	metastasis.	We	find	that	animals	

lacking	 microglia	 develop	 more	 metastasis	 and	 less	 tumor	 regression	 than	 controls.	

Together	with	scRNA-seq	data,	these	results	show	that	microglia	are	pro-inflammatory	and	

anti-tumorigenic,	and	suggest	that	microglia	suppress	metastasis	through	facilitating	tumor	

rejection.	 This	 contrasts	 with	 the	 anti-inflammatory,	 pro-tumorigenic	 role	 previously	

ascribed	to	microglia	and	other	TAMs,	and	raises	the	prospect	of	augmenting	their	tumor	

suppressive	function	to	treat	BCBM.			

An	 interesting	 phenomenon	 emerging	 from	 our	 study	 is	 a	 clear	 conservation	 of	

microglia	 response	 phenotypes	 to	 different	 diseases	 of	 the	 CNS.	 Several	 of	 the	microglia	

substates	 we	 observed	 in	 BCBM	 have	 been	 recently	 reported	 in	 single	 cell	 studies	 of	

microglia	 in	 other	 CNS	 diseases.	 In	 a	 study	 comparing	 microglia	 diversity	 during	

development,	 aging,	 and	 demyelinating	 injury,	 Hammond	 et	 al.	 (2019)	 identified	

subpopulations	of	 cells	 that	 resemble	our	Glycolytic	 (Mif,	Pkm),	Secretory	 (Lpl,	Ccl4),	 IFN	

responsive	 (Ifitm3,	 Isg15),	 and	 Cycling	 (Pcna,	Mki67)	microglia	 159.	 Interestingly,	 specific	

subpopulations	of	microglia	were	preferentially	found	in	different	contexts;	Glycolytic	and	

Secretory	 were	 predominantly	 found	 in	 the	 developing	 brain,	 while	 IFN	 response	 and	

Cycling	microglia	were	enriched	in	aging	and	injury.	Similar	response	phenotypes	have	also	

been	observed	in	neurodegenerative	diseases.	Keren-Shaul	et	al	(2017)	found	that	disease-

associated	microglia	(DAMs)	in	Alzheimer’s	Disease	(AD)	and	amyotrophic	lateral	sclerosis	

(ALS)	upregulate	the	phagocytosis	and	lipid	metabolism	associated	genes	Apoe,	Cst7,	Cd9,	

and	Lpl,	which	are	markers	of	Secretory	microglia	in	our	dataset	160.	They	show	that	DAMs	

phagocytose	 plaques	 and	 are	 protective	 against	 AD	 development,	 suggesting	 Secretory	
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microglia	may	perform	similar	functions	in	BCBM.	Another	study	of	AD	found	that	microglia	

display	 distinct	 phenotypes	 at	 progressive	 stages	 of	 disease	 development,	 where	 early	

response	 (ER)	 microglia	 upregulate	 markers	 of	 proliferation	 while	 late	 response	 (LR)	

microglia	upregulate	IFN	response	and	antigen	presentation	genes	161.	ER	and	LR	microglia	

share	many	markers	 in	 common	with	 Cycling,	 IFN	 responsive,	 and	APC	microglia	 in	 our	

study.	The	overlap	of	markers	between	ER	and	LR	microglia	led	the	authors	to	suggest	that	

they	 represent	 progressive	 stages	 of	 microglia	 activation	 in	 response	 to	 disease	

development,	raising	the	question	of	whether	the	microglia	substates	identified	in	our	study	

also	represent	different	stages	of	 temporal	activation.	An	alternative	hypothesis	could	be	

that	the	substates	represent	microglia	responding	to	different	local	stimuli	that	elicit	distinct	

responses.	 An	 important	 question	 for	 future	 studies	 will	 be	 to	 determine	 whether	 the	

microglia	subpopulations	carry	out	distinct	functions,	and	what	their	independent	effects	on	

metastasis	are.	

	 Another	 fascinating	phenomenon	 revealed	by	our	 study	 is	 the	opposing	outcomes	

achieved	 using	 different	 TAM	 depletion	 strategies.	 While	 we	 find	 increased	 tumor	

progression	 in	 FIRE-KO	mice	 lacking	microglia,	 previous	work	 clearly	 showed	decreased	

tumor	progression	following	TAM	depletion	using	CSF1R	inhibitors	and	CX3CR1-targeted	

genetic	ablation	models	123,125	.There	are	several	possible	explanations	for	these	discrepant	

findings.	 It	 is	 clear	 that	microglia	 depletion	 in	 the	 FIRE-KO	model	 is	more	 complete	 and	

restricted	 to	 microglia	 than	 other	 approaches	 123,125,162.	 Furthermore,	 microglia	 cannot	

rebound	and	repopulate	the	brain	in	FIRE-KO	mice	as	has	been	observed	in	other	depletion	

models.	The	massive	cell	death	produced	in	the	Cx3cr1CreERT/+:ROSA26iDTR/+	depletion	model	

has	also	been	shown	to	induce	cytokine	storm	and	astrogliosis,	which	may	have	confounding	
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effects	on	tumor	growth	and	the	immune	response	163,164.	Another	important	distinction	in	

our	 study	 is	 that	 the	 FIRE-KO	 mice	 lack	 microglia	 from	 birth,	 while	 most	 prior	 studies	

targeted	TAMs	postnatally	and	after	tumor	initiation.	It	is	therefore	plausible	that	the	timing	

of	depletion	impacts	the	outcome,	as	microglia	and	TAMs	may	become	tumor	promoting	as	

disease	 progresses.	 Regardless,	 further	 investigation	 is	 critical	 given	 that	 several	 CSF1R	

inhibitors	targeting	TAMs	are	currently	in	clinical	trials	(e.g.,	NCT02829723,	NCT01596751,	

NCT02401815,	 NCT02584647)	 for	 the	 treatment	 of	 CNS	 and	 peripheral	 cancers.	 An	

unintended	 side	 effect	 may	 be	 the	 depletion	 of	 protective	microglia	 in	 the	 CNS	 and	 the	

creation	of	a	permissive	microenvironment	for	the	development	of	CNS	metastasis.	

	 Finally,	 it	will	be	 important	 in	 future	work	to	 investigate	the	mechanism	by	which	

microglia	 suppress	 BCBM	 outgrowth.	 Since	 the	 absence	 of	 microglia	 in	 FIRE-KO	 mice	

specifically	compromises	their	capacity	for	tumor	rejection,	it	is	compelling	to	consider	that	

their	 effect	 is	 mediated	 through	 promotion	 of	 an	 anti-tumor	 T	 cell	 response.	 BCBM-R	

microglia	secrete	several	chemokines	 that	may	promote	T	cell	 trafficking,	as	well	as	pro-

inflammatory	cytokines	that	may	sustain	T	cell	function	once	in	the	brain.	BCBM-R	microglia	

also	 upregulate	MHC-I	 and	MHC-II	 and	 other	machinery	 for	 antigen	 presentation,	which	

could	enable	them	to	present	tumor	neoantigens	to	CD4	or	CD8	T	cells	in	the	brain.	Previous	

work	has	shown	that	local	APCs	are	critical	to	skew	T	cell	differentiation	and	sustain	their	

activation	after	arrival	to	the	inflamed	tissue,	so	it	is	reasonable	that	microglia	function	as	

the	predominant	purveyors	of	this	function	in	the	CNS	165.	Microglia	function	could	therefore	

be	critical	for	the	efficacy	of	checkpoint	inhibitors	in	CNS	cancers,	and	boosting	their	function	

with	macrophage	targeting	agents	such	as	CD40	agonists	could	provide	further	therapeutic	

benefit.	
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4.4	Materials	&	methods	

Normal	human	brain	and	human	BCBM	samples		

FFPE	 sections	 of	 deidentified	 normal	 human	 brain	 and	 resected	 breast	 cancer	 brain	

metastasis	were	acquired	from	University	of	California	Irvine	department	of	Pathology	and	

Laboratory	 Medicine,	 experimental	 tissue	 shared	 resource	 facility	 and	 the	 University	 of	

California	Davis	Pathology	Biorepository.	

	

Cell	lines	

MDA231-BrM	(referred	to	as	231BR)	129	cells	stably	transduced	with	membrane	targeted	

AcGFP	(rLV.EF1.AcGFP1-Mem-9,	ClonTech/Takara	Bio,	USA),	mCherry	(rLV.EF1.mCherry-9,	

ClonTech/Takara),	and	 luciferase	 lentivirus	were	a	generous	gift	 from	Ian	Smith	(Parker,	

2017,	Bos,	2009).	4T1	cells	were	purchased	from	ATCC	(CRL-2593),	stably	infected	with	GFP	

lentivirus	(Santa	Cruz	Biotechnology,	copGFP	Control	Lentiviral	Particles)	at	a	MOI	or	10,	

and	 sorted	 for	 GFP	 expression	 after	 two	 weeks	 growth	 in	 culture.	 EO771	 cells	 were	

purchased	from	CH3	Biosystems	and	stably	infected	with	pCDH-EF1a-eFFly-eGFP)	lentivirus	

particles.	 	 pCDH-EF1a-eFFly-eGFP	 was	 a	 gift	 from	 Irmela	 Jeremias	 (Addgene	 plasmid	 #	

104834	 ;	http://n2t.net/addgene:104834	 ;	RRID:Addgene_104834).	To	produce	 lentiviral	

particles,	 HEK293T	 cells	 were	 transfected	 with	 pCDH-EF1a-eFFly-eGFP	 together	 with	

pMD2G	 and	 psPAX2	 packaging	 plasmids	 using	 Lipofectamine	 2000	 (Invitrogen).	

Supernatants	containing	lentiviral	particles	were	used	to	infect	EO771	cells	overnight	in	the	

presence	of	8 μg/ml	polybrene	(Sigma-Aldrich).	Transduced	EO771	cells	were	sorted	on	the	

basis	of	GFP	expression	on	a	BD	FACSAria	Fusion	cell	sorter.	MDA213-BRm	and	4T1	cell	lines	
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were	cultured	in	DMEM,	5%	FBS,	10U/ml	penicillin,	0.1mg/mL	streptomycin,	at	37	°C,	5%	

CO2,	 95%	 relative	 humidity.	 EO771	 cells	 were	 cultured	 in	 RPMI	 1640,	 5%	 FBS,	 10U/ml	

penicillin,	 0.1mg/mL	 streptomycin,	 10mmol/L	 HEPES	 at	 37	 °C,	 5%	 CO2,	 95%	 relative	

humidity.	 Cells	 were	 passaged	 for	 one-two	 weeks	 prior	 to	 intracardiac	 or	 intracranial	

injections.	

