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Abstract. We have used continuous-wave (CW) and frequency-domain spectroscopy to
investigate the optical properties of the newborn piglet brain in vivo and non-invasively. Three
anaesthetized, intubated, ventilated and instrumented newborn piglets were placed into a stereotaxic
instrument for optimal experimental stability, reproducible probe-to-scalp optical contact and
3D adjustment of the optical probe. By measuring the absolute values of the brain absorption
and reduced scattering coefficients at two wavelengths (758 and 830 nm), frequency-domain
spectroscopy provided absolute readings (in contrast to the relative readings of CW spectroscopy)
of cerebral haemoglobin concentration and saturation during experimentally induced perturbations
in cerebral haemodynamics and oxygenation. Such perturbations included a modulation of the
inspired oxygen concentration, transient brain asphyxia, carotid artery occlusion and terminal
brain asphyxia. The baseline cerebral haemoglobin saturation and concentration, measured with
frequency-domain spectroscopy, were about 60% and 42 μM respectively. The cerebral saturation
values ranged from a minimum of 17% (during transient brain asphyxia) to a maximum of 80%
(during recovery from transient brain asphyxia). To analyse the CW optical data, we have (a) derived
a mathematical relationship between the cerebral optical properties and the differential pathlength
factor and (b) introduced a method based on the spatial dependence of the detected intensity (dc
slope method). The analysis of the cerebral optical signals associated with the arterial pulse and with
respiration demonstrates that motion artefacts can significantly affect the intensity recorded from
a single optode pair. Motion artefacts can be strongly reduced by combining data from multiple
optodes to provide relative readings in the dc slope method. We also report significant biphasic
changes (initial decrease and successive increase) in the reduced scattering coefficient measured in
the brain after the piglet had been sacrificed.

1. Introduction

Near-infrared spectroscopy is a non-invasive monitoring technique that can probe living tissues
to a depth of the order of centimetres. The optical parameters of tissues, namely the absorption
and the reduced scattering coefficients, are representative of the physiological state and in
particular of the haemoglobin concentration and saturation. Recent applications of non-
invasive tissue spectroscopy in the skeletal muscles include the optical monitoring of the
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oxygenation during ischaemia (Hampson and Piantadosi 1988, Ferrari et al 1992, Sahlin
1992, Fantini et al 1995, Miwa et al 1995) or exercise (Chance et al 1992, Belardinelli et al
1995, Hamaoka et al 1996, Franceschini et al 1997, Quaresima et al 1998), the assessment
of the local blood flow and oxygen consumption (Edwards et al 1993, De Blasi et al 1993,
1994, Homma et al 1996) and the diagnosis of claudication (Cheatle et al 1991, McCully et al
1994, Kooijman et al 1997, Franceschini et al 1998a). Near-infrared spectroscopy has also
been non-invasively applied to the human infant’s brain to measure cerebral oxygenation and
hemodynamics (Cope and Delpy 1988, Edwards et al 1988) and in adults to quantify cerebral
hemodynamics (Elwell et al 1994), to monitor brain activity (Gratton et al 1995, Meek et al
1995, Wenzel et al 1996, Tamura et al 1997, Villringer and Chance 1997) and to detect
intracranial haematomas (Gopinath et al 1993, Hennes et al 1999). To test the results provided
by cerebral tissue spectroscopy, validation studies on the piglet brain have been performed
using CW (Brun et al 1997, Stankovic et al 1998), frequency-domain (Du et al 1998) and
time-domain (Yamashita et al 1996) spectroscopy.

In this article, we report non-invasive measurements on the newborn piglet brain performed
with frequency-domain spectroscopy. This technique affords the absolute measurement of
the tissue absorption and reduced scattering coefficients, as well as the tissue haemoglobin
concentration and saturation. Our instrument also acquires the average intensity, which is the
measured parameter in CW spectroscopy, so that we can compare the frequency-domain and
the CW approaches to tissue spectroscopy. To investigate the information content and the
sensitivity of near-infrared cerebral spectroscopy, we have optically monitored the temporal
evolution of the haemoglobin concentration and saturation during various manipulations to
the cerebral blood flow and/or oxygen supply. Furthermore, by using an acquisition time
of 160 ms, we have examined the optical signals associated with the arterial pulse and with
respiration, to investigate whether their origin is physiological or related to motion artefacts.

2. Experimental and theoretical methods

2.1. Animal preparation

The animals used in this study were maintained in accordance with the guidelines of the
Winthrop University Hospital Animal Use Committee and the Guide for the Care and Use
of Laboratory Animals by the Institute of Laboratory Animal Resources, National Research
Council (NIH Guide, volume 25, no 28, 16 August 1996). Optical measurements were per-
formed in three newborn piglets (11±1 days old; weight: 2.7±0.6 kg) which we labelled with
the letters A, B and C. The piglets were sedated with ketamine (25–30 mg kg−1 IM) and anaes-
thetized by the infusion of propofol and sodium pentobarbital. The piglets were intubated and
ventilated by a paediatric ventilator (Bear CUB Infant Ventilator, Bear Medical Systems, Inc.,
Riverside, CA) which allowed us to vary the ventilated oxygen per cent from 21 to 100%. The
ventilation was adjusted to maintain the desired values of arterial blood gases. A pulse oximeter
(Nellcor PM-1000, Nellcor Inc., Hayward, CA) was used to monitor the heart rate by attaching
its probe to the tail of the piglet. Body temperature was maintained at 37 ◦C with a warming
blanket. Right femoral cut-down was performed to insert the catheters into the abdominal aorta
for continuous mean arterial blood pressure measurements (Hewlett Packard 78353B, USA)
and for intermittent arterial blood gas measurements (Corning 238, pH blood gas analyser,
Ciba, Medfield, MA) and into the inferior vena cava for the infusion of propofol/pentobarbital
anaesthesia and hydration. The pre-shaved head of the animal was placed into a stereotaxic
instrument (Lab Standard 51600, Stoelting, Wood Dale, IL) in order to provide mechanical
stability, optimal optical coupling and 3D positioning capability for the optical probe.
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2.2. Experimental procedure

After a period of stabilization, we recorded mean arterial blood pressure, heart rate and arterial
blood gases, pH and oxygen saturation. The piglets underwent four different experimental
protocols, which are described in sections 2.2.1 to 2.2.4. To verify the reproducibility
of our measurements, some of the experiments were conducted more than once. Optical
measurements were compared with conventional measurements of arterial oxygen saturation
and heart rate. At the end of the first three experimental protocols, the animals recovered
spontaneously and no resuscitation was required.

