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ABSTRACT 

Mechanical Robustness of the Mammalian Kinetochore-Microtubule Interface 
 

Alexandra Long 

 
  For a cell to divide correctly, the spindle must connect to and align 

chromosomes and then generate force to move them into two daughter cells. The 

kinetochore is the macromolecular machine that connects chromosomes to a bundle of 

dynamic microtubules, the kinetochore-fiber (k-fiber). While we have a nearly complete 

parts list of kinetochore components and regulators, how they together give rise to the 

robust mechanics of the kinetochore-microtubule interface remains poorly understood. 

This is due to the fact that mammalian kinetochores and k-fibers cannot yet be 

reconstituted in vitro and there are few tools to perturb forces and measure the 

mechanics at this interface in vivo. In my thesis work I have addressed this gap using 

direct biophysical assays in mammalian cells to focus on two main questions about the 

kinetochore-microtubule interface. First, how do kinetochores hold on to microtubules 

that grow and shrink?  Using live imaging to monitor spindle dynamics and laser 

ablation to challenge kinetochore grip, I show that regulation of the key microtubule 

binding protein Ndc80/Hec1 at the outer kinetochore by the kinase Aurora B specifically 

affects kinetochore movement on polymerizing microtubules without disrupting coupling 

to depolymerizing microtubules that generate force to move chromosomes. Second, at 

the other side of the interface, how do kinetochore-fibers remodel under force? I directly 

exert forces on individual mammalian k-fibers and find that even under high force for 

minutes they do not lose grip. Instead, k-fibers bend and elongate by polymerizing at 
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normal rates at plus-ends and inhibiting depolymerization at minus-ends – thus ensuring 

robust connection to kinetochores. Altogether I find that robust kinetochore grip 

emerges from underlying properties of both the kinetochore and k-fiber microtubules – 

specialized regulation at the kinetochore allows the cell to adjust grip while still allowing 

force generation and dynamic mechanical feedback of k-fiber microtubules locally 

dissipates force, protecting spindle connections. These fundamental physical properties 

of the kinetochore-microtubule interface allow the spindle to faithfully segregate 

chromosomes and more broadly suggest a model for how force-generating cellular 

machines can also robustly maintain their structure.  
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CHAPTER ONE 

INTRODUCTION 
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FORCE GENERATION BY BIOLOGICAL STRUCTURES 

Life, at many scales, is a mechanical process. Redwoods unfurl their leaves, 

animals sprint, and fungi branch networks deep into the soil. These activities are 

powered by the sophisticated dynamics of the machinery within individual cells. Inside a 

cell is a blur of activity – proteins are synthesized and recycled, molecular motors move 

internal cargo – all the while the cell itself can perform an integrated mechanical 

function such as crawling through a complex environment or dividing in two. How do 

these mechanical behaviors at the micron-scale emerge from the behavior of 

nanometer-scale components? With all these mechanical activities occurring within and 

around cells, how do they both generate and respond to forces as cues, while also 

remaining intact? To address these key questions, in my thesis work I have used the 

mammalian mitotic spindle as a model system to study how cellular machines can 

actively generate force for critical cellular behaviors while remaining one mechanically 

robust structure. 

Each time a cell divides, the mitotic spindle generates force to align and then 

segregate the chromosomes to two new daughter cells. Chromosome movement is 

powered by the growing and shrinking of dynamic microtubule (MT) polymers that 

connect to chromosomes via a macromolecular complex called the kinetochore. For 

genomic information to be accurately segregated and preserved as cells divide, the 

attachment of chromosomes to the spindle must be both robust and correct. Weak or 

erroneous kinetochore attachments can lead to aneuploid cells that lack a correct copy 

of the genome, which can lead to birth defects [1] and are a hallmark of cancer [2]. 

Thus, the kinetochore plays key physical and signaling roles: it must grip spindle 
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microtubules while still allowing them to be dynamic, and must also process attachment 

information to signal when chromosome separation can begin. 

  The mammalian kinetochore is built from ~100 protein species present in many 

copies in a well-defined stoichiometry, and it binds the 15-25 microtubules that make up 

the kinetochore-fiber (k-fiber) [3,4] (Fig. 1.1). We now have a near complete parts list for 

the mammalian kinetochore, and there are significant efforts to map the stoichiometry, 

structure and biochemistry of this macromolecular machine [4–7]. Yet, how this 

machine’s mechanical functions emerge from its component parts has long remained a 

frontier because of the system’s complexity and since mammalian kinetochores and k-

fibers cannot yet be reconstituted in vitro. Expanding physical and molecular toolboxes 

in cells are now helping us address this question, which is the central topic of this 

thesis. 

 First, in this introductory chapter I review our current understanding of how the 

mammalian kinetochore’s individual parts together, as an ensemble, give rise to some 

of its key mechanical functions as it binds the k-fiber’s many microtubules (Fig. 1.1). 

Then in the chapters of this thesis that follow I address two key questions about 

mechanics of the kinetochore-microtubule interface. In Chapter 2 I ask: how do 

kinetochores grip multiple microtubules to maintain attachments that are mechanically 

strong, and yet flexible enough to allow microtubules to grow and shrink and detach to 

correct errors? In Chapter 3 I ask: how do dynamic kinetochore-fibers generate, 

respond to, and withstand force to move chromosomes? Lastly in Chapter 4, I discuss 

open questions about the emergent mechanics of the kinetochore-microtubule interface, 

and new tools and conceptual approaches with which to tackle them in the future. 
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PRINCIPLES OF ROBUST KINETOCHORE GRIP  

 

The inner kinetochore assembles on centromeric chromatin while the outer 

kinetochore forms the microtubule binding and signaling platform [7,8]. During 

microtubule attachment, outer kinetochore modules undergo structural rearrangements 

thought to aid in efficient spindle assembly [9–12]. Kinetochores face a challenging task: 

if they bind too tightly to microtubules, they avoid detachment but may disrupt 

microtubule dynamics (growth and shrinkage) or stabilize incorrect attachments, yet if 

they bind too loosely, they may not be able to correctly move chromosomes into each 

daughter cell. The kinetochore-microtubule interface must therefore be tuned to achieve 

robust and dynamic, not just strong, binding. Diverse architectural features of this 

interface are well-suited to facilitate robust grip (Fig. 1.2): many outer kinetochore 

proteins work together to bind many microtubules in a k-fiber (redundancy), a diversity 

of kinetochore proteins likely contribute to load-bearing (specialization), the mechanics 

of the interface can be regulated to adjust grip as needed (tunability) and k-fiber 

microtubules can grow and shrink (dynamicity), generating force to move chromosomes 

and allowing the spindle to remodel itself. I provide key examples of these features 

below, focusing on recent work.   

 

Redundancy 

 

Redundancy is a hallmark of the mammalian kinetochore-microtubule interface.  I 

use ‘redundancy’ to emphasize the mutiplicity of components, where each and every 
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copy may not be necessary. The kinetochore’s main load-bearing microtubule binding 

unit, the Ndc80 complex [13,14], has ~250 copies per kinetochore (Fig. 1.2) [15], of 

which only a low fraction (~30%) are engaged with microtubules [16] at any given time 

during metaphase. Redundancy at the level of kinetochore protein structure (e.g. a 

single protein may have multiple binding surfaces [17]) or sub-complex architecture 

(e.g. the multivalent arrangement of couplers [18]) may also be critical for robust 

tracking of dynamic microtubules by providing multiple contact points. At the 

kinetochore-microtubule interface, redundancy also occurs at the level of many 

microtubules (Fig. 1.2). Many microtubules compose the mature k-fiber, exceeding the 

minimum number required for SAC satisfaction [19,20] and the estimated number 

needed to generate force to move a chromosome [21,22]. The high number of bound 

microtubules may instead ensure robust segregation by ensuring that turnover of k-fiber 

microtubules or error correction activities – both essential to function – do not fully 

disconnect a kinetochore from the spindle [19]. Further, having many redundant 

kinetochore coupling points may provide more sites for cellular regulation to tune 

microtubule affinity [23].  

 

Specialization 

 

 Not only do kinetochore proteins play highly specialized biochemical roles, they 

also play specialized mechanical roles in microtubule binding (Fig. 1.2). Some of these 

proteins may be regulated to correct errors or stabilize proper attachments as mitosis 

progresses. Defining the specific mechanical functions and relative contributions of 
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different proteins to the mechanics of the kinetochore-microtubule interface is critical for 

understanding kinetochore structure-function. Several proteins act in kinetochore-

microtubule attachment in addition to the Ndc80 complex. For example, proteins such 

as the Ska complex [24–27], Cdt1 [28]  and astrin-SKAP [29] have been proposed to act 

as additional couplers between kinetochores and microtubules, perhaps as “lock-down” 

factors [25]. Notably, many of these modules’ grip is regulated by the same set of 

kinases and phosphatases (tunability), which may ensure that whole kinetochore 

mechanics can be tuned as one ensemble (Fig. 1.2) [28,30–32]. Specialization in grip 

may also arise from the same outer kinetochore protein complexes engaging differently 

either in structure or in number with growing versus shrinking microtubules (Fig. 1.2) 

[16,33]. Determining which protein modules map to sites of active (energy consuming) 

and passive (non-energy consuming, e.g. frictional) force generation at the kinetochore-

microtubule interface [34]. Just as ascribing specific biochemical functions to 

kinetochore proteins has helped us understand the mechanisms of kinetochore 

signaling, mapping specific mechanical functions to diverse proteins is key for us to 

understand the underlying engineering principles that drive the kinetochore’s robust 

grip. 

 

Dynamicity 

 

Robust grip is not only determined by kinetochore composition and architecture, 

but also by the k-fiber’s dynamicity (Fig. 1.2). K-fiber shrinkage powers chromosome 

movement [22] and k-fiber growth allows movement of the paired sister kinetochore. 
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Thus it is key for the cell to limit growth and shrinkage velocities [35,36], to ensure that 

shrinking microtubules can move chromosomes on relevant timescales, and that 

kinetochores can keep track of microtubule ends without losing grip. Plus-end dynamics 

of individual microtubules within the kinetochore must also be coordinated [37]. An 

ensemble of regulatory proteins limits the dynamic range of microtubule growth and 

shrinkage, and imbalance of these regulators can lead to mitotic errors [38,39]. Further, 

just as microtubule dynamics can generate mechanical force, they are also regulated by 

force. The ability of force (in a given regime) to stabilize attachments has been directly 

shown and mapped at the reconstituted budding yeast kinetochore [40] and at 

grasshopper kinetochores inside cells [21,41], but we still lack a direct and quantitative 

understanding of this mechanical feedback at the mammalian kinetochore, which we 

explore in chapter 3 of this thesis. In principle, the ability of microtubule dynamics to 

respond to force is well suited to help dissipate force across the spindle, providing 

‘slack’ in the system [42]. Flux of k-fiber microtubules towards spindle poles may play a 

similar role [42–44], and could also enhance kinetochore binding by biasing k-fibers 

towards a growing state where kinetochores may have specialized engagement [16]. In 

addition to microtubule end dynamics, the lifetime of components of the kinetochore-

microtubule interface must also drive the interface’s mechanical function [45]. For 

example, the engagement between individual Ndc80 complexes and the microtubule is 

highly transient, which may allow rapid interface dynamics, while the longer lifetime of k-

fiber microtubules is well-suited to ensure that correct microtubule attachments are 

stable.  
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OBJECTIVES OF THESIS 

 

In this dissertation I use the kinetochore-microtubule interface of the mitotic spindle as a 

model system to address core questions about how cellular machines generate, 

respond to, and withstand force. This is an ideal system in which to study these 

processes as it has a near-complete molecular parts list and performs an essential 

mechanical function for the cell: 

“… through extensive trial and error, nature has chosen an intricately 
interacting, dynamic system to achieve mitosis, and to safeguard the 
propagation and unfolding of life despite its myriad forms. While we are 
becoming privy to some of nature's surprising ways today, we need, in 
addition to dissecting the molecules further, to listen ever more carefully to 
the living cell, and be prepared to be taught further unexpected 
paradigms, which will undoubtedly be essential for clearer understanding 
of the physico-chemical and biological basis of cellular organization, life, 
and disease" - S. Inoue and E. Salmon [46] 
 

The objective of this work is to harness old and new top-down physical approaches and 

microscopy to better “listen” to the living cell to gain insight into how its mechanical 

behaviors emerge from its underlying molecular parts. Using these direct physical 

approaches inside mammalian cells, I quantitatively examine how the kinetochore-

microtubule interface performs its robust mechanical functions. In chapter 2, I find that 

cells can differentially regulate the protein Ndc80 to adjust grip in a mechanically 

specialized manner without compromising force generation. In chapter 3, I find that the 

dynamicity of the many redundant microtubules of the mammalian k-fiber allow it to 

respond to and dissipate mechanical force to maintain robust connection to the 

kinetochore. Together, these key engineering principles enable the kinetochore-

microtubule interface to generate and respond to cellular forces while maintaining 
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robust connectivity to ensure proper chromosome segregation. These underlying 

principles will be broadly relevant for understanding diverse force-generating cellular 

machines that perform important cellular processes. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 10 

FIGURES AND FIGURE LEGENDS 

 

Figure 1.1. The mammalian kinetochore-microtubule interface.  
 
