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ABSTRACT OF THE DISSERTATION

Novel Phases of Quantum Matter; a Case Study of Weyl Semimetals and Transition
Metal Dichalcogenides

by

Robert Donald Dawson

Doctor of Philosophy, Graduate Program in Physics
University of California, Riverside, September 2024

Dr. Vivek Aji, Chairperson

In quantum materials, the interactions between the bulk lattice, free electrons, and

lattice vibrations give rise to interesting phases of matter. In recent years, new materials

have been discovered that have nontrivial topological physics, allowing them to host topo-

logically protected surface states. Much work has been done in exploring whether or not

such materials can be rendered superconducting via the proximity effect. In this work, I

will explore interesting phases of two topological materials: Weyl semimetals and transition

metal dichalcogenides. In the first section, I explore the properties of proximity induced su-

perconductivity within these materials. Using a numerical technique known as the spectral

method, I determine what, if any, types of superconductivity can be induced within these

materials, and whether or not the superconducting state retains their topological proper-

ties. Ultimately, I show that, in the absence of a non-trivial tunneling interaction at the

interface, no interesting superconducting properties can be induced. In the second section,

I will explore the optical absorption properties of semiconducting materials in the presence

of electron-phonon interactions, which typically give rise to phonon side-bands in optical

vi



spectra. I demonstrate how, with an appropriate transformation, an expression for the op-

tical spectra to arbitrary phonon side-band order can be calculated for a general interacting

system. To demonstrate its validity, I fit the model to the measured optical absorption

spectrum of a device consisting of layered transition metal dichalcogenides.
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Chapter 1

Introduction

Discovering, enabling and understanding new states of matter and phenomena are

the fundamental objectives in condensed matter physics. This is theoretically challenging

due to the interplay of a large number of degrees of freedom, inter-particle interactions, and

quantum correlations. Over the last two decades the discovery of topologically nontrivial

materials and phases have opened new frontiers while also adding to the complexity. The

focus of this thesis is on two such materials namely Weyl semimetals and transition metal

dichalogenides. I explore the nature of superconducting states induced by proximity in both

systems and vibronic excitations in the latter. Beginning with the noninteracting system

and adding in interactions, this chapter provides the background, motivation, and roadmap

for the thesis.
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1.1 Noninteracting Fermi Gas

We begin with a consideration of a collection of indistinguishable, noninteracting

fermions in three dimensions. Independently, each fermion must satisfy the Schrödinger

equation:

− ℏ2

2m
∇2Ψ(r) = εΨ(r) (1.1)

Due to the symmetry of the gas, we may invoke periodic boundary conditions over some

effective length scales:

Ψ(r+Ri) = Ψ(r) (1.2)

Ri = Liî, iϵ{x, y, z} (1.3)

Which yields the wave function and corresponding energy state of a free particle:

Ψk(r) =
1√
V
eik·r (1.4)

εk =
ℏ2k2

2m
(1.5)

Where V = LxLyLz. According to our boundary conditions, the wave vector k must satisfy:

ki =
2πni

Li
(1.6)

With ni an integer.
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In the ground state of the many body system, N fermions must occupy the N

lowest energy states with no two electrons sharing the same state due to the Pauli exclusion

principle. At zero temperature, this yields an expression for the highest occupied momentum

state kF in terms of the electron density n = N/V [1]:

n =
k3F
3π2

(1.7)

The highest occupied energy state, the Fermi Energy, is:

EF =
ℏ2k2F
2m

(1.8)

And at finite temperature, the average number of fermions with energy εk is given by the

Fermi function:

f(εk) =
[
e(εk−µ)/kBT + 1

]−1
(1.9)

Where EF = µ is the chemical potential at zero temperature.

1.2 Periodic Potential and Band Structure

While the above model serves as a good baseline for understanding the kinetic

properties of free electrons, it is insufficient for modeling electrons confined to a material’s

ionic crystal lattices. The above model neglects not only the electron-electron interactions

(discussed in the next section), but also the effects of the periodic coulomb potential created

3



by the lattice ions. To understand these effects, we follow Chapters 8 and 9 of Ashcroft and

Mermin [1], beginning with the second derivation of Bloch’s Theorem. We first assume a

periodic lattice potential:

U(r+R) = U(r) (1.10)

Where R is a Bravais lattice vector. Its plane wave expansion must also be periodic in the

lattice, and is thus an expansion of the reciprocal lattice vectors K:

U(r) =
∑
K

UKeiK·r (1.11)

Finally, expanding the electronic wave function as a plane wave:

Ψ(r) =
∑
k

Ψke
ik·r (1.12)

We obtain the eigenvalue equation [1]:

[
ℏ2

2m
(k−K)2 − ε

]
Ψk−K +

∑
K′

UK′−KΨk−K′ = 0 (1.13)

Note that, by definition, Eq.(1.13) must be invariant under translation by a reciprocal lattice

vector k → k+K. Thus, not only are the electronic wave functions periodic in momentum

space, but the energy levels are as well:

4



Ψn,k+K(r) = Ψn,k(r) (1.14)

εn,k+K = εn,k (1.15)

This has an interesting consequence for the energy levels when the potential is relatively

small compared to the free kinetic energy. Near the reciprocal lattice vectors, the energy

resembles that of a free electron, creating a periodic collection of quadratic energy levels.

However, there is a collection of momenta where these levels cross. At these points, the

lattice potential acts as a perturbation of the free system, splitting the levels into periodic

energy bands. The periodic nature of the energy bands means it is sufficient to determine

the band structure within the First Brillouin Zone, as seen in Fig.1.1, which is known as

the reduced zone scheme.

1.3 Interacting Systems: Superconductivity

While the above theory is sufficient for describing some of the basic electronic

properties of materials, it is still missing many underlying interactions of the many-body

problem. Furthermore, in the early twentieth century, while studying the conductive prop-

erties of materials at low temperatures, dutch physicist Heike Kmerlingh Onnes discovered

that some metals had zero electrical resistance below some critical temperature Tc. At

the time, there was no microscopic theory to explain why the electrical resistance sponta-

neously vanished. This remained the case until 1957, when Bardeen, Cooper, and Schrieffer

5



Figure 1.1: Construction of the reduced zone scheme for the lowest three energy bands of a
crystal. (Left) A free electron gas with translational invariance, (Middle) the same system
under the influence of a weak, periodic potential, and (Right) the band structure in the
First Brillouin Zone.

put forth the BCS theory of superconductivity, which attributed the phenomenon to an

attractive electron-electron interaction mediated by lattice vibrations (phonons).

Up until this point, we have written in our systems in first quantization, in which

we solve the quantum mechanical eigenvalue problem for the appropriate single-particle

wave functions and energies. However, in the interacting N-body problem, we would then

be tasked with finding the N-body wave function which, for fermions, would be found from

the Slater determinant. For a macroscopic system, this approach is highly non-trivial, and

instead we will approach the problem through second quantization. In this framework, the

system’s physics is modeled through field operators Ψ†
n(r) (Ψn(r)) which create (annihi-

late) a particle at position r with quantum number(s) n. To satisfy the bosonic/fermionic

statistics, these operators obey the commutation relations:

6



[Ψn,Ψ
†
m]η = δn,m (1.16)

[Ψn,Ψm]η = [Ψ†
n,Ψ

†
m]η = 0 (1.17)

Where η = 1 (η = −1) for bosons (fermions) denotes the commutator (anti-commutator).

Furthermore, we define the quantum state in terms of the number of particles occupying

each available state, i.e. for a system with N states, |Ψ⟩ ≡ |n1, n2, . . . , nN ⟩. With a proper

choice of normalization factors, it is easy to show that such a configuration is an eigenstate

of the number operator Ni ≡ Ψ†
iΨi with eigenvalue ni. Therefore, in this language, the

non-interacting Hamiltonian:

H0 =
∑
n,k

εn,kΨ
†
n,kΨn,k (1.18)

is diagonal, and we write the electron-electron Coulomb interaction as:

Hel−el =
∑
n,m

∑
k,k′,q

V n,m
q Ψ†

n,k+qΨ
†
m,k′−qΨm,k′Ψn,k (1.19)

At this point, our theory is composed of three pieces: 1) An electron gas with free kinetic

energy, 2) a periodic, ionic lattice potential that binds the electron gas, giving rise to a

periodic band structure, and 3) a repulsive electron-electron interaction acting as a pertur-

bation to the already solved system. If we were to proceed from here, we would follow the

steps of Hartree and Fock, replacing the repulsive two-particle interaction with an effective
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screening potential [1]. However, Bardeen et. al. realized that there was one additional

missing piece: vibrations of the crystal lattice.

In our original model, we treated the ions of the lattice as a static distribution. In

reality, local ions in the lattice are free to oscillate about their equilibrium position. In the

presence of a local electric field (i.e. from a passing electron, or some other source), the ion

is displaced from equilibrium, and its repulsive interaction with the other ions propagates

the displacement through the rest of the lattice as a wave known as the phonon. Bardeen

et. al. argued that, localized distortions would create an effective attractive interaction

between electrons that overpowers the coulomb repulsion [2]. Below a critical temperature,

this interaction leads to a new global minimum in the system’s free energy described by a

collection of paired electrons that have Bose-condensed into a collective ground state. It is

these Cooper pairs move through the lattice without resistance.

The current focus is on exploring unconventional superconductivity. Broadly

speaking, this includes any type of superconductivity that is not explained by the BCS

theory (for instance, cuprates with significantly higher critical temperatures compared to

their BCS counterparts). For our purposes, we will focus on the principle of topological su-

perconductivity, in which the superconducting states can manifest as topologically protected

edge states. Additionally, my work will make use of the proximity effect, wherein a tradi-

tionally non-superconducting material can be rendered superconducting due to proximity

to a superconductor.
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1.4 Band Structure and Topology

To understand what ”topologically nontrivial” means, we introduce the concept of

the Berry phase. Here I follow the procedure outlined in Bernevig and Hughes [3], and derive

the Berry phase from an adiabatic evolution of a quantum system in a parameter space k.

I then demonstrate how this phase gives rise to edge states, and the role of symmetry in

determining what type of topological invariants are allowed in a system.

1.4.1 Berry Phase

In systems with translational invariance (such as a crystal lattice), we can model

the system in momentum space k in terms of the Bloch wave functions |Ψn(k)⟩:

H(k) |Ψn(k)⟩ = En(k) |Ψn(k)⟩ (1.20)

Where H(k) describes the Hamiltonian in momentum space. We will explore the behavior

of this system under an adiabatic perturbation following a path C in momentum space,

parameterized by k(t). The adiabatic theorem requires that the initial state remain an

eigenstate of the system [3–6]; assuming we can choose a smooth gauge for the wave function

by writing it as |Ψ(k(t))⟩ = e−iθ(t) |Ψn(k(t))⟩, with θ(t), the Schrödinger equation gives us:

iℏ
d

dt
|Ψ(k(t))⟩ = H(k(t)) |Ψ(k(t))⟩ (1.21)
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Thus:

e−iθ(t)En(k(t)) |Ψn(k(t))⟩ = e−iθ(t)ℏ
(
dθ

dt

)
|Ψn(k(t))⟩+ e−iθ(t)iℏ

d

dt
|Ψn(k(t))⟩ (1.22)

Removing the common phase factor and applying a normalized inner product, we obtain:

ℏ
(
dθ

dt

)
= En(k(t))− iℏ ⟨Ψn(k(t))|

d

dt
|Ψn(k(t))⟩ (1.23)

Which yields the phase:

θ(t) =
1

ℏ

∫ t

0
dt′En(k(t

′))− i

∫ t

0
dt′
〈
Ψn(k(t

′))
∣∣ d

dt′
∣∣Ψn(k(t

′))
〉

(1.24)

The first term in Eq.(1.24) is the usual dynamical phase; the negative of the second term

is the Berry Phase [3]:

γn = i

∫ t

0
dt′
〈
Ψn(k(t

′))
∣∣ d

dt′
∣∣Ψn(k(t

′))
〉

= i

∫
C
dk · ⟨Ψn(k)| ∂k |Ψn(k)⟩ (1.25)

Defining the Berry connection:

An(k) = ⟨Ψn(k)| ∂k |Ψn(k)⟩ (1.26)
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And noting that it is purely imaginary:

1 = ⟨Ψn(k)|Ψn(k)⟩

=⇒ 0 = ∂k ⟨Ψn(k)|Ψn(k)⟩ = ⟨Ψn(k)| ∂k |Ψn(k)⟩+ ⟨Ψn(k)| ∂k |Ψn(k)⟩∗

=⇒ ⟨Ψn(k)| ∂k |Ψn(k)⟩ = −⟨Ψn(k)| ∂k |Ψn(k)⟩∗ (1.27)

We can write the Berry Phase as:

γn = −Im

∫
C
dk ·An(k) (1.28)

1.4.2 Topological Invariants and Edge States

Suppose now the curve C is closed in momentum space (i.e. k(0) = k(T ) for a

period T ). We will assume k is two dimensional, (i.e. k = (kx, ky)), and consider a filled

band. If An(k) is smooth everywhere along C, we may apply Stokes’ Theorem:

γn = −Im

∫
dS · (∂k ×An(k))

= Im

∫
dS · Fn(k) (1.29)

Where S is the surface bound by C, in this case the Brillouin zone, and Fn(k) = −∂k×An(k)

is the Berry Curvature and is gauge invariant. However, in two dimensions, the Brillouin

zone is a torus with no natural boundary, and thus Eq.(1.28) (and Eq.(1.29)) must vanish.

Therefore, for materials with nontrivial Berry phase, the Berry connection must be singular

at some point(s) {k0} in the Brillouin zone, obstructing the application of Stokes’ theorem.
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To correct for this, we apply a gauge transformation |Ψn(k)⟩ → e−iϕn(k) |Ψn(k)⟩ within a

region R of each singularity such that An(k) is non-singular within R [3, 4]. The Berry

connection becomes:

AR
n (k) = An(k)− i∂kϕn(k) (1.30)

The Berry connection is now piece-wise smooth everywhere, and we may apply Stokes’

theorem. Since the only boundary is the (inverse) of region R, we have:

γn = −Im

∮
∂R

dk · (AR
n (k)−An(k))

=

∮
∂R

dk · ∂kϕn(k) (1.31)

Finally, we note that for a closed path, we must have |Ψn(k(T ))⟩ = |Ψn(k(0))⟩, thus:

eiϕn(k(T )) = eiϕn(k(0))

=⇒ ϕn(k(T ))− ϕn(k(0)) = 2πn (1.32)

Which allows us to write the Berry phase as:

γn = 2πCh
(n)
1 (1.33)
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Where we have defined the band Chern number:

Ch
(n)
1 =

1

2π

∮
∂R

dk · ∂kϕn(k) =
1

2πi

∫
BZ

dS · Fn(k) (1.34)

which is an integer. For a multi-band system, the full Chern number of the bulk system is

given by the sum of the Chern number of each filled band.