	

Mouse	strains	

Female	Foxn1nu/nu	mice	(stock	#007850),	C57BL/6J	(stock	#000664),	and	BALB/cJ	(stock	

#000651)	were	 purchased	 from	The	 Jackson	 Laboratories.	 Female	MITRG	mice	 (Jackson	

laboratories	 stock	 #017711)	 which	 are	 C:129S2-	 Rag2tm1.1Flv	 Csf1tm1(CSF1)Flv	

CSF2/IL3tm1.1(CSF2,IL3)Flv	Thpotm1.1(TPO)Flv	Il2rgtm1.1Flv/J	were	bred,	housed	and	maintained	by	

the	 laboratory	 of	 Mathew	 Blurton-Jones	 (IACUC	 protocol	 #AUP-17-162).	 Csf1rΔFIRE/ΔFIRE	

(FIRE-KO)	and	Csf1rFIRE/FIRE	 (FIRE-WT)	mice	were	a	gift	 from	Claire	Pridans	and	Mathew	

Blurton-Jones	laboratories	and	were	housed	and	maintained	by	the	Lawson	laboratory.		All	

animal	studies	were	performed	in	accordance	with	an	IACUC	approved	protocol	#AUP-19-

051	at	the	University	of	California	Irvine.	

	

Immunofluorescence	analysis	of	human	BCBM	samples	

4-μm	sections	were	heated	at	65 °C	for	30	min,	then	deparaffinized	by	two	sequential	five-

min	 incubations	in	 Histo-Clear	 (National	 Diagnostics,	 #HS-200,	 Atlanta,	 Georgia,	USA).	

Tissues	 were	 rehydrated	 with	 graded	 solutions	 of	 ethanol	 (100%-50%)	 and	 washed	 in	

double-distilled	 H2O	 and	1XPBS.	 Antigen	 retrieval	 was	 performed	 using	 a	 microwave	

pressure	cooker	 with	 10 mM	 citric	 acid	 buffer	 (0.05%	 Tween	 20,	 pH	 6.0).	 Tissues	were	
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blocked	 in	blocking	solution	(0.1%	Tween	20	and	10%	Goat	Serum	 in	PBS)	 for	30 min	at	

room	temperature,	 incubated	with	primary	antibodies	diluted	 in	blocking	solution	at	4 °C	

overnight,	washed	in	PBS,	incubated	with	secondary	antibodies	diluted	in	blocking	solution	

for	 one	 hour	 at	 room	temperature,	 and	 washed	 in	 PBS.	 Slides	 were	 mounted	 with	

VECTASHIELD	Antifade	 Mounting	 Medium	 with	 DAPI	 (Vector	 Laboratories,	 #H-1200,	

Burlingame,	 California,	 USA)	 and	 micrographs	 were	 taken	 with	 the	BZ-X700	 Keyence	

fluorescence	microscope.		

	

Generation	of	BCBM	in	mice	

For	intracardiac	injection	to	establish	brain	metastasis,	as	previously	described	by	166,	cells	

were	injected	into	the	left	cardiac	ventricle	of	anesthetized	mice	(300mg/kg	Avertin).	For	

231BR	brain	metastasis	500,000	cells	 in	100μL	of	DPBS	were	 injected	into	nine	week	old	

Foxn1nu/nu	 or	 10	 week	 old	 MITRG	 mice.		 For	 4T1	 brain	 metastasis,	 100,000	 cells	 were	

injected	into	9	week	old	BALB/cJ	mice	in	100μL	of	DPBS.	For	the	intracranial	 injection	of	

C57BL/6J,	100,000	EO771	cells	in	a	volume	of	10μL	PBS	were	injected	to	a	depth	of	3mm	

into	the	right	coronal	suture	of	five	week	old	mice	121,123.	Control	mice	were	injected	with	

10μL	PBS.		

	

Dissection	and	visualization	of	mouse	BCBM	by	whole	mount	fluorescence	

microscopy		

At	 endpoint,	 mice	 were	 euthanized	 and	 perfused	 with	 50mL	 of	 sterile	 ice	 cold	 1X	 PBS,	

1mg/mL	EDTA.	The	brain	was	dissected	from	the	cranium	and	meninges,	and	then	washed	

in	ice	cold	sterile	1X	PBS.	To	visualize	metastasis	prior	to	RNAseq,	flow	cytometry	analysis,	
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or	fixation,	the	whole	brain	was	placed	on	the	dissection	microscope	(Leica	Biosystems,	DMC	

2900)	and	imaged	for	GFP		fluorescence	and	brightfield.	

	

Mouse	brain	fixation	and	sectioning	

Dissected	brains	were	drop	fixed	into	4%	PFA,	1X	PBS,	pH	7.4	overnight	at	4°C.	Fixed	brains	

were	transferred	into	30%	Sucrose	1X	PBS	for	24	hours	prior	to	cryosectioning	on	sliding	

microtome	(Leica	Biosystems,	SM2010R).	Brains	were	frozen	onto	the	stage	for	sagittal	or	

coronal	sectioning	at	40μm	thickness	using	dry	ice	powder.	Serial	slices	were	collected	into	

1X	PBS,	0.05%	sodium	azide	and	stored	at	4°C	for	floating	section	immunostaining.		

	

Immunofluorescence	staining	of	floating	sections	

Brain	 slices	were	 transferred	 into	a	well	 of	 a	24	well	plate	 containing	300μL	of	blocking	

solution	(1X	PBS,	5%	serum,	0.3%	tritonX-100)	and	placed	on	an	orbital	shaker	for	one	hour.	

Blocking	 solution	was	 removed	 and	 replaced	with	 500μL	 of	 primary	 antibody	 diluted	 in	

blocking	solution	and	incubated	overnight	on	an	orbital	shaker	at	4°C.	The	next	day,	primary	

antibody	was	removed,	and	brain	slices	were	washed	with	three	sequential	500μL	washes	

of	 blocking	 solution	 and	 incubated	 with	 secondary	 antibody	 for	 one	 hour	 at	 room	

temperature.	 Brain	 slices	 were	 transferred	 to	 a	 glass	 slide	 and	 mounted	 with	

VECTASHIELD	Antifade	 Mounting	 Medium	 with	 DAPI	 (Vector	 Laboratories,	 #	H-1200,	

Burlingame,	 California,	 USA).	 Micrographs	 were	 taken	 with	 the	BZ-X700	 Keyence	

fluorescence	microscope	and	acquisition	software.	

Primary	antibodies:	Rabbit	polyclonal	anti-IBA1	diluted	1:500	(Wako	#019-19741);	rat	anti-

CD74	 clone	 ln1/Cd74	 diluted	 1:100	 (BioLegend	 #151002);	 rabbit	 monoclonal	 anti-
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TMEM119	clone	28-3	diluted	1:500	(Abcam	#ab208064);	anti	-Human	HLA-DRB	clone	LN3	

diluted	 	1:200	(Invitrogen,,	 	REF#14-9956-82).	Secondary	Antibodies,	diluted	1:400:	Goat	

anti-rabbit	IgG	 conjugated	with	Alexa	 Fluor	 568	 and	488	 (#A21069	 and	#A11034);	Goat	

anti-rat	IgG	conjugated	with	Alexa	Fluor	568	and	647	(#A11006	and	#A21247);	Goat	anti-	

hamster	 conjugated	 with	 Alexa	 Flour	 647	 (#A21451)	 (Thermo	 Fisher	 Scientific	 Inc.,	

Carlsbad,	California,	USA).	

	

Quantification	of	IBA1	immunofluorescence	in	Foxn1nu/nu	brains	

Four	brain	tissue	sections	from	control	(n=4)	and	28-day	metastatic	(n=4)	Foxn1nu/nu	mouse	

brains	 were	 stained	 for	 IBA1.	 Micrographs	 were	 acquired	 on	 the	 BZ-X700	 Keyence	

fluorescence	microscope.	 Baseline	 exposure	 level	 for	 IBA1	was	 established	using	 control	

brain	 tissues	 under	 20X	 magnification.	 For	 controls,	 8	 x	 16	 μM	 Z-stack	 fields	 of	 brain	

parenchyma	 per	mouse	were	 taken.	 For	 231-BR	metastatic	 brains,	 AcGFP+	 lesions	were	

located	at	 low	magnification	(2X),	then	images	at	20X	using	the	same	exposure	setting	as	

control.	 Z-stack	 micrographs	 were	 compressed	 into	 maximum	 intensity	 projection	 and	

opened	in	ImagJ	(https://imagej.nih.gov/ij/).	Regions	of	interest	were	quantified	for	IBA1	

fluorescence	 intensity	 as	 the	 mean	 fluorescence	 intensity	 per	 pixel	 for	 control	 (n=115),	

peritumoral	(n=127)	and	distal	(n=96).	Data	was	tabulated	and	analyzed	in	GraphPad	Prism	

8	(https://www.graphpad.com/scientific-software/prism/).	

	

Isolation	of	cells	for	scRNA-seq	

Single	cell	suspensions	from	mouse	brains	were	prepared	using	the	Adult	Brain	Dissociation	

Kit,	Mouse	and	Rat	(Miltenyi	Biotec)	with	some	modifications.	Whole	dissected	brains	were	
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chopped	 into	 8	 pieces	 of	 equal	 size	 and	 placed	 into	 C	 tube	 (Miltenyi	 Biotec)	 containing	

enzyme	P	and	A.	Brain	tissue	was	digested	using	gentleMACS	Octo	Dissociator	with	heaters	

operating	 the	Adult	brain	dissociation	protocol	 (Miltenyi	Biotec).	After	digestion,	 the	 cell	

suspension	was	strained	over	a	sterile	70μm	strainer	(Fisher	Scientific)	and	washed	with	

5mL	FACS	buffer	containing	ice	cold	DMEM/F12,	50mM	HEPES,	and	2%	BSA.	After	removal	

of	myelin	by	density	centrifugation,	the	cell	pellet	was	washed	and	remaining	red	blood	cells	

were	lysed	with	red	blood	cell	lysis	buffer.	Cells	were	then	re-suspended	in	FACS	buffer	and	

blocked	with	anti-CD16/32	for	15	minutes	on	ice.	Next,	cells	were	stained	with	fluorescent	

antibodies	on	 ice	 for	15	minutes	shielded	 from	light.	The	 labeled	cells	were	washed	with	

500μL	of	 FACS	buffer	 and	 resuspended	 in	500μL	of	 FACS	buffer,	 strained	 through	40μm	

strainer	prior	to	sorting	on	BD	FACSAria	Fusion	sorter.	For	sorting	of	microglia,	astrocytes,	

and	cancer	cells,	cells	were	gated	for	size	based	on	forward	and	side	scatter,	single	cells,	and	

Sytox	 Blue	 viability	 (Thermofisher,	 S34857).	 	All	 myeloid	 cells	 (CD45+	 CD11b+)	 and	

astrocytes	 (CD45-,	 ACSA2+)	 were	 sorted	 from	 control	 and	 metastatic	 mouse	 brains	 into	

500μL	 of	 chilled	 FACS	 buffer.	 GFP+	 231BR	 cells	were	 sorted	 from	metastatic	 brains	 into	

500μL	of	FACS	buffer.	

	

scRNA-seq	of	Foxn1nu/nu		cells	

FACS	isolated	mouse	microglia	cells	were	centrifuged	for	10	minutes	at	300g	and	washed	

with	0.04%	BSA	in	PBS.	Cells	were	resuspended	to	achieve	approximately	1,000	cells/µL.	