2.2.1. Modulation of the inspired oxygen concentration. Piglet A was subjected to changes
in the inspired oxygen concentration. The concentration of the inspired oxygen was reduced
in a stepwise fashion, by 20% every 2 min, from the initial value of 100%, all the way down to
21% (the room air oxygen concentration) and then it was increased back to the initial value of
100% by increments of 20% every 2 min. Arterial blood was drawn to measure arterial oxygen
saturation at the end of each particular step, i.e. before the transition to the next oxygen level.

2.2.2. Transient brain asphyxia. After the experiment described in section 2.2.1, piglet A
was subjected to a transient 3.2 min episode of asphyxia induced by turning the respirator off.
This type of experiment has been previously described in newborn piglets (Stankovic et al
1998). Arterial oxygen saturation was sampled before, during and after peak response.

2.2.3. Carotid artery occlusion. Piglet B was placed in a supine position (i.e. lying on its
back), with the optical probe positioned underneath the left side of the piglet’s head. Surgery
was performed to expose both the right and left common carotid arteries. Using small vascular
clamps, either one or both carotid arteries were occluded, with the purpose of investigating the
capability of near-infrared spectroscopy to detect and quantify the occlusion-induced changes
in cerebral blood oxygenation.

2.2.4. Terminal brain asphyxia. At the end of the study, all three piglets were sacrificed by an
overdose of sodium pentobarbital (500 mg IV). Sodium pentobarbital induces cardiac arrest,
the cessation of cerebral blood flow and terminal brain asphyxia, followed by cell death as a
consequence of hypoxia. Terminal brain asphyxia appeared to be a valuable source of optical
information that we decided to report in this manuscript.

2.3. Absolute measurements with frequency-domain spectroscopy

The optical study has been performed with a frequency-domain (110 MHz) tissue spectrometer
(Franceschini et al 1997) operating at two near-infrared wavelengths, namely 758 and 830 nm
(tissue oximeter model 96208, ISS, Inc., Champaign, IL). This instrument allows for the
determination of the average value (dc), amplitude (ac) and phase (�) of the modulated
intensity at four different source–detector distances at each wavelength. This multidistance
method affords the quantitative assessment of the absorption (μa) and reduced scattering (μ′

s)
coefficients of tissues by the use of either the (dc, �) or (ac, �) pair of data (Fantini et al
1994a). In this study, we have used the (ac, �) pair to minimize the effect, mostly on the dc
readings, of possible leakage of room light into the optical probe. If we denote with Sac and
S�, respectively, the slopes of ln(r2ac) and � as a function of r , the absolute values of μa and
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μ′
s of a semi-infinite medium in the diffusion approximation are given by (Fantini et al 1994a)

μa = ω

2v

(
S�

Sac
− Sac

S�

)
(1)

μ′
s = S2

ac − S2
�

3μa

− μa (2)

where ω is the angular modulation frequency of the source intensity and v is the speed of light
in the tissue. The slope of ln(r2ac) approximates the slope of a more complicated function of r ,
ac, μa and μ′

s (Fantini et al 1994b). This is an excellent approximation when r
√

3μaμ′
s � 1.

In our measurements, the quantity r
√

3μaμ′
s typically ranged between 3 and 6. The

source–detector distances were 1.5, 2.0, 2.5 and 3.0 cm to achieve a mean optical penetration
depth of the order of 0.5 cm (Patterson et al 1995). This optical penetration depth is sufficient
to non-invasively probe the piglet brain, since the outer skin/scalp/skull layer has an overall
thickness of about 0.4 cm as measured post mortem. We have recently shown, by experiments
on phantoms, that the frequency-domain multidistance method carried out at distances larger
than 1.5 cm is not affected by the presence of a superficial layer having a thickness less than
or equal to 0.4 cm (Franceschini et al 1998b). Therefore, our optical probe should actually
measure the brain optical properties. We note, however, that the strong tissue inhomogeneity
encountered in non-invasive brain spectroscopy (skin, scalp, skull, dura, cerebrospinal fluid,
convolutions of the brain, etc) may affect the accuracy of absolute measurements. The
quantitative measurement of the tissue absorption at two near-infrared wavelengths can be
translated into a quantitative reading of haemoglobin concentration and saturation, by taking
advantage of the different absorption spectra of oxy- and deoxyhaemoglobin (Millikan 1942,
Eaton et al 1978, Sevick et al 1991, Fantini et al 1995). As a result, one obtains the
concentration and saturation of haemoglobin in the tissue, so that the arterial, venous and
capillary components will all contribute to the measurement. It has been shown that the main
contribution to tissue spectroscopy comes from the haemoglobin in the smaller blood vessels
(Liu et al 1995a).

The eight 400 μm source optical fibres (four guiding light at 758 nm, four at 830 nm)
and the 3 mm detector fibre bundle were positioned on the piglet head as shown in figure 1.
The source–detector line, which was parallel to the sagittal sinus, was centred on the head
of piglet A, whereas it was displaced from the centre by 1 cm to the left (right) in piglet B
(C). The detector fibre was passed through a black metal plate held at a distance of about
0.6 cm from the piglet head (see figure 1). This distance enabled us to visually inspect the
optical coupling between the optical fibres and the piglet head. The tip of the detector fibre
was placed in good contact with the head of the piglet. The source fibres were free to slide
in snug holes drilled in the black plate until the fibre tips came in contact with the skin. All
the fibres were fixed to a post to keep them bent in such a way that they exerted a slight
pressure on the skin (see figure 1). In this fashion, we achieved a good optical contact on the
skin, preventing the fibres from retracting away from the piglet head, while maintaining the
flexibility required to adapt the optical probe to the curved surface of the piglet head. The
black plate and the post were rigidly attached to the stereotaxic instrument on which three
knobs allowed the 3D positioning of the probe. A light block was inserted between the source
and the detector fibres to prevent any light from reaching the detector without travelling inside
the head. Additional light blocks were wrapped around the optical probe to cut room light.
The eight laser diodes were multiplexed at a rate of 50 Hz, so that only one light source was
on (for 20 ms) at a time. The acquisition time per cycle over the eight light sources was
160 ms, i.e. 8 diodes×20 ms/diode. In piglets A and B, we averaged eight cycles to get an
overall acquisition time of 1.28 s, which was sufficient to monitor the relatively slow dynamic
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Figure 1. Arrangement of the optical probe on the piglet head. The source optical fibres are free to
slide through snug holes in the black plate and they are bent to exert a slight pressure on the skin.

processes resulting from haemodynamics and modifications to the oxygen supply. In piglet C,
we considered only one cycle per data point to achieve an actual acquisition time of 160 ms.
This latter acquisition rate is faster than the heart rate, thereby allowing for optical monitoring
of cerebral arterial pulsations, as well as slower respiration-associated changes.