The fact that the Berry phase is quantized in units of 2π leads to an interesting

conflict with the adiabatic theorem. In the context of two gapped systems (i.e. no states

with zero energy), the adiabatic theorem would suggest that each system can be smoothly

evolved into the other (more explicitly, the ground states of one gapped system can be adi-

abatically evolved into the ground states of the other). However, a smooth transformation

would be incapable of changing the Chern number (it’s an integer). Thus, at the interface

between two gapped systems with different Chern numbers, the gap must close, giving rise

to topologically protected edge states. This is known as the Bulk Boundary Correspondence

[3, 7], and is the reason why bulk insulators with nontrivial Chern number have conducting

edge states.

1.4.3 Role of Symmetry

The topological invariant described by Eq.(1.34) characterizes the Hall Conduc-

tance, but other invariants, such as the Z2 invariant, exist. In general, there is a collection

of topological invariants, and which class of invariants a material belongs to will depend

on the inherent symmetries of the problem. For instance, in the presence of time reversal

symmetry (TRS) ([H, T ] = 0, with T the time reversal operator and T 2 = −1), we find:
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H |Ψ⟩ = E |Ψ⟩

=⇒ H(T |Ψ⟩) = TH |Ψ⟩ = E(T |Ψ⟩) (1.35)

Thus, a state |Ψ⟩ and its time-reversal partner have the same energy. When T 2 = −1

(which is the case for half-integer spin particles) [3], these state are orthogonal:

⟨Ψ|T Ψ⟩ = ⟨T (T Ψ)|T Ψ⟩

=
〈
T 2Ψ

∣∣T Ψ
〉

= −⟨Ψ|T Ψ⟩ (1.36)

Thus ⟨Ψ|T Ψ⟩ = 0, and the energy states come in time reversal, orthogonal pairs known as

Kramers’ Pairs. Recalling that, under time reversal, momentum transforms as T kT −1 =

−k, we can investigate the Berry connection of a state |Ψn
k⟩ and compare it with its time

reversal partner
∣∣Ψn̄

−k

〉
:

〈
Ψn̄

−k

∣∣ ∂k ∣∣Ψn̄
−k

〉
= ⟨Ψn

k|T−1∂kT |Ψn
k⟩ = −⟨Ψn

k| ∂k |Ψn
k⟩ (1.37)

Thus, we must have:

Ch(n̄) =
1

2πi

∫
BZ

dS · Fn̄(k) =
1

2πi

∫
BZ

dS · (∂k ×An̄(k))

= − 1

2πi

∫
BZ

dS · (∂k ×An(−k)) = −Ch(n) (1.38)
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This result holds even when obstructions of Stokes’ theorem require a local gauge transfor-

mation:

|Ψn(k)⟩ → e−iϕn(k) |Ψn(k)⟩ =⇒ |Ψn̄(−k)⟩ → eiϕn(−k) |Ψn̄(−k)⟩

=⇒ An̄(−k) → An̄(−k) + i∂kϕn(−k) (1.39)

Summation over all bands gives the Chern number of the bulk system, which is zero. How-

ever, we may now define a new topological invariant called the Z2 invariant:

Z(n)
2 =

[
1
2

(
Ch(n) − Ch(n̄)

)]
mod(2) (1.40)

which is simply the parity of the Chern invariant, and is valid when n and n̄ are good

quantum numbers for the system (for instance, in a spin-diagonal system). Such an invariant

is nontrivial for odd parity Chern invariants, which is typically true of systems that break

inversion symmetry (IS).

1.4.4 Spin Orbit Coupling

Consider a three dimensional lattice of bare ions and non-interacting electrons. In

the tight binding model, the kinetic motion of electrons through the lattice is expressed

through a ”hopping interaction” that moves electrons from one ion to its nearest neighbor:

H = −t
∑
i,j,s

(Ψ†
ri+Rj ,s

Ψri,s +Ψ†
ri−Rj ,s

Ψri,s) + h.c. (1.41)
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where Ψ†
ri,s (Ψri,s) creates (annihilates) an electron on lattice site ri with spin s, and the

lattice is defined by the lattice vectors Rj ≡ aĵ for jϵ{x, y, z}. In terms of the electronic

momentum, the Hamiltonian is:

Hs = −2t
∑
s,k,j

cos(k ·Rj)Ψ
†
k,sΨk,s

≈
∑
s,k

(ta2k2 − 2t)Ψ†
k,sΨk,s (1.42)

where the last line is the approximate energy near k = 0. This model for the cubic lattice

depicts electronic kinetic energy analogous to the free electron (a spin degenerate, quadratic

function of the electron’s momentum); however, the materials we’re interested in have a

more unique band structure. Consider the band structures in Fig.(1.2). The system on

the left has broken time reversal symmetry generated by interaction of the form B0Sz, and

potentially has nontrivial Chern topology. The system on the right has broken inversion

symmetry, leading to an interaction of the form k · S (spin-orbit coupling), and potentially

has nontrivial Z2 topology.

1.4.5 Weyl Semimetals

WSM’s are characterized by energy bands of linear dispersion intersecting at a

collection of momenta points known as Weyl nodes [4, 8–10]. They can be classified by

whether they break time reversal symmetry (TRS) or inversion symmetry (IS); to demon-

strate their topological properties, we will focus our attention on those with broken TRS.
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Figure 1.2: Quadratic band structure with (Left) an interaction that breaks time-reversal
symmetry and (Right) a spin-orbit coupling interaction that breaks inversion symmetry.

The general low energy Hamiltonian has the form [9, 10]:

Hk = vσx(s · k) +mσz + bsz + b′σzsx (1.43)

where σi and si are Pauli matrices in the pseudo-spin orbital and spin degrees of freedom.

In the case of m = b = b′ = 0, the system can instead be written in the block-diagonal form

[9]:

H± = ±vs · k (1.44)

where ± corresponds to the chirality of the system. The Berry curvature and Chern number

are then [9]:
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F±(k) = ± êk
2k2

(1.45)

C±
1 = ±1 (1.46)

In other words, the Weyl points at k = 0 act as ”magnetic” monopoles of the Berry flux.

We may break TRS by taking b ̸= 0, and obtain a similar expression, but with Weyl nodes

at k± = (0, 0,±k0) [9]. The monopoles of opposite chirality are now separated along kz,

and we may treat each instantaneous kz layer between them as an effective 2-D system in

(kx, ky). These layers must each have nonzero Berry flux, and thus have a topologically

protected edge state crossing the chemical potential [9, 10]. However, the opposite is true of

layers not located between the two monopoles, as they have net zero Berry flux. This results

in a pair of topologically protected edge states connecting the Fermi surfaces centered on

the monopoles known as Fermi Arcs [9, 10]. It has been shown that these surface states

can also occur in WSM’s that preserve TRS, but break IS [11].

Despite not having a gapped energy spectrum, WSM’s still contain robust topo-

logical properties, making them an interesting candidate for studies of proximity induced

topological superconductivity. Furthermore, for WSM’s that break TRS, Cooper pairs with

net zero momentum must form a spin triplet pairing [4]. In such a situation, it is possible

to form electron-hole excitations that are their own anti-particle, i.e. a Majorana Fermion

[4]. On the other hand, WSM’s that preserve TRS but break IS are more likely to be

susceptible to the proximity effect of an S-wave superconductor, since the superconductor’s

Cooper pairs are formed from the system’s Kramers’ pairs. Such a WSM can be described
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Figure 1.3: Schematic of the cubic structure of a WSM with broken inversion symmetry.
The system has two sub-lattices: 1) Green and 2) Blue (Hou et. al., 2016).

by a cubic lattice with an underlying sub-lattice, as shown in Fig.(1.3) [12]. The low energy

band structure of such a system is plotted along ky = kz = 0 in Fig.(1.4).

1.4.6 Transition Metal Dichalcogenides

Monolayer transition metal dichalcogenides (TMDC’s) are a class of materials

described by a hexagonal (honeycomb) lattice with an underlying sub-lattice, similar to

Graphene (see Fig. 1.5) [13, 14]. However, unlike Graphene, they possess a strong Ising

spin-orbit coupling (SOC). Their effective low energy Hamiltonian is given by [15–17]:

Hν(k) = at(νkxσx + kyσy) +
EG
2 σz − ν

2Esoc(σz − 1)Sz (1.47)

where ν = ±1 gives the valley (sub-lattice) degree of freedom of the reciprocal lattice, and

σi are the Pauli matrices in the orbital |1⟩ν =
∣∣dx2−y2

〉
+ iν |dxy⟩, |2⟩ = |dz2⟩ subspace.
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Figure 1.4: Band structure of a WSM with broken inversion symmetry, cut along ky = kz =
0. Spin up states are plotted in blue and spin down states are plotted in red.

The parameters a, t, and EG give the lattice constant, hopping parameter, and band gap,

respectively. The band structure of the two valleys have opposite spin physics, as shown in

Fig. (1.6)[15].

The valley wave functions have an intrinsic phase winding that yields a valley

dependent Berry Curvature [15]:

Ωn
νs(k) = −nν

[
2(at)2(EG − νsEsoc)

][
(2atk)2 + (EG − νsEsoc)

2
]−3/2

(1.48)

where n = ±1 denotes the conduction/valence band. While the presence of TRS yields a

net zero Chern invariant (integration of Eq.(1.48) over the full Brillouin zone gives opposite

Chern numbers for the two valleys), the topological invariant Z2 = 1
2(Ch↑ − Ch↓)mod2 is

nontrivial.

20



Figure 1.5: Hexagonal lattice structure of a TMDC. The system has two sub-lattices (de-
picted in blue and red). (b) First Brillouin zone of the hexagonal lattice, showing the
two valleys K and K ′. (c) Sketch of the conduction and valence bands of the two valleys.
(Mouchliadis et. al., 2021).

Figure 1.6: Conduction and valence bands of a TMDC for both valleys, cut along ky =
0. The two valleys have opposite spin physics, breaking the system’s inversion symmetry
(Sosenko et. al., 2017).
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1.5 Organization of the thesis

This work is organized as follows. In Chapter 1, we explore the effects of proximity

induced superconductivity on Weyl semimetals with broken inversion symmetry and Tran-

sition Metal Dichalcogenides. We begin with a review of BCS theory and how it explains

the proximity effect. We then demonstrate how, by expanding the electronic wave function

in a Fourier basis, we can self consistently calculate the electron-electron correlation func-

tion throughout a device coupling a BCS superconductor to a normal material. Finally, we

apply this technique to the chosen materials, and analyze what correlations, if any, can be

induced by proximity.

In Chapter 2, we turn our attention to the optical properties of a stacked Transition

Metal Dichalcogenide structure. A recent experiment has managed to utilize the principles

of laser spectroscopy and photo-current to measure the inter-layer exciton binding energies

of such a device. The data shows numerous peaks in the absorption spectra near the

expected exciton energies. These phonon side-bands have traditionally appeared in photo-

luminescent spectra, thus we aim to explain their existence in the context of photo-current

absorption. In this chapter, we will derive various features of the Interacting Polaron Model.

We obtain a general expression for the optical absorption coefficient and demonstrate how

fitting it to experimental data can be used to obtain a better estimate of the exciton binding

energy.
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Chapter 2

Proximitized Superconductivity

2.1 Introduction

In 1957, Bardeen, Cooper, and Schrieffer proposed a microscopic description of

superconductivity, wherein electrons experience a net attractive interaction due to coupling

with lattice vibrations (phonons) [2]. In the superconducting phase, these electrons form

Cooper pairs, and the super current can be described by correlations between electrons with

opposite momentum and spin. Later, Pierre de Gennes would show that this theory allows

for an interesting phenomenon near the interface of a BCS superconductor and a normal

material called the Proximity Effect [18, 19]. In this section, we will review the BCS theory

of superconductivity and how it allows normal materials to become superconducting near

an interface with a superconductor.
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2.1.1 BCS Theory of Superconductivity

Bardeen-Cooper-Schrieffer (BCS) superconductivity attributes the superconduct-

ing phenomenon of certain metals to an attractive interaction between two electrons:

H =
∑
k,s

ξkΨ
†
k,sΨk,s +

∑
k,k′

Vk,k′Ψ†
k,↑Ψ

†
−k,↓Ψ−k′,↓Ψk′,↑ (2.1)

where the spin degenerate, non-interacting band structure is defined to be ξk ≡ εk−µ, with

µ the chemical potential, and we have also assumed the presence of time reversal symmetry

such that ξk,s = ξ−k,s̄. In the superconducting state, the interaction causes two electrons

with opposite momentum and spin to become correlated. We apply the standard mean field

analysis by assuming negligible fluctuations about an average correlation [20–23]:

bk ≡ ⟨Ψ−k,↓Ψk,↑⟩ (2.2)

Defining δk ≡ Ψ−k,↓Ψk,↑ − bk and expanding Eq.(2.1), we obtain:

Ψ†
k,↑Ψ

†
−k,↓Ψ−k′,↓Ψk′,↑ = (b∗k + δ∗k)(bk′ + δk′)

≈ b∗kbk′ + bk′Ψ†
k,↑Ψ

†
−k,↓ + b∗kΨ−k′,↓Ψk′,↑ − 2b∗kbk′ (2.3)

where we have discarded the small fluctuation δ∗kδk′ . We define the gap function:

∆k ≡ −
∑
k′

Vk,k′
〈
Ψ−k′,↓Ψk′,↑

〉
(2.4)
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and obtain the BCS Hamiltonian:

HBCS =
∑
k,s

ξkΨ
†
k,sΨk,s −

∑
k

(∆kΨ
†
k,↑Ψ

†
−k,↓ +∆∗

kΨ−k,↓Ψk,↑) +
∑
k

∆kb
∗
k (2.5)

The interaction strength Vk,k′ originates from electronic interactions with lattice vibrations

(phonons). The interaction scatters an electron and its time reversal (Kramer’s) pair from

the Fermi surface via virtual phonon scattering when the energy difference of the involved

states is less than the phonon energy [2]. Thus, the interaction strength is defined to be

Vk,k′ ≡ V0 for electronic states with energy |ξk,s|, |ξk′,s| < ℏωD, where ωD is the Debye

frequency.

