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The creation of home robots that can aid human beings in daily mundane chores has

been a long-standing goal of robotics research. Some common indoor tasks that service robots

can help with include retrieving objects from different locations, observing and monitoring

home environments, and rearranging household objects. Enabling artificial agents to perform

such activities requires knowledge gathered from several broad topics in Embodied Artificial

Intelligence (EAI), such as localization and mapping, contextual scene understanding, and

efficient interaction strategies in realistic environments. A common approach adopted by existing

methods is to create dense geometric representations of the environment, typically in the form

of point-cloud reconstruction of indoor regions. However, there are two fundamental problems
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associated with such metric maps, (i) they are non-trivial to construct and often require constant

updates as the surrounding world evolves over time, and (ii), they lack semantic information,

thereby making data association and contextual indexing more challenging. As such, planning

algorithms that utilize only these representations rarely generalize to complex tasks such as

searching for objects in noisy real-world environments. The primary objective for this work has

been to develop appropriate semantic models of the world to enable robots to make smart, and

robust decisions while solving complex indoor tasks. The first component here is a hierarchical

semantic representation of the world. Different levels in this structure can correspond to a

variation in granularity of scene understanding - ranging from metric information to reasoning-

based context, and topological layout. Given this hierarchical representation, the next step is

to formulate a smart planning strategy that can adaptively extract only the necessary context

for a particular object-interaction task. The combination of this semantic representation and

planning module results in a hybrid semantic model that is inspired by human-level cognitive

models, and their ability to generalize across domains. Several methods to estimate contextual

models for inferring scene geometry and semantics have been presented in this dissertation, with

applications in visual place categorization, object-goal visual navigation, and complete home

robot rearrangement tasks. Finally, some of the existing challenges in this domain are mentioned,

along with a few future directions for home robotics research.
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Chapter 1

Introduction

Embodied Artificial Intelligence, popularly known as Embodied AI or EAI, is a study of

artificial systems that demonstrate intelligent behavior by directly interacting with human-centric

environments [30]. Within the scientific community, this is often associated with service robotics

research. The roots of service robotics research can be traced back to the longstanding human

fascination with the integration of machines into the society, as depicted in science-fiction

movies. Science fiction has played a crucial role in shaping the collective imagination about the

possibilities and implications of robotics. Iconic films such as “Blade Runner,” “I, Robot,” and

“The Jetsons” have not only entertained audiences but have also served as a source of inspiration

for researchers and engineers in the development of real-world robotic systems. Even though

the complete integration of these complex systems into the daily lives of human beings is still a

far-fetched dream of robotics research, significant progress has been made toward that goal in

the last decade or so. This dissertation aims to take a step in that direction by discussing ways to

combine time-tested classical techniques with recently developed robust learning-based methods,

into a hybrid semantic framework for performing home robot tasks.

Figure 1.1 illustrates a futuristic Embodied AI problem setting, where a human being

enters a messy kitchen with two robots inside, and enquires about the presence of cereals. To

answer such a query, the agent needs to divide and conquer by thinking about two sub-problems

– (i) Where to look for the cereal object in this environment? and (ii) Upon detecting the object,
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Figure 1.1. Illustration of a classic embodied AI problem. Source [30].

how to best interact with it? The answer to the first question involves performing navigation with

reasoning. This implies that in addition to simply determining how to move, the robot also needs

to figure out what are the likely places to look for in search of an object of interest, and in what

order to visit them. The second question mainly falls in the domain of robotic manipulation,

which is about how to best grasp an object for picking it up for transportation – popularly known

as pick-and-place tasks in the robotics community. This dissertation will primarily focus on the

topic of robot navigation using reasoning, while the manipulation component will be used as a

tool for interacting with objects in the environment.

Historically speaking, the focus of Embodied AI research was to have robots, fitted

with a suite of sensors and armed with end-effectors, work in noisy real-world environments

[126, 17]. This contrasts the assumption of clean inputs in a static world, as required by classical

artificial intelligence (AI) approaches [167]. However, these methods were mostly limited to

robot locomotion in controlled environments. With rapid advancements in algorithms following

the deep learning revolution, coupled with the emergence of large-scale datasets and cheaper cost

of computational resources, the field of Embodied AI has experienced unprecedented growth

within the last decade or so. Empowered by the creation of realistic simulation frameworks
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[128, 141, 142, 152, 10, 86], typically derived by scanning models of existing buildings, it has

been made possible to tackle more complicated tasks such as goal-oriented navigation, complex

manipulation, and human-robot interaction. Given such an environment, a popular approach

that has been adopted [188, 171, 5, 34, 14, 15] is to have an EAI agent learn all the steps

required for a task, simply by training to map the initial input state to the final output result. This

technique, commonly referred to as end-to-end learning, eliminates the need for hand-crafted

heuristic features that were inherently part of old classical methods. Despite largely reducing

human efforts in designing complex fundamental systems, these learned models are not without

problems either. The most fundamental issue arises due to the lack of interpretability in these

algorithms, thereby making it harder to predict their outputs. Due to this, purely learning-based

methods often have a bias towards their trained setting, and therefore suffer when deployed in a

previously unseen environment.

Given the drawbacks of both these types of homogeneous systems, as in purely classical,

or purely end-to-end learning based, this dissertation argues the need for hybrid semantic models

for building smart and robust home robots. The key idea with hybrid models is to adaptively

switch between classical, and learning-based techniques depending upon the task, to leverage the

best of both worlds. For instance, classical techniques can be utilized for generating low-level

geometric maps, as they are fast to generate. In contrast, learning-based models have been shown

to have a better understanding of semantic context, as they are primarily trained to recognize

patterns in data. And finally, reasoning using common-sense knowledge can help to bridge the

Table 1.1. Benefits of using hybrid models over homogeneous models

Homogeneous models Hybrid models
1. Lack semantic context 1. Learn to recognize task-agnostic context [117, 119]
2. Extensive manual labor needed 2. Primarily utilize online techniques [118, 119]
3. High sample complexity 3. Expand from common-sense priors [119, 101]
4. Memorize the trained settings 4. Transferable across domains [118, 62]
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gap between the two. Table 1.1 summarizes some of the advantages of using hybrid models over

homogeneous models.

The main objective of the work conducted in this dissertation is to develop appropriate

semantic models of the world to enable robots to make smart, and robust decisions while solving

complex indoor tasks. The focus is to combine learned semantic representations with classical

planning modules to develop a hybrid semantic model that is inspired by human-level cognitive

models, and their ability to generalize across domains. Several works have been discussed for

estimating contextual models for inferring scene geometry and semantics, with applications in

visual place categorization, autonomous driving, object-goal visual navigation, and complete

home robot rearrangement tasks. This dissertation follows a bottom-up approach:

• Chapter 2 introduces several methods for detecting diverse scenes in challenging environ-

ments, through an integration of both object and scene information from the surrounding.

• Chapter 3 discusses context recognition in autonomous driving scenarios through a novel

amalgamation of the human gaze and semantics of common roadside objects.

• Chapter 4 grounds the generic robot navigation task into an object-goal navigation problem,

and introduces smart search strategies for solving it.

• Chapter 5 brings all the above components together into an integrated hybrid semantic

model for home robot rearrangement tasks.

• Chapter 6 summarizes the dissertation, and describes some of the challenges faced by the

dissertation author during the doctoral journey. Finally, some recommendations for future

work in Embodied AI are mentioned.

1.1 Visual Place Categorization of indoor scenes

In robotics, visual place categorization is defined as the problem of predicting the

semantic category of a place based on image measurements acquired from an autonomous
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platform [173]. For instance, a scene comprising of a refrigerator, stove, and microwave is

likely to be a kitchen, while another scene with a bed, nightstand, and alarm clock is most likely

a bedroom. In recent years, there has been a rapid increase in the number of service robots

deployed to aid people in their daily activities. Unfortunately, most of these robots require human

input for training to do tasks in indoor environments. Successful domestic navigation often

requires access to semantic information about the environment, which can be learned without

human guidance.

In Chapter 2 of this dissertation, several algorithms, together called Diverse scEne

Detection methods in Unseen Challenging Environments, or DEDUCE, are proposed to tackle

the challenge of visual place categorization. These methods incorporate deep fusion models

derived from scene recognition systems and object detectors. The five methods described here

have been evaluated on several popular recent image datasets, as well as real-world videos

acquired through multiple mobile platforms including a real robot system. The final results

show an improvement over the existing state-of-the-art approaches for visual place recognition.

Supplementary material including code and the videos of the different experiments are available

at https://sites.google.com/eng.ucsd.edu/deduce.

1.2 Context recognition in autonomous driving

As learning-based algorithms become more and more prevalent within the research

community, it becomes necessary to interpret how the solutions found by these models can be

better understood by humans. For indoor environments, this amounts to identifying characteristic

objects that define a particular scene. However, for outdoor autonomous driving scenes, this

is more complicated due to two reasons – (i) There might be multiple overlapping scenes, as a

large part of the surrounding falls within the field-of-view, and (ii) All the context may not be

relevant to the current driving task. For instance, when driving a car, only a narrow region of the

scene in front of the vehicle determines the next actions to be taken. In this scenario, estimating
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an expert driver’s gaze is a common way to identify important regions around the vehicle.

Chapter 3 describes an approach for identifying crucial regions that require attention

during the task of driving. In recent years, predicting drivers’ focus of attention has been a

very active area of research in the autonomous driving community. Unfortunately, existing

state-of-the-art techniques achieve this by relying only on human gaze information, thereby

ignoring scene semantics. In this dissertation, a novel Semantics Augmented GazE (SAGE)

detection approach has been proposed that captures driving specific contextual information, in

addition to the raw gaze. Such a combined attention mechanism serves as a powerful tool to

focus on the relevant regions in an image frame to make driving both safe and efficient. Using

this, a complete saliency prediction framework - SAGE-Net is designed, which modifies the

initial prediction from SAGE by taking into account vital aspects such as distance to objects

(depth), ego vehicle speed, and pedestrian crossing intent. Exhaustive experiments conducted

through four popular saliency algorithms show that on 49/56 (87.5%) cases - considering both

the overall dataset and crucial driving scenarios, SAGE outperforms existing techniques without

any additional computational overhead during the training process. Additional information is

available as part of the supplementary material at https://sites.google.com/eng.ucsd.edu/sage-net.

1.3 Object-goal navigation utilizing hierarchical relation-
ship

Object-goal navigation is a specific instance of the general robot navigation task. The

main objective here is to navigate through the environment in search of an object of a specific

category, drawn from a predefined set, primarily using visual features. This is in contrast to

two other types of goal-driven robot navigation tasks [7] – (i) Point-goal navigation, where

the objective is to navigate to a specific location in the environment, typically represented in

the form of a 2D cartesian coordinate of a point, and (ii) Area-goal navigation, where the EAI

agent needs to navigate to an area of a specified category. For example, “kitchen”, “garage”, or
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“foyer”. This task also relies on prior knowledge about the appearance and layout of different

areas. While navigating to a point, or broad area of the environment are themselves interesting

research problems in Embodied AI, object-goal navigation particularly has enormous real-world

applications as humans typically look for and reason about their surroundings using object

information.

Chapter 4 describes the object-goal navigation task with a special focus on developing

smart search strategies identifying target objects. Direct search for objects as part of navigation

poses a challenge for small items. Utilizing context in the form of object-object relationships

enables hierarchical search for targets efficiently. Most of the current methods tend to directly

incorporate sensory input into a reward-based learning approach, without learning about object

relationships in the natural environment and thus generalize poorly across domains. In this

dissertation, Memory-utilized Joint hierarchical Object Learning for Navigation in Indoor Rooms

(MJOLNIR), a target-driven navigation algorithm is presented, which considers the inherent

relationship between target objects, and the more salient contextual objects occurring in their

surroundings. Extensive experiments conducted across multiple environment settings show an

82.9% and 93.5% gain over existing state-of-the-art navigation methods in terms of the success

rate (SR), and success weighted by path length (SPL), respectively. It is also shown that the

proposed model learns to converge much faster than other algorithms, without suffering from the

well-known overfitting problem. Additional details regarding the supplementary material and

code are available at https://sites.google.com/eng.ucsd.edu/mjolnir.

1.4 Complete home robot rearrangement task

Enabling artificial agents to efficiently interact with the environment and perform day-to-

day tasks has been a longstanding goal of Embodied AI [9, 165]. In recent years, navigation and

instruction following tasks have received a lot of attention within the research community. Such

tasks constitute the building blocks of interactive embodied agents. While remarkable progress
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in the development of algorithms has been observed in recent years, a typical assumption of this

task is that of a static environment. This means that even though the EAI agents can move within

the environment in search of objects, they cannot interact and/or change the state of those objects.

This limits the scope of the developed algorithms to transfer to real-world room rearrangement

tasks, which are often dynamic, and necessitate moving objects from one place to another.

Chapter 5 considers the problem of building an assistive robotic system that can help

humans in daily household cleanup tasks. Creating such an autonomous system in real-world

environments is inherently quite challenging, as a general solution may not suit the preferences

of a particular customer. Moreover, such a system consists of multi-objective tasks compris-

ing – (i) Detection of misplaced objects and prediction of their potentially correct placements,

(ii) Fine-grained manipulation for stable object grasping, and (iii) Room-to-room navigation

for transferring objects in unseen environments. The work described in this dissertation sys-

tematically tackles each component and integrates them into a complete object rearrangement

pipeline. To validate the proposed system, multiple experiments are conducted on a real robotic

platform involving multi-room object transfer, user preference-based placement, and complex

pick-and-place tasks. Additional details including video demonstrations of the work are available

at https://sites.google.com/eng.ucsd.edu/home-robot.
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Chapter 2

Visual Place Categorization of indoor
scenes

2.1 Introduction

Scene recognition and understanding have been an important area of research in the

Robotics and computer Vision community for more than a decade now. Programming robots

to identify their surroundings is integral to building autonomous systems for aiding humans in

household environments.

Kostavelis et al. [80] provided a survey of previous work in semantic mapping using

robots in the last decade. According to their study, scene annotation augments topological maps

based on human input or visual information about the environment. Bormann et al. [13] pointed

out that the most popular approaches in room segmentation involve segmenting floor plans based

on spatial regions.

An essential aspect of any spatial region is the presence of specific objects in it. Some

examples include a bed in a bedroom, a stove in a kitchen, a sofa in a living room, etc. Niko

et al. [137] formulated the following three reasoning challenges that address the semantics

and geometry of a scene and the objects therein, both separately and jointly: 1) Reasoning

About Object and Scene Semantics, 2) Reasoning About Object and Scene Geometry, and 3)

Joint Reasoning about Semantics and Geometry. The content in this thesis focuses on the first

reasoning challenge and uses Convolutional Neural Networks (CNNs) as feature extractors for
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Figure 2.1. Visualization of the semantic mapping performed while the Fetch robot is navigating
through the environment.

both scenes and objects. The goal is to design a system that allows a robot to identify the area

where it is located using visual information in a manner similar to how a human being would.

In this chapter, five different models of scene prediction have been considered, each

developed through the integration of object and scene information from a surrounding to perform

place categorization. To evaluate the robustness of these models, extensive experiments have

been conducted on state-of-the-art still-image datasets, real-world videos captured via different

hand-held cameras, and those recorded using a mobile robot platform in multiple challenging

environments. One such environment is shown in Figure 2.1, where the segmented regions

correspond to the scenes detected (in this case, blue refers to “corridor”, and red refers to

“conference room”). The results obtained from the experiments demonstrate that the proposed

system can be generalized beyond the training data, in addition to being impervious to object

clutter, motion blur, and varying light conditions.
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2.2 Background

Semantic place categorization using only visual features has been an important area of

research for robotic applications [157, 173]. In the past, many robotics researchers focused on

place recognition tasks [127, 144] or the problem of scene recognition in computer vision [116,

129].

Quattoni and Torralba [129] introduced a purely vision-based place recognition system,

which improves the performance of the global gist descriptor by detecting prototypical scene

regions. However, the size, shape, and location of up to ten object prototypes have to be labeled

and learned in advance for this system to work. Also, the labeling task is very work-intensive,

and the approach of having fixed regions is only useful in finding objects in typical views of

the scene. This makes the system ill-suited for robotics applications. To deal with the flexible

positions of objects, a visual attention mechanism is applied that can locate important regions in

a scene automatically.