2.4. Relative measurements using the average intensity (continuous wave spectroscopy)

The frequency-domain spectrometer also acquires continuous wave (CW) intensity data (the dc
signal), which can be used to quantify the changes in the absorption coefficient. These changes
can be translated into changes in the concentrations of oxy- and deoxyhaemoglobin. To this
aim, one can follow two approaches: the differential pathlength factor (DPF) method, or the
dc slope method (which also affords absolute measurements).

2.4.1. Differential pathlength factor (DPF). The DPF method has been widely used in CW
tissue spectroscopy to quantify changes in the concentration of tissue chromophores (Cope et al
1991, Edwards et al 1993, Meek et al 1995, Stankovic et al 1998). The DPF is a parameter
that takes into account the increased photon pathlength caused by multiple light scattering in
tissues (Delpy et al 1988, Cope et al 1991). Under the assumptions that the reduced scattering
coefficient μ′

s remains constant and that the absorption coefficient μa does not vary by a large
amount (variations small with respect to μa), the change in the absorption coefficient (�μa(t))
at time t with respect to time 0 can be written as

�μa(t) = 1
rDPF

ln
(

dc(0)

dc(t)

)
(3)

where r is the source–detector distance, while (dc)(0) and (dc)(t) are the dc intensities measured
at time 0 and time t respectively. The value of the DPF is usually taken from published values
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measured on similar tissues with time-resolved methods. Since there are no published DPF
values for the piglet brain, previous studies on piglets have assumed values of 3.85 (Brun et al
1997) or 4.39 (Stankovic et al 1998), which are values reported for the brain of newborn infants
(Wyatt et al 1990, Van der Zee et al 1992).

The relationship between the DPF and the tissue optical coefficients μa and μ′
s can be

found by using diffusion theory. In an infinite turbid medium, diffusion theory and equation (3)
yield the following relationship:

DPFinf =
√

3μ′
s

2√
μa0

. (4)

In the semi-infinite geometry, the dc intensity predicted by diffusion theory is the following
(Farrel et al 1992, Fantini et al 1994b, Liu et al 1995b):

dcseminf(0) = C
e−

√
3μa0μ′

s r

r2

(√
3μa0μ′

s +
1
r

)
(5)

dcseminf(t) = C
e−

√
3(μa0+�μa)μ′

s r

r2

(√
3(μa0 + �μa)μ′

s +
1
r

)
(6)

where C is a proportionality factor, μ′
s is assumed to be constant, μa0 is the absorption

coefficient at time 0 and the absorption coefficient at time t is written μa(t) = μa0 +�μa with
�μa/μa0 � 1. By dividing equation (5) by equation (6) and assuming that �μa/μa0 � 1,
after some algebra one finds

�μa ≈ 2√
μa0√

3μ′
sr

r
√

3μa0μ′
s + 1

r
√

3μa0μ′
s

ln
(

dcseminf(0)

dcseminf(t)

)
(7)

which, after comparison with equation (3), gives

DPFseminf =
√

3μ′
s

2√
μa0

r
√

3μa0μ′
s

r
√

3μa0μ′
s + 1

. (8)

This approach to finding the DPF is equivalent to the definition (Cope et al 1991, Arridge et al
1992)

DPF ≡ 1
r

∂A

∂μa

∣∣∣∣
μa0

(9)

where A is the optical attenuation defined as ln (dc(0)/dc(t)). It is interesting to note that the
same result can be found by using an alternative definition of the DPF (namely, the ratio of the
average photon pathlength 〈L〉 to the source–detector distance r) (Essenpreis et al 1993) and
the Green function for the diffusion equation in the semi-infinite geometry:

DPFseminf ≡ 〈L〉
r

∼= v〈t〉
r

= v

r

∫ ∞
0 tGseminf(r, t) dt∫ ∞
0 Gseminf(r, t) dt

=
√

3μ′
s

2√
μa0

r
√

3μa0μ′
s

r
√

3μa0μ′
s + 1

(10)

where 〈t〉 is the average photon time of flight and the semi-infinite medium Green function
Gseminf(r, t) is ∝ t−5/2 exp[−3μ′

sr
2/(4vt) − μavt] (Patterson et al 1989).

We point out two important results:

(a) The relationship between the DPF and the optical coefficients is different in the infinite
and semi-infinite geometries, which means that in a given material we have DPFinf �=
DPFseminf . Obviously, the semi-infinite geometry is a better model for non-invasive
diffused-reflectance spectroscopy.
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(b) In the semi-infinite geometry, DPFseminf increases with source–detector distance r and
reaches the asymptotic value of DPFinf when r

√
3μa0μ′

s � 1.

For typical optical properties of tissues, this latter condition requires that r be much greater
than 0.5–0.7 cm. It has been reported that the DPF measured in vivo is approximately constant
at source–detector distances larger than about 3.0 cm (Van der Zee et al 1992).

2.4.2. Slope of ln(r2dc) versus source–detector distance r (dc slope). Equation (5) shows
that in the limit r

√
3μaμ′

s � 1, the ln(r2dcseminf) is a linear function of r , which has a slope
Sdc = −√

3μaμ′
s (Liu et al 1995b). By assuming a constant value for μ′

s , the absolute value of
μa (and consequently also the variations in μa) can be quantified by the following expression:

μa = S2
dc

3μ′
s

. (11)

We observe that the dc slope method differs from the DPF method in two important
respects: (a) it does not require the changes in μa to be small; (b) it measures the absolute
value of μa . As we will see in section 3.5, the dc slope method is also affected by motion
artefacts to a lesser extent than the DPF method. However, the condition r

√
3μaμ′

s � 1
implies that, for typical tissue optical properties μa ∼ 0.1 cm−1 and μ′

s ∼ 10 cm−1, the dc
slope method is more accurate at source–detector distances greater than 1.5–2.0 cm.

