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INTERPRETATION OF KNUDSEN MEASUREMENTS 

* ON POROUS SOLIDS 

Gerd M. Rosenb).att and Leo Brewer 

UCRL 10271 

Department of Chemistry,and Inorganic Materials Division of the 
Lawrence Radiation Laboratory, University of California 

Berkeley, 4, California 

Abstract 

A simple steady-state model is used to describe the vapori-

zation, in a Knudsen cell, of a porous solid having a low vapori­

' zation coefficient. The description is in terms of the effective 

vaporizing area of the solid. The nature of the effective area 

and the assumptions in the model are investigated. Procedures 

to obtain the equilibrium pressure and vaporization coefficient 

from pressures measured by varying the cell and sample geometry 

are discussed. A one-parameter, empirical equation is presented 

which accurately represents measurements of the vapor pressure of 

porous arsenic taken over a large range of Knudsen-cell orifice 

areas. 

Paper presented before the 121st Meeting of the Electrochemical 

Society, Los Angeles, May 6-10, 1962. Supported by the United 

States Atomic Energy Commission. 
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INTRODUCTION 

The Knudsen effusion method is widely used to measure low vapor 

pressures. It is sometimes difficult to relate the pressures obtained 

from such measurements to the equilibrium vapor pressure. This is par-

ticularly true when the substance under investigation has a low vapori-

zation coefficient. l Motzfeldt has used a steady state approach to relate 

the measured and equilibrium pressures for a sample having a low vapori-

zation coefficient. The vaporizing area of the sample was assumed to be 

equal to the cross-sectional area of the Knudsen cell. Thus the results 

do not apply to porous solid samples. 

In this paper Motzfeldt's equation is generalized to include solid 

samples with an effective vaporizing area different from the cross-sectional 

area of the cell, and the nature of the effective vaporizing area is in-

vestigated. Although the equations derived from the rough model employed 

should not be used to calculate the equilibrium pressure and the vapori.-

zation coefficient from the measured pressure and other experimentally 

amenable quantities, they may ser~e as some guide to proper experimental 

procedure and will serve to point out the quantities which are sensitive 

to the particular model chosen. Recognition and inspection of the assump-

tions in the simple model used also help to interpret experimental results 

and to determine the type of information which is obtained from non-equili-

brium Knudsen measurements. 

In addition a simple empirical equation is presented which has been 

found to represent accurately the measured vapor pressure of porous, solid 

arsenic as a function of the orifice area of the Knudsen cell. 
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BACKGROUND AND DEFINITIONS 

The pressure measured in a Knudsen effusion experi~ent is 

q p = """"""",:._____ 
m W a 

G (1) 
a 

where q is the number of moles of vapor which escape through the orifice 

of area a in unit time, Wa is the fraction of the molecules entering the 

orifice which exit from it, and G = (2 nRMT)~ where M is the molecular 

weight of the gaseous species. The fraction W was first calculated by 
a 

Clausing2 under the assumption that the molecules enter the orifice with 

a cosine angular distribution. The equilibrium vapor pressure shall be 

denoted by P • 
e 

The vaporization coefficient, ex , may be defined as the ratio of v 

the number of molecules actually leaving unit area of plane surface in 

unit time to the number of molecules which are calculated to strike that 

surface in unit time when the surface is in equilibrium with vapor at P . e 

The coefficient ex is closely related to ex 3 the condensation coefficient, v c 

which is the fraction of molecules striking a plane surface >vhich sticks 

to the surface. At equilibrium, ex = ex • v c 

Although most metals have been found to have vapor:iz.ation and conden-

sation coefficient close to unity, materials which vaporize to polyatomic 

gaseous species may have very small vaporization coefficients. This 

appears to be particularly likely when the structure of the gaseous mole­

cule differs appreciably from the structure existing in the solid lattice. 3'
4 

Motzfeldt 1 s Equation 

1 Moltzfeldt considered the effect on P of a low vaporization 
m. 
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coefficient and of the resistance to flow of the Knudsen cell proper. 