A) Mammalian kinetochores (brown) connect chromosomes (dark gray) to kinetochore-
fibers (“k-fibers”, light gray), bundles of many microtubules. In the inset, the outer 
kinetochore (light orange, e.g. Ndc80 complexes depicted) is a lawn of proteins that 
form the microtubule-interacting interface. The inner kinetochore (dark orange) links the 
outer kinetochore to centromeric chromatin.  
 
B) Kinetochore architecture, mechanics and signaling nodes feed back on each other to 
give rise to robust kinetochore function. In this chapter, I highlight (solid arrows) how the 
specific molecular interactions and architecture (orange puzzle pieces) gives rise to 
robust grip (blue).  
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Figure 1.2. Principles of robust grip at the mammalian kinetochore-microtubule 
interface.  
 
A) Redundancy occurs at multiple levels. For example, many microtubules in the 
kinetochore-fiber (top) bind a single mammalian kinetochore, and many kinetochore 
protein copies bind a single microtubule (bottom).  
 
B) Kinetochore specialization in binding growing (left) versus shrinking (right) 
microtubules can occur via differential engagement of kinetochore proteins (top) or via 
differential localization or regulation of proteins (bottom).  
 
C) Tunability of the kinetochore-microtubule interface occurs via diverse regulators 
including kinases and phosphatases, plus-tip proteins and the binding of different 
kinetochore proteins over time during mitosis, acting on either kinetochore proteins or k-
fiber microtubules. Inset shows examples of three different facets of kinetochore-
microtubule interactions that can be tuned by the cell.  
 
D) Dynamicity at the kinetochore-microtubule interface occurs from microtubule growth 
and shrinkage, and it is modulated by a complex network of positive and negative 
regulators that tune microtubule dynamics and thereby kinetochore velocity. Inset 
shows potential models for how force at this interface affects microtubule growth or 
shrinkage velocity, i.e. the force-velocity relationship of this interface.   
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CHAPTER TWO 

HEC1 TAIL PHOSPHORYLATION DIFFERENTIALLY REGULATES MAMMALIAN 

KINETOCHORE COUPLING TO POLYMERIZING AND DEPOLYMERIZING 

MICROTUBULES 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 13 

SUMMARY 

The kinetochore links chromosomes to dynamic spindle microtubules and drives both 

chromosome congression and segregation. To do so, the kinetochore must hold on to 

depolymerizing and polymerizing microtubules. At metaphase, one sister kinetochore 

couples to depolymerizing microtubules, pulling its sister along polymerizing 

microtubules [47,48]. Distinct kinetochore-microtubule interfaces mediate these 

behaviors: active interfaces transduce microtubule depolymerization into mechanical 

work, and passive interfaces generate friction as the kinetochore moves along 

microtubules [42,49]. Despite a growing understanding of the molecular components 

that mediate kinetochore binding [50–52],we do not know how kinetochores physically 

interact with polymerizing versus depolymerizing microtubule bundles, and whether they 

use the same mechanisms and regulation to do so. To address this question, we focus 

on the mechanical role of the essential load-bearing protein Hec1 [13,14,53,54]. Hec1’s 

affinity for microtubules is regulated by Aurora B phosphorylation on its N-terminal tail 

[23,30,55,56], but its role at the interface with polymerizing versus depolymerizing 

microtubules remains unclear. Here, we use laser ablation to trigger cellular pulling on 

mutant kinetochores and decouple sisters in vivo, and thereby separately probe Hec1’s 

role on polymerizing versus depolymerizing microtubules. We show that Hec1 tail 

phosphorylation tunes friction along polymerizing microtubules, modulating both the 

magnitude and timescale of responses to force. In contrast, we find that Hec1 tail 

phosphorylation does not affect the kinetochore’s ability to grip depolymerizing 

microtubules, or switch to this active force-generating state. Together, the data suggest 

that kinetochore regulation may have differential effects on how kinetochores engage 
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with growing and shrinking microtubules, and that friction can be regulated without 

disrupting active force generation. Through this mechanism, the kinetochore can 

modulate its grip on microtubules as its functional needs change during mitosis, and yet 

retain its ability to couple to microtubules powering chromosome movement. 

 

RESULTS 

 

Targeted control of cellular pulling forces on kinetochores in vivo  

 

To probe Hec1’s mechanical role at the mammalian kinetochore-microtubule interface, 

we sought the ability to exert force on a given kinetochore inside a cell at a specific 

time. This is necessary to probe the magnitude and timescale of a kinetochore’s 

response to force, and to perturb kinetochores moving on microtubules in a given 

polymerization state. We accomplished this using targeted laser ablation to sever one 

kinetochore-fiber (k-fiber) at metaphase (Fig. 2.1A).  The newly created k-fiber minus-

ends recruit dynein, which in turn exerts a poleward pulling force on the attached 

kinetochore and its sister [57,58].  

As a starting point for our Hec1 studies, we expressed Hec1-EGFP in PtK2 cells 

depleted of endogenous Hec1 by RNAi [54]. We selectively severed polymerizing k-

fibers near their kinetochore, and examined the responses of both the “front” and “back” 

sister kinetochores (proximal and distal to the cut, respectively) (Fig. 2.1A,B). The 

response to laser ablation appeared the same as in wild type cells [57,58], and had two 

phases (Fig. 2.1B,E-G blue traces; Table 2.1; n=13). First, the front kinetochore recoiled 
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immediately after cut, reflecting a decrease in force and causing the interkinetochore (K-

K) distance to decrease. Second, dynein pulled the microtubules bound to the front 

kinetochore, moving the sister pair toward the ablation site and increasing the K-K 

distance. Dynein pulled the front sister faster than its k-fiber polymerized or 

depolymerized, and faster than normal metaphase movements [57] (Table 2.1). The 

front kinetochore’s velocity during dynein-mediated movement was similar between 

experiments (Fig. 2.1F,H blue traces; Table 2.1), consistent with ablation triggering a 

consistent response. Dynein pulling caused the back kinetochore to turn around within 

seconds, ultimately pulling it away from its pole along polymerizing microtubules. Thus, 

targeted k-fiber ablation can produce a pulling force to probe the mechanics of the 

interface between kinetochores and polymerizing microtubules.  

 

Hec1 tail phosphorylation regulates the magnitude and timescale of the mammalian 

kinetochore-microtubule interface’s response to force  

 

To probe the mechanical regulation conferred by Hec1’s N-terminal tail phosphorylation 

during mitosis, we asked whether and how it controls the movement of a kinetochore in 

response to force. We depleted endogenous Hec1 by RNAi (Fig. S2.1), and expressed 

either Hec1-9A-EGFP or Hec1-9D-EGFP to mimic constitutive dephosphorylation and 

phosphorylation, respectively, a range that includes typical Hec1 phosphorylation by 

Aurora B during mitosis [23]. As expected [23] , Hec1-9D and Hec1-9A kinetochores 

resulted in different steady-state K-K distances (Fig. 2.1C,D,G; Table 2.1).  
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We subjected these Hec1-9A (Fig. 2.1E-G red traces; n=17) and Hec1-9D 

kinetochores (Fig. 2.1E-G, green traces; n=10) to the same force signature as Hec1-

WT, as suggested by similar front kinetochore velocities during dynein pulling (Fig. 

2.1H, Table 2.1). As with Hec1-WT, after k-fiber ablation the front kinetochore recoiled 

and the K-K distance decreased in both Hec1-9A and Hec1-9D cells. When dynein 

pulling engaged, however, the back sister responses were different from Hec1-WT. In 

Hec1-9A cells, the back kinetochore moved more slowly than its front sister (0.6±0.1 vs 

1.6±0.2µm/min; Table 2.1), and moved less far than Hec1-WT (0.4±0.1 vs 0.7±0.1µm; 

Fig. 2.1H,I; Table 2.1). These differences led to a larger, and longer-lasting, increase in 

K-K distance above baseline during dynein pulling compared to Hec1-WT (maximum K-

K distance was at 95±7 vs 47±5s; Fig. 2.1G; Table 2.1). In contrast, in Hec1-9D cells 

the back sister followed at a rate similar to its front sister (1.7±0.4 vs 1.8±0.2µm/min), 

which is faster than Hec1-WT (0.9±0.1µm/min), and moved farther than Hec1-WT 

(1.0±0.2 vs 0.7±0.1 µm; Fig. 2.1H,I; Table 2.1). These responses led to little overshoot 

in K-K distance above baseline during dynein pulling (Fig. 2.1G). 

Dephosphorylating the Hec1 tail makes the back kinetochore less mobile in 

response to force: the back kinetochore moves more slowly and a shorter distance, and 

takes longer to recover, despite being under higher forces. Phosphorylating the Hec1 

tail has the opposite consequences. Thus, Hec1 tail phosphorylation controls both the 

magnitude and timescale of the back kinetochore’s response to spindle forces, and 

thereby sets the effective elasticity and viscosity of the spindle’s reorganization in 

response to force. Hec1 phosphorylation regulates the back kinetochore’s ability to 

move when bound to polymerizing microtubules under force. It could do so by directly 



 17 

changing friction on the microtubule lattice, or produce an apparent change in friction by 

setting the polymerization dynamics at the microtubule tip.  

 

Hec1 tail phosphorylation regulates kinetochore friction on polymerizing microtubules 

 

To probe the relationship between Hec1 tail phosphorylation and friction, we measured 

how Hec1 tail phosphorylation changes the velocity – and friction coefficient assuming 

similar forces – between kinetochore and polymerizing microtubules. To determine 

kinetochore velocity relative to the microtubule lattice, we tracked kinetochores with 

Hec1-EGFP phosphomutants, and concurrently measured k-fiber poleward flux [59] by 

either photomarking PA-GFP-tubulin or photobleaching GFP-tubulin (Fig. 2.2A-C). K-

fiber flux velocities were lower in Hec1-9A (0.50±0.03µm/min, n=60) than in Hec1-9D 

(0.73±0.07µm/min, n=27) or WT cells (0.65±0.05 µm/min, n=57) although spindle length 

did not change (Fig. 2.2D,E, Table 2.1). Consistent with Hec1 tail phosphorylation 

decreasing friction, kinetochore velocity with respect to the microtubule lattice during 

polymerization was higher in Hec1-WT (1.20±0.03µm/min, n=720) than in Hec1-9A cells 

(0.80±0.03µm/min, n=940) (Fig. 2.2F, Table 2.1). Thus, the interface remains dynamic 

and is never locked within the cell’s Hec1 tail phosphorylation range; the kinetochore 

(as a “slip clutch” [42]) can always slip to reduce force on the chromosome – and 

prevent detachment from microtubules [43]. 

These data are consistent with Hec1 being a component of a frictional interface 

of kinetochores with microtubules – whose location was inferred to be in the outer 

kinetochore [34]. Hec1 tail phosphorylation is well-suited to tune the effective friction 
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coefficient, and thus the force-velocity relationship, between the mammalian 

kinetochore and microtubules during polymerization, and to do so in a force range 

relevant to spindle function.  