A number of different approaches have been proposed to address the problem of classify-

ing environments. One popular approach adopted is to use Feature Matching with Simultaneous

Localization and Mapping (SLAM). Ekvall et al. [40] and Tong et al. [156] demonstrated a

strategy for integrating spatial and semantic knowledge in a service environment using SLAM

and object detection & recognition based on Receptive Co-occurrence Histograms. Espinace et

al. [41] presented an indoor scene recognition system based on a generative probabilistic hierar-

chical model using contextual relations to associate objects to scenes. Kollar et al. [76] utilize

the notion of object-object and object-scene context to reason about the geometric structure of

the environment to predict the location of the objects. The performance of the object classifiers is

improved by including geometrical information obtained from a 3D range sensor that facilitates

a focus of attention mechanism in addition. However, these approaches only identify the place

based on the specific objects detected and the hierarchical model used to link the objects with

the place. In contrast to their method, the proposed algorithm is not limited to a small number of
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recognizable objects.

Recently, there have been several approaches to Scene Recognition using Neural Net-

works. Liao et al. [88, 89] used Convolutional Neural Networks (CNNs) to recognize the

environment based on object occurrence for semantic reasoning, but their system information

and mapping results are not provided. Sun et al. [149] proposed a Unified Convolutional Neural

Network which performs Scene Recognition and Object Detection. Luo et al. [100] developed

a semantic mapping framework utilizing spatial room segmentation, CNNs trained for object

recognition, and a hybrid map provided by a customized service robot. Niko et al. [150] proposed

a transferable and expandable place categorization and semantic mapping system that requires

no environment-specific training. Mancini et al. [104] addressed Domain Generalization (DG)

in the context of semantic place categorization. They also provide results of state-of-the-art

algorithms on the VPC Dataset [173] that were compared with in this work. However, most of

these results do not test their algorithms on a wide variety of platforms. This is the main focus

of the work shown in this chapter. The experiments are conducted, both for static images, and

dynamic real-world videos captured using hand-held cameras and robots.

2.3 Proposed Methodology

A set of five different models are considered, abbreviated as Diverse scEne Detection

methods in Unseen Challenging Environments (DEDUCE), for place categorization. Each model

is derived from two base modules, one based on the PlacesCNN [186] and the other being an

Object Detector-YOLOv3 [134]. The classification model can be formulated as a supervised

learning problem. Given a set of labeled training data X tr = {(x1,y1),(x2,y2)...(xN ,yN)}, where

xi corresponds to the data samples and yi to the scene labels, the classifier should learn the

discriminative probability model

p(ŷ j|Φ(X tr)) (2.1)
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Figure 2.2. Model Architecture. The highlighted regions represent the portion of the network
that was trained for the respective models.

where ŷ j corresponds to the j-th predicted scene label and Φ= {φ1,φ2...φt} are the set of different

feature representations obtained from the xi. This trained model should be able to correctly

classify a set of unlabelled test samples X te = {x1,x2...xM}. It is to be noted that while the goal

of each of the proposed five models is to perform place categorization, it is the Φ that varies

across them. Now the two base modules are described, along with how the five models are

derived and trained from them. The complete network architecture is given in Figure 2.2.

2.3.1 Scene Recognition

For scene recognition, the PlacesCNN model is used. The base architecture is that of

Resnet-18 [57] which has been pre-trained on the ImageNet dataset [31] and then fine-tuned on

the Places365 dataset [186]. Seven classes out of the total 365 classes are chosen, which are

integral to the recognition of indoor home/office environments - Bathroom, Bedroom, Corridor,

Dining room, Living room, Kitchen, and Office. The provided official training and validation

split are used for this work. The training set consists of 5000 labeled images for each scene class,

while the test set contains 100 images for each scene.
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2.3.2 Object Detection

Object detection is a domain that has benefited immensely from the developments in deep

learning. Recent years have seen people develop many algorithms for object detection, some of

which include YOLO [132, 133, 134], SSD [98], Mask RCNN [56], Cascade RCNN [19] and

RetinaNet [91]. In this work, the YOLOv3 [134] detector is used, mainly because of its speed,

which makes real-time processing possible. It is a Fully Convolutional Network (FCN) and

employs the Darknet-53 architecture which has 53 convolution layers, consisting of successive

3x3 and 1x1 convolutional layers with some shortcut connections. The network used here has

been pre-trained to detect the 80 classes of the MS-COCO dataset [92].

2.3.3 Place Categorization models

Scene Only

The first model that was used consists of only the pre-trained and fine-tuned PlacesCNN

with a simple Linear Classifier on top of it. This model accounts for a holistic representation of a

scene, without specifically being trained to detect objects. Thus, the feature vector for this model

is given by Φscene = φs.

Object Only

The second model acts as a Scene classifier using only the information of detected objects.

There is no separate training performed here to identify the individual scene attributes. For this

purpose, a codebook of the most common COCO objects seen in all seven scenes was created.

This is shown in Table 2.1. It is to be noted that every object has been associated with only

one scene, thereby making it a landmark. For this model, the feature representation is given by

Φob j = φ{ob j} where {ob j} is the set of objects detected in the image.
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Table 2.1. Top landmark objects (non-human) for the seven different scene classes

Bathroom Toilet Sink - -
Bedroom Bed - - -
Corridor - - - -
Dining Room Dining Table Chair Wine Glass Bowl
Kitchen Oven Microwave Refrigerator -
Living Room Sofa Vase - -
Office TV-Monitor Laptop Keyboard Mouse

Scene+Attention

In this model, the activation maps for the given image of a scene are computed, and using

those, the locations where the network has its focus during scene classification is visualized. From

the output of the final block convolutional layer (layer 4) of the WideResnet architecture [183],

the 14x14 feature blobs are obtained, which retain the spatial information corresponding to the

whole image. The proposed model is similar to the soft attention mechanism of [178] in the sense

that here too, the weights are assigned to be the output of a softmax layer, thereby associating

a probability distribution to it. However, since the classification is not based on a sequence of

images, a recurrent network is not employed to compute the sequential features. Instead, simply

the weights of the final FC layer are utilized and their dot product is taken with the feature blobs

to obtain the heatmap. The final step is to upsample this 14x14 heatmap to the input image size,

and then overlay it on top to obtain the activation mask m(xn) of the input image xn. Therefore,

the feature representation for this model is Φattn. = φm(xn). The basic architecture is given in

Figure 2.3.

Combined

In this model, the PlacesCNN mentioned above is used as a feature extractor to give the

semantics of a scene. In addition, the YOLO detector gives information regarding the objects

present in the image. Given an image of a scene, this model creates a hot-encoded vector of

80 dimensions, corresponding to the object classes of MS-COCO, with only the indices of the

detected objects set to 1. Then, this vector is concatenated along with that of the output of
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14 x 14 Feature Map 

Input Image Activation Map PlacesCNN

Figure 2.3. Architecture for Generation of the Activation Map. The 14x14 feature maps obtained
from block layer 4 of WideResNet are combined with the weights from the final FC layer, and
then their dot product is upsampled to the image size and overlaid on top to get the activation
maps

the scene feature extractor and a Linear Classifier is trained on top of it. Since two different

features of the scene and objects are combined here, the feature representation is given by

Φcomb. = {φs,φ{ob j}}.

Scene+N-best objects

The final proposed model is similar to the above in the sense that here also, both the

PlacesCNN and the YOLO detector are used. However, this model does not need to be retrained

again and so, it is significantly faster. For this model, a certain confidence threshold on the scene

detector is placed, and only when the probability of classification is below this threshold, the

information about specific objects in the scene (as obtained from Table 2.1) are searched for.

The reason for introducing this as a new model is two-fold. Firstly, the scenario of looking at

every object present is eliminated since it is often redundant, given the semantics of the scene.

Secondly, this is similar to how human beings operate when they come across an unknown scene.

The feature representation for this model is given by ΦN−best = {φs,φ{N−ob j}}.

2.4 Experiments and Results

The proposed five models described above are evaluated on a number of platforms.

First, the training procedure is described, followed by the different experiment settings used for

evaluation.
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Table 2.2. Accuracy in percentage of DEDUCE on Places365 dataset

Scenes Φscene Φob j Φattn. Φcomb. ΦN−best

Dining room 79 94 75 79 80
Bedroom 90 74 90 90 91
Bathroom 92 65 92 91 92
Corridor 94 90 99 96 94
Living Room 84 25 68 80 84
Office 85 29 76 94 83
Kitchen 87 62 70 87 87
Avg 87.3 62.6 81.4 88.1 87.3

2.4.1 Training Procedure

As mentioned in Section 2.3, the base architecture for the scene classifier is the ResNet-

18 architecture. The data pre-processing and training process is similar to [186]. A stochastic

gradient descent (SGD) optimizer is used with an initial learning rate of 0.1, momentum of 0.9,

and a weight decay of 10−4. For the Φscene and the Φattn. models, the training was performed for

90 epochs with the learning rate being decreased by a factor of 10 every 30 epochs. The Φcomb.

model converged much faster and so, it was only trained for 9 epochs, with the learning rate

reduced by 10 times after every 3 epochs. For all 3 training procedures, the cross-entropy loss

function was optimized, which minimizes the cost function given by

J(ŷ j,y j) =−
1
N
(

N

∑
j=1

y j⊙ log(ŷ j)) (2.2)

The training process was carried out on an NVIDIA Titan Xp GPU using the PyTorch

framework. The performance of the five DEDUCE algorithms on the test set of Places365 is

shown in Table 2.2 for the seven classes chosen.

2.4.2 Experiment Settings

To check the robustness of the proposed models, their performance is further evaluated

on two state-of-the-art still-image datasets.
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Table 2.3. Accuracy in percentage of DEDUCE on SUN dataset

Scenes Φscene Φob j Φattn. Φcomb. ΦN−best

Dining room 65.2 83.7 53.3 67.4 72.8
Bedroom 43.7 36.5 48.9 48.9 47.3
Bathroom 94.5 87.0 97.3 96.6 95.2
Corridor 44.4 67.6 67.6 44.4 41.7
Living Room 58.8 24.0 43.6 59.2 58.8
Office 84.0 12.6 75.8 90.6 80.6
Kitchen 77.1 63.5 63.9 83.8 77.4
Avg 66.8 53.6 64.3 70.1 67.7

SUN Dataset

The SUN-RGBD dataset [147] is one of the most challenging scene understanding

datasets in existence. It consists of 3,784 images using Kinect v2 and 1,159 images using Intel

RealSense cameras. In addition, there are 1,449 images from the NYUDepth V2 [145], and 554

manually selected realistic scene images from the Berkeley B3DO Dataset [63], both captured

by Kinect v1. Finally, it has 3,389 manually selected distinguished frames without significant

motion blur from the SUN3D videos [176] captured by Asus Xtion. Out of this, the seven classes

of importance are sampled and the official test split is used to evaluate the presented models.

Only the RGB images are considered for this work since the training data doesn’t have depth

information. The performance is summarized in Table 2.3.

Upon comparison with Table 2.2, which contains the results on the Places365 dataset

where the models were fine-tuned, a number of observations can be made that are consistent

for both datasets. Firstly, the Φcomb. model performs the best. This is intuitive since here, the

scene classification is done using the combined training of both the information about the scene

attributes and the object identity. Secondly, the Φob j model works the best for the Dining Room

class, even though its overall performance is the worst. This trend can be attributed to the fact

that dining rooms can be easily identified by the presence of specific objects, whereas the scene

attributes might throw in some confusion (for instance when the kitchen/living room is partially

visible in the image of a dining room). Thirdly, for Corridor, the performance of the Φattn. model
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Table 2.4. VPC Dataset: Average Accuracy across the 6 home environments

Networks H1 H2 H3 H4 H5 H6 avg.
AlexNet 49.8 53.4 49.2 64.4 41.0 43.4 50.2
AlexNet+BN 54.5 54.6 55.6 69.7 41.8 45.9 53.7
AlexNet+WBN 54.7 51.9 61.8 70.6 43.9 46.5 54.9
AlexNet+WBN∗ 53.5 54.6 55.7 68.1 44.3 49.9 54.3
ResNet 55.8 47.4 64.0 69.9 42.8 50.4 55.0
ResNet+WBN 55.7 49.5 64.7 70.2 42.1 52.0 55.7
ResNet+WBN∗ 56.8 50.9 64.1 69.3 45.1 51.6 56.5
Ours (Φscene) 63.7 57.3 63.7 71.4 60.2 65.9 63.7
Ours (Φcomb.) 63.7 60.7 64.5 70.7 65.7 68.8 65.7

is best for both the datasets. This supports the fact that to classify a scene like a corridor, viewing

only a small portion of the image close to the vanishing point is sufficient. Finally, the ΦN−best

model performs just as well or better than the Φscene model. This proves that the presence of

objects does indeed improve the scene classification. For the best performance using the ΦN−best

model, the threshold was set to 0.5 for the Places dataset while it was 0.6 for the SUN dataset.

The reason for the higher confidence on scene attributes for Places dataset is most likely because

the scene classifier itself was fine-tuned on it.

VPC Dataset

The Visual Place Categorization dataset [173] consists of videos captured autonomously

using an HD camcorder (JVC GR-HD1) mounted on a rolling tripod. The data has been collected

from 6 different home environments and three different floor types. The advantage of this dataset

is that the collected data closely mimics that of the motion of a robot - instead of focusing on

captured frames or objects/furniture in the rooms, the operator recording the data just traversed

across all the areas in a room while avoiding collision with obstacles. For comparison with the

state-of-the-art algorithms, the methods are tested only on the five classes that are present in all

the homes - Bathroom, Bedroom, Dining room, Living room, and Kitchen. Table 2.4 contains

the results for the individual home environments for these five classes. For the AlexNet [84] and

ResNet [57] models, the same training procedure is adopted as in [104]. It can be seen from the

20



Table 2.5. VPC Dataset: Comparison with State Of The Art
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table that the proposed models perform better than the rest in all but one of the home environments

and much better in the overall performance.

Table 2.5 further compares the models with all other baseline algorithms tested on the

VPC dataset. The reported accuracies are the average over all the six home environments.

First, the methods described in [173] are considered, which use SIFT and CENTRIST features

with a Nearest Neighbor Classifier and also exploit temporal information between images by

coupling them with Bayesian Filtering (BF). Next, the approach of [44] is looked at, where

Histogram of Oriented Uniform Patterns (HOUP) is used as input to the same classifier. [179]

proposed the method of using object templates for visual place categorization, and reported

results for the Global configurations approach with Bayesian Filtering (G+BF), and that combined

with the object templates (G+O(SIFT)+BF). Ushering the deep learning era, AlexNet [84] and

ResNet [57] architectures give better results, both with their base models, as well as the Batch

Normalized (BN) and the Weighted Batch Normalized versions [104]. However, comparisons

with the Φscene and Φcomb. models show that the proposed methods beat all the other results by

significant margins.

Do objects play an important role in prediction?

Figure 2.4 shows the attention maps obtained from the Scene+Attention model for six

different scenes of the Places365 dataset [186]. The hotpots present in each scene are typically

around characteristic objects, such as near the toilet and basin in Bathroom, bed in Bedroom,

or stovetop and shelves in Living room. This shows the importance of identifying objects for

predicting scene labels.

Another interesting result is observed in Figure 2.5, where the scene prediction accuracy

of the Φscene, and Φcomb. models are plotted as a bar graph. It is evident that for nearly every scene

category, the combined model, which jointly uses object, and scene information outperforms the

scene only model. The only comparable results are for Corridor – possibly because there are

no characteristic objects for this scene category, and Living room – as living rooms typically
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Figure 2.4. Visualization of attention maps for different scenes of the Places365 [186] dataset

contain a very noisy distribution of objects from multiple rooms.