It was assumed that the vaporization coefficient is independent of 

pressure, i.e., of the extent of saturation of the vapor over the evapora,.. 

ting surface, and, thus, that a =a at all pressures. Motzfeldt's re­v c 

sult, for a cylindrical cell of cross-sectional area B, cell Clausing 

factor W:S' and orifice area a, is 

p Wa l l e l +~ ( - 2 ) p = + --B a WB m 

The symbol a without a subscript represents the vaporization andlor 

condensation coefficient when these are equivalent and constant; and 

distinction is unwarranted. Whitman5 had obtained the same eguation 

(2) 

previously by a more complex derivation. A somewhat simpler eguation 

has been presented by Speiser and Johnston, 6 and Rossman and Yarwood, 7 

and others. These authors considered the case where the cell resistance 

can be neglected (WB = l) and where the orifice is sufficiently small so 

that the pressure throughout the cell is essentially uniform (Waa <<B). 

In that case, only a low vaporization coefficient causes P to deviate 
- m 

from P • At these limits, Eg. (2) reduces to their result_, e 

p 
e 

p 
m 

Wa 
= l +~ aB (.3) 

All these authors mention that the effective vaporizing area of a porous 

solid with a low vaporization coefficient will be greater than the cross-

sectional area of the cell. 

Assumptions 

The derivation of Eg. (2) involves assumptions additional to those 
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of a. plane, vaporizing surface and a =a independent of pressure. Some v c 

of these are the assumptions usually made in calculating the properties 

of dilute gas systems, such as.: the vapor is an ideal gas, collisions 

between molecules can be neglected, and molecules are reflected from a 

surface with a cosine angular distribution independent of the incident 

directions. These conditions can be closely realized at low pressures 

where the mean free path of the vapor is g;r-eater than the dimensions of 

the cell. 

The derivations cited above invoke further assumptions. The molecu-

lar flow across a horizontal plane of the cell is considered uniform over 

8 ' the plane. Carlson has demonstrated that rigorous application of the 

cosine reflection law in a calculation of the type carried out by Clausing1 

leads to a radial dependence of the mass flow across a plane perpendicular 

to the axis of a cylindrical Knudsen cell. The derivation of Eq. (2) 

which makes use of the Clausing factor for the cell~ WB' also requires 

that the Clausing factor for the molecules rebounding off the top of the 

cell after a certain fraction have been lost through the orifice be the 

same as if the re'bounding molecules had vaporized. ·uniformly from the 

whole cell cross-sectional area. The magnitude of the error due to these 

last two assumptions ha,s been discussed 'by Whi tmanJ 5 Carlson, 8 and Balson. 9 

Balson presents numerical calculations of the fraction escaping through 

the orifice which should be more accurate than the use of the cell Clausing 

factor, WB. 
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MODEL APPLICABLE TO SOLID SAMPLES 

In this section the steady-state approach used by Motzfeldt is 

extended to cover the general case in which the sample has an effective 

vaporizing area different from the cross-sectional area of the cell. The 

assumptions made in deriving Eq. (2) are also made here. The effect of 

these assumptions will be discussed fQrther below. It is assumed that 

a: = a: = constant a: at all pressures, not because the steady-·state 
v c 

model requires such an assumption, but because the functional form of 

the possible variation of a: and a: with pressure is unknown. The model 
c v . 

presented here can be solved readily with a: f. a: • In that case a: and v c v 

o:c can be interpreted as functions of the extent of saturation :i.n the 

cell, which have different values for every steady~state attained. As 

the functional form of this variation is un.known .. 9 however, such an 

approach lacks concrete meaning and introduces conceptual difficulties. 

These difficulties might lead to inconsistencies in the solution or in 

the definition of auxiliary quantities such as the effective area. 

Consider a Knudsen cell, shown in Fig. lp of cross-sectional area 

B, which contains a sample which has an effective vaporizing area A1
• 

Note that A 1 can 'be vastly difi"erent from B. The Clausing factor o:f the 

orifice of area a is Wa and the Clausing factor of the cell is WB. Con­

sider the two planes represented. by do·tted lines in Fi.g. L P.la.ne .l is 

just below the orifice and plane 2 is just abo'l!'e the sample surface. 

Let u
1 

be the number .of moles of vapor which pass upwards through unit 

area o:f plane 1 in unit time. The total mass flux upwards through plane 

1 is then u
1
B. It is assumed that the vapor density across planes 



-Sa- UCRL-10271 

.. 

.... 

t 

a 
I 

B 

--------- 2 

MU-27316 

Fig. I. Diagram of effusion cell. 
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1 and 2 is uniform. Let d1 'be the nuniber o:f moles of vapor which pass 

downwards through unit area of plane 1 in unit time. Similarly define 

u2 and d2 for plane 2. 

The number of moles of vapor which escape through the orifice in 

unit time, q, will be equal to the number that enter the orifice, u1aJ 

times the fraction which get through the orifice~ Wa. Thus q = u1Waa 

and the measured pressureJ Pm = u1G (cf. Eq. (1)). The equilibrium 

pressure is related to the number of moles of gas, r, which evaporate 

from area A' in unit time by the Langmuir equation, 

p 
e 

r = --:--;:'- G a A 1 

v 
(4) 

The number of moles which vaporize from unit area in unit time is thus 

given by a P /G. v e 

Now apply a mass balance to the flow of vapor through the cell 

after a steady~sta.te has been attained. The number of moles of vapor 

which escape from the cell in unit time equals the net number crossing 

planes 1 and 2 and equals the number vaporizing minus the number conden-

sing. 

u1Waa = (ul - d
1

) B (5) 

= (u 
2 

- d ) B 
2 

(6) 

=a P Au/G - ad Au (7) · v e c 2 

The total number of moles which pass downwards through plane 2 is equal 

to the number from plane 1 which reach plane 2 plus the number passing 

upwards through plane 2 which do not reach plane 1. 

(8) 

This equation assumes the applicability of Clausing factors to the 
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situation inside a Knudsen cell. 

Equating u
1 

with P /G and a with a these four equations can be 
m c v 

solved to yield 

p 

P
e = 1 + W a ( -1:_ - _g + .l:....) 
m a \._aA' B WBB 

(9) 

This equation reduces to Motzfeldt's result, Eq. (2), as expected, when 

the effective vaporizing area is equal to the cell area, that is when 

A' =B. Equation (9) reduces to the simple form used by Speiser and 

Johnston, Eq. (3), when a A'<< WBB' showing that the area appropriate 

to that equation is the same effective area used here. This last limit is 

the most important result of equations of this type because of the 

ambiguities involved in the estimation of the resistance to flow of the 

cell proper. This may be more true for a porous solid than for the 

plane vaporizing surface considered by Motzfeldt because, with a 

porous solid having a low vaporization coefficient, the vaporizing 

molecules might not cross plane 2 with a cosine angular distribution. 
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THE EFFECTIVE VAPORIZING AREA 

The effective vaporizing area of a porous solid is defined to be the 

area of plane sample surface which would give rise to the observed rate ·.,'-

of vaporization. The pressure above, and temperature of, the porous 

solid and the plane surface being compared should be equal. The rate of 

vaporization of the plane surface is taken to include only those molecules 

vaporizing from the surface and does not include molecules in the ambient 

vapor which strike the surface and are reflected without condensation. 

If the observed rate of evaporation is r moles/sec, the evaporation 

coefficient has been determined by vaporization from a plane surface, 

and the equilibrium vapor pressure is known, the effective area can be 

evaluated from the Langmuir equation (4), A'= rG/a: P. Usually, the v e 

evaporation coefficient is not known from other experiments and the 

product a: A' is determined. This definition of the effective vaporizing v 

area implies that the rate of vaporization is always given by P a: A'/G. e v 

The magnitude of the effective vaporizing area is a function of the 

condensation coefficient, the total vaporizing area of the sample, and 

the geometry of the sample as will be seen in the simple calculations 

below. It is, however, independent of the pressure in the Knudsen cell 

as long as a: is independent of pressure. The effective area has a 
c 

minimum value equal to the area of the plane immediately above the sample 

when a: = l. This minimum value is equal to the cross-sectional area of c 

the cell, A' =B, when the sample completely covers the cell bottom. 

The effective vaporizing area approaches a maximum value equal to 
'• 

the total vaporizing area of the sample, A, as the condensation coeffi-

cient approaches zero. This limit means that almost every molecule which 
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vaporizes escapes because the molecule will not recondense until it has 

made a very large number of collisions with the surface. In practice 

this means that increasing the total vaporizing area of a substance with 

a very low condensation coefficient (on the order of 10-6 for example) 

increases the effective area proportionately. If the sample were a 

porous solid a Langmuir evaporation rate which increased directly with 

the depth of sample in the crucible would be observed. 

There is another limit upon the effective area which is imposed by 

the thermodynamic condition that the mass flow in any plane in any direc-

tion cannot be greater than the mass flow corresponding to the equili-

brium pressure. 

u2 .S P e/G ( 10 ) 

u~ _s B P e/G (11) 

The rate of evaporation from the sample is P a A1/G. As some of ·the e v 

molecules traveling downwards t~rough plane 2 are reflected when a < 1, c 

u
2 

B > P a A' /G - e v I' 

Combining (11) and (12) yields the condition 

(12) 

a A' < B (13) v 

the equal sign holding only when a = a = L v c 

In summary, the following limits exist for the effective area, A' 3 

of a homogenous solid sample with total vaporizing area, A, which com-

pletely covers the bottom of a cell of cross-·sectional area, B: 

B <A 1 < {!~av whichever is less (14) 
- A 
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Some Calculations of the Effective Area 

Vidale10 has presented an interesting approximation to the effective 

area of a uniform, porous, powder sample by considering the problem to be 

one of diffusion through the powder. It was assumed that a = a = constant. v c 

The powder sample can be considered to be infinitely deep when a is large 
v 

enough and the sample is deep enough for the equilibrium pressure to be 

maintained at the bottom of the porous sample. Vidale 1 s analysis for 

this case yields 

At = 1.55 ~ B va; ( 15) 

where E is the ratio of pore volume to total volume of the powder and 

the other symbols have the same meaning as before. 

( -10) small < 10 Vidale 1s equations give 

A' == 
6(1-€)£ B 

. d 

When a becomes very c 

(16) 

where d is the average diameter of a powder particle and £ is the depth 

of powder in the crucible. Thus when a is very small the effective area c 

is directly proportional to the depth of sample, or total vaporizing area 7 

and independent of the value of a ~ as expected. 
c 

An attempt to treat the effective area problem has been made ·by 

Melville11 who derived an equation for the rate of vaporization from a 

wedge-shaped crack. Unfortunately, in addition to mathematical errors~ 

Melville incorrectly assumes that the fraction of molecules escaping on 

each rebound is the same as the fraction which escaped upon the initial 

vaporization. The problem of the effective vaporizing area of a pore in 

a substance with a low condensation coefficient is in many ways equivalent ,. 

to the problem of the deviation from black-body radiation of the radiation 
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emerging from various parts o±' cylind.rical cavity. This latter problem 

has been discussed by a number of authors., 12·-l7-who used a variety of 

mathematical approximation to obtain numerical results. 

Vaporization in a Spherical Cavity 

This section is concerned with the rate of molecular flow through 

an opening of plane area A when the total vaporizing area is A and no 
0 

molecules return to the cavity through the opening A
0

• 'rhe crucial 

assumption is that the number of molecules striking any elemental area 

of surface is the same as that striking any other elemental. area} both 

initially and on al.l rebounds. This assumption is true for a spherical 

cavity containing a. homogenous vaporizing surface as a consequence of the 

cosine spatial distribution of the vaporizing and reflected molecules. 

The model serves also as an approximation to other geometries where the 

area of the opening, A , is considerably smaller t,han the area of the 
0 

wall containing the opening. 

Consider the spherical cav:i.ty shown in Fig. 2. The opening has 

plane area., A , and area on the sphere, S • For the sake of generality 
0 0 

only a. portion of the spherical surface 5 A, :i.s considered to consist of 

vaporizing sample. The remainder of the spherical surface is S. This 

could correspondy for eY.:a.mple, to a. dif'f'e:ren.t crystal face of the vapori-

zing materiaL Now follow a particular group of' molecules which evapor-

ate from A in unit time . 

(1) Of those that vaporize initially a fractionS /(S +S+A) escape. 
0 0 

sj(s +S+A) hit the wall. while A/(S +S+A) hit the v-apori:?:ing surface agai.n. 
0 0 

Of those that strike the vaporizing surface a :fraction a condenseJ so c 

(1-a ) A/(S +S+A) make first rebound. As all molecules hitt.ing the 'tva.ll 
c 0 
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MU-27315 

Fig. 2. Diagram of spherical vaporizing cavity. 
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rebound the total fraction of the initially vaporizing molecules which 

make the first rebound is [S+(l-ac)A]/(S
0

+S+A). 

(2) Of those t~t make the first rebound a fraction S /(s +S+A) 
1 o o 

escape, that isjl the fraction S [S+(l-a )A]/(S +S+A)2 of the initially 
0 c 0 

vaporizing molecules escape after the first rebound. The fraction 

S[S+(l-a )A]/ (S +S+A)2 rebound from the walls and (1-a )A [S+(l-a )A]/ c 0 c c 
2 (S +S+A) rebound from the sample surface. Thus the total fraction of 

0 

the initially vaporizing molecules making the second rebound is 

[S+(l-a )A]
2
/ (S +S+A)2 • c 0 

( 3) The fraction which ee,cape after the second rebound is then 

S [S+(l-a )A] 2j(s +S+A)3. 
0 c 0 

( 4) The fraction of the initially vaporizing molecules which 

escape through the opening after the nth rebound. is 

[
S+( l=ac )Al n 

S +S+A 
0 

s 
S +S+A 

0 

Srunrning the fractions which escape on each of an infinite number 

of rebounds gives 

Total :fraction escaping 
s 

0 
= -=s-+a_.;:'""A-

o c 

The rate of vaporization inside the cavity is avAP e/G. 'I'he rate of 

escape of molecules through the openingJ wh:i.ch is the :::-ate which is 

measured, is then 

r ::::: 
a.AP v e 

G 

s 
0 

·s+a:A 
0 c 

The effective areaj which has been defined by the equation A1 

is simply SA 
0 

A~ = s +a A 
0 c 

(17) 

::::: rG/a P l , v e 

(18) 
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It can be shown that the plane area, A
0

, is related to the spherical area, 

S , by A = S (S+A)/(S +S+A)6 The effective vaporizing area of the cavity 
0 0 0 0 

can then be expressed as 

1 A' = ----~~~~--~~---1 1 '1 
a:c(-0:-A + -A- - S+A ) 

(19) 

c 0 

If the cavity were a spherical cavity in a homogenous sample S would be 

zero6 

1 A' = ---::---~::-------::---
( 1 1 ·1 ) 

a:c -a:-A +-A- A 
(20) 

c 0 

Examination of this result shows the effective area to behave as 

expected. When the condensation coefficient.~ a:cJ is very small the 

effective area, A', is equal to the total vaporizing area, A. When 

a: = 1, A' =A, the area of the opening. c ' 0 

It is interesting to consider this cavity as a Knudsen cell. If r 

in Eq. (17) is equated with q in Eq. (1) and the area A is designated 
0 

as the orifice area, a, (with W = 1, a: = a: = a:, and S = 0) one obtains 
a v c 

p 
e 1 + ~ ( ~ - 1) p = A a: (21) 
m 

which is identical with Motzfeldt's result, Eq. (2), when the resistance 

of the cell to flow is negligible (WB = 1). The derivation of Eq. (21) 

shows that Motzfeldt's equation would be expected to be a good approxima-

tion to the vaporization of a non-porous solid which completely lines a 

Knudsen cell of total interior area A (when a <<A) -- if the assumption 

a: = a: = constant were correct6 It should, perhaps, be pointed out that v c 

the spherical cavity also reduces to the same equation as derived by 

Motzfeldt's steady-state model when a: is assumed different from a: in v c 
both derivations. 
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PROCEDURES TO OBTAIN P AND a 
e 

On the basis of Eq. (2), Motzfeldt1 suggested that a plot of P 
m 

against P W ajB would be a straight line with intercept P and slope· 
m a e 

-(1/a + 1/WB - 2). The result of the general effective area case, Eq. 

(9), can be rearranged to 

p = p 
m e (22) 

Equation (22) immediately points out two dangers in the suggested procedure. 

If the ratio W ajB were varied by changing the cell cross-sectional area, a 

B, the intercept of the plot would not be P unless the effective vapori­e 

zing area had changed in direct proportion to B. Also, if the orifice 

area, a, were varied, P plotted against P W ajB, and a straight line m ma 

obtained (this appears unlikely for reasons discussed below) the vapori-

zation coefficient still could not be calculated from the slope of this 

plot. At best, the product a A'JB would be obtained where A' might be 

vastly different from B. 

The discussion in the preceding paragraph implicitly accepts the 

assumptions made in the derivation of Eq. (9). It is instructive to 

examine the effect on Eq. (9) of the removal or modification of these 

assumptions; and thus examine the effect of these assumptions on such 

procedures to obtain P and a as are implied by Eq. (9) and (22). Equation 
e 

(22) suggests that a plot of P against P W a will be a straight line m ma 

with intercept P when a = 0. It is intuitively clear that P must e m 

approach P as a approaches zero. Use of the Clausing factor, iiB' in the e -

derivation ignores the radial dependence of the vapor density inside the 

cell, the non-uniform distribution of the molecules reflected from the 
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of the cell, and the departure from a cosine spatial distribution of the 

molecules vaporizing from a porous sample with a low condensation coeffi­

cient. Carlson ~s8 and Ba.lson 's9 analyses of the flow of vapor in a 

Knudsen cell show that the resistance to flow of the Knudsen cell varies 

as the orifice area is varied. This means that WB in Eq. (9) is not a 

constant but, rather, a function of the orifice area, a. This being so, 

a plot of P against P W a will deviate somewhat f'rom a straight line. m ma 

For substances which have very small vaporization coefficients the 

a A' term in Eq. ( 9) is much larger than the B and W:BB terms so t.ha t these 

latter terms, and their uncertainties, can 'be neglected. This is the 

situation of primary interest in this paper. Usually when a is close to v 

unity the orifice area can be made small enough so that the measured 

pressure is very close to the equilibrium pressure. 

It was assumed in deriving Eq. (9) that the vaporization and conden-

sation coefficients are independent of' pressure and, therefore, that 

av = ac at all pressures. Neither theory nor experiment has yet given 

a description of the behavior of a and a for molecular substances. 
V' c 

However, both theory and experiment indicate tf.tat a and a are not v c 

constants independent o:f pressure. Knacke.9 SchmolkeJ and Stranski18 

predict the vaporization coefficient of an ionic cr~stal to be a fUnction 

of the undersaturation of the vapor and of the crystal face vaporizing. 

Jaeckel and Peperle19 have measured Knudsen cell. pressures of single 

crystal faces of NaCl, KIJ Sb2s3 ~ and sulfur with different cells and 

orifice areas. Their results show that the value of a calculated from 

Eq. (1) varies with the orifice size . 

. Hirth and Pound20 have cons:i.dered. the vaporization of perfect metal 

crystals to monatomic vapors. For such substances a = 1. 'l'hey calculate c 
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av = (2/3) • (P/Pe) + l/3o Their result might be taken to suggest a 

function for molecular substances wi.th low condensation coefficients 

such as 

av = PP (1-m) ac + m ac (23) 
e 

where ac and m are constants (~ 1) independent of P o This function has 

a vary from a at equilibrium to m a under Langmuir conditions. The v c c 

discussion of the effective vaporizing area above indicates the effective 

area to be a function only of a and not of a . Because of this the c v 

effective area model resulting in Eq. ( 9) can easily be extended to 

include Eq. ( 23). The solution, surprisi.nglyJ i.s exactly the same as 

Eq. (9) with a replaced 'by the vacuum vaporization coefficient, m a. c 

This suggests that a is the appropriate coefficient :for Eq. (9). The 
v 

rate determining step in the vaporization of a molecular substance with 

a low vaporization coefficient is expected to be very d:ifferen.t from the 

rate step consid.ered by Hirth and Pound. Thus there is no justification 

for an equation of the :form. o:f Eq. ( 23), particularly for the assumption 

that a varies while a is constant. As the actual variation of a and v c v 

a with pressure is, at present, a matter of conjection it seems unlikely 
c 

that a plot of P vs o P W a will be a straight line even when the B and 
m m a 

WBB terms are negligible. 

This last conclusion contains a further warning. It is only 

possible to extrapolate to P with confidence after experiments with a 
e 

number of orifices have defined the curvature of the plot used and when 

the measured pressures are reasonably close to the equilibrium pressure. 

If these conditions are not. met~ the resulting long extrapolation 

necessary to obtain P is hazardous. 
e 
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AN EMPIRICAL EQUATION 

As has been seen there are many uncertainties in models of the type 

considered in this paper. This is particularly due to the lack of ex-

pe~imental information on the variation of a and a with pressure. It v c 

is therefore tempting to try to obtain helpful information from experi-

ments which have been published. 4 Brewer and Kane report the results of 

Knudsen measurements on the vapor pressure of porous arsenic at 575°K. 

The vapor pressure was measured for seven different orifice sizes which 

differed by a factor of 10,000 while the other geometrical and experimen-

tal variables were held constant. Their results are illustrated in Fig. 

3. If an attempt is made to treat these measurements by an equation such 

as (9), a is found to vary regularly and to a great degree. 

However, Brewer and Kane 0s results can be represented within experi-

mental error by a simple, one-parameter, empirical equation: 

:e ::: 1 + (~)2/3 (25) 
m 

The line drawn through the experimental results in Fig. 3 represents this 

equation. P , P , and a are taken directly from their paper. The value 
e m 

of k used to calculate the line (1.3 x 10-4) is the average of the k 

values calculated,from the measurements. The fit of the seven experimen-

tal points to this simple equation is remarkable considering the complexity 

of the situation inside the Knudsen cell and the large range of variable 

covered. 

Comparing Eq. (25) with Eq. (9) suggests association of the empirical 

constant k with a A'. It would be very interesting to determine if Eq. 
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I0- 4~--------~---------,----------~---------r---------, 

10- 5 

10-6 

• Experimental results 

10-71~. _______________ L_ ____________ _L _______________ ~------------~---------------~ 

10- 5 10-3 10- 2 0.1 1.0 

Orifice a rea ( c m- 2 ) 

MU-2731.4 

Fig. 3. Knudsen cell data for arsenic at 575°K. The exper­
imental results and equilibrium pressure are from Brewer 
and Kane. 4 The calculated c:u;.:ve represents the ~..flpiric<!_1 
equation, P /P = 1 + (a/k)2/ 3, with k = 1.3X10 • e m 
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(25) applies to experimental results on other substances having low 

vaporization coefficients. It would also be instructive to find a model 

for vaporization in a Knudsen cell which leads to an equation of the form 

of Eq. (25). 

CONCLUSIONS 

The model used to describe the vaporization of porous solids with 

low vaporization coefficients is subject to many uncertainties. A par-

ticular difficulty is the unknown variation of the vaporization and 

condensation coefficients with the undersaturation of the ambient vapor. 

The model does, however, focus attention on the effective vaporizing 

area of a solid sample and shows that vaporization coefficients for 

porous samples can not be obtained from the slope of a plot of P against 
m 

P W a. The model also demonstrates that attempts to vary the cell dimen­
ma 

sions or the sample vaporizing area will not necessarily extrapolate to 

p • 
e 

Uncertainty regarding the behavior of a and a with pressure suggests v c 

that Knudsen measurements on substances with low vaporization coefficients 

can only be extrapolated to the equilibrium pressure reliably when experi-

ments have been carried out with a number of orifice sizes and when the 

measured pressures are close to the equilibrium value. This very uncer-

tainty also suggests that experimental data should be carefully examined 

to see what light they throw on this unknown behavior. 

A simple, empirical equation accurately represents the variation with 

orifice area of Knudsen measurements on arsenic. It would be very in-

teresting to ascertain if this equation has more general validity. 
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LIST OF RECURRING SYMBOLS 

a cross-sectional area of orifice of Knudsen cell 

A total vaporizing area 

A' effective vaporizing area 

B cross-sectional area of Knudsen cell 

G = 

k empirical constant 

P equilibrium pressure e 

P measUred pressure 
m 

q number of moles of vapor effusing through orifice of 

Knudsen cell in unit time 

r 

w 

0: 

number of moles vaporizing in unit time 

Clausing factor for orifice (Wa) or cylindrical cell (WB) 

condensation coefficient (o: ) a~d/or vaporization co-c 
efficient (o: ) when these are equivalent and constant v 



,J. 

-23- UCRL-10271 

REFERENCES 

1. K. Motzfeldt, J. Phys. Chem. 59, 139 (1955). 

2. P. Clausing, Ann. Physik (5) 12, 961 (1932). 
--

3· I. N. Stranski and G. Wolff, Research~' 15 (1961). 

4. L. Brewer and J. S. Kane, J. Phys. Chem. 59, 105 (1955). 

5. C. I. l~itman, J. Chem. Phys. 20, 161 (1952). 

6. R. Speiser and H. L. Johnston, Trans. Am. Soc. Metals 42, 283 (1950). 

7. M. G. Rossman and J. Yarwood, J. Chem. Phys. 21, 1406 (1953). 

8. K. D. Carlson, U. S. At. Energy Comm. ANL - 6156 (April 1960). 

9· E. W. Balson, J. Phys. Chem. 65, 1151 (1961). 

10. G. L. Vidale, General Electric Missile and Space Vehicle Department 

Technical Information Series, Report No. R60 SD 468-(0ctober 1960). 

11. H. W. Melville, Trans. Faraday Soc. 32, 1017 (1936). 

12. H. Buckley, Phil Mag. ~' 753 (1927); ~' 447 (1928); 17, 577 (1934). 

13. J. C. DeVos, Physica 20, 669 (1954). 

14. A. Gouffe, Rev. optique 24, 1 (1945). 

15. G. Liebmann, z. Techn. Physik 12, 433 (1931). 

16. G. Ribaud, Traite de Pyrometrie Optique (1931). 

17. T. Yamuti, Commission Int. des Poids et Mes., Proc. Verb 16, 243 (1933). 

18. 0. Knacke, R. Schmolke, and I. N. Stranski; Z. Kristall 109, 184 (1957). 

19. R. Jaeckel and W. Peperle, z. physik. Chem. 217, 321 (1961). 

20. J. P. Hirth and G. M. Pound, J. Chem. Phys. 26, 1216 (1957). 



This report was prepared as an account of Government 
sponsored work. Neither the United States, nor the Com­
m1ss1on, nor any person acting on behalf of the Commission: 
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such employee or contractor of the Commission, or employee 
of such contractor prepares, disseminates, or provides access 
to, any information pursuant to his employment or contract 
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