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We present a careful study of the chiral symmetry breaking minima and the baryonic directions in
supersymmetric QCD (SUðNcÞ with Nf flavors) perturbed by anomaly mediated supersymmetry breaking
(AMSB). For the s-confining case of Nf ¼ Nc þ 1 and most of the free-magnetic phase (Nf ≤ 1.43Nc) we
find that naive tree level baryonic runaways are stabilized by loop effects. Runaways are present, however,
for the upper end of the free magnetic phase (Nf ≳ 1.43Nc) and into conformal window, signaling the
existence of incalculable minima at large field values ofOðΛÞ. Nevertheless, the chiral symmetry breaking
points are locally stable, and are expected to continuously connect to the vacua of QCD for large SUSY
breaking. The case of Nf ¼ Nc requires particular care due to the inherently strongly coupled nature of the
quantum modified moduli space. Due to the incalculability of critical Kähler potential terms, the stability of
the chiral symmetry breaking point along baryonic directions cannot be determined for Nf ¼ Nc. With the
exception of this case, all theories to which AMSB can be applied (Nf < 3Nc) possess stable chiral
symmetry breaking minima, and all theories with Nf ≲ 1.43Nc (aside from Nf ¼ Nc) are protected from
runaways to incalculable minima.

DOI: 10.1103/PhysRevD.107.054015

I. INTRODUCTION

One of the greatest challenges facing particle physics and
quantum field theory (QFT) is to establish the phase
structure of strongly coupled gauge theories. In particular,
that of ordinary quantum chromodynamics (QCD), corre-
sponding to the observed color confinement with chiral
symmetry breaking. While eventually we expect lattice
simulations to settle this issue, at least for nonchiral theories,
progress has been quite slow and there are very few analytic
tools at our disposal. One possible approach is to use the
exact results and phase structures of the supersymmetric

(SUSY) versions of these theories (SQCD) worked out by
Seiberg and others in the 1990s [1–3], and to add small
SUSY breaking perturbations [4–20]. The exact mapping of
SUSY breaking perturbations from the UV theory to its IR
manifestation has been done by linking the SUSY breaking
either to holomorphic quantities [15], or to conserved and
anomalous currents [17–20]. While being successful in
mapping UV supersymmetry breaking to the IR, in many
previous attempts at studying the vacuum structure of softly
broken SQCD the eventual IR phase was incalculable due
to runaways and/or dependence on unknown Kähler terms.
For this reason, they were of limited predictivity.
A systematic study of the phases of SUSY SUðNcÞ

gauge theories perturbed via anomaly mediated supersym-
metry breaking (AMSB) was initiated in [21], and many
new results using this method have already been obtained.
These include novel symmetry breaking patterns for chiral
gauge theories [22–24], the description of confinement in
SOðNcÞ theories via monopole condensation [25], and the
phase structure of the SOðNcÞ theories while varying the
number Nf of matter fields in the vector representation
[26]. The result of the SOðNcÞ analysis was that the various
exotic SUSY phases collapse as a result of SUSY breaking,
and one is left only with the expected confining and chiral
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symmetry breaking phase. Interestingly, the analysis of the
basic SUðNcÞ theories with Nf flavors of quarks turns out
to be the most subtle one. AQCD-like vacuum with a chiral
symmetry breaking pattern of the form SUðNfÞL ×
SUðNfÞR → SUðNfÞD has been identified in [21,27]
which appears to be the global minimum for at least
Nf < Nc. However, the Nf ≥ Nc cases are complicated
by the appearance of baryonic directions, which in many
cases appear to cause a runaway behavior.
The aim of this paper is to carefully examine the SUðNcÞ

theories for Nf ≥ Nc and, in particular, the fate of the
baryonic directions [28], thus establishing the phase struc-
ture of the SUðNcÞ theories, when it is calculable. We will
show that for the special case of Nf ¼ Nc þ 1 the potential
baryonic runaway is stabilized by a 2-loop AMSB effect,
while for Nf ¼ Nc the theory is incalculable along these
directions, and one cannot conclusively decide if the
baryonic runaways are lifted or not. The lower end Nc þ
1 < Nf ≲ 1.43Nc of the free magnetic phase will again
have the baryonic runaways lifted via 2-loop AMSB, and
one ends up with stable, calculable vacuum with chiral
symmetry breaking. Such a “QCD-like” vacuum with
chiral symmetry breaking exists for any number of
flavors as long as Nf < 3Nc (with the possible exception
of Nf ¼ Nc where its stability cannot be determined).
In contrast, for Nf ≳ 1.43Nc the baryonic directions will

indeed contain runaways.We stress that these runaways donot
invalidate the theory since they are cured once the field
vacuum expectation values (VEVs) are ofOðΛQCDÞ. Here the
IR description breaks down and one must return to the UV
description, where the theory is stabilized by AMSB. Instead,
they merely signal that the global minimum lies in the
incalculable region where field VEVs are of OðΛQCDÞ. In
addition, the QCD-like minimum will persist as a local
minimum, and one expects that as the magnitude of SUSY
breaking is increased it will indeed take over as the true
vacuum.Note also that baryonic runawaydoes not occur inSp
or SO gauge theories. We will discuss these cases elsewhere.
The paper is organized as follows. We first review the

AMSB mechanism and then its application to the case
Nf < Nc, where chiral symmetry breaking is observed. We
then successively increase the number of flavors, exhibiting
chiral symmetry breaking behavior and discussing the
baryonic directions, before concluding.

