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ARTICLE OPEN

Cellular and Molecular Biology

Aberrant promoter methylation contributes to LRIG1 silencing
in basal/triple-negative breast cancer
Maxine Umeh-Garcia 1,2✉, Henriette O’Geen3, Catalina Simion1, Melanie Hayden Gephart2, David J. Segal 1,3 and
Colleen A. Sweeney 1✉

© The Author(s) 2022

BACKGROUND: LRIG1, the founding member of the LRIG (leucine-rich repeat and immunoglobulin-like domain) family of
transmembrane proteins, is a negative regulator of receptor tyrosine kinases and a tumour suppressor. Decreased LRIG1 expression
is consistently observed in cancer, across diverse tumour types, and is linked to poor patient prognosis. However, mechanisms by
which LRIG1 is repressed are not fully understood. Silencing of LRIG1 through promoter CpG island methylation has been reported
in colorectal and cervical cancer but studies in breast cancer remain limited.
METHODS: In silico analysis of human breast cancer patient data were used to demonstrate a correlation between DNA
methylation and LRIG1 silencing in basal/triple-negative breast cancer, and its impact on patient survival. LRIG1 gene expression,
protein abundance, and methylation enrichment were examined by quantitative reverse-transcription PCR, immunoblotting, and
methylation immunoprecipitation, respectively, in breast cancer cell lines in vitro. We examined the impact of global demethylation
on LRIG1 expression and methylation enrichment using 5-aza-2’-deoxycytidine. We also examined the effects of targeted
demethylation of the LRIG1 CpG island, and transcriptional activation of LRIG1 expression, using the RNA guided deadCas9
transactivation system.
RESULTS: Across breast cancer subtypes, LRIG1 expression is lowest in the basal/triple-negative subtype so we investigated
whether differential methylation may contribute to this. Indeed, we find that LRIG1 CpG island methylation is most prominent in
basal/triple-negative cell lines and patient samples. Use of the global demethylating agent 5-aza-2’-deoxycytidine decreases
methylation leading to increased LRIG1 transcript expression in basal/triple-negative cell lines, while having no effect on LRIG1
expression in luminal/ER-positive cell lines. Using a CRISPR/deadCas9 (dCas9)-based targeting approach, we demonstrate that TET1-
mediated demethylation (Tet1-dCas9) along with VP64-mediated transcriptional activation (VP64-dCas9) at the CpG island,
increased endogenous LRIG1 expression in basal/triple-negative breast cancer cells, without transcriptional upregulation at
predicted off-target sites. Activation of LRIG1 by the dCas9 transactivation system significantly increased LRIG1 protein abundance,
reduced site-specific methylation, and reduced cancer cell viability. Our findings suggest that CRISPR-mediated targeted activation
may be a feasible way to restore LRIG1 expression in cancer.
CONCLUSIONS: Our study contributes novel insight into mechanisms which repress LRIG1 in triple-negative breast cancer and
demonstrates for the first time that targeted de-repression of LRIG1 in cancer cells is possible. Understanding the epigenetic
mechanisms associated with repression of tumour suppressor genes holds potential for the advancement of therapeutic
approaches.

British Journal of Cancer (2022) 127:436–448; https://doi.org/10.1038/s41416-022-01812-8

BACKGROUND
LRIG1 is a member of the “LRIG” family of single-pass transmem-
brane proteins, which also includes LRIG2 and LRIG3 [1, 2]. LRIG1
was identified as a negative regulator of various cell surface
receptors, including ERBB [3, 4], PDGFR-A [5], MET [6], RET [7, 8]
and TRKB [9] receptor tyrosine kinases. In 2012, LRIG1 was
classified as a tumour suppressor, with genetic ablation leading to
increased expression of ErbB receptors and the development of
highly penetrant duodenal adenomas [10]. More recently, LRIG1

was reported to function as a haploinsufficient tumour suppressor
in a PDGF-induced experimental glioma model, in part through
negative regulation of MET [11].
Several studies have demonstrated decreased expression of

LRIG1 in cancer, including lung [12, 13], breast [14, 15] and head
and neck cancer [16], among others [17]. Across diverse cancer
types, high expression of LRIG1 is associated with superior patient
survival, in agreement with its tumour suppressor function
[2, 17, 18]. This includes breast cancer, where low LRIG1 expression
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has been linked to decreased relapse-free, and distant metas-
tasis-free, survival [14, 15]. As an ERα target gene, LRIG1 is most
highly expressed in ER-positive luminal disease relative to other
breast cancer subtypes [14], with the lowest expression
observed in basal/triple-negative breast cancers (TNBC)
[19, 20]. The mechanisms which contribute to LRIG1 down-
regulation in breast cancer are not fully understood but are
known to include ERBB2-mediated repression [14] and loss of
gene copy number, which conveys persistent risk of relapse in
patients typically considered low-risk [15]. In the context of
cancer, DNA hypermethylation at the promoter of tumour
suppressor genes is a key mechanism of downregulation and is
recognised as a cancer hallmark in many tumour types [21].
Interestingly, hypermethylation of the LRIG1 promoter region
has been reported in colorectal cancer [22] as well as cervical
cancer, where it was found to correlate with decreased
progression-free survival [23]. However, studies on LRIG1 gene
methylation in breast cancer remain limited.
Since persistence of LRIG1 expression is associated with superior

patient survival across cancer types and because prior studies
have shown that LRIG1 is epigenetically and transcriptionally
regulated, we reasoned that transcriptional reactivation of LRIG1
expression in cancer cells was feasible. The clustered regularly
interspaced short palindromic repeats (CRISPR) and CRISPR-
associated protein 9 (Cas9) system has provided an efficient
method for targeted gene activation. In the CRISPR/Cas9 system,
endonuclease Cas9 is targeted to a specific DNA sequence by a
single guide RNA (sgRNA) and subsequently induces double-
stranded DNA cleavage [24]. A mutation of the catalytic domains
of Cas9, yielding a deadCas9 (dCas9), maintains Cas9’s DNA-
honing ability without inducing DNA breaks; and provides an ideal
DNA targeting protein complex [25]. Recently, dCas9 fusions with
the catalytic domains of a variety of effector proteins, such as ten-
eleven translocation dioxygenase 1 (TET1), four tandem copies of
Herpes Simplex Viral Protein 16 (VP64), and Krüppel-associated
box (KRAB) have gained significance as candidate complexes
that can demethylate, activate, or inactivate genes of interest,
respectively [24].
We demonstrate that LRIG1 methylation is significantly

increased in breast tumours compared to normal tissue, with a
strong inverse correlation between LRIG1 mRNA expression and
CpG island methylation. Interestingly, we find that methylation is
most robust in the basal/TNBC subtype of breast cancer, both in
patient samples and in cell lines representative of this subtype.
Use of the global demethylating agent, 5-aza-2’-deoxycytidine
(ADC), in TNBC cell lines leads to a significant increase in LRIG1
mRNA expression aligning with a significant decrease in methyla-
tion. To directly implicate DNA methylation in LRIG1 silencing, we
take a targeted approach in which the catalytic domain of
DNA hydroxymethyltransferase TET1 is fused to dCas9, and tar-
geted to the LRIG1 CpG island. We show, for the first time,
that targeted demethylation causes significant reactivation of
LRIG1 gene expression and LRIG1 protein abundance, as well as
reduces DNA methylation at the CpG island. We also demonstrate
that co-expression of Tet1 and transcriptional activator, VP64,
using the CRISPR/dCas9 system significantly amplifies many of
these processes.