Figure 2.5. Comparison of scene-only, and combined models for different scenes of the
Places365 [186] dataset
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Real-World Scene Recognition

To test the robustness of the presented DEDUCE models, the domain of test cases is

expanded beyond the aforementioned still image data sets. Figure 2.6 does this by showing

the results of scene recognition on real-world data recorded using hand-held cameras. The

ΦN−best model is deployed for these cases due to its ability to mimic the natural behavior of

humans, whereby an initial prediction is made based on the scene attributes, and if unsure, more

information related to specific objects are gathered to update/reinforce the initial prediction. The

top row corresponds to the tour of a semi-furnished real estate home obtained from YouTube

which only has the relevant objects in the scene. Although it is not a sequential tour of the house,

it does contain all the rooms. Also, professional photographers captured this video and hence,

the image quality and white balance of the camera are pretty good. The next two rows pose a

more challenging case as they correspond to homes currently inhabited by people. Two examples

of these houses are considered, one which is a standard bungalow residence, while the other is a

student apartment. From experience, the bungalow is a much cleaner home, whereas student

apartments are prone to the presence of cluttered objects and overlapping scene boundaries.

Moreover, the videos were recorded by the inhabitants using their cellphone cameras. This

inherently brings motion blur into the picture, especially during scene transitions. Finally, the

last row depicts the settings of a house from the movie “Father of the Bride”. This ensures that

the proposed model is robust enough to classify scenes even when the focus of the recording is

on people instead of the background settings. All the detection results mentioned in this chapter

are available as individual videos in the following link https://goo.gl/sYyVZ2.

Semantic Mapping

The experimental setting for semantic mapping involves running the presented algorithm

on a mobile robot platform in two different environments. The platform is a Fetch Mobile

Manipulator and Freight Mobile Robot Base by Fetch Robotics1. Figure 2.1 shows the robot

1https://fetchrobotics.com/robotics-platforms/
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Figure 2.6. Detection Results on Real-World Videos. The top row corresponds to the video of a
Real-Estate model house. The next two rows are from the houses of the authors and their friends.
The bottom row is obtained from a house in the movie “Father of the Bride”.

performing scene classification in one of the environments.

The semantic maps for the experiments were constructed using Omnimapper [159]. It

utilizes the GTsam library to optimize a graph of measurements between robot poses along a

trajectory, and between robot poses and various landmarks in the environment. The measurements

of simple objects like points, lines, and planes are data associated with mapped landmarks

using the joint compatibility branch and bound (JCBB) technique [114]. The regions for color

segmentation are acquired by the Gaussian Region algorithm of [115]. However, in [115], the

map partitions were built through human guidance, whereby the robot was taken on a tour of

the space (either by driving the robot manually or using a person following behavior) and the

respective scene labels were taught to it. This is in contrast to the approach in this work, where

the labels are learned from the visual place categorization system. Thus, the robot is capable of

identifying the scenes by itself without any human guide. The ΦN−best model is used for this

task and retrained the scene classifier to exclude the Bedroom, Dining Room & Bathroom scenes,

and instead include Conference Room as it is more likely to occur in an academic building

environment.

Figure 2.7a shows the navigation of the robot in the Computer Science and Engineering

25



(CSE) Building. The developed system in this work was able to classify the seven regions of

the floor map. However, there are some regions detected by Omnimapper using the laser range

finder. These are painted in white to denote their invisibility to the camera. The second test

environment is the Contextual Robotics Institute (CRI) building, which has a very different floor

map in comparison to CSE. The result of the run made here is shown in Figure 2.7b.

2.5 Conclusion

In this chapter, five different models are considered for performing place categorization,

which is derived mainly from two base modules - a scene recognizer, and an object detector. The

effectiveness of these algorithms is demonstrated through a series of experiments, ranging from

scene recognition in still-image data sets to real-world videos captured from different sources,

and finally via the generation of labeled semantic maps using data gathered by multiple mobile

robot platforms.

It has been shown that (i) different models are favorable for different scenes (Table

2.2 and 2.3), and thus the ideal scene recognition system would likely be a combination of

these five models, (ii) the proposed methods give successful results on many different types of

video recordings, even when they are affected by object clutter, motion blur, and overlapping

boundaries and (iii) the proposed models are robust enough to be tested on data gathered by

mobile robotic platforms on multiple building scenarios which are affected by occlusions and

poor lighting conditions.
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(a) Semantic Map of the CSE building.

(b) Semantic Map of the CRI.

Figure 2.7. Place categorization experiments with mobile robots. Each color represents one of
the seven classes of visual place categorization that the proposed system classified.
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Chapter 3

Context recognition in autonomous driv-
ing

Cameras are one of the most powerful sensors in the world of robotics as they capture

detailed information about the environment, and thus can be used for object detection [164, 97]

and segmentation [161, 162] - something that is much harder to achieve with a basic range sensor.

However, an image/video may contain some irrelevant information. Therefore, there is a need

to filter out these unimportant regions and instead, learn to focus the “attention” on parts of

the image that are necessary to solve the task at hand. This is crucial for autonomous driving

scenarios, where a vehicle should pay more attention to other vehicles, pedestrians, and cyclists

present in its vicinity while ignoring inconsequential objects like trees or buildings far away

from the road. Upon successfully identifying the objects of interest, the controller driving the

vehicle only needs to attend to them to make optimal decisions.

In this work, a novel framework is proposed for predicting the driver’s focus of attention

through a learned saliency map by taking into consideration the semantic context of an image.

Typical saliency prediction algorithms [121, 122, 175, 154] in driving scenarios rely only on

human-gaze information, either through an in-car [6], or in-lab [175] setting. However, gaze

by itself does not completely describe everything a driver should attend to, mainly due to the

following reasons:

1. Peripheral vision: Humans tend to rely on peripheral vision, thus giving them the ability
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to fixate their eyes on one object while attending to another. This cannot be captured

by an eye-tracking device. Thus, only in-car driver gaze [6] does not convey sufficient

information. While the in-lab annotation does alleviate this problem to some extent [175]

by aggregating the gazes of multiple independent observers, it does not completely remove

it since that relies on real human gaze too.

2. Single focus: When a human driver realizes that the trajectory of an incoming car or

pedestrian is not likely to collide with that of the ego vehicle, they tend to shift their gaze

away from the oncoming traffic as it approaches. This is a major cause of accidents. To

address this, a method is proposed for tracking the motion of every driving-relevant object

by detecting its instances until it goes beyond the field of view of the camera. This is

possible because the limitation of a human’s ability to single focus does not apply to an

autonomous vehicle system.

3. Distracted gaze: A human driver while driving the car might often get distracted by some

roadside object - say a brightly colored building or some attractive billboard advertisement.

To tackle this issue, the proposed method is only trained to detect those objects that

influence the task of driving. The in-lab gaze [175] also eliminates this noise by averaging

the eye movements of independent observers. However, they assume that the people

annotating are positioned in the co-pilot’s seat, and therefore cannot realistically emulate a

driver’s gaze.

4. Center-bias: For the majority of a driving task, the human gaze remains on the road in

front of the vehicle as this is where the vehicle is headed. When deep learning models are

trained on this gaze map, they invariably recognize this pattern and learn to keep the focus

there. However, this is not enough since there might be important regions away from the

center of the road that demand attention - such as when cars or pedestrians approach from

the sides. Thus, relying only on gaze data does not help capture these important cues.
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(a) Input image (b) SAGE-Net (our)

(c) BDD-A [175] (d) DR(eye)VE [6]

Figure 3.1. Predicted saliency map for different models (Best viewed in color). The bounding
box shows a pedestrian illegally crossing the road and is prone to accidents. While other models
only capture the car ahead (partially), the proposed model can completely learn to detect both
the car and the crossing pedestrian.

Figure 3.1 shows an example of an accident-prone situation, where the predicted saliency

maps from an algorithm trained using different target labels are shown. Gaze-only models were

able to detect the car ahead, but completely missed the pedestrian jaywalking. In contrast, the

proposed approach successfully detects both objects since it has learned to predict the semantic

context in an image.

It is important to note, however, that semantics alone does not completely provide insights

into the action that a driver might take at run-time. This is because a saliency map obtained only

from training on semantics will give equal-weighted attention to all the objects present. Also,

when there is no object of relevance, say on an empty road near the countryside, this saliency

map will not provide any attention. In reality, here the focus should be on road boundaries, lane

dividers, curbs, etc. These regions can be effectively learnt through gaze information which is
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(a) RGB image 1 (b) Gaze-only ground truth (c) SAGE ground truth (ours)

(d) RGB image 2 (e) Gaze-only ground truth (f) SAGE ground truth (ours)

Figure 3.2. Comparison of SAGE with the existing gaze-only ground truths. The top row [a-c]
is for the BDD-A dataset [175] while the bottom row [d-f] is for the DR(eye)VE dataset [6]. The
gaze-only maps indicate the heading of the ego-vehicle but completely ignore the nearby and
incoming cars. In contrast, SAGE captures both the driver’s intent and the relevant objects.

an indicator of a driver’s intent. Thus, a Semantics Augmented GazE (SAGE) ground-truth is

designed in this work, which successfully captures both gaze and semantic context. Figure 3.2

shows how the proposed ground truth looks as compared to the existing gaze-only ground truths.

There are three novel contributions made in this work. Firstly, a combined attention

mechanism called Semantics Augmented GazE (SAGE) is proposed, which can be used to train

saliency models for accurately predicting an autonomous vehicle’s (hereafter termed as a driver)

focus of attention. Secondly, a thorough saliency detection framework called SAGE-Net has been

provided by including important cues in driving such as distance to objects (depth), speed of ego

vehicle, and pedestrian crossing intent to further enhance the initial raw prediction obtained from

SAGE. Finally, a series of experiments have been conducted using multiple saliency algorithms

on different driving datasets to evaluate the flexibility, robustness, and adaptability of SAGE -

both over the entire dataset, and also specific important driving scenarios such as intersections and

busy traffic regions. The remainder of the chapter is organized as follows. Section 3.1 discusses

the existing state-of-the-art research in driver saliency prediction. Section 3.2 then provides

details of the proposed framework, followed by the extensive experiments conducted in Section
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3.3. Finally, Section 3.4 concludes the discussion and mentions the real-world implications of

the conducted research.

3.1 Background

Advances in Salient Object Detection: Detection [164, 97] and segmentation [161, 162]

of salient objects in the natural scene has been a very active area of research in the computer

vision community for a long time. One of the earliest works in saliency prediction by Itti et

al.[61] considered general computational frameworks and psychological theories of bottom-up

attention, based on center-surround mechanisms [158, 169, 73]. Subsequent behavioral [123] and

computational investigations [16] used “fixations” as a means to verify the saliency hypothesis

and compare models. The proposed approach differs from theirs due to the incorporation of both

a bottom-up strategy by scanning through the entire image and detecting object features that are

relevant for driving, as well as a top-down strategy by incorporating the human gaze which is

purely task-driven. Some later studies [97, 3] defined saliency detection as a binary segmentation

problem. This work adopts a similar strategy, but instead of using handcrafted features that do

not generalize well to real-world scenes, deep-learning techniques are used for robust feature

extraction. Since the introduction of Convolutional Neural Networks (CNNs), several approaches

have been developed for learning global and local features through varying receptive fields, both

for 2D image datasets [164, 96, 25, 45], and video-based saliency predictions [163, 99, 43, 118].

However, these algorithms are either too heavily biased toward image datasets or involve designs

of complicated architectures which make them difficult to train. In contrast, the proposed

approach helps to improve existing architectures without any additional training parameters,

thereby keeping the complexity unchanged. This is very important for an autonomous system

since it needs to be as close to real-time as possible. For a detailed survey of salient object

detection, please refer to the work by Borji et al.[12].

Saliency for driving scenario: Lately, there has been some focus on driver saliency
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Figure 3.3. The complete SAGE-Net framework (Best viewed in color), comprising of a saliency model
trained on SAGE groundtruth, and added parallel modules for depth estimation and pedestrian intent
prediction based on ego-vehicle speed (vego).

prediction due to rise of the number of driving [82, 182, 131, 124, 113] and pedestrian tracking

[33, 42, 82] datasets. Most saliency prediction models are trained using human gaze information,

either through in-car eye trackers [6, 121], or through in-lab simulations [175, 154]. However, as

discussed above, these methods only give an estimate of the gaze, which is often prone to center

bias, or distracted focus. In contrast, the proposed approach involves combining scene semantics

along with the existing gaze data. This ensures that the predicted saliency map can effectively

mimic a real driver’s intent, with the added feature of also being able to successfully detect and

track important objects in the vicinity of the ego vehicle.

3.2 SAGE-Net: Semantic Augmented GazE detection
Network

Figure 3.3 provides a simplified illustration of the entire SAGE-Net framework, which

comprises three components: a SAGE detection module, a distance-based attention update

module, and finally a pedestrian intent-guided saliency module. Firstly, a description of how the

SAGE maps are obtained is given in Section 3.2.1. Next, Section 3.2.2, describes how relative
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distances of objects from ego vehicle should impact saliency prediction. Lastly, in Section 3.2.3,

the importance of pedestrian crossing intent detection is highlighted along with how it influences

the focus of attention.

3.2.1 SAGE saliency map computation

In this work, a new approach is proposed for predicting driving attention maps which

not only uses raw human gaze information but also learns to detect the scene semantics directly.

This is done using the Mask R-CNN (M-RCNN) [56] object detection algorithm, which returns

a segmented mask around an object of interest along with its identity and location.

For the instance segmentation task, the Matterport implementation of M-RCNN [2] is

used, which is based on Feature Pyramid Network (FPN) [90] and adopts ResNet-101 [57] as

backbone. The model is trained on the MS-COCO dataset [92]. However, out of the total 80

objects in [92], the following 12 categories which are most relevant to driving scenarios are

selected - person, bicycle, car, motorcycle, bus, truck, traffic light, fire hydrant,

stop sign, parking meter, bench and background. For each video frame, M-RCNN provides

an instance segmentation of every detected object. However, as the relative importance of

different instances of the same object is not a significant cue, a binary classification approach is

used where all objects are segmented against the background. This object-level segmented map

is then superimposed on top of the existing gaze map provided by a dataset, to preserve the gaze

information. This gives out the final saliency map as seen in Fig 3.2. Upon inspection, it can be

seen that the proposed ground truth has managed to capture a lot more semantic context from the

scene, which gaze-only maps have missed.

3.2.2 Does relative distance between objects and ego vehicle impact focus
of attention?

Depth estimation through supervised [39, 94, 107] and unsupervised [46, 160] learning

methods, as a measure of relative distance between objects and ego vehicle has been a long
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studied problem in the autonomous driving community [102, 48, 49]. Human beings inherently

react and give more attention to vehicles and pedestrians that are “closer” to them as opposed to

those at a distance, since chances of collision are much higher for the former case. Unfortunately,

this crucial information is yet to be exploited for predicting driving saliency maps to the best

of the author’s knowledge. Therefore, this work considers it through the recently proposed

self-supervised monocular depth estimation approach - Monodepth2 [49]. It should be noted

that SAGE-Net is not restricted to just this algorithm, but can effectively inherit stereo or

LiDAR-based depth estimators into its framework as well.

Two methods of incorporating depth maps into the presented framework have been

considered. The first involves taking a parallel depth channel which does not undergo any

training but is simply used to amplify nearby regions of the predicted saliency map. The second

method is to use it as a separate trainable input to the saliency prediction model along with

the raw image, like how optical flow and semantic segmentation maps are trained in [121].

Eventually, the first strategy was decided because, in addition to being much simpler and faster

to implement, it also removes the issue of training a network only on a depth map which has a

lot less variance in data, thus leading to overfitting towards the vanishing point in the image.

Given an input clip of 16 RGB image frames, XRGB ∈ R16×3×h×w, the raw saliency map

prediction YRGB ∈ Rh×w is obtained. In addition, for each frame, the depth map DRGB ∈ Rh×w

is also computed. Finally, the raw prediction is combined with the depth map to obtain YRGB-D

using the ⊕ operator, which is defined as

YRGB⊕DRGB = YRGB ∗DRGB +YRGB (3.1)

where ∗ and + denote element-wise multiplication and addition respectively.
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3.2.3 Does extra attention need to be paid to pedestrians crossing at
intersection scenarios?