II. ANOMALY MEDIATION

Anomaly mediation of supersymmetry breaking
(AMSB) [29,30] (see also [17,31] for earlier work con-
taining some important aspects of AMSB) is parameterized
by a single spurion m that explicitly breaks supersymmetry
in two different ways. One is the tree-level contribution
based on the Kähler potential and superpotential—which is
easily derived using the conformal compensator formalism
[32]. It is given by

V tree ¼ ∂iWgij
�
∂
�
jW

� þm�mð∂iKgij�∂�jK − KÞ
þmð∂iWgij

�
∂
�
jK − 3WÞ þ c:c: ð1Þ

where gij is the inverse of the Kähler metric gij ¼ ∂i∂
�
jK.

For simplicity we will always take m to be real. Note
that (1) breaks the Uð1ÞR symmetry explicitly. When the
Kähler potential is canonical, this reduces to the more
familiar

V tree ¼ m

�
φi

∂W
∂φi

− 3W

�
þ c:c: ð2Þ

When the superpotential does not include dimensionful
parameters, this expression identically vanishes.
In this case, there are the loop-level supersymmetry

breaking effects from the superconformal anomaly [32].
They lead to trilinear couplings, scalar masses, and gaugino
masses,

AijkðμÞ ¼ −
1

2
ðγi þ γj þ γkÞðμÞm ð3Þ

m2
i ðμÞ ¼ −

1

4
_γiðμÞm2 ð4Þ

mλðμÞ ¼ −
βðg2Þ
2g2

ðμÞm: ð5Þ

Here, γi ¼ μ d
dμ lnZiðμÞ, _γ ¼ μ d

dμ γi, and βðg2Þ ¼ μ d
dμ g

2.
When the gauge theory is asymptotically free, m2

i > 0,
stabilizing the theory against runaway behavior.
Therefore, in a theory described in the UV description

by an SUðNcÞ gauge group and Nf flavors such that
Nf < 3Nc, AMSB prepares exactly the state we are
looking for: the squarks and gauginos become massive
while the massless degrees of freedom are those of non-
SUSY QCD. By the UV insensitive nature of AMSB, the
expressions above can be reliably used in the dual (IR)
description of the theory to determine the low-energy
phase.
Here we present some expressions that will be useful

later on. Suppose we have a SUðÑcÞ gauge theory with
gauge coupling g and a superpotential W ¼ λTrqiMijq̄j,
where the qi (q̄j) are Nf flavors of (anti)quarks andMij is a
gauge-singlet flavor-bifundamental meson. The anomalous
dimensions are

γq ¼
CFg2

4π2
−
Nfλ

2

8π2
ð6Þ

γM ¼ −
Ñcλ

2

8π2
ð7Þ

where CF ¼ ðÑ2
c − 1Þ=ð2ÑcÞ is the quadratic Casimir of

the dual gauge group. For the 1-loop beta functions one has
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βðg2Þ ¼ −
b̃g4

8π2
ð8Þ

βðλ2Þ ¼ −ðγM þ 2γqÞλ2 ð9Þ

where b̃ ¼ 3Ñc − Nf.

III. Nf < Nc: ADS SUPERPOTENTIAL

For completeness we quickly review here the results of
[21] for Nf < Nc. The dynamics is described in terms of
the meson fieldsMij with the Affleck-Dine-Seiberg (ADS)
superpotential

W ¼ ðNc − NfÞ
�
Λ3Nc−Nf

detM

�
1=ðNc−NfÞ

: ð10Þ

In the SUSY limit, this produces a runaway potential and
hence has no ground states. When M ≫ Λ2, Mij ¼ Mδij
describes the D-flat direction

Q ¼ Q̄ ¼

0
BBBBBBBB@

1 � � � 0

..

. . .
. ..

.

0 � � � 1
0 � � � 0

..

. ..
. ..

.

0 � � � 0

1
CCCCCCCCA
ϕ; M ¼ ϕ2: ð11Þ

Here, Q and Q̄ are the quark/antiquark superfields. The
upper part is an Nf × Nf block, while the lower part is
ðNc − NfÞ × Nf. Since the Kähler potential is canonical in
the variable ϕ, one can use (2) to obtain

V ¼
����2Nf

1

ϕ

�
Λ3Nc−Nf

ϕ2Nf

�
1=ðNc−NfÞ����2

− ð3Nc − NfÞm
�
Λ3Nc−Nf

ϕ2Nf

�
1=ðNc−NfÞ þ c:c: ð12Þ

Note that there is now a minimum at

Mij ¼ Λ2

�
4NfðNc þ NfÞ

3Nc − Nf

Λ
m

�ðNc−NfÞ=Nc

δij: ð13Þ

The minimum is indeed at M ≫ Λ2 which justifies the
weakly coupled analysis. The SUðNfÞL × SUðNfÞR flavor
symmetry is dynamically broken to SUðNfÞV . The case of
nonhomogeneous values for the diagonal entries of M was
considered in [33]. There it was shown that the minimum is
indeed found at Mij ∝ δij.