It will prove useful to write Eq.(2.5) in the bogoliubov-de gennes (BdG) form:

HBCS =
1

2

∑
k

Ψ†
kHkΨk + E0 (2.6)

where, in the Nambu basis:

Ψk ≡ [Ψk,↑,Ψ
†
−k,↓,Ψk,↓,Ψ

†
−k,↑]

T (2.7)

the BdG Hamiltonian Hk and constant energy are given by:

Hk = ξkS0τz −∆k(iSy)τ+ +∆∗
k(iSy)τ− (2.8)

E0 =
∑
k

(ξk +∆kb
∗
k) (2.9)
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Si and τi are the Pauli matrices in the spin and particle/hole subspace, respectively, with

τ± = 1
2(τx ± iτy). We identify a unitary transformation that diagonalizes HBdG:

U †
kHkUk = Dk (2.10)

The columns of Uk are the eigenvectors of Hk. We define a Bogoliubov transformation

Ψk,s ≡ Uk,sγk,s:

 Ψk,s

Ψ†
−k,s̄

 =

 u∗k,s vk,s

−v∗k,s̄ uk,s̄


 γk,s

γ†−k,s̄

 (2.11)

with |uk,s|2 + |vk,s|2 = 1 and s̄ = −s, such that:

H =
1

2

∑
k

γ†kDkγk (2.12)

where γk = [γk,↑, γk,↓]
T , and the quasi-particle energy dispersion is given by Ek,s =√

ξ2k + |∆k|2. The electron/hole weights satisfy:

2ξkvkuk −∆ku
2
k +∆∗

kv
2
k = 0 (2.13)

Thus:

vk
uk

=
±
√
ξ2k + |∆k|2 − ξk

∆∗
k

(2.14)

The sign in the numerator is assigned to the quasi-particle/quasi-hole wave functions. Under
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the normalization condition |u2k|+ |vk|2 = 1, and gauge fixing the phase of the gap function

∆k = |∆k|eiϕk to the hole weight, we find:

uk =
1√
2

(
1 +

ξk√
ξ2k + |∆k|2

)1/2

(2.15)

vk =
eiϕk

√
2

(
1− ξk√

ξ2k + |∆k|2

)1/2

(2.16)

With this transformation, the Hamiltonian in Eq.(2.6) becomes:

HBCS =
∑
k,s

Ekγ
†
k,sγk,s +

∑
k

(ξk − Ek +∆kb
∗
k) (2.17)

where the constant term gives the ground state energy.

We find that, due to the presence of time reversal symmetry, the quasi-particle/hole

weights are symmetric under a k → −k, s → s̄ transformation. Dropping the redundant

subscripts, we find a self consistent equation for the gap function:

∆k = −
∑
k′

Vk,k′

〈
(u∗k′γ−k′,↓ − vk′γ†k′,↑)(u

∗
k′γk′,↑ + vk′γ†−k′,↓)

〉
= −

∑
k′

Vk,k′u∗k′vk′

(〈
γ−k′,↓γ

†
−k′,↓

〉
−
〈
γ†k′,↑γk′,↑

〉)
(2.18)

Note that this bogoliubov transformation has preserved our commutation relations:

{γk,s, γ†k′,s′} = uku
∗
k′{Ψk,s,Ψ

†
k′,s′} − vkv

∗
k′{Ψ†

k,s,Ψk,s}

= δk,k′δs,s′(|uk|2 + |vk|2) = δk,k′δs,s′ (2.19)
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Thus the the quasi-particle operators obey fermionic statistics:

〈
γ−k′,↓γ

†
−k′,↓

〉
−
〈
γ†k′,↑γk′,↑

〉
= −tanh

(
Ek′

2kBT

)
(2.20)

We also have:

u∗k′vk′ = |u′k|2
vk′

uk′
=

1

2

E2
k′ − ξ2k′

∆∗
k′Ek′

=
∆k′

2Ek′
(2.21)

yielding the self consistent gap function:

∆k =
∑
k′

Vk,k′∆k′

2Ek′
tanh

(
Ek′

2kBT

)
(2.22)

From here, one can derive the critical temperature at which the material becomes super-

conducting; however, our interests lie in what happens when the system’s translational

invariance is broken.

2.1.2 Proximity Effect

To illustrate the proximity effect, we consider a basic system: a rectangular box

with a boundary at z = LB separating two regions along the z-axis, terminating at two

endpoints z = 0 and z = L, as in Fig.(2.1). Both pieces will be given the same metallic

base, with a superconducting interaction added to the left region only. The Hamiltonian

for the non-interacting system is:
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Figure 2.1: Sketch of (Left) a device consisting of an S-Wave superconductor (SC) in contact
with a WSM (WSM) with the boundary located at LB, and (Right) a Josephson Junction
architecture with boundaries at BL and BR.

H0 =

∫
dr
∑
ss′

Ψ†
s(r)

(
−ℏ2∇2

2m
+ E0 − µ

)
(S0)ss′Ψs′(r) (2.23)

and the superconducting Hamiltonian is given by:

HSC =

∫
dr
∑
ss′

∆(z)(iSy)ss′Ψ
†
s(r)Ψ

†
s′(r) + h.c. (2.24)

Si are the Pauli matrices in the spin subspace, with S0 being the identity. The semiconductor

gap is given by 2E0, the chemical potential is µ, and the superconducting gap 2∆(z) is

nonzero only for the superconductor. We now Fourier Transform along x and y:

Ψs(r) =
1

(2π)2

∫
dk⊥Ψk⊥,s(z)e

−ik⊥·r (2.25)
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Defining m0 ≡ ℏ2/2m, we obtain:

H0 =

∫
dz

∫
dr⊥

∫
dk⊥
(2π)2

∫
dk′

⊥
(2π)2

∑
ss′

Ψ†
k⊥,s(z)e

ik⊥·r(−m0∇2 + E0 − µ)(S0)ss′Ψk′
⊥,s′(z)e

−ik′
⊥·r⊥

=

∫
dz

∫
dk⊥
(2π)2

∫
dk′

⊥
(2π)2

∑
ss′

(m0(k
′
⊥
2 − ∂2

z ) + E0 − µ)(S0)ss′e
i(k⊥−k′

⊥)·rΨ†
k⊥,s(z)Ψk′

⊥,s′(z)

× (2π2)δ2(k⊥ − k′
⊥)

=

∫
dz

∫
dk⊥
(2π)2

∑
s,s′

(m0(k⊥
2 − ∂2

z ) + E0 − µ)(S0)ss′Ψ
†
k⊥,s(z)Ψk⊥,s′(z)

(2.26)

and:

HSC =

∫
dz

∫
dr⊥

∫
dk⊥
(2π)2

∫
dk′

⊥
(2π)2

∑
ss′

∆(z)(iSy)ss′e
−i(k⊥+k′

⊥)·r⊥Ψ†
k⊥,s(z)Ψ

†
k′
⊥,s′(z) + h.c.

=

∫
dz

∫
dk⊥
(2π)2

∫
dk′

⊥
(2π)2

∑
ss′

∆(z)(iSy)ss′(2π)
2δ2(k⊥ + k′

⊥)Ψ
†
k⊥,s(z)Ψ

†
k′
⊥,s′(z) + h.c.

=

∫
dz

∫
dk⊥
(2π)2

∑
ss′

∆(z)(iSy)ss′Ψ
†
k⊥,s(z)Ψ

†
−k⊥,s′(z) + h.c. (2.27)
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Finally, in the Nambu Basis Ψk⊥ = [Ψk⊥,↑(z),Ψk⊥,↓(z),Ψ
†
−k⊥,↓(z),Ψ

†
−k⊥,↑(z)]

T , the Hamil-

tonian is given by:

H =
1

2

∫
dz

∫
dk⊥
(2π)2

Ψ†
k⊥HBdG(k⊥, z)Ψk⊥ (2.28)

The BdG Hamiltonian is given by:

HBdG(k⊥, z) = [m0(k
2
⊥ − ∂2

z ) + E0 − µ]S0τz +∆(z)(iSy)τ+ −∆∗(z)(iSy)τ− (2.29)

with the Pauli matrices τi acting in the particle/hole subspace and τ± = (1/2)(τx ± iτy).

Our goal now would be to solve the BdG equation:

HBdG(k⊥, z)Ψk⊥(z) = Ek⊥Ψk⊥(z) (2.30)

which can be written as the following set of coupled differential equations:

[m0(k
2
⊥ − ∂2

z ) + E0 − µ]Ψk⊥,↑(z) + ∆(z)Ψ†
−k⊥,↓(z) = Ek⊥Ψk⊥,↑(z) (2.31)

[m0(k
2
⊥ − ∂2

z ) + E0 − µ]Ψk⊥,↓(z)−∆(z)Ψ†
−k⊥,↑(z) = Ek⊥Ψk⊥,↓(z) (2.32)

[µ− E0 −m0(k
2
⊥ − ∂2

z )]Ψ
†
−k⊥,↓(z) + ∆∗(z)Ψk⊥,↑(z) = Ek⊥Ψ

†
−k⊥,↓(z) (2.33)

[µ− E0 −m0(k
2
⊥ − ∂2

z )]Ψ
†
−k⊥,↑(z)−∆∗(z)Ψk⊥,↓(z) = Ek⊥Ψ

†
−k⊥,↑(z) (2.34)

Solving for the terms involving the partial derivative operators:

−∂2
zΨk⊥(z) +MR

k⊥
(z)Ψk⊥(z) = Ek⊥Ψk⊥(z) (2.35)
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where M(z) captures the coupled behavior of the differential equations and, for simplicity,

we have set m0 = 1. We now consider a solution within a specific region R:

−∂2
zΨ

R
k⊥

(z) +MR
k⊥

ΨR
k⊥

(z) = Ek⊥Ψ
R
k⊥

(z) (2.36)

with the assumption thatM(z) is constant (but not necessarily identical) within each region.

We take the Ansatz:

ΨR(k⊥, z) ≡ fR(z)yRk⊥
(2.37)

MR yRk⊥
= εRk⊥

yRk⊥
(2.38)

yielding the differential equation:

−∂2
zf

R(z) + εRk⊥
fR(z) = Ek⊥f

R(z) (2.39)

This is analogous to the usual square well potential, with the region dependent eigenvalue

εRk⊥
replacing the usual V (z) potential.

In principle, Eq.(2.39) can be solved to find the exact form of the wave functions

in each region. In the absence of a gap function, and assuming the two regions are identical,

we would find the usual solution of the infinite square well. However, in the presence of the

gap function, continuity of the electronic wave function across the interface requires that the

electron-hole correlation of the host superconductor ”leaks” into the normal region. This,

in turn, requires the presence of a gap function to be induced in the normal region near
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the SC-N interface. De Gennes showed that the gap function decays exponentially into the

normal system:

∆(z) ∝ e−k(z−LB) (2.40)

and satisfies the interface boundary conditions:

∆(LB)

ν(εF )V
=

∆S(LB)

νS(εF )VS
(2.41)

ξ2

V

d∆

dz

∣∣∣∣
LB

=
ξ2S
VS

d∆S

dz

∣∣∣∣
LB

(2.42)

Here ν (νS) is the density of states of the normal (superconductor) at the Fermi surface,

V (VS) is the strength of the pairing potentials, and ξ (ξS) is the coherence length of the

cooper pair [18, 19]. This phenomenon, which renders a portion of the normal system

superconducting, is known as the proximity effect.

2.2 Methods

The effects of proximitized superconductivity are typically explored in one of two

methods: 1) An assumed intrinsic gap function is inserted into the material’s BdG Hamil-

tonian and evaluated through mean field theory [15, 24–30], and 2) A tunneling model is

constructed to connect the SC layers of a heterostructure to those of the material of interest,

and the resultant gap function is calculated either through exact diagonalization or from

the tunneling self energy [15–17, 25, 31–38]. Mean-field analysis reveals that WSM’s and
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Figure 2.2: Sketch of (red) the gap function and (blue) the correlation function across an
SC-N interface, with the boundary placed at LB = 0. In general, the gap function is discon-
tinuous across the interface, while the fraction of paired electrons F/ν(εF ) is continuous.
Both functions decay exponentially into the normal material.

TMDC’s can support intra-valley/intra-nodal spin triplet pairings of the form ⟨Ψk,sΨk+δk,s⟩.

However, such analysis can only reveal the possible forms of the induced superconductiv-

ity, and cannot tell you which ones are realized experimentally. The same can be said for

the tunneling approach, as the form of the induced superconductivity will depend on any

assumptions made of the tunneling model. In this section, we will explore a method for ob-

taining a self-consistent calculation of the gap function while making a minimal assumption

of the tunneling model: continuity of the electronic wave function and its derivative across

the SC-N interface.
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2.2.1 The Spectral Method

We now return to Eq.(2.39), writing it in the form:

∂2
zf

R(z) = −ẼR
k⊥

fR(z) (2.43)

where Ẽk⊥ is the difference between the energy of the system and that of a piece-wise region.

Assuming Ẽk⊥ > 0, and applying the boundary conditions f(0) = 0 for the left region (or,

equivalently, f(L) = 0 for the right), we have:

fR(z) = Asin(kRz) (2.44)

In the region containing L, we must have:

kR =
nπ

L
, nϵN (2.45)

This suggests that the wave functions in the region containing L can be expanded in the

form:

f(z) =

√
2

L

∑
n

Cnsin(knz) (2.46)

In fact, by invoking continuity of the wave function and its derivative at the interface, and

the uniqueness theorem for linear differential equations, we see that Eq.(2.46) is the general

solution for the full system.
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In general, calculating the energies in Eqs.(2.31-2.34) is still nontrivial, as it re-

quires knowledge of the Fourier coefficients Cn. However, now that we know we can expand

the wave functions in a Fourier basis, we are free to re-cast the piece-wise Hamiltonian in

the same basis [39]:

⟨n|HBdG(k⊥) |m⟩ = 2

L

∫ L

0
dz sin(knz)HBdG(k⊥, z) sin(kmz) (2.47)

This approach, known as the spectral method, converts Eqs.(2.31-2.34) from a set of coupled

differential equations into a numerical eigenvalue problem, allowing us to obtain the (now

smooth) energy dispersion of the piece-wise system as well as the Fourier coefficients of

the wave functions. The advantage of this approach is that we may now self-consistently

calculate the gap function of the proximitized system without relying on a tunneling model

to mix the two regions.