Final	cell	suspensions	were	counted	on	the	Countess	II	automated	cell	counter	to	determine	

actual	 concentration	 for	 droplet	 generation.	 Cells	 were	 loaded	 onto	 the	 10x	 Genomics	

Chromium	Single	Cell	Gene	Expression	3’	v2	Chemistry	kits	for	GEMs	generation.	Following	
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the	Chromium	Single	Cell	3′	Reagents	Kits	version	2	user	guide	(CG00052	Rev	B),	cells	were	

loaded	to	achieve	approximately	10,000	cells	for	capture.	Libraries	were	sequenced	on	the	

Illumina	HiSeq	4000	platform	to	achieve	an	average	of	read	depth	of	50,000	mean	reads	per	

cell.	Sequencing	reads	were	aligned	utilizing	10x	Genomics	Cell	Ranger	Count	3.0.2	to	a	dual	

indexed	GRCh38	and	mm10	reference	genome.		

	

Flow	cytometry	analysis	of	microglia	from	BCBM	

For	 flow	cytometry	analysis	of	metastatic	mouse	brains,	 tissue	was	prepared	as	 for	FACS	

sorting,	with	 the	exception	 that	1mg/mL	Collagenase	D	 (Milipore	Sigma	#11213857001)	

was	used	for	digestion	instead	of	enzyme	P	provided	in	the	Adult	Brain	Dissociation	kit.	After	

a	 single	 cell	 suspension	 was	 obtained,	 cells	 were	 stained	 with	 ZombieNIR	 viability	 dye	

(1:500,	BioLegend)	 in	50μL	of	 ice	cold	PBS	for	15	minutes.	Cells	were	washed	with	FACS	

buffer	and	blocked	with	anti-CD16/32	antibody	diluted	in	FACS	buffer	for	15	minutes	on	ice.	

Next,	cells	were	stained	with	fluorescent	antibodies	for	15	minutes	on	ice,	protected	from	

light.	Cells	were	washed	with	500μL	FACS	buffer	and	resuspended	 in	400μL	FACS	buffer,	

strained	through	a	40μm	cell	strainer	and	analyzed	using	BD	Fortessa	X20.		

	

In	vitro	differentiation	and	early	postnatal	transplantation	of	iHPCs		

Differentiation	of	Hematopoietic	Progenitor	Cells	from	iPSCs	(iHPCs)	performed	according	

to	McQuade	et	al.	(2018).	Briefly,	iPSCs	were	first	passaged	in	mTeSR-E8	and	on	day	0,	cells	

were	 transferred	 to	 Medium	 A	 from	 the	 STEMdiff	 Hematopoietic	 Kit	 (Stem	 Cell	

Technologies).	On	day	three,	flattened	endothelial	cell	colonies	were	transferred	to	Medium	

B	for	seven	additional	days	while	iHPCs	began	to	lift	off	the	colonies.	On	day	10,	non-adherent	



 

105 
 

CD43+	iHPCs	were	collected	by	removing	medium	and	cells	and	at	this	point,	d10-d11	iHPCs	

can	be	frozen	in	Bambanker	(Fisher	Scientific)	for	later	transplantation.	Cells	used	for	early-

postnatal	 iHPC	 transplantation	 were	 thawed	 in	 iPS-Microglia	 medium	 (DMEM/F12,	 2X	

insulin-transferrin-selenite,	2X	B27,	0.5X	N2,	1X	glutamax,	1X	non-essential	amino	acids,	400	

mM	monothioglycerol,	and	5	mg/mL	human	insulin	freshly	supplemented	with	100ng/mL	

IL-34,	50ng/mL	TGFb1,	and	25	ng/mL	M-CSF	(Peprotech)	according	to	154)	and	allowed	to	

recover	 for	 24	 h.	 Early	 Postnatal	 Intracerebroventricular	 Transplantation	 of	 iHPCs	 was	

performed	as	described	in	155.	Briefly	P1	to	P2	MITRG	mice	placed	on	ice	for	two-three	min	

to	 induce	hypothermic	 anesthesia.	 Free-hand	 transplantation	was	performed	using	 a	30-

gauge	needle	affixed	to	a	10μL	Hamilton	syringe,	mice	received	1μL	of	iHPCs	suspended	in	

sterile	1X	DPBS	at	31.25-62.5K	cells/μL	at	each	 injection	site	 (8	sites)	 totaling	250-500K	

cells/pup.	 Bilateral	 injections	were	 performed	 at	 2/5th	 of	 the	 distance	 from	 the	 lambda	

suture	to	each	eye,	injecting	into	the	lateral	ventricles	at	3mm	and	into	the	overlying	anterior	

cortex	at	1mm,	and	into	the	posterior	cortex	in	line	with	the	forebrain	injection	sites,	and	

perpendicular	to	lambda	at	a	45°	angle.	Transplanted	pups	were	then	returned	to	their	home	

cages	and	weaned	at	P21.	

	

Isolation	of	human	xenotransplanted	microglia	

At	10	weeks	old,	MITRG	mice	were	 injected	 intracardially	with	500,000	mCherry	 labeled	

231BR	 cells	 as	 previously	 described.	 25	 days	 after	 intracardiac	 injection	 and	 following	

perfusion	with	 ice	 cold	 PBS	 containing	 5μg/ml	 actinomycin	 D	 (act	 D),	 whole	metastatic	

brains	were	briefly	 imaged	on	a	dissection	microscope	(Leica	Biosystems,	DMC	2900)	for	

mCherry	and	GFP	intensity.	Half	brains	were	then	dissected,	fixing	the	left	hemisphere	in	4%	
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PFA	for	histology	and	the	right	hemisphere	was	prepped	for	dissociation	as	described	in	155	

with	 modifications.	 The	 cerebellum	 was	 removed	 and	 the	 whole	 right	 hemisphere	 was	

stored	 briefly	 in	 RPMI	 1640	 containing	 5μg/mL	 act	 D,	 10μM	 triptolide,	 and	 27.1ug/mL	

anisomycin.	 Tissue	 dissociation	 was	 then	 performed	 using	 the	 Tumor	 Dissociation	 kit,	

human	(Miltenyi	Biotec)	and	the	gentleMACS	OctoDissociator	with	heaters	(Miltenyi	Biotec)	

according	to	manufacturer	guidelines	with	modifications.	Briefly,	tissue	was	cut	into	~1mm	

pieces	and	placed	into	the	C-tubes	with	the	kit’s	enzymes,	5μg/mL	act	D,	10μM	triptolide,	

and	27.1ug/mL	anisomycin	and	samples	were	dissociated	using	 the	preprogrammed	soft	

tumor	protocol.	Following	enzymatic	digestion,	samples	were	strained	through	a	70μm	filter	

and	pelleted	by	centrifugation.	Myelin	and	debris	were	removed	by	resuspending	the	pellet	

in	8mL	23%	Percoll,	overlaid	with	2mL	of	1X	DPBS,	spinning	at	400xg	for	25	minutes	at	4°C,	

with	acceleration	and	brake	set	to	0,	and	discarding	the	myelin	band	and	supernatant.		

	

MULTI-seq	labeling	and	scRNA-seq	of	human	microglia	

For	barcoding	of	cells	from	each	individual	mouse	the	MULTI-seq	lipid-	tagged	indices	for	

sample	multiplexing	for	scRNA-seq	protocol	was	followed	156.	Lipid	anchor	and	co-anchor	

reagents	were	a	generous	gift	from	Zev	Gartner,	and	barcode	index	oligos	were	purchased	

from	Integrated	DNA	Technologies,	Inc.	Cells	were	resuspended	and	washed	with	15	mL	cold	

DPBS	and	pelleted	by	centrifugation	(10	minutes,	400xg).	The	supernatant	was	discarded,	

and	cells	were	resuspended	in	180μL	of	DPBS.	20μL	of	20μM	Anchor:Barcode	solution	was	

added	to	a	final	concentration	of	2μM,	and	incubated	on	ice	for	five	minutes.	Next	20μL	of	

20μM	Co-Anchor	 solution	was	 added,	 gently	mixed	and	 incubated	 for	 five	minutes.	After	

incubation	1mL	1%	BSA	in	DPBS	was	added	and	cells	were	pelleted	by	centrifugation	(five	
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minutes,	400xg).	Finally,	the	supernatant	was	removed	and	washed	a	second	time	with	1mL	

1%	BSA	in	PBS	and	pelleted	by	centrifugation	(5	minutes,	400xg).	Next,	mouse	cell	removal	

was	performed	by	resuspending	cell	pellets	in	160μL	FACS	buffer	(0.5%	BSA	in	1X	DPBS)	+	

40μL	Mouse	cell	removal	beads	(Miltenyi	Biotec)	and	incubated	at	4°C	for	15	minutes.	Mouse	

and	 human	 cells	 were	 then	 separated	 using	 LS	 columns	 and	 the	 MidiMACs	 separator	

(Miltenyi	Biotec)	and	the	human	cells	were	collected	in	the	flow	through.	Human	cells	were	

pelleted	via	centrifugation	(10	minutes,	400xg)	and	control	samples	and	metastatic	samples	

were	then	pooled	separately.	Cells	were	resuspended	to	~1,000	cells	per	microliter	in	FACS	

buffer,	according	to	counts	performed	on	a	hemocytometer.		

	

ScRNA-seq	of	MITRG	human	microglia	

Final	cell	suspensions	were	counted	on	the	Countess	II	automated	cell	counter	to	determine	

actual	 concentration	 for	 droplet	 generation.	 Cells	 were	 loaded	 onto	 the	 10x	 Genomics	

Chromium	Single	Cell	Gene	Expression	3’	v3	Chemistry	kits	for	GEMs	generation.	Following	

the	Chromium	Single	Cell	3′	Reagents	Kits	version	3	user	guide	(CG000183	Rev	C),	cells	were	

loaded	to	achieve	approximately	10,000	cells	for	capture.	MULTI-seq	barcode	libraries	were	

prepared	according	to	the	MULTI-seq	protocol	156.	Libraries	were	sequenced	on	the	Illumina	

NovaSeq	6000	platform	to	achieve	an	average	read	depth	of	50,000	mean	reads	per	cell	for	

3’	gene	expression	libraries.	MULTI-seq	barcode	libraries	were	sequenced	to	achieve	at	least	

5,000	 reads	 per	 cell.	 Sequencing	 reads	were	 aligned	 utilizing	 10x	 Genomics	 Cell	 Ranger	

Count	 3.1.0	 to	 a	 dual	 indexed	 GRCh38	 and	 mm10	 reference	 genome.	 All	 libraries	 were	

aggregated	using	10x	Genomics	Cell	Ranger	Aggr	3.1.0,	 to	normalize	the	number	of	mean	



 

108 
 

reads	 per	 cells.	 MULTI-seq	 reads	 were	 processed	 according	 to	 the	 MULTI-seq	 protocol	

(https://github.com/chris-mcginnis-ucsf/MULTI-seq).	