METHODS
Cell culture
BT549 (Cat# HBT-122), HCC1937 (Cat# CRL-2336), MDA-MB-231 (Cat# HTB-
26), MCF7 (Cat# HTB-22), T47D (Cat# HTB-133), ZR75-1 (Cat# CRL-1500) and
HCT116 (Cat# CCL-247) cells were obtained from American Type Culture
Collection (ATCC, Manassas, VA, USA) and maintained as recommended.
Cell lines were authenticated by short tandem repeat profiling through the
University of Arizona Genetics Core and tested for mycoplasma
contamination using the MycoAlert PLUS Mycoplasma Detection Kit
(Cat# LT37-701, Lonza, Hayward, CA, USA). All cells tested negative for

mycoplasma contamination. Cells were used for 6–8 passages, after which
they were replaced with a cryopreserved stock.

ADC and panobinostat treatment
Cells were seeded in a 12-well plate at 7.5 × 105 cells per well 24 h prior to
treatments. Cells were treated with 5-aza-2’-deoxycytidine (ADC) (Cat#
A3656, Sigma-Aldrich, St. Louis, MO, USA) at indicated concentrations for
96 h, with culture media being replaced every 24 h. Cells were treated with
100 μM Panobinostat (Cat# S1030, SelleckChem, Houston, TX, USA) for 24
h. For the combination experiment, cells were treated with 10 μM ADC for
96 h, with 100 μM Panobinostat added in the last 24 h. On completion of
treatments, media was aspirated from culture wells, cells were rinsed with
1× PBS, and frozen at −80 °C until RNA isolation was performed.

RNA extraction and reverse-transcription quantitative PCR
(RT-qPCR)
RNA was collected using the PureLink RNA Mini Kit (Cat# 121183018, Thermo
Fischer Scientific, Waltham, MA, USA) or RNeasy Mini Kit (Cat# 74104,
QIAGEN, Germantown, MD, USA) according to the manufacturer’s protocols.
High-Capacity cDNA Reverse Transcription Kit (Cat# 4368814, Thermo Fischer
Scientific) or Iscript Reverse Transcription Supermix (Cat# 1708841, Bio-Rad,
Hercules, CA, USA) was used to convert 0.5–1 μg of total RNA to cDNA.
Quantitative PCR amplifications were conducted in a CFX96 real-time
PCR system (Bio-Rad) using TaqMan probes (Life Technologies, Carlsbad,
CA, USA) for LRIG1 (Hs00394267_m1), BASP1 (Hs00932356_s1), CTNND2
(Hs00181643_m1), FBXO15 (Hs00380856_m1), NPHS1 (Hs00190446_m1),
KCNIP1 (Hs01557317_m1), GUSB (Hs99999908_m1), ACTB (Hs99999903_m1),
GAPDH (Hs99999905_m1) and Taqman Fast Advanced Master Mix (Cat#
4444557, Thermo Fischer Scientific) or Universal SYBR Green Supermix (Cat#
1725120, Bio-Rad). Analysis was performed by the comparative Ct method
under the following cycling conditions: 3 min at 95 °C, 40 cycles of 10 s at
95 °C and 30 s at 55 °C. Relative abundance was determined from the Ct
values using the 2-ΔΔCt method after normalisation to GAPDH (additional
reference genes, ACTB and GUSB, were examined to ensure changes in LRIG1
transcript levels were biologically accurate and not due to changes in GAPDH
transcript levels, Supplemental Fig. 9).

In silico analysis of DNA methylation
The UCSC Genome Browser was used to perform a qualitative in silico
analysis of methylation levels across the LRIG1 CpG island using the DNA
Methylation by Reduced Representation Bisulfite Seq (RRBS) track. This
track was produced as part of the ENCODE project by the Lab of Dr.
Richard Myers at the HudsonAlpha Institute for Biotechnology [26] and
reports the percentage of DNA molecules that exhibit cytosine methylation
at more than 500,000 specific CpG dinucleotide sites in the human
genome using bisulfite sequencing. For each assayed CpG, the percentage
of methylated sequencing reads is reported. Methylation is represented as
an 11-colour gradient with red= 100%, yellow= 50%, and green= 0% of
sequenced reads methylated; respectively.

Methylated DNA immunoprecipitation (MeDIP)
Cells were seeded in 10-cm plates and grown to confluency. Genomic DNA
was extracted by incubation of cells with digestion buffer (100mM NaCl,
10mM Tris-Cl, pH 8.0, 25 mM EDTA, pH 8.0, 0.5% SDS) and 0.1 mg/mL
Proteinase K (Cat# AM2548, Thermo Fischer Scientific) for 12–18 hr at 50 °C.
DNA was purified using phenol–chloroform, precipitated and dissolved in
TE to a final concentration of 200 ng/μL. Genomic DNA was sonicated to an
average size of 400 bp using the BioRuptor NGS (Diagenode, Denville, NJ,
USA) and denatured for 10min at 95 °C and immediately transferred on
ice. In total, 2 μg of fragmented DNA and 2 μg of 5-methylcytosine
antibody (Cat# 39649, Active Motif, Carlsbad, CA, USA) were added to 500
μL IP dilution buffer (16.7 mM Tris-Cl pH 8.1, 1.2 mM EDTA pH 8, 167mM
NaCl, 0.01% SDS, 1.1% Triton X-100) and immunoprecipitation of
methylated DNA was performed by gentle rotation for overnight at 4 °C.
After incubation for 1 hr with 2 μg Rabbit Anti-Mouse IgG (Cat# 55436, MP
Biomedical, Irvine, CA, USA), immunoprecipitates were washed two times
with IP Wash Buffer I (50mM Tris-Cl pH 8.0, 150mM NaCl, 1% NP40, 0.25%
deoxycholic acid, 2 mM EDTA pH 8.0), followed by three washes with IP
Wash Buffer II (100mM Tris-Cl pH 8.0, 500mM LiCl, 1% NP40, 1%
deoxycholic acid), and one wash with IP Wash Buffer III (100mM Tris-Cl pH
8.0, 500 mM LiCl, 1% NP40, 1% deoxycholic acid, 150 mM NaCl). DNA was
eluted for 30min with elution buffer (50 mM NaHCO3, 1% SDS, 0.1 mg/mL
Proteinase K), purified using phenol/chloroform, and precipitated using
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ethanol according to MeDIP Protocol (Active Motif). The resulting DNA
pellet was dissolved in 50 μL TE. Standard PCR reactions were performed
using 1 μL of the immunoprecipitated DNA or 5% input control DNA using
GoTaq polymerase (Cat# M3001, Promega, Madison, WI, USA). PCR
products were separated by electrophoresis through 2% agarose gels
and visualised using ethidium bromide. For qPCR analysis, 1.5 μL of
immunoprecipitated DNA or 5% input control DNA was amplified with
SYBR FAST mastermix (Cat# KK4600, KAPA Biosystems, Wilmington, MA,
USA) or Universal SYBR Green Supermix (Cat# 1725120, Bio-Rad) using the
CFX96 real-time PCR system (Bio-Rad) according to the manufacturer’s
recommendations. MeDIP enrichment was calculated relative to input
samples using dCq= Cq[MeDIP]-Cq[input]. MeDIP primer: LRIG1 promoter:
forward 5’-GGACTGTGAGGACCCGAAC-3’, reverse 5’-GCCGCAGAGAGAAC
TTGG-3’, LRIG1 5’UTR: forward 5’-AAAGGGCGGCACTCACAG-3’, reverse 5’-
CTGGGGACTCGCTGGACT-3’, SNRPN: forward 5’-GCAAAACAGCCAGAACGT
GAA-3’, reverse 5’-GCACACGAGCAATGCCAGTAT-3’.