 

Hec1 tail phosphorylation does not disrupt the mammalian kinetochore’s ability to 

couple to depolymerizing microtubules  

 

As we found that Hec1 tail phosphorylation decreases kinetochore friction with 

microtubules during polymerization (Fig. 2.1-2), we asked whether it also affects the 

ability to couple to depolymerizing microtubules. Perturbing Hec1 phosphoregulation 

changes how metaphase sister kinetochores move [13,14], but when sister 

kinetochores are linked (Fig. 2.1-2), the coupling to depolymerizing microtubules can 

never be probed directly as it is always resisted by its sister. Anaphase kinetochores 

could provide a solution, but kinetochore biochemistry changes between metaphase 

and anaphase [60]. Hence, we turned to laser ablation to physically separate sister 

kinetochores: after ablating one sister, the remaining sister moves towards its pole as its 

k-fiber depolymerizes [47,61] (Fig. 2.3A,B). 

After sister ablation, Hec1-WT kinetochores initially moving poleward speed up, 

from 1.2±0.2µm/min (depolymerizing microtubules since faster than tubulin flux, Fig. 

2.2D) to 2.3±0.2µm/min (n=10, p<0.01; Fig. 2.3C,D). This acceleration is consistent with 

the sister, bound to polymerizing microtubules before ablation, providing resistance. In 

turn, WT kinetochores initially moving away from their pole (polymerizing microtubules) 

at 0.7±0.1µm/min switch to poleward movement at 2.1±0.1µm/min (n=14; Fig. 2.3C,D). 
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The directional switch and kinetochore velocity we measure here are faster than those 

we measured after k-fiber ablation (Fig. 2.1), which is likely because here there is no 

resistance from the sister k-fiber interacting with the spindle. Surprisingly, Hec1-9A and 

Hec1-9D kinetochores, which had perturbed K-K distances (Table 2.1), moved poleward 

at the same velocity as Hec1-WT after sister ablation (2.0±0.2µm/min, n=21 and 

2.3±0.2µm/min, n=18, respectively; Fig. 2.3B,E,F). As kinetochores approach poles, 

kinetochore velocity remained unchanged despite chromosomes experiencing higher 

polar ejection forces [61,62]. Although more data would be needed to make a stronger 

statement, we found that, within our ~2s resolution, the different Hec1 phosphomutants 

had indistinguishable times to switch directions – suggesting that Hec1 tail 

phosphorylation may not directly regulate the kinetochore directional switching (Fig. 

2.3G,H). Thus, while Hec1 tail phosphorylation regulates the kinetochore’s ability to 

couple to polymerizing microtubules (Fig. 2.1-2), it does not affect its ability to couple to 

and track depolymerizing microtubules or its poleward velocity (Fig. 2.3). 

 

DISCUSSION 

Accurate chromosome segregation requires the kinetochore to be able to hold on 

to both polymerizing and depolymerizing microtubules. However, the molecular basis 

and regulation of kinetochore attachment to polymerizing and depolymerizing k-fibers 

are not known. In particular, separately probing kinetochore movement in defined 

polymerization states has been challenging. Elegant in vitro assays [40,63] overcome 

these challenges but are not yet tractable for mammalian kinetochores, while in vivo 

microneedle [64,65] and laser ablation [47,61,66] studies have probed kinetochore 
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mechanics in defined states, but not their molecular basis. Here, we use a combination 

of molecular and mechanical perturbations to determine the contribution of Hec1 tail 

phosphoregulation to mammalian kinetochore movement on polymerizing and 

depolymerizing microtubules. We find that through Hec1 tail phosphorylation, the 

kinetochore can independently regulate its ability to move when bound to polymerizing 

microtubules without losing its ability to couple to depolymerizing microtubules that 

actively move chromosomes (Fig. 2.3I,J). As the needs of mitosis change, regulation of 

effective kinetochore friction may set how far and how fast chromosomes move in 

response to force, and tune whole spindle mechanics, for example increasing 

mechanical coupling across spindle halves as mitosis progresses.  

The basis for Hec1’s tail regulating kinetochore movement when bound to 

polymerizing but not depolymerizing microtubules is not known. If kinetochore speeds 

were higher during polymerization than depolymerization states, changes in friction may 

only be detectable during polymerization; however, we observe higher speeds during 

depolymerization (Fig. 2.3I, Table 2.1). Similarly, direction-specific regulation could in 

principle arise from differences in microtubule plus-end tip structure, but this structure 

so far appears not to differ between sisters [67]. Alternatively, Hec1 structure may vary 

when bound to polymerizing versus depolymerizing microtubules [68,69], or proteins 

other than Hec1 may bear load and govern chromosome velocity during 

depolymerization [21,46]. To uncover the molecular basis for Hec1 tail 

phosphorylation’s direction-dependent role, it will be essential to determine whether 

such phosphorylation regulates friction directly (by changing the tail’s microtubule 

affinity) or indirectly (by changing how its other domains, or other proteins, interact with 
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microtubules), and whether and how it affects k-fiber microtubule dynamics. Further, it 

will be essential to map which proteins are important for active force generation at the 

interface with depolymerizing microtubules. 

Our work indicates that Hec1 tail phosphorylation regulates the mechanics of the 

mammalian kinetochore-microtubule interface in a direction-dependent manner, 

revealing a new level of regulation. Hec1 tail phosphorylation may impact mechanics 

and regulate microtubule dynamics in both directions in vitro when it is the only coupler 

[70], but only impact them in polymerization in vivo due to the presence of – and load-

sharing by – other microtubule binding proteins in vivo. Consistent with this idea, the 

Ndc80 tail is nonessential for movement in either direction in budding yeast [71,72], 

likely because both Ndc80 and the Dam1 complexes bind microtubules [73,74] and 

provide friction during polymerization, and Dam1 is the main coupler during 

depolymerization [71]. Functional homologues to Dam1 are being proposed in other 

eukaryotes [75,76], and the assay we develop here should be helpful in dissecting the 

mechanical role of these and other proteins in the active and passive force-generating 

microtubule interfaces of the mammalian kinetochore. Probing the relative importance of 

different kinetochore couplers at both interfaces will be critical to understanding the 

mechanical diversity of kinetochore proteins and functions across systems.  
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FIGURES AND FIGURE LEGENDS 
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Figure 2.1 Hec1 tail phosphorylation regulates the magnitude and timescale of the 
mammalian kinetochore-microtubule interface’s response to force.  
 
A) Assay to sever a k-fiber using laser ablation (red X) to induce a dynein-based 
poleward pulling force on a specific kinetochore pair to probe the back kinetochore’s 
movement on polymerizing microtubules in response to force.   
 
B-D) Timelapse showing representative response of PtK2 (B) Hec1-WT-EGFP, (C) 
Hec1-9A-EGFP and (D) Hec1-9D-EGFP (each in Hec1 RNAi background – see also 
Fig. S1) kinetochore pairs to k-fiber laser ablation. First frame after ablation set to 0:00.  
 
E-G) Mean positions of Hec1-WT, Hec1-9A, and Hec1-9D (E) back and (F) front 
kinetochores and (G) K-K distance before and after laser ablation. Kinetochore position 
is shown normalized to its pre-ablation position. Traces are mean±SEM and are offset 
vertically for clarity in (E,F).  
 
H) Velocity of the front and back kinetochores (from E,F) relative to the ablation-
proximal spindle pole after the directional switch to poleward motion in response to 
ablation, until each kinetochore returned to motion away from that pole (* for p<0.05, 
n.s. not significant, Student’s T-test).  
 
I) Distance traveled by the back kinetochore over the first 30s of poleward motion after 
ablation (* for p<0.05, Student’s T-test). See also Figure S2.1. 
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Figure 2.2 Hec1 tail phosphorylation regulates friction on kinetochores bound to 
polymerizing microtubules.  
 
A) Assay to measure kinetochore velocity relative to the microtubule lattice, tracking 
kinetochores and poleward k-fiber microtubule flux by photomarking.  
 
B) Representative timelapses of Hec1-EGFP and PA-GFP-tubulin PtK2 cells in a Hec1 
RNAi background and C) kymograph of poleward microtubule flux (dotted line) 
measured by photoactivation. Time 0:00 corresponds to photoactivation. The distance 
between the photomark and the kinetochore (ruler) provides velocity relative to the 
microtubule lattice.  
 
D) Microtubule flux rate (mean±SEM, * for p<0.05, Student’s T-test) in cells with Hec1-
WT, Hec1-9A, or Hec1-9D kinetochores (n= number of k-fibers).  
 
E) Histogram of kinetochore velocity relative to the microtubule lattice (** for p<0.01, 
Student’s T-test). Hec1-9D kinetochore oscillations were too variable to quantify (see 
Supplement).  
 
F) Spindle length (mean±SEM, n.s. for not significant, p=0.76 one-way ANOVA) in cells 
with Hec1-WT, Hec1-9A, or Hec1-9D kinetochores (n= number of cells).  
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Figure 2.3 Hec1 tail phosphorylation does not disrupt the mammalian 
kinetochore’s ability to couple to depolymerizing microtubules.  
A) Assay to decouple sister kinetochores using laser ablation (red X) of one sister 
kinetochore to probe the remaining sister’s ability to track depolymerizing microtubules.  
 
B) Timelapse of Hec1-WT-EGFP, Hec1-9A-EGP, or Hec1-9D-EGFP and GFP-tubulin in 
PtK2 cells before and after kinetochore ablation.  
 
C) Response of kinetochores to sister ablation, colored by pre-ablation direction (n= 
number of kinetochores).  
 
D) Kinetochore velocity relative to pole before and after its direction switch following 
sister ablation. (*** for p<0.001, Student’s T-test, n.s. for not significant).  
 
E) Responses of kinetochores to sister ablation (n = number of kinetochores).  
 
F) Kinetochore velocity after switching to poleward motion (depolymerization) due to 
ablation of sister. Kinetochore velocities relative to the pole (left) or to the microtubule 
lattice (right, adjusted for differences in flux from Fig. 2.2) (same dataset as (D), n.s. for 
not significant, Student’s T-test).  
 
G) Example traces and (H) mean delay of kinetochores switching direction after sister 
ablation (n.s. for not significant, Student’s T-test).  
 
I) Summary of the role of Hec1 phosphorylation in regulating kinetochore velocity under 
different mechanical states. Kinetochore speeds are replotted from the indicated figures 
(Fig. 2.1H values are adjusted for differences in flux from Fig. 2.2).  
 
J) Cartoon summarizing the mechanical role of Hec1 tail phosphorylation: it regulates 
velocity in polymerization  (top, cyan) but does not disrupt coupling in depolymerization 
(bottom, yellow). For simplicity, numbers of microtubules and Hec1 molecules are 
diagrammed as constant across conditions.  
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Figure S2.1 Validation of Hec1 depletion and rescue, related to Figure 2.1 

A) Quantification of Hec1-GFP intensity in live cells. Cells measured here correspond to 
those analyzed in Figure 1. Each circle shows the mean and standard deviation for the 
fluorescence intensity of kinetochores measured in each cell for a 10x10-pixel box 
around kinetochores in focus in an individual cell in the 10 frames before laser ablation. 
Data represent average kinetochore intensity (4-8 kinetochores per cell) for the number 
of cells indicated per condition (n.s. not significant by Student’s T test)  
 
B) Immunoblot of mock-transfected and Hec1 siRNA-transfected PtK2 cell lysates 
stained for Hec1 and tubulin showing knockdown of endogenous Hec1 in PtK2 cells by 
RNAi (two replicates shown). C. Immunofluorescence images of mock-transfected and 
Hec1 siRNA-transfected PtK2 cells, stained with antibodies to Hec1. Chromosomes are 
stained with Hoechst, microtubules stained with antibodies against tubulin, and 
kinetochores labeled with anti-centromere antibodies (CREST).   
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Table 2.1 Role of Hec1 tail phosphorylation in regulating the mechanics of the 
mammalian kinetochore-microtubule interface 
Data are presented as mean±SEM. See also Figures 2.1-3. n.a. for not applicable. n.s. 
for not significant. 
 
a p<0.05 used as threshold for statistical significance using two tailed Student’s T-Test. 
The abbreviations in the T-test column indicate which of the condition pairs are 
significantly different (e.g. WT,9D * indicates a significant difference between Hec1-WT 
and Hec1-9D). 
 
b

 There is no meaningful maximum K-K distance after ablation for Hec1-9D due to the 
variability of traces and lack of overshoot above baseline K-K distance from before 
ablation. 
 
c We made these calculations only on the subset of the data collected using 
photoactivation (Hec1-WT, n=42 and Hec1-9A n=34 kinetochores) since it allowed 
longer tracking of oscillations. We did not measure kinetochore velocities in Hec1-9D 
spindles since we were not able to track photomarks for long enough of the kinetochore 
oscillation cycle. 
 
d

 To adjust velocities to be relative to the microtubule lattice, we assumed poleward flux 
was unchanged from metaphase measurements (Fig. 2.2). 
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Table 2.1 

Assay Measurement 
Experimental Condition  

 Hec1-WT Hec1-9A Hec1-9D T-testa 
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Number of kinetochores (cells) 13 (4) 17 (8) 10 (7)  

K-K distance before ablation 
(µm) 2.0 ± 0.1 2.5 ± 0.1 1.4 ± 0.1 

WT,9A* 
WT,9D* 
9A,9D* 

Time at max K-K distance after 
ablation (s) 95 ± 7 47 ± 5 n.a.b WT,9A* 

Front kinetochore speed during 
poleward movement (µm/min) 1.7 ± 0.3 1.6 ± 0.2 1.8 ± 0.2 n.s. 