The massless particle spectrum consists of the Nambu-
Goldstone bosons (pions) [34]. The scalar and fermion
partners of the Nambu-Goldstone bosons (NGBs) have
masses that grow with m. Naively increasing m beyond Λ,

the only remaining degrees of freedom are massless NGBs.
This matches the expectations of QCD with a small number
of flavors. There is no sign of a phase transition and the two
limits are likely continuously connected.

IV. Nf =Nc: QUANTUM MODIFIED CONSTRAINT

In this section we give a complete analysis of the case of
the quantum modified constraint, finding that previous
discussion requires modification.
The low-energy degrees are meson fieldsMij and singlet

baryon/antibaryon fields B (B̄), whose moduli space is
subject to the quantum modified constraint

detM − BB̄ ¼ Λ2Nc: ð14Þ

We first treat the general case Nc > 2, and treat the case
Nc ¼ 2 separately at the end.
There are two ways to frame the theory before the

addition of AMSB. The first is to implement the constraint
in the superpotential via a Lagrange multiplier field X.
However due to the constraint (14), the fields have VEVs of
OðΛÞ. Therefore, higher order terms in the Kähler potential
are not suppressed relative to the canonical term and the
formula (2) cannot be trusted.
Instead we should perform a nonlinear analysis using the

constraint (14). For simplicity, we will use units where
Λ ¼ 1. The moduli space contains two special points of
enhanced symmetry: the meson point M ¼ 1, B ¼ B̄ ¼ 0
with unbroken baryon number, and the baryon point
M ¼ 0, B ¼ −B̄ ¼ 1 with unbroken flavor symmetry.
We perform AMSB around each of these points.

A. Meson point

To satisfy the constraint at the meson point we make the
change of variables

M ¼ ð1þBB̄Þ1=NceΠ ¼ 1þ 1

Nc
BB̄þΠþ 1

2
Π2 þ � � � ð15Þ

where Π is a traceless complex matrix. In what follows we
will work to quadratic order. The Kähler potential is built
out of flavor invariants, e.g., TrM†M, ðTrM†MÞ2,
TrM†MM†M, etc. Notice that they will all contribute at
quadratic order in the hadron superfields. Let us examine
the Π contribution of the first term:

TrM†M ⊃ TrΠ†Πþ 1

2
TrΠ2 þ 1

2
TrΠ†2: ð16Þ

A useful formula going forward will be the tree level
AMSBpotential corresponding toK¼φ†φþα=2ðφ2þφ†2Þ.
Using the general formula (1), we get
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VAMSB ¼ α2m2φ†φþ α

2
m2ðφ2 þ φ†2Þ

¼ ðα2 þ αÞm2ðReφÞ2 þ ðα2 − αÞm2ðImφÞ2: ð17Þ

Setting α ¼ 1 corresponds to the Kähler potential for
each component of Π in (16), so that the ImΠ are the
massless pions, the Goldstone bosons of broken chiral
flavor symmetry. Goldstone’s theorem ensures that all
meson flavor invariants of the Kähler potential will give
contributions proportional to the right-hand side of (16).
Moreover, they will (in aggregate) come with a positive
sign in order for theΠ to have a physical kinetic term. Thus,
the ReΠwill have a positive mass, stabilizing this direction.
Turning to the baryons, things are not as clear. The most

general form of the Kähler potential at quadratic order is

K ⊃ αðB†Bþ B̄†B̄Þ þ β

2
ðBB̄þ c:c:Þ ð18Þ

where this includes contributions (15) from meson field
traces. We cannot know the ratio β=α and thus are unable to
determine whether the meson point is stable with respect to
baryonic runaway to an incalculable minimum.

B. Baryon point

Here we parametrize the baryon and antibaryon with a
single complex field b:

B ¼ ð1 − detMÞ1=2eb ð19Þ

B̄ ¼ −ð1 − detMÞ1=2e−b: ð20Þ

Like at the meson point, we expect to find a Goldstone
boson, now from spontaneously broken baryon number.
Consider for example the Kähler potential terms

B†Bþ B̄†B̄ ¼ 2þ ðbþ b†Þ2 þ � � � : ð21Þ

Again using (17), we identify Imb as the Goldstone boson,
while Reb has positive mass. Regarding the mesons
however, only the quadratic term must come with a positive
sign (to give positive kinetic term). The coefficients of all
higher order flavor invariants in the Kähler potential are
unknown. With the application of (1), these will ultimately
determine if the baryon point is stable once AMSB is
turned on.
In summary, we can say very little about the behavior of

AMSB-deformed QCD in the singular case whenNf ¼ Nc.
Neither global nor local minima can be identified, though
based on the behavior of theories with more or fewer
flavors we can conjecture a chiral symmetry breaking
minimum at the meson point. This ambiguity can be traced
to the quantum modified constraint, making the theory
inherently strongly coupled.