Western blotting
Total protein was extracted from cells using RIPA lysis buffer [50 mM Tris
(pH 7.4), 150mM NaCl, 0.1% SDS, 1% Triton X-100, 0.5% sodium
deoxycholate]. After incubation on ice, cells were scraped from wells,
lysates were vortexed and centrifuged at 13,000 × g for 15min. Lysate
supernatants were placed into new microcentrifuge tubes and protein
concentrations were determined using Pierce BCA Protein Assay Kit (Cat#
23225, Thermo Fischer Scientific). A unit of 10–15 µg of cell lysate was
denatured in 6× Laemmli sample buffer [50mM Tris-HCl (pH 6.8), 2% SDS,
10% glycerol, 0.25% b-mercaptoethanol, and bromophenol blue (1mg/
mL)] at 100 °C for 5 min. Two times Laemmli sample buffer was added to
samples to bring to a final volume of ~30–40 µL. Samples were separated
on an 8% SDS-polyacrylamide gel or 4–12% Novex Tris-Glycine gel (Cat#
XP04120BOX, Thermo Fischer Scientific) and then transferred to the
nitrocellulose membrane (Cat# 1620115, MilliporeSigma, Burlington, MA,
USA). Membranes were blocked with 5% non-fat dry milk in TBST (Tris-
buffered saline containing 0.05% Tween 20) and incubated with either
anti-LRIG1 (Cat# 12752, Cell Signaling Technologies, Danvers, MA, USA),
anti-tubulin (Cat# T5168, Sigma-Aldrich), or anti-β-Actin (AC-15, Cat#
A1978, Sigma-Aldrich) primary antibodies overnight at 4 °C. After incuba-
tion, membranes were washed with TBST and then incubated with
horseradish peroxidase-conjugated secondary antibodies for 1 hr at room
temperature. Chemiluminescence signals were visualised using Pierce ECL
(Cat# 32106, Thermo Fischer Scientific) on an Alpha Innoteceh Digital
Imaging Station. Blot images are a representation of three technical
replicates from at least two independent experiments. Western blot
densitometry for dCas9 assay was determined using Image J. Inverted
protein band value or inverted membrane background value was
expressed as 255 – X, where X is the mean grey value recorded by Image
J. Net band values were determined by deducting the inverted membrane
background values from the inverted protein band values. Relative protein
quantification was determined by taking the net band value of LRIG1 over
the net band value of Actin loading control for each lane.

CRISPR-deadCas9 plasmids
The catalytic domain of mouse Tet1 (NP_001240786.1; aa 1367–2039),
obtained by PCR amplification from plasmid ZFB-TET1CD. ZFB-TET1CD, was
a kind gift from Marianne Rots [27]. Overhangs compatible with Gibson
cloning were introduced during PCR amplification and TET1CD was then
cloned into the KpnI digested dCas9 cloning vector (Addgene plasmid
#100091) [28]. The resulting Tet1-dCas9 plasmid is available from Addgene
(plasmid #136650). Similarly, plasmid VP64-dCas9 (Addgene plasmid
#177171) was created by Gibson cloning of the VP64 activation domain
into KpnI digested dCas9 cloning vector. pcDNA-dCas9-p300 Core was a
gift from Charles Gersbach (Addgene plasmid #61357) [29].

sgRNA target design and off-target identification
Guide RNA (sgRNA) target sequences were designed using CHOPCHOP
[30]. Only the highest scoring target sequences were chosen. Selected
sgRNAs were cloned as G-N19 into AflII-digested gRNA cloning vector
using Gibson assembly (Addgene plasmid #41824) [31]. sgRNA sequences
are listed in Supplemental Table S2. Off-target analysis of CRISPR sgRNAs
was performed using the CCTop off-target prediction tool (https://cctop.
cos.uni-heidelberg.de:8043) [32]. Briefly, 20 bp spacer sequences for
sgRNAs candidates 5, 6, 12, 13 and 14 (without PAM sequences) were
used as the query with hg19 as the reference genome for canonical SpCas9

PAM sites (NGG). The algorithm was executed using five or less total
mismatches, a maximum core length of 12, and two or less core
mismatches. The list of off-target genes for sgRNA 12, 13 and 14 was
overlapped to identify collective off-targets of sgRNA Combination 1
(sgC1). In a similar manner, off-targets for sgRNA 5 and 6 were overlapped
to identify collective sgRNA Combination 2 (sgC2) off-targets.