Distance back kinetochore 
moves during first 30 s of 
dynein pulling (µm) 

0.7 ± 0.1 0.4 ± 0.1 1.0 ± 0.2 WT,9A* 
9A,9D* 

Back kinetochore speed during 
poleward movement (µm/min) 0.9 ± 0.1 0.6 ± 0.1 1.7 ± 0.4 

WT,9A* 
WT,9D* 
9D,9A* 
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Number of kinetochores (cells) 57 (29) 60 (24) 27 (8)  

Poleward microtubule flux 
(µm/min) 

0. 65 ± 
0.05 0.50 ± 0.03 0.73 ± 

0.07 
WT,9A* 
9D,9A*  

Kinetochore velocity with 
respect to microtubule lattice 
(µm/min) 

0.76 ± 
0.04c 

0.51 ± 
0.03c n.a.c WT,9A* 

Kinetochore velocity > 0 
(towards plus-end) with respect 
to microtubule lattice (µm/min) 

1.25 ± 
0.03c 

0.83 ± 
0.03c n.a.c WT,9A* 
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Number of kinetochores (cells) 17 (14) 21 (12) 18 (13)  

K-K distance before ablation 
(µm) 2.3 ± 0.1 2.6 ± 0.1 1.7 ± 0.1 

WT,9A* 
WT,9D* 
9A,9D* 

Poleward kinetochore velocity 
after sister ablation (µm/min) 2.0 ± 0.2 2.1 ± 0.2 2.3 ± 0.2 n.s. 

Poleward kinetochore velocity 
relative to microtubule lattice 
after sister ablation (µm/min)d 

1.5 ± 0.2 1.4 ± 0.2 1.6 ± 0.2  n.s. 

Time between front sister 
ablation and back kinetochore 
switch (s) 

5 ± 3 2 ± 2 4 ± 2 n.s. 
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MATERIALS AND METHODS 

 

Contact for Reagent and Resource Sharing 

 

Further information and requests for resources and reagents should be directed to and 

will be fulfilled by the Lead Contact, Sophie Dumont (sophie.dumont@ucsf.edu). 

 

Experimental Model and Subject Details 

 

PtK2 cells (gift from T. Mitchison, Harvard University) were cultured in MEM (Invitrogen) 

supplemented with sodium pyruvate (Invitrogen), nonessential amino acids (Invitrogen), 

penicillin/streptomycin, and 10% qualified and heat-inactivated fetal bovine serum 

(Invitrogen) and maintained at 37°C and 5% CO2. 

 

Method Details 

 

Cell culture and transfection of DNA and siRNA 

 

For imaging, PtK2 cells were plated on glass-bottom 35mm dishes coated with poly-D-

lysine (MatTek Corporation) and imaged in phenol red free MEM (Invitrogen) 

supplemented as above. PtK2 cells were transfected with WT-Hec1-EGFP, 9A-Hec1-

EGFP, or 9D-Hec1-EGFP (human Hec1 phosphomutants in pEGFP-N1 vector; gifts 

from J. DeLuca, Colorado State University, CO) or pEGFP-tubulin (Clonetech) or PA-



 31 

GFP-tubulin (gift A. Khodjakov, Wadsworth Center). siRNAs directed to PtK Hec1 (5’-

AATGAGCCGAATCGTCTAATA-3’) were purchased from Invitrogen or Sigma-Aldrich, 

and do not target human Hec1. Cells were transfected with DNA using FuGENE6 

(Roche) or ViaFect (Promega) for 24 h before subsequent transfection with siRNA using 

Oligofectamine (Invitrogen) as described elsewhere (Guimaraes et al 2008). Cells were 

assayed 48 h after siRNA transfection. Control cells with Hec1 siRNA and no rescue 

construct robustly displayed phenotypes consistent with Hec1 knockdown (Fig. S2.1). 

Successful transfection and expression of Hec1 constructs was assessed by visualizing 

EGFP at kinetochores and, for mutants, by confirming that each cell examined had the 

expected K-K distance change. Cells expressing Hec1-9D-EGFP in a Hec1 RNAi 

background had widely varied spindle architecture and we included in our analysis cells 

that had visible EGFP expression and low K-K distance indicative of rescue but that still 

were able to form metaphase spindles and oscillate – which may include cells that still 

have a residual amount of endogenous Hec1 remaining. In Figure 2.1, 6/10 of the Hec1-

9D-EGFP cells included tubulin labeled with 100nM SiR-tubulin dye (Spirochrome) and 

10µM verapamil (Sigma-Aldrich) after incubation for 1h.  

 

Immunofluorescence and immunoblotting 

 

To validate knockdown (Fig. S2.1), mock control and siHec1 treated cells were fixed 48 

h after siRNA transfection in 95% methanol with 5 mM EGTA for 3 min. The following 

antibodies and dyes were used: mouse Hec1-9G3 (1:1000, Novus), human anti-

centromere protein (CREST,1:25, Antibodies Inc.), rat anti-tubulin (1:500, AbD Serotec), 
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fluorescent secondary antibodies (1:500, Invitrogen), and Hoechst 33342 (1:1000, 

Sigma-Aldrich).  For immunoblotting to validate knockdown, PtK2 cells were lysed 48 h 

after siRNA transfection. The following antibodies and dyes were used: mouse anti-

tubulin DM1α (1:5,000, Sigma) and anti-Hec1 9G3 (1:1,000, Novus), goat anti-mouse 

IgG-HRP (1:10,000, Santa Cruz Biotechnology, Inc.). Blots were exposed with 

SuperSignal West Pico Substrate (Thermo Scientific) and imaged with a Bio-Rad 

ChemiDoc XRS+ system. 

 

Imaging and laser ablation 

 

Live cells were imaged using a spinning disk confocal inverted microscope (Eclipse Ti-

E; Nikon) described elsewhere [57] operated by MetaMorph (7.7.8.0; Molecular 

Devices). Cells were imaged with phase contrast (200-400ms exposure) and 488nm 

laser light (75-100ms exposure) through a 100x 1.45 Ph3 oil objective and 1.5x lens 

every 2-10s, in a stage-top incubation chamber (Tokai Hit) maintained at 30°C and 5% 

CO2. Laser ablation (30-40 3-ns pulses at 20Hz) with 514 or 551nm light was performed 

using the MicroPoint Laser System (Photonic Instruments). For laser ablation 

experiments, images were acquired more slowly prior to ablation and then acquired 

more rapidly after ablation (typically 8s prior and 4s after ablation, except the latter was 

2s for Fig. 2.3G). Successful k-fiber ablation was verified by loss of tension across the 

centromere (Fig. 2.1). Successful kinetochore ablation was verified by change in 

movement of the remaining sister kinetochore and depolymerization of the k-fiber 

associated with the ablated kinetochore (Fig. 2.3). Photomarking was performed using 
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the MicroPoint to deliver several pulses of either 514nm light to bleach GFP-tubulin 

(acquiring every 2-3s for at least 30s) or 405nm light to activate PA-GFP-tubulin 

(acquiring every 10s for at least 60s) (Fig. 2.2B,C). Fixed cells (Fig. S2.1 only) were 

imaged with exposure times of 5-200ms with DAPI, GFP, TRITC, and CY5 filter cubes 

and a mercury arc lamp on a Zeiss AxioPlan2 epifluorescence microscope  (operated 

by MicroManager 1.4.13) with a 100x 1.4 DIC oil objective and a QIClick camera 

(QImaging).  

 

Quantification and Statistical Analysis 

 

Kinetochores, photomarks, ablation sites, and spindle poles were manually tracked from 

overlaid phase-contrast time-lapse and Hec1-EGFP (sometimes with GFP-tubulin or 

PA-GFP-tubulin) movies using a home-written MatLab (R2013b Version 8.2) program. 

Spindle poles were identified using the center of the GFP tubulin enriched region at the 

ends of the spindle. When no tubulin was co-transfected (Fig. 2.1), approximate spindle 

pole position was determined using phase contrast images (where the spindle can be 

identified since it excludes mitochondria). We manually selected the inflection points in 

kinetochore position as the start and end points of movement in one direction using 

plots of kinetochore position relative to the pole over time. We then calculated 

kinetochore velocity by fitting to a linear function (Fig. 2.1H-I; Fig. 2.3D,F; Table 2.1). 

We report (Fig. 2.1I) the distance traveled by kinetochores during the first 30 s after the 

start of dynein-induced poleward motion of a kinetochore pair, to avoid variability 

coming from differences in the duration of the poleward transport response. Poleward 



 34 

microtubule flux (Fig. 2.2D) was calculated by measuring the position of the edge of the 

photomark closest to the kinetochore over time relative to the initial position (for PA-

GFP-tubulin) for at least ~60s, or by measuring the position of the bleach mark over 

time relative to the pole (for GFP-tubulin) for as long as possible and in both cases 

performing a linear regression.  Kinetochore velocity with respect to the microtubule 

lattice (k-fiber polymerization velocity) was calculated by measuring the distance 

between kinetochore and photomark on the same k-fiber for each pair of timepoints to 

get an instantaneous velocity that were pooled from different cells (Fig. 2.2E). 

Kinetochore velocities relative to the microtubule lattice after ablation were calculated by 

subtracting the mean value of poleward microtubule flux (Fig. 2.2B) from the measured 

velocity (Fig. 2.3F,I; Table 2.1). Time to kinetochore switching after ablation (Fig. 2.3H) 

was measured from the first frame after ablation to the frame when the kinetochore 

switched direction.  

 

Data are reported as mean±SEM and for average traces (Fig. 2.1) data were collected 

into 8s wide bins before averaging. Sample sizes, statistical tests and p-values are 

indicated in the text, figures and figure legends. One-way ANOVA were performed using 

StatPlus (Version v6; AnalystSoft) and Two-tailed Student’s T-tests were performed 

using MatLab. 
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CHAPTER THREE 

INDIVIDUAL KINETOCHORE-FIBERS LOCALLY DISSIPATE FORCE TO MAINTAIN 

ROBUST MAMMALIAN SPINDLE STRUCTURE 
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ABSTRACT  

 

At cell division, the mammalian kinetochore binds many spindle microtubules that make 

up the kinetochore-fiber. To segregate chromosomes, the kinetochore-fiber must be 

dynamic and generate and respond to force. Yet, how it remodels under force remains 

poorly understood. Kinetochore-fibers cannot be reconstituted in vitro, and exerting 

controlled forces in vivo remains challenging. Here, we use microneedles to pull on 

mammalian kinetochore-fibers and probe how sustained force regulates their dynamics 

and structure. We show that force lengthens kinetochore-fibers by persistently favoring 

plus-end polymerization, not by increasing polymerization rate. We demonstrate that 

force suppresses depolymerization at both plus- and minus-ends, rather than sliding 

microtubules within the kinetochore-fiber. Finally, we observe kinetochore-fibers break 

but not detach from kinetochores or poles. Together, this work suggests an engineering 

principle for spindle structural homeostasis: different physical mechanisms of local force 

dissipation by the k-fiber limit force transmission to preserve robust spindle structure. 

These findings may inform how other dynamic, force-generating cellular machines 

achieve mechanical robustness. 