To illustrate the calculation, we return to our earlier expression for the gap func-

tion, now modified to account for its real space dependence. We assume zero temperature

and an attractive interaction of the form Vk,k′ = −V0 for non-interacting states within the

Debye window. We obtain:

∆k⊥(z) = V0(z)
∑
k′
⊥

( ∑
|ξα,k′⊥

|≤ℏωD

∑
m

u
∗(n)
α,k′

⊥,↓v
(m)
α,−k′

⊥,↑sin(kz)sin(kmz)

)
(2.48)

with α the eigenstate index of the Fourier system. The gap function now has the form:

∆k⊥(z) = g(z)F (z) (2.49)
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g(z) accounts for the strength of the interaction within the host superconductor and the

pairing amplitude F (z) is given by:

F (z) =
∑
m

∑
k′
⊥

Cnm(k′
⊥)sin(knz)sin(kmz) (2.50)

with the Fourier coefficients:

Cnm(k′
⊥) =

∑
|ξα,k′⊥

|≤ℏωD

u
∗(n)
α,k′

⊥,↓v
(m)
α,−k′

⊥,↑ (2.51)

We are now equipped to solve for the pairing amplitude self consistently by: (1) Finding

the wave functions of the proximitized Hamiltonian whose elements are given by Eq.(2.47),

and (2) inserting the wave function coefficients into Eq.(A.2). This can, in principle, be

done iteratively; however, the algorithm is computationally expensive, and our simulations

have shown convergent solutions after just one iteration. We therefore limit our analysis to

one loop simulations.

We conclude this section by exploring a limitation of the prescribed technique.

Suppose we were to define two simple, metallic Hamiltonians:

HL =

∫
dzΨ†(z)

[
mLP

2
z

]
Ψ(z)

HR =

∫
dzΨ†(z)

[
mRP

2
z

]
Ψ(z) (2.52)

where mL is considered nonzero in the region 0 < z < LB and mR is considered nonzero in

the region LB < z < L. This model describes a spinless particle in a box of length L such
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that it has a different mass on either side of a boundary at LB. If we were to attempt to

expand this Hamiltonian in our Fourier Basis, we would find the following matrix elements:

Hnm = −2mL

L

∫ LB

0
dzsin(kz)(−i∂z)

2sin(kmz)− 2mR

L

∫ L

LB

dzsin(kz)(−i∂z)
2sin(kmz)

= k2m

[
2mL

L

∫ LB

0
dzsin(kz)sin(kmz)− 2mR

L

∫ L

LB

dzsin(kz)sin(kmz)

]
∝ k2m(mR −mL) (2.53)

This is not symmetric under an exchange of n ↔ m, and the expanded Hamiltonian is not

Hermitian, leading to restrictions on the Bulk models used to generate differential equa-

tions similar to Eq.(2.35). When constructing the Bulk Hamiltonians, coefficients attached

to momentum terms of the axis with broken translational invariance must be continuous

throughout the device. They must either be constant (likely leading to a Fourier basis) or

some continuous function that allows for a set of normalized, orthogonal basis functions to

be chosen.

2.2.2 Metallic Simulations

To demonstrate that the numerical approach faithfully accounts for proximal su-

perconductivity, we consider a metallic Hamiltonian (Eq.(2.23)). We study three cases.

• The parameters of the Hamiltonian are identical on both sides of the interface. This is

the standard model of SC-N junction. In Fig.(2.3b), we recover the smooth evolution

from the SC to the metal without any oscillatory behavior. For a clean superconductor

the coherence length is 0.74ξ[18, 40] which is quantitatively consistent with the data.
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• To introduce a mismatch at the interface we introduce a relative shift of the bands.

The net effect is to introduce mismatch in velocity and density of states at the chemical

potential. While an oscillatory behavior is beginning to emerge in Fig.(2.3d), a sharp

drop off or an evanescent behavior is not observed.

• To test the effect of inversion breaking, we introduce Eq.(2.55) to the metallic side of

the interface. A sharp change in symmetry across the interface leads to a sharper fall

off and the emergence of oscillatory behavior (see Fig.(2.3f)).

We estimate the decay length of each case by fitting to an exponential decay. For

these simulations, the Cooper pair size ξ is approximately 0.01L.
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(a) α = 0, E0 = 0.05 (b) α = 0, E0 = 0.05

(c) α = 0, E0 = 0.3 (d) α = 0, E0 = 0.3

(e) α = 2, E0 = 0.05 (f) α = 2, E0 = 0.05

Figure 2.3: Real component of F11 for a metallic model and host superconductor (left)
throughout the device and (right) around the interface, where the parameters are varied to
explore the effect of the sharp interface: (a-b) identical on both sides, (c-d) shifted band
with mismatch in Fermi surface, and (e-f) broken inversion symmetry in the metallic side.
All simulations use N = 145 Fourier modes. ξ = 0.01L for the parameters of the simulation.
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2.3 Weyl Semimetals

2.3.1 Model

We first consider a device of length L with a boundary at z = LB separating: (1) A

Metallic Superconductor and (2) A WSM with some broken symmetry, as seen in Fig.(2.4);

for consistency, we will also consider a Josephson-Junction architecture. We begin with a

bulk WSM Hamiltonian [11, 41]:

HWSM =

∫
d3r

∑
ss′

∑
σσ′

Ψ†
sσ(r)

[
vσxSzPx − vσyPy + (mzP

2
z −m)σz − µσ0S0

]
Ψs′σ′(r)

(2.54)

Here, Ψ†
sσ (Ψsσ) is a creation (annihilation) operator for an electron with spin s =↑, ↓ and

orbital/sublattice quantum number σ = 1, 2. The momentum operator is given byP = −i∇⃗,

µ is the chemical potential, and the Pauli matrices σi (Si) act in the orbital (spin) subspace,

with S0 and σ0 their respective identities. Parity and Time-reversal operators are P = σz

and T = ıSyK where K performs complex conjugation. Of the four possible terms that

break inversion symmetry, but preserve time reversal, two generate nodal rings while the

other two generate Weyl nodes in either the kx − kz or ky − kz plane. Focusing on nodal

phenomena, the term that has Weyl nodes in the kx − kz plane is given by

HIB =

∫
d3r

∑
ss′

∑
σσ′

Ψ†
sσ(ασx)Ψs′σ′(r) (2.55)
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Figure 2.4: (Left) Device consisting of an S-Wave superconductor (SC) in contact with a
WSM (WSM); the boundary is located at LB. (Right) A Josephson Junction architecture
with boundaries at BL and BR.

The distance between the nodes along the kx direction is given by 2α which in principle

can be determined from data on Weyl semi-metals. We treat it as a phenomenological

parameter in our effective model. As discussed previously, for the Fourier basis to be valid,

we require the same degrees of freedom and power of the Pz operator throughout the device.

Thus, we write the metallic system in the same basis as:

HM =

∫
d3r

∑
ss′

∑
σσ′

Ψ†
sσ(r)

[
(mzP

2 + E0)σzS0 − µσ0S0

]
Ψs′σ′(r) (2.56)

where E0 creates a gap between the conduction (σ = 1) and valence (σ = 2) bands. Finally,

we add to the metallic model a superconducting piece:

HSC =

∫
d3r

∑
ss′

∑
σσ′

(iSy)ss′∆σσ′(r)Ψ†
sσ(r)Ψ

†
s′σ′(r) +H.c. (2.57)

where the gap function ∆σσ′ is given by:

∆σσ′(r) = gσσ′(r)Fσσ′(r) (2.58)
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and the interaction strength gσσ′(r) is constant within the superconductor, and only nonzero

for σ = σ′ = 1. The pairing amplitude is as before, with a modification to include the orbital

quantum number.

We now obtain the BdG Hamiltonian for the above Bulk Model. We define the

Nambu basis:

Ψk⊥(z) = [Ψk⊥,1,↑,Ψk⊥,1,↓,Ψk⊥,2,↑,Ψk⊥,2,↓,Ψ
†
−k⊥,1,↓,Ψ

†
−k⊥,1,↑,Ψ

†
−k⊥,2,↓,Ψ

†
−k⊥,2,↑]

T (2.59)

write our Hamiltonian as:

H =
1

2

∫
dz

∫
d2k⊥Ψ

†
k⊥

(z)HBdG(k⊥, z)Ψk⊥(z)

and obtain the BdG Hamiltonian:

HBdG(k⊥, z) = σzτz[mzΘ(LB − z)k2
⊥ −mz∂

2
z + E0(z)]

+ τz[v(z)(kxσxSz − kyσy)−m(z)σz + α(z)σx − µ]

+ (iSy)∆11(z)σ+σxτ+ − (iSy)∆11(z)σ+σxτ− (2.60)

where τi are the Pauli matrices in the particle-hole subspace, τ± = (τx ± iτy)/2, and ∆11

is the gap function of the host superconductor. The parameters E0,m, v, and α have been

replaced with piece-wise functions that are nonzero only within their respective regions.
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Figure 2.5: Band structure of the proximitized model in the particle subspace. The Debye
window, shown as dashed red lines, is chosen such that there is no overlap between the
Weyl and Metallic subspaces. The parameters used are: N = 145, E0 = 0.05, ∆0 = 0.1,
ωD = 0.3, mz = 3, m = 2, α = 2, v = 1, and µ = 0.71.

With inversion symmetry broken, and the introduction of the orbital quantum

number σ, we expect up to four nonzero pairing amplitudes:

F11(z) = −1

2

∫
d2k⊥

[
⟨Ψ−k⊥,1,↓Ψk⊥,1,↑⟩+ ⟨Ψk⊥,1,↓Ψ−k⊥,1,↑⟩

]
(2.61)

FT (z) = −1

2

∫
d2k⊥

[
⟨Ψ−k⊥,1,↓Ψk⊥,2,↑⟩+ ⟨Ψk⊥,2,↓Ψ−k⊥,1,↑⟩

]
(2.62)

FS(z) = −1

2

∫
d2k⊥

[
⟨Ψ−k⊥,1,↓Ψk⊥,2,↑⟩ − ⟨Ψk⊥,2,↓Ψ−k⊥,1,↑⟩

]
(2.63)

F22(z) = −1

2

∫
d2k⊥

[
⟨Ψ−k⊥,2,↓Ψk⊥,2,↑⟩+ ⟨Ψk⊥,2,↓Ψ−k⊥,2,↑⟩

]
(2.64)

where FS and FT are orbital singlet (spin triplet) and orbital triplet (spin singlet) pairings.
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A cut of the noninteracting band structure in the Fourier basis, cut along ky = 0

in the particle subspace, is shown in Fig.(2.5). With the appropriate choice of parameters

and the Debye window (dashed red), the numerical model faithfully approximates a set of

Weyl and Metallic bands that couple across the interface.

2.3.2 Results

SC-WSM

We begin by exploring the behavior of the induced pairing amplitudes in a device

consisting of one SC-WSM interface with broken inversion symmetry in the WSM. For our

initial parameters, we set the chemical potential and Debye window such that µ+ ωD falls

below the top of the Weyl bands in kx and kz space (i.e. µ + ωD < α,m1, respectively).

Additionally, the window is adjusted so that it is near the middle of the metallic band (i.e.

µ − ωD > E0). The number of modes for this simulation is taken to be N = 145 with

the boundary at ZB = 0.6L, and the maximum values of kx and ky are taken such that

kmax
y = kmax

x with HWSM (kmax
x , 0, 0) = µ+ ωD.

Shown in Fig.(2.6a), Fig.(2.6c) and Fig.(2.6e) are the pairing channels F11, F22,

and FT . The FS channel has been omitted since it is several orders of magnitude smaller

than the others. The upper panels cover the entire device while the lower panels focus

on the behavior near the interface. The magnitudes are normalized to F0 = ∆0/g11, with

g11 ≈ 49 and F0 ≈ 6.1× 10−3. The broken inversion symmetry implies that a classification

in terms of singlets and triplets is not appropriate. This is reflected in the finite amplitude

seen in all three pairing channels even though the superconductor is an s-wave spin singlet.
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However, the mismatch in symmetry and band structure across the interface leads to a

significant reduction in amplitude which decays very quickly as one enters the semi-metal.

While the peak and oscillatory behavior near the interface are expected from the finite

number of Fourier nodes and the step like change in Hamiltonian, the significant drop-off

across the interface is a result of disparity between the semi-metallic and metallic behavior

of the low energy electronic states. In sec.2.2.2, we show that, for metallic bands on both

sides, the canonical result of a smooth evolution is recovered.

To better characterize the proximity effect, we analyse the momentum dependence

of the superconducting gap. Fig.(2.6b) shows the form of the pairing amplitude in the middle

of the host SC, whereas Fig.(2.6d) and Fig.(2.6f) show the pairing amplitude on and near

the interface on the WSM side. Notably, the majority of weight remains near the Γ point

until one gets well inside the WSM. However, the amplitude has essentially decayed to zero

by that point. This suggests that the confinement of the superconducting pairing to the

interface on the WSM side of the junction is correlated to the degree to which the metallic

electronic states penetrate the WSM. In other words, the wave-functions participating in

the superconductivity at and near the interface inside the WSM resemble those of the host

superconductor.