Transient transfection of CRISPR/deadCas9
For CRISPR-dCas9-based transactivation of LRIG1 by RT-qPCR and targeted
DNA methylation analysis, 2 × 105 cells were seeded in each well of a 12-
well plate 18–24 h prior to transfection. Cells were transfected with a total
mixture of 1.2 μg plasmid DNA per well (0.3 μg equimolar pooled sgRNAs,
0.7 μg equimolar pooled dCas9 complexes and 0.2 μg pBABE-puro
(Addgene #1764) for Puromycin selection) using Lipofectamine 3000 and
P3000 according to the manufacturer’s protocol. For western blotting, 5 ×
105 cells were seeded in each well of six-well plates and a total of 3.0 μg of
plasmid DNA per well was used for transfection (0.75 μg equimolar pooled
sgRNAs, 1.75 μg equimolar pooled dCas9 complexes and 0.5 μg pBABE-
puro). For MTS cell viability, 1 × 104 cells were seeded in each well of 96-
well plates and a total of 0.12 μg plasmid DNA per well was used for
transfection (0.03 μg equimolar pooled sgRNAs, 0.07 μg equimolar pooled
dCas9 complexes and 0.02 μg pBABE-puro).
Transfection complexes were removed after 6–8 h and replaced with

complete culture medium. 24 h post-transfection, culture medium was
replaced with media containing 1–2 μg/mL Puromycin for 48 h to select for
transfected cells. Untreated cells were seeded alongside transfected cells
for each experiment and treated with Puromycin as a control for antibiotic
selection. Following Puromycin selection, wells were gently rinsed twice
with ice-cold 1× PBS to remove dead/non-transfected cell populations, and
RNA extracted for RT-qPCR, lysed in RIPA for western blotting, or subjected
to an MTS assay for cell viability.

Cell viability
Viability was evaluated using the CellTiter 96® AQueous One Solution
Reagent (Cat# G3582, Promega), containing a tetrazolium compound [3-
(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-
2H-tetrazolium, inner salt; MTS] and an electron coupling reagent
(phenazine ethosulfate; PES), per the manufacturer’s instructions.

Targeted DNA methylation analysis
Genomic DNA was extracted from three independent experiments using
the Quick-DNA Miniprep Kit (Cat# D3024, Zymo Research, Irvine, CA, USA)
and 250–500 ng genomic DNA was bisulfite converted using the EZ DNA
Methylation-Lightning Kit (Cat# D5030, Zymo Research). Bisulfite-
Sequencing PCR (BSP) amplification of 25–50 ng of bisulfite converted
ssDNA was carried out with ZymoTaq DNA polymerase (Cat# E2002, Zymo
Research) according to the manufacturer’s instructions. MethPrimer 2.0
(http://www.urogene.org/methprimer2/) was used to design BSP primers
with the degenerate primer parameter (LRIG1-BSP-F 5’-YGAGTTTTTAGYG-
TAAGTGTAGG-3’, LRIG1-BSP-R 5’-GTTRGAATCCTCACAATCCC-3’). Unique
6-nucleotide barcodes were added to the 5’-end of the forward primer
sequence. Amplicons were then purified using the QIAquick PCR
purification Kit (Cat# 28104, QIAGEN) and equal amounts were pooled.
Library preparation and PE150 sequencing (CRISPR sequencing) were
performed by the CCIB DNA Core Facility at Massachusetts General
Hospital (Cambridge, MA). Sequence read files were demultiplexed and
forward and reverse reads were merged into a single long read using
FLASH2 [33]. Processed FASTQ files were aligned, and cytosine methylation
states determined using Bismark [34]. All samples used for downstream
analysis had a mapping efficiency of >99%. Percent methylation across
30 CG dinucleotides (CpG) sites spanning the BSP region (see Fig. 5), was
determined by [%= (M/(M+U)) * 100], where M denotes methylated
signal intensity and U unmethylated signal intensity, respectively. For
each cell line, normalised percent methylation was determined after
background subtraction of no treatment control percent methylation
values.

In silico analysis of human breast cancer data
The results of computational analysis are based on data generated by The
Cancer Genome Atlas (TCGA) Research Network or NCBI Gene Expression
Omnibus (GEO). Beta values (β-values) are the estimate of methylation
level using the ratio of methylated and unmethylated intensities. β-values
range from 0 to 1, with 0 being fully unmethylated and 1 being fully
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methylated. At each CpG site, methylation is quantified by [β=M/(M+ U
+ α)], where M > 0 and U > 0 denote the methylated and unmethylated
signal intensities, respectively; and an offset, α, (equal to 1 by default) [35].
TCGA: β-values (Array-based DNA platform) were used to determine
methylation levels of LRIG1, in adjacent normal versus breast tumour
samples, and within breast tumour molecular subtypes. Welch two-sample
t test, or ANOVA followed by a Tukey HSD test, was used to determine
whether the means of the two groups, or three or more groups,
respectively, were statistically different. The relationship between LRIG1
methylation and LRIG1 mRNA expression for breast tumour samples was
determined using β-values and mRNASeq read count data. Methylation
values and mRNA expression values were matched by patient sample, and
correlation was computed using the Spearman rank correlation coefficient
method. Molecular subtyping was based on the PAM50 (Prosigna Breast
Cancer Prognostic Gene Signature Assay) profiling test. Kaplan–Meier
survival plots were generated using the ‘survival’ and ‘survminer’ packages
in the R statistical program. Data for Kaplan–Meier plots consisted of β-
values and patient clinical information (death status and days to last
contact) and used data-driven cut-offs computed by survminer. A
difference in survival probability between groups was determined using
the Tarone-Ware test in survminer. GSE78758: β-values (Illumina Human-
Methylation450 BeadChip) were used to determine methylation levels of
LRIG1 in adjacent normal, primary breast tumour, and lymph node
metastases in basal/triple-negative breast cancer patients. A one-way
ANOVA followed by a post ad hoc Tukey HSD test, was used to determine
whether the means of the three groups were statistically different.

Statistical analysis
Statistical tests for data analysis included Welch two-sample t test, ANOVA
followed by Tukey’s HSD test, log-rank test, and Student’s t test. Values are
represented as mean ± standard error of the mean (SEM). For in vitro
experiments, data represent at least three independent experiments
(unless otherwise specified in the figure legend). In all cases, differences
were considered statistically significant when P value was less than 0.05. All
graphical representation and statistical analyses of data were performed
using the R statistical programme or Microsoft Excel.

RESULTS
LRIG1 methylation is increased in breast cancer
Prior studies in colorectal and cervical cancers indicate that the
LRIG1 locus is hypermethylated [22, 23]. Interestingly, a recent
study using canine mammary tumours as a model for human
breast cancer, identified hypermethylation in the third intron of
LRIG1 overlapping with a tumour suppressive PAX5 DNA binding
motif. Hypermethylation at this region correlated with reduced
LRIG1 gene expression, which was conserved (along with PAX5-
binding motifs) in human breast cancer [36], suggesting that
methylation of LRIG1 in cancer may be a species-conserved
mechanism of repression. Here, we sought to explore methylation
at the LRIG1 CpG island, versus intronic regions, as hypermethyla-
tion of tumour suppressor genes in the CpG islands near the
promoter is a well-documented feature of cancer.
Supplemental Fig. 1 depicts the location of the promoter-

proximal CpG island, relative to the transcription start site and
exon 1 of the LRIG1 gene. To examine whether LRIG1 is
methylated in breast cancer, we utilised the publicly available
TCGA-BRCA dataset, useful for both its large sample size and
matched patient methylation-mRNA expression data. (Beta values
(β-values) are the estimate of methylation at a given CpG site. β-
values range from 0 to 1.0, with 0 being fully unmethylated and
1.0 being fully methylated; and are quantified by β=M/(M+ U),
where M and U denote methylated and unmethylated signal
intensities, respectively [35]). Analysis of methylation status using
the HumanMethylation450 array revealed that methylation (β-
value) at the LRIG1 CpG island is significantly increased in breast
tumours (n= 796) compared to normal samples (n= 96) (Fig. 1a,
b). Relative to the mean methylation value in normal samples,
tumour samples are more highly represented at values that are 2
or ≥3 standard deviations above this normal mean (Fig. 1c).
Furthermore, methylation of LRIG1 is increased in primary tumours

and lymph node metastases of patients with basal breast cancer/
TNBC relative to normal tissue (Fig. 1d, data from GSE78758 [37]),
suggesting methylation-mediated silencing of LRIG1 may be
important in breast cancer progression.