Accurate pedestrian detection in crosswalks is a vital task for an autonomous vehicle.

Thus, an additional module is included in this framework which focuses solely on the crossing

intent of pedestrians at intersections, and correspondingly updates the saliency prediction. It

should be noted that even though SAGE does capture information about pedestrians in its raw

prediction in general driving scenarios, it does not distinguish between them and other objects in

crowded traffic conditions such as intersections. This is critical since the chances of colliding

with a pedestrian are much higher around intersection regions than on other roads. However, this

is a slow process since it involves detecting pedestrians and predicting their pose at run-time.

Fortunately, this situation only occurs when the speed of the ego vehicle itself is less. Thus,

specialized detection of pedestrians is only included in this framework when the speed of the

ego vehicle (vego) is below a certain threshold velocity vthresh. It is not very difficult to obtain

vego since most driving datasets provide this annotation [6, 175]. Also, for an autonomous

vehicle, the odometry reading contains this. vthresh is a tunable hyper-parameter which can

vary as per the road and weather conditions. When vego < vthresh, a check is done to see if

pedestrians are crossing the road. This is done using the recently proposed algorithm ResEnDec

[53] which predicts the intent I of pedestrians as “crossing” or “not crossing” through

an encoder-decoder framework using a spatiotemporal neural network and ConvLSTM. This

algorithm is trained on the JAAD [82] dataset, considering 16 consecutive frames to be the

temporal strip while predicting the last frame Xlast . The proposed framework is designed such

that if the prediction is “crossing”, an object detector O, such as YOLOv3 [134], is used to get

the bounding box of the pedestrians from that last frame. Consequently, the predicted attention

for pixels inside the bounding boxes is amplified, while leaving the rest of the image intact. This
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is given by the ⊗ operator, defined as follows

YRGB-D ⊗ bbox =


YRGB-D[x,y]∗ k ∀ (x,y) ∈ bbox

YRGB-D[x,y]∗1/k, else
(3.2)

where k is an amplification factor (> 1) by which the predicted map is strengthened, while ∗ and

+ denote element-wise multiplication and addition respectively. If the predicted intent is “not

crossing”, the original prediction YRGB-D remains the final output saliency map. The summary

of the entire SAGE-Net algorithm is depicted in Algorithm 1.

Algorithm 1: The complete SAGE-Net pipeline
Input: RGB image XRGB, threshold velocity vthresh, ego vehicle velocity vego
Object detector: O
YRGB← Saliency model(XRGB)
Xlast← XRGB[−1]
DRGB←Monodepth2(Xlast)
YRGB-D← YRGB ⊕ DRGB
if vego(Xlast)> vthresh then

return YRGB-D
else

IXlast ← ResEnDec(XRGB)
if IXlast = not crossing then

return YRGB-D
else

bbox← O(Xlast)
Yfinal← YRGB-D ⊗ bbox
return Yfinal

3.3 Experiments and Results

Due to the simplicity of computation of the proposed ground truth, several experiments

can be run using it. These experiments can be split into a two-stage hierarchy - (i) conducted over

the entire dataset comprising of multiple combinations in driving scenarios - day vs night, city vs

countryside, intersection vs highway, etc. and (ii) those over specific important driving conditions

such as intersection regions and crowded streets. The reason for the latter set of experiments
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is that averaging out the predicted results over all scenarios is not always reflective of the most

important situations requiring maximum human attention [175]. For all the experiments, the

evaluation metrics used for comparison are described, and using those, the results of the gaze-

only ground truth and the proposed SAGE ground truth are compared for different algorithms

and datasets.

3.3.1 Some popular saliency prediction algorithms

Four popular saliency prediction algorithms are selected from an exhaustive list for

training with SAGE ground truth and their performances are compared against those trained

with gaze-only maps. The first set of algorithms, DR(eye)VE [122] and BDD-A [175], were

created exclusively for saliency prediction in the driving context. For DR(eye)VE, only the

image branch is considered for the analysis instead of the multi-branch network [121], due to

two main reasons that make real-time operation possible. Firstly, it has a fraction of the number

of trainable parameters and hence is faster to train and evaluate. Secondly, the latter assumes that

the optical flow and semantic segmentation maps are pre-computed even at test time, which is

difficult to achieve online. The BDD-A algorithm is more compact and it consists of a visual

feature extraction module [84], followed by a feature and temporal processing unit in the form

of 2D convolutions and Convolutional LSTM (Conv2D-LSTM) [177] network respectively.

However, both these algorithms combine the features extracted from the final convolution layers

to make the saliency maps. This mechanism ignores low-level intermediate representations such

as edges and object boundaries, which are important detections for driving scenarios. Thus,

another algorithm called ML-Net [27] is considered, which achieved the best results on the

largest publicly available image saliency dataset SALICON [64]. It extracts low, medium, and

high-level image features and generates a fine-grained saliency map from them. Finally, PiCANet

[95] extends this notion further by generating an attention map at each pixel over a context region

and constructing an attended contextual feature to further enhance the feature representability of

ConvNets.
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(a) RGB Image

(b) DR(eye)VE [122] with BDDA gt (c) DR(eye)VE [122] with SAGE gt

(d) BDDA [175] with BDDA gt (e) BDDA [175] with SAGE gt

(f) ML-Net [27] with BDDA gt (g) ML-Net [27] with SAGE gt

(h) PiCANet [95] with BDDA gt (i) PiCANet [95] with SAGE gt

Figure 3.4. Comparison of the prediction of four popular saliency models trained on the BDD-A
ground-truth (middle row) and our SAGE groundtruth (bottom row). It can be seen that for each
model, SAGE trained results can capture more detailed semantic context (Best viewed in color).
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Figure 3.4 shows a comparison of the predicted saliency maps trained on gaze-only

ground-truth, and those obtained from SAGE. For nearly every gaze-only model, the focus of

attention is entirely towards the center of the image, thereby ignoring other cars. In contrast,

SAGE-trained models have managed to successfully capture this vital information. Please refer to

Section 3.5.2 of the supplementary material for implementation details of these four algorithms.

3.3.2 Evaluation metrics

For evaluation, a set of metrics that are suitable for evaluating saliency prediction in the

driving context are considered, as opposed to general saliency prediction. More specifically, for

driving purposes, it is important to be more careful about identifying “False Negatives (FN)”

than “False Positives (FP)”, since the former error holds a much higher cost. As illustrated in

Section 3.2, the proposed ground truth has both a gaze component and a semantic component.

Thus, the set of metrics is broadly classified into two categories - (i) fixation-centric and (ii)

semantic-centric.

For the first category, two distribution-based metrics are chosen - Kullback-Leibler

Divergence (DKL), and Pearson’s Cross Correlation (CC). DKL is an asymmetric dissimilarity

metric, that penalizes FN more than FP. CC, on the other hand, is a symmetric similarity

metric that equally affects both FN and FP, thus giving an overall information regarding the

misclassifications that occurred. Other variants of fixation metrics are the location-based metrics,

such as Area Under ROC Curve (AUC), Normalized Scanpath Saliency (NSS), and Information

Gain (IG), which operate on the ground-truth being represented as discrete fixation locations

[18]. But for the driving task, it is crucial to identify every point on a relevant object, especially

their boundaries, to mitigate risks. Thus, continuous distribution metrics are more appropriate

here as they can better capture object boundaries.

In the second category, again two metrics are considered - namely F-score, which

measures region similarity of detection, and Mean Absolute Error (MAE), which gives pixel-
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wise accuracy. F-score is given by the formulae,

Fβ =
(1+β 2)∗ precision∗ recall

β 2 ∗ precision+ recall
(3.3)

where β 2 is a parameter that weighs the relative importance of precision and recall. In most

literatures [163, 4, 87], β 2 is taken to be 0.3, thus giving a higher weightage to precision.

However, following the earlier discussion regarding varying costs associated with FN and FP for

the driving purpose, β 2 is considered to be 1, thereby assigning equal weightage to each. For

formal proof of this, please refer to Section 3.5.1 of the supplementary material.

3.3.3 Results and Discussion

In this section, the experiments and results of algorithms trained on the proposed SAGE

ground truth are discussed, along with how they compare to the performance of the same

algorithms, when trained on existing gaze-only ground truths [6, 175]. The results of the

proposed method are compared with that of the BDD-A gaze in most of the experiments since it

is more reflective of scene semantics than the DR(eye)VE gaze. For a fair comparison, different

strategies for evaluating the fixation-centric and semantic-centric metrics are adopted. Since both

the traditional gaze-only approach and SAGE contain gaze information, respective ground-truths

are used to evaluate the fixation metrics (i.e. gaze for the gaze-only trained model, and SAGE for

the proposed trained model). However, for the semantic metrics, the segmented maps generated

by Mask RCNN are used as ground truth to evaluate how well each of the methods can capture

semantic context. The first set of comparisons, given by Table 3.1 and Figure 3.5, are calculated

by taking the average over the entire test set, while the remaining comparisons are for a subset

of the test set involving two important driving scenarios, namely - pedestrians crossing at an

intersection in Table 3.2, and cars approaching towards the ego vehicle in Table 3.3.

Overall comparison - In Table 3.1, the four algorithms described in Section 3.3.1 are

trained on the BDD-A dataset [175]. The results shown are obtained when evaluating the
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Table 3.1. Comparison of different saliency algorithms trained on BDD-A gaze gt and SAGE gt.
All experiments are conducted on the BDD-A dataset.
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Figure 3.5. Cross-evaluation of SAGE-gt by considering the gaze of two different datasets. [6]
and BDD-A [175] have been used for comparison. SAGE-B/D refers to the combination of
semantics with the gaze of BDD-A/DR(eye)VE dataset.

algorithms trained on the gaze-only data, and then on SAGE data generated by combining

semantics with the gaze of [175]. As observed from the table, the DKL and F1 values obtained

on SAGE are optimal for almost all the algorithms, while for CC and MAE, it either performs

better or is marginally poorer in performance. Overall, this analysis shows that the proposed

SAGE ground truth performs well on a diverse set of algorithms, thus proving its flexibility and

robustness.

Next, in Figure 3.5, a cross-evaluation of the proposed method for different driving

datasets is performed. For this set of experiments, one algorithm, namely DR(eye)VE [122] is

fixed, while the dataset is varied. Two variants of SAGE are evaluated - first, by combining scene

semantics with the gaze of [6], and second, with the gaze of [175]. For each of these, the results

are compared with the respective gaze-only ground truth of the respective datasets. Like before

the performance of predicted saliency maps is evaluated using the same fixation-centric and

semantic-centric metrics. The results show that the proposed SAGE models are not strongly tied
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to a dataset and can adapt to different driving conditions. It is important to note that even though

the cross-evaluation (SAGE-D tested on [175], and SAGE-B tested on [6]) is slightly unfair, the

results for SAGE still significantly outperforms those of the respective gaze-only models.

Comparison at important driving scenarios - In Table 3.2, the scenarios of pedestrians

crossing at intersections are considered. For this purpose, a subset of the JAAD dataset [82] was

used that contained more than five pedestrians (not necessarily as a group) crossing the road.

The same four algorithms described in Section 3.3.1 have been reconsidered for this case. Using

M-RCNN, the segmented masks of all the crossing pedestrians were computed and the predicted

saliency maps from the models were evaluated against this baseline. Upon comparison, it can be

seen that models trained on SAGE surpass those trained on the gaze-only ground truth. It is to be

noted that even though none of the models were trained on the JAAD dataset [82], the results

are still pretty consistent across all the algorithms. This shows that learning from SAGE indeed

yields a better saliency prediction model that can detect pedestrians crossing at an intersection

more reliably.

Finally, in Table 3.3, another important driving scenario is taken into account where the

detections of the number of cars approaching the ego vehicle are considered as a metric. The

evaluation set was constructed from different snippets of the DR(eye)VE [6] and the BDD-A

[175] datasets, where a single or a group of cars is/are approaching the ego vehicle from the

opposite direction in an adjacent lane. Once again, the four algorithms were evaluated on

this evaluation set. Like in Table 3.2, here too, the detections were analyzed with respect to

those made by M-RCNN. The results from Table 3.3 show that for almost every experiment

the performance of algorithms trained on SAGE is consistent in detecting the vehicles more

accurately compared to the models trained by gaze-only ground truth.

To summarize, the experiments clearly show that the proposed SAGE ground-truth can

be easily trained using different saliency algorithms and the obtained results can also operate

well across a wide range of driving conditions. This makes it more reliable for the driving

task as compared to existing approaches which only rely on raw human gaze. Overall, the
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Table 3.2. Comparison of SAGE with the gaze models for pedestrian crossing at intersection
scenario. The clips are taken from the JAAD [82] dataset.
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Table 3.3. Comparison of SAGE with the gaze models for detecting multiple cars approaching
the ego-vehicle from the opposite direction. The clips are taken from the DR(eye)VE [6] and
BDD-A [175] datasets.
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performance of the proposed method is better than gaze-only ground truth on 49/56 (87.5%)

cases, not only when averaged over the entire dataset, but more importantly, in specific driving

situations demanding higher focus of attention.

3.4 Conclusion and Future Work

This work introduces SAGE-Net, a novel deep-learning framework for successfully

predicting “where an autonomous vehicle should look” while driving, through predicted saliency

maps that learn to capture semantic context in the environment, while retaining the raw gaze

information. With the proposed SAGE-ground truth, saliency models have been shown to pay

attention to the important driving-relevant objects while discarding irrelevant or less important

cues, without having any additional computational overhead to the training process. An extensive

set of experiments demonstrates that the proposed method improves the performance of existing

saliency algorithms across multiple datasets and various important driving scenarios, thus

establishing the flexibility, robustness, and adaptability of SAGE-Net. The authors hope that the

research conducted in this work will motivate the autonomous driving community into looking

at strategies, that are simple but effective, for enhancing the performance of currently existing

algorithms.

A possible future work will involve incorporating depth in the SAGE-ground truth and

then having the entire framework trained end-to-end. Currently, this could not be achieved

due to low variance in the depth data, leading to overfitting. Another possible direction that

is being considered is to explicitly add motion dynamics of segmented semantic objects in

the surroundings in the form of SegFlow [24]. Work in this area is in progress as a campus-

wide dataset is currently being built with these kinds of annotations through visual sensors and

camera-LiDAR fusion techniques.
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3.5 Supplementary Material

3.5.1 Appendix A: Derivation of β for F-score

For saliency prediction in driving, False Negatives (FN) are more of a concern as

compared to False Positives (FP). This is because it is probably still fine to detect a pedestrian,

even if they are not crossing the road anytime soon. On the contrary, it is a much bigger cost

to not detect a person crossing. Thus, the metrics need to be tuned to penalize FN more in

comparison to FP. As discussed in the paper, DKL and CC already do that. Here, the derivation

of F-score in terms of its hyper-parameter β is provided. It is known that:

Precison =
True Positive (T P)

True Positive (T P)+False Positive (FP)
(3.4)

and,

Recall =
True Positive (T P)

True Positive (T P)+False Negative (FN)
(3.5)

Now, the F-score is given by:

F-score (β ) =
(1+β 2)∗Precision∗Recall

β 2 ∗Precision+Recall
(3.6)

Replacing for Precision and Recall from 3.4 and 3.5 respectively,

F-score (β ) =
(1+β 2)∗ T P

T P+FP ∗
T P

T P+FN

β 2 ∗ T P
T P+FP + T P

T P+FN
(3.7)

=
(1+β 2)∗T P

β 2 ∗ (T P+FN)+(T P+FP)
(3.8)

=
(1+β 2)∗T P

(1+β 2)∗T P+β 2 ∗FN +FP
(3.9)

In equation 3.9, it can be clearly seen that the numerator has no FP or FN terms and they are

present only in the denominator in the additive form. Thus it can be concluded that with an

48



increase in FP or FN, the F-score (β ) value decreases. That is,

F-score (β ) ↓= (1+β 2)∗T P
(1+β 2)∗T P+β 2 ∗FN ↑+FP

(3.10)

F-score (β ) ↓= (1+β 2)∗T P
(1+β 2)∗T P+β 2 ∗FN +FP ↑

(3.11)

Also in equation 3.9, it can be seen that FN has a weight of β 2 and FP has a weight of 1.