Superconductor-WSM-Superconductor

While the surface state of the WSM at the interface with the superconductor

is accurately captured above, those at the other end of the device are ignored. Since the

induced superconductivity is localized to the region around the interface, this approximation
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(a) Re(F11)/F0 (b) |F11(k⊥, z = 0.30L)|

(c) Re(F22)/F0 (d) |F11(k⊥, z = 0.60L)|

(e) Re(FT )/F0 (f) |F11(k⊥, z = 0.61L)|

Figure 2.6: (Left) Real component of (a) F11/F0, (c) F22/F0, and (e) FT /F0 throughout the
device (top) and around the boundary (bottom). (b,d,f) Momentum space behavior of |F11|
(b) in the center of the host SC, (d) on the interface, and (f) just within the interface on
the WSM side. The Weyl nodes are marked at kx = ±α/v, and the edeges of the metallic
(Weyl) debye window are marked at ±kM (±kW ). The boundary is placed at LB = 0.6L,
and the parameters used are: N = 145, E0 = 0.05, ∆0 = 0.1, ωD = 0.3, mz = 3, m = 2,
α = 2, v = 1, and µ = 0.71.

47



(a) Re(F11)/F0 (b) |F11(k⊥, BL)|

(c) Re(F22)/F0 (d) |F22(k⊥, BL)|

(e) Re(FT )/F0 (f) |FT (k⊥, BL)|

Figure 2.7: (Left) Real component of (a) F11/F0, (c) F22/F0, and (e) FT /F0 of the two
Josephson-Junction. (Right) Momentum space behavior on the left boundary of (b) F11,
(d) F22, and (f)FT . The boundaries are placed at BL = 0.4L and BR = 0.6L, and the
parameters used are: N = 145, E0 = 0.05, ∆0 = 0.1, ωD = 0.3, mz = 3, m = 2, α = 2,
v = 1, µ = 0.71, g11 = 48.53, and F0 = 6.18× 10−3.
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is expected to be valid. To verify this, we next turn to the behavior of a SC-WSM-SC device.

To better capture the physics, a greater momentum space resolution is implemented.

Plotted in Fig.(2.7a) is the real component of the pairing mode F11 throughout

the device, as well as its behavior near the boundaries. The results are in agreement with

those in section 2.3.2 where induced superconductivity is predominantly in the F11 channel

confined to the interface. The behaviors of F22 and FT are shown in fig.(2.7c) and Fig.(2.7e).

The latter are finite as expected by the broken inversion symmetry but are much weaker as

compared to the F11 channel.

The momentum space dependence at the boundary for F11, F22 and FT are shown

in Fig.(2.7b), fig.(2.7d) and Fig.(2.7f) respectively. As in the single interface case the ma-

jority of the weight remains near the Γ point in all three channels reflecting the very wek

coupling to the Weyl nodes.

Velocity mismatch across the interface

An important determinant of the coupling across the interface is the mismatch in

the perpendicular velocity between states of the host superconductor (vscz ) and the WSM

(vwz ). To understand its impact, we vary the Weyl velocity v and adjust α to keep the

Fermi-surfaces separate; all other parameters are fixed. Two limiting values of v are (1) vcℓ ,

below which the two systems share no states with similar energy and velocity, and (2) vcu,

above which there are states for which the two systems have the same energy and velocity.

To determine these values, we first note the velocity vz = ∂kzE(k) for each system is given

by:
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vWz =
2mzkz(mzk

2
z −m)√

v2(kx ± α/v)2 + v2k2y + (mzk2z −m)2
(2.65)

vMz = 2mzkz (2.66)

It will prove convenient to write the ratio of these two velocities, R ≡ vWz /vMz , in terms

of the band energy E, the Weyl wave vector magnitude k2W = (kx ± α/v)2 + k2y, and the

metallic wave vector magnitude k2M = k2x + k2y:

R =

√
E2 − v2k2W

E

√√√√√E2 − v2k2W +m

E − E0 −mzk2M
(2.67)

For kW = kM ≡ k with functions f(k) =
√

E2 − v2k2W and g(k) = E−E0−mzk
2
M Eq.(2.67)

is:

R(k,E) =
f(k)

E

√
f(k) +m

g(k)
(2.68)

We seek a condition on our parameters that will either forbid or allow R(k,E) = 1. A local

extreme exists at k = 0 which has the value:

R(0, E) =

√
E +m

E − E0
≡ h0 ≥ 1
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Determining vcℓ is equivalent to finding v for which the concavity of R(0, E) changes sign:

R′′(0) =
mzh0
g0

− v2h0
f2
0

[
2g0h

2
0 + f0

2g0h20

]

=⇒ vℓc =

√
E +m

E − E0

√
2mzE2

3E + 2m
(2.69)

For v < vcℓ , h0 is a global minimum, and thus the electronic velocities are never

equal. However, v > vcℓ is not enough to guarantee equal velocities, as seen in Fig.(2.8). We

denote kWc (kMc ) to be the root of f(k) (g(k)). When kWc < kMc , the ratio function diverges

before it can reach one; thus, the value vcu is obtained when the two roots are equivalent:

vcu =

√
mzE2

E − E0
= vcℓ

√
3E + 2m

2E + 2m
(2.70)

For vcℓ < v < vcu, it is still possible to have R(k,E) = 1 for some value of k; in practice,

however, this window is quite small and does not guarantee a ratio of one. Given these

expressions, we find the simulation in sections 2.3.2 and 2.3.2 have a Weyl velocity of

v = 0.89vcℓ , which suggests that the states near the chemical potential on the two sides of

the interface have very different velocities.

We can now explore the effects of mismatched vz on induced superconductivity.

Shown in Fig.(2.9) are plots of the energy bands for the BdG equations with ky = 0,

along with the corresponding momentum space distribution of F11 at the interface, for

v = 0.5vcℓ , v = vcu, and v = 4.0vcu. The energy band plots have been color weighted by the
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Figure 2.8: Plot of R(k) for (red) v < vcℓ , (green) v
c
ℓ < v < vcu, and (blue) v > vcu using the

same parameters as our simulations and E = µ−ωD = 0.4. Only v > vcu guarantees a ratio
of one.

average of their wave function over the device. To ensure that the Fermi surfaces of the two

systems remain well separated, we adjust α such that the two band structures still meet

at E = µ + ωD. Three distinct band structures are observed: (1) Metallic like bands that

average to the center of the SC at 0.3L (light blue), (2) Weyl like bands that average to

the center of the WSM at 0.8L (light maroon), and (3) Edge states bridging the two band

structures that average to the interface at 0.6L (light brown). We find that, below vcℓ , the

pairing function is mostly confined to the host superconductor and does not couple to the

Weyl or Edge states; this is reflected in the form of F11(k⊥) as a function of z. As v is

increased to vcu, the edge states and the pairing function are able to weakly couple to the

Weyl nodes. Finally, at v = 4.0vcu, the edge states and pairing functions are more evenly

distributed between the Weyl nodes and γ point.
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(a) v = 0.5vcℓ (b) v = 0.5vcℓ

(c) v = vcu (d) v = vcu

(e) v = 4.0vcu (f) v = 4.0vcu

Figure 2.9: (Left Column) BdG energy bands of the single SC-WSM system for (a) v =
0.5vcℓ , (b)v = vcu, and (c)v = 4.0vcu. The bands are color weighted by the average of their
wave function over the length of the device. (Right Column) Corresponding momentum
space distribution for F11 at the interface. The model parameters used are: N = 146,
E0 = 0.05, ∆0 = 0.1, ωD = 0.3, mz = 2, m = 2, µ = 0.7, g11 = 48.9, and F0 = 6.13× 10−3,
with α adjusted based on v.
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Figure 2.10: Least squares fit calculation of (Blue) Decay length and (Purple) Interface
Amplitude as v is increased for (left) F11, (middle) F22, and (right) FT . ξ = 0.04L for the
chosen parameters of the simulation. As the velocity mismatch becomes smaller, both the
amplitude at the boundary and the coherence length inside the WSM decrease.

To better understand the behavior of the pairing modes as v is increased, we fit

the real component of each mode in real space to extract the penetration depth ζ and the

paring amplitude at the interface. These values are plotted and compared to the Cooper

pair size ξ = 2mzkF /(π∆0) and the initial pairing amplitude strength F0 in Fig.(2.10). For

a clean superconductor the coherence length is 0.74ξ. As v is increased, and the pairing

amplitudes couple more with the Weyl physics, the amplitude of the pairing modes at the

interface and the decay length decrease. This suggests that the mismatch in band structure

and loss of inversion symmetry are antagonistic to proximal superconductivity. Even when

states with similar velocities and energies exist at the interface the overlap of wave-functions

is not sufficient to induce superconductivity well inside the WSM.
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2.4 Transition Metal Dichalcogenides

2.4.1 Model

We now consider our previous system, but with a Transition Metal Dichalcogenide

(TMDC) replacing the Weyl semimetal. In momentum space, the TMDC has the two

dimensional BdG Hamiltonian [42]:

H0
v (k) = t(vkxσx + kyσy) +

1
2EGσz − v

2Esoc(σz − 1)Sz − µT (2.71)

where σi are the Pauli matrices in the orbital subspace for the in-plane |1⟩v =
∣∣dx2−y2

〉
+

iv |dxy⟩ and out-of-plane |2⟩ = |dz2⟩ orbital states, with valley number v = ±1. The

momenta kx and ky are measured relative to the TMDC’s K-point denoted by K0. We seek

to apply the spectral method to simulate tunneling between a metallic superconductor and

a TMDC. To do this, we model the TMDC as a thin film whose in plane x − y physics is

given by Eq.(2.71), with a free particle model along z:

Hv(k) = H0
v (k) +mk2zσz (2.72)

Additionally, we modify our metallic system by inserting a barrier in the |2⟩ subspace:

HM (k) = (mk2
⊥)σ1 + (mk2zσz + E0)σz − (V0 − µT )σ2 − µM (2.73)

where k⊥ = kxx̂ + kyŷ is the momentum perpendicular to the normal of the interface and

σ1 and σ2 project onto their respective orbital subspace. This model is designed to better
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represent a single band metallic system while still allowing for the Fourier expansion, as

the barrier term forbids electrons in the orbital |2⟩ state from entering the metallic system.

The new BdG Hamiltonian is given by:

HBdG(k⊥, z) = τz[σ1mΘ(LB − z)k2
⊥ − σzm∂2

z + σzE0(z)− µ(z)]

+ τz[t(z){v(kx, z)kxσx + kyσy}+ 1
2EG(z)σz − v

2 (kx, z)Esoc(σz − 1)Sz]

+ (iSy)∆11(z)σ1τ+ − (iSy)∆11(z)σ1τ− (2.74)

To account for the valley physics, which cannot be replicated in the metallic model, we have

introduced the parameter v(kx, z) ≡ sgn(kx)Θ(z − LB). Because of this, there will be a

discontinuity in the physics of the TMDC when its Fermi momentum is near the Γ point;

our parameters are chosen to avoid this issue. The correlation functions are the same as

before, and we can proceed as we did with the Weyl semimetal.

2.4.2 Results

We explore the induced pairing functions in both the conduction and valence bands

by adjusting the chemical potential of the TMDC. As was the case for the Weyl Semimetal,

the spin triplet pairing is several orders of magnitude weaker than its counterparts, and will

be ignored in this analysis. Our results from the Weyl Semimetal simulations suggest that

only momentum states near the superconductor’s Debye window will have an induced gap;

we test this by constructing the TMDC model in two regimes: 1) Strong overlap, where

K0 is such that the Fermi momentum of the TMDC lies within the Debye window of the

superconductor, and 2) Weak overlap, where K0 puts the Fermi momentum outside the
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(a) µT = 3.0 (b) µT = −2.1

Figure 2.11: Color weighted bands at K0 = 1.8 for (a) conduction bands (µT = 3.0) and
(b) Valence bands (µT = −2.1). Both cases place the TMDC’s Fermi momentum within
the Debye window of the superconductor.

Debye window of the superconductor. For these simulations, all parameters (excluding µT

and K0) are fixed to be: µM = 2, E0 = 0.1, V0 = 30.0, m = 2, ∆0 = 0.1, ωD = 0.3, t = 3,

EG = 3.0, and Esoc = 1.0. The boundary is fixed at LB = 0.80L.

Strong Overlap

We first take K0 = 1.8, with µT = 3.0 and µT = −2.1 for the conduction and

valence bands, respectively. A plot of the full band structure, color weighted by average

position within the device, is shown in Fig.(2.11). The simulated band structure captures the

TMDC and superconductor physics with the TMDC’s Fermi momentum placed within the

superconductor’s Debye window. Shown in Fig.(2.12) (Fig.(2.13)) are the induced pairings

of the conduction (valence) bands (left) throughout the device and (right) in momentum

space at the center of the TMDC (z = 0.90L).
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(a) Re(F11/F0) (b) |F11(kx, ky)|

(c) Re(F22/F0) (d) |F22(kx, ky)|

(e) Re(FS/F0) (f) |FS(kx, ky)|

Figure 2.12: (Left) Real part of the correlation functions in the conduction bands for (a)
F11, (c) F22, and (e) FS . (Right) Corresponding magnitude of the correlation functions in
momentum space at the center of the TMDC. The momentum space correlations are only
nonzero near the superconductor’s Debye window.
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(a) Re(F11/F0) (b) |F11(kx, ky)|

(c) Re(F22/F0) (d) |F22(kx, ky)|

(e) Re(FS/F0) (f) |FS(kx, ky)|

Figure 2.13: (Left) Real part of the correlation functions in the valence band for (a) F11,
(c) F22, and (e) FS . (Right) Corresponding magnitude of the correlation functions in
momentum space at the center of the TMDC.
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(a) µT = 3.0 (b) µT = −2.1

Figure 2.14: Color weighted bands at K0 = 2.6 for (a) conduction bands (µT = 3.0) and
(b) Valence bands (µT = −2.1). Both cases place the TMDC’s Fermi momentum outside
the Debye window of the superconductor.

Weak Overlap

We now take K0 = 2.6, with the same chemical potentials. A plot of the full band

structure, color weighted by average position within the device, is shown in Fig.(2.14).

The simulated band structure captures the TMDC and superconductor physics with the

TMDC’s Fermi momentum placedoutside the superconductor’s Debye window.