2.5. Optical monitoring of arterial pulsation and respiration

Near-infrared spectroscopy can monitor rhythmical physiological phenomena associated with
arterial pulse (Franceschini et al 1994, Kohl et al 1998) and breathing. For instance, pulse
oximetry measures the arterial saturation by comparing the pulsatile components recorded at
two different wavelengths (Mendelson 1992). In piglet C, we used an acquisition time of 160 ms
per point in order to investigate the optical signals related to the heartbeat and respiration. In
particular, our objective was to assess the effect of arterial pulsation and respiration on different
optical parameters such as the dc intensity, the dc slope (as defined in section 2.4.2) and the
phase. We have recorded the optical signal under three different conditions:

(a) piglet alive, ventilator working;
(b) piglet dead, ventilator still working;
(c) piglet dead, ventilator off.

We also recorded the airway pressure by connecting the proximal airway pressure output
(analogue output) of the ventilator to an auxiliary input interface system (ISS, Inc., Champaign,
IL) connected to the tissue spectrometer. This approach provided synchronous recordings of
the optical signal and of the airway pressure. By keeping the ventilator working after the
death of the pig, we can investigate whether the optical oscillations recorded by near-infrared
spectroscopy in living animals are associated with ventilation-related physiological phenomena
(brain perfusion changes), or rather to ventilation-induced motion artefacts.

3. Results

3.1. Optical properties and DPF values

We have not used DPF values reported in the literature. We have measured the optical properties
of the piglet brain by frequency-domain spectroscopy and we have obtained the DPF by
applying the relationship between the optical properties of a semi-infinite medium and the
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Table 1. Optical properties and DPF values measured on the brain of the three piglets under
normoxia conditions. The numbers in parentheses are the errors in the last digit of the corresponding
value. These errors are mostly determined by limitations in the reproducibility of the optical contact
between the optical probe and the piglet head (see table 2).

DPF
Wavelength μa μ′

s

(nm) Piglet (cm−1) (cm−1) r = 1.5 cm r = 2.0 cm r = 2.5 cm r = 3.0 cm r � (3μaμ
′
s )

−1/2

758 A 0.135(7) 9.7(4) 5.5(3) 5.9(4) 6.1(4) 6.3(5) 7.3(3)
B 0.145(7) 8.9(4) 5.1(3) 5.4(3) 5.6(4) 5.8(4) 6.8(3)
C 0.168(7) 9.1(4) 4.9(2) 5.2(3) 5.4(3) 5.5(3) 6.4(3)

830 A 0.110(7) 8.4(4) 5.4(4) 5.8(5) 6.1(5) 6.3(6) 7.6(4)
B 0.120(7) 7.7(4) 4.9(3) 5.3(4) 5.6(4) 5.8(5) 6.9(4)
C 0.150(7) 8.7(4) 4.9(3) 5.3(3) 5.5(3) 5.6(4) 6.6(3)

DPF (equation (8)). The baseline values (normoxia condition) of the absorption and reduced
scattering coefficients measured with the frequency-domain multidistance method are reported
in table 1 for the three piglets at both wavelengths. These values of μa and μ′

s are in good
agreement with the values measured by Yamashita et al (1996) with time-domain spectroscopy
at 760 nm. By applying equation (8), using the measured values of μa and μ′

s , we have obtained
the values of DPFseminf for the three piglet brains. These DPF values are reported in table 1
for the four source–detector distances employed by us and also for the limiting case of large
distances. We note that the DPF values measured by us are greater than those employed in
Brun et al (1997) (3.85) and in Stankovic et al (1998) (4.39) for the piglet brain.

3.2. Precision and reproducibility of the optical measurements

We assessed the reproducibility (for successive repositioning of the optical probe on the
same spot) and the precision (as determined by the instrumental noise and by physiological
fluctuations) of our optical measurements at two acquisition times, 1.28 s and 0.16 s. The results
are listed in table 2. The reproducibility errors estimate the uncertainty in the absolute readings,
whereas the precision gives an indication of the smallest detectable change in the corresponding
parameter. The modifications in the optical fibre/skin coupling at each repositioning of the
optical probe account for the fact that reproducibility errors are typically one order of magnitude
larger than the uncertainty due to precision. Such modifications in the optical coupling are
due to a lack of reproducibility in the fibre-to-skin contact and to the presence of hair that
may affect the optical coupling in an unpredictable way (the shaved piglet head still had hair
about 1 mm long). It is noteworthy that the phase is the only parameter almost unaffected
by successive repositioning of the probe (in fact, the reproducibility errors and the precision
are comparable). This result shows the low sensitivity of the phase to the fibre-to-skin optical
coupling. We observe that the precision in the dc intensity and ac amplitude is not limited by
the instrumental noise, but rather by the physiological fluctuations related to the arterial pulse
and respiration (see section 3.7).

3.3. Modulation of the inspired oxygen concentration

Figure 2 shows the time traces of cerebral total haemoglobin concentration (THC = [HbO2] +
[Hb]) and haemoglobin saturation (Y ) in response to a mild reduction in the arterial oxygen
saturation. Cerebral haemoglobin saturation, measured with frequency-domain spectroscopy,
decreased from 56.5 ± 0.5% (at 100% oxygen) to 51.5 ± 0.5% (at 21% oxygen). This
5% decrease in cerebral haemoglobin saturation (as detected by near-infrared spectroscopy)
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Table 2. Reproducibility and precision of the optical measurements performed with acquisition
times (AT) of 1.28 and 0.16 s. Reproducibility is based on the maximum difference in the parameters
as a result of repeated repositioning of the optical probe. Precision is the peak-to-peak fluctuation in
the parameters observed with the optical probe fixed on the piglet head. We note that the precision
of the dc intensity and ac amplitude is significantly better when the optical probe is placed on a
synthetic phantom. This means that the precision of the dc and ac reported in the table is not limited
by instrumental noise, but it is rather determined by physiological fluctuations.