 

INTRODUCTION 

 

The spindle segregates chromosomes at cell division, and must do so accurately and 

robustly for proper cell and tissue function. In mammalian spindles, bundles of 15-25 

microtubules called kinetochore-fibers (k-fibers) span from the kinetochore at their plus-
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ends to the spindle pole at their minus-ends [3,77,78]. K-fibers are dynamic at both 

ends [59,79], and we now have a wealth of information on the molecular regulation of 

their dynamics [7,38,50]. To move chromosomes, k-fibers generate force through plus-

end depolymerization [22,80,81]. Yet, while we are beginning to understand how the 

mammalian k-fiber generates force [35,46], we know much less about how force from 

the k-fiber and surrounding spindle in turn affects k-fiber structure and dynamics. 

Defining this relationship between k-fibers and their mechanical environment is central 

to understanding spindle structural homeostasis and function. 

Force affects microtubule dynamics and structure in a variety of contexts [82]. 

From in vitro experiments coupling single microtubules to yeast kinetochore particles, 

we know that force can regulate all four parameters of microtubule dynamic instability 

[40,72]: it increases polymerization rates while slowing depolymerization, and favors 

rescue over catastrophe. From in vivo experiments, we know that force exerted by the 

cell correlates with changes in k-fiber dynamics [25,34,48,83,84], and that reducing and 

increasing force can bias k-fiber dynamics in different systems [47,61,64,65]. However, 

the feedback between force, structure and dynamics in the mammalian k-fiber remains 

poorly understood. For example, we do not know which dynamic instability parameters 

are regulated by force, or at which microtubule end. Similarly, we do not know how 

microtubules within the k-fiber remodel their structure (e.g. slide or break) under force, 

or the physical limits of the connections between k-fibers and the spindle. These 

questions are at the heart of understanding how the spindle can maintain its structure 

given its dynamic, force-generating parts [85,86]. Addressing these questions requires 

the ability to apply force on k-fibers with spatial and temporal control, while concurrently 
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imaging their dynamics. Yet, exerting controlled forces in dividing mammalian cells 

remains a challenge, and mammalian spindles and k-fibers cannot currently be 

reconstituted in vitro. Chemical and genetic perturbations can change forces on k-fibers 

in vivo, but these alter microtubule structure or dynamics, either directly or indirectly 

through regulatory proteins [87–89]. Thus, direct mechanical approaches are needed 

inside mammalian cells.  

Here, we use glass microneedles to directly exert force on individual k-fibers 

inside mammalian cells and determine how their structure and dynamics remodel under 

sustained force. Inspired by experiments in insect spermatocytes [64,90,91], we sought 

to adapt microneedle manipulation to pull on k-fibers in mitotic mammalian cells for 

many minutes while monitoring their dynamics with fluorescence imaging. We show that 

forces applied for minutes regulate k-fiber dynamics at both ends, causing k-fiber 

lengthening, but do not cause sliding of the microtubules within them. Further, we 

demonstrate that sustained forces can break k-fibers rather than detach them from 

kinetochores or poles. Thus, k-fibers respond as a coordinated mechanical unit – 

remodeling at different sites to locally dissipate force, while preserving the connections 

between chromosomes and the spindle. Together, these findings suggest local force 

dissipation as an engineering principle for the dynamic spindle to maintain its structure 

and function under force and for other cellular machines to do the same.  
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RESULTS  

 

Microneedle manipulation of mammalian spindles enables sustained force application 

on k-fibers with spatial and temporal control 

 

To determine how mammalian k-fibers remodel under force, we sought an approach to 

apply forces with spatial and temporal control for sustained periods, compatible with cell 

health and live imaging of structure and dynamics. We adapted microneedle 

manipulation to pull on individual k-fibers in mammalian cells (Fig. 3.1A) and developed 

methods to do so gently enough to exert force for several minutes [92]. We used PtK 

cells as these are large and flat, have few chromosomes which allows us to pull on 

individual k-fibers, and are molecularly tractable [93]. We used a micromanipulator and 

a fluorescently labeled glass microneedle to contact a target metaphase PtK cell. We 

used microneedles with a diameter of 1.2 ± 0.1 µm in the z-plane of the k-fiber. Pulling 

on an outermost k-fiber in the spindle for several minutes, we could reproducibly exert 

controlled forces, moving the microneedle with specific velocities over any given 

duration (Fig. 3.1B) and direction. The microneedle only locally deformed the cell 

membrane and spindle and remained outside of the cell, allowing precise, local control 

of where force is applied (Fig. 3.1C) [92]. Upon careful removal of the microneedle, cells 

could enter anaphase (Fig. 3.1D). These observations are consistent with cell health 

maintenance during these sustained manipulations. Thus, we can use microneedle 

manipulation to exert forces with spatial and temporal control over minutes on a 
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mammalian k-fiber, and thereby probe how force regulates k-fiber structure and 

dynamics. 

 

Individual mammalian k-fibers switch to persistent lengthening in response to sustained 

applied force  

 

To probe the response of k-fibers to force, we placed the microneedle along the k-fiber, 

within a few microns of the outermost sister kinetochore pair (Fig. 3.2A,B). We moved 

the microneedle at a speed of 5.2 ± 0.2 µm/min for 3.1 ± 0.3 min (Fig. 3.1B), 

perpendicular to the spindle’s long axis at the start of manipulation. We predicted that in 

response to force from the microneedle the spindle would either locally or globally 

deform (Fig. 3.2A). In response to this perturbation, the spindle translated and rotated, 

with faster microneedle speeds giving rise to faster spindle speeds (Fig. 3.2C,D). Thus 

we see global movement of the spindle in response to force. Yet, in these same 

spindles we also observed that k-fibers lengthened, indicating that the spindle also 

locally responds to force (Fig. 3.2E). During the pull, the manipulated k-fiber bent and 

lengthened by 4.1 ± 0.8 µm; meanwhile, an unmanipulated k-fiber in the same spindle 

half lengthened significantly less over the same duration (net k-fiber growth 0.03 ± 0.32 

µm, Mann-Whitney U test, p = 6x10-5, Fig. 3.2F). Thus, force is dissipated locally by k-

fiber bending and lengthening, and globally by whole spindle movements.  

The manipulated k-fiber grew at 1.6 ± 0.3 µm/min, which was not significantly 

faster than its neighboring unmanipulated k-fiber during the growth phases of its 

oscillations (1.4 ± 0.1 µm/min, Mann-Whitney U test, p = 0.98, Fig. 3.2G). However, the 
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manipulated k-fiber persistently lengthened (Fig. 3.2E), with either undetectable or very 

transient shortening, for longer than typical metaphase oscillations [48,94]. There was 

no correlation between k-fiber growth rate and pulling speed (Fig. 3.2H), suggesting 

either that force was dissipated before reaching the k-fiber’s ends or that force does not 

regulate its maximum growth rate [21,36,65,95]. Further, the k-fiber growth rate did not 

vary with the proximity of the microneedle to the plus-end (Spearman R coefficient = 

0.08, p = 0.76, Fig. 3.2I), which we hypothesized would lead to more direct force 

transmission, consistent with force not regulating the k-fiber’s maximum growth rate. 

Together, these findings indicate that individual k-fibers remodel under sustained force 

for minutes by persistently lengthening. They also suggest that force inhibits their 

normal switching dynamics rather than substantially increasing their growth rate, which 

may serve as a protective mechanism to limit the rate of spindle deformations and 

thereby preserve spindle structure.  

 

Force on individual mammalian k-fibers suppresses depolymerization at both ends 

without altering plus-end polymerization rates or inducing microtubule sliding  

 

Metaphase mammalian k-fibers typically depolymerize at their minus-ends, and switch 

between polymerizing and depolymerizing at their plus-ends. Thus, force could lengthen 

k-fibers by increasing plus-end polymerization rates, by suppressing depolymerization 

at either end, by sliding microtubules within the k-fiber (Fig. 3.3A), or by a combination 

of these. To determine the physical mechanism of k-fiber lengthening under sustained 

force, we photomarked PA-GFP-tubulin on a k-fiber before micromanipulation and 
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tracked the photomark’s position and size within the k-fiber (co-labeled with SiR-tubulin) 

(Fig. 3.3B) over time. In unmanipulated cells, photomarks fluxed towards the pole at a 

constant rate that reports on depolymerization at the minus-end (Fig. 3.3C) [59]. Upon 

external force from the microneedle, the photomark to pole distance remained constant 

(Fig. 3.3D), while the photomark to plus-end distance increased (Fig. 3.3E). This 

response indicates that applied force suppresses microtubule depolymerization at k-

fiber minus-ends and that k-fibers lengthen by sustained polymerization at plus-ends.  

Mapping these findings to the previous experiment measuring k-fiber lengthening 

(Fig. 3.2E,G), in the subset of k-fibers that lengthened (15/18), the growth rate was 1.9 

± 0.4 µm/min, which is the rate of plus-end polymerization given that depolymerization 

at both ends is inhibited (Fig. 3.3D,E). This is similar to the plus-end polymerization rate 

of neighboring unmanipulated k-fibers during natural growth: lengthening at 1.4 ± 0.1 

µm/min (Fig. 3.2G) while depolymerizing at the minus-end at ~ 0.5 µm/min results in a 

polymerization rate of ~1.9 µm/min at plus-ends (Mann-Whitney U test, p = 0.55) [33]. 

This indicates that the applied force does not increase mammalian k-fiber plus-end 

polymerization rates.  

Notably, the average width of the photomark remained constant during 

manipulation (Fig. 3.3F,G), indicating the microtubules do not detectably slide within the 

bundle. Thus, the k-fiber behaves as a single coordinated mechanical unit, rather than 

as microtubules that independently respond to force. Together, our findings indicate that 

individual k-fibers lengthen under force by remodeling their ends, and not their bundle 

structure: force suppresses depolymerization locally at both plus- and minus-ends (Fig. 

3.3), leads to persistent plus-end polymerization at a force-independent rate (Fig. 3.2, 
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3.3), and does so with the k-fiber responding as a single mechanical unit (Fig. 3.3). 

Thus, force is dissipated locally at k-fiber ends. This may limit force transmission to the 

rest of the spindle, thereby preserving overall k-fiber and spindle architecture for proper 

chromosome segregation. 

 

The interfaces between mammalian k-fibers and the kinetochore and pole are more 

robust than k-fiber bundles under sustained force 

 

Finally, we asked how k-fiber structure and spindle connections changed over the ~5-7 

min lifetime of its microtubules [96–98], since this could set a timescale for their 

response to force. We hypothesized that as microtubules turn over the manipulated k-

fiber could, for example, detach from the spindle or break (Fig. 3.4A). We used 

microneedles to pull on k-fibers for several minutes. Over these sustained pulls, we 

never observed k-fiber detachment from the kinetochore or pole, indicating strong 

anchorage at those force-dissipating sites [64,99–102]. Instead, k-fibers bent, 

lengthened, and then occasionally broke, 3.7 ± 0.5 min after the start of pulling (Fig. 

3.4B). To probe the mechanism of this breakage, we examined k-fiber structure over 

time and the kinetics of breakage. K-fibers that broke sustained high curvature for many 

minutes before breaking (Fig. 3.4C), and reached a maximum curvature similar to those 

that did not (p = 0.25 Mann-Whitney U test, Fig. 3.4D). Further, k-fiber breakage kinetics 

appeared independent of the specific manner in which forces are exerted on the k-fiber: 

the time to breakage was similar when we moved the microneedle for a shorter time 

and held it in place, or pulled continuously for the entire duration of manipulation (Fig. 



 45 

3.1B, 3.4E). Together, these suggested that the breakage process occurred gradually 

over sustained force, rather than rapidly by reaching an acute mechanical limit of k-fiber 

bending [103–106]. A k-fiber damage process that is gradual would promote breakage 

in response to sustained but not transient forces, setting a limiting timescale for 

restoring spindle structural homeostasis. 