Shown in Fig.(2.15) are the induced F11, F22, and FS pairings of the conduction

bands (left) throughout the device and (right) in momentum space at the center of the

TMDC (z = 0.90L). For both strong and weak overlap, only momentum states near the

Debye window of the superconductor have a nonzero pairing.
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(a) Re(F11/F0) (b) |F11(kx, ky)|

(c) Re(F22/F0) (d) |F22(kx, ky)|

(e) Re(FS/F0) (f) |FS(kx, ky)|

Figure 2.15: (Left) Real part of the correlation functions in the conduction bands for (a)
F11, (c) F22, and (e) FS . (Right) Corresponding magnitude of the correlation functions in
momentum space at the center of the TMDC. The momentum space correlations are only
nonzero near the superconductor’s Debye window.
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(a) Re(F11/F0) (b) |F11(kx, ky)|

(c) Re(F22/F0) (d) |F22(kx, ky)|

(e) Re(FS/F0) (f) |FS(kx, ky)|

Figure 2.16: (Left) Real part of the correlation functions in the valence band for (a) F11,
(c) F22, and (e) FS . (Right) Corresponding magnitude of the correlation functions in
momentum space at the center of the TMDC.
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2.5 Conclusions

A promising architecture often proposed to realize unconventional, and poten-

tially topological, superconductivity is proximal coupling of an s-wave superconductor to

materials such as WSMs, TMDCs, and other unconventional systems. Theoretical models

providing support to this approach employ tunneling models across the interface where the

parameters are phenomenological inputs. Of interest for experimental implementation are

design principles which inform on an optimal choice of material properties to achieve prox-

imal superconductivity. This study elucidates the effects of proximitized superconductivity

in an architecture without assuming new physics at the interface beyond quantum tunnel-

ing. This is achieved by a numerical calculation of the electronic wave functions and their

correlations by expanding the respective Hamiltonians in a common Fourier basis.

Our simulations show that the degree to which the superconductivity and Weyl

physics couple is dependent on mismatches in electronic velocity normal to the interface.

The two systems are only able to sufficiently couple once the Weyl velocity v reaches some

minimum value vuc ; however, all three pairing channels show a negative correlation between

the Weyl velocity and their respective decay length and interface amplitude. This suggests

that the induced pairing is unable to penetrate far into the bulk of the WSM. Within

a continuum model, with quantum tunneling across the interface, predominantly surface

superconducting state is induced by proximity. In other words ensuring continuity of wave-

function and probability current at a sharp boundary separating two regions is not enough.

Other treatments implement the same boundary assuming tunneling [43] across the interface

but cannot capture the decay of the amplitude in the superconductor. Additional physics
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involving electronic states near the boundary is needed to induce superconductivity inside

the bulk of the WSM. These can be implemented by adding an interface potential or using

an alternative approach based on transmission/reflection coefficients [44, 45]. Determining

the boundary conditions that allow for efficient proximity effect in Weyl semi-metals is an

interesting next step and beyond the scope of this work.

The momentum space pairings for WSMs reveal higher weight near the Γ point

while the edge state is distributed around the Weyl Nodes. The inability of the pairing

amplitude to penetrate into the bulk of the WSM likely stems from a mismatch in the

momentum of their low energy physics. The same result is found for simulations involving

TMDCs, suggesting that the often desired pairings (i.e. those distributed around the Weyl

Nodes or TMDC valleys) require some form of interface scattering in either the momentum

space, electron spin, or both.
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Chapter 3

Phonon Assisted Optical

Absorption

3.1 Introduction

In semiconductors, there is a finite band gap between the valence and conduction

bands that prevents current from flowing freely. Unlike an insulator, however, the gap is

small enough that it is possible to excite electrons from the valence band into the conduc-

tion band by the absorption of a photon of the appropriate length. The excited electron

experiences an attractive Coulomb interaction with the hole left behind in the valence band,

forming a bound state known as an exciton [46]. Finally, after some delay, the electron de-

cays back to the valence band, releasing a photon in a process known as photo-luminescence.

The photo-luminescent spectrum of semiconductors is often used to determine the band gap

(exciton energy) [47]; however, a recent experiment has captured photo-current absorption
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Figure 3.1: Layered TMDC structure and a sketch of the observed side-bands in the ab-
sorption photo-current. (Barati et. al., 2022).

data to measure the inter-layer excitation energy of the layered TMDC structure shown in

Fig.(3.1) [48]. Their measurements, shown in Fig. (3.2), depict a collection of absorption

peaks, suggesting that the vibrational states of the system allowed for simultaneous phonon

absorption event(s). They corroborate this by confirming that the side-band energy split-

ting, which is roughly 30 meV, is consistent with density functional theory calculations of

the system’s phonon dispersions (as seen in Fig.(3.4)). Since such phonon side-bands have

historically been explored in the context of photo-luminescence spectra [47, 49–53], our goal

will be to obtain a model that captures this physics in the context of an optical absorption

spectrum.
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Figure 3.2: Absorption photo-current for (a-c) direct momentum (K → K) and (e-g) indi-
rect momentum (Γ → K) inter-layer transitions. (Barati et. al., 2022).
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Figure 3.3: (Left) The schematic device and (Right) its predicted vibrational states. (Barati
et. al. Supplementary information, 2022).

Figure 3.4: Density Functional Theory calculations of the phonon dispersions for the vibra-
tional modes in Fig.(3.3) (Barati et. al. Supplementary information, 2022).
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3.2 Initial Model

We first consider a basic model of interacting electrons, phonons, and photons:

H0 = Hel +Hlatt +Hem

=
∑
λ,k

ελ,kP
λ,λ
k,k +

∑
q

ℏΩq(D
†
qDq + 1

2) +
∑
q

ℏωq(B
†
qBq + 1

2) (3.1)

Hel−el =
1
2

∑
λ,λ′

∑
k,k′

∑
q̸=0

V λ,λ′
q Ψ†

λ,kΨ
†
λ′,k′Ψλ′,k′+qΨλ,k−q (3.2)

Hel−ph =
∑
λ,k

∑
q

ℏΩqg
λ
qP

λ,λ
k−q,k(D−q +D†

q) (3.3)

Hel−em = −i
∑
λ,λ′

∑
k

F λ,λ′
P λ,λ′

k,k Bλ,λ′
(3.4)

where P λ,λ′

k,q = Ψ†
λ,kΨλ′,q is a shorthand for the electronic polarization operator, and B†

q

(Bq) and D†
q (Dq) are creation (annihilation) operators for photons and phonons with

wave vector q, respectively. The parameters ελ,k, g
λ
q, and F λ,λ′

represent the electronic

band structure, Frölich Hamiltonian matrix element (scaled by the phonon energy), and

dipole matrix element for vertical transitions, respectively. Additionally, we allow for band

dependence in the coulomb interaction V λ,λ′
q , which will prove necessary when considering

layered 2-D materials. The operator Bλ,λ′
is defined to be B0 for ελ,k > ελ′,k and B†

0 for

ελ,k < ελ′,k. There are two approaches to determine the absorption spectrum for such

a system: 1) Obtain the retarded electronic polarization function [54], and 2) Obtain the
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Heisenberg Equation of Motion for the photon occupation number
〈
B†B

〉
. For the purposes

of this work, we will only consider the latter, but note that the results are identical. To

that end, require an expression for the general polarization commutator:

[P c,v
k,q, P

λ,λ′

k′,q′ ] = δv,λδq,k′P c,λ′

k,q′ − δc,λ′δk,q′P λ,v
k′,q (3.5)

Using the Heisenberg picture, one can show that the average photon occupation number

obeys [46, 47]:

d

dt

〈
B†

qBq

〉
=

1

ℏ

[
⟨Aq(t)⟩ − ⟨Lq(t)⟩

]
(3.6)

where Aq(t) (Lq(t)) describe changes in the photon number due to absorption (emission)

events. Focusing on the absorption term, we define the polarization function:

Π̄λ,λ′
(k) ≡

〈
BP λ,λ′

k,k

〉
(3.7)

and find:

⟨Aq(t)⟩ =
∑

ελ>ελ′

∑
k

F λ,λ′
Π̄λ,λ′

(k) (3.8)

To determine the absorption spectrum, we must solve the equation of motion of the polar-

ization function. However, we must be careful with how we determine the average of an

operator ⟨A⟩. Note that, when calculating the equation of motion for the two particle corre-

lation function
〈
B†

qBq

〉
, we obtained an expression involving the three particle correlation
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function
〈
BΨ†

λ,kΨλ′,q

〉
. In general, the equation of motion of an N particle correlation

function requires knowledge of an N + 1 particle correlation function. This leads to a hier-

archy problem that can only be solved by truncating the resulting coupled equations at a

chosen particle number. The solution is to follow the cluster expansion procedure outlined

in Kira and Koch [55], where the N + 1 particle correlation function is written in terms of

its composite correlations. In a zeroth order cluster expansion, we keep terms up to order

N in the equation of motion, and evaluate them with respect to the system’s initial ground

state. Applying the cluster expansion, the polarization function’s equation of motion obeys

the Wannier Equation [46, 47]:

{iℏ d
dt + (ec,k − ev,k)− ℏω}Π̄c,v

α,β(k, t) = {fv
k − f c

k}
∑
k′

Vk−k′Π̄c,v(k′)− iS(k, t) (3.9)

where eλ,k is a modified band structure accounting for the Coulomb self-energy, fλ
k is the

average electronic occupation number for energy ελ,k, and S(k, t) = F v,c
〈
B†B

〉
(f c

k−q−fv
k)

acts as a source term for the excitations. Note that solutions to Eq.(3.9) describe bound

states created by the attractive Coulomb interaction between the excited electron and the

(positively charged) hole left behind in the valence band, as previously mentioned.

While Eq.(3.9) reveals the well established optical properties of a traditional ex-

citon, it notably lacks any contribution from the electron-phonon interactions. This is due

to the prescription of the zeroth order cluster expansion, which allows only terms of the

same particle order as the correlation function. In order to introduce the Nth order phonon

side-band, we would need to take the cluster expansion to Nth order, requiring us to solve

N + 1 coupled differential equations. This is impractical, and we will need to find some
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method to simplify the calculation before we can obtain the desired phonon side-bands.

In the next section we present a model containing the phonon side-bands, and explore its

derivation in subsequent sections.

3.3 Fitting of Data

In the following sections, we will discuss a transformation that allows us to obtain

the phonon side-bands to arbitrary order within the optical absorption spectrum without

needing to take the cluster expansion to the same order. In the simplest case in which

phonons are emitted/absorbed from optical branch ν with energy ℏΩν , we find the absorp-

tion coefficient as a function of the photon frequency ω to be:

α(ω) =
∑
εc>εv

|F c,v|2
∑

{mνϵZ}

∑
n

∏
ν D

c,v
ν Γc,v

ν

(Ẽν
g +

∑
ν mνℏΩν − ℏω − En,ν)2 + (Γc,v

mν )
2

(3.10)

In this expression, Ẽν
g represents a modified band gap resulting from corrections due to the

electron-phonon interaction, En,ν is the Wannier energy, and Γc,v
mν is the effective exciton

lifetime for transitions between the conduction and valence band. The side-band amplitude

is given by:

Dc,v
ν = e−|gc,vν |2(1+2nν)e

1
2mνβΩνImν

(
|gc,vν |2

sinh(βℏΩν/2)

)
(3.11)

where gc,vν = gcν − gvν is the difference between the electron-phonon matrix elements for the

two bands, and Imν is the first Bessel Function of imaginary argument. For simplicity, we

will assume only one phonon mode contributes to the optical spectra. Furthermore, since
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the difference between Wannier energies is typically larger than spectrum bandwidth, we

will restrict the summation over Wannier energies to a single energy, which will be included

within the fitting. Finally, there are three key unknown parameters in the experimental

data: 1) the effective temperature of the system, 2) the zero phonon line, and 3) the

exciton lifetime. For this reason, we fit the data in three distinct ways: 1) all parameters

freely determined by the curve fit algorithm, 2) the exciton energy fixed near the predicted

literature values (∼1.3 eV for the K −K transitions [48, 56, 57] and ∼0.9 eV for the Γ−K

transitions [48, 58]), and 3) temperature fixed to zero kelvin, preventing the model from

considering phonon absorption side-bands.

Shown in FIG.(3.5) are fittings for the K −K transitions for: 1) arbitrary param-

eters, 2) fixed phonon (30 meV) and exciton (1.278 eV) energies, 3) fixed phonon (30 meV)

and exciton (1.313 eV) energies, and 4) fixed temperature (0K). All values have chi-squared

values of approximately 0.12, suggesting that all four fits are in good agreement with the

data. However, the fits with fixed exciton energy have fitting temperatures of 1538 K and

4626 K, respectively, which are significantly higher than the reported cryogenic tempera-

ture of 20 K of the experiment. Fits (1) and (4) are consistent with one another and the

expected cryogenic temperature, but predict an exciton energy of about 0.78 eV.

Shown in FIG.(3.6) are fittings for the Γ−K transitions for: 1) arbitrary param-

eters, 2) fixed phonon (30 meV) and exciton (0.94 eV) energies, 3) fixed phonon (30 meV)

and exciton (1.02 eV) energies, and 4) fixed temperature (0K). All three arbitrary temper-

ature plots suggest an ambient temperature of about 456 K, while the 0 K plot suggests a

phonon energy of 50 meV and exciton energy of 0.58 eV.
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Figure 3.5: Fitting of Eq.(3.86) to K −K absorption data from reference [48] for (Left) all
model parameters, (Middle) all model parameters with energy fixed to 1.278 ev and 1.313
ev, respectively, and (Right) all model parameters in the zero temperature limit.

Figure 3.6: Fitting of Eq.(3.86) to Γ−K absorption data from reference [48] for (Left) all
model parameters, (Middle) all model parameters with energy fixed to 0.90 ev and 1.02 ev,
respectively, and (Right) all model parameters in the zero temperature limit.
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3.3.1 Discussion

Let us first examine the fittings that fix the exciton energy to the literature values

of 0.9 eV and 1.3 eV. In both cases, the fittings suggest a phonon temperature well above

that of the cryogenics. While it is possible that some effective temperature was introduced

in the experiment, given that the literature values are themselves estimates based off of

photo-luminescent experiments, we must also explore the possibility that these values are

inaccurate. For this reason, we turn to the 0 K fits, which have the lowest and second

lowest chi-squared values for the Γ− k and K −K transitions, respectively. For the K −K

transitions, the fit predicts a zero-phonon line of about 0.78 eV, differing from the literature

value by about 50%. For the Γ − K transitions, a zero-phonon line energy of 0.58 eV is

predicted, differing from the literature value by about 43%.