LRIG1 methylation inversely correlates with LRIG1 expression
We previously reported that LRIG1 expression is lowest in the
basal-like molecular subtype of breast cancer [19]. To determine if
this pattern also exists in the larger TCGA-BRCA dataset, we
examined LRIG1 expression as a function of breast cancer
molecular subtypes. Analysis of mRNA read count (RNASeqV2)
confirmed that LRIG1 is most significantly reduced in basal breast
tumours (Fig. 2a). We, therefore, queried the LRIG1 CpG island
methylation status as a function of molecular subtype, as shown in
Fig. 2b. Interestingly, CpG island methylation was significantly
higher in basal breast tumours, as compared to the Luminal A,
Luminal B and Her2+ subtypes. When tumours were segregated
based on ERα status, ER-negative tumours (which encompass
basal and most Her2+ breast cancers) demonstrated increased
methylation (Fig. 2c), in agreement with our prior findings that
LRIG1 is poorly expressed in Her2+ and basal breast tumours
[19, 38], while richly expressed in ER-positive tumours [14]. We
next examined the correlation between LRIG1 CpG island
methylation and LRIG1 mRNA read count in breast cancer (n=
784). As shown in Fig. 2d, there is a striking inverse correlation
between methylation and mRNA expression (Spearman correla-
tion −0.63, P < 0.001), strongly suggesting that methylation
decreases LRIG1 expression. (Supplemental Table 1 shows
correlation by molecular subtype.) Given that ER-negative tumours
show the most robust methylation, we performed Kaplan–Meier
analysis on patients with ER-negative tumours to assess whether
there was a correlation between LRIG1 CpG island methylation
status and overall patient survival. Patients whose breast tumours
expressed higher levels of LRIG1 methylation had decreased
overall survival time (Fig. 2e), suggesting that LRIG1 promoter
methylation is functionally important.
Recent studies have revealed that methylation of distal-

regulatory regions, including enhancers, plays an important role
in regulating gene expression [39, 40]. In prior work, we
demonstrated that LRIG1 is an ER regulated gene [14]. Interest-
ingly, Stone et al. reported that enhancer hypermethylation within
ERα regulated genes is correlated both with decreased ERα
binding and decreased gene expression [41]. Mining of supple-
mental data provided by Stone et al. revealed two ERα binding
sites within LRIG1 enhancer regions which are hypermethylated
(HumanMethylation450 CpG probes cg24150385 and cg09716921,
herein labelled eCpG-1 and eCpG-2, respectively). We were curious
to determine whether these elements display subtype-specific
methylation, as observed for the CpG island. Indeed, as shown in
Supplemental Fig. 2A, methylation of both eCpG-1 and eCpG-2 is
highest in the basal subtype of breast cancer. Methylation of both
elements inversely correlates with LRIG1 gene expression, in the
TCGA-BRCA cohort (Supplemental Fig. 2B) and in multiple cell line
models of endocrine-resistant breast cancer [41]. (Supplemental
Table 1 shows correlation by molecular subtype.) Kaplan–Meier
analysis of ER-negative patients revealed that patients whose
breast tumours expressed higher levels of LRIG1 methylation, at
these enhancer-region CpG sites, had decreased overall survival
time (Supplemental Fig. 2C), suggesting that methylation at both
elements is functional. Collectively, these findings suggest that
loss of LRIG1 expression in basal/TNBC is multifactorial, with
contributions from both promoter and enhancer methylation.

LRIG1 methylation in breast cancer cell lines
Having examined publicly available patient samples, we next
examined LRIG1 CpG island methylation in breast cancer cell line
models. We chose several cell lines, including MCF7 and T47D
(Luminal A) and ZR75-1 (Luminal B), representative of ER-positive
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breast cancer, and BT549, HCC1937 (BRCA1 mutant) and MDA-MB-
231, representative of basal/TNBC. LRIG1 mRNA transcript expres-
sion (Fig. 3a) and protein abundance (Fig. 3b) were comparably
higher in the ER-positive breast cancer cell lines, as expected
[14, 19]. To focus our analysis, we used the UCSC genome browser
to query methylation levels across the LRIG1 CpG island (Fig. 3c)
[26]. HCT116 colon carcinoma cells were included as a positive
control, as they are reported to have high levels of LRIG1 CpG
island methylation [22]. Notably, regions of the CpG island are
highly methylated (red bars; 100% methylation) in HCT116 cells,
while these same regions are unmethylated (green bars; 0%
methylation) in MCF7 breast cancer cells. Using this information,
we focused our analysis on two regions that exhibited differential
methylation between HCT116 and MCF7 cell lines, designated
“Exon 1” and “Promoter” in Fig. 3c. Using the methylated DNA
immunoprecipitation (MeDIP) technique, which immunoprecipi-
tates methylated DNA using an antibody specific for
5-methylcytosine [42], we assayed methylation levels across
human breast cancer cell lines. A representative agarose gel
(Fig. 3d) and relative methylation levels (Fig. 3e), based on qPCR,
are shown for both regions. The promoter region of the small
nuclear ribonucleoprotein polypeptide N gene (SNRPN/SNURF),
which is heavily methylated [43], served as a control for the MeDIP
technique and illustrates that differential methylation observed at
the LRIG1 CpG island is not due to a global increase or decrease in
methylation inherent to each cell line (Supplemental Fig. 3A, B).
We found that methylation levels at the Exon 1 and Promoter
regions of LRIG1 inversely correlate with LRIG1 mRNA expression
levels (Fig. 3f). Interestingly, the results in the breast cancer cell
lines reflected our findings in patient samples, with methylation
lowest in ER-positive breast cancer lines and highest in basal/
triple-negative cell lines (ER-negative). This suggests that LRIG1

silencing by methylation may be an inherent property of basal/
TNBC.

