Title
Stereospecific Oxidative Demetallation of Highly Functionalized CpCo(1,3-Diene) Complexes: An Experimental and Computational Study

Permalink
https://escholarship.org/uc/item/92v649dt

Journal
Synlett, 26(16)

ISSN
0936-5214

Authors
Holland, Ryan
O'Connor, Joseph
Bunker, Kevin
et al.

Publication Date
2015-10-01

DOI
10.1055/s-0035-1560092

Peer reviewed
Stereospecific Oxidative Demetallation of Highly Functionalized CpCo(1,3-Diene) Complexes: An Experimental and Computational Study

Ryan L. Holland
Joseph M. O’Connor* a
Kevin D. Bunker a,1
Pengjin Qin a
Stephen K. Cope a
Kim K. Baldridge a,b
Jay S. Siegel a,c

a Department of Chemistry and Biochemistry (0358), University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0358, USA
jmoconnor@ucsd.edu
b Institute of Organic Chemistry, University of Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
kimb@oci.uzh.ch
c School of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Road, Nankai District, Tianjin, P. R. of China

Kudos to Professor K. Peter C. Vollhardt for his 25 years of innovative contributions to SYNLETT

Received: 03.05.2015
Accepted after revision: 13.07.2015
Published online: 24.08.2015

Abstract
Three diastereomers of a highly functionalized tetrasubstituted cyclopentadienylcobalt–diene complex, (Cp)Co[CH(CO2Et)=C(SO2Ph)C(SiMe3)=CH(CO2Et)] (4-ZE, 4-EZ, 4-ZZ; Cp = C5H5), undergo oxidative demetallation by ceric ammonium nitrate (CAN) to give the corresponding metal-free dienes, CH(CO2Et)=C(SO2Ph)C(SiMe3)=CH(CO2Et) (5-ZE, 5-EZ, 5-ZZ), with retention of configuration. The oxidation of 4-ZE by iodine occurs with a different stereoselectivity than that observed with CAN, to provide the fourth diastereomer 5-EE in high yield. B97D/Def2-TZVPP(CH2Cl2) calculations predict the diene free-energy ordering as: 5-EE < 5-ZE < 5-EZ < 5-ZZ.

Key words cobalt, diene, oxidation, computation, demetallation

Cyclopentadienylcobalt-mediated conversions of alkynes to diene complexes occupy a privileged position in the development of metal–diene chemistry. First reported in 1970 by Yamazaki,2 and ingeniously developed for the synthesis of complex molecules by Vollhardt and others,3–15 CpCo–alkyne complexes play a central role in an impressive array of alkyne to cobalt-η4-diene conversions (Scheme 1).

Ideally, oxidative diene demetallation, for example by cerium(IV), copper(II), or iron(III),11–14 cleanly separates the CpCo from the diene fragment and yields useful products for organic synthesis. Such is the typical case for CpCo–cyclohexadiene11 and CpCo–cyclopentadiene12 complexes, although overoxidation to form aromatic products may occur.8,12 Oxidative demetallation of acyclic diene complexes6,12 may result in cis-trans isomerization.8