Thus, when β 2 is lower than 1, FN has smaller influence on F-score (β ) compared to FP , and

when β 2 is greater than 1, FN has greater influence on F-score (β ) compared to FP. As discussed

in the paper and above, FN is more dangerous compared to FP for autonomous driving tasks,

and thus the value of β 2 must NOT be chosen lower than 1. Therefore, to give equal weightage

to FN and FP, it was decided to keep β 2 equal to 1.

3.5.2 Appendix B: Algorithm description

In Table 3.4, the hyperparameters for each model are mentioned. Additionally, in Table

3.5, the details of the architecture of each of the four algorithms that were considered are provided.

All four models were trained on both the gaze-only data and the proposed SAGE data. The

hyperparameters were kept the same during both the training process.

3.5.3 Appendix C: Miscellaneous

In Figure 3.5, a cross-evaluation experiment was conducted where two variants of SAGE

were considered and compared with the respective gaze-only ground truths. In Table 3.6, a

similar result is shown where two variants of the gaze-only results are considered along with that

of SAGE. As seen from the results, SAGE outperforms the former in almost every case.
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Table 3.4. Summary of Hyperparameters
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Table 3.5. Network Architectures
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Table 3.6. Comparison of SAGE with two variants of the gaze truth.
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Chapter 4

Object-goal navigation utilizing hierarchi-
cal relationship

Human beings can perform complex tasks such as object-goal navigation efficiently, with

implicit memorization of the relationships between the different objects. For example, to navigate

to a target such as a toaster in the kitchen, a natural thing to do is to start by looking around

a set of larger candidate objects that are likely to be nearby, such as a stove or microwave.

Unfortunately, this type of hierarchical relationship is rarely used in robot navigation. As a

result, the agent usually fails to develop any intuition about the goal location when they are

further away. In this chapter, the object goal is referred to as the target objects, and those larger

candidates that have either a spatial or semantic relationship with the target are called parent

objects. This is depicted in Figure 4.1. Two main challenges are addressed here - (i) Correctly

associating the robot’s current observation with some prior intuition about object relationships

into the model. (ii) Efficiently utilizing this hierarchical relationship for the visual navigation

problem.

Existing research in this area tends to aggregate sensory input into a meaningful state,

before sending it to a Reinforcement Learning (RL) framework, with the expectation that the

robot can implicitly learn the navigation problem through recursive trials. Zhu et al.[188]

proposed to solve this problem by finding the similarity between the current observation and the

target observation through a trained Siamese Network [74]. The work of Wortsman et al.[171]
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Target: Toaster

Stove

Microwave

Sink

Target: Toaster

Toaster

Figure 4.1. Illustration of the parent-target relationship. Upon seeing a set of parent objects
(left image), the agent learns to associate the correct parent (Stove or Microwave, here) to the
target object (Toaster, here) from the knowledge graph and tries to search in its neighborhood
to successfully locate the target object (right image). [Best when viewed in color]

incorporated a meta-learning approach where the agent learns a self-supervised interaction loss

during inference to avoid collision. However, none of these methods use any prior information or

semantic context. The work by Sax et al.[139] highlights that a set of mid-level visual priors such

as depth and edge information, surface normals, key points, etc. can be useful for the navigation

task. However, a different encoder is required for learning each of these representations, and thus,

the model does not scale very well. Moreover, the learned features are expected to vary with the

test setting, thereby limiting the scope of the method in unseen dissimilar environments. Instead,

using the knowledge about object relationships is more robust since they are domain-independent.

Two approaches that are similar to that proposed here, are from Yang et al.[180], and Druon et

al.[35]. In [180], semantic priors in the form of a knowledge graph are used to capture object-

object connectivity, but this connectivity is defined only in terms of their spatial proximity, not the

inter-object dependency. For instance, an object such as pillow in the bedroom might be visible

next to both a bed and an alarmclock. Yet, one knows from experience that to find a pillow,

one should always start by looking around the bed. This type of common-sense knowledge is

missing from their method. In contrast, the proposed approach in this work assigns a sub-goal
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reward to force the agent to learn this key hierarchical relationship. Also, important information

about an object’s spatial location in the scene is missing as they learn a single context for the

whole scene. Instead, this work utilizes an object detector to capture this information explicitly.

Recently, Druon et al.[35] introduced the concept of a context grid where they modeled the

spatial (through an object detector) and language (through a word-embedding) similarity between

the target and other objects as a 16×16 grid. However, this relationship does not update during

the training stage, thereby making the model less adaptable. Additionally, their action space is

much bigger, thus simplifying the navigation task.

A major issue with RL algorithms in a real-world setting is efficient modeling of the

continuous high-dimensional state space in the agent’s surroundings [38]. While implementing

other algorithms [188, 180], it was observed that even though the convergence during the training

stage was fast, they gave a relatively poor performance during testing. A possible reason for this is

that due to their non-representative state space, the agent is perhaps simply learning to memorize

the training set after a certain number of episodes rather than understanding the underlying object

relationships, and thus it fails to generalize to a novel scene. The adaptive gradient of Wortsman

et al.[171] alleviates this problem to some extent. Nevertheless, it doesn’t remove it completely

since it does not take any prior memory into account. In contrast, the representative state in this

work leverages the correct balance of prior context and current observation to provide sufficient

information about the surroundings during training, while simultaneously being abstract enough

to generalize to a different room layout during testing.

Several contributions are made in this work. Firstly, a hierarchical object relationship

learning approach is presented for the object-goal navigation problem by understanding the

role of semantic context. This is done through the proposed novel Context Vector as a node

embedding in the graph convolutional neural network. Secondly, the role object detection plays

as opposed to a scene representation from traditional image classification networks is also

emphasized. Finally, the mentioned parent-target object relationship is incorporated through a

new reward-shaping mechanism.
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4.1 Background

Map vs map-less navigation approaches - Traditional approaches in visual navigation

involved formalizing this as an obstacle avoidance problem, where the agent learns to navigate in

its environment through a collision-free trajectory. This is done either in the form of offline maps

[11, 70, 118], or online maps [29, 146, 155, 170] generated through Simultaneous Localization

and Mapping (SLAM) techniques. Given this map as input, the typical approach was to employ

a path planning algorithm such as A* [55] or RRT* [69] to generate a collision-free trajectory

to the goal. The limitation of these algorithms is that it might not be possible to have a pre-

computed map of the environment. Generating a rich semantic map online is also a non-trivial

task. With the advent of deep learning, the focus has instead shifted towards methods that are

map-less [23, 54, 47, 93, 136], meaning that the representations can be learned over time through

interactions. However, most of these algorithms are not suited for finding specific target objects

in a previously unseen environment. In contrast, the proposed approach solves the target-driven

navigation problem entirely using only visual inputs without the need for a pre-computed map.

Point-goal navigation vs object-goal navigation - Point-goal navigation [7] refers to the

problem where an agent starts from a randomly chosen pose and learns to navigate to a specific

target point, usually specified in terms of 2D/3D coordinates relative to the agent. Lately, there

has been some research [110, 75] in this area. However, it is still an ill-defined problem in a

realistic setting, thereby making comparison difficult [138]. Object-goal navigation refers to the

problem where the agent instead learns to navigate to a specified target object while successfully

avoiding obstacles. These tasks usually require some prior knowledge about the environment

which can be useful for navigation [188, 171, 180, 35]. The work proposed here approach falls

in this category but involves learning a robust contextual object-object relationship.

Role of learning semantic context - Learning the semantic context of the surrounding

world is an important research topic in the computer vision and robotics community. However,

most of the existing work [157, 59, 130, 112, 143, 106] surrounds static settings such as object
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detection, semantic segmentation, activity recognition, etc. Recently, object-object relationship

modeling has been studied for tasks such as image retrieval [67] using scene graphs, visual

relation detection [185], visual question-answering [66, 105], place categorization [118], and

driver saliency prediction [117]. This work proposes a novel algorithm that successfully learns

to exploit hierarchical object relationships for object-goal visual navigation.

Reward shaping for policy networks - Reward shaping is a method in reinforcement

learning for engineering a reward function to provide more frequent feedback on appropriate

behaviors [166]. In general, defining intermediate goals or sub-rewards for an interaction-based

learning algorithm is non-trivial, since the environment model is not always known. However,

a divide and conquer approach is often imperative to exploit the latent structure of a task to

enable efficient policy learning [153, 8, 50]. Specifically, for the object-goal visual navigation

problem, it is important to learn the inherent “parent-target” object relationship for providing

meaningful feedback to the end-to-end training. For the policy network, the Asynchronous

Advantage Actor-Critic (A3C) [111] algorithm is used to sample the action and the value at each

step as per the approach of other models [188, 171, 180].

4.2 Task Definition

The object-goal navigation problem aims to find a target object, defined through a set

T = {t1, . . . , tN}, in a given environment. The problem is defined purely from a vision perspective,

and therefore any information about the environment in the form of a semantic or a topological

map is not provided. The agent is spawned at a random location in the environment at the

beginning of an episode. The input to the model is current observation in the form of RGB images,

and the target object’s word-embedding, rolled over each time-step. Using this, the agent has to

sample an action a from its trained policy given a set of actions A, where a ∈ A = {MoveAhead,

RotateLeft, RotateRight, LookUp, LookDown and Done}. The MoveAhead action takes the

agent forward by 0.25 meters, while the RotateLeft and RotateRight actions rotate it by
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45 degrees. Finally, the Look action tilts the camera up/down by 30 degrees. An episode is

considered a “success”, if the target object is visible, meaning the agent can detect it in the

current frame, and is within a distance of 1.5 meters from it. When the “Done” action is sampled

by the agent, the episode ends and the model checks if this criterion is met.

4.3 Memory-utilized Joint hierarchical Object Learning for
Navigation in Indoor Rooms (MJOLNIR)

Parent-Target object relationship - In addition to the target objects, a new set of object

classes is introduced, defined by the set P = {p1, . . . , pM}. These “parent objects” consist of the

larger objects present in a room, which also happen to be spatially/semantically related to the

target object. For example, CounterTop is a parent object in the Kitchen and Bathroom scenes,

while Shelf is a parent object in Living room and Bedroom. The set of parent objects, P, is

manually picked for each room based on the strong correspondences they have with the target

object list, T , in the knowledge graph (explained below). The navigation agent aims to start by

exploring the area around p ∈ P, eventually leading to the target object ti ∈ T .

Construction of Knowledge Graph and the Context vector - Similar to [180], the

proposed knowledge graph is also constructed using the objects and relationships extracted from

the image-captions of the Visual Genome (VG) dataset [83]. However, by pruning a lot of the

object (for instance, “armchair” vs “arm chairs”) and relationship (for instance, “near” vs

“next to”) aliases, it is possible to build a cleaner adjacency matrix for the graph convolution

network, containing strong relationship correspondences between those VG objects, which also

appear in the current experimental setting.

In addition to the newly constructed graph, a novel context vector c j for each object

o j ∈ O is also introduced, where O is the list of all the 101 objects in the environment. This 5-D

vector gives information regarding the state of o j in the current frame and can be represented as

c j = [b,xc,yc,bbox,CS]T . The first element, b, is a binary vector specifying whether o j can be
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Figure 4.2. The entire MJOLNIR architecture. In the Observation stream, the ground-truth
object detector is used to construct the context vector for all objects in the environment. This
observation vector (orange) is concatenated with the graph embedding (blue) from the CGN
stream to form a joint embedding. This is then sent to an LSTM cell and finally fed to the A3C
model. [Best when viewed in color]

detected in the current frame. The next two elements, (xc, yc), and bbox correspond to the center

(x, y) coordinates of the bounding box of o j, and its covered area, both normalized with respect

to the image size. Finally, CS is a number giving the cosine similarity between the respective

word embeddings of o j, and the target object t ∈ T . This is expressed as:

CS(go j ,gt) =
go j .gt

||go j ||.||gt ||

where g denotes the word embeddings in the form of GloVe vectors [125].

End-to-end model - The entire network for the task is shown in Figure 4.2. A two-stream

network approach is adopted, consisting of (i) the Observation stream, which encodes the agent’s

current observation in the environment, and (ii) the Contextualized Graph Network (CGN)

stream, which embeds the prior memory obtained through a knowledge graph G = (V,E).

For the Observation stream, two variants have been tried out - (i) The ResNet-18 [57]

conv features obtained from the current frame are used to give a holistic representation of

the scene. This feature map is then combined with the target object word embedding using

point-wise convolution and flattened to obtain the observation vector. (ii) The second variant is

to replace the conv features with the 5-D context vector (described above) for every object in the

environment. The resulting context matrix ∈ R|O|×5 is then flattened and forms the observation
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Figure 4.3. The novel CGN architecture. The input node feature constitutes the current detected
object list and the node object’s glove embedding. This is passed through two layers of GCN.
This intermediate embedding is concatenated with the context vector and another layer of GCN
is trained on it. [Best when viewed in color]

vector.

Even though the input knowledge graph, G, provides strong initial guidance to the agent,

this information, by itself, can be insufficient due to the domain difference between VG [83]

and the target navigation environment. The CGN stream is used to diminish this gap. A graph

convolution network (GCN) [71] is used to learn the node embeddings. Given G, the node feature

vector X ∈ R|O|+|g| is designed which is given by the concatenation of the output of an object

detector on the current frame, specified by the |O|= 101-dimensional vector having 1 for the

current frame objects, and 0 for others, along with each node object’s word-embedding. “101” is

the length of the simulator’s exhaustive list of object types, which is analogous to the number

of object classes in a trained object detector. This is different from the 1000-dimensional class

probability used by Yang et al.[180]. The reason for this change is two-fold - (i) the probability

vector obtained from ResNet-18 [57] is pre-trained on the 1000 classes of ImageNet [31], which

are quite different from the object list present in the environment, and (ii) since the pre-trained

network primarily learns to classify a single object, in the multi-object setting, it is more likely to

generate noisy labels1. The combined input node features are passed through two layers of GCN,

to generate the intermediate embedding. This new feature is then concatenated with the context

vector and then fed to another layer of GCN to generate the final graph node embedding. The

1An illustration of this is shown in the supplementary videos in Appendix A
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concatenation of the observation vector and the graph embedding results in the joint embedding

(shown in Figure 4.2), which is the input to the A3C model. The CGN stream is detailed in

Figure 4.3.

To separately highlight the contribution of the changes made to each of the streams, two

variants of the algorithm are presented. MJOLNIR-r uses ResNet and word embedding in the

current observation stream while using CGN as the graph stream. MJOLNIR-o uses the flattened

context matrix as the observation vector, along with the CGN stream.

Reward - The reward function is tuned to correctly learn to utilize the parent-target

relationship for the navigation task. The agent in the model receives a “partial reward”, Rp,

when a parent object p ∈ P is visible. This is given by Rp = Rt ∗Pr(t|p) ∗ k, where Rt is

the target reward and k ∈ (0,1) is a scaling factor. Rt = 5 and k = 0.1 are chosen for the

experiments. Pr(t|p) is taken from the partial reward matrix M 2, where each row has the

probability distribution of the relative “closeness” of all the parent objects, to a given target

object. The closeness is defined based on the relative spatial distance (measured in terms of the

L2 distance) between a pair of objects in the floorplans. If multiple parent objects are visible,

only the object with the maximum Rp is chosen. Moreover, the agent does not get this reward the

next time it sees the same parent object. This encourages it to explore different parent objects in

the room until the target is located. If the “Done” action is sampled, i.e. the termination criterion

occurs, and t is visible, the agent gets the goal reward, which is the sum of Rt and Rp. In this

way, it learns to associate parent objects with a target, as well as the current state. Since the entire

network is trained end-to-end, this shaped reward propagates back to the GCN layers, and tunes

them to correctly learn the “parent-target” hierarchical relationship from the input knowledge

graph. Finally, if neither the parent nor the target object is visible, the agent gets a negative

step penalty of 0.01. The reward for the state s, and action a, is therefore given by:

2Please refer to Appendix B of the supplementary for details about the construction of M.
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R(s,a) =



Rp, if p is visible

Rt , if t is visible at termination

Rt +Rp, if both are visible at termination

−0.01, otherwise

Algorithm 2 summarizes the above explained process.