	

Microglia	depletion	study	

Four-six	week	old	Csf1rΔFIRE/ΔFIRE	(FIRE-KO)	and		Csf1rFIRE/FIRE	(FIRE-WT)	mice	were	injected	

intracranially	in	the	right	coronal	suture	with	100,000	enhanced	GFP	and	luciferase	labeled	

EO771	 cells	 as	 previously	 described.	 To	monitor	 brain	 tumor	 growth	 in	 vivo,	mice	were	

imaged	for	luciferase	luminescence	one	day	after	injection,	and	every	three	days	thereafter	

until	 endpoint.	 Imaged	mice	were	 anesthetized	 via	 isoflurane	 inhalant	 and	 administered	

300μg	 D-Luciferin	 (Goldbio),	 intraperitoneally,	 in	 sterile	 DPBS.	 Following	 a	 10-minute	

incubation,	mice	were	imaged	for	bioluminescence	for	six	minutes	utilizing	an	IVIS	Lumina	

III	In	Vivo	Imaging	System	(Xenogen).	Regions	of	interest	were	selected	around	each	brain	

and	average	photon	 flux	 (total	photons/s-cm2)	was	recorded	using	Living	 Image	analysis	

software	 (Perkin-Elmer)	and	average	background	 flux	subtracted.	 	On	day	14,	mice	were	

weighed,	euthanized	and	dissected	and	the	whole	brains	were	removed	and	placed	in	a	24	

well	tissue	culture	plate	submerged	in	ice	cold	PBS	with	D-Luciferin	(1.5	mg/mL,	Goldbio).	

After	10	minutes	incubation,	whole	brains	were	removed	from	the	solution	and	placed	on	a	

black	plastic	card	and	imaged	for	luminescence	for	1	second.	A	region	of	interest	was	drawn	

around	each	brain	and	the	total	flux	(ptotal	photons/s-cm2)		was	recorded	for	analysis.	

	

Immune	cell	isolation	and	scRNA-seq	of	FIRE	mice	

FIRE-WT	 and	 FIRE-KO	 mice	 were	 injected	 intracranially	 with	 100,000	 EO771	 cells	 and	

dissected	after	two	weeks.	For	scRNA-seq,	four	FIRE-KO	bearing	visible	brian	tumors,	two	
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FIRE-WT	bearing	visible	brain	tumors	and	two	FIRE-WT	without	visible	brain	tumors	were	

euthanized	 as	 previously	 described	 and	 brains	 were	 digested	 using	 our	 standard	

GentleMACS	 protocol	 for	 FACS	 isolation.	 After	 removal	 of	 myelin	 using	 debris	 removal	

solution	 (Miltenyi	 Biotec)	 cells	 from	 all	 8	 mice	 were	 pooled	 and	 stained	 for	 CD45	 and	

viability.	Single,	live	CD45+	cells,	including	CD45	low	microglia,	were	sorted	into	FACS	buffer	

and	 subjected	 to	 10X	 barcoding	 as	 previously	 described.	 	 Sequencing	 reads	 were	 then	

aligned	utilizing	10x	Genomics	Cell	Ranger	Count	3.1.0	to	a	mm10	reference	genome.	

	

GSE139971	CITE-seq	realignment			

FASTQ	 files	 associated	 with	 GSE139971	 HTO	 barcodes	 and	 mRNA	 samples	 were	

downloaded	using	 ‘fastq-dump	--split-files	 --origfmt	 --gzip’	and	realigned	using	CITE-seq-

Count	1.4.3	and	Cell	Ranger	3.0.2	respectively.	HTO	barcodes	were	assigned	to	cells	using	

the	procedure	in	Seurat	v3	based	on	the	umi	count	matrix	output	from	CITE-seq-Count.		

	

Souporcell	genotyping		

Genotyping	was	performed	using	Souporcell	(Heaton	et	al,	2020)	for	GSE139971	and	FIRE	

samples.	For	GSE139971,	 three	genotype	clusters	were	assigned	and	HTO	barcodes	were	

used	to	assign	the	genotypes	to	EO771,	Cx3cr1CreERT/+,	or	Cx3cr1CreERT/+:ROSA26iDTR/+.	For	

FIRE	samples,	2	genotype	clusters	were	assigned	and	microglia	presence,	as	determined	by	

gene	 expression,	 was	 used	 to	 assign	 clusters	 to	 FIRE-WT	 (+microglia)	 and	 FIRE-KO	 (-

microglia).	Notably,	using	genotyping	to	label	Cx3cr1CreERT/+	and	Cx3cr1CreERT/+:ROSA26iDTR/+	

mice	 in	this	dataset	had	a	high	concordance	with	the	expected	antibody	sample	barcodes	



 

110 
 

(matching	in	96.7%	of	cells),	which	supports	our	use	of	this	method	to	label	FIRE-WT	and	

FIRE-KO	cells.	

	

Human/mouse	cell	assignment	

Cells	were	aligned	to	a	merged	GRCh38/mm10	genome	using	Cell	Ranger	v3.	Cells	were	then	

determined	 to	be	 from	mouse	or	human	based	on	 the	 frequency	of	 reads	aligning	 to	 the	

mouse	genome	with	very	low	quality	cells	with	<200	genes	(nFeature_RNA)	filtered	before	

estimating.	Cells	were	called	as	mouse	for	all	cells	above	the	top	elbow	in	the	mouse	read	

mapping	frequency	plot	(>0.875	for	Foxn1nu/nu	data;	>0.95	for	MITRG	data),	human	for	all	

cells	below	the	bottom	elbow	(<0.05	for	Foxn1nu/nu	data;	<0.1	for	MITRG	data),	and	any	other	

cells	were	discarded	as	doublets	or	poor	quality.	Any	counts	for	GRCh38	genes	in	the	cells	

called	as	mouse	were	removed	from	the	expression	matrix	and	vice	versa	for	mm10	genes	

in	human	cells.		

	

Quality	control	metrics	for	scRNA-seq	

Cells	for	the	Foxn1nu/nu	cell	type	identification	analysis	were	filtered	to	have	between	500	

and	2000	genes	(nFeature_RNA)	and	<10%	mitochondrial	genome	reads	(percent.mito)	in	

any	 retained	 cell.	 	 Putative	 microglia/astrocyte	 doublet	 clusters	 with	 marker	 gene	 co-

expression	were	 removed	 from	 the	 Foxn1nu/nu	microenvironment.	 This	 cell	 set	was	 then	

used	 for	 subset	myeloid	 and	 astrocyte	 analyses	 based	 on	 the	 cell	 type	 labels.	 Cells	were	

further	 filtered	 for	 the	 myeloid	 analysis	 to	 have	 <5%	 percent.mito	 and	 low	 ribosomal	

expression	 (<10%	of	 their	 transcriptome	representing	Rps	and	Rpl	genes).	An	additional	

small	cluster	of	putative	microglia/astrocyte	doublets	was	removed	from	the	final	astrocyte	
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analysis.	 Cells	 for	 the	 231BR	 analysis	 	 in	 Foxn1nu/nu	 were	 filtered	 to	 have	 >2500	 genes	

(nFeature_RNA),	<60000	reads	(nCount_RNA),	and	<10%	percent.mito.	Cells	for	the	MITRG	

analysis	were	filtered	to	have	<20%	percent.mtio.	Doublets	and	empty	gems	(Negative)	were	

also	 removed	 from	 the	MITRG	 analysis	 based	 on	MULTI-Seq	 barcoding	 label	 assignment	

from	the	R	package	deMULTIplex.	Cell	cycle	signatures	(S.Score	and	G2M.Score,	determined	

by	CellCycleScoring	in	Seurat)	were	regressed	from	the	data	for	the	231BR	analysis	as	well	

as	the	MITRG	analysis	before	clustering	and	dimensionality	reduction.	FIRE	immune	cells	

were	first	filtered	to	have	>200	and	<3500	genes	(nFeature_RNA)	and	<7.5%	percent.mito,	

low	 quality	 clusters	 were	 removed	 separately	 to	 conserve	 cell	 types	 with	 low	 gene	

expression	(e.g.	neutrophils),	and	doublets	were	removed	based	on	Sourporcell	 labels	167.	

GSE139971	 samples	 were	 filtered	 to	 be	 singlets	 by	 both	 HTO-barcode	 and	 Souporcell	

assignment	 and	 only	 clusters	 that	 expressed	 CD45	 (Ptprc)	 and	were	 not	 assigned	 to	 the	

EO771	cluster	by	Souporcell	genotype	were	kept	for	downstream	analysis.		

	

Clustering	and	differential	expression	

Main	clustering	and	dimensionality	reductions	were	performed	in	Seurat	using	the	default	

Louvain	and	tSNE	methods	respectively.	UMAP	was	used	for	dimensionality	reductions	in	

microglia	subclustering	analyses	to	better	visualize	global	relationships.	Some	datasets	were	

integrated	 using	 the	 mutual	 kNN	 algorithm	 adaptation	 in	 Seurat	 before	 these	 steps.	

Specifically,	 integration	 was	 performed	 on	 the	 Foxn1nu/nu	 full	 microenvironment	 and	

astrocyte	 analyses	 by	 sequencing	 batch	 (Con1:Met1,	 Con2:Con3,	 Met2:Met3)	 and	 the	

subclustering	analyses	for	metastatic	and	control	Foxn1nu/nu	myeloid	cells	were	also	batch	

integrated.	 Integrated	 analyses	 used	 the	 “vst”	 selection	method	with	 nfeatures=2000	 for	
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FindVariableFeatures	 and	 dims=1:30	 for	 FindIntegrationAnchors	 and	 IntegrateData.	

Differential	 expression	 analyses	 were	 run	 on	 the	 RNA	 assay	 in	 Seurat	 with	

FindAllMarkers/FindMarkers	 using	 the	 Wilcoxon	 rank	 sum	 test	 and	 adjusted	 P	 values	

represent	the	Bonferroni	corrected	values	for	all	single-cell	analyses.		For	all	samples	except	

GSE139971,	 cell	 types	 and	 states	 were	 assigned	 to	 clusters	 manually	 based	 on	 gene	

expression	profiles.	GSE139971	cell	type	labels	were	determined	by	label	transfer	for	FIRE	

immune	cells	using	the	standard	pipeline	in	Seurat	v3.			

	

GO	term	analysis	and	gene	scoring	

GO	term	analyses	were	performed	using	the	MouseMine	137	web	portal	with	list	input	for	M.	

musculus	with	the	default	background	population	for	mouse	analyses	and	using	the	Enrichr	

portal	 102,103	 with	 a	 gene	 list	 input.	 Gene	 inputs	 for	 each	 condition	 included	 only	 genes	

considered	 differentially	 expressed	 with	 a	 Bonferroni	 adjusted	 P	 value	 <	 0.05	 from	 the	

Wilcoxon	 rank	 sum	 test.	 Specific	 GO	 terms	 were	 then	 selected	 from	 the	 Gene	 Ontology	

Enrichment	section	for	biological_process	with	Holm-Bonferroni	adjusted	P	value	<	0.05	in	

MouseMine	or	the	GO	Biological	Process	2018	list	in	Enrichr	with	unadjusted	P	value	<	0.05.	