Cp(PPh3)Co(TMSC=CSO2Ph) (3; Cp = C5H5) reacts with ethyl diazoacetate to form the highly functionalized tetra-substituted diene complexes 4-ZE, 4-EZ, and 4-ZZ in a 3:1:6 ratio, with no evidence for formation of 4-EE (Scheme 2).10,14 Heating a benzene solution of 4-ZE at 70 °C results in an ca. 30:1 equilibrium mixture of 4-EZ/4-ZE without formation of 4-ZZ; 4-ZZ is thermally and photochemically inert. This stereoselective isomerization at the diene termini of 4-ZE is presumably coupled mechanistically to a switch of the metal from one face of the diene to the other.15
Access to 4-ZE, 4-EZ, and 4-ZZ presented an opportunity to explore stereochemical control in the oxidative demetallation of highly functionalized acyclic diene complexes. Oxidation of 4-ZZ (0.022 mmol) was carried out using ceric ammonium nitrate (CAN; 0.673 mmol) in 1:1 acetonitrile–pentane solution at –78 °C.16 Removal of the volatiles after 18 hours at 4 °C followed by chromatographic purification led to the isolation of 5-ZZ in 83% yield (Scheme 3).17 In a similar fashion, 4-EZ and 4-ZE were subjected to oxidative demetallation with CAN to give 5-EZ (84% yield) and 5-ZE (55% yield), respectively. The assigned configuration of the liberated dienes is consistent with a series of NOE studies (55% yield), respectively. The assigned configuration of the TMS hydrogen resonance enhanced the δ = 5.98 but not the 5.80 resonance. A similar experiment for 5-EZ gave a large NOE at the δ = 6.77 resonance (H2), with no NOE at the δ = 5.49 resonance (H5); whereas for 5-ZE, large NOE were observed at both the δ = 6.21 and 6.02 resonances. Thus, oxidative demetallation of all three complexes of 4 liberates the diene ligand with retention of configuration.

In an effort to prepare 5-EE – the diene diastereomer not accessible directly from cobalt–alkyne complex 3 and ethyl diazoacetate – iodine-catalyzed isomerization of 5-ZE was examined by monitoring a CdCl2 solution of 5-ZE, iodine, and ethyl acetate as an internal standard at 38 °C by 1H NMR spectroscopy. After 336 hours, the resonances for 5-ZE were absent and a new set of resonances indicated clean conversion into 5-EE in 92% yield. Access to 5-EE is facilitated by utilizing iodine as oxidant and isomerization catalyst in a one-pot oxidation–isomerization process. Thus, oxidation of 4-ZE with iodine in chloroform at 60 °C led to the clean formation of 5-EE in quantitative yield. Unexpectedly, 5-ZZ and 5-EZ proved to be stable toward iodine-catalyzed isomerization under similar conditions.

B97D/Def2-TZVPP(CH2Cl2) calculations enabled the investigation of relative energy and structural features of the four diastereomers of 5 (Table 1, Figure 1).17 The relative free energies are 5-EE (0 kcal/mol) < 5-ZE (1.49 kcal/mol) < 5-EZ (1.50 kcal/mol) < 5-ZZ (1.92 kcal/mol).19 The computed free energies harmonize with the observed isomerization of 5-ZE to 5-EE by iodine, and suggest that a nonstereospecific oxidative demetallation of 5-ZE, 5-EZ, and 5-ZZ by CAN would have generated significant amounts of 5-EE. The similar and high-free-energy values for 5-ZE and 5-EZ suggest that, in contrast with correlated isomerization between complexes 4-ZE and 4-EZ (cf. Scheme 2), 5-ZE and 5-EZ are more likely to form 5-EE than interconvert with each other. The steric bulk of the phenyl sulfone and trimethylsilyl substituents at C3 and C4, respectively, leads to minimum energy structures in which the S–C3–C4–Si torsion angles are close to 90°: 5-EE-calc (87.1°), 5-ZE-calc (86.1°), 5-EZ-calc (96.1°), and 5-ZZ-calc (92.2°). The barrier to rotation about the C3–C4 bond in 5-ZZ is computationally found to be 18.5 kcal/mol (CH2Cl2), which would indicate an isomerization slow relative to the NMR time scale at room temperature, but still too fast to resolve atropisomers cleanly by normal separation methods at room temperature.
Table 1 Select B97D/Def2-TZVPP(CH2Cl2) Bond Distances (Å), Angles (°), and Relative Energies (kcal/mol) for 5