 A possible model for gradual damage of the k-fiber over minutes is loss of 

microtubules as they turn over and fail to replenish within the k-fiber. In addition to 

turnover, it is also possible that there are alterations to k-fiber microtubule structure that 

would lead to gradual damage. During these manipulations, we observe microtubule 

plus-ends that appear to ‘splay’ from the bundle near the needle in 80% of k-fibers 

before breakage (Fig 3.4B,F), and when we can track plus-ends after breakage, they fail 

to depolymerize (Fig 3.4G). This is in contrast to abruptly created k-fiber plus-ends 

which depolymerize within seconds [57,58,107] and suggests a change in local 

microtubule structure prior to breakage that stabilizes plus-ends at the breakage site 

[106,108–111]. Together, these findings show how mammalian k-fibers gradually 

respond to and dissipate sustained forces over their microtubule’s lifetime. They 

robustly remain attached at kinetochores, yet eventually they locally break in the middle 

of the bundle, thereby preserving connections of chromosomes to the spindle at the 

expense of non-essential direct connections to poles [57,58]. 
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DISCUSSION 

In mammals, chromosome segregation is powered by dynamic k-fibers that both 

generate and respond to force. Here, we use microneedle manipulation to directly probe 

how k-fiber dynamics and structure respond to sustained force (Fig. 3.1). We thereby 

define how the spindle’s longest-lived microtubule structure [96–98] remodels under 

force, which is key for understanding spindle structural homeostasis. We find that 

individual k-fibers respond to and dissipate sustained force by locally turning off 

microtubule depolymerization at both plus- and minus-ends (Fig. 3.2, 3.3), and 

eventually breaking on the timescale of their microtubule turnover (Fig. 3.4). They do so 

without increasing their rate of plus-end polymerization (Fig. 3.2, 3.3), without sliding 

their microtubules within the k-fiber (Fig. 3.2, 3.3) and without detaching from 

kinetochores or poles (Fig. 3.4). Thus, how the k-fiber responds – and doesn’t respond 

– to force allows it to act as a single mechanical unit that can maintain its connections to 

chromosomes and preserve global spindle structure. The ability to directly exert force 

on the mammalian spindle is key to this work as it allowed us to clearly probe the 

feedback between force, structure, and dynamics in the spindle [86]. Together, these 

findings suggest different physical mechanisms of local force dissipation as an 

engineering principle for the spindle to maintain its structure and function under 

sustained forces (Fig. 3.5). More broadly, this study provides a framework for 

understanding how the spindle remodels under force during chromosome segregation.   

We show that mammalian k-fiber plus-ends persistently polymerize at normal 

rates in response to applied force (Fig. 3.2, 3.3). In contrast, microtubules attached to 

yeast kinetochore particles or subcomplexes in vitro polymerize faster at higher force, in 
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addition to suppressing catastrophe and favoring rescue under force [40,112]. In newt 

cells, force induces persistent k-fiber lengthening at normal k-fiber growth rates [65], 

and our findings suggest that this may occur through regulation of dynamics at both 

ends. The different force-velocity relationships at kinetochore-microtubule plus-ends in 

mammals and yeast kinetochore particles could, for example, stem from differences in 

applied forces, kinetochore architecture [113], or additional regulation in cells. The 

molecular basis of potential “governors” of k-fiber plus-end polymerization velocity has 

been a long standing question [21,33,36], and our findings suggest that in mammals this 

molecular “governor” is not mechanically regulated. Notably, force not regulating 

mammalian k-fiber polymerization velocity (Fig. 3.2, 3.3) could provide a protective 

upper limit to how fast the spindle can remodel. It also has implications for mechanical 

communication in the spindle, for example how force regulates kinetochore-microtubule 

attachments [52,114].  

We demonstrate that force not only regulates the dynamics of individual k-fibers’ 

plus-ends, but also of their minus-ends (Fig. 3.3). Thus, both k-fiber ends serve as sites 

of force dissipation, allowing forces exerted on k-fibers to be locally and robustly 

dissipated, thereby limiting disruption to the rest of the spindle. The fact that force 

regulates minus-end dynamics of single k-fibers indicates that their regulation occurs at 

the level of the individual k-fiber, and not globally as hypothesized when force was 

applied to the whole spindle [115,116]. Though we cannot exclude it, we did not detect 

force-induced polymerization at k-fiber minus-ends, and thus force dissipation also 

appears limited at minus-ends. The microneedle approach we present here, combined 

with perturbations of microtubule regulators at minus-ends [44,117], will be key in 
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defining the molecular basis of the regulation of k-fiber minus-end dynamics by force. 

Together, the response of individual k-fibers’ dynamics to force, at both ends, allows 

each k-fiber to locally isolate and dissipate applied force while retaining its internal 

organization and global spindle structure. Therefore k-fiber end dynamics mechanically 

buffer global spindle deformations from local forces to maintain structural homeostasis 

[42,43].  

On longer timescales, we find that the k-fiber breaks under force, without 

detaching from the kinetochore or pole (Fig. 3.4). This is surprising as force-induced 

detachments from kinetochores occur in vitro [40] and in meiotic insect cells [91,118–

120]. This difference could, for example, arise from variations in force application, or in 

the physical properties or architectures of their kinetochores [16,25,26,28]. Instead of 

detaching, the k-fiber breaks on a timescale similar to that of its microtubule lifetime, 

suggesting that the k-fiber’s lifetime may limit the long-term impact force can have over 

spindle structure. Our findings suggest a model of gradual k-fiber damage, and that 

sustained force may not only regulate biochemistry at the k-fiber’s ends, but also in its 

middle along the microtubule lattice (Fig. 3.4F,G). Local defects in the lattice can 

replenish GTP-tubulin, creating stable sites for microtubule repair or enzymatic activities 

that may alter the physical properties of microtubules [106,108–111]. Under sustained 

force, k-fiber attachments to chromosomes are prioritized over direct connections 

between chromosomes and poles, which are not necessary for segregation [57,58] and 

thus may not be key for function.  

Altogether, we show that mammalian spindles locally dissipate sustained force 

by remodeling k-fiber dynamics and structure through different physical mechanisms 
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over time (Fig. 3.5). In principle, this can allow the spindle to preserve robust 

connections to chromosomes, and maintain its structure under force throughout mitosis. 

Local dissipation of force limits its impact on the rest of the spindle, providing local 

isolation. In turn, the timescale of such dissipation limits the timescale of mechanical 

memory in the spindle. By regulating force dissipation, the spindle could set the impact 

force has on its structure over time to allow it to respond to different mechanical cues 

and perform different mechanical functions. Looking forward, it will be of interest to map 

how spindles with different k-fiber dynamics and structures across species dissipate and 

transmit force, and thereby preserve their structural homeostasis [64,121–124]. Finally, 

we note that the local force dissipation at multiple sites we observe in the spindle is a 

simple engineering principle by which a cellular structure may be mechanically robust, 

analogous to how structural engineers design sites of local force dissipation to make 

buildings and bridges robust to external forces. 
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FIGURES AND FIGURE LEGENDS 

 

Figure 3.1. Microneedle manipulation of mammalian spindles enables sustained 
force application on k-fibers with spatial and temporal control. 
A) Cartoon representation of microneedle (yellow) placement (3D and cross-section) in 
a metaphase mammalian cell to exert sustained force on a k-fiber.  
 
B) Plot of linear microneedle displacement over time during manipulation in metaphase 
PtK cell (mean ± SEM, n = 18 cells). This approach allows smooth, reproducible pulls 
on single mammalian k-fibers.  
 
C) Representative z-stack reconstruction shows geometry of microneedle contact with 
the cell and metaphase spindle (GFP-tubulin, magenta) as diagrammed in (A). The 
plasma membrane (CellMask Orange dye, cyan) locally deforms around the 
microneedle (Alexa-647, yellow) but does not alter whole cell shape or puncture the cell. 
Scale bar = 4 µm. 
 
D) Representative timelapse images of microneedle (Alexa-555, yellow) manipulation to 
exert force on a k-fiber: it displaces the metaphase spindle (Cdc20-YFP, green; SiR-
tubulin, magenta) and deforms the pulled k-fiber. Manipulated spindles typically 
progress to anaphase (here at 10:04). Scale bar = 4 µm. 
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Figure 3.2. Individual mammalian k-fibers switch to persistent lengthening i 
response to sustained applied force.  
 
A) Assay to locally exert force on an outer k-fiber using a microneedle (yellow circle) to 
probe its response to force (yellow arrow). Possible outcomes include global movement 
of the whole spindle and local deformation of the k-fiber, reflecting global and local 
dissipation of applied force, respectively.  
 
B) Representative timelapse images of spindle and k-fiber (SiR-tubulin, white) 
movement and remodeling in response to sustained force from a microneedle (Alexa-
555, yellow) as in Fig. 3.1B. The whole spindle rotates and translates while the k-fiber 
proximal to the microneedle (white line, tracked) bends and lengthens compared to a 
control k-fiber (red line, tracked). Scale bar = 4 µm.  
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C) Maps of the tracked k-fiber shapes and positions for control and manipulated k-fibers 
from (B). Open circles indicate plus-end positions and filled circles indicate pole 
positions. The manipulated k-fiber (right) translates in the XY plane and bends and 
lengthens over time; the control k-fiber (left) similarly translates but does not lengthen. 
D) Speed of proximal pole (left) and plus-end (kinetochore, right) movement relative to 
the speed of microneedle movement within a half-spindle. Half-spindle movement is 
positively correlated with microneedle speed, indicating global dissipation of force (pole: 
Spearman R = 0.48, p = 0.04; plus-end: Spearman R = 0.72, p = 0.0007, n = 18 cells).  
 
E) K-fiber length as a function of time, normalized by subtracting the initial length at start 
of force application (t = 0) for k-fibers manipulated (right, black, n = 18 cells), in the 
middle of the half-spindle (middle, blue, n = 13 cells), and on the opposite side of the 
half-spindle (left, red, n = 18 cells). The micromanipulated k-fiber lengthens persistently 
during force application while the other k-fibers grow and shrink but don’t systematically 
change length.  
 
F) Average k-fiber lengths at start and end of force application as a function of k-fiber 
position in the half-spindle. The manipulated k-fiber (black, n = 18 cells) significantly 
increased in length (p = 0.0002, Wilcoxon signed-rank test) while the middle and outer 
k-fiber lengths remain unchanged (p = 0.73, n = 13 cells and p = 0.35, n = 18 cells, 
Wilcoxon signed-rank test). Plot shows mean ± SEM.  
 
G) Plot of average k-fiber growth rate for manipulated k-fibers (black, n = 18 cells) 
compared to middle k-fibers (blue, n = 14 cells) or outer k-fibers (red, n = 18 cells) in the 
same half-spindle. Only the manipulated k-fiber lengthened significantly during force 
application while neighboring k-fibers continued oscillating between lengthening and 
shortening phases (manipulated k-fiber versus middle k-fiber ‘net’, p = 1.6x10-5, 
manipulated k-fiber versus outer k-fiber ‘net’, p = 1.4e05, middle k-fiber ‘net’ compared 
to outer k-fiber, (p = 0.3, Mann-Whitney U test). The growth rate of the manipulated k-
fiber was not significantly different than the growth rate of the middle k-fiber during just 
the growth phases of its oscillations (blue ‘growth’, p = 0.98, Mann-Whitney U test). Plot 
shows mean ± SEM.  
 
H) Growth rate of the manipulated k-fiber as a function of the speed of microneedle 
movement. The growth rate of the manipulated k-fiber did not correlate with the speed 
of microneedle movement (Spearman R = 0.21, p = 0.46, n = 18 cells).  
 
I) Growth rate of the manipulated k-fiber as a function of distance between the 
microneedle center and the k-fiber plus-end. The growth rate of the manipulated k-fiber 
does not correlate with the proximity of the microneedle to the plus-end (Spearman R = 
0.04, p = 0.88, n = 18 cells).  
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Figure 3.3. Force on individual mammalian k-fibers suppresses depolymerization 
at both ends without altering plus-end polymerization rates or inducing 
microtubule sliding.  
 
A) Assay to determine the physical mechanism of k-fiber lengthening under force by 
tracking position of a photomark on the k-fiber during microneedle manipulation. 
Possible outcomes are shown, not mutually exclusive: the photomark could remain fixed 
relative to the pole indicating a suppression of minus-end depolymerization (left, blue 
‘X’), the position of the photomark to the kinetochore could increase continuously, 
indicating a suppression of plus-end depolymerization or increase in plus-end 
polymerization rate (middle, blue ‘X’ or arrow), or the photomark could remain in a fixed 
position but widen, indicating sliding of microtubules within the k-fiber (right, blue ‘X’).  
 