All	 gene	 scoring	 on	 single-cell	 data	was	 performed	 in	 Seurat	 using	 the	 AddModuleScore	

function	with	default	parameters.	MG-score	gene	list	was	taken	directly	as	the	Core	MG	list	

from	Table	S4	in	126.	M1	and	M2	gene	signatures	were	translated	to	mouse	from	Table	S4	of	

62	using	the	biomaRt	package	in	R.	Microglia	subcluster	profiles	from	Foxn1nu/nu	mice	were	

taken	as	top	marker	genes	(logFC	>	0.5)	for	each	cluster	compared	to	all	other	myeloid	cells	

from	mice	with	BCBM,	and	translated	to	human	using	the	biomaRt	package.		
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CHAPTER	5:	Conclusions	&	future	directions	

	

	 Observing	 the	 natural	 world,	 identifying	 patterns	 in	 those	 observations,	 and	

generating	new	hypotheses	based	on	said	patterns	is	not	only	one	of	the	earliest	scientific	

pursuits,	 but	 a	 tenant	 of	 the	 scientific	 method168.	 In	 the	 few	 centuries	 since	 Aristotle	

described	this	method	of	‘inductive-deductive’	reasoning	168,		many	tools	have	been	created	

that	 facilitate	 the	observation	of	 previously	unobservable	natural	 phenomena.	 Single-cell	

RNA-seq	(scRNA-seq),	first	achieved	around	12	years	ago169,	is	a	tool	whose	primary	purpose	

is	to	unbiasedly	assay	the	whole	transcriptome	of	single-cells	to	give	us	insight	into	cell	types,	

states,	and	their	responses	to	stimuli.	A	key	novelty	of	this	technology	is	its	ability	to	identify	

cell	 type	 heterogeneity	 from	 within	 a	 single	 tissue,	 though	 it	 has	 also	 improved	 our	

understanding	 of	 variation	 between	 tissues	 and	 biological	 conditions	 since	 it	 is	 not	 as	

sensitive	as	other	methodologies	to	contamination	from	untargeted	cell	types.	

The	 computational	 methods	 developed	 to	 quantify	 transcriptional	 differences	

between	groups	of	cells	can	be	broadly	referred	 to	as	differential	expression	 tests.	When	

these	methods	work	well,	they	can	be	used	to	identify	novel	biomarkers	of	a	physiological	

phenomenon,	which	refers	to	either	single	or	combined	gene	expression	profiles	that	help	

discriminate	 the	condition	of	 interest	 from	a	homeostatic	or	separate	physiological	 state.	

Biomarkers	do	not	need	to	be	mechanistic	or	functional,	but	they	must	be	well	correlated	to	

a	 state	 or	 behavior	 of	 interest.	 Unfortunately,	 it	 is	 common	 to	 find	 that	 using	 a	

straightforward	differential	expression	test	in	scRNA-seq	results	in	thousands	of	statistically	

significant	 gene	 candidates,	many	 of	which	 are	 too	 noisily	 expressed	 to	 interpret	 or	 are	

better	correlated	to	an	uninteresting	 feature	of	 the	data	than	they	are	to	the	condition	of	
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interest.	 	 In	 this	work,	we	 have	 developed	multiple	 heuristics	 that	 improve	 the	 filtering,	

identification,	and	generalizations	of	biomarkers	from	scRNA-seq	data	and	detail	how	the	

results	 from	 these	 methods	 contribute	 to	 our	 understanding	 of	 the	 pre-neoplastic	 and	

neoplastic	 breast	 epithelium.	 Further,	 we	 have	 shown	 how	 states	 of	 cells	 in	 the	

microenvironment	around	breast	tumors	can	be	used	to	predict	tumor	outcomes	in	the	brain	

by	fully	characterizing	the	transcriptomic	changes	of	microglia	in	response	to	breast	cancer	

brain	metastasis.	Together,	these	studies	highlight	the	multiple	sources	of	heterogeneity	in	

breast	cancer	and	its	associated	metastases	and	give	us	insight	into	how	this	heterogeneity	

may	be	conserved	across	patients	and	model	organisms.		

	

The	healthy	breast	epithelial	hierarchy	

In	Chapter	2,	we	presented	our	work	on	a	pilot	scRNA-seq	atlas	of	the	healthy	human	

breast	 epithelium	 from	 four	 reduction	 mammoplasty	 samples.	 From	 this	 dataset,	 we	

identified	three	conserved	cell	types	(Basal,	Luminal	1,	and	Luminal	2),	and	five	conserved	

cell	 states	 (Basal,	 Myoepithelial,	 Luminal	 1.1,	 Luminal	 1.2,	 and	 Luminal	 2).	 We	 then	

investigated	 potential	 lineage	 connections	 between	 the	 cell	 types	 and	 states	 using	 the	

pseudotime	algorithm	Monocle2,	which	required	the	development	of	a	heuristic	to	identify	

conserved	gene	expression	changes	across	these	cell	states	in	all	four	patients.	This	heuristic	

procedure	 started	 by	 running	 Monocle2	 on	 each	 patient	 individually	 using	 markers	 of	

conserved	 cell	 states,	 then	 identified	 correlated	 gene	 modules	 across	 each	 patient’s	

trajectory,	and	 finally	averaged	these	correlations	 to	remove	 inconsistencies	(e.g.	 remove	

genes	 that	 are	 positively	 correlated	 in	 one	 patient,	 but	 not	 correlated	 or	 negatively	

correlated	in	other	patients)	and	generated	a	gene	list	for	a	combined	ordering.	By	requiring	
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each	ordering	gene	to	be	part	of	a	correlated	module,	we	increase	the	chances	of	these	genes	

being	meaningful	pathway	shifts	and	reduce	the	 likelihood	of	noise	driving	the	trajectory	

transitions.	Additionally,	by	requiring	consistency	in	gene	module	behaviors	across	patients,	

we	reduce	batch	effects	and	ensure	that	our	trajectory	is	driven	by	cell	state	gene	expression	

changes	rather	than	patient-specific	gene	expression	differences.	This	procedure	can	be	used	

on	 any	 dataset	 as	 an	 alternative	 to	 the	 Monocle2	 proposed	 gene	 list	 selection	 method	

dpFeature41.			

From	the	resultant	lineage	trajectory,	we	were	able	to	generate	and	support	a	few	key	

hypotheses,	as	well	as	provide	the	gene	list	of	smoothly	transitioning	breast	epithelial	state	

markers	 to	 the	community	 for	additional	 investigation.	One	observation	 is	 that	basal	and	

luminal	 lineages	 are	 connected	by	mesenchymal-like	 cell	 states,	which	 is	 consistent	with	

proposed	markers	of	bipotent	mammary	stem	cells4,170,171.	A	more	novel	observation	 is	a	

connection	between	the	hormone	responsive	(Luminal	2)	and	secretory	(Luminal	1)	luminal	

cells,	with	a	possible	terminal	lineage	marked	by	KIT	and	ELF5,	previously	characterized	as	

“luminal	 progenitor”	 markers.84	 While	 it	 is	 interesting	 to	 propose	 these	 fundamental	

changes	 to	 our	 understanding	 of	 the	 luminal	 lineage	 using	 our	 scRNA-seq	 data,	 it	 is	

important	to	remember	that	pseudotemporal	analysis	with	Monocle2	is	not	lineage	tracing,	

and	the	trajectory	is	indicative	of	transcriptional	gradients,	but	does	not	have	any	enforced	

directionality.	 Therefore,	 one	 can	 reasonably	 hypothesize	 bidirectionality	 or	 multiple	

progenitor	cell	types	transitioning	into	the	same	terminal	state,	or	even	to	reinterpret	the	

trajectory	 as	 the	 effect	 of	 signaling	 gradients	 rather	 than	 lineage	 relationships	 if	 their	

biological	understanding	permits	 it.	A	way	to	refine	this	analysis	 for	unbiased	hypothesis	

generation	in	future	studies	would	be	to	add	RNA	velocity,	which	overlays	directionality	to	
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a	dimensionality	reduction	based	on	the	ratio	of	spliced	and	unspliced	RNA	transcripts	for	

each	gene	across	the	transcriptome.43,44	By	doing	this,	we	can	estimate	where	a	cell	is	“going”	

or	 where	 it	 has	 arrived	 from	 since	 nascent,	 or	 unspliced	 RNA	 capture	 may	 indicate	 an	

increase	in	the	transcription	of	a	given	gene,	and	vice	versa	for	repression.	Since	the	method	

is	 orthogonal	 to	 our	 Monocle2	 analysis,	 meaning	 that	 it	 works	 off	 an	 entirely	 separate	

element	 of	 the	 data	 (in	 this	 case,	 the	 spliced	 or	 unspliced	 reads	 rather	 than	 the	 simple	

mapped	gene	expression	profiles),	it	would	facilitate	new	interpretations	of	the	data	without	

the	need	for	new	functional	data.		

We	can	also	retrospectively	alter	our	hypotheses	in	light	of	new	functional	studies,	

while	preserving	our	scientific	contribution.	Recent	studies	in	the	mouse	mammary	gland	

have	suggested	that	the	hormone	responsive	(Luminal	2)	and	secretory	(Luminal	1)	lineages	

have	 entirely	 separate	 progenitor	 populations172,173.	 If	 we	 assume	 the	 mouse	 mammary	

gland	 and	 human	 breast	 have	 homologous	 progenitor	 populations,	 this	 means	 that	 our	

continuous	 luminal	 trajectory	must	 represent	 a	 non-lineage	 driven	 gradient.	 	 Our	 in	 situ	

analysis	of	Luminal	1	and	Luminal	2	cells	suggest	that	they	are	not	spatially	restricted	(i.e.	

not	simply	ductal	and	lobular),	so	it	would	need	to	be	more	complex	than	a	pseudotime	to	

pseudospace	reinterpretation.	A	recent	pre-print	investigating	the	roles	of	BMI	and	parity	in	

the	human	breast	epithelium	also	using	scRNA-seq	may	give	hints	as	to	other	explanations	

for	our	observed	plasticity.	 In	Murrow	et	al,	2020,	they	find	that	BMI	is	associated	with	a	

decrease	in	the	number	of	hormone	responsive,	Luminal	2	cells,	and	that	parity	decreases	

the	level	of	hormone	responses	in	a	given	Luminal	2	cell51.	Our	dataset	controlled	for	parity,	

so	this	decreased	hormone	response	gradient	is	not	a	likely	explanation	for	our	connected	

luminal	lineages,	but	it	is	possible	that	BMI	or	menstrual	cycle	stage	plays	a	similar	role	in	



 

117 
 

stimuli	response	and	that	we	have	captured	this	in	our	trajectory.	In	the	mouse	mammary	

gland,	studies	have	also	shown	that	cell	cycle	is	altered	during	estrus	and	diestrus	(menstrual	

cycle	associated	hormone	fluctuations),	and	that	this	cycling	phenotype	is	closely	connected	

with	the	expression	of	lineage	markers	in	hormone	responsive	luminal	cells.47,174	Thus,	some	

of	our	captured	differences	between	patients	and	our	smooth	luminal	state	transitions	could	

be	a	consequence	of	natural	menstrual	cycle	variation,	and	future	studies	with	more	patients	

and	better	 annotated	menstrual	 information	 could	 readily	 clarify	 this	 and	 identify	which	

genes	in	our	list	are	most	related	to	these	estrous	differences.	In	summary,	our	trajectory	

and	 gene	 list	 provide	 a	 solid	 foundational	 understanding	 of	 breast	 epithelial	 cell	 state	

relationships	 in	 homeostasis,	 and	 as	 new	 functional	 literature	 appears,	 we	 can	 better	

determine	what	transcriptional	gradient	is	driving	each	possible	branch	and	transition	point	

to	gain	a	wholistic	view	of	the	highly	plastic	breast	epithelium	and	hopefully,	translate	this	

information	into	a	better	understanding	of	the	changes	that	occur	in	the	cancer	setting.	