<table>
<thead>
<tr>
<th>Isomer</th>
<th>5-ZE</th>
<th>5-EZ</th>
<th>5-EE</th>
<th>5-ZZ</th>
<th>TS 5-ZZ/ZZ*</th>
</tr>
</thead>
<tbody>
<tr>
<td>C2–C3</td>
<td>1.337</td>
<td>1.340</td>
<td>1.344</td>
<td>1.337</td>
<td>1.353</td>
</tr>
<tr>
<td>C3–C4</td>
<td>1.480</td>
<td>1.475</td>
<td>1.465</td>
<td>1.486</td>
<td>1.501</td>
</tr>
<tr>
<td>C4–C5</td>
<td>1.350</td>
<td>1.351</td>
<td>1.350</td>
<td>1.352</td>
<td>1.360</td>
</tr>
<tr>
<td>C3–S</td>
<td>1.820</td>
<td>1.839</td>
<td>1.843</td>
<td>1.819</td>
<td>1.838</td>
</tr>
<tr>
<td>C4–Si</td>
<td>1.926</td>
<td>1.941</td>
<td>1.931</td>
<td>1.934</td>
<td>1.967</td>
</tr>
<tr>
<td>S–C3-C4-Si</td>
<td>86.11</td>
<td>96.06</td>
<td>87.08</td>
<td>92.24</td>
<td>–6.65</td>
</tr>
<tr>
<td>C1–C2–C3–S</td>
<td>3.47</td>
<td>–175.76</td>
<td>–174.60</td>
<td>–0.64</td>
<td>13.29</td>
</tr>
<tr>
<td>Si–C4–C5–C6</td>
<td>178.27</td>
<td>–2.29</td>
<td>178.20</td>
<td>–3.58</td>
<td>21.26</td>
</tr>
<tr>
<td>C4–C5–C6–O3</td>
<td>–22.79</td>
<td>1.10</td>
<td>–18.17</td>
<td>3.23</td>
<td>38.41</td>
</tr>
<tr>
<td>relative energy</td>
<td>1.49</td>
<td>1.50</td>
<td>0.0</td>
<td>1.92</td>
<td>20.4 (18.5)*</td>
</tr>
</tbody>
</table>

* Relative to 5-Z.

Figure 1 B97D/Def2-TZVPP(CH2Cl2) calculated ground-state structures for the four diastereomers of 5, plus the TS 5-ZZ/ZZ*. Energies and geometries are listed in Table 1.

The DFT computations predict 5-EZ and 5-EE to have anti-periplanar C3=C2–C1=O and C4=C5–C6=O3 conformations (1.1 to –18.2°), which permits π-delocalization within each α,β-unsaturated ester. In the case of 5-ZE and 5-ZZ, steric congestion between the syn-sulfone and ester substituents disrupts π-delocalization and results in minimum-energy clinal C3=C2–C1=O conformations (–109.4 and –104.5°). A similar steric effect presumably contributes to the thermal isomerization of 4-ZE to 4-EZ (cf. Scheme 2).

Comparison of the experimental NMR and NOE intensities to the computed chemical shifts and closest H(TMS)-H(#) distances provides additional support for the configurational assignments (Scheme 3, Table 2). The minimum average deviation of experimental from calculated shifts for H1 and H2 is δ = 0.27 and 0.49 ppm, respectively. The computed distances between the hydrogens of TMS and H1 and H2 as assigned allowed a threshold value of 3.5 Å for the observation of a NOE; all distances below the threshold correlated with the experimentally observed NOEs; distances above the threshold did not.

