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INTERPRETATION OF KNUDSEN MEASUREMENTS
ON POROUS SOLIDS*

Gerd M. Rosenblatt and Leo Brewer
Department of Chemistry,and Inorganic Materials Division of the

Lawrence Radiation Laboratory, University of California
Berkeley, 4, California

Abstract

A simple steady-state model is used to describe the vapori-
zation, in a Knudsen cell, of a porous solid having a low vapori-

N
zation coefficient., The description is in terms of the effective

vaporizing area of the solid. The nature of the effective area
and the assumptions in the model are investigated; Procedures

to obtain the equilibrium pressure and vaporization coefficient
from pressures measured by varying the cell and sample geometry
are’discussed. A one-parameter, empirical equation is presented
which accurately reprgsents measurements of the vapor pressure of

porous arsenic taken over a large range of Knudsen-cell orifice

areas.

* , .
Paper presented before the lZlSt Meeting of the Electrochemical

Society, Los Angeles, May 6-10, 1962. Supported by the United

States Atomic Energy Commission.
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INTRODUCTION

The Knudsen effusion method is widely used to measure low vapor
pressures. It is sometimes difficult to relate the pressures obtained
from such measurements to the equilibrium vapor pressure. This is par-
ticularly true when the substance under investigation has a low vapori-
zation coefficient. Mbtzfeldtl has used a steady state approach to relate
the measured and equilibrium pressures for a sample having a low vapori-
zation coefficient. The vaporizing area of the sample was assumed to be
equal to the cross-sectional area of the Knudsen cell. Thus the results
do not apply to porous solid samples.

In this paper Motzfeldt's equation is generalized to include solid
samples with an effective vaporizing area different from the cross-sectional
area of the cell, and the nature of the effective vaporizing area is in-
vestigated. Although the equations derived from the rough model employed
should not be used to calculate the equilibrium pressure and the vapori-
zation coefficient from the measured pressure and other experimentally
amenable quantities, they may serve as some guide to proper experimental
procedure and will serve to point out the quantities which are sensitive
to the particular model chosen. Recognition and inspection of the assump-
tions in the simple model used also help to interpret experimental results
and to determine the type of information which is obtained from non-equili-
brium Knudsen measurements.

In addition a simple empirical equation is presented which has been
found to represent accurately the measured vapor pressure of porous, solid

arsenic as g function of the orifice area of the Knudsen cell.
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BACKGROUND AND DEFINITIONS

The pressure measured in a Knudsen effusion experiment is

=3
o= wa © (1)
a
where q is the number of moles of vapor which escape through the orifice
of area & in unit time, wa is the fraction of the molecules entering the

|
orifice which exit from it, and G = (2 WRMT)’é where M is the molecular

i

weight of the gaseous species. The fraction Wa was first calculated by
Clau‘sing2 under the assumption that the molecules enter the orifice with
a cosine angular distribution. The equilibrium vapor pressure shall be
denoted by Pe'

The vaporization coefficient, o, may be defined as the ratio of
the number of molecules actually leaving unit ares of plane surface in
unit time to the number of molecules which are calculated to strike that
surface in unit time when the surface is in equilibrium with vapor at Pe“
The coefficient o is closely related to Qs the condensation coefficient,
which is the fraction of molecules striking a plane surface which sticks
to the surface. At equilibrium, o, =C

Although most metals have been found to have vaporization and conden-
sation coefficient close to unity, materials which vaporize to polyatomic
gaseous species may have very small vaporization coefficients. This
appears to be particularly likely when the structure of the gaseous mole-

L
cule differs appreciably from the structure existing in the solid lattice°3’

Motzfeldt's Equation

Moltzfeldtl considered the effect on Pm of a low vaporization
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coefficient and of the resistance to flow of the Knudsen cell proper.

It was assumed that the vaporization coefficient is independent of
pressure, i.e., of the extent of saturation of the vapor over the evapora-
ting surface, and, thus, that o, = a, at all pressures. Motzfeldt's re-
sult, for a cylindrical cell of cross-sectional area B, cell Clausing

factor WB, and orifice area a, is

Pe Wéa L 1
Fotrg (g -2r5) (2)
m : B

The symbol o without a subscript represents the vaporization and|or
condensation coefficient when these are equivalent and constant, and

>

distinetion is unwarranted. Whitmen” had obtained the same equation

previously by a more complex derivation. A somewhat simpler equation
has been presented by Speiser and Johnston,6 and Rogsman and Yarwood,7

and others. These suthors considered the case where the cell resistance
can be neglected (Wé = 1) and where the orifice is gsufficiently small so
that the pressure throughout the cell is essentially uniform (Wéa << B),

In that case, only a low véporization coefficient causes Pm to deviate

from P_. At these limits, Eg. (2) reduces to their result,

Pe Wéa
7 =1l+53 (3)
m

All these authors mention that the effective vaporizing area of a porous
solid with a low vaporization coefficient will be greater than the cross-

sectional area of the cell.
Assumptions

The derivation of Eq. (2) involves assumptions additional to those
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. of a plane, vaporizing surface and av = ac independent of pressure. Some
'of these are the assumptions usually made in calculating the properties
of dilute gas systems, such as: the vapor is an ideal gas, collisions
between molecules can be neglected, and molecules are reflected from a
surface with a cosine angular distribution independent of the incident
directioris° These conditions can be closely realized at low pressures
where the méan free path of the vapor is greater than the dimensions of
the cell.

The derivations cited above invoke further assumptions. The molecu-
lar flow across a horizontal plane of the cell is considered uniform over
the plane. Carlson8 has demonstrated that rigorous application of the
cosine reflection law in a calculation of the type carried out by Clausingl
leads to a radial dependence of the mass flow across a plane perpendicular
to the axis of a cylindrical Knudsen cell. The derivation of Eq. (2)
which makes use of the Clausing factor for the cell, WB; also requirés
that the Clausing factor for the moleéules rebounding off the top of the
cell after a certain fraction have been.lost through the crifice be the
same as 1f the rebounding molecules had vaporized uniformly from the

whole cell cross-sectional area. The magnitude of the error due to these

p) 9

last two assumptions has been discussed by Whitman, Carlson,8 and Balson.
Balson presents numerical calculations of the fraction escaping through
the orifice which should be more accurate than the use of the cell Clausing

factor, WB,
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MODEL APPLICABLE TO SOLID SAMPLES

In this section the steady-state approach used by Motzfeldt is
extended to cover the general case in which the sample has an effective
vaporizing area different from the cross-sectional area of the cell. The
assumptions made in deriving kq. (2) are also made here. The effect of
these assumptions will be discussed further below. It is assumed that
av = ac = constant o at all pressures; not because the steady-state
model requires_such an assumption, but because the functional form of
the possible variation of ac ahd av with pressure is unknown. The model
presented here can be solved readily with av %’aco In that case a% and
ac can be interpreted as functions of the extent of saturation in the
cell, which have different values for every steady-state attained. As
the functionsl form of this variation is unknown, however, such an
approach lacks concrete meaning and introduces conceptual difficulties.
These difficulties might lead to inconsistencies in the solution or in
the definition of auxiliary quantities such as the effective area.

Consider a Knudsen cell, shown in Fig. 1, of cross~sectional area
B, which contains & sample which has an effective vaporizing area A'.
Note that A' can be vastly different from B. The Clausing factor of the
orifice of area a is Wa and the Clausing factor of the cell is EBo Con~
sider the two planes represented by dotted lines in Fig. L. Plane 1 is
Just below the orifice and plane 2 is Jjust above the.samyle surface.

Let uy be the number of moles of vapor which pass upwards through unit

area of plane 1 in unit time. The total mass flux upwards through plane

1 is then ulZB° It is assumed that the vapor density across planes
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MU-27316

Fig, 1. Diagram of effusion cell,
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1 and 2 is uniform. Let dl‘be the number of moles of vapor which pass
downwards through unit area of plane 1 in unit time. Similarly define

u2 and d2 for plane 2.

The number of moles of vapor which escape through the orifice in

12

times the fraction which get through the orifice, Wa, Thus g = ulW#a

unit time, g, will be equal to the number that enter the orifice, u

and the measured pressure, P = u,G (ef. Eq. (1)), The equilibrium
pressure is related to the number of moles ofﬂgaé, r; which evaporste

from area A' in unit time by the Langmuir equation,
= — G (L)

The number of moles which vaporize from unit area in unit time is thus
given by Q%Pe/bo

Now apply a mass balance to the flow of vapor through the cell
after a gteady-state has been attained. The number of moles of vapor
which escape from the cell in unit time eéuals the net number crossing

planes 1 and 2 and equals the number vaporizing minus the number conden-

sing.
wWa = (u1 - dl) B (5)
=q PA/G-adA (7)

The total number of moles which pass downwards through plane 2 is equal
to the number from plane 1 which reach plane 2 plus the number passing

upwards through plane 2 which do not reach plane 1.

d, B =d; WB + u, (1~WB)B (8)

This equation assumes the gpplicability of Clausing factors to the
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situation inside a Knudsen cell.

Equating ul with Pm/C and ac with av these four equations can be
solved to yield

P

§i =1+ Waa<}ﬁ%;- % +‘ﬁ§§:> ' ' (9)
This equation reduces to Motzfeldt's reéuit, Eq. (2), as expected, when
the effective vaporizing area is equal to the celi érea,.that is when
A' = B. Equation (9) reduces to the simple form used by Speiser and
Johnstoﬁ, Eq. (3), when o A'<< EEB, showing that the area appropriate
to that equation is the same effective area used here. This last limit is
the most important result of equﬁtions of this type‘because of the
ambiguities involved in the estimation of the resistance to flow of the
cell proper. This may be more true for a porous solid than for the
plane vaporizing surface considered by Motzfeldt because, with a

porous solid having a low vaporization coefficient, the vaporiZing

molecules might not cross plane 2 with a cosine angular distribution.
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THE EFFECTIVE VAPORIZING AREA

The effective vaporizing area of é porous solid is defined to be the
area of plane sample surface which would give rise to the observed‘rate
of vaporization. 'The pressure above, and temperature of, the porous
solid and the plane surface being compared should be equal. The rate of
vaporization of the plane surface is taken to ineclude only those molecules
vaporizing from tﬁe surface and does not include molecules in the ambient
vapor which strike the surface and are reflected without condensation.

If the observed rate of evaporation is r moles/%ec, the evaporation
coefficient has been determined by vaporization from a plane surface,
and the equilibrium vapor pressure is known, the effective area can be
evaluated from the Langmuir equation (4), A' = rG/b% P_. Usually, the
evaporétion coefficient is not known frém other experiments and the
product o¢,v A' is determined. This definition of the effective vaporizing
area implies that the rate of ?aporization is always given by Pe avA"/Ca

The magnitude of the effective vaporizing area ig a function of the
condehsation coefficient, the total vaporizing area of the sample, and
the geometry of ﬁhe sample as will be seen in the simple calculations
below. It is, however, independent of the pressure in the Knudsen cell --
as long as a, is independent of pressure. The effective area has a
minimum value equal to the area of the plane immediately above the sample
when a, = 1. This minimum value is equal fo the cross-sectional area of
the cell, A' =B, when the sample completely covers the cell bottom.

The effective vaporizing area approaches a maximum value egual to
the total vaporizing area of the sample, A, as the condensation coeffi-

cient approaches zero. This limit means that almost every molecule which
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vaporizes escapes because vthe molecule will not recondense until it has
made a very large number of collisions with the surface. In practice
this means that increasing the total vaporizing area of a substance with
a very low condensation coefficient (On the order of 10’6 for example)
increases the effective area proportionatelyo 1If the sample were a
porous solid a Langmuir evaporation rate which increased directly with
the depth of sample in the crucible would be observed.

There is another limit upon the effective area which is imposed by
the thermodynamic condition that the mass flow in any plane 1in any direc-
tion cannot be greater than the mass flow corresponding to the equili-
brium pressure.

u, < Pe/G ' (10)
uB < B Pe/G _ (115

The rate of evaporation from the sample is PeonAD /Go As some of the

molecules traveling downwards through plane 2 are reflected when Otc< 1,

.
u, B>P o A /G (12)

2

Combining (11) and (12) yields the condition

aA' <B (13)

the equal sign holding only when av = .ac = 1,

In summary, the following limits exist for the effective area, A’
of a homogenous solid sample with total vaporizing area, A, which com-

pletely covers the bottom of a cell of cross-sectional aresa, B:

B/
B<A'<(or ¥  whichever is less (14)
A S
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Some Calculations of the Effective Area

Vidalelo has presented an interesting approximation to the effective
area of a uniform, porous, powder sample by considering the problem to be
one of diffusion through the powder. It was assumed that av = ac = constant.
The powder sample can be considered to be infinitely deep when aﬁ is large
enough and the sample is deep enough for the equilibrium pressure to be

maintained at the bottom of the porous sample. Vidale's analysis for

A' = 1.55 /'; B (15)
C

where € is the ratio of pore volume to total volume of the powder and

this case yields

the other symbols have the same meaning as before. When a, becomes very

small (<.lOmlo),Vidale's equations give

d

ar - Sldzedt g (16)
where d is the average diameter of a powder particle and £ is the depth
of powder in the crucible. Thus when ac is very small the effective area
is directly proportional to the depth of sample, or total vaporizing area,
and independent of the value cof aé,Aas expected.

An attempt to treat the effective ares prdblem.has been made by
M.elvillell who derived an equation for the rate of vaporization from a
wedge~shaped crack. Unfortumately, in addition to mathematical errors;
Melville incorrectly assumes that the fraction of molecules escaping on
each rebound is the same as the fraction which escaped upon the initial
vaporization. The problem of the effective vaporizing area of a pore in

a substance with a low condensation coefficient is in many ways equivalent

to the problem of the deviation from black-body radiation of the radiation
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emerging from various parts of cylindrical cavity. This latter problem
has been discussed by a number of authors,lgmlzwho used a variety of

mathematical approximation to obtain numerical results.
Vaporization in a Spherical Cavity

This section is concerned with the rate of molecular flow through
an opening of plane area Ao when the total vaporizing area is A and no
molecules return to the cavity through the opening AOO The crucial
assumption is that the number of molecules strikingvany élemental area
of surface is the same as that striking any other elemental area, both
initially and on all rebounds. This assumption is ﬁrue for a spherical
cavity containing a hombgenous vaporizing surface as a consegquence of the
cosine spatial distribution of the‘vaporizing and reflected molecules.
The model serves also as an approximation to other geometries where the
area of the opening, AO, ils considerably smzller than the areas of the
wall containing the opening.

Consider the spherical cavity shown in Fig. 2. The opening has
., plane area, Ao’ and area on the sphere, Soo For the sake of generality
only a portion of the spherical sgurface, A, is considered to consi§£ of
vaporizing sample. The remainder of the spherical surface is S. This
could correspond, for example, to a different crystal face of the vapori-
zing material. Now follow s particular group of molecules which evapor-
ate from A in unit bLime.

(1) Of those that vaporize initially a fraction;so/(so+s+A) escape.
vs/(so+s+A) hit the wall while A/(SO+S+A) hit the vaporizing surface again.
Of those that strike the vaporizing surface a fraction ac condense, =0

(l-ac) A/(SO+S+A) wmake first rebound. As all molecules hitting the wall
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MU-27315

Fig., 2, Diagram of spherical vaporizing cavity, :
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rebound the total fraction of the initially vaporizing molecules which
make the first rebound is [S+(l~=ac)A]/(SO+S+A)°

(2) Of those that make the first rebound a fraction] SO/(SO+S+A)
escape, that is, the fraction SO[S+(l~ac )A]/(SO+S+A)2 of the initially
vaporizing molecules escape after the first feboundo The fraction
s[s+(1-cr )A)/ (S_+5+A)% rebound from the walls and (i-a A [S+(1-ar )1/
(SO+S+A)2 rebound from the sample surface. Thus the total fraction of
the initially vaporizing molecules making the second rebound is
[S+(l-ac)A]2/ (SO+S+A)2°

(3) The fraction which escape after the second rebound ié then
s [5+(1-a )13~]2/'(SO+S+A)3°

(h) The fractioniof the initially vaporizing molecules which

escape through the opening after the nth rebound is

[S+(lmac)A}n g

S +S+A S +S+A
o] (o]

Summing the fractions which escape on each of an infinite number

of rebounds gives

S

Total fraction escaping = §_:5?K_“
o ¢

The rate of vaporization inside the cavity is O%APG/G. The rate of
escape of molecules through the cpening, which is the rate which is

measured, is then
' ' o AP S

h'2 e o]
r= —§  ° S+dA (17)
o] [¢]

The effective area, which has been defined by the equation A' = rG/b%Pe,

is simply SOA

bo s o)
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It can be shown that the plane area, Ao’ is related to the spherical area,
8,7 bY A = SO(S+A)/KSO+S+A). The effective vaporizing area of the cavity

can then be expreséed as

1
Al =7 T 1 (19)
@ (GE* 5 ~&ax)
L (64 o] .

If the cavity were a spherical cavity in a homogenous sample S would be

Zero.

At =

(20)

::>i -
|_.J
1
LS.
p

1
ac(a A +
c o)

Examination of this result shows the effective area to behave as
expected. When the condensation coefficient, acﬂ is very small the
effective area, A', is equal to the total vaporizing area, A. When
ac =1, A' = AO, the area of the opening.

It is interesting to consider this cavity as a Knudsen cell. Ifr
in Eq. (17) is equated with q in Eq. (1) and the area A is designated

as the érifice area, a, (with Wa = l,var = ac =, and S = 0) one obtains

F==1+7(5-1) (21)

which is identical with Motzfeldt's fesult, Eq. (2), when the resistance
of the cell to flow is negligible (Wy = 1). The ‘derivation of Eq. (21)
shows that Motzfeldt's equation would be e#pected to be a good approxima-
tion to the vaporization of a non-porous solid which completely lines a
Knudsen cell of total interibr area A (when a << A) -- if the assumption
a% = ac = constant were correct. It should, perhaﬁs, be pointed out tﬁat

the spherical cavity also reduces to the same equation as derived by

Motzfeldt's steady-state model when av is assumed different from ac in

both derivations.
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PROCEDURES TO OBTAIN Pe AND o

On the basis of Eq. (2), Motzfeldt™ suggested that a plot of P
against Pm Wéa/B would beha”straight line with intercept Pe and slope"
-(1/a + l/WB - 2). The result of the general effective area case, Eq.
(9), can be rearranged to

1 2 1
Pm a Pe - Pm Wéa &7 "8t ﬁgﬁ) (22)

Equation (22) immediately points out'fwo dangers in the suggested procedure.
If the ratio WAa/B were varied by changing the cell cross-sectional area,

B{ the intercept of the plot would not be Pe unless the effective vapori-
zing area had changed in direect proportion to B. Also, if the orifice

area, a, were varied, Pm plotted against meaa/B, and a straight line
obtained (this appears unlikely for reésons discussed below) the vapori-
zation coefficient still could not be calculated from the slope of this
plot. At best, the product o A'/B would be obtained where A' might be
vastly different from B.

The discussion in the preceding paragraph implicitly accepts the
assum@tions made in the derivation of Eg. (9). It is instructive to
examine the effect on Eq. (9) of the remgvél‘or modification of these
assumptions; and thus examine the effect.of these assumptions on such
procedures to obtain Pe and a as are implied by Eq. (9) and (22). Equation
(22) suggests that a plot of Pm against PmWéa will bé a straight line
with intercept P_when a = 0. It is intuitively clear that P must
approach Pe as a approaches zero. Use of the Clausing factor, Wﬁ,_in the
derivation ignores the radial dependence of the vapor density inside the

cell, the non-uniform distribution of the molecules reflected from the
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of the cell, and the departure from a cosine spatial distribution of the
molecules vaporizing from a porous sample with a low condensation coeffi-

9

cient. Carlspn‘s8 and Balson's” analyses of the flow of vapor in a
Knudsen cell show that fhe resistance to flow of the Knudsen cell varies
as the orifice area is varied. This means that W, in Eq. (9) is not a
constant but, rather, a function of the orifice area, a. This being so,
a plot of Pm against meaa will deviate somewhat from a straight line.
For substances which have very small vaporization coefficients the
o A' term in Eq. (9) is much larger than the B and WBB terms so that these
latter terms, and their uncertainties, can be neglected. This is the
situation of primary interest in this paper. Usually when a& is close to
unity the orifice area can be made small enough so that the measured
pressure 1s very close to the equilibrium pressure.
It was assumed in deriving Eq. {9) that the vaporization and conden-
sation coefficients are independent bf’pressure and, therefore, that
a% = ac at all pressures. Neither theory ndr experiment has yet given
a description of the behavior of av apd ac for moleculaxy substances.
However, both theory and experiment indicate that av and ac are not
constants independent of pressure. Knacke, Schmolke, and Stranskila
predict the vaporization coefficient of an ionic crystal to be a function
of the undersaturation of the vapor and of the crystal face vaporizing.

19

Jaeckel and Peperle™” have measured Knudsen cell pressures of single

érystal faces of NaCl, KI, Sb283ﬁ and sulfur with different cells and
orifice areas. Their results show that the value of a calculated from
Eq. (1) varies with the orifice size.

‘Hirth and Poundgo have considered the vaporization of perfect metal

crystals to monatomic vapors. For such substances a, = 1. They calculate
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o, = (2/3) - (P/?e) + 1/3. Their result might be taken to suggest-a
function for molecular substances with low condensation coefficients
such as

o .—._—P——(l-m)oc +mQ (23)

v Pe c c o

where ac and m are constants (5 1) independent of P . This function has
G, vary from a, at equilibrium to>maC under Leangmuir conditions. The
discussion of the effective wvaporizing area above indicates the effective
area to be a function only of ac and not of avn Because of this the
effective area model resulting in Eq. (9) can easily be extended to
include Eqg. (23). The solution, surprisinglyy is exactly the same as
Eq. (9) with o éepléced'by the vacuum vaporization coefficient, m a.
This suggests that av is the appropriate coefficient for Eq. {(9). The -
rate determining step in the vaporization of a molecular substance with
a low vaporization coefficient is expected to be very different from the
rate step considered by Hirth and Pound. Thug there 1s no Jjustification
for an equation of the form of Eq. {23), particularly for the assumption
that o, Varieé while a, is constant. As the actual variation of aQ, and
a, with pressure is, at present, a matter of conjection it seems unlikely
that a plot of Pm VS, meaa will be a straight line even when the B and
WéB terms are negligible;

This last conclusion contains a further warning. It is only
possible to extrapolate to Pe with confidence after experiments with a
number of orifices have defined the curvature of the plot used and when
the measured pressures are reasonably close to the equilibrium pressure.

If these conditions are not met, the resulting long extrapolation

necessary to obtain Pe is hazardous.
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AN EMPIRICAL EQUATION

As has been seen there are many uncertainties in models of the type
considered in this paper. This is particularly due to the lack of ex-
perimental information on the variation of av and a, with pressure. It
is therefore tempting to try to obtain helpful information from experi-
ments which have been published. Brewer and Kaneu report the results of
Knudsen measurements on the vapor pressure of porous arsenic at 575°Kq
The vapor pressure was measured for seven different orifice sigzes which
differed by a factor of 10,000 while the other geometrical and experimen-
tal variables were held constant. Their results are illustrated in Fig.
3. If an attempt is made to treat these measurements by an equation such
as (9), a is found to vary regularly and to a great degree.

waever, Brewer and Kane's results can be represented within experi-

mental error by a simple, one-parameter, empirical equation:

P
2 -1 (23 (25)

vl
=

The 1line drawn through the experimental results in Fig. 3 represents this
equation. Pe, Pm’ and a are taken directly from théir paper. The value
of k used to calculate the line (1.3 x lO-h) is the average of the k
values calculated. from the measufementso The fit of the seven experimen-
tal points to this simple equation is remarkable considefing the complexity
of the situation inside the Knudsen cell and the large range of variable
covered.

Comparing Eq. (25) with Eq. (9) suggests association of the empirical

constant k with A;. It would be very interesting to determine if Eq.
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Fig. 3. Knudsen cell data for arsenic at 575°K, The exper-
imental results and equilibrium pressure are from Brewer
and Kane, 4 The calculated cx7rve represents the e‘inpirical
equation, P_/P_ =1+ (a/k)?/3, with k= 1,3x1077,
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(25) applies to experimental results on other substances having low
vaporization coefficients. It would also be instructive to find a model
for vaporization in a Knudsen cell which leads to an equation of the form

of Eq. (25).

CONCLUSIONS

The model used to describe the vaporization of porous solids with
low vaporization coefficients is subject to many ﬁncertainties° A par-
ticular difficulty is the unknown variation of the vaporization and
condensatipn coefficients with the undersaturationiof the ambient vapor.
Thé model does, however, focus attention on the effective vaporizing
area of a solid sample and shows that vaporization coefficients for
porous samples can not be obtained from the slope of a plot of Pm against
meaa. Thg model also demonstrates that attempts to vary the cell dimen-
sions or the sample vaporizing area will not necessarily extrapolate to
Pe° |

Uncertainty regarding the behavior of o, and o, with pressure suggests
that Knudsen measurements on substances with low vaporization coefficients
can only be extrapolated to the equilibrium pressure reliably when experi-
ments have been carried out with a number of orifice sizes and when the
measured pressures are close to the equilibrium value.v This very uncer-
tainty also suggests that experimental data should be carefully examined
to see what light they throw on this unknown behavior.

A simple, empirical equation accurately represents the variation with

orifice area of Knudsen measurements on arsenic. It would be very in-

teresting to ascertain if this equation has more general validity.
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LIST OF RECURRING SYMBOLS

cross-sectional area of orifice of Knudsen cell
total vaporizing area

effective vaporizing area

cross-sectional area of Knudsen cell

(ersorr)Y/2

émpiriéal constant

equilibrium pressure

measured pressure

number of moles of vapor effusing through orifice of

Knudsen cell in unit time.
number of moles vaporizing in unit time
Clausing factor for orifice (W ) or cylindrical cell (W )

condensation coeffic1ent (a ) and/br vaporization co-

efficient (a&) when these are equivalent and constant



11.
12.
13.
1k,
15.
16.
17.
18.
19.

20.

E.

G.
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such employee or contractor of the Commission, or employee
of such contractor prepares, disseminates, or provides access
to, any information pursuant to his employment or contract
with the Commission, or his employment with such contractor.