	

Biomarkers	of	micrometastasis	in	triple-negative	breast	cancer	

	 In	 Chapter	 3,	 we	 presented	 our	 work	 on	 scRNA-seq	 of	 matched	 tumor	 and	

micrometastatic	 cells	 from	 triple-negative	 breast	 cancer	 patient-derived	 xenografts.	 We	

used	 this	 dataset	 to	 investigate	 inter	 and	 intra-tumoral	 heterogeneity	 and	 identify	

differences	between	primary	tumor	and	micrometastatic	transcriptomes.	A	standard	tobit	

test,	 controlled	 for	 patient	 differences,	 revealed	 330	 genes	 significantly	 differentially	

expressed	 between	 tumor	 and	micrometastatic	 cells	 conserved	 across	 our	 three	 patient	

models,	though	we	discovered	that	some	of	these	genes	were	still	heavily	skewed	towards	

patient	 subsets.	 Therefore,	we	 added	 a	 second	 feature	 selection	 step	 to	 prioritize	 robust	
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biomarkers	of	micrometastasis	by	using	 a	 forward	 selection,	 stepwise	 logistic	 regression	

model	that	identified	LDHA,	BHLHE40,	and	PHLDA2	as	the	most	consistently	predictive	gene	

markers	of	tumor	or	micrometastatic	status	across	individual	cells.	A	model	using	only	these	

three	gene	to	predict	our	data	labels	was	accurate	~75%	of	the	time.	This	model	also	trended	

towards	the	misidentification	of	tumor	cells	as	micrometastatic	cells,	which	may	suggest	rare	

cells	in	the	primary	tumor	are	transcriptionally	primed	to	metastasize.	This	observation	held	

true	when	we	used	RNAscope	to	identify	PHLDA2	mRNA	in	situ,	which	found	that	almost	all	

micrometastatic	 cells	 highly	 expressed	 PHLDA2	 while	 only	 rare	 tumor	 cells	 showed	

comparable	 levels	 of	 expression.	 We	 also	 validated	 that	 PHLDA2,	 and	 BHLHE40	 had	

prognostic	utility	for	relapse-free	survival	(RFS)	in	a	large	cohort	of	publicly	available	data	

from	 breast	 cancer	 patients.	 From	 this,	 we	 discovered	 that	 stratifying	 patients	 for	 high	

PHLDA2	 and	 low	 BHLHE40	 in	 their	 primary	 tumor	 had	 a	 hazard	 ratio	 of	 1.55	 for	 RFS,	

suggesting	that	the	combination	of	these	two	genes	may	be	useful	biomarkers	of	tumors	with	

a	high	potential	for	metastatic	invasion	and	seeding.		

	 The	major	novelty	of	our	approach	was	the	addition	of	the	forward	selection,	logistic	

regression	model	on	top	of	the	tobit	differential	expression	test.	We	found	that	this	forced	us	

to	prioritize	 genes	with	 low	dropout	 and	helped	us	build	 a	 simple	predictive	model	 that	

performed	quite	well	in	label	prediction.		Forward	selection	also	enforces	uncorrelated	gene	

sets,	 which	 indicates	 that	 LDHA,	 PHLDA2,	 and	 BHLHE40	 represent	 separate	 pathway	

markers.	PHLDA2	 is	 less	studied	than	BHLHE40,	but	 they	are	suggested	to	have	opposing	

effects	on	tumor	invasiveness98,99,	while	LDHA	is	primarily	known	for	its	role	in	glycolysis175.	

Based	on	PHLDA2’s	other	suggested	role	in	improving	xenograft	engraftment,	it	may	be	part	

of	 an	 uncharacterized	 stress-response	 pathway,	 which	 would	 be	 consistent	 with	 other	
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observed	stress-related	gene	expression	profiles	in	micrometastatic	cells	(e.g.	HSPA8,	SOD1).	

Further,	 micrometastatic	 cells	 are	 far	 more	 epithelial-like	 transcriptionally	 than	 their	

primary	tumor	counterparts	(i.e.	they	express	more	epithelial	markers	like	EPCAM,	KRT14,	

KRT16)	 and	 overall,	 EMT	 appears	 upregulated	 in	 primary	 tumors	 compared	 to	

micrometastatic	cells,	so	the	invasive	role	of	PHLDA2	may	not	be	the	major	reason	for	its	

upregulation	 in	distal	micrometastases.	Thus,	one	biological	 interpretation	of	our	 logistic	

regression	model	is	that	successful	micrometastatic	cells	must	downregulate	glycolysis	and	

invasiveness	 repressors	 and	 upregulate	 their	 stress	 responses	 to	 remain	 alive	 after	

intravasation	and	extravasation	into	the	lung	and	lymph	nodes.	Importantly,	in	tandem	with	

their	 downregulated	 glycolysis,	 our	 work	 showed	 that	 micrometastatic	 cells	 must	

upregulate	OXPHOS	and	inhibiting	their	ability	to	do	so	decreases	metastatic	burden,	though	

this	 transcriptional	pattern	was	not	specifically	captured	 in	our	 logistic	regression	model	

and	may	 represent	 an	 important	 pitfall	 of	 our	method.	 Namely,	 using	 forward	 selection,	

logistic	regression	on	scRNA-seq	data	is	slightly	too	conservative	in	terms	of	gene	selection,	

so	key	pathways	can	be	missed	and	this	possibility	should	be	separately	investigated	using	

the	first-pass	differential	expression	data.		

While	it	is	vital	to	follow	up	on	the	mechanistic	roles	of	PHLDA2	in	micrometastasis	

with	 perturbation	 experiments,	 it	 is	 notable	 that	 this	 gene	 was	 not	 the	 only	 marker	 of	

micrometastasis	we	identified	with	prognostic	utility	from	our	initial	tobit	test.		In	fact,	15	of	

the	 top	 20	 genes	 shown	 to	 be	 upregulated	 in	 micrometastatic	 cells	 were	 found	 to	

significantly	predict	poor	RFS	in	Basal	like	breast	cancers	based	on	KM	Plotter	data	(result	

published,	but	not	directly	shown	in	chapter)56.	A	recent	pre-print	from	Ma	&	Hernandez	et	

al,	developed	a	novel	culture-transplant	system	using	two	of	the	patient-derived	xenograft	
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models	from	our	study	(HCI002,	HCI010),	which	allows	for	the	perturbation	of	specific	genes	

in	these	tumors	to	investigate	their	functional	consequences176.	In	this	pre-print,	they	also	

investigated	the	role	of	one	of	these	top	markers	of	micrometastasis,	NME1,	and	found	that	

its	overexpression	resulted	in	increased	lung	metastasis	after	orthotopic	transplant,	but	no	

changes	in	primary	tumor	size	in	patient	HCI010,	indicating	a	function	for	this	gene	in	either	

invasiveness	or	metastatic	survival	176.	This	culture	system	can	and	should	be	used	to	further	

investigate	the	function	of	our	other	micrometastatic	markers	(e.g.	PHLDA2)	as	well	as	our	

tumor	markers	(e.g.	BHLHE40),	since	it	can	help	us	deconvolve	their	pathway	associations	

and	 roles	 in	 the	 metastatic	 cascade.	 For	 pathway	 analysis,	 we	 can	 perform	 either	

overexpression	or	knockdown	of	individual	genes	in	our	tumors	cells,	and	utilize	bulk	RNA-

sequencing	 to	 see	 how	 the	 330	 genes	 identified	 in	 our	 screen	 change	 as	 a	 result.	 To	

determine	the	role	of	a	given	gene	in	the	cascade,	we	can	also	take	advantage	of	circulating	

tumor	cell	(CTC)	numbers	by	flow	cytometry	to	determine	whether	intravasation	improved,	

distant	 metastasis	 numbers	 by	 flow	 cytometry	 to	 determine	 whether	 extravasation	

improved,	and	use	proliferation	markers	(e.g.	in	situ	stains	for	Ki67)	to	determine	whether	

outgrowth	capabilities	improved.	By	using	mouse	models	with	or	without	NK	cells	(e.g.	NOD	

SCID	vs	NSG	mice),	we	can	also	better	understand	which	of	our	identified	genes	facilitated	

immune	evasion	in	our	described	chapter,	which	utilized	NOD	SCID	mice	who	retained	their	

NK	 cells	 and	 had	 a	 far	 lower	 metastatic	 burden	 than	 the	 NSG	 mice	 used	 in	 the	

aforementioned	pre-print.	Overall,	the	core	330	differentially	expressed	genes	provide	a	rich	

starting	 point	 for	 investigations	 into	 the	 metastatic	 cascade,	 and	 our	 logistic	 regression	

methodology	offers	another	way	of	probing	into	the	central	features	of	micrometastasis.	Our	
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unique	methodology	can	also	be	extended	for	use	on	other	scRNA-seq	datasets,	where	we	

believe	it	will	perform	a	similarly	useful	function.	