Algorithm 2: Reward Shaping for MJOLNIR
Input: state s, action a, target t ∈ T , SeenList
Data: target reward Rt , partial reward matrix M
Function Judge(s, a, t):

if a ̸= “DONE” then
reward = Partial (s, t)

else if a == “DONE” and t is visible then
SeenList = [];
reward = Rt + Partial (s, t);

return reward;
Function Partial(s, t):

foreach parent pi ∈ P do
if pi is visible and pi /∈ SeenList then

p← argmax M[t];
SeenList← p;
Rp = M[t][p]∗Rt ∗ k

end
return Rp;

4.4 Experiments and Results

4.4.1 Experimental setting

The AI2-THOR (The House Of inteRactions) [78] simulator is used as the environment

for the navigation tasks. It is a challenging simulation platform, consisting of 120 photo-realistic

floorplans categorized into 4 different room layouts - Kitchen, Living room, Bedroom, and

Bathroom. Each scene is populated with real-world objects that the agent can observe and

interact with, thereby enabling algorithms trained here to be easily transferable to real-robot
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settings. Out of the 30 floorplans for each scene layout, the first 20 rooms from each scene type

are considered for the training set, and the remaining 10 rooms as the test set for the experiments.

The list of target and parent objects can be found in Appendix C of the supplementary.

4.4.2 Comparison Models

Random - In this model, at each step, the agent randomly samples its actions from the

action space with a uniform distribution. Baseline - This model closely resembles that of Zhu

et al.[188], as it comprises the current observation (in the form of the ResNet features of the

current RGB frame) and the target information (in the form of glove embedding of the target

object) as its state. Scene Prior (SP) - The publicly available implementation of Yang et al.[180]

has been used here. This uses the prior knowledge in the form of a knowledge graph but does

not utilize the hierarchical relationships between objects. SAVN - In this model [171], the agent

keeps learning about its environment through an interactive loss function even during inference

time.

Metrics - For fair comparison with other state-of-the-art algorithms, the evaluation

metrics proposed by [7] are used. This is consistent with the metrics adopted by other target-

driven visual navigation algorithms [188, 171, 180, 35]. The Success Rate (SR) is defined as

1
N ∑

n
i=1 Si, while the Success weighted by Path Length (SPL) is given by 1

N ∑
n
i=1 Si

li
max(li,ei)

. Here,

N is the number of episodes, and Si is a binary vector indicating the success of the i-th episode. ei

denotes the path length of an agent episode, and li is the optimal trajectory length to any instance

of the target object in a given scene from the initial state. The performance of all the models is

evaluated on the trajectories where the optimal path length is at least 1 (L >= 1), and at least 5

(L >= 5).

4.4.3 Implementation details

The proposed model is built on the publicly available code of [171], using the PyTorch

framework. The agent was trained for 3 million episodes on the offline data from AI2-THOR
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Table 4.1. Comparison with state-of-the-art visual navigation algorithms on the unseen test set

L >= 1 L >= 5
Model SR(%) SPL(%) SR(%) SPL(%)

Random 11.2 5.1 1.1 0.50
Baseline [188] 35.0 10.3 25.0 10.5
Scene-prior [180] 35.4 10.9 23.8 10.7
SAVN [171] 35.7 9.3 23.9 9.4

MJOLNIR-r (our) 54.8 19.2 41.7 18.9
MJOLNIR-o (our) 65.3 21.1 50.0 20.9

v1.0.1 [78]. During evaluation, 250 episodes were used for each of the 4 room types, resulting

in 1000 episodes in total. In each episode, the floorplan, target, and initial agent position were

randomly chosen from the test set defined in Section 4.4.1. Additional implementation details

can be found in Appendix D of the supplementary material.

4.4.4 Results

Table 4.1 and Figure 4.4a show the performance of each of the models on the test

environments. It is to be noted that the test environments consist of rooms that the agent has not

previously seen during training, and therefore the location of the different objects is completely

unknown. It can be seen that both the proposed models significantly outperform the current

state-of-the-art. MJOLNIR-o has a 82.9% increase in SR. This supports the hypothesis that

incorporating context vector into the observation state is indeed a better idea than directly using

ResNet and GloVe features. This is because the semantic information extracted from the scene in

this manner is more object-centric, thereby making the target-driven navigation problem easier.

It is also important to note here, that the graph convolutional network of [180], which does not

include the context vector as its node feature, performs poorer than even the baseline [188] and

SAVN [171].

It is interesting to note that even though MJOLNIR-r cannot beat the performance of
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Figure 4.4. Test accuracy and convergence rates for all the algorithms

MJOLNIR-o, it is still a substantial improvement over the other state-of-the-art methods (an

observed gain of 53.5%). This highlights the importance of the proposed CGN stream which can

better capture the contextual information extracted via ResNet conv features from the current

input image. Moreover, using reward shaping to tune the model parameters ensures that not only

is the prior memory preserved, but the current information containing the parent-target object

relationship hierarchy is also utilized.

Figure 4.4b shows the convergence rate of MJOLNIR with the model from Yang et

al.[180]. It can be seen that the training and testing SR of the proposed algorithms rapidly

increases within the first 5 million episodes itself, before saturating. This shows that the

presented models learn to correctly locate targets much faster than others. In contrast, for [180],

even though the training SR is quite high (≈ 90%), there is a huge drop during the testing

performance (≈ 35%), signifying severe overfitting. Finally, Table 4.2 gives the comparison of

room-wise results.

4.4.5 Ablation study

A number of ablations on MJOLNIR are shown in Table 4.3. In MJOLNIR-o (no g), the

third graph convolution layer of MJOLNIR-o where the intermediate embedding was concate-

nated with the context vector is removed. Instead, here, the intermediate embedding is directly
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Table 4.2. Evaluation results on a per-room basis
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Table 4.3. Ablation study for MJOLNIR

DONE
action Model

L >= 1 L >= 5
SR(%) SPL(%) SR(%) SPL(%)

only
sampled

MJOLNIR-r 54.8 19.2 41.7 18.9
MJOLNIR-o 65.3 21.1 50.0 20.9
MJOLNIR-o (no g) 59.0 16.6 41.0 16.9
MJOLNIR-o (w) 64.7 21.6 46.4 20.6

sampled
+ env

SAVN [171] 54.4 35.55 37.87 23.47
MJOLNIR-o 83.1 53.9 71.6 36.9

fed to the joint embedding. The slightly lower performance shows that the context vector can

indeed help in learning meaningful node embeddings for the graph. In MJOLNIR-o (w), a

weighted adjacency matrix is used for the graph convolutional network. This does not affect the

performance significantly as the authors believe that the object-object relationship is inherently

learnt by MJOLNIR-o.

Another evaluation of the proposed model was performed with a different stopping

criteria. In this case, the agent does not rely only on its sampled “DONE” action to learn the

termination action. Instead, it stops even when the environment gives the signal that the target

object has been found. For this, the proposed model is compare with the SAVN [171] model

using this stopping criteria. The results show that the presented approach performs significantly

better.

Some failure case analysis provides insights into the proposed models, and also opens

up research in further directions. Mainly two such cases are identified. Firstly, the agent gets

stuck at a particular state, when the target is visible, but the straight path to it blocked by some

obstacle. The authors hypothesize that a planner module which checks for collision might help

to overcome this. Secondly, since “DONE” is one of the candidate actions, (i) it may be wrongly

sampled even when the goal hasn’t been reached, or (ii) it might not be sampled even after

reaching the goal. A workaround is to have the termination criterion provided by the environment.
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As seen from the ablation study, this boosts the success rate from 65.3% to 83.1%. However,

it is at the cost of increased episode length as the agent is encouraged to explore more of the

environment. Moreover, in a real-robot setting, it might not be possible to have the environment

signal the termination.

4.5 Case study: A deeper look on the role of reward shaping

As mentioned in Section 4.1, reward shaping for reinforcement learning is a way to

provide localized signals to an agent for encouraging behavior that is consistent with prior

knowledge [85]. For the task of indoor robot navigation in search of a target object of interest, an

agent needs to obtain intermediate auxiliary signals based on surrounding objects, to ensure that

it’s heading towards the goal. This is especially true for large environments, where the robot may

need to take a number of steps to reach the goal [119]. A popular reward function used in the

object-goal navigation literature [188, 180, 171, 36, 37] is binary, where a large positive reward

is given at the goal state, while a smaller negative step penalty is assigned for every other state.

Unfortunately, this type of signal is quite sparse, thereby discouraging the learning process.

An alternate approach that has gained interest [22, 103] is to use geodesic distance to

the closest target as a reward signal. Although this is a denser function compared to the binary

reward, absolute knowledge about the closest distance to the goal is a strong assumption that may

not be easily available outside certain simulation environments [138]. An alternate approach to

this is to propose a method that relies on the estimated distance to objects calculated via different

heuristics. Two approaches that are similar to this are that of Druon et al.[35] and Ye et al.[181].

They both provide auxiliary signals based on the bounding box area of objects. However, these

rewards are only assigned to the target object, and therefore, the signals are still quite sparse,

especially when targets are smaller in size.

To expand on this idea, one can build on the initial approach described in [119] by

defining distance-based heuristics to modify the reward for both target objects and other large,
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salient objects that have a close relationship with the target (called parent objects).

4.5.1 Methodology

Pal et al.[119] introduced a reward shaping mechanism where the agent receives a

“partial” reward, Rp when it can identify a parent object with a close relationship to the target.

This is given by Rp = Rt ∗Pr(t|p)∗ k, where Rt is the target reward, and Pr(t|p) is a probability

distribution of the relative “closeness” of all the parent objects, p, to a given target object, t.

Additional details can be found in [119]. Notably, in that work, the scaling factor, k, is a constant

kept fixed at 0.1. Therefore, the partial reward is independent of the distance between the agent

and the parent/target objects, d. Moreover, Rp was only provided when the agent is within a

distance threshold from the parent (set as 1m in [119]). To overcome this issue, two methods have

been proposed to address by reformulating k as a factor of d. Furthermore, the Rp formulation

is extended towards both parent and target objects. The primary motivations for this are: (i)

the agent should be encouraged to identify parent objects whenever they are visible, and (ii) by

making the reward a factor of d, the agent is further inspired to explore regions closer to p.

(i) Utilizing metric depth - The first approach involves using metric depth in the form

of depth maps obtained directly from the AI2-THOR simulator [77]. Instead of this, an RGB-D

sensor can also be used to get the estimated depth. From the depth maps, the metric depth d

is computed as the average value of the region, φ , bounded by an object’s bounding box. This

is illustrated in Figure 4.5a. Subsequently, the scaling factor is formulated as a linear function,

k′(d) = k ∗ (m∗d + c). In the experiments, m =−0.15, and c = 1 were empirically chosen to

ensure k′ ∈ [0,1].

(ii) Utilizing bounding box area - While the metric depth approach is intuitive, in

theory, it is observed that due to the added sensor input in the form of depth maps, the training

time increases. Thus, the next approach that was tried was to use a heuristic for relative

distance, where the scaling factor is calculated based on the assumption that as the agent moves

closer, an object’s bounding box (bbox) area should proportionately increase. This method,
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(a) Metric distance from depth maps (b) Relative distance from bbox area

Figure 4.5. The image on the left shows a depth map with a bounding box around the object.
The inset contains the RGB image of the object. d is obtained by finding the average distance
of each pixel in the bounding box. The image on the right shows the relative increase in the
bounding box area of an object (A1 to A2) as the agent moves closer. d is object distance when
the area is A2.

apart from being simple to implement, also reduces the dependence on additional sensor data,

thereby minimizing the computational load. For this strategy, the scaling factor is given by

k′(d) = k ∗ (1− (A1/A2(d))0.5), where A1 and A2 are bounding box areas of a particular object

in the state when it was first seen by the agent and the current state respectively. This is depicted

in Figure 4.5b.

A visualization of the reward distribution is provided in Figure 4.6. On the left side, the

binary reward rbin is shown, which only activates within a region of the target object, and is

absent everywhere else. In the middle, the baseline partial reward from Pal et al.[119] is shown,

which increases the region of reward to the large “parent” objects near the target objects. It is to

be noted that even with the increased coverage, this reward is still not continuous. Finally, on the

right, the dense reward from Madhavan et al.[101] is shown, which is a continuous function of
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Figure 4.6. Distribution of the three types of reward functions mentioned in this work. [Best
when viewed in color]

the distance from the object.

4.5.2 Experiments and Results

Similar to Pal et al.[119], the AI2-THOR [77] environment was used for these exper-

iments. The setup and train/test split is consistent with other standard methods - GCN [180],

SAVN [171], and MJOLNIR-O/R [119]. The agent was trained for 3×106 episodes for each

model. Furthermore, for every model, experiments using 4 different reward functions were

conducted - binary reward rbin, baseline partial reward from [119], rbase, and the two proposed

rewards, namely depth-based, rdepth, and area-based, rarea, respectively. The evaluation metrics

are adopted from Anderson et al.[7].

Metric 1 discussion: Success rate (SR) - Table 4.4 shows the performance for this

metric. For nearly every model, training via the proposed reward mechanism yields the best

results, especially for episodes with larger path lengths, i.e. L ≥ 5, where further exploration

of the environment might be needed. This shows the benefits of adding a denser reward signal
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Table 4.4. Metric 1: Success rate (%). The mean score over 5 runs is provided with the standard
deviation as sub-scripts.

L≥ 1 L≥ 5

Models rbin
rbase ours

rbin
rbase ours

[119] rdepth rbbox [119] rdepth rarea

GCN [180] 33.1(0.8) 33.3(1.4) 31.7(0.7) 35.3(0.5) 25.0(1.4) 23.5(1.6) 26.9(1.1) 24.6(0.8)
SAVN [171] 34.7(0.5) 40.7(1.4) 32.2(0.9) 39.6(0.8) 25.8(0.8) 30.0(1.4) 26.81.3 31.7(1.5)
MJOLNIR-o [119] 58.8(1.0) 64.1(0.7) 66.4(0.3) 66.3(1) 40.6(0.6) 46.6(1.6) 50.5(0.7) 51.5(1.3)
MJOLNIR-r [119] 65.5(0.6) 68(0.9) 77.1(0.7) 69.7(0.9) 52.3(0.8) 52.3(0.5) 69.2(0.8) 57.3(1.3)

based on distance to objects.

Metric 2 discussion: Success weighted by Path Length (SPL) - As opposed to the

results for success rate, the SPL performance drops for the proposed methods. This is shown in

Table 4.5. A possible reason for this could be due to the added incentive that the agent now gets

to explore regions around parent objects, before heading towards the target. However, this is not

necessarily a major drawback, as exploring the environment is an important feature, especially

in large and previously unseen environments.

It should also be noted that generally, the denser distance-based reward functions perform

better for models that consider object relationships (like GCN [180], and the MJOLNIRs [119]).

This supports the intuition that adding auxiliary signals based on surrounding objects can aid in

Table 4.5. Metric 2: SPL (%). The mean score over 5 runs is provided with the standard
deviation as sub-scripts.

L≥ 1 L≥ 5

Models rbin
rbase ours

rbin
rbase ours

[119] rdepth rbbox [119] rdepth rarea

GCN [180] 10.0(0.4) 10.8(0.5) 5.5(0.2) 8.2(0.1) 10.3(0.7) 11.20.7 7.3(0.3) 8.7(0.3)
SAVN [171] 11.0(0.2) 11.1(0.3) 6.6(0.3) 10.50.2 11.7(0.1) 12.4(0.5) 10.50.3 12.8(0.6)
MJOLNIR-o [119] 18.5(0.3) 20.7(0.2) 11.6(0.1) 15.80.4 17.8(0.3) 20.0(0.6) 13.7(0.3) 17.3(0.5)
MJOLNIR-r [119] 24.4(0.3) 26.50.2 15.0(0.3) 16.8(0.2) 26.2(0.4) 27.2(0.3) 20.3(0.4) 19.3(0.4)
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Figure 4.7. Bar graph showing the performance of different object-goal navigation algorithms
over the years. [Best when viewed in color]

the search of far-off target objects. Figure 4.7 shows the performance of different object-goal

navigation algorithms over the years, and how the two approaches mentioned in this chapter rank

among them.