B) Representative timelapse images of photomark (PA-GFP tubulin, white) during 
microneedle (Alexa-555, yellow) manipulation of a k-fiber (SiR-tubulin, magenta). The 
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distance between the photomark and the pole remains constant (orange line) while the 
distance between the photomark and plus-end increases (red line). Scale bar = 4 µm.  
 
C) Plot of the photomark to the pole distance change over time due to flux of 
microtubules in unmanipulated cells, as a baseline (n = 4 cells).  
 
D) Plot of the photomark to pole distance change during microneedle manipulation, 
showing that photomark movement poleward due to microtubule depolymerization is 
suppressed (n = 4 cells).  
 
E) Plot of the photomark to plus-end position distance change during microneedle 
manipulation, showing that k-fibers persistently polymerize at their plus-ends under 
force (n = 4 cells).  
 
F) Representative example of photomark intensity linescans over time during 
manipulation, from same cell as (B).  
 
G) Change in full-width at half-max photomark intensity at each timepoint during 
microneedle manipulation, showing that photomarks do not widen under force, and thus 
that there is no detectable microtubule sliding within the k-fiber (n = 4 cells).  
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Figure 3.4. The interfaces between mammalian k-fibers and the kinetochore and 
pole are more robust than k-fiber bundles under sustained force.  
 
A) Assay to probe how the k-fiber response to sustained force for minutes. Three 
example outcomes of force application (yellow arrow) are shown: the k-fiber could 
detach (purple arrow) from the kinetochore (left), the k-fiber could detach (purple arrow) 
from the pole (middle), or the k-fiber could remain attached at its ends but break (purple 
arrows) in its center (right).  
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B) Representative timelapse images of k-fiber (GFP-tubulin, white) bending, 
lengthening and breaking under sustained force. Before the k-fiber breaks, microtubules 
appear (insets) on the outside of the deformed k-fiber near the area of high curvature 
next to the microneedle (Alexa-647, yellow). The break creates new microtubule bundle 
plus-ends (purple arrowheads). Scale bar = 4 µm.  
 
C) Example map of local curvature (k) along a k-fiber bundle during sustained 
microneedle manipulation. As the k-fiber bends over time, high curvature (dark red) 
increases near the microneedle and persists for many minutes before breakage occurs 
(3.5 min). Open circles indicate plus-end positions and filled circles indicate pole 
positions.  
 
D) Maximum curvature along the k-fiber in the last tracked timepoint before breakage in 
cells with breakage events (purple, n = 6 cells) or at the end of the manipulation for cells 
with no breakage (black, n = 11 cells, plot shows mean ± SEM, p = 0.37, Mann-Whitney 
U test).  
 
E) Cartoon of two different micromanipulation assays that lead to k-fiber breakage: (top, 
purple) microneedle is moved continuously at 5.2 ± 0.2 µm/min for 3.1 ± 0.3 minutes, 
(bottom, green) microneedle is moved at 4.5 ± 0.7 µm/min for 1.7 ± 0.2 min and then 
held in place until breakage. Plot showing no significant difference in the time at 
breakage in each assay (plot shows mean ± SEM, n = 7 cells and 4 cells, p = 0.15, 
Mann-Whitney U test).  
 
F) Plot of the average time to a splaying event (where newly visible microtubules appear 
near the area of high curvature) and average time to breakage for the subset of cells in 
which both events occurred. Splaying events occurred significantly before breakage 
events (plot shows mean ± SEM, n = 9 cells, p = 0.007, Wilcoxon signed-rank test).  
 
G) Example timelapse images of breakage event in which the newly created bundle 
plus-ends (lower purple arrow) are highly stable and persist for minutes after breakage. 
This example cell is the same as shown in Fig. 3.3B but here displaying the full 
response including breakage.  
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Figure 3.5. A model for local force dissipation by individual k-fibers to maintain 
robust mammalian spindle structure.  
 
Using micromanipulation to apply sustained forces (yellow circle, arrow) on individual 
mammalian k-fibers reveals that they locally dissipate force (red circles) using different 
physical mechanisms over different timescales (blue ramp, dashed lines indicate 
microtubule turnover) to robustly preserve global spindle structure (gray box). Key to 
this model is how k-fibers both remodel under and resist sustained force. K-fibers 
remodel and locally dissipate force: they bend (second panel), lengthen through 
suppressing depolymerization at their plus- and minus-ends (third panel, small black 
‘off’ arrows with red ‘X’), and gradually break (fourth panel). In turn, k-fibers also resist 
force to preserve spindle structure: they do not increase their polymerization rate (small 
black ‘on’ arrows), slide their microtubules, or detach from kinetochores or poles under 
force. Note that for simplicity, we do not diagram whole spindle movements and only 
show individual microtubules for the manipulated k-fiber. Thus, local dissipation and 
isolation mechanisms together preserve mammalian spindle structure under sustained 
forces: the former limit how far and for how long forces can be transmitted across the 
spindle, while the latter limit the spindle’s deformation rate and preserve k-fiber and 
spindle structure and their connections. Together, this model suggests local force 
dissipation at multiple sites as an engineering principle for the dynamic spindle and 
other cellular machines to robustly maintain their structure and function under force.  
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MATERIALS AND METHODS 

Cell culture 

PtK2 cells were cultured in MEM (Invitrogen) supplemented with sodium pyruvate 

(Invitrogen), nonessential amino acids (Invitrogen), penicillin/streptomycin, and 10% 

qualified and heat-inactivated fetal bovine serum (Invitrogen) and maintained at 37°C 

and 5% CO2. PtK2 cells stably expressing human GFP-α-tubulin (gift from A. 

Khodjakov, Wadsworth Center) and PtK2 cells incubated with SiR-tubulin dye were both 

used. PtK2 cells stably expressing human EYFP-Cdc20 (gift from Jagesh Shah, 

Harvard Medical School) were used for Fig. 3.1 validation of microneedle manipulation. 

SiR-tubulin (Cytoskeleton, Inc.) at 100nM and 10µM verapamil (Cytoskeleton, Inc.) were 

incubated with cells for 45 min prior to imaging for cells not expressing GFP-tubulin. 

PtK1 cells stably expressing PA-GFP tubulin (gift from A. Khodjakov) were cultured in 

F12 media (Invitrogen) supplemented with penicillin/streptomycin, and 10% qualified 

and heat-inactivated fetal bovine serum (Invitrogen) and maintained at 37°C and 5% 

CO2. For photoactivation experiments, PtK1 PA-GFP tubulin cells were co-labeled with 

SiR-tubulin as above to mark overall spindle structure. Control cells labeled with SiR-

tubulin that did not undergo microneedle manipulation still exhibited chromosome 

oscillations and poleward microtubule flux at a rate of 0.40 ± 0.06 µm/min (Fig. 3.3C), 

indicating that this concentration and length of dye incubation did not suppress k-fiber 

microtubule dynamics in these cells. 
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Microscopy 

Live cells were imaged using an inverted microscope (Eclipse Ti-E; Nikon) with a 

spinning disk confocal (CSU-X1; Yokogawa Electric Corporation), head dichroic 

Semrock Di01-T405/488/568/647 for multicolor imaging, equipped with 405 nm (100 

mW), 488 nm (120mW), 561 nm (150mW), and 642 nm (100mW) diode lasers, 

emission filters ET455/50M, ET525/ 50M, ET630/75M and ET690/50M for multicolor 

imaging, and an iXon3 camera (Andor Technology) operated by MetaMorph (7.7.8.0; 

Molecular Devices). Cells were imaged with a 100x 1.45 Ph3 oil objective and 1.5x lens 

every 10 s acquiring 3 z-planes spaced 0.35 – 0.50 µm apart with a PZ-2000 z-piezo 

stage (ASI). Cells were imaged in a stage-top incubation chamber (Tokai Hit) with the 

top lid removed and maintained at 30°C. Cells were plated on glass-bottom 35mm 

dishes coated with poly-D-lysine (MatTek Corporation) and imaged in CO2 independent 

MEM (Invitrogen) supplemented as for PtK2 cell culture as described above. 

Photoactivation was performed using a MicroPoint pulsed laser system (Andor) to 

deliver several 3-ns 20Hz pulses of 405nm light to activate PA-GFP-tubulin (Fig. 3.3).  

 

Microneedle manipulation 

Microneedle manipulation was adapted for use in mammalian spindles for sustained 

periods of many minutes by optimizing needle dimensions, contact geometry, and 

speed of motion to minimize cellular damage. Further microneedle manipulation details 

can be found in [92]. 
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Preparation of microneedles: 

Glass capillaries with an inner and outer diameter of 1 mm and 0.58 mm respectively 

(1B100-4 and 1B100F-4, World Precision Instruments) were used to create 

microneedles using a pipette puller (P-87, Sutter Instruments, Novato, CA). For a ramp 

value of 504 (specific to the type of glass capillary and micropipette puller), we used the 

following settings: Heat = 509, Pull = 70, velocity = 45, delay = 90, pressure = 200, 

prescribed to generate microneedles of 0.2 µm outer tip diameter (Sutter Instruments 

Pipette Cookbook). The measured diameter of the microneedle in the z-plane of the 

manipulated k-fiber was 1.2 ± 0.1 µm (the tip was placed deeper than the k-fiber to 

ensure that it would not slip during movement). Microneedles with longer tapers and 

smaller tips than above were more likely to rupture the cell membrane. Microneedles 

were bent ~1.5 mm away from their tip at a 45° angle using a microforge (Narishige 

International, Amityville, NY). This allowed for microneedles placed in the manipulator at 

a 45° angle to approach the cell vertically and minimize the overall surface area of 

contact between the microneedle and the cell membrane.  

Microneedles used for manipulation were coated with BSA Alexa Fluor 647 (A-

34785, Invitrogen) or 555 conjugate (A-34786, Invitrogen) by soaking in the solution for 

60 s before imaging [125]: BSA-Alexa-647 and Sodium Azide (Nacalai Tesque, Kyoto, 

Japan) were dissolved in 0.1 M phosphate-buffered saline at the final concentration of 

0.02% and 3 mM, respectively. Tip labeling was critical towards improving cell heath 

during sustained manipulations because it allowed us to better visualize the 

microneedle tip in fluorescence along with the spindle and prevented us from going too 

deeply into the cell, thereby causing rupture.  
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Selection of cells: 

Cells for micromanipulation were chosen based on being at metaphase, being flat, with 

a spindle having two poles in the same focal plane. These criteria were important for 

pulling on single k-fibers close to the top of the cell and simultaneously being able to 

image the whole spindle’s response over several minutes of manipulation. Cells were 

included in our datasets if they did not appear negatively affected by micromanipulation. 

We did not include cells that underwent sudden and continuous blebbing upon 

microneedle contact, cells with spindles that started to collapse during manipulation or 

cells with decondensed chromosomes. 

 

Manipulation: 

Manipulations were performed in 3D using an xyz stepper micromanipulator (MP-225 

Sutter Instruments). A 3-knob controller (ROE-200, Sutter Instruments) connected to the 

manipulator and controller (MPC-200, Sutter Instruments) allowed fine manual 

movements and was used to find and position the microneedle before imaging. To find 

and position the microneedle, we first located and centered the microneedle tip in the 

field of view using a low magnification objective (20X 0.5NA Ph1 air). We placed the 

microneedle in focus just above the coverslip before switching to a 100X 1.45 Ph3 oil 

objective and refined the xyz position of the microneedle to be right above a cell of 

interest, using the Ph1 phase ring to confirm microneedle position (phase ring mismatch 

visually highlights the position of the glass microneedle).  
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Upon choosing a cell to manipulate, we identified an outer k-fiber in a plane close 

to the top of the cell focused on this k-fiber. Then, we slowly brought the microneedle 

down into the cell using the fluorescent label of the microneedle tip to inform on its 

position until just deeper than the k-fiber of interest. If the microneedle’s position was 

too far away from the k-fiber of interest, we slowly moved the microneedle out of the 

cell, adjusted its xy position and brought it back down into the cell. Through this iterative 

process, we could correctly position the microneedle such that it was inside the spindle, 

next to the outer k-fiber.  