C. Nc = 2

When Nc ¼ 2, the quarks and antiquarks belong to the
same representation of the gauge group. Thus, the flavor
symmetry is enhanced to SUð4Þ, with the meson M
transforming in the antisymmetric representation. This
meson can be decomposed into the meson, baryon, and
antibaryon of the unenhanced flavor symmetry. The
quantum modified constraint becomes MaMa ¼ 1, with
a ¼ 1;…; 6, meaning the moduli space has 5 complex
dimensions. The constraint breaks the flavor symmetry to
Spð4Þ, leading to 5 Goldstone modes. Due to the kinetic
term positivity arguments made above, their scalar partners
have positive mass.
Thus, the enhanced symmetry causes the chiral sym-

metry breaking minimum to be stable in the case ofNc ¼ 2.
Similar results were found in [18]. Note that Nc ¼ 2 is a
special case of the Sp gauge theories that will be discussed
elsewhere.

V. Nf =Nc + 1: S-CONFINEMENT

For this case we find a stable chiral symmetry breaking
minimum, and demonstrate that there are no runaway
directions. At the leading order we take a canonical
Kähler potential for low energy fields B, B̄, and M, which
is justified when B; B̄;M ≪ Λ where the theory is weakly
coupled. The superpotential is

W ¼ αBMB̄ − β detM ð22Þ

where we are again working in Λ ¼ 1 units and α and β are
unknown order one numbers used to make the Kähler
canonical. The potential obtained is

VSUSY ¼ α2ðjðMB̄Þaj2 þ jðBMÞaj2Þ
þ jαB̄aBb − β detMðM−1Þabj2 ð23Þ

VAMSB ¼ −ðNc − 2Þβm detM þ c:c: ð24Þ

Seeking the minimum of this potential, we look along the
direction

B¼

0
BBBBB@

b

0

..

.

0

1
CCCCCA; B̄¼

0
BBBBB@
b̄

0

..

.

0

1
CCCCCA; M¼

0
BBBBB@

x

v

. .
.

v

1
CCCCCA: ð25Þ

Using flavor rotations the baryon and antibaryon take this
form without loss of generality. They break the flavor
symmetry to SUðNcÞL × SUðNcÞR, justifying the inhomo-
geneous diagonal VEVs of M. For fixed detM, any off-
diagonal terms would simply increase VSUSY, justifying
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their omission. Finally, given that we are taking m real, it is
enough to look for minima with all fields real.
Using the fact that for fixed bb̄, the quantity b2 þ b̄2 is

minimized when b ¼ b̄, the potential is

V ¼ 2α2x2b2 þ ðαb2 − βvNcÞ2 þ Ncβ
2x2v2ðNc−1Þ

− 2ðNc − 2ÞβmxvNc: ð26Þ

Again we treat the general case Nc > 2 first, and the case
Nc ¼ 2 separately afterwards.
The crucial observation implicit above is that the baryon

fields do not acquire tree-level SUSY breaking whose mass
originates from AMSB and they do not induce threshold
corrections when they are integrated out, called “non-
decoupling effects” in [32].

A. Baryon number conserving direction, b = 0

For the baryon number conserving direction b ¼ 0, one
finds a minimum

v¼ x¼
�ðNc − 2Þm

Ncβ

� 1
Nc−1

; Vmin ¼ −Oðm2Nc=ðNc−1ÞÞ:

ð27Þ

This is the chiral symmetry breaking minimum that we
hope to be continuously connected to that of non-SUSY
QCD. First we must check that it is not disturbed by loop
effects coming from the marginal Yukawa term in (22). The
baryons acquire a mass αv, and integrating them out and
using (4) yields a 2-loop mass for the meson

m2
M ¼ ð2Nc þ 3ÞαðvÞ4m2

ð16π2Þ2 : ð28Þ

Along the direction we are considering, this gives a
potential

V2-loop ¼
ðNc þ 1Þð2Nc þ 3ÞαðvÞ4

ð16π2Þ2 m2v2: ð29Þ

Notice that at the point (27), this is also Oðm2Nc=ðNc−1ÞÞ.
However, since it is 2-loop suppressed, it does not
destabilize the chiral symmetry breaking minimum.
We should finally check the effects of higher order terms

in the Kähler potential, the leading ones being ðTrM†MÞ2
and TrM†MM†M with unknown coefficients (including
signs). Using (1), we find that these give potential terms
∼m2v4. At the point (27), these are higher order in m and
can be neglected.