Ultimately, our model serves as an additional method for calculating the exciton

energy. Critically, it accounts for two perturbations of the bare exciton energy (i.e. in the

absence of a phonon bath) by 1) determining the effective polaron band structure due to

the Frölich interactions (Eq.(A.10)), and 2) allowing for an effective Coulomb interaction

that shifts the Wannier energy. Such corrections are crucial for an optical spectrum with

phonon side-bands, since they would be necessary for determining whether or not the side-

bands are from phonon absorption, emission, or some combination of the two. Finally, it

is worth noting that, to simplify the fitting, some key details of the model were omitted.

Due to the complexity of the exact model (see Eq.(3.80), the above fitting assumes a single

vibrational state with flat dispersion and Frölich matrix elements. While the experimental

fits are consistent with the data, a more sophisticated fitting algorithm paired with the
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more detailed model could yield a more precise calculation of the exciton energies.

3.4 Interacting Polaron Model

We now follow Feldtmann et. al. [47] and define a unitary transformation that

casts the system as an effective interacting Polaron model:

T = exp
[ ∑
λ,k,q

gλqP
λ,λ
k−q,kQq

]
≡ exp

[ ∑
λ,k,q

Uλ
k,q

]
≡ eU (3.12)

where Qq ≡ D†
q −D−q. The following commutators will prove useful:

[Qq, Qq′ ] = [D†
q −D−q, D

†
q′ −D−q′ ]

= −[D†
q, D−q′ ]− [D−q, D

†
q′ ] = 0 (3.13)

[Uλ
k,q, P

α,β
k′,q′ ] = gλqQq[P

λ,λ
k−q,k, P

α,β
k′,q′ ]

= gλq(δλ,αδk,k′P λ,β
k−q,q′ − δλ,βδk−q,q′Pα,λ

k′,k)Qq (3.14)

[Uλ
k,q, U

λ′
k′,q′ ] = gλqg

λ′
q′{P λ′,λ′

k′−q′,k′P
λ,λ
k−q,k[Qq, Qq′ ] + [P λ,λ

k−q,k, P
λ′,λ′

k′−q′,k′ ]QqQq′}

= gλqg
λ′
q′(δλ,λ′δk,k′−q′P λ,λ′

k−q,k′ − δλ,λ′δk−q,k′P λ′,λ
k′−q′,k)QqQq′ (3.15)

We now obtain the Polaron picture using the Baker-Campbell-Hausdorff (BCH) lemma.

Note that [U,Bq] = 0, leaving the photon operator and Hem unchanged under the transfor-
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mation. To first order, the phonon Hamiltonian transforms as:

[U,Hlatt] =
∑
q′

∑
λ,k,q

ℏωq′ [Uλ
k,q, D

†
q′Dq′ ]

=
∑
q′

∑
λ,k,q

ℏωq′gλqP
λ,λ
k−q,k{[D

†
q, D

†
q′Dq′ ]− [D−q, D

†
q′Dq′ ]}

=
∑
q′

∑
λ,k,q

ℏωq′gλqP
λ,λ
k−q,k{−δq,q′D†

q′ − δq,−q′Dq′}

= −Hel−ph (3.16)

This eliminates Hel−ph in the BCH expansion, and reduces the first order expression to

[U,Hel−ph]/2. All higher orders of the BCH expansion for Hlatt can thus be found from

calculating [U,Hel−ph]:

[U,Hel−ph] =
∑
λ,λ′

∑
k,k′

∑
q,q′

(ℏΩq′)[Uλ
k,q, U

λ′
k′,q′ + 2gλ

′
q′P

λ′,λ′

k′−q′,k′D−q′ ]

=
∑
λ

∑
k

∑
q,q′

gλ
′

q′gλq(ℏΩq′)(P λ,λ
k−q,k+q′ − P λ,λ

k−q−q′,k)QqQq′

+ 2
∑
λ,λ′

∑
k,k′

∑
q,q′

gλ
′

q′gλq(ℏΩq′)[P λ,λ
k−q,kQq, P

λ′,λ′

k′−q′,k′D−q′ ]

The first term can be cancelled with a momentum transformation k′ = k−q′. The remaining

commutator is found to be:

[P λ,λ
k−q,kQq, P

λ′,λ′

k′−q′,k′D−q′ ] = P λ,λ
k−q,kP

λ′,λ′

k′−q′,k′ [Qq, D−q′ ] + [P λ,λ
k−q,k, P

λ′,λ′

k′−q′,k′ ]D−q′Qq

= −δq′,−qP
λ,λ
k−q,kP

λ′,λ′

k′−q′,k′

+ δλλ′(δk′−q′,kP
λ,λ′

k−q,k′ − δk′,k−qP
λ′,λ
k′−q′,k)D−q′Qq
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which gives:

[U,Hel−ph] = −2
∑
λ,λ′

∑
k,k′

∑
q

gλqg
λ′
−q(ℏΩq)P

λ,λ
k−q,kP

λ′,λ′

k′+q,k′

− 2
∑
λ

∑
k

∑
q,q′

gλqg
λ′
q′(ℏΩq′){P λ,λ

k−q,k+q − P λ,λ
k−q−q′,k}D−q′Qq

The second term is eliminated by the same momentum transformation, yielding:

[U,Hel−ph] = −2
∑
λλ′

∑
k,k′

∑
q

gλqg
λ′
−q(ℏΩq){Ψ†

λ,k−q(δλ,λ′δk′+q,k −Ψ†
λ′,k′+qΨλ,k)Ψλ′,k′}

= −2
∑
λ,k,q

ℏΩq|gλq|2P
λ,λ
k−q,k−q

− 2
∑
λ,λ′

∑
k,k′

∑
q

ℏΩq g
λ
−qg

λ′
q Ψ†

λ,kΨ
†
λ′,k′Ψλ′,k′+qΨλ,k−q (3.17)

The first term in in Eq.(3.17) couples to the electronic band structure, while the second

term modifies the Coulomb interaction. Finally, we note that when the coefficients in the

Hamiltonian do not depend on the electronic momentum k, the following commutators

vanish:

[P λ,λ
k−q,k, P

λ′,λ′

k′,k′ ] = δλ,λ′(δk,k′P λ,λ′

k−q,k′ − δk′,k−qP
λ′,λ
k′,k ) (3.18)

[P λ,λ
k−q,k,Ψ

†
λ′,k′Ψ

†
λ′′,k′′Ψλ′′,k′′+q′Ψλ′,k′−q′ ] = [P λ,λ

k−q,k, δq′,0P
λ′,λ′

k′,k′−q′ − P λ′,λ′′

k′,k′′+q′P
λ′′,λ′

k′′,k′−q′ ]

= δq′,0δλ′,λ{δk′,kP
λ,λ′

k−q,k′−q′ − δk′−q′,k−qP
λ′,λ
k′,k}

− δλ′′,λ{δk′′,kP
λ′,λ′′

k′,k′′+q′P
λ′′,λ′

k−q,k′−q′ − δk′+q′,k−qP
λ′,λ
k′,kP

λ′′,λ′

k′′,k′−q′}

− δλ′,λ{δk′,kP
λ,λ′′

k−q,k′′+q′P
λ′′,λ′

k′′,k′−q′ − δk′−q′,k−qP
λ′,λ′′

k′,k′′+q′P
λ′′,λ
k′′,k} (3.19)
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Thus [U,Hel−el] = 0 and [U [U,Hel−ph] = 0. The Coulomb interaction remains unchanged,

and the higher order terms in the BCH expansion of Hlatt and Hel−ph vanish. We are left to

calculate the transformations for Hel and Hel−em. We begin with the band structure terms

at first order:

[U,Hel] =
∑
λ,λ′

∑
k,k′

∑
q

ελ′,k′gλq[P
λ,λ
k−q,k, P

λ′,λ′

k′,k′ ]Qq

=
∑
λ,k,q

{ελ,k − ελ,k−q}gλqP
λ,λ
k−q,kQq

=
∑
λ,k,q

{ελ,k − ελ,k−q}Uλ
k,q (3.20)

At second order, we obtain:

[U, [U,Hel]] =
∑
λ,λ′

∑
k,k′

∑
q,q′

{ελ′,k′ − ελ′,k′−q′}[Uλ
k,q, U

λ′
k′,q′ ]

Using Eq.(3.15), this reduces to:

∑
λ

∑
k,q

∑
q′

gλqg
λ
q′{(ελ,k+q′ − ελ,k)P

λ,λ
k−q,k+q′ − (ελ,k−q − ελ,k−q−q′)P λ,λ

k−q−q′,k}QqQq′

Defining q′′ = q+ q′, we obtain:

[U, [U,Hel]] =
∑
λ

∑
k,q

∑
q′

{ελ,k − 2ελ,k−q+q′ + ελ,k−q}gλq−q′Qq−q′Uλ
k−q,k (3.21)
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The form of Eq.(3.21) suggests higher order terms will be of the same form. Using the

matrix product notation (MN)k,k′ =
∑

k1
Mk,k1Nk1,k, the transformed Hamiltonian is:

H̄el =
∑
λ

∑
k,q

(
e−CλEλeCλ

)
k,k−q

P λ,λ
k−q,k

where Cλ
k,k′ ≡ gλk−k′Qk−k′ and (Eλ)k,k′ = ελ,kδk,k′ . First and second order transformations

of Hel−em are similar. We have:

[U,Hel−em] = −i
∑
λ

∑
k,q

∑
λ′,λ′′

∑
k′

F λ′,λ′′
[Uλ

k,q, P
λ′,λ′′

k′,k′ ]B
λ′,λ′′

= −i
∑
λ,λ′

∑
k,q

F λ,λ′{gλq − gλ
′

q }QqP
λ,λ′

k−q,kB
λ,λ′

and:

[U, [U,Hel−em]] = −i
∑
λ

∑
k,q

∑
λ′,λ′′

∑
k′,q′

F λ′,λ′′
gλqQq{gλ

′
q′ − gλ

′′
q′ }Qq′ [P λ,λ

k−q.k, P
λ′,λ′′

k′−q′,k′ ]B
λ′,λ′′

= −i
∑
λ,λ′

∑
k,q

∑
q′

F λ,λ′{gλqQq(g
λ
q′ − gλ

′
q′)Qq′P λ,λ′

k−q,k+q′ − gλ
′

q Qq(g
λ
q′ − gλ

′
q′)Qq′P λ,λ′

k−q−q′,k}B
λ,λ′

= −i
∑
λ,λ′

∑
k,q

∑
q′

F λ,λ′{(gλq′ − gλ
′

q′)(gλq−q′ − gλ
′

q−q′)QqQq−q′}P λ,λ′

k−q,kB
λ,λ′
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This allows us to write the interacting polaron picture as:

H̄pol =
∑
λ,k,q

{(
e−CλEλeCλ

)
k,k−q

P λ,λ
k−q,k − ℏΩq|gλq|2P

λ,λ
k,k

}
(3.22)

H̄latt =
∑
q

ℏΩq(D
†
qDq + 1

2) (3.23)

H̄em =
∑
q

ℏωq(B
†
qBq + 1

2) (3.24)

H̄pol−pol =
1
2

∑
λ,λ′

∑
k,k′

∑
q

Ṽ λ,λ′
Ψ†

λ,kΨ
†
λ′,k′Ψλ′,k′+qΨλ,k−q (3.25)

H̄pol−em = −i
∑
λ,λ′

∑
k,q

F λ,λ′
(
eCλ−Cλ′

)
q,0

P λ,λ′

k−q,kB
λ,λ′

(3.26)

where we have defined Ṽ λ,λ′
q = V λ,λ′

q − 2ℏΩq(g
λ
q)

∗gλ
′

q . Crucially, we see that the EM-field

interaction has been modified and now couples the dipole matrix element with the Frölich

matrix elements.

We further simplify H̄pol by replacing all powers of Cλ with their thermal average,

reducing it to:

H̄pol =
∑
λ,k

eλ,kP
λ,λ
k,k (3.27)

The energies eλ,k are found from evaluating the thermal expectation values.
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3.4.1 Photon Emission and Absorption Spectra

Using Eqs.(3.23-3.27), we are now able to write the equation of motion for the

photon number operator
〈
B†

qBq

〉
. Using the Heisenberg picture, we obtain:

[B†
qBq, H̄] = −i

∑
λλ′

∑
k,q′

F λ,λ′
(
eCλ−Cλ′

)
q′,0

P λ,λ′

k−q′,k[B
†
qBq, B

λ,λ′
]

= i
∑

ελ>ελ′

∑
k,q′

F λ,λ′
(
eCλ−Cλ′

)
q′,0

P λ,λ′

k−q′,kBqδq,0

− i
∑

ελ<ελ′

∑
k,q′

F λ,λ′
(
eCλ−Cλ′

)
q′,0

P λ,λ′

k−q′,kB
†
qδq,0 (3.28)

which can be re-written as:

d

dt
B†

qBq =
1

ℏ

[
Aq(t)− Lq(t)

]
(3.29)

where:

Aq(t) =
∑

ελ>ελ′

∑
k,q′

F λ,λ′
(
eCλ−Cλ′

)
q′,0

P λ,λ′

k−q′,kBqδq,0 (3.30)

Lq(t) =
∑

ελ<ελ′

∑
k,q′

F λ,λ′
(
eCλ−Cλ′

)
q′,0

P λ,λ′

k−q′,kB
†
qδq,0 (3.31)

describe changes in the photon number due to optical absorption and emission, respectively.