Once the microneedle was positioned next to an outer k-fiber near the top of the 

cell, it was moved in a direction that is roughly perpendicular (~60°-90°) from the 

spindle’s long axis using software (Multi-Link, Sutter Instruments). We wrote a custom 

program to take as inputs the desired angle, duration, and distance for the microneedle 

movement and then output a set of instructions in steps, x, y positions, and delays for 

the Multi-Link software to achieve to desired movement. For all manipulations except 

those in Fig. 3.4E, we moved the microneedle at 5.2 ± 0.2 µm/min for 3.1 ± 0.3 min (Fig. 

3.1B). For the ‘pull and hold’ experiments, we moved the microneedle at 4.5 ± 0.7 

µm/min for 1.7 ± 0.2 min and then held in place until breakage (Fig. 3.4E). At the end of 

the manipulation the microneedle was manually removed from the cell in the z-axis 

slowly (<5 µm /min) to avoid membrane rupture or cell detachment from the coverslip.  

 

Tracking of spindle features 

For all analyses (Fig. 3.2-4), k-fibers were manually tracked in Fiji (version 2.0.0-rc-

68/1.52g) [126] by drawing segmented lines along maximum intensity projections of 
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three z planes of the fluorescent image with “spline fitting” checked. Splines were drawn 

from the edge of the tubulin signal at the plus-end to the center of the area of high 

tubulin intensity at the pole since we cannot determine specifically the location of the 

minus-end of the k-fiber. Spline x and y coordinates were saved in CSV files using a 

custom macro in Fiji and imported into Python. All subsequent analysis and plotting was 

performed in Python. Microneedle position was tracked using the mTrackJ plugin [127] 

in Fiji using the “snap to bright centroid” feature and coordinates were saved in CSV 

files and imported into Python for further analysis.  

 

Quantification of spindle features  

Pole and kinetochore position were calculated using the x and y coordinates of the point 

at the end of the spline that terminated at the pole and kinetochore, respectively. Time t 

= 0 was set to the first frame after the start of microneedle movement. Pole, 

microneedle, and kinetochore speed were calculated using the average displacement of 

the ends of the spline or center of the microneedle position over time (Fig. 3.2D,H). K-

fiber length and net growth rate were calculated using the length of the spline over time 

and with linear regression from the start and end of the manipulation (Fig. 3.2E-I). For 

the analysis of k-fiber growth rate of unmanipulated k-fibers specifically during the 

growth phase (Fig. 3.2G), the start and end points were selected manually when there 

were at least three consecutive timepoints where the k-fiber length increased. The 

distance between the microneedle and plus-end was calculated as the linear distance 

between the center of the microneedle centroid and the plus-end terminus of the spline 

(Fig. 3.2I). Microtubule ‘splaying’ was manually scored as the first frame in which new 
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microtubule density appeared on the side of the k-fiber near the point of high curvature 

(Fig. 3.4B,F). These events occurred within one time point (<10s), thus their dynamics 

of appearance could not be carefully characterized under these imaging conditions. K-

fiber breakage was manually scored as the first frame in which the two k-fiber pieces 

moved in an uncorrelated manner (Fig. 3.4B,E-G). 

 

Photomark analysis 

For photomark analysis, splines were tracked on maximum intensity projections of three 

z-planes using the 647 channel (SiR-tubulin label) and then that spline with a thickness 

of 5 pixels was used to calculate the intensity in the 488 channel (PA-GFP tubulin) at 

each point using a custom-written macro in Fiji, with all subsequent analysis in Python. 

Photomark position over time was calculated using the position along the curved k-fiber 

spline at which the maximum intensity value occurred after masking bright intensity 

directly at the pole that was separate from the photomark signal (Fig. 3.3C-E). Points 

were only included if the photomark remained in focus above background fluorescence. 

K-fiber intensity was normalized to the average intensity of the k-fiber in the timepoint 

prior to photomarking to identify the peak, however no intensity measurements were 

performed due to fluctuation of the k-fiber in the z-axis beyond the 3 z-planes 

measured. For calculation of photomark width (Fig. 3.3F), Gaussian fitting was 

performed on the normalized k-fiber intensities and the full-width at the half-maximal 

intensity (FWHM) was calculated using the width of the distribution (σ) obtained from 

the fit, as per FWHM  2 2𝑙𝑛2 𝜎 (Fig. 3.3G) for the subset of timepoints where the 

Gaussian function could fit the data. 
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Curvature analysis 

For curvature analysis (Fig. 3.4C,D), local radius of curvature (µm) was calculated by 

inscribing a circle through three points spaced by an interval of 1.5 µm along the spline 

using a custom Python script. This radius was used to calculate curvature (1/µm) by 

taking the inverse. 

 

Statistical analysis 

Data are reported as mean ± SEM where indicated. All statistical testing was performed 

using the Python SciPy statistical package in Python. Two-sided Mann-Whitney U 

testing was used to compare independent samples while Wilcoxon signed-rank tests 

were used to compare paired data sets since we did not test whether assumptions for 

normality were met due to low sample size. Correlations were examined by calculating 

the Spearman rank-order correlation coefficient and no outliers were removed. Due to 

the technical challenges of these experiments, sample sizes are small. We used p < 

0.05 as the threshold for statistical significance and have directly indicated in the figure 

and figure legend the p value and n, where n refers to the number of cells. We have 

therefore not performed statistical analysis for experiments with n ≤ 4 (Fig. 3.3). No 

statistical methods were used to predetermine sample size. The experiments were not 

randomized.  

 

ACKNOWLEDGEMENTS 

We thank Le Paliulis for critical microneedle manipulation advice, and Alan Verkman’s 

lab for the use of their microforge. We thank Alexey Khodjakov for the gift of PtK2 GFP-



 66 

α-tubulin and PtK1 PA-GFP-α-tubulin cell lines and Jagesh Shah for the gift of the PtK2 

EYFP-Cdc20 cell line. We thank David Agard, Maya Anjur-Dietrich, Wallace Marshall, 

Tim Mitchison, Dave Morgan, Dan Needleman, Adair Oesterle, Ron Vale, Orion Weiner, 

and members of the Fred Chang and Dumont labs for helpful discussions.  

 

This work was supported by NIH DP2GM119177, NIH R01GM134132, NSF CAREER 

1554139, the NSF Center for Cellular Construction DBI-1548297, the Rita Allen 

Foundation and Searle Scholars’ Program (S.D.), NSF Graduate Research Fellowships 

(A.F.L. and P.S.) and a UCSF Moritz-Heyman Discovery Fellowship and UCSF Lloyd 

Kozloff Fellowship (A.F.L.). 

 
 

 

 



 67 

CHAPTER FOUR 

CONCLUSION 
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Emergent Mechanics of the Kinetochore-Microtubule Interface 
 

In this dissertation I have used the kinetochore-microtubule interface as a model system 

for asking how nanometer-scale cellular machines perform complex micron-scale 

mechanical functions. Despite a wealth of molecular knowledge of different kinetochore 

components, the underlying physical mechanisms that enable the kinetochore to 

robustly link dynamic microtubules to chromosomes for proper segregation of DNA 

during cell division remain underexplored. Improper kinetochore attachments can lead 

to aneuploidy, which can underlie cancer and birth defects [1,2,38,128]. Thus, 

understanding kinetochore function is key for developing a basic understanding of how 

cellular machines perform complex mechanical tasks, and may also illuminate ways in 

which these functions go awry in the context of disease. How the mammalian 

kinetochore’s many proteins give rise to its emergent functions is a longstanding 

question in the field. In this dissertation, I have explored some of the key physical 

principles that underlie the robust grip at the kinetochore-microtubule interface.  

First, in Chapter 2 I addressed the question of how the mammalian kinetochore 

binds and tracks polymerizing and depolymerizing microtubules using the essential 

load-bearing protein Hec1(Ndc80). While it was well characterized that 

phosphoregulation of Hec1 changes the kinetochore’s affinity for microtubules, it was 

not known whether this regulation affected kinetochore’s grip on polymerizing or 

depolymerizing microtubules or both since kinetochores are always coupled together 

before anaphase. I used laser ablation to trigger cellular pulling on mutant kinetochores 

and decouple kinetochore pairs, and thereby separately probe Hec1’s role on dynamic 

microtubules. I found that Hec1 phosphoregulation tunes friction along polymerizing 
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microtubules, yet does not compromise the kinetochore’s grip on depolymerizing 

microtubules. These data suggest a mechanism by which mechanical, not biochemical, 

specialization of Ndc80 at the kinetochore underlies its strong yet tunable grip that still 

enables coupling to the dynamic microtubules that power chromosome movement. 

 Second, in Chapter 3 I addressed the question of how the mammalian 

kinetochore-fiber responds to and remodels under sustained force. This question is at 

the heart of understanding how force-generating cellular structures can maintain their 

structure over time. Using microneedles to directly pull on kinetochore-fibers inside 

cells, I found that sustained force causes k-fibers to lengthen but remain connected to 

kinetochores by persistently favoring plus-end polymerization, rather than growing 

faster, and by preventing minus-end depolymerization. Thus, k-fibers protect overall 

spindle architecture by locally dissipating force at their dynamic ends. Exerting force on 

long timescales, I uncovered the spindles’ weakest point – k-fibers can break in their 

center, rather than detaching from kinetochores or spindle poles which suggests the 

kinetochore-microtubule interface is stronger than the k-fiber bundle itself. This 

demonstrates a key principle for spindle homeostasis: different physical mechanisms of 

local force dissipation by dynamic k-fiber limit force transmission to preserve robust 

spindle structure over time. 

Looking forward, approaches and thinking from engineering and systems biology 

will be key to defining these emergent “whole kinetochore” properties, and for 

uncovering their molecular bases and functions. Many of these properties remain poorly 

understood: for example, why do many species’ kinetochores bind so many more 

microtubules than are mechanically required for moving chromosomes? Budding yeast 
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divide successfully with just one kinetochore-microtubule, fission yeast kinetochores 

bind four microtubules, while mammalian kinetochores bind 15-25 microtubules [3]. This 

work also raises many questions about the nature of the kinetochore-fiber as a complex 

cellular structure. What is the nature of cross-linking that allows k-fibers to respond as 

single mechanical units to force, given that they can also exhibit asynchronous plus-end 

structure [129,130]? How do cells regulate k-fiber composition over mitosis and how 

much occurs independently of kinetochore grip regulation (e.g. local kinetochore 

phosphatases versus global post-translational tubulin modifications)? The answers to 

these questions would have key implications for the mechanism of force production by 

k-fibers and provide new insight into the role k-fibers play in spindle mechanics. More 

broadly, they would enrich our understanding of the interplay between architecture, 

dynamics, and mechanics that enable cellular structures to robustly generate, respond 

to and withstand force to perform key mechanical functions for the cell. 

 

Mechanical Insights Across Species 

"In addition to experimenting with cell types that are widely used 
by investigators, we should remember that nature sometimes 
reveals her most well kept secrets through exaggerated displays 
found only in exotic cell types.” – S. Inoue and T. Salmon [46] 
 

We have much to learn about kinetochore structure-function relationships from studying 

both differences and similarities between kinetochores across the tree of life [131–133]. 

For example, studying kinetochores of different sizes [134] or that bind different 

numbers of microtubules can illuminate diverse strategies that have emerged under 

different evolutionary constraints to accomplish the same task of chromosome 
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segregation [123]. Much of our understanding of kinetochore mechanics has come from 

studying species with point (monocentric) kinetochores, yet many species have 

holocentric kinetochores [135,136] which face different challenges for grip and 

coordination of dynamics of microtubules that are spatially distant. Comparing the 

mechanical function of diverse kinetochore architectures may reveal new principles 

governing the mechanics of the kinetochore-microtubule interface. 

 

New Tools and Approaches 

To define and probe the kinetochore’s emergent properties, we will need tools to 

physically and molecularly perturb the kinetochore with a new level of control, and to 

read out quantitative responses.  For example, approaches to externally control force 

and dynamics ([92,137]) and to quantitatively rewire kinetochore and k-fiber composition 

(e.g. with optogenetics [138]) will allow us to directly measure force production and 

transmission across this interface and define the quantitative contribution of different 

molecular components to whole-kinetochore and, eventually whole-spindle, mechanical 

properties. Ultimately, the conceptual and experimental integration of kinetochore 

architecture, mechanics, and signal processing will be essential to understanding how 

this cellular machine achieves robust chromosome segregation each time a cell divides.  
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