Inhibition of DNA methylation induces LRIG1 mRNA
expression
We next determined the impact of the DNA methyltransferase
inhibitor, 5-aza-2’-deoxycytidine (ADC), on LRIG1 mRNA expres-
sion. As shown in Fig. 4a, ADC sequesters DNA methyltransferases
resulting in the demethylation of LRIG1 DNA and subsequent
transcriptional activation. ADC treatment consistently increased
LRIG1 mRNA expression in the basal/TNBC cell lines (BT549,
HCC1937, and MDA-MB-231), and in heavily methylated HCT116
cells at high doses (Fig. 4b). Interestingly, ADC treatment of ER-
positive breast cancer cell lines (T47D, MCF7, and ZR75-1) either
significantly decreased, or had little/no effect, on LRIG1 expression
(Supplemental Fig. 4a). To further examine ADC-induced methyla-
tion inhibition, we used MeDIP to measure methylation levels at
the LRIG1 Exon 1 and Promoter regions (from Fig. 3c), following
ADC treatment. Indeed, we found that relative LRIG1 methylation
levels were significantly decreased at both regions in cells treated
with ADC versus vehicle control (Fig. 4c).
Since histone deacetylases (HDACs) repress gene expression by

compacting chromatin structure and can be recruited to
methylated DNA by methyl-binding proteins [44], we investigated
whether HDACs could also be contributing to the silencing of
LRIG1 in basal/TNBC. Treatment of cells with the HDAC inhibitor,
Panobinostat, as a single agent did not significantly increase LRIG1
mRNA expression (Supplemental Fig. 4B). We next went on to test
the combination of Panobinostat and ADC, finding this was not
consistently superior to ADC alone (except in HCC1937 cells);
suggesting that methylation, not deacetylation, is the dominant
epigenetic mechanism of LRIG1 silencing in breast cancer.
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The CRISPR-deadCas9 transactivation system reactivates
LRIG1
LRIG1 mRNA and protein are consistently decreased across cancer
types, including breast cancer. However, genetic alterations in
LRIG1, such as copy number variation, are observed in less than
1% of breast cancers (Supplemental Fig. 5), indicating that
epigenetic silencing is a dominant mechanism of LRIG1 loss.
This suggests that LRIG1 may be amenable to “transcriptional
reactivation”, which is now feasible using targeted approaches.
Towards this end, we employed the CRISPR/deadCas9 transactiva-
tion system, which utilises a catalytically inactive Cas9 protein
(dCas9) directly fused to either the: (1) ten-eleven translocation
methylcytosine dioxygenase 1 (TET1) enzyme (Tet1-dCas9), (2)
VP64 domain (VP64-dCas9), or (3) catalytic core of acetyltransfer-
ase p300 (dCas9-p300 Core) (Fig. 5a, b). TET enzymes accomplish
demethylation by catalysing the conversion of 5-methylcytosine
(5mC) to 5-hydroxymethylcytosine (5hmC), and further to
5-formylcytosine (5fC) and 5-carboxylcytosine (5caC). 5fC and
5caC are removed by cellular DNA repair machinery, regenerating
unmethylated cytosines [45, 46]. VP64 is composed of four
tandem copies of VP16 (Herpes Simplex Viral Protein 16)
connected by glycine–serine linkers and acts as a strong
transcriptional activator through recruitment of transcription
factors (e.g., TATA-binding protein (TBP) and TBP-related factors)
and recruitment of chromatin modification factors (e.g., histone-
modification factors) [47]. The transcriptional co-activator p300 is

a histone acetyltransferase that regulates gene expression by
catalysing acetylation of histone H3 lysine 27 (H3K27) and is
typically recruited to promoter and enhancer regions of target
genes [29]. We designed 14 sgRNAs (Fig. 5c) spanning the LRIG1
CpG island within a ± 1 kb window on either side of the LR1G1
transcriptional start site (TSS) and evaluated the activation ability
of dCas9 fusions.
The dCas9 transactivation system was expressed in cell lines

by lipid-based transfection followed by antibiotic selection 24 h
post-transfection (HPT) to enrich for transfected cells (Supple-
mental Fig. 6A). As previous studies using CRISPR/dCas9 to
reactivate gene expression have shown that combined delivery
of multiple sgRNAs provides increased levels of endogenous
gene activation [48–50], we tested several combinations of 2–3
guide RNAs (Supplemental Fig. 6B). We grouped guides based on
their genomic locations across the LRIG1 CpG island. We
performed RT-qPCR and observed significant activation of LRIG1
expression with the combination of sgRNAs 12–14 (termed sgC1)
and sgRNA 5,6 (termed sgC2) paired with Tet1-dCas9, targeting
regions both up- and downstream of the TSS. LRIG1 expression
increased 1.3 to 3.1-fold in HCT116 cells relative to Tet1-dCas9
with no guide RNA (Fig. 6a). No significant difference was
observed between cells transfected with Tet1-dCas9 alone and
Tet1-dCas9 coupled with sgRNAs 9–11, 2,3,8 or 1,4,7 (Supple-
mental Fig. 6B). In concordance with HCT116 cells, transfection
with Tet1-dCas9 and sgC1 revealed a significant upregulation of
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LRIG1 in BT549 (1.7-fold, Fig. 6b) and MDA-MB-231 (1.3-fold,
Fig. 6c) cells when compared to cells transfected with Tet1-
dCas9. (HCC1937 cells showed a 1.4-fold upregulation, but was
not statistically significant, Fig. 6d). No significant upregulation
was observed in basal/TNBC cell lines transfected with Tet1-
dCas9 with sgC2 versus no sgRNAs. Cells treated with 10 μM ADC
were included as a positive control, as we previously showed
ADC treatment consistently increases LRIG1 expression. We also
tested Tet1-dCas9 paired with randomised combinations of
LRIG1 targeting sgRNAs and still observed significant increases in
LRIG1 transcript expression (Supplemental Fig. 6C), suggesting

that LRIG1 upregulation can be achieved using multiple varying
combinations of guide RNAs.
As others have previously observed enhanced activation

when co-targeting dCas9 complexes [49], we were therefore
curious whether other epigenetic mechanisms, such as tran-
scriptional activation, could also upregulate LRIG1 transcript
expression. To this end, we transfected cells with VP64-dCas9
paired with sgC1 or sgC2 guide RNA combinations alone
(Supplemental Fig. 6D, E) or in combination with Tet1-dCas9
(Fig. 6a–d). We observed a 3.4 to 18.9-fold upregulation of LRIG1
in basal/TNBC cells (41-fold in HCT116 cells) for sgC1, and a 1.4
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to 2.3-fold increase for sgC2 (3.3-fold in HCT116 cells) when
compared to cells transfected with Tet1-dCas9/VP64-dCas9 with
no guides. We also tested dCas9-p300 (Core) paired with sgC1 or
sgC2 guide RNA combinations alone (Supplemental Figs. 6D, E)
or in combination with Tet1-dCas9 (HCT116 only, Supplemental
Fig. 6E), observing no significant upregulation of LRIG1 transcript
expression. Moreover, in HCT116 cells a triple combination of
Tet1-dCas9, VP64-dCas9, and dCas9-p300 with sgC1 or sgC2,
although significant, showed lower levels of LRIG1 expression
(Supplemental Fig. 6E). As p300 regulates gene expression
through acetylation, this data suggests that deacetylation does
not contribute to LRIG1 silencing in line with our data from
HDAC treatment in Supplemental Fig. 4B.
To investigate the possibility of off-target gene regulation, we