We are primarily concerned with phonon side-bands in the absorption spectrum, and will

thus focus our efforts on Eq.(3.30). By normal ordering the phonon operators, we are able
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to define the polaron polarization function:

Πλ,λ′

α,β (k,q) ≡ BP λ,λ′

k−q,k([d
†
λ,λ′ ]

α[dTλ,λ′ ]β)q,0 (3.32)

with (d†λ,λ′)k,k′ = (gλk−k′ −gλ
′

k−k′)D
†
k−k′ and (dTλ,λ′)k,k′ = (gλk−k′ −gλ

′
k−k′)Dk′−k. The absorp-

tion spectrum is now given by:

A(t) =
∑

ελ>ελ′

∑
k,q

F λ,λ′∑
α,β

Cα,β
λ,λ′Π

λ,λ′

α,β (k,q) (3.33)

where Cα,β
λ,λ′ is a coefficient accounting for the normal ordering of the phonon operators. We

will assume the interaction gλq arises from an optical phonon such that Ωq = Ω∀q. We can

find the dynamics of the polarization function by once again using the Heisenberg picture:

iℏ
d

dt
Πc,v

α,β(k,q) = [Πc,v
α,β(k,q), H̄] (3.34)

Commutators for H̄pol and H̄em are:

[Πc,v
α,β(k,q), H̄pol] =

∑
λ′,k′

eλ′,k′ [Πc,v
α,β(k,q), P

λ′,λ′

k′,k′ ]

= (ev,k − ec,k−q)Π
c,v
α,β(k,q) (3.35)

[Πc,v
α,β(k,q), H̄em] =

∑
q′

ℏωq′ [Πc,v
α,β(k,q), B

†
q′Bq′ ]

= ℏωΠc,v
α,β(k,q) (3.36)
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For H̄latt, we first note:

∑
q′

[(dTc,v)q,0, D
†
q′ ]Dq′ =

∑
q′

δq′,−q(g
c
q − gvq)

∗Dq′ = (dTc,v)q,0

Assuming:

∑
q′

[(dTc,v)
β
q,0, D

†
q′ ]Dq′ = β(dTc,v)

β
q,0

we find:

∑
q′

[(dTc,v)
β+1
q,0 , D†

q′ ]Dq′ =
∑
q′,q′′

[(dTc,v)
β
q,q′′(d

T
c,v)q′′,0, D

†
q′ ]Dq′

=
∑
q′,q′′

{[(dTc,v)
β
q,q′′ , D

†
q′ ]Dq′′,0 + (dTc,v)

β
q,q′′ [dq′′,0, D

†
q′ ]}Dq′

=
∑
q′′

{β(dTc,v)
β
q,q′′Dq′′,0 + (dTc,v)

β
q,q′′Dq′′,0}

= (β + 1)(dTc,v)
β+1
q,0

Thus, by induction:

[Πc,v
α,β(k,q), H̄latt] =

∑
q′,q′′

ℏΩBP λ,λ′

k−q,k{(d
†
c,v)

α
q,q′′ [(dTc,v)

β
q′′,0, D

†
q′ ]Dq′

+D†
q′ [(d

†
c,v)

α
q,q′′ , Dq′ ](dTc,v))

β
q′′,0}

= (β − α)(ℏΩ)Πc,v
α,β(k,q) (3.37)
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where, for now, we have assumed the phonon dispersion to be flat; we will discuss how to

generalize to non-flat bands later. The first term of the inter-polaron interaction becomes:

1
2

∑
λ,λ′

∑
k′,k′′

Ṽ λ,λ′

0 [P c,v
k−q,k, P

λ,λ
k′,k′ ] =

1
2

∑
λ,k′

(Ṽ v,λ
0 − Ṽ c,λ

0 )P c,v
k−q,k (3.38)

For the second term, we note:

[P c,v
k−q,k, P

λ,λ′

k′,k′+q′P
λ′,λ
k′′,k′−q′ ] = P λ,λ′

k′,k′′+q′ [P
c,v
k−q,k, P

λ′,λ
k′′,k′−q′ ] + [P c,v

k−q,k, P
λ,λ′

k′,k′′+q′ ]P
λ′,λ
k′′,k′−q′

= P λ,λ′

k′,k′′+q′(δλ′,vδk′′,kP
c,λ
k−q,k′−q′ − δλ,cδk′−q′,k−qP

λ′,v
k′′,k)

+ (δλ,vδk′,kP
c,λ′

k−q,k′′+q′ − δλ′,cδk′′+q′,k−qP
λ,v
k′,k)P

λ′,λ
k′′,k′−q′

which reduces the second term to:

∑
λ

∑
k′,q′

(
Ṽ λ,v
q′

1
2{P

λ,v
k′,k+q′ , P

c,λ
k−q,k′−q′} − Ṽ c,λ

q′
1
2{P

c,λ
k−q+q′,k′+q′ , P

λ,v
k′,k}

)
(3.39)

We replace the commutator and obtain:

∑
λ

∑
k′,q′

{Ṽ λ,v
q′ P λ,v

k′,k′+q′P
c,λ
k−q,k′−q′ − Ṽ c,λ

q′ P c,λ
k−q+q′,k′+q′P

λ,v
k′,k} (3.40)

−
∑
λ

∑
k′,q′

(
Ṽ λ,v
q′

1
2 [P

λ,v
k′,k+q′ , P

c,λ
k−q,k′−q′ ]− Ṽ c,λ

q′
1
2 [P

c,λ
k−q+q′,k′+q′ , P

λ,v
k′,k]

)
(3.41)

The second term reduces to:

∑
λ

∑
k′,q′

(
Ṽ λ,v
q′

1
2{P

λ,v
k′,k+q′ , P

c,λ
k−q,k′−q′} − Ṽ c,λ

q′
1
2{P

c,λ
k−q+q′,k′+q′ , P

λ,v
k′,k}

)
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Which cancels with Eq.(3.38), leaving:

[Πc,v
α,β(k,q), H̄pol−pol] =

∑
λ

∑
k′,q′

B([d†c,v]
α[dTc,v]

β)q,0{Ṽ c,λ
q′ P c,λ

k−q+q′,k′+q′P
λ,v
k′,k

− Ṽ λ,v
q′ P λ,v

k′,k′+q′P
c,λ
k−q,k′−q′} (3.42)

Finally, we evaluate the commutator with H̄pol−em:

[Πc,v
α,β(k,q), H̄pol−em] = −i

∑
λ,λ′

∑
k′,q′

F λ,λ′
[BP c,v

k−q,k([d
†
c,v]

α[dTc,v]
β)q,0, B

λ,λ′
P λ,λ′

k′−q′,k′(e
Cλ−Cλ′ )q′,0]

= −i
∑
λ,λ′

∑
k′,q′

F λ,λ′
{
BP c,v

k−q,kB
λ,λ′

P λ,λ′

k′−q′,k′ [([d
†
c,v]

α[dTc,v]
β)q,0, (e

Cλ−Cλ′ )q′,0]

+ [BP c,v
k−q,k, B

λ,λ′
P λ,λ′

k′−q′,k′ ](e
Cλ−Cλ′ )q′,0([d

†
c,v]

α[dTc,v]
β)q,0

}

The absorption spectrum is found from the thermal average Π̄c,v
α,β(k,q) = ⟨Π⟩c,vα,β (k,q). We

can reduce Eq.(3.42) into two terms:

(1)
∑
λ

∑
k′,q′

{
Ṽ c,λ
q′

〈
P c,λ
k−q+q′,k′+q′

〉〈
P λ,v
k′,kB([d†c,v]

α[dTc,v]
β)q,0

〉

− Ṽ λ,v
q′

〈
P λ,v
k′,k+q′

〉〈
P c,λ
k−q,k′−q′B([d†c,v]

α[dTc,v]
β)q,0

〉}
(3.43)

(2)
∑
λ

∑
k′,q′

{
Ṽ c,λ
q′

〈
P c,λ
k−q+q′,k′+q′B([d†c,v]

α[dTc,v]
β)q,0

〉〈
P λ,v
k′,k

〉

− Ṽ λ,v
q′

〈
P λ,v
k′,k+q′B([d†c,v]

α[dTc,v]
β)q,0

〉〈
P c,λ
k−q,k′−q′

〉}
(3.44)
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The first term reduces to:

∑
q′

{
Ṽ c,c
k−q−q′f

c
q′ − Ṽ v,v

k−q′f
ν
q′

}
Π̄c,v

α,β(k,q) (3.45)

whereas the second term reduces to:

∑
q′

Ṽ v,c
k−q′{fv

k − f c
k−q}Π̄

c,v
α,β(q

′,q) (3.46)

where fλ
k is the Fermi-distribution. The first term consists of contributions from the Polaron

self energy, thus we define:

ẽλ,k = eλ,k −
∑
k′

Ṽ λ,λ
k−k′f

λ
k′

The equation of motion for the polaron correlation function becomes:

{iℏ d
dt + (ẽc,k−q − ẽv,k) + (α− β)ℏωq − ℏω}Π̄c,v

α,β(k,q)

= {fv
k − f c

k−q}
∑
k′

Ṽ v,c
k−k′Π̄

c,v
α,β(k

′,q)

= −i
∑
λ,λ′

∑
k′,q′

F λ,λ′
{
BP c,v

k−q,kB
λ,λ′

P λ,λ′

k′−q′,k′ [([d
†
c,v]

α[dTc,v]
β)q,0, (e

Cλ−Cλ′ )q′,0]

+ [BP c,v
k−q,k, B

λ,λ′
P λ,λ′

k′−q′,k′ ](e
Cλ−Cλ′ )q′,0([d

†
c,v]

α[dTc,v]
β)q,0

}
(3.47)
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We now begin reducing the remaining expectation values in Eq.(3.47). Denoting the phonon

operator combination as Dλ,λ′

α,β (q′), we have:

− i
∑
λ,λ′

∑
k′,q′

F λ,λ′
[BP c,v

k−q,k, B
λ,λ′

P λ,λ′

k′−q′,k′ ]D
λ,λ′

α,β (q′)

= −i
∑
λ,λ′

∑
k′,q′

F λ,λ′
{
Bλ,λ′

B[P c,v
k−q,k, P

λ,λ′

k′−q′,k′ ] + [B,Bλ,λ′
]P c,v

k−q,kP
λ,λ′

k′−q′,k′

}
Dλ,λ′

α,β (q′)

which splits into:

− i
∑

ελ<ελ′

∑
k′,q′

F λ,λ′
{
B†B(δk′−q′,kδλ,vP

c,λ′

k−q,k′ − δk′,k−qδλ′,cP
λ,v
k′−q′,k)

− [B,B†]P c,v
k−q,kP

λ,λ′

k′−q′,k′

}
Dλ,λ′

α,β (q′) (3.48)

and:

− i
∑

ελ>ελ′

∑
k′,q′

F λ,λ′
B2(δk′−q′,kδλ,vP

c,λ′

k−q,k′ − δk′,k−qδλ′,cP
λ,v
k′−q′,k)D

λ,λ′

α,β (q′) (3.49)

Taking an expectation value, Eq.(3.48) takes the form:

− i
〈
B†B

〉∑
q′

{ ∑
ελ>εv

F ν,λ
〈
P c,λ
k−q,k+q′

〉〈
Dv,λ

α,β(q
′)
〉
−
∑
ελ<εc

F λ,c
〈
P λ,v
k−q−q′,k

〉〈
Dλ,c

α,β(q
′)
〉}

− i
∑

ελ<ελ′

∑
k′,q′

F λ,λ′
〈
P c,v
k−q,kP

λ,λ′

k′−q′,k′

〉〈
Dv,λ

α,β(q
′)
〉
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Noting:

〈
P c,v
k−q,kP

λ,λ′

k′−q′,k′

〉
=
〈
Ψ†

c,k−q(δλ,vδk′−q′,k −Ψ†
λ,k′−q′Ψv,k)Ψλ′,k′

〉
= δλ,vδλ′,cδk′,k−qδk′,k+q′f c

k−q(1− fv
k) (3.50)

where we have ignored the term proportional to δc,v since we only consider absorption events

for εc > εv. Thus, Eq.(3.48) reduces to:

−iF v,c
{
f c
k−q(1− fv

k) +
〈
B†B

〉
(f c

k−q − fv
k)
}〈

(eCv−Cc)q′,0([d
†
c,v]

α[dTc,v]
β)q,0

〉
(3.51)

Eq.(3.49) reduces to:

−i
〈
B2
〉∑

q′

{ ∑
ελ<εv

F ν,λ
〈
P c,λ
k−q,k+q′

〉〈
Dv,λ

α,β(q
′)
〉
−
∑
ελ>εc

F λ,c
〈
P λ,v
k−q−q′,k

〉〈
Dλ,c

α,β(q
′)
〉}

which vanishes for the ground state. The first commutator of Eq.(3.47) has the general

form:

−i
∑
λ,λ′

∑
k′,q′

F λ,λ′
BP c,v

k−q,kB
λ,λ′

P λ,λ′

k′−q′,k′

∑
n,m

Cλ,λ′
nm [([d†c,v]

α[dTc,v]
β)q,0, ([d

†
λ,λ′ ]

n[dTλ,λ′ ]m)q′,0]

(3.52)

We split this expressions’ contributions to the EOM into two pieces: 1) a product of cor-

relations with particle order less than the polarization function, and 2) a product of two

correlations with particle order equal to the polarization function. Due to the form of

Eq.(3.52), terms of the first form must be proportional to F λ,λ′
δλ,λ′ = 0. For terms of the
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second form, Eq.(3.52) becomes:

− i
∑
λ,λ′

∑
k′,q′

∑
n,m

F λ,λ′
Cλ,λ′
n,m

〈
BP c,v

k−q,kD
c,v
α,β(q)B

λ,λ′
P λ,λ′

k′−q′,k′D
λ,λ′
n,m(q′)

〉

+ i
∑
λ,λ′

∑
k′,q′

∑
n,m

F λ,λ′
Cλ,λ′
n,m

〈
BP c,v

k−q,kD
λ,λ′
n,m(q′)Bλ,λ′

P λ,λ′

k′−q′,k′D
c,v
α,β(q)

〉
(3.53)

The polaron polarization function must be band consistent since our Fröhlich matrix el-

ements only scatter electrons within one band, and the displacement momentum of the

exciton must match that of the phonons. Thus, Eq.(3.53) can only be nonzero when

{λ, λ′} = {c, v} and q′ = q, yielding:

i
∑
k′

∑
n,m

F c,vCc,v
n,m

(
Π̄c,v

n,m(k,q)Π̄c,v
α,β(k

′,q)− Π̄c,v
α,β(k,q)Π̄

c,v
n,m(k′,q)

)
(3.54)

which is only nonzero for {n,m} ≠ {α, β} and k′ ̸= k. In general, the first term is a correc-

tion to the Coulomb piece in Eq.(3.46), and the second term contributes to the absorption

spectrum’s broadening. However, their contributions to the full absorption spectrum are of

the form:

i
∑
k′

F c,v
∑
α,β

∑
n,m

Cc,v
α,βC

c,v
n,m

(
Π̄c,v

n,m(k,q)Π̄c,v
α,β(k

′,q)− Π̄c,v