	

Microglia	responses	to	breast	cancer	brain	metastasis	

	 In	Chapter	4,	we	discussed	our	work	on	the	response	of	microglia	to	breast	cancer	

brain	 metastasis	 (BCBM)	 using	 scRNA-seq	 on	 a	 series	 of	 mouse	 models	 to	 uncover	 the	

consequences	of	these	responses.	Using	the	Foxn1nu/nu	immunocompromised	mouse	model	

with	human	231BR	triple-negative	breast	cancer	cells,	we	identified	a	strong	global	M1-like,	

pro-inflammatory	microglial	response.	We	validated	three	key	markers	of	microglia	at	the	

protein	level,	one	for	type	I	interferon	response	(BST2),	and	two	for	antigen	presentation	

(CD74,	MHC-II)	in	the	Foxn1nu/nu	model,	as	well	as	two	immunocompetent	mouse	models	of	

BCBM,	 4T1-BALB/c	 and	 EO771-C57BL/6.	 Generally,	 this	 analysis	 validated	 that	 CD74	 is	

upregulated	 specifically	 in	 tumor-proximal	 microglia,	 and	 that	 the	 major	 antigen	

presentation	and	type	I	interferon	responses	are	conserved,	but	heterogeneously	expressed,	

in	all	mice	with	BCBM.	Delving	deeper	into	our	scRNA-seq	data,	we	identified	the	microglia	

most	likely	to	be	tumor-proximal	using	an	iterative	scoring	and	subclustering	method,	and	

found	that	these	microglia	had	five	major	states,	namely	proliferative	(Cycling),	cytokine	and	

exosome	 secreting	 (Secretory),	 glycolytic	 (Glycolytic),	 interferon	 responsive	 (IFN	

responsive)	,	and	antigen	presenting	(APC).	To	ensure	these	behaviors	were	not	exclusive	to	

mouse	microglia,	we	next	performed	scRNA-seq	on	an	 immunocompromised,	humanized	

mouse	model	of	BCBM	(231BR-MITRG)	which	allowed	us	to	investigate	responses	of	human	

microglia	 to	 human	 breast	 cancer	 cells.	 The	 human	microglia	 from	 this	model	 had	 fully	

analogous	responses	to	BCBM	as	our	Foxn1nu/nu	model,	and	gene	scoring	demonstrated	that	
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our	mouse-derived	gene	signatures	can	be	directly	applied	to	human	microglia	to	determine	

their	state.	Finally,	we	utilized	an	immunocompetent	mouse	model	of	BCBM	with	a	stable	

genetic-depletion	of	microglia	(EO771-FIRE-WT/FIRE-KO)	to	demonstrate	 that	microglial	

depletion	 results	 in	 worse	 tumor	 outcomes	 (decreased	 tumor	 regression	 and	 increased	

morbidity),	suggesting	that	the	pro-inflammatory	behaviors	of	microglia	in	BCBM	have	the	

anti-tumor	role	we	had	hypothesized.		

	 A	major	question	that	still	needs	to	be	addressed	in	this	study	is	the	specific	roles	for	

each	 microglia	 state,	 as	 well	 as	 their	 temporal	 relationships	 during	 BCBM	 progression.	

Tumor	 associated	macrophages	 (TAMs)	 are	 thought	 to	 change	 in	 character	 from	 tumor-

suppressive	to	 tumor-promoting	throughout	the	course	of	 tumor	progression64,177.	 In	our	

BCBM	models,	tumor	progression	is	relatively	fast	(~three-four	weeks),	but	since	the	disease	

progression	 is	 consistent,	we	could	collect	 scRNA-seq	data	 from	microglia	at	a	 two-week	

timepoint	to	represent	“early”	responses.	The	tumor-proximal	microglia	would	be	quite	rare	

at	 two	 weeks	 since	 tumors	 are	 much	 smaller	 on	 average,	 so	 microdissection	 may	 be	

necessary	before	sorting	to	enrich	for	microglia	of	interest.	Additionally,	we	can	investigate	

the	in	situ	expression	of	our	microglia	state	marker	genes	using	RNAscope	to	both	validate	

that	our	populations	are	tumor-proximal	and	to	give	a	rough	timeline	for	when	they	become	

enriched	 in	 the	 brain.	 A	 less	 robust	way	 to	 investigate	 the	 temporal	 relationships	 of	 the	

microglia	states	would	be	to	use	pseudotime	analysis,	overlayed	with	RNA	velocity	to	see	the	

movement	 from	 one	 state	 to	 another.	 This	 would	 not	 necessarily	 be	 appropriate	 for	

addressing	tumor	education	since	all	of	the	microglia	are	present	in	highly	tumor	burdened	

brains,	 but	 it	 could	 elucidate	 which	 states	 arise	 from	 other	 states	 within	 the	 tumor	

microenvironment	 (e.g.	 Secretory	 microglia	 may	 phagocytose	 breast	 cancer	 cells,	 and	
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transition	into	APC	microglia).	Using	either	new	data	or	new	analyses,	we	could	also	begin	

to	address	 the	 functional	roles	of	each	microglia	state.	We	have	already	named	microglia	

based	on	what	we	expect	their	phenotypes	and	functions	to	be,	and	we	have	proposed	some	

of	 the	 environmental	 factors	 that	 may	 drive	 these	 phenotypes	 (e.g.	 type	 I	 interferon	 or	

interferon	gamma),	but	we	have	not	validated	that	these	transcriptome	profiles	correspond	

to	the	proposed	functions.	This	follow	up	could	be	quite	extensive,	but	a	few	simple	options	

could	be	to	co-culture	a	microglia	cell	 line	with	231BR	cells	 to	 identify	states	 that	do	not	

require	 the	 larger	 immune	 context	 (i.e.	 direct	 tumor	 influences),	 or	 to	 test	 antigen	

presentation	 in	vitro	using	a	T	cell	activation	assay	with	microglia	purified	from	tumor	or	

non-tumor	bearing	brains.		

	 On	 the	 topic	 of	 immune	 contexts,	 it	 would	 be	 interesting	 to	 investigate	 how	 the	

microglia	 states	 we	 identified	 shift	 in	 tumor	 rejection	 or	 tumor	 promoting	

microenvironments.		As	mentioned	in	our	chapter,	BALB/c	mice	are	thought	to	have	Th2,	or	

tumor	 promoting	 immunity,	 while	 C57BL/6	 mice	 are	 thought	 to	 have	 Th1,	 or	 tumor	

suppressive	 immunity178.	 Our	 protein	 expression	 data	 suggests	 that	 BALB/c	 mounts	 a	

weaker	immune	response	to	4T1s	than	C57BL/6	mounts	to	EO771	since	BALB/c	mice	have	

lower	frequencies	of	microglia	with	MHC-II	and	BST2,	and	show	no	significant	enrichment	

of	CD74.	This	suggests	that	BALB/c	mice	may	lack	APC	microglia	(since	CD74	is	a	primary	

marker	of	this	population)	which	could	result	in	an	unproductive	tumor-rejection	response.	

It	would	be	highly	informative	to	collect	the	full	immune	repertoires	of	both	the	4T1-BALB/c	

and	EO771-C57BL/6	with	scRNA-seq	by	sorting	tumor	bearing	and	naïve	brains	for	CD45,	

which	appeared	effective	in	the	EO771-FIRE	model.	This	data	may	help	us	determine	how	

immune	infiltration	influences	the	microglia	states	we	see	in	our	other	BCBM	models	and	
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could	 also	 clarify	 which	 microglia	 states	 are	 enriched	 in	 productive	 and	 unproductive	

immune	responses.	This	information	will	be	important	in	patient	contexts	as	well,	since	it	is	

likely	that	human	genetics	plays	a	similar	role	in	their	tumor	responsiveness,	and	patient	

stratification	is	key	for	effective	immunotherapy.		

	

Final	remarks	

	 Each	of	 the	projects	 investigated	 in	 this	work	were	on	a	unique	biological	 system	

(healthy	breast	epithelium,	triple-negative	breast	tumor	micrometastasis,	and	microglia	in	

BCBM)	but	a	few	observations	remained	context	independent.	ScRNA-seq	has	allowed	us	to	

investigate	cell	state	heterogeneity	at	a	scale	previously	intractable,	and	what	has	appeared	

is	actually	a	high-degree	of	conservation.	Specifically,	while	cells	have	many	substates	during	

differentiation,	as	well	as	within	and	around	tumors,	the	possible	states	are	the	mostly	same	

across	 individuals,	 and	 only	 the	 proportion	 of	 cells	 in	 each	 state	 differ.	 This	 is	 not	 too	

dissimilar	 to	our	understandings	of	 cell	 types	and	suggests	 that	 consortium	projects	 that	

seek	to	define	these	cell	states	across	many	individuals,	 like	the	Human	Cell	Atlas,	will	be	

successful	in	creating	a	generalizable	database	from	only	a	few	hundred	patient	samples.	We	

also	demonstrated	that	a	lot	can	be	gained	from	scRNA-seq	data	by	adding	question-driven	

heuristics	into	a	standard	analysis	pipeline.	In	the	breast	epithelium,	this	meant	generalizing	

lineage	trajectories	across	patients;	in	our	PDX	models	of	micrometastasis,	this	meant	using	

a	 predictive	model	 to	 find	 conserved	 and	 uncorrelated	 gene	markers	 of	micrometastatic	

cells;	 and	 in	microglia,	 this	meant	 using	 pseudo-bulk	 data	 to	 predict	 tumor-proximity	 to	

assess	 heterogeneity	 during	 BCBM.	 These	 methodologies	 led	 to	 the	 creation	 of	 novel,	

systems-level	hypotheses,	which	are	consistent	with	our	current	understanding	of	biology	
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but	remain	able	to	be	meaningfully	reinterpreted	as	new	understandings	arise.	Even	with	

careful	attention	to	the	literature,	it	is	highly	unlikely	that	all	of	the	hypotheses	presented	

here	 will	 hold	 true	 but	 our	 hope	 is	 that	 the	 observations	 and	 methodologies	 we	 have	

presented	here	will	have	enough	clarity	and	accuracy	to	serve	as	a	foundation	on	which	even	

better	hypotheses	can	be	built	in	the	future.		
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APPENDIX	A:	Combined	ordering	genes	for	human	breast	epithelial	

trajectory	inference	

Table	provides	list	of	genes	used	as	input	for	a	combined	Monocle2	trajectory	across	human	

breast	 epithelial	 cell	 states	 (Related	 to	 Fig	 2.5A).	 Gene	 module	 clusters	 (based	 on	

correlations)	and	the	most	common	cell	state	association	for	each	set	of	module	genes	are	

also	included	for	reference.		