Precision of relative measurements
(by keeping the optical probe on the

Reproducibility of absolute same location)
measurements (for successive

Quantity repositioning of the optical probe) AT = 1.28 s AT = 0.16 s

dc intensity 15% 0.1% 0.2%
ac amplitude 15% 0.2% 0.3%
Phase 0.15◦ 0.05◦ 0.15◦

μa 0.007 cm−1 0.0005 cm−1 0.005 cm−1

μ′
s 0.4 cm−1 0.03 cm−1 0.3 cm−1

[HbO2] 3 μM 0.3 μM 3 μM
[Hb] 3 μM 0.3 μM 3 μM
THC 3 μM 0.3 μM 2 μM
Y 6% 0.5% 4%

Figure 2. Time traces of the total haemoglobin concentration (THC) and saturation (Y ) in the brain
during a cyclic modulation of the inspired oxygen per cent as indicated in the figure.

corresponds to a decrease in arterial saturation from 99.9% to 97.7%, as measured by arterial
blood gas analysis. A sequential change, first increase and then decrease, in cerebral saturation
occurred during the time interval between 10 and 12 min. This was determined by a sudden
decrease and subsequent recovery of the absorption coefficient at 758 nm, while the absorption
coefficient at 830 nm did not show any particular feature at this time. The different behaviour of
the absorption coefficient at two wavelengths leads us to believe that the peak in the saturation
trace at times 10–12 min is not the result of an artefact of the optical measurement (because
an artefact related to a movement of the piglet head or to the displacement of the optical probe
is likely to affect the readings at the two wavelengths to a similar extent).
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Figure 3. (a) Haemoglobin saturation in the brain (Y ) and arterial saturation (SaO2) during transient
brain asphyxia. (b) Total haemoglobin concentration (THC), oxyhaemoglobin concentration
([HbO2]) and deoxyhaemoglobin concentration ([Hb]) traces during transient brain asphyxia. In
both panels, the black horizontal line indicates the time during which the ventilator was turned off.

3.4. Transient brain asphyxia

Figure 3 shows the cerebral haemoglobin saturation (panel (a)) and the concentrations of
oxyhaemoglobin, deoxyhaemoglobin and total haemoglobin (panel (b)) recorded during
transient brain asphyxia. The horizontal thick line in the figures indicates the period of
asphyxia. As a result of asphyxia, we have recorded a strong decrease in haemoglobin
saturation that reached a minimum value of 17 ± 1%. After the resumption of the ventilation,
the baseline tissue saturation recovered, after an evident overshoot (reperfusion phase), caused
by the increase in cerebral blood flow carrying fully saturated arterial blood. An overshoot
in the haemoglobin saturation during reperfusion has already been recorded by near-infrared
spectroscopy in the brain of the piglet following asphyxia and hypotension (Stankovic et al
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Figure 4. Brain haemoglobin saturation (Y ) recorded during right and left carotid artery occlusion.
The duration of the right and left occlusion is indicated in the figure.

1998), in the human brain after circulatory arrest (Smith et al 1990) and in the human muscle in
response to pneumatic-cuff-induced forearm ischaemia (Hampson and Piantadosi 1988, Ferrari
et al 1992, Fantini et al 1995). The symbols in figure 3(a) represent the oxygen saturation
of the arterial blood drawn five times during the experiment. We note that the lowest arterial
saturation (19.3%), where all of the tissue blood is likely to have a similar low value of oxygen
saturation, is in excellent agreement with the corresponding tissue saturation value measured
with the near-infrared tissue oximeter (19 ± 1%).

3.5. Carotid artery occlusion

Figure 4 shows the changes in cerebral saturation accompanying unilateral and bilateral carotid
artery occlusion recorded by near-infrared spectroscopy. The two horizontal lines in the figure
indicate the duration and the side of the occlusion. Figure 4 shows that the bilateral carotid
occlusion causes a large drop in tissue saturation, as opposed to the small desaturation caused
by unilateral occlusion. The peaks in the saturation trace at the times of clamping and release
of the carotid arteries are tentatively assigned to piglet head movements that occurred during
the placement of the vascular clamps.

3.6. Terminal brain asphyxia

Figure 5 shows the recorded traces of the optical coefficients (panel (a)) and the haemoglobin-
related parameters (panel (b)) before and after piglet A was sacrificed. The marker (vertical
line) in figure 5 indicates the time of the pentobarbital sodium IV injection. The absorption
changes translate into a sudden decrease in the concentration of oxyhaemoglobin and the
consequent drop in saturation that reaches a stable value of about 32.2 ± 0.5% after death.
The reduced scattering coefficient started to decrease right after death. However, about 5 min
after death, the reduced scattering coefficient inverted the trend starting to increase.

3.7. Optical monitoring of arterial pulsation and respiration

Figure 6(a) reports the time traces of the normalized dc intensity at a source–detector separation
r = 1.5 cm, the normalized dc slope versus r (i.e. the slope of ln(r2dc) measured at r ranging
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Figure 5. Time traces of the optical coefficients (abs. = μa , scatt. = μ′
s ) (panel (a)) and the

haemoglobin-related parameters (panel (b)) before and after the piglet is sacrificed.

from 1.5 to 3.0 cm) and the normalized absorption coefficient. The normalization has been
performed by dividing each data point by the average value over the corresponding time trace.
Figure 6(b) illustrates the fast Fourier transform (FFT) power spectra for the dc, dc slope and
μa . The FFTs are computed on a total time interval of 82 s (512 data points) which is 3.4
times longer than the time interval reported in the x-axis of figure 6(a). Both figures 6(a) and
6(b) show the three cases listed in section 2.5, namely (a) piglet alive, ventilator on; (b) piglet
dead, ventilator on and (c) piglet dead, ventilator off. The dc intensity, dc slope and absorption
coefficient reported in figure 6 are all measured at 830 nm, where the oxyhaemoglobin-rich
arterial blood shows a higher absorption than at 758 nm.