4.6 Conclusion

This chapter introduces MJOLNIR, a novel object-goal visual navigation algorithm that

utilizes prior knowledge and also learns to associate object “closeness” in the form of parent-

target hierarchy during training. This is done through the proposed context vector which can be

easily derived from the output of an object detector. It is shown that besides the modified state

space, knowledge graph, and reward shaping also play a significant role in guiding the agent

to search for the target. Extensive experiments show that the agent can successfully find small

target objects using the larger parent object as an anchor. The proposed model’s performance can
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be generalized across different unseen scenes and current state-of-the-art models. In an extension

to this work conducted by Madhavan et al.[101], a distance-based reward shaping mechanism

was introduced that provides denser feedback to the agent, thereby encouraging it to explore

more of the environment. It has been shown that adopting this strategy leads to a higher success

rate of reaching the target object for multiple models, especially for cases where the optimal path

requires taking a longer sequence of actions.

4.7 Supplementary Material

4.7.1 Appendix A: Object detector vs ResNet features

One of the significant changes made in the proposed algorithm from existing works

[180] is to use object detection features instead of a classification probability from a CNN such

as ResNet as the input node embedding in the graph convolution network. This is because

the detection of multiple objects is integral to learning the “parent-target” hierarchical object

relationships effectively. To further demonstrate this, a pre-trained YOLOv3 detector is run on an

RGB image of a kitchen environment, taken using a cell phone camera, as shown in Figure 4.8b.

Side-by-side, a Grad-cam visualization of ResNet-18, resnet.mp4 on the same image is also

depicted in Figure 4.8a. As seen from Figure 4.8, the multi-object detector can generate much

fewer false-detections as compared to the 1000 class probability from ResNet, which generates

noisy labels such as “prison”.

4.7.2 Appendix B: Construction of Partial reward matrix M

As mentioned in Section 4.3, the conditional probability of a target object being found,

given that a parent object was observed, Pr(t|p), is obtained from the Partial reward matrix M.

The training split of the AI2-THOR environment was utilized for creating M. For every floorplan,

the 3D position of each object present there was plotted. Then, the occurrence of different target

objects that were located within a Euclidean distance of 1 meter from a parent object (from Table
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(a) Prediction of scene label from a pre-trained scene
encoder

(b) Prediction of object bounding boxes from a pre-
trained object detector

Figure 4.8. Comparison of model prediction from a pre-trained scene encoder vs a pre-trained
object detector on an RGB image

4.7) was counted. It is to be noted that even though the same parent object might be present

in more than one room type, its relationship with the target objects might be different. Thus,

M was computed for every room type, as shown in Table 4.6. Normalizing each row provides

the probability distribution of a target object t ∈ T , given a parent object Pr(t|P). For the final

parent reward Rp, a scaling factor k was used to ensure that the agent receives a lesser reward

for the parent object as compared to the target reward Rt = 5. For the work in [119], a constant

value of k = 0.1 was used, while for the follow-up work of [101], k was made to be a function of

distance.

4.7.3 Appendix C: Parent and target object list

Table 4.7 provides the list of target objects, T , and parent objects, P, used in the experi-

ments.

4.7.4 Appendix D: Implementation Details

For the word embeddings, the 300-D GloVe vectors were used that are pre-trained on

840 billion tokens of Common Crawl [125]. The A3C model is based on [81]. The model

hyperparameters used for the experiments are tabulated below in Table 4.8.
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Table 4.6. Partial reward matrices for each of the 4 room-type in AI2-THOR.

Target
Parent

Fridge StoveBurner Microwave TableTop Sink CounterTop Shelf

Toaster 0.15 0.29 0.15 0.04 0.15 0.23 -
Spatula 0.03 0.31 0.22 0.02 0.19 0.22 0.02
Bread - 0.16 0.13 0.16 0.20 0.36 -
Mug - 0.19 0.17 0.11 0.30 0.23 -
CoffeeMachine 0.08 0.10 0.10 0.06 0.38 0.28 -
Apple 0.12 0.12 0.12 0.12 0.25 0.23 0.02

(a) Kitchen

Target
Parent

Drawer Shelf TableTop Sofa FloorLamp

Painting 0.86 0.14 - - -
Laptop 0.27 0.14 0.36 0.23 -
Television 0.40 0.2 0.35 - 0.05
RemoteControl 0.25 0.05 0.25 0.4 0.05
Vase 0.21 0.47 0.26 - 0.05
ArmChair 0.09 - 0.27 0.18 0.45

(b) Living room

Target
Parent

Shelf Dresser NightStand Drawer Desk Bed

Blinds 1 - - - - -
DeskLamp 0.16 0.2 0.12 0.24 0.28 -
Pillow - 0.04 0.21 0.17 - 0.58
AlarmClock 0.19 0.11 0.26 0.21 0.04 0.19
CD 0.21 0.1 0.08 0.33 0.23 0.06

(c) Bedroom

Target
Parent

CounterTop Cabinet Drawer ShowerDoor Toilet Bathtub

Mirror 0.51 0.26 0.21 0.03 - -
ToiletPaper 0.19 0.19 0.10 0.06 0.46 -
SoapBar 0.29 0.18 0.14 0.04 0.2 0.16
Towel 0.15 0.04 0.15 0.44 0.07 0.15
SprayBottle 0.35 0.20 0.16 0.02 0.22 0.06

(d) Bathroom
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Table 4.7. Parent and target object list
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Table 4.8. Summary of Hyperparameters
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Chapter 5

Complete home robot rearrangement task

Creating autonomous agents to aid human beings in everyday household chores has

long been considered to be the holy grail of service robotics research. This work takes a step

towards that goal by proposing a complete system for an indoor tidy-up task. Usually, this

comprises identifying misplaced objects in the environment and transferring them to their desired

locations. Several aspects of this inherently long-horizon task make it particularly challenging in

a real-world environment. Firstly, recognizing out-of-place objects in a noisy environment is a

non-trivial problem. While state-of-the-art open-vocabulary object detectors [184, 52, 109, 187]

are quite adept at localizing objects in a zero-shot manner, determining whether they belong in

a particular environment is more complicated, as it also involves understanding scene context.

Secondly, user preferences for placing objects in the “correct” room and surface (hereafter

called receptacle), are often subjective, thereby inhibiting the sole use of generic common-sense

reasoning models. Thirdly, manipulating unknown objects in a cluttered environment is still

an open research problem due to the difficulty of affordance estimation and motion planning.

Finally, delivering an object to a previously unlabeled receptacle in the target room is particularly

challenging, especially if the precise location of said receptacle is unknown.

This chapter addresses each of the mentioned components for rearranging household

objects in a real-world setting utilizing the Fetch [168] mobile manipulation platform. To ensure

robustness and scalability within the physical world, a modular system has been proposed that is
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Figure 5.1. An example of a home-robot rearrangement task. At the initial state, the robot
identifies the mustard bottle object and determines that it is misplaced in the office. Subse-
quently, the robot transports it to its correct location in the kitchen on top of the counter-top.
The semantic map used for the navigation task is shown on the left with the robot’s trajectory.

capable of performing (i) user-preference-based reasoning through collaborative filtering, (ii)

fine-grained pick-up of unknown objects and placement on previously unlabeled receptacles, and

(iii) multi-room rearrangement. All these functionalities are coordinated by behavior trees that

can handle failure at different levels. An example of the operation is shown in Figure 5.1.

The remainder of the chapter is organized as follows. Section 5.1 discusses existing

approaches for object rearrangement in home-robot environments. Section 5.2 has a description

of each component used to perform the overall task, with a summary of the integrated system in

Section 5.3. The conducted experiments are explained in detail in Section 5.4, and a summary of

the work with some future goals is provided in Section 5.5.
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5.1 Background

Recently, indoor object rearrangement tasks using mobile robots have received a lot of

attention from the robotics and computer vision community. Due to the increasing number of

Embodied AI platforms available [128, 141, 142, 152, 10, 86], several approaches have been

proposed for solving the complete mobile manipulation task in several home environments.

However, most of these methods [60, 108, 128, 9, 152] are entirely trained in simulation, and

therefore rarely generalize to real-world environments. Other works have adopted the task

planning approach, but are either restricted to specific tasks such as folding clothes [148] and

rearranging kitchens [172], or follow a pre-defined template [28]. Some approaches [140,

51, 135, 72] focus on the human-robot interaction aspect, but not on autonomy. Lately, large

language models (LLMs) have gained popularity for robotic manipulation, both for task planning

[174, 32, 21], as well as end-to-end execution [14, 65, 15, 5]. While these large foundational

models are proficient at reasoning about object semantics, accurately grounding the offline

acquired knowledge in a dynamic physical environment is still considered to be a non-trivial

problem. Two efforts closest to the work done here are that of Wu et al.[174] and Castro et

al.[20]. Wu et al.[174] use LLMs to infer generalized user preferences and use them to tidy a

room. However, they do not handle fine-grained manipulation, need rigorous prompt engineering

to understand user preferences, and are limited to within-room navigation. Castro et al.[20] do

consider room-to-room navigation, but they rely on manually annotated prior semantic maps

for querying the exact locations of target rooms and receptacles. In contrast, this work builds a

simple 2D geometric map with rough room locations and proceeds to identify receptacles in the

environment on the fly.

5.2 Components

The proposed ensemble system for home-robot rearrangement contains four primary

modules: scene recognition and mapping, object rearrangement, manipulation, and navigation.
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5.2.1 Semantic mapping and visual recognition

The detection module perceives the environment in two stages. The first stage involves the

construction of a semantic map of the environment for localization, while the second stage deals

with the recognition of objects in the environment. The localization system uses Cartographer

mapper [58] to generate a LiDAR-based 2D occupancy-grid environment map. For simplicity,

the locations in the map are manually annotated with a semantic label of the room category.

This manual annotation step can also be replaced by an automated module such as [118]. The

location of receptacles, however, is not annotated, as knowing their exact positions apriori is a

strong assumption in dynamic environments. For object recognition, the DETIC [187] model

that is trained on twenty-thousand object classes is used. With this detector, one can detect both

manipulable objects and receptacle surfaces for the rearrangement task.

5.2.2 Object rearrangement

The rearrangement module involves repositioning objects in the home, using both

common-sense reasoning (to determine target rooms) and human preferences (for selecting

target receptacles). A large human-labeled dataset [68] is utilized for object placement prefer-

ences in homes, creating a knowledge base to predict likely room locations for objects. Then,

user preference is used to capture diversity in human choices for receptacle locations. How-

ever, the dataset does not contain a particular user’s preference for all the objects, leading to a

sparse user-preference matrix. Thus, given scores and user-ranked preferences, collaborative

filtering [1] is used to fill out the sparse matrix. Subsequently, matrix factorization [79] is

performed to predict user ratings ru,i for user u and item i. For this case, an item i refers to

an object’s placement in a particular room and receptacle. An user’s rating is predicted using

f (u, i) = γu ∗ γ i. Here, γu ∈ Rd and γi ∈ Rd are latent vectors representing the row of a user in

matrix γU and column of an item in matrix γI , and d is the lower dimensional space. To choose

parameters γ = {γu,γi} to closely fit the data, a loss function using Mean Squared Error with an
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L2 regularization term is minimized.

argmin
γ

1
|τ| ∑

ru,i∈τ

wu,i(ru,i− f (u, i))2 +λΩ(γ) (5.1)

where τ is the corpus of ratings and Ω(γ) is ℓ2 norm ||γ||22. The approach allows

estimation of the full preferences of users’ desired correct object placement locations.

Object rearrangement involves two main steps – (i) Identifying misplaced objects by

checking if their current location is in the top-k (10 in this work) likely locations from the

user-preference matrix, and (ii) Predicting preference-based placement by first determining the

target room using common-sense reasoning, and then identifying various potential receptacle

locations within that room based on a sampled user identity.

5.2.3 Manipulation of objects

The manipulation module includes planning to understand and construct a scene, analyz-

ing interaction methods with the target object, and planning the required motion for effective

interaction, all aligned with the task goal.

Before constructing the planning scene, the robot in this work possesses some prior

knowledge of the environment. For instance, it understands that most objects should be positioned

on a flat receptacle such as a table, or counter-top. Therefore, the receptacle serves as a

common obstacle during the manipulation tasks, making it beneficial to prioritize its search once

an object is detected. Finally, the receptacle is added as a single entity in the planning scene

for efficient collision detection, while a voxel set represents the remaining non-target objects,

optimizing resource usage.

Even though the robot knows the planning scene, interacting with the target object is

crucial. In this work, grasping is the prevailing contact approach. For this, a learning-based

grasp prediction [151] model is utilized to estimate a set of possible grasping poses. However,

pick-and-place is not the only manipulation action available. The robot must also account for
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potential object motions based on the task requirements. For instance, it might need to open a

drawer before placing an object. Consequently, the robot must compute the required motion to

open it after identifying a set of arm configurations to grasp the drawer handle. The robot may

explore alternative approaches if the motion is found before the timeout.

5.2.4 Semantic navigation

The navigation module aims to move the robot between different locations for the

rearrangement task and is considered in two stages – (i) room-to-room navigation for planning a

path to the target room, and (ii) receptacle navigation for navigating to the correct receptacle in

the target room.

For room-to-room navigation, the 2D coordinate of the center of the target room is first

computed from the annotated semantic map. Using this destination point, a heuristic point-goal

navigation algorithm is adopted to plan a trajectory by avoiding obstacles along the way with the

Navfn planner. Upon reaching the target room, the receptacle navigation module is called. First,

the entire room is scanned for possible receptacles for the held object, and the position of each

candidate receptacle is updated in the map by re-projecting the detected object from the depth

map of the camera. Then, the most likely target receptacle is chosen as per the rearrangement

module 5.2.2. Finally, a second heuristic planner is called to make the robot move as close to

the goal receptacle position as is feasible in collision-free space, which is achieved through the

Carrot Planner.

5.3 System Integration

This section outlines the primary structure of the proposed system and then discusses the

flow of control using behavior trees.

86



Figure 5.2. The overall architecture of the proposed system, as discussed in 5.3.1

5.3.1 System Architecture

Figure 5.2 depicts the overall architecture of the proposed system. The task plan is

provided in the form of behavior trees, as discussed in the next section. The localization module

reads the semantic map, along with sensor data, to get the robot’s current coordinates in the

room. The detector module reads the sensor data, along with the robot’s location, and identifies

objects in the environment along with their 3D locations on the map. The object rearrangement

module obtains a list of (ob ject,receptacle,room) tuples from the perception and localization

modules to identify misplaced objects and propose “correct” placements. The manipulation

module picks up the misplaced object. The target room for placement provides the goal location

for the navigator module, which then calls the perception module to locate the target receptacle

and navigate to it. The manipulation module finally places the object either on the receptacle or

inside the receptacle, depending on the specified goal from the rearrangement module.

5.3.2 Use of Behavior Trees for Integration

A key component of the complex home-robot system is the composition of the different

capabilities of the robot to execute the task robustly and continuously. This calls for a control

architecture that is modular and capable of switching between tasks such that the different tasks
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Figure 5.3. The complete behavior tree of the home-robot tidy module

can be called anywhere during the workflow. Consequently, Behavior Trees (BTs) are used to

monitor and orchestrate the flow of the entire system. BTs are a modular control architecture

developed for controlling autonomous agents that support reactive behavior. [26] A BT consists

of control nodes and leaf nodes, where the leaf nodes are atomic operations that include actuation

and sensing. The control nodes are behavior nodes that chain together multiple nodes. Each node

(with its children) is a behavior that the robot can exhibit. A behavior can be composed of multiple

behaviors. For instance, picking up a misplaced object is composed of two behaviors: identifying

a misplaced object and picking up a target object. Figure 5.3 shows the BT of the home-robot

tidy module. The system begins by calling the misplaced object identification (OOP) method
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of the rearrangement module in Section 5.2.2. For every object, potential placement candidates

(PlacementCandidates) are computed in Section 5.2.2. The Pickup Behavior in Section 5.2.3

is called on the misplaced object. RoomNavigator, followed by ReceptacleNavigator modules

are executed, and given by the placement candidates. The PlaceBehavior is finally called to

place the object. If the place action fails, then the robot tries other candidate receptacles until

one succeeds, highlighting BT’s advantages. This is implemented through multiple Decorator

Nodes that can facilitate retry behaviors. The different messages from each behavior are passed

around through blackboard mechanisms. The visual recognition module constantly runs in the

background throughout the episode. The system continues to run until the robot either makes

an unrecoverable mistake (such as dropping the object or a hardware failure) or all items are

correctly placed.