B. Baryon number breaking direction, b ≠ 0

In general one can minimize (26) with respect to b and x,
finding

b2 ¼ β

α
vNc − 2x2 ð30Þ

x ¼ ðNc − 2Þm
2α

: ð31Þ

Plugging these in we find the runaway potential found
in [33]

Vjb;x ¼ −
ðNc − 2Þ2β

2α
m2vNc: ð32Þ

However, we must account for loop corrections. The
bottom Nc components of B and B̄ acquire a mass αv, so
we integrate them out. This gives, to all but the upper-left
component M11, the 2-loop mass (28). At this point, the
remaining superpotential is simply W ¼ αB1M11B̄1. M11

then obtains a mass at the lower scale
ffiffiffi
2

p
αb. Integrating it

out results in 2-loop AMSB masses for B1 and B̄1

m2
b ¼

3αðbÞ4m2

ð16π2Þ2 : ð33Þ

Adding up these contributions along the direction we are
considering, this gives a potential

V2-loop ¼
m2

ð16π2Þ2 ½Ncð2Nc þ 3ÞαðvÞ4v2 þ 6αðbÞ4b2�:

ð34Þ

Clearly the first term is dominant. Importantly however,
this is the same order in m as the tree level runaway (32)
and lower order in v since Nc > 2. While it is loop
(logarithmically) suppressed, this is a smaller effect than
the power suppression of (32). Therefore, around the origin
where v ≪ 1, the loop effects stabilize the tree level
runaway.
In this case there is also a trilinear AMSB term coming

from (3) that goes as ∼mb2x with 1-loop suppression. Like
the second term in (34), this is subdominant. Finally,
subleading terms in the Kähler lead to power suppressed
potential terms that can be neglected.
What we have shown is remarkable: the chiral symmetry

breaking point for small m is stable and the AMSB loops
effects play a subleading role. However, when we consider
a possible runaway direction, the loops come in to save the
day. While we cannot be sure of what happens when the
fields are OðΛÞ, there are no runaways from the origin and
the chiral symmetry breaking point stands a good chance of
being the global minimum.

C. Nc = 2

In this case tree-level AMSB vanishes because the
superpotential is marginal. Due to the positive 2-loop
masses, the meson and baryon fields are pushed to the
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origin of moduli space, where the theory experiences
confinement without chiral symmetry breaking. This does
not match expectations of non-SUSYQCD and we expect a
different global minimum to emerge in the large SUSY
breaking limit. A similar phenomenon was seen for a
Standard-Model-like chiral SUð5Þ gauge theory in [35].

VI. Nc + 1 < Nf ≤ 3=2Nc: FREE MAGNETIC PHASE

For this range of flavors the SUSY theory is in the free
magnetic phase and the IR is described by an SUðÑcÞ
(Ñc ¼ Nf − Nc) gauge theory with quarks and antiquarks
in representations qið□̄; 1Þ and q̄jð1;□Þ of the SUðNfÞ ×
SUðNfÞ flavor group, respectively. Additionally, the mag-
netic theory has a gauge-singlet mesonMij in the ð□; □̄Þ of
the flavor symmetry. The superpotential is given by

W ¼ λTrqiMijq̄j ð35Þ

where all fields have already been normalized to have
canonical Kähler potentials. Importantly, only the deep IR
behavior of the theory is specified and we do not have
control over the relative strengths of the gauge interaction
and the Yukawa interaction λ in Eq. (35).
The case of the free magnetic phase is very subtle, and

so far has not been properly analyzed. In fact, this phase is
expected to be beset by baryonic runaway directions,
so that no useful information can be obtained. We show
that for the majority of the free magnetic phase
(Nc þ 1 < Nf ≲ 1.43Nc) the baryonic runaway directions
are lifted, and the chiral symmetry breaking minimum is
stable and likely the global minimum of the theory. The
analysis itself is quite involved, as one has to examine
several branches, which we will present below.
We proceed by first analyzing the baryonic direction,

where the entire dual gauge group is Higgsed. As mentioned,
the free magnetic phase forNf ≲ 1.43Nc is free of runaways
in this direction. We next exhibit the chiral symmetry
breaking minimum along the mesonic direction. Finally,
we check the mixed directions, where only some meson
VEVs are turned on, to ensure that they contain no runaways.