The heart rate of 131 ± 1 min−1 (as measured by pulse oximetry) is reflected in the
arterial pulse recorded by the dc and dc slope, while it does not appear in the absorption trace.
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Figure 6. (a) Time traces of the normalized dc (at r = 1.5 cm), dc slope and μa at 830 nm
under three conditions: (a) piglet alive, ventilator on; (b) piglet dead, ventilator on; (c) piglet dead,
ventilator off. The ventilator pressure is also shown. The amplitude of the fluctuations in the dc, dc
slope and μa are quantified by the vertical segments shown next to the left y-axis. (b) Power spectra
of the four traces shown in part (a) under the same three conditions. The two peaks indicated by
the arrows correspond to the arterial pulse.

The corresponding peaks in the dc and dc slope power spectra are centred at 2.18 Hz and are
indicated by arrows in figure 6(b). The reason for the lack of detection of the arterial pulse
in μa is the contribution of the phase noise (both the ac amplitude and the phase are used to
calculate μa) which overcomes the arterial pulse signal. In other words, in the power spectrum
of μa , the peak associated with the arterial pulse is buried within the noise and could be
detected only by using longer (than 82 s) integration times. Equation (3) allows us to quantify
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the change in μa corresponding to the dc change of about 0.2% associated with the heartbeat.
Such a change in μa is about 0.0003 cm−1 or 0.2% (the average value of μa at 830 nm was
0.165 cm−1 in piglet C before sacrifice), which is less than the measurement precision in μa

(see figure 5(a) and table 2). The pulse-induced change in μa obtained with the dc slope
method (equation (11)) is larger, being equal to 0.0008 cm−1 at 830 nm and 0.0005 cm−1 at
758 nm. We observe that the ratio of the values of �μa at the two wavelengths (8/5 = 1.6) is in
excellent agreement with the ratio of the oxyhaemoglobin extinction coefficients at the same
wavelengths (ε830nm

HbO2
/ε758nm

HbO2
= 1.57). This result supports the hypothesis that the pulsatile

component measured in the brain originates from the arterial compartment (Mendelson 1992,
Kohl et al 1998), even though more accurate spectral measurements are required to fully
address this point. As expected, the peaks at the arterial pulse frequency in the power spectra
of the dc and dc slope disappear after the piglet is sacrificed.

The respiration rate of 17 ± 1 min−1 corresponds to the fundamental Fourier component
at 0.29 Hz which appears in the power spectrum of the airway pressure. This component is
accompanied by its harmonics extending up to about 2 Hz as a result of the short duration of
the pressure pulses (∼1 s). The power spectrum of the dc intensity shows the fundamental
component as well as the harmonics up to about 2 Hz. This means that the dc intensity records
each respiration event with a fast response time, as confirmed by the sharp peaks in the time
trace (figure 6(a)). Such a fast response suggests that the dc signal may be mostly affected by
the respiratory motion, which can modify the optical fibre/skin coupling. That this is indeed the
case is shown by the permanence of the respiration peaks in the dc power spectrum even after
the pig was sacrificed. Even though the piglet head was immobilized within the stereotaxic
instrument, we could observe a small respiration-related motion in the area closer to the neck
of the animal. Apparently, such a slight motion can significantly affect the dc intensity trace.
It is noteworthy that the fundamental frequency is weak in the dc power spectrum recorded
with the piglet alive. This result indicates that the dc intensity is also recording a slower
response to respiration. This slower response disappears after the piglet is sacrificed, so that
the fundamental frequency becomes the dominant component.

The dc slope shows a different behaviour from the dc intensity recorded at one single
location. The respiration signal can be seen in the dc slope, but the power spectrum shows
a reduced number of harmonics, indicating a slower temporal response (also visible in
figure 6(a)). This slower response is more likely to reflect physiological changes in the tissue.
In fact, the respiration signal is significantly reduced in the dc slope after sacrifice. The reason
for the different behaviour of the dc intensity and the dc slope is that a motion artefact that
affects the dc at the four source–detector distances to a similar extent, will have little effect on
the dc slope (Fantini et al 1995). In this particular case, we found that the respiratory motion
strongly affects the dc at 1.5 cm, but has a little effect on the dc at 3.0 cm. This different
influence on the dc data at the various distances accounts for the residual sensitivity of the dc
slope to the respiratory motion. The respiration signal is not detected in the μa trace for the
same reason that the arterial pulse is not detected. As expected, the power spectra of all optical
data flattened out after the ventilator was turned off.

4. Discussion

4.1. Measurements of cerebral haemoglobin saturation

The haemoglobin saturation, defined as the fraction of haemoglobin that binds oxygen,
depends on several factors such as the partial pressure of oxygen, body temperature, pH and
2,3-diphosphoglycerate (DPG) concentration. Under normal conditions, the partial pressure
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of oxygen (PO2) and the haemoglobin saturation in arterial blood are about 95–96 mmHg
and 97–98% respectively. The difference between the oxygen partial pressure in arterial
blood (95–96 mmHg) and in tissues (<40 mmHg) determines the oxygen diffusion from the
capillaries into the tissues. The capillary PO2 falls to a value of about 40 mmHg, determining
a venous saturation of about 75%. Therefore, under normal conditions at rest, the body
consumes, on the average, only 25% of the haemoglobin-bound oxygen provided by the arterial
blood. This consumption can be higher in individual organs, or under abnormal or non-rest
conditions when metabolic demand is increased. For instance, the haemoglobin saturation of
the internal jugular vein in 50 healthy young men (18 to 29 years of age) at rest was found
to range between 55.3% and 70.7% (average 61.8%) (Gibbs et al 1942). In current clinical
practice, jugular venous oxygen saturation, which might be a relevant clinical parameter for
correlation with cerebral near-infrared spectroscopy, is considered to be normal in the range
55% to 75% (Lewis et al 1996).