Gene	 Module	 Top	cell	state	
associations	for	module	 Gene	 Module	 Top	cell	state	

associations	for	module	

TPM2	 1	 Basal/Myoepithelial	 TUBB6	 8	 Basal/Myoepithelial	
TP63	 1	 Basal/Myoepithelial	 SFN	 8	 Basal/Myoepithelial	
TAGLN	 1	 Basal/Myoepithelial	 PRMT1	 8	 Basal/Myoepithelial	
SPARCL1	 1	 Basal/Myoepithelial	 MRPS6	 8	 Basal/Myoepithelial	
SPARC	 1	 Basal/Myoepithelial	 KRT5	 8	 Basal/Myoepithelial	
S100A2	 1	 Basal/Myoepithelial	 ITGB1	 8	 Basal/Myoepithelial	
MYLK	 1	 Basal/Myoepithelial	 IL24	 8	 Basal/Myoepithelial	
MYL9	 1	 Basal/Myoepithelial	 IL20	 8	 Basal/Myoepithelial	
MT2A	 1	 Basal/Myoepithelial	 GSTP1	 8	 Basal/Myoepithelial	
MT1X	 1	 Basal/Myoepithelial	 GSTO1	 8	 Basal/Myoepithelial	
MT1E	 1	 Basal/Myoepithelial	 GAS6	 8	 Basal/Myoepithelial	
MT1A	 1	 Basal/Myoepithelial	 FHL2	 8	 Basal/Myoepithelial	

MRGPRX3	 1	 Basal/Myoepithelial	 FBXO2	 8	 Basal/Myoepithelial	
KRT17	 1	 Basal/Myoepithelial	 DRAP1	 8	 Basal/Myoepithelial	
KRT14	 1	 Basal/Myoepithelial	 CD82	 8	 Basal/Myoepithelial	
IGFBP7	 1	 Basal/Myoepithelial	 CAV1	 8	 Basal/Myoepithelial	
IGFBP6	 1	 Basal/Myoepithelial	 AREG	 8	 Basal/Myoepithelial	
IGFBP4	 1	 Basal/Myoepithelial	 ACTN1	 8	 Basal/Myoepithelial	

IGFBP2	 1	 Basal/Myoepithelial	 TM4SF1	 3	 Mixed	Luminal	
ID1	 1	 Basal/Myoepithelial	 MUC1	 3	 Mixed	Luminal	
FEZ1	 1	 Basal/Myoepithelial	 EPCAM	 3	 Mixed	Luminal	
DST	 1	 Basal/Myoepithelial	 DAPP1	 3	 Mixed	Luminal	

CALML3	 1	 Basal/Myoepithelial	 CIB1	 3	 Mixed	Luminal	
CALD1	 1	 Basal/Myoepithelial	 ATP1B1	 3	 Mixed	Luminal	

BHLHE41	 1	 Basal/Myoepithelial	 POLR2L	 7	 Unknown/Unclassified	
APOE	 1	 Basal/Myoepithelial	 ATP5G1	 7	 Unknown/Unclassified	



 

147 
 

AKR1B1	 1	 Basal/Myoepithelial	 CYCS	 5	 Unknown	

TPT1-AS1	 9	 Luminal	1.1	 TSPAN1	 4	 Luminal	2	
SERPINB7	 9	 Luminal	1.1	 TNFSF10	 4	 Luminal	2	
SERPINB4	 9	 Luminal	1.1	 TFPI	 4	 Luminal	2	
SERPINB3	 9	 Luminal	1.1	 STC2	 4	 Luminal	2	
SAA2	 9	 Luminal	1.1	 S100P	 4	 Luminal	2	
S100A8	 9	 Luminal	1.1	 PTGR1	 4	 Luminal	2	
RCAN1	 9	 Luminal	1.1	 ORM1	 4	 Luminal	2	
RARRES1	 9	 Luminal	1.1	 LIMCH1	 4	 Luminal	2	
PROM1	 9	 Luminal	1.1	 HSPB1	 4	 Luminal	2	
PHLDA1	 9	 Luminal	1.1	 GOLM1	 4	 Luminal	2	
OVOS2	 9	 Luminal	1.1	 EFHD1	 4	 Luminal	2	
OLFM4	 9	 Luminal	1.1	 EDN1	 4	 Luminal	2	
NDRG2	 9	 Luminal	1.1	 DNAJC12	 4	 Luminal	2	
MESP1	 9	 Luminal	1.1	 CD99	 4	 Luminal	2	
MALL	 9	 Luminal	1.1	 C8orf4	 4	 Luminal	2	
LTF	 9	 Luminal	1.1	 ANKRD30A	 4	 Luminal	2	
GLRX	 9	 Luminal	1.1	 AGR2	 4	 Luminal	2	

GABRP	 9	 Luminal	1.1	 SMS	 2	 Luminal	1.2	
FDCSP	 9	 Luminal	1.1	 HSPA1A	 2	 Luminal	1.2	
CXCL17	 9	 Luminal	1.1	 CCND1	 2	 Luminal	1.2	

ANKRD36C	 9	 Luminal	1.1	 C4orf48	 2	 Luminal	1.2	

ALDH1A3	 9	 Luminal	1.1	 	   
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APPENDIX	B:	Gene	signatures	for	BCBM-R	microglia	subpopulations	

Table	provides	marker	genes	for	BCBM-R	microglia	subpopulations	(excluding	Cycling)	from	

Foxn1nu/nu	data	compared	to	all	other	myeloid	cells	from	mice	with	BCBM,	translated	to	their	

human	equivalents	using	biomaRt	in	R.	Related	to	Fig	4.5.1.		

APC	 IFN	Responsive	 Secretory	 Glycolytic	

ISG15	 ID2	 ISG15	 CD52	 MT-ATP6	 CXCL16	 TMSB4Y	
MT-CO1	 BST2	 IFI44L	 RHOC	 ISG15	 RPL26	 RPS18	
CD52	 P2RY14	 TOR3A	 PRDX1	 MT-ND1	 RPL35A	 AIF1	
VCAM1	 CD300LF	 GBP2	 CSF1	 ENO1	 UQCR11	 COX7A2	
GBP2	 CCL2	 IFI44	 RGS1	 RPL22	 SNRPG	 RPS4X	
FCGR3A	 ITGB2	 FCGR1B	 CH25H	 RPL11	 RPL23	 EIF3E	
FCGR3B	 SLFN12	 FCGR1A	 ATF3	 CD52	 CST7	 PABPC1	
GBP6	 SLFN12L	 MNDA	 SLC15A3	 UQCRHL	 RPS15	 RPL8	
MNDA	 CD86	 IFIT2	 RNF121	 RPS8	 CCL5	 RPS14	
IFI44L	 ICAM1	 IFIT3	 RAB7B	 GNG5	 CCL7	 	CXCL13	
IFI44	 CCL4	 IFITM2	 CTSD	 GBP2	 HMOX1	 	ATP5MF	
TOR3A	 CCL4L2	 IFITM1	 LDHA	 AKR1A1	 TSPO	 		
SLAMF8	 CD33	 IFITM3	 HCAR2	 PRDX1	 RPS19	 		
PRDX1	 SIGLEC6	 TRIM5	 HCAR3	 UQCRH	 SPP1	 		
MS4A6A	 ZBP1	 IRF7	 TNFRSF12A	 RPS13	 EEF2	 		
MS4A6E	 CXCL10	 UBE2L6	 CADM1	 EEF1G	 RPL32	 		
SRGN	 C19orf38	 IFIT1B	 ALDOA	 FAU	 SELENOW	 		
IFIT1B	 APOE	 HCAR2	 LGALS3	 EIF5AL1	 RPL38	 		
IL18BP	 LGALS3BP	 HCAR3	 CD63	 PGAM1	 TMSB10	 		
IFIT2	 CXCL9	 PHF11	 PKM	 EIF3F	 RPS3A	 		
PRDX5	 STAT1	 STAT2	 CD9	 RPS3	 RPL22L1	 		
CH25H	 CD40	 MX1	 RPS2	 RPLP2	 RPL24	 		
PSAP	 SLFN5	 LGALS3BP	 C3AR1	 ATP5F1C	 RPL19	 		
LDHA	 TLR2	 CXCL10	 CST7	 COX8A	 RTCB	 		
IRF7	 ARL5C	 PARP14	 MT1G	 PRDX5	 CXCL9	 		
IFITM2	 RPL19	 SP140	 PLEK	 LDHA	 COX7C	 		
IFITM1	 RSAD2	 CCL4	 CCRL2	 IRF7	 RPL36	 		
IFITM3	 NAAA	 CCL4L2	 CCL15-CCL14	 IFITM2	 COTL1	 		
IFIT3	 SAMHD1	 ZBP1	 CCL15	 IFITM1	 RPL18A	 		
CD69	 CCL18	 IFI35	 CCL23	 IFITM3	 RPS21	 		
CD63	 CCL3	 XAF1	 CSTB	 SERF2	 COX6B1	 		
RPS2	 CCL3L1	 CCL18	 ANKH	 NACA	 COPS9	 		
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B2M	 CCL3L3	 CCL3	 CD14	 ATP5F1B	 RPL34	 		
COX6A2	 USP18	 CCL3L1	 FTL	 RPL21	 RPL28	 		
ALDOA	 USP41	 CCL3L3	 CAPG	 COX6A2	 HINT1	 		
PSME1	 CCRL2	 SLFN5	 APOE	 SLC25A3	 RPL31	 		
ITGAX	 IL1B	 USP18	 CCL18	 RPS2	 RPS28	 		

SERPINA3	 NFE2L2	 USP41	 CCL3	 CD63	 GPI	 		
PKM	 TAP2	 CCL2	 CCL3L1	 RPL4	 ZBP1	 		
LAG3	 IL2RG	 EIF2AK2	 CCL3L3	 PFDN5	 EIF5A	 		
CTSC	 TAP1	 TSPO	 NCEH1	 PSME2	 APOE	 		
NPC2	 HLA-DQB1	 CMTM8	 OSM	 ELOB	 COX7A2L	 		
LGALS3	 HLA-DQB2	 RTP4	 IL1B	 NPC2	 COX4I1	 		
STAT2	 LPL	 SLFN12	 TLR2	 RPL6	 RPL29	 		
PSME2	 HLA-DMB	 SLFN12L	 HMOX1	 PSME1	 RPL37	 		
HCAR2	 TAPBP	 STAT1	 C5AR1	 TPT1	 LGALS3BP	 		
HCAR3	 CRLF2	 CCL8	 CCL4	 ALDOA	 UQCRQ	 		
BCL2A1	 C4A	 BST2	 CCL4L2	 B2M	 RPL3	 		
PHF11	 C4B	 DHX58	 EIF4A1	 RPS17	 RPS27A	 		
CSTB	 CD36	 HERC6	 MFSD12	 RPS25	 ATP5F1E	 		
CCL8	 CSF2RA	 IRGM	 SPP1	 ATP5MG	 C19orf38	 		
MIF	 HLA-DOA	 LY6E	 GNAS	 GATM	 COX7B	 		

CXCL16	 FGL2	 FGL2	 RPL32	 LGALS3	 RPL12	 		
SLC11A1	 CD83	 		 CXCL16	 PKM	 EIF3H	 		
CXCL13	 CD72	 		 LGALS1	 RPL18	 CD72	 		
SELENOW	 CD274	 		 PLAUR	 TBCA	 RPS6	 		
GRN	 CD74	 		 PLD3	 FTL	 PSMB1	 		
RPS19	 ASS1	 		 ID2	 BST2	 ASS1	 		
TSPO	 CYBB	 		 MIF	 RPL14	 CD74	 		
SPP1	 TNF	 		 GADD45B	 RPS5	 RPL7	 		
HMOX1	 PIM1	 		 CTSZ	 AXL	 ATOX1	 		
PARP14	 CTSB	 		 PMP22	 RPS16	 COX6C	 		
CCL7	 IRGM	 		 RPL12	 EIF3K	 PSMB8	 		
CCL5	 CDKN1A	 		 RPL35	 EEF1B2	 RPL35	 		
CST7	 PSMB8	 		 TNF	 UBA52	 RPL30	 		
RPL32	 HLA-DMA	 		 LPL	 RPL13	 RACK1	 		
RPS5	 PGK1	 		 CD83	 RPS9	 RPL36A	 		
CTSZ	 	FTL	 		 CTSB	 ATP5MGL	 PGK1	 		
C3	 		 		 IER3	 CCL8	 TXN	 		
AXL	 		 		 SERPINE1	 MIF	 HLA-DQB1	 		
IL1RN	 		 		 FAM20C	 CSTB	 HLA-DQB2	 		

	