A. RG analysis and baryonic branches

In a small neighborhood of the origin of moduli space,
the theory is allowed to run into the deep IR. As suggested
by the name, the theory is IR free, with both the gauge
coupling g and Yukawa coupling running to zero. However,
their coupled beta functions make them run asymptotically
to the IR attractor given by

0 ¼ d
d log μ

g2

λ2
: ð36Þ

This allows λ to bewritten in terms of g, andwe can use (4)
to find the 2-loopmasses of the dual squarks and the mesons

m2
q ¼

ð−b̃Þg4
ð16π2Þ2

N2
f − 3NfÑc − Ñ2

c þ 1

2Nf þ Ñc
m2 ð37Þ

m2
M ¼ ð−b̃ÞÑcλ

2g2

ð16π2Þ2 m2 ð38Þ

where b̃ ¼ 3Ñc − Nf is negative. The mesons maintain a
positive mass throughout the free magnetic window, as do
the dual squarks for most of the window. However, at the
upper end Nf ≳ 1.43Nc (in the large Nc limit), the dual
squark mass turns negative and we expect a baryonic
runaway toward an uncalculable minimum.
Concretely, for Nf ≳ 1.43Nc we consider giving D-flat

VEVs to the dual squark

q ¼ B̃

�
1Ñc×Ñc

0Ñc×Nc

�
: ð39Þ

The effect of this is to Higgs the dual gauge group at the
scale B̃, and to give masses to the dual antiquarks and some
of the mesons. Substituting their equations of motion
eliminates the superpotential. Equation (37) then translates
into a tachyonic mass for B̃, where the gauge coupling is
evaluated at the scale B̃.
The first detailed exploration of baryonic runaways with

SUSY breaking applied consistently between the UV and
IR was undertaken in [15] (see also the more recent [19]).
In both of these works, which used different mechanisms to
break SUSY, baryonic runaways were present throughout
the free-magnetic phase. It is encouraging that AMSB,
while not eliminating them, lifts these directions for most of
the phase.

B. Mesonic branch

In this section we give the meson a VEV with
full rank, repeating the analysis of [21]. This gives masses
to the dual quarks and antiquarks. Without their effects,
the beta function of the gauge theory flips sign, allowing
the theory to generate a new IR dynamical scale
given by

Λ3Ñc
L ¼ Λ̃3Ñc−Nf detM: ð40Þ

The usual superpotential of pure SYM is generated:

W ¼ ÑcΛ3
L ¼ ÑcðdetMÞ1=Ñc ð41Þ

where as usual we have set Λ̃ ¼ 1. Upon adding tree level
AMSB, the minimum can be found along the homogeneous
direction M ¼ v1 with the potential

V ¼ NfjvNf=Ñc−1j2 þ ðNf − 3ÑcÞmvNf=Ñc þ c:c: ð42Þ
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at the point

v¼
�ð3Ñc−NfÞm

Nf−Ñc

� Ñc
Nf−2Ñc

; Vmin¼−O
�
m

2
Nf−Ñc

Nf−2Ñc

�
: ð43Þ

The 2-loop potential from (38) contributes at the same
order in m, however it is loop suppressed. We find that the
chiral symmetry breaking minimum is stable.

C. Mixed branches

Instead of turning on all of the meson VEVs, we can
choose to turn on only some of them. These will reveal tree
level AMSB contributions within the free magnetic phase
with tree level runaways. However, as in the case of
s-confinement, the AMSB loop effects will stabilize these
directions.
We begin by writing the meson matrix as

M ¼
 
M̃Rf×Rf

0

0 M̂ðNf−RfÞ×ðNf−RfÞ

!
ð44Þ

and without loss of generality we look for minima at
diagonal M. We then give the lower component M̂ a VEV.
This gives masses to Nf − Rf flavors of quarks, leaving an
SUðÑcÞ gauge theory with Rf massless flavors and a new
dynamical scale

Λ3Ñc−Rf

L ¼ Λ̃3Ñc−Nf det M̂ ð45Þ

with Λ̃ the Landau pole of the dual theory. In what follows
we will set Λ̃ ¼ 1. Finally, we assume that M̃ remains small
compared to both M̂ and the generated scale ΛL.
For 1 ≤ Rf < Ñc, the remaining theory is of ADS-type

and has the superpotential

W ¼ ðÑc − RfÞ
�
Λ3Ñc−Rf

L

detN

� 1
Ñc−Rf

þ TrM̃N ð46Þ

where N is the meson formed by the remaining massless
dual-quarks. We have ignored λ as it will be irrelevant for
this discussion. The second term comes from the Yukawa
of the dual theory.
The SUSYequation of motion (EOM) for M̃ sets N ¼ 0.

Evidently, the EOM for N is singular at this point and to
compensate we must have M̃ → ∞. However, this violates
the assumption of small M̃. Therefore, even before a small
AMSB deformation can be applied, this branch collapses
back to the mesonic branch already considered.
Next consider the case of Rf ¼ Ñc, which will have

emergent meson and baryon degrees of freedom with a
quantum modified constraint. Furthermore, the super-
potential W ¼ TrM̃N fixes M̃ ¼ N ¼ 0. We thus find

ourselves at the baryon point where as before the baryons
are stable, but this time with the emergent meson directions
stabilized by a superpotential. The only question that
remains is the M̂ dependence. For simplicity consider
M̂ ¼ v1. The new dynamics will generate at leading order
the Kähler potential term