It is assumed that near-infrared spectroscopy mostly probes smaller blood vessels,
particularly arterioles, venules and capillaries (Liu et al 1995a). On the one hand this is a
valuable feature because it allows one to obtain information about the oxygen saturation of
the blood in the capillaries, where the diffusion-driven exchange of oxygen with the tissue
occurs. In other words, tissue spectroscopy gives direct information about the oxygen supply
and consumption at the particular tissue examined. On the other hand, since the haemoglobin
in arterioles, venules and capillaries has a wide range of oxygen saturation values, it is not
easy to validate the saturation values measured by tissue spectroscopy (Y ) with those of either
arterial (SaO2) or venous (SvO2) blood. In the literature one can find baseline values of
optically measured cerebral haemoglobin saturation ranging from about 60% in human subjects
(McCormick et al 1991, Sevick et al 1991, De Blasi et al 1995, Levy et al 1995), to 84% in
piglets after removal of the scalp (Du et al 1998). We believe that this wide range of values
is mostly determined by the measurement protocol and by the algorithm of data analysis,
which may be affected in different ways by the strong tissue inhomogeneity. The relationship
between the actual cerebral optical properties and the absolute values measured with near-
infrared brain spectroscopy is still an open question, especially in the case of the adult human
head. The small size of the scalp/skull layer in the newborn piglet may introduce a less
significant error in quantitative, multidistance spectroscopy of the brain. However, a possible
effect of the tissue inhomogeneity should be kept in mind when considering our measured
values of cerebral haemoglobin saturation and concentration of 60% and 42 μM respectively.
Nevertheless, our measurements give some indications about the significance of the absolute
value of cerebral saturation. In fact, a direct comparison between tissue saturation and arterial
saturation can be done at very low arterial oxygen saturation values, where it can be assumed
that the haemoglobin in all three vascular compartments (arterial, venous and capillary) has
a similar oxygen saturation level. Under this condition, during transient brain asphyxia, we
found an excellent agreement between the absolute cerebral saturation (Y ) measured with
frequency-domain spectroscopy and arterial saturation (SaO2) (see figure 3(a) toward the end
of the period with the ventilator off). It should be noted that this agreement is even better than
expected, since the error in the absolute value of Y is at least 6% (see table 2). Furthermore,
the significant overshoot in cerebral saturation observed after transient brain asphyxia as well
as after carotid occlusion leads us to believe that the measured baseline saturation should not
be a significant underestimate of the actual regional cerebral saturation.

The different information content of cerebral haemoglobin saturation (Y ) and SaO2 is
evident in our measurements during manipulations in the inspired oxygen concentration and
during transient brain asphyxia. Figure 2 shows that the transition from 100% to 21% inspired
oxygen concentration caused a decrease in cerebral haemoglobin saturation (Y ) of 5%. Such a
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decrease in Y corresponds to a decrease of 2.2% in SaO2. This mismatch is an indication of the
different nature of the cerebral saturationY (which depends on a number of factors such as blood
flow, oxygen consumption, vascularization, blood pooling, etc), and the arterial saturation
SaO2 (which is a systemic parameter determined by the efficiency of blood oxygenation in
the lungs). In fact, the larger decrease in Y with respect to SaO2 is the result of an increase
in the cerebral concentration of deoxyhaemoglobin, which determines the increase in total
haemoglobin concentration during low levels of inspired oxygen (see figure 2). The experiment
on transient brain asphyxia reported in figure 3(a) also shows a significantly different behaviour
of Y and SaO2. Four minutes after the ventilation was re-established, the systemic arterial
saturation was back to its baseline value of 99.9%. By contrast, near-infrared spectroscopy
continued to record changes in cerebral haemoglobin saturation (Y ) and blood volume for
about 12 min after ventilation was re-established.

Figure 4 shows that a unilateral interruption in the carotid blood flow (right carotid artery
clamp) does not significantly affect cerebral oxygenation. Bilateral carotid occlusion, however,
caused a significant decrease in tissue perfusion. By removing the clamp from the right carotid
artery (with the clamp on the carotid artery still in place), cerebral oxygenation fully recovered,
reaching the baseline value after the usual overshoot. This experiment also demonstrates the
capability of the collateral circulation to compensate significant haemodynamic perturbations
affecting brain oxygenation.

4.2. Comparison of CW and frequency-domain measurements

Relative measurements performed with the DPF and dc slope methods are compared in figure 7,
which shows the changes in oxyhaemoglobin concentration measured with the DPF method
(at r = 1.5 and 3.0 cm) and with the dc slope method during the asphyxia protocol. During
asphyxia (the period indicated as ‘vent OFF’ in figure 7), the DPF and dc slope curves are
almost coincident and in good agreement with the frequency-domain multidistance method
(shown as the thick line in figure 7). Such a good agreement can be explained by a lack
of change in μ′

s (as we observed with the frequency-domain multidistance method) and by
the fact that asphyxia is accompanied by a decrease in the heart rate, blood pressure and
cerebral blood flow. Consequently, both the scalp and the brain were likely to be equally
ischaemic, thus determining a spatially uniform desaturation of haemoglobin. By contrast,
the DPF and dc slope curves split during the recovery period (t > 6 min in figure 7),
which is in part due to the increase in μ′

s (by about 0.5 cm−1) observed during the period
of reperfusion. However, an increase in μ′

s should cause an overestimation of �μa , which is
the case only for the dc slope method. The reason why the DPF method underestimates �μa

during the recovery may be related to the fact that single-distance methods are affected by
changes occurring at thin superficial layers (such as the 2 mm thick skin/scalp layer), while
multidistance methods performed at r � 1.5 cm are not. One should consider the possibility
that the different vascular capacitance of the scalp (small capacitance) and the brain (large
capacitance) might account for an inhomogeneous distribution of an increase in blood volume.
This latter explanation would also account for the smaller value of �μa measured with the
DPF at r = 1.5 cm with respect to that measured at r = 3.0 cm (the traces obtained with the
DPF at r = 2.0, 2.5 and 3.0 cm are almost coincident, so that only the one at 3.0 cm is shown
in figure 7).

The analysis of the optical signals associated with the arterial pulse and respiration reported
in figure 6, in conjunction with the measurement errors listed in table 2, gives valuable
indications about the choice of the particular experimental approach in tissue spectroscopy.
Depending on the particular application, one should find the best compromise among the
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Figure 7. Changes in the oxyhaemoglobin concentration recorded during transient brain asphyxia
(see also figure 3) with various non-invasive optical methods: (a) frequency-domain multidistance
(thick line), (b) continuous-wave DPF with a source–detector separation of 1.5 cm (DPF-1.5cm)
and 3.0 cm (DPF-3.0cm) and (c) continuous-wave dc slope.

advantages and disadvantages associated with the various approaches. For instance, the
capability of frequency-domain spectroscopy to provide absolute readings (which was crucial
in this study) comes at the expense of a reduced signal-to-noise ratio with respect to CW
spectroscopy. If one is interested only in changes from baseline values, CW may be a better
choice. However, table 1 (reproducibility errors) and figure 6 (case (b): when we kept the
ventilator working after the death of the piglet) show that the single-distance CW data can be
significantly affected by changes in the optical coupling with the skin and by motion artefacts.
Furthermore, single-distance methods can be strongly affected by modifications occurring at
a superficial layer rather than deep into the tissue. In some cases, a good compromise may
be given by the dc slope, which provides a signal-to-noise ratio comparable to that of the dc
intensity, without being so sensitive to motion artefacts, to the optical coupling and to the
presence of superficial tissue layers.