Table 2 Experimental and Computed NMR and NOE Data for 5

<table>
<thead>
<tr>
<th>Isomer:</th>
<th>5-ZE</th>
<th>5-EZ</th>
<th>5-EE</th>
<th>5-ZZ</th>
</tr>
</thead>
<tbody>
<tr>
<td>δ H1 exptl</td>
<td>6.02</td>
<td>6.77</td>
<td>6.77</td>
<td>5.98</td>
</tr>
<tr>
<td>δ H1 calcd</td>
<td>6.20</td>
<td>7.15</td>
<td>7.10</td>
<td>6.15</td>
</tr>
<tr>
<td>δ H2 exptl</td>
<td>6.21</td>
<td>5.49</td>
<td>6.11</td>
<td>5.80</td>
</tr>
<tr>
<td>δ H2 calcd</td>
<td>6.51</td>
<td>4.75</td>
<td>6.22</td>
<td>5.01</td>
</tr>
<tr>
<td>δ (TMS-H1)*</td>
<td>2.14</td>
<td>3.57</td>
<td>3.86</td>
<td>3.00</td>
</tr>
<tr>
<td>NOE</td>
<td>yes</td>
<td>yes</td>
<td>–</td>
<td>yes</td>
</tr>
<tr>
<td>δ (TMS-H2)*</td>
<td>2.57</td>
<td>4.61</td>
<td>2.44</td>
<td>4.61</td>
</tr>
<tr>
<td>NOE</td>
<td>yes</td>
<td>no</td>
<td>–</td>
<td>no</td>
</tr>
</tbody>
</table>

* Closest TMS hydrogen to vinyl hydrogen nonbonded distances.

In summary, all four diastereomers of 5 can be obtained selectively, by either direct stereospecific oxidative demetallation of the configurationally correspondent complex of 4 to form 5-ZZ, 5-EZ, and 5-ZE or by stereoselective oxidative demetallation of 4-ZE with iodine to form the thermodynamically favored 5-EE. Such clean processes bode well for the further application of metal-mediated alkyne-to-diene chemistry in organic synthesis.

Acknowledgment

We thank the NSF (grant CHE-121424), the National Basic Research Program of China (2015CB856500), the Qian Ren Scholar Program of China, and the Synergetic Innovation Center of Chemical Science and Engineering (Tianjin), for support of this work.
Supporting Information

Supporting information for this article is available online at http://dx.doi.org/10.1055/s-0035-1560092.

References and Notes

(1) New address: K. D. Bunker, Chief Scientific Officer, Kalyra Pharmaceuticals, Inc. 6181 Cornerstone Ct E, Suite 106, San Diego, CA 92121, USA.
(7) For cobalt-1,3-diene products from two alkenes and an alkyny, see: Wakatsuki, Y.; Aoki, K.; Yamazaki, H. J. Am. Chem. Soc. 1979, 101, 1123.
(14) Acyclic 1,3-diene complexes with two nonhydrogen anti substituents (as in 4-EE) are rare. For two relevant examples, see: Harvey, D. F.; Johnson, B. M.; Ung, C. S.; Vollhardt, K. P. C. Synlett 1989, 15.
(16) Representative Oxidation Procedure
Diene complex ZZ-(η²-C₅H₅)Co[(η⁴-CH₂)Zn]-CH(CO₂Et)] (4-22Z 0.120 g, 0.224 mmol) was dissolved in a 1:1 mixture (20 mL) of MeCN–pentane, and CAN (0.369 g, 0.673 mmol) was added at −78 °C. The reaction was stirred at 4 °C for 18 h. Removal of volatiles, extraction of the residue with benzene, and chromatography (silica gel, 10% EtOAc–hexanes) gave 5-ZZ (76 mg, 83%) as a yellow oil. For representative spectroscopic data see ref. 18.
(17) See Supporting Information for characterization data.
(18) The experimental (CDCl₃) and calculated (CH₃Cl₂) vinyl hydrogen chemical shifts and assignments are as follows. For 5-ZZ: δ = 5.98 (H2; calc 6.04), 5.80 (H5, calc 5.01); for 5-ZE: δ = 6.77 (H2; calc 6.88); 5.49 (H5, calc 4.75); for 5-EE: δ = 6.21 (H2; calc 6.20), 6.02 (H5, calc 6.51); for 5-EE: δ = 6.77 (H2; calc 7.10), 6.11 (H5, calc 6.22).
(19) See Supporting Information for all computational details.