K ⊃ aΛ2
L ¼ av2C ð47Þ

where a is an Oð1Þ number of unknown sign and
C ¼ ðNf − RfÞ=ð3Ñc − RfÞ > 1. This will give rise to a
tree level AMSB potential of Oðm2v2CÞ. However, as
before the 2-loop AMSB mass for the meson will give a
positive contribution at Oðm2v2Þ, stabilizing this direction.
For Ñc þ 1 ≤ Rf < 3Ñc, the IR dynamics of the remain-

ing theory are described by a magnetic dual with gauge
group SUðRf − ÑcÞ (except for Rf ¼ Ñc þ 1 where the
theory is s-confining). The superpotential is

WL ¼ TrbiNijb̄j þ TrM̃N: ð48Þ

The N, b, and b̄ are dual mesons, quarks (baryons), and
antiquarks (antibaryons) formed by the massless dual
quarks. Again the superpotential term (35) has transformed
to enforce N ¼ 0 in the supersymmetric limit. This means
when we introduce tree-level AMSB, N ¼ OðmÞ, and we
were justified in ignoring the s-confining detN term as a
high power ofm (assuming N is even full rank). We rescale
the fields by appropriate factors of ΛL to make them
canonical. Ignoring order one factors we have

WL ¼ TrbiNijb̄j þ ΛLTrM̃N: ð49Þ

Finally we substitute the value of ΛL (and set Λ̃ ¼ 1) to
arrive at

WL ¼ TrbiNijb̄j þ ðdet M̂Þ1=ð3Ñc−RfÞTrM̃N: ð50Þ

Let all fields be real and consider the direction given by
Nii¼ni, M̃ii¼xi, bii ¼ −b̄ii ¼ yi, for i ¼ 1;…; ðRf − ÑcÞ
and with all other entries 0. Finally let M̂ ¼ v1.
The potential is

V ¼
X
i

ð2y2i n2i þ ðvCxi − y2i Þ2 þ v2Cn2i

þ 2ðC − 1ÞmvCnixiÞ þ
C

3Ñc − Rf
v2C−2

�X
i
nixi

�
2

ð51Þ

where C is defined as before and remains greater than 1.
Notice that the final term is smaller than the third term in
the first sum by a factor of x2=v2 ≪ 1. Therefore, we can
neglect this term and the potential splits into Rf − Ñc
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identical parts. In what follows, we suppress the index i.
Substituting the y and n equations of motion, and using
n; x ≪ ΛL ¼ vC along the way, we get

Vjy;n ¼ −ðC − 1Þ2m2x2: ð52Þ

As long we keep x ≪ vC, we can let x; v → 1, signaling
a tree level minimum of −Oðm2Þ in the incalculable region
where field VEVs are OðΛÞ. Note that in this direction all
fields, baryonic and mesonic, are turned on.
However, as we saw for the s-confining runaway, the

loop effects must be considered. While this tree-level
runaway is power suppressed as Oðx2Þ ≪ Oðv2CÞ, the
2-loop potential gives a positive contribution with
Oðv2Þ. Therefore, there is again no runaway.
When Rf ≥ 3Ñc, the theory remains IR free and there

are no tree level runaways. As long as Nf ≲ 1.43Nc the
dual quarks will have positive 2-loop AMSB mass.
In summary, we have demonstrated that there is a

stable chiral symmetry breaking minimum and that for
Nf ≲ 1.43Nc there are no runaways.

VII. 3=2Nc < Nf < 3Nc: CONFORMAL WINDOW

In the conformal window, the magnetic description is no
longer IR free. Rather, it has a nontrivial fixed point, which
is weakly coupled at the lower end of the window. We will
first analyze the behavior of AMSB in this region and find
baryonic runaways to incalculable minima. Then, we will
turn to the upper end of the window where the electric
theory has a weakly coupled fixed point. As demonstrated
in [27], AMSB makes a relevant deformation and destroys
the superconformal phase. We can only conjecture about
the intermediate region where both descriptions are
strongly coupled. Finally, we demonstrate local chiral
symmetry breaking minima throughout the window.

A. Lower conformal window

We begin by considering Nf ¼ 3Ñc=ð1þ ϵÞ where
ϵ ≪ 1, and will work in the large Ñc limit and leading
nontrivial order in ϵ for simplicity. For notational conven-
ience, we define

x≡ Ñc

8π2
λ2; y≡ Ñc

8π2
g2: ð53Þ

The beta functions of the magnetic theory, including the
2-loop contribution for y, are

βðxÞ ¼ xð−2yþ 7xÞ; ð54Þ

βðyÞ ¼ −3y2ðϵ − yþ 3xÞ: ð55Þ

They admit a Banks-Zaks (BZ) fixed point at
ðx0; y0Þ ¼ ð2ϵ; 7ϵÞ. As the theory flows to the IR, x and

y will approach this point from above, along the trajectory
specified by (36). Define δx ¼ x − x0 and δy ¼ y − y0.
Close to the fixed point this yields

δx ¼ 2

7

�
1þ 3

2
ϵ

�
δy: ð56Þ

The RG flow is

βðyÞ ¼ 21ϵ2δy ð57Þ

yielding

δy ∼ μ21ϵ
2

: ð58Þ

Using (4), the meson and dual squark masses are

m2
M ¼ 3

2
ϵ2δym2 ð59Þ

m2
q ¼ −

3

4
ϵ2δym2: ð60Þ

Thus in the lower conformal window the dual squarks are
tachyonic and there is a runaway to an incalculableminimum.