5.4 Experiments

The proposed system is tested through various real-world experiments, involving (i)

Semantic mapping and visual recognition for generating coarse semantic environment repre-

sentations and detecting target objects and receptacle surfaces, (ii) Object rearrangement for

identifying and repositioning misplaced objects, (iii) Object manipulation for ensuring stable ob-

Detected objects: mug, marker, rubik's cube
Room: Office Receptacle: table
Is object in-place? NO, YES, YES
Probable correct placement: {Living room, table}

Visual recognition

Object rearrangement

Manipulation: Initial pickup

Manipulation: Final placement

Semantic mapping

Semantic navigation

Figure 5.4. All proposed system components. The visual recognition module detects both target
objects and receptacle surfaces. The object rearrangement module identifies misplaced objects
and suggests their desired location. The manipulation module ensures the reliability of each pick
and place action. The mapping module builds a 2D environment map and semantically paints
it with room labels. Finally, the navigation module uses the semantic map to plan the robot’s
trajectory.
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ject interactions, and (iv) Semantic navigation for robot’s trajectory planning with the generated

semantic map.

Figure 5.4 contains a pictorial representation of each of the modules at work for a

tidy-up task. All the experiments are performed in the real world using a simple apartment

environment, created from an actual communal office space within a university laboratory. The

overall environment has an office space, living room, and a kitchen as shown in the semantic

map in Figure 5.4. The following sections describe the different types of experiments.

5.4.1 Long-horizon object rearrangement

The first experiment considered is a long-horizon tidy-up task, where the robot has to

identify multiple misplaced objects and move them to their respective target locations spanning

multiple rooms. The rearrangement episode typically begins with detecting a misplaced object,

o1, in the environment. The entire tidy module is called to rearrange the object to the correct

location. Upon reaching the destination, the robot further scans the environment for any other

misplaced objects. If it finds another such object o2, it repeats the entire process sequentially

until o2 has also been correctly placed.

Figure 5.5 illustrates the process where o1 = mug is transported from an office table to

Identify mug out-of-place

Pick-up mug
Navigate to living-room

Search for table
Navigate to table

Place mug on table

Identify mustard out-of-place

Pick-up mustard

Navigate to kitchen

Identify counter-top Navigate to counter-top

Place mustard on counter-top

Figure 5.5. Long horizon rearrangement task. Initially, a mug is identified to be incorrectly placed
on the office table. Then, the robot picks it up and navigates to the desired target location by first
going to the living room and then moving towards the table receptacle. After placing the mug, a
second object mustard bottle is found misplaced on the living room table. Subsequently, the
robot picks the bottle and transports it to the countertop in the kitchen.
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the living-room table, and o2 = mustard bottle is then moved from the living-room table to

the kitchen counter-top.

5.4.2 User-preference based object tidy-up

The second experiment focuses on transferring an object o to different locations, catering

to individual user preferences. This experiment acknowledges the subjective nature of object

placement in homes. Section 5.2.2 describes a collaborative-filtering approach for generating a

user matrix about how objects can be placed differently based on human preference. For this

experiment, two users, U1 and U2, are sampled and their preferences regarding target room

locations and receptacle surfaces are tabulated for eight different objects in Table 5.1.

Table 5.1. Preferred object placements for two sampled users

Objects
Sampled user U1 Sampled user U2

Preferred rooms Preferred receptacles Preferred rooms Preferred receptacles

rubik’s cube
office [shelf, table] living room [drawer, table]

kitchen [counter, table] office [table, drawer]
living room [drawer, table] kitchen [drawer, table]

mustard bottle
kitchen [drawer, counter] kitchen [shelf, counter]

living room [table, sofa] living room [table, drawer]
office [table, drawer] office [drawer, table]

marker
living room [drawer, shelf] office [table, drawer]

office [table, drawer] kitchen [table, drawer]
kitchen [drawer, table] living room [table, shelf]

cracker box
kitchen [drawer, table] office [shelf, drawer]

living room [drawer, table] kitchen [drawer, table]
office [drawer, shelf] living room [drawer, sofa]

bleach cleanser
living room [drawer, table] office [shelf, table]

office [shelf, table] kitchen [drawer, table]
kitchen [shelf, drawer] living room [table, drawer]

gelatin box
office [table, shelf] living room [table, drawer]

kitchen [drawer, counter] office [table, shelf]
living room [drawer, table] kitchen [drawer, counter]

potted meat can
kitchen [counter, shelf] office [drawer, table]

living room [drawer, table] kitchen [counter, shelf]
office [drawer, table] living room [drawer, table]

mug
kitchen [counter, sink] living room [table, shelf]

living room [shelf, sofa] office [drawer, table]
office [drawer, table] kitchen [sink, drawer]

soup can
living room [table, drawer] office [drawer, shelf]

kitchen [drawer, counter] kitchen [drawer, shelf]
office [drawer, table] living room [sofa, drawer]
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Real-world experiments are conducted using the mug object. As per Table 5.1, U1

considers the preferred target room to be kitchen, with the top-2 receptacle surfaces being

counter and sink. In contrast, U2 desires the mug to be primarily placed in the livingroom,

with the top-2 receptacles being table and shelf. Thus, multiple real-world episodes performed

by sampling the preferences of U1 and U2 from the object rearrangement module, respectively.

Figure 5.6. The behavior tree to place an object into the drawer.

5.4.3 Complex interactions

A rearrangement task may require the robot to interact with the environment before

proceeding with object placement beyond just picking and placing. For instance, placing an

object inside a closed receptacle. In this work, this concept is demonstrated through the task of

placing a Rubik’s Cube inside a drawer. Because the drawer is initially closed, the robot has

to perform multiple sub-tasks based on the behavior tree shown in Figure 5.6. Furthermore,

as depicted in Figure 5.7, the robot estimates a temporary location for the Rubik’s Cube and

predicts grasp poses to open the drawer. Following that, the robot places the cube into the

temporary location and opens the drawer, so it can grasp and place the cube inside the drawer.
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Pick-up rubik's cube Navigate to office Navigate to drawer Place cube on top to open drawer

Open drawerPick-up cubePlace cube inside drawerClose drawer

Figure 5.7. In a multifaceted task such as placing a Rubik’s cube into a drawer, a robot must
undertake a series of interrelated actions. Initially, the robot approaches the drawer. Recognizing
that the drawer must be opened to place the cube inside, it then discerns the need to temporarily
set down the Rubik’s cube. Only after opening the drawer can it successfully place the cube
within.

5.5 Conclusion

The world needs a home robot that can do more than vacuuming. This work has presented

key components for navigating robustly in a home setting, detecting objects and receptacles,

and determining if they are out of place. Skills for manipulating and handling objects in a daily

setting for a task such as clean-up or reset of a home to a nominal setting are introduced to allow

clean-up. Finally, using a combination of common-sense reasoning and recommender systems, a

strategy to detect objects out of place and suggest improved locations to put them is discussed.

All these techniques are integrated into a consistent and robust framework using behavior trees

and implemented on the Fetch robot using a Robot Operating System (ROS)-based architecture.

The final system has been demonstrated to work in a real-world scenario with modest complexity,

for the clean-up of space by placement of objects in appropriate locations.
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Chapter 6

Conclusion and Future Work

The field of Embodied AI, primarily driven by recent developments in the fields of

robotics and computer vision, has experienced unprecedented growth over the last decade or

so. A major factor contributing to this success has been the judicious amalgamation of classical

control and motion planning techniques in robotics, along with the ability of deep-learning-

based models to interpret and understand semantic context from the surroundings. The primary

motivation for the many works [118, 117, 119, 101, 120, 62] done in this dissertation has been

to introduce several such hybrid semantic models, which can be sequentially used for building

smart and robust home robots.

6.1 Dissertation summary

Chapter 2 considers the problem of visual place categorization, where an autonomous

robotic system is spawned in a previously unseen environment, for example, a novel household

apartment, and learns to predict the semantic category of surrounding scenes based on its visual

sensory input. The key idea is to incorporate deep fusion models that are derived by the joint

understanding of holistic scene representations, and information about objects in the vicinity.

A number of hybrid models are proposed, where a classical technique is used to build a 2D

geometric map comprising obstacles and free space, and a learning model is used to predict

the scene label from images, and sequentially augment the metric map with semantic context.
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Experiments across static image datasets, dynamic videos suffering from motion blur, and a real

robotic platform showcase the generalization ability of the presented approach.

Chapter 3 expands the idea of semantic scene understanding to the domain of outdoor

driving scenarios. Predicting the driver’s focus of attention is an active area of research in the

autonomous driving community. However, most existing techniques rely on raw human gaze

information by recording the driver’s eye movements, which often ignore scene semantics. To

alleviate this issue, a novel detection approach was presented, which retains the information about

the intent of the driver, while also capturing driving-specific contextual information typically

overlooked by raw gaze. Building on top of this, a complete saliency prediction framework

is proposed that further augments the semantic gaze by taking into account vital aspects such

as distance to objects (depth), ego vehicle speed, and pedestrian crossing intent. Exhaustive

experiments conducted through four popular saliency prediction algorithms show the superior

performance of the current work in a majority of cases.

Chapter 4 considers a special case of general robot navigation by grounding it to the task

of object-goal navigation. This involves navigating through a previously unseen environment

in search of instances of particular objects. The key idea described in this dissertation is to

utilize object-object relationships between target objects, and larger, more salient parent objects

which serve as receptacles for the target objects. The idea is implemented via two smart search

strategies – (i) Using multi-object detectors as opposed to generic scene encoders for better

localization of objects, and (ii) Incorporating reward shaping into the reinforcement learning

framework, where a partial reward is introduced to the agent to encourage it to perform localized

search around larger parent objects to look for the target. By utilizing the mentioned strategies,

a huge improvement over the existing state-of-the-art approaches was observed, both in terms

of improved evaluation metrics and also in terms of convergence speed. In a later work, an

extension of this was proposed by making the partial rewards a continuous function of distance

to the objects, thereby improving the performance further.

Chapter 5 takes aspects from all the previous work and integrates them towards a com-
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plete home robot rearrangement planning task. Specifically, the task of tidying up indoor

environments by transferring objects from their misplaced locations to their correct location is

considered. There are primarily four major components to this – (i) Semantic mapping and visual

recognition: These comprise perception modules, where a semantic map (similar to Chapter

2) of the environment is first built while the robot is touring the environment. Additionally,

off-the-shelf visual recognition modules are used for detecting objects from ego-centric camera

images recorded by the robot, (ii) Object rearrangement planner: This is the brain of the overall

operation, which takes as input detections from the previous component, and figures out which

objects are out-of-place, and determines their correct target location, (iii) Multi-stage navigation:

Robot location in this work is considered in two stages, movement to the target room location,

followed by detection of the correct target receptacle and subsequent motion planning of the

robot towards it, and (iv) Object manipulation: This component is primarily used as a tool for

object interaction, where off-the-shelf methods are used to pick-and-place target objects from

their initial to final locations. The entire demonstration has been carried out on a real robotic

platform in a tiny apartment environment.

6.2 Considerations for future work

As scholars and intellectuals from times immemorial have theorized, research is always

a work in progress. That is, the ultimate purpose of any study should be to pave the way for

further studies to be made along similar lines. Since the research in this dissertation was not an

exception to this theory, it can be hypothesized that the work done here will pave the way for

new research to be undertaken in the field of Embodied AI. To conclude this text, some of the

existing challenges faced during the author’s doctoral journey are highlighted, along with some

recommendations for future work.
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6.2.1 Main challenges faced over the years

• End-to-end methods never really generalize in robotics tasks: Ever since the dawn of

the deep-learning era, end-to-end learning models have been quite popular as they can

be trained entirely from data, thereby requiring very little human effort. While a large

number of algorithms have been developed that work extremely well on specific datasets,

such models rarely generalize to novel data samples outside the training distribution. As

the field of robotics is full of such corner cases, the paradigm of end-to-end learning

algorithms has tasted little success here.

• Static vs dynamic settings: Many tasks such as object detection, semantic segmentation,

etc. have achieved a point of saturation in the field of computer vision. This is because

the powerful learning algorithms these days are quite adept at exploiting the bias in static

datasets. This leads to near-perfect performance in terms of evaluation metrics. However,

when transitioning to more dynamic settings such as a moving robotic camera, a number of

unexpected circumstances might occur such as poor resolution, bad illumination, motion

blur, etc, all of which are quite difficult to model on a static dataset. As a result of this

domain shift, even those perfect algorithms suffer in performance on real data.

• Real-time operation is a rarity: Due to the increasing computation capability of modern

computers at relatively low costs, the trend in research has gone towards building large-

scale models that are trained across multiple tasks, eventually improving the accuracy

across all of them. Such foundational models often scale up to billions of parameters

and require enormous computational resources. An unfortunate by-product of this is the

inability to run these large models on robotic systems which are difficult to be fitted with

large computers. This greatly impacts real-time performance for general robotics tasks.

• Cost of home robots limit the scope of realistic use-cases: Despite the enormous success of

Embodied AI approaches, the topic has largely been limited to academic researchers and
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very few industrialists. A major reason for this is the vast infrastructural cost of building a

service robot.

6.2.2 Recommendations for future work

• Hybrid methods incorporating modular learning is the way to go: One of the main

takeaways from this dissertation is that hybrid models that utilize the best of both classical

planning and learned semantics, often perform the best when it comes to robotics tasks.

By design, most hybrid approaches are modular, meaning that a complex task is tackled

into several sub-components – as shown in Chapter 5, where an object rearrangement

task was divided into semantic mapping and scene understanding, contextual planning,

robotic navigation, and manipulation. By adopting this divide-and-conquer approach, the

individual modules can build on existing approaches as opposed to manual design from

scratch, while also being more interpretable than end-to-end learning methods.

• Domain adaptation should be key to any algorithm: To ensure the sustainability of newly

developed algorithms in the wild, they must be taught as many real-world corner cases

as possible. Therefore, for a proposed approach to be considered a success, whenever

possible, it should be tested across a combination of sim-to-real tasks. Foundational

models take a large step in this direction, as they are typically exposed to many different

datasets during training, with the hope of truly learning representations of world models.

• Efficient ways to use smaller models are necessary: To ensure real-time performance, the

size of learning-based models needs to be reduced, without sacrificing performance. A

possible solution is to utilize knowledge distillation techniques to transfer knowledge from

one or several large models into smaller models designed for specific downstream tasks.

Recently, a number of pretraining and Parameter Efficient Fine-Tuning (PEFT) approaches

have also gained popularity, particularly for large language models. Such approaches can

greatly enhance the capability of modern algorithms to work on robotics platforms with

low computational resources, or even edge devices such as cell phones.

99



• Simulation could be beneficial, but only with realistic assumptions: In robotics research,

simulation is a necessary evil. Many tasks such as large-scale navigation, multi-object

manipulation, and complex human-robot interactions are much easier to scale in simulation.

However, as the number of synthetic benchmarks in Embodied AI continues to increase, an

everlasting question remains – how well do models trained on simulation transfer to real-

world settings? Towards answering this question, there has been a strong push amongst

researchers to develop infrastructure that facilitates sim-to-real transfer on hardware.

Consequently, a number of environments exist nowadays where an algorithm can first

be designed and evaluated at scale in simulation, before transferring it to a real-robotic

platform.
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