individually analysed sgRNAs 12–14 (sgC1) and 5–6 (sgC2)
sequences to identify putative genome-wide off-target sgRNA-
binding sites. We then selected genes which were identified
as off-targets for at least two sgRNAs in Combination 1 and
for both sgRNAs in Combination 2 (Supplemental Fig. 7). RT-
qPCR was performed to assess the five target genes in
HCT116 cells transfected with Tet1-dCas9 or Tet1-dCas9/VP64-
dCas9 with sgC1 or sgC2. We observed no significant upregula-
tion on the expression of the putative off-target genes
compared to no sgRNA control conditions (Supplemental
Fig. 6F), supporting site-specific regulation of LRIG1 by dCas9
protein complexes.

The dCas9 system activates LRIG1 protein expression and
inhibits cell viability
To determine whether activation of LRIG1 by Tet1-dCas9 and
VP64-dCas9 extends beyond upregulation of transcript expression,
we assessed LRIG1 protein levels and cell viability in HCT116 and
basal/TNBC cells. For these experiments, we focused much of our
attention on sgC1 as it caused higher levels of LRIG1 upregulation
compared to sgC2. Only cells transfected with the combination of
Tet1-dCas9 and VP64-dCas9 with sgC1 showed a significant
increase (3.5 to 5.8-fold) in LRIG1 protein abundance (Fig. 6e, f and
Supplemental Fig. 8A). These data may suggest that demethyla-
tion alone is not sufficient to increase LRIG1 protein abundance,
and that gene-specific mRNA expression thresholds must be
reached to observe concomitant protein upregulation.
We next examined the functional impact of reactivation of

LRIG1 on the viability of cancer cells (Supplemental Fig. 8B).
Treatment with 10 μM ADC was included as readout of global
demethylation-induced changes in cell viability, and we observed
significant decreases in cell viability following ADC treatment.
Tet1-dCas9 and Tet1-dCas9/VP64-dCas9, both paired with sgC1,
significantly decreased the viability of HCT116 cells and all three
basal/TNBC cell lines when compared to no guide RNA conditions.
Notably, we found that both Tet1-dCas9 with sgC1 and Tet1-
dCas9/VP64-dCas9 with sgC1 were more effective at reducing cell
viability compared to ADC treatment. These data suggest that
targeted reactivation of LRIG1 provides superior effects compared
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to a global demethylation agent. This observed difference could
be due to the complex crosstalk between a large number of
methylated genes in the human genome, as well as their likely
unequal contributions towards regulating cancer cell viability.

Tet1-dCas9 significantly reduces DNA methylation
Lastly, due to differences in reactivation of LRIG1 between the
dCas9 effector domains and sgRNA combinations, we quantita-
tively determined the extent of demethylation in the core
promoter region of LRIG1 using targeted bisulfite amplicon
sequencing. We generated PCR-based amplicons which allowed
us to measure percent methylation (ratio of 5-meCG/total CG)
across 30 individual CpG dinucleotides in the selected region (185
base pairs, Fig. 5c) by deep sequencing. We observed significant
decreases in DNA methylation across this region, starting 16–28
base pairs upstream of the LRIG1 TSS, following transfection of
dCas9/sgRNA complexes. Specifically, in HCT116 cells, mean
methylation decreased by 6.3%, 2.4% and 3.5% in cells transfected
with Tet1-dCas9 with sgC1, Tet1-dCas9 with sgC2, and Tet1-
dCas9/VP64-dCas9 with sgC1, respectively, compared to no guide
RNA control (Fig. 6g, g inset). BT549 cells transfected with Tet1-
dCas9 with either sgC1 or sgC2 exhibited significant decreases in
methylation (Supplemental Fig. 8C, C inset). HCC1937 cells also
displayed uniform decreases in methylation across experimental
conditions versus Tet1-dCas9 only controls (Supplemental Fig. 8D,
D inset). We observed minimal, non-significant decreases in
methylation levels in MDA-MB-231 cells (Supplemental Fig. 8E).
(Supplemental Fig. 8f shows methylation levels in untreated cells
which were used for background subtraction calculations.)
Interestingly, in HCT116, BT549, and HCC1937 cells, although the
addition of VP64-dCas9 significantly reduced methylation levels
compared to control, it did not further reduce percent methylation
compared to Tet1-dCas9 with sgC1. In fact, in HCT116 and BT549
cells, percent methylation increased between the Tet1-dCas9 with
sgC1 and Tet1-dCas9/VP64-dCas9 with sgC1 conditions. This
observation may indicate that TET1 protein needs to achieve a
minimum threshold of demethylation that subsequently permits
transcriptional activation of LRIG1 by VP64. In addition, these data
suggest in line with prior studies [49], that VP64-dCas9 does not
use demethylation as a means towards transcriptional activation.

DISCUSSION
LRIG1 is a negative regulator of oncogenic receptor tyrosine
kinases and a documented tumour suppressor [51]. Indeed, LRIG1
downregulation has prognostic impact across diverse tumour
types [52]. LRIG1 downregulation in cancer is widespread, with a
recent study reporting “no to low” LRIG1 expression in cell lines
from 22 different cancer types, and patient samples from
seventeen different cancer types [53]. Analysis of a genome-
wide RNAi screen [54] found that LRIG1 is one of six genes which
rank in the top 1% (out of 17,080 genes) whose knockdown
promotes cancer cell proliferation, across 43 different cancer cell
lines [53]. Given these findings, much discussion has focused on
how to “harness” LRIG1 for potential therapeutic benefit [55].
Several studies have reported that delivery of the soluble
extracellular domain of LRIG1 holds promise [56, 57], although
further work is needed to define the key functional domains of
LRIG1. An alternative approach is to restore endogenous LRIG1
expression, although this requires greater insight into mechanisms
that silence LRIG1 in cancer.
Our study focused on LRIG1 silencing in breast cancer. As LRIG1

copy number variations are rare in cancer, we hypothesised that
epigenetic silencing of LRIG1 would be prevalent and explain its
more significant loss in ER-negative and basal/TNBC disease.
Indeed, we find that methylation of the LRIG1 CpG island and ERα-
bound enhancers is significantly increased in ER-negative and
basal/TNBCs and that methylation inversely correlates with LRIG1
mRNA expression. We demonstrate that subtype-specific differ-
ential methylation is observed in cell line models of ER-positive
and ER-negative breast cancer and inversely correlate with LRIG1
expression in these cell lines. Furthermore, we show that robust
LRIG1 methylation correlates with poor overall survival in patients
with ER-negative breast tumours.
Global hypomethylating agents such as 5-aza-2’-deoxycytidine

(ADC, Decitabine) are approved for the treatment of myelodys-
plastic syndromes and have been in use in that setting for more
than a decade [58]. We used ADC, a DNA methyltransferase
inhibitor, as an experimental tool to examine whether LRIG1
expression could be induced in breast cancer cells by CpG island
demethylation. Indeed, ADC treatment of ER-negative/TNBC cells
significantly increased LRIG1 mRNA expression. In contrast, ADC
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had no significant effect on LRIG1 expression in ER-positive cells,
suggesting that low-level methylation observed in this setting is
not functionally important. Since ADC-induced LRIG1 upregulation
may occur indirectly, using methylated DNA immunoprecipitation
(MeDIP) we demonstrate that demethylation occurs at the CpG
island following ADC treatment. Due to its ability to globally
reduce methylation levels, ADC has been implicated as a potential
cancer therapeutic, with the ability to reduce cancer cell
proliferation and migration and induce apoptosis [59–61]. In this
study, we observe that ADC treatment reduces the viability of
colorectal carcinoma and TNBC cells, and although high ADC
concentrations (≥20 μM) likely induce apoptosis in a portion of the
cell population, there is no evidence or expectation that this
should impact upregulation of LRIG1.
Tumour suppressor restoration is an active area of study and

holds great promise. Due to advances in CRISPR/Cas9-based
technology, targeted transcriptional reactivation of tumour
suppressor genes is now feasible. In fact, this has been
demonstrated for PTEN and BRCA1, using dCas9 fused to the
VPR effector domain (a potent transactivator consisting of VP64,
p65 and Rta) and TET1; respectively [50, 62]. Genome-based
CRISPR/dCas9 activation allows precise and stable editing of the
epigenome with high efficiency, which could be harnessed for
precision medicine and treatment of LRIG1-defincient cancers. In
this study, we focused specifically on the role of the CpG island
methylation in silencing LRIG1. Using Tet1-dCas9, we

demonstrate for the first time, that targeted demethylation of
the promoter-proximal CpG island induces LRIG1 expression in
breast cancer cells. We observed that sgRNA combinations
designed against binding sites furthest from the LRIG1
transcriptional starts site were most effective, suggesting that
both the location of guide RNAs relative to transcriptional start
and CpG sites, as well as the chosen combination, may affect the
efficiency of TET1 activity. LRIG1 reactivation, both at the mRNA
and protein levels, showed significant, but variable, responses
across cell lines. This is consistent with previous studies using
dCas9-based epigenetic editing in which target gene responses
varied by cell type and genomic locus [28, 63]. However, we did
observe ~1.3- to threefold upregulation of LRIG1 expression with
Tet1-dCas9 which is consistent with the ~1.5 to 2.3-fold increase
in target genes also reactivated via CRISPR/dCas9/TET1
demethylation [49, 62]. In addition to cell type and DNA
location, variable responses may also be attributed to differ-
ences in other epigenetic modifiers of LRIG1. For example,
previous studies have shown that LRIG1 is regulated by histone
deacetylation [64], microRNAs [65, 66] and long noncoding RNAs
[67]; all of which may contribute to the level of LRIG1
reactivation. This may result in variable levels of baseline
methylation even amongst ER-negative cell lines (as observed
in Fig. 3e). As the CRISPR/dCas9 system was delivered to cells via
lipid-based transient transfection, we acknowledge that trans-
fection efficiency may also contribute to observed differences in
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LRIG1 reactivation. However, since prior studies have shown
global methylation changes and higher off-target effects with
stably expressed dCas9 fusions to TET1 and DNA methyltrans-
ferase DNMT3A [49, 68, 69], we opted for transient expression,
attempting to minimise these caveats. Our dCas9 transactivation
system also showed specificity towards targeting LRIG1, with no
observed upregulation of the five off-targeted tested.
Due to the strong effects of VP64 and p300 on gene

upregulation, we sought to assess if these effectors could
contribute to LRIG1 reactivation via CRISPR/dCas9. We found
that the combinatorial binding of VP64-dCas9 and Tet1-dCas9
was capable of significantly upregulating LRIG1 mRNA expres-
sion and protein abundance. However, unexpectedly, these
effects were not synergistic but were largely due to VP64-
induced transcriptional activation as transfection with VP64-
dCas9 and sgRNAs alone exhibited slightly higher LRIG1
expression compared to the Tet1-dCas9/VP64-dCas9 combina-
tion. This could be due to steric hinderance caused by large
dCas9 protein complexes attempting to bind in the same
genomic region [70, 71], especially regions with high binding
affinity, such as CpG islands, promoters, and enhancers.
However, we cannot rule out the possibilities that: (1)
demethylation by the presence of dCas9 alone or TET1 alone,
which has been shown in prior studies [69, 72], leads to a
chromatin state more permissive of VP64-induced transcrip-
tional activation, or (2) strong and targeted transcriptional
activation by VP64 may be able to overcome or circumvent
methylation-based gene silencing. Indeed, bisulfite modified
sequencing shows that gene upregulation by VP64 is not
dependent on demethylation.
To validate its biological relevance, we assessed the effects of

Tet1/VP64-dCas9-mediated LRIG1 expression on cell viability.
The significant reduction in cancer cell viability suggests that
LRIG1 reactivation via CRISPR/dCas9 may have an impact on
TNBC growth, however, future studies will be required to assess
biological relevance in more disease-relevant models such as
patient-derived organoids and in vivo mouse models. It is
unclear how long demethylation and transcriptional activation
by Tet1-dCas9 and VP64-dCas9, respectively, would be main-
tained in vivo, as well as maintenance of downstream effects. In
addition, future studies, using readily available single-cell
sequencing technologies, will be required to determine whether
the observed reactivation of LRIG1, and other target genes, is
due to uniform reactivation at the population level or strong
reactivation in only a subset of the cell population. Collectively,
our data provide strong evidence that LRIG1 is silenced by both
CpG island and enhancer methylation in TNBC, and that the
CRISPR/dCas9 system can be used to upregulate LRIG1 expres-
sion. While this study has some limitations, it provides the first
evidence that a targeted approach using site-specific demethy-
lation and transcriptional activation, is a feasible method of
restoring LRIG1. As LRIG1 is known to play a crucial role in
tumorigenesis and metastasis, combining CRISPR/dCas9-based
reactivation with conventional therapeutic approaches could
hold promise for LRIG1-silenced tumours.
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