B. Upper conformal window

We now examine the upper conformal window via the
electric description, reviewing the results of [27]. Now
Nf ¼ 3Nc=ð1þ ϵÞ, and we use all conventions of the
previous section. The beta function at 2-loop is

βðyÞ ¼ −3y2ðϵ − yÞ ð61Þ

where the BZ fixed point y0 ¼ ϵ is now approached from
below as

ð−δyÞ ∼ μ3ϵ
2

: ð62Þ

From (4) and (5) we obtain the squark and gluino masses

m2
Q ¼ 3

4
ϵ2ð−δyÞm2 ð63Þ

mλ ¼
3

2
ð−δyÞm: ð64Þ

As expected the squark mass is positive. As long as
3ϵ2 < 1 (this bound is outside of our small ϵ limit and
should be taken with a grain of salt), at some point in the
RG flow the squark and gluino masses will exceed the
renormalization scale. At this point the superpartners can be
integrated out and the superconformal phase is destroyed.
What remains is non-SUSY QCD and must be analyzed
from the (albeit strongly coupled) magnetic description.
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C. Chiral symmetry breaking minimum

We have shown that AMSB, at both the top and bottom
of the conformal window, destroys the superconformal
phase. It is reasonable to assume this is the case throughout
the window. Furthermore, we demonstrated that at the
bottom of the window the theory has a runaway to an
incalculable minimum.
Looking instead for local minima, we examine the

mesonic branch. Just as in the free magnetic phase, this
gives masses to the dual quarks and generates a new
dynamical scale. The superpotential is given by (41).
However, unlike the free magnetic phase where the
Kähler receives logarithmic wave-function renormalization
(which we ignored), in the conformal window we have

ZMðμÞ ∼ μ1−3Ñc=Nf ð65Þ

which is evaluated at μ ¼ v, where M ¼ v1. The result is
that the scaling of the local chiral symmetry minimum is
modified to [27]

V ¼ −OðmσÞ; σ ¼ 1þ N2
f

N2
f − 3NfÑc þ 3Ñ2

c
: ð66Þ

Note that σ goes from 4 (Nf ¼ 3
2
Nc) to 5 (Nf ¼ 2Nc) back

to 4 (Nf ¼ 3Nc).

VIII. Nf ≥ 3Nc: FREE ELECTRIC PHASE

For large number of flavors, the 2-loop squark mass from
AMSB is negative, leading to true runaway behavior.
AMSB cannot be used to understand the non-SUSY theory
in this case.

IX. CONCLUSIONS

We carefully analyzed the behavior of SUðNcÞ gauge
theories with Nf flavors upon the application of AMSB,
focusing on the chiral symmetry breaking minima and
potential baryonic runaway directions. For Nc þ 1 ≤ Nf ≤
3=2Nc we found that naive tree level runaways are power
suppressed in comparison to loop effects, which stabilize
these directions. However, a true loop level runaway was
found for the upper end of the free magnetic phase,
Nf ≳ 1.43Nc. This baryonic runaway continued into the
lower end of the conformal window, and we cannot
discount such runaways throughout the window. Such
runaways point to the existence of some noncalculable
minimum at large field values of OðΛÞ, which may or may
not correspond to the global minimum of the theory.

The case of Nf ¼ Nc required particular care due to the
inherently strongly coupled nature of the quantummodified
moduli space. We found that the theory is best analyzed
after implementing the quantum constraint. Upon applica-
tion of AMSB the stability of the chiral symmetry breaking
point cannot be determined. This is not due to a problem
with the AMSB method, but rather because the Kähler
potential terms that are critical to this determination are
incalculable.
In summary we found (with the exception of the cases

Nf ¼ Nc for Nc > 2 and Nf ¼ Nc þ 1 for Nc ¼ 2) that
stable chiral symmetry breaking minima are present for
Nf < 3Nc upon application of AMSB in the small SUSY-
breaking limit. Furthermore, the theories withNf ≲ 1.43Nc

are protected from runaways to incalculable minima. This
does not prove that there are no deeper minima with fields
of OðΛÞ, however we take it to be strong evidence for the
conjecture that in these cases the chiral symmetry breaking
minima are in fact global.
Our analysis was performed in them ≪ Λ limit, and the

question remains about the behavior in the nonsupersym-
metric limit of m ≫ Λ. The existence of the chiral
symmetry breaking minima for all flavors is indicative
that these are continuously connected to the true vacua of
non-SUSY QCD. Irrespective of the potential appearance
of a phase transition between these two limits (see
arguments based on holomorphy in [22,23], and also
see Refs. [36,37]), these are the vacua that are of
phenomenological interest for the study of real-
world QCD.
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