4.3. Scattering changes after terminal asphyxia

Figure 5 is an example of a case where frequency-domain spectroscopy is required in order to
separately measure the absorption and scattering properties of the brain tissue. In this case,
the significant change in the reduced scattering coefficient would confound the measurements
of �μa performed with the DPF or dc slope methods. Previous studies have reported both
a decrease (Yamashita et al 1996) and an increase (Du et al 1998) in the reduced scattering
coefficient after death. We have observed an initial decrease in μ′

s immediately after death,
followed by an increase in μ′

s occurring about 5 min after death. We believe that the
initial decrease in the reduced scattering coefficient could be assigned to neural potassium
depolarization as previously suggested by Chance et al (1997), whereas the later scattering
increase could be associated with the biochemical and molecular changes accompanying cell
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death (e.g. increase in intracellular Ca2+ and free fatty acids, loss of structural and functional
integrity of the cellular osmotic barrier and loss of homeostasis and viability) (Kitagawa et al
1989). However, the investigation of the biochemical origin of these early and late scattering
changes is beyond the scope of this study.

4.4. Number of animals

Per each measurement protocol, we have reported results obtained on only one piglet. The
significance of these representative results is supported by (a) the precision and reproducibility
(for repositioning of the optical probe) of our instrument (see table 2) and (b) the consistent
results that we have found when some of the protocols were repeated on additional piglets. In
particular, the reproducibility error in the saturation measurement (6%) is the key parameter to
assess the significance of the agreement betweenY and SaO2 during asphyxia (figure 3(a)). The
comparison between the CW and the frequency-domain measurements (figure 7) is relevant
because the observed differences are much larger than the precision error (0.3 μM in [HbO2])
of the measurement (table 2). The analysis of the optical signals associated with the respiration
and the arterial pulsation is meaningful even if it is carried out on a single animal. In fact,
the purpose of this analysis is to show the different effect of the respiratory motion on single-
distance and multidistance measurements. In ten additional piglets, the baseline cerebral
saturation and the total haemoglobin concentration have been confirmed to assume values
in the range 50–60% and 40–50 μM respectively. The haemodynamic changes following
death (see figure 5(a)) have been reproduced in two more piglets. In two additional cases,
we observed a small (1–2 μM) increase in [Hb] after death. Finally, the scattering changes
following death (initial decrease and successive increase) (figure 5(a)) have been reproduced
in five more animals.

5. Conclusion

We have reported our results of non-invasive frequency-domain and continuous-wave (CW)
spectroscopy on the piglet brain in vivo. We have analysed the CW data with the differential
pathlength factor (DPF) approach and with a dc slope method. We observe that in this article
the dc slope method has been used simply as an alternative CW approach to the DPF method,
where μ′

s rather than the DPF is assigned a constant value. In the experiments where we
have applied the dc slope method, however, μ′

s was not always a constant. The μ′
s changes

during terminal asphyxia are shown in figure 5(a) and significant scattering changes (∼7%)
where also observed during transient brain asphyxia. The assumption of a constant μ′

s may be
avoided by using a ‘mixed’ CW and frequency-domain approach, where the dc slope method
is complemented by an update of μ′

s every 5–10 s. This hybrid approach would combine the
high signal-to-noise ratio afforded by the intensity measurement, with the quantitative feature
of intensity and phase measurements. In this ‘mixed’ approach, the only assumption is that
μ′

s does not change on a time scale shorter than 5–10 s.
Using diffusion theory, we have derived a mathematical relationship between the tissue

optical properties and the DPF. The DPF is independent of the source–detector distance r in
an infinite geometry, whereas the DPF shows a significant r dependence at r < 3.0 cm in a
semi-infinite geometry (where the source and the detector are placed on the tissue surface). Our
mathematical treatment assumes tissue homogeneity. The r dependence of the DPF in vivo can
additionally be influenced by tissue inhomogeneity. At the wavelengths employed by us (758
and 830 nm), we found DPF values ranging from 4.9 (at r = 1.5 cm) to 6.3 (at r = 3.0 cm)
for the piglet head.
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The value of any particular technique for tissue oxygenation and perfusion monitoring
is not only determined by its sensitivity to detect changes, but also by its ability to provide
different types of information (e.g. oxygenation, blood flow and volume, oxygen consumption,
heart rate etc). Near-infrared spectroscopy can be a valuable non-invasive tool in monitoring
cerebral haemodynamics and oxygenation in vivo as it provides information on cerebral
perfusion and oxygenation that cannot be obtained by systemic arterial blood sampling.
Frequency-domain spectroscopy provides quantitative readings of the absolute values of the
haemoglobin concentration and saturation in the brain. In the presence of a relatively thin
(�0.4 cm) scalp/skull layer (as in the case of the neonatal piglet), these absolute values of
haemoglobin concentration and saturation should be actually representative of the brain. By
contrast, the significantly thicker tissue inhomogeneities (skin, scalp, skull, dura, cerebrospinal
fluid, convolutions of the brain etc) found in the adult human head have an effect on the
absolute, non-invasive optical measurements that is still not fully characterized. Continuous-
wave spectroscopy can quantify changes in the haemoglobin concentration, by assuming that
the tissue scattering is a constant. A comparison of the absolute and relative measurements
with the different techniques indicates that they are not equivalent when they are applied
in vivo. We have discussed some of the parameters and approximations that characterize each
approach to tissue spectroscopy. Based on the required precision and accuracy of a particular
tissue-spectroscopy experiment, we have provided some guidance in the choice between the
frequency-domain, continuous-wave, multidistance and single-distance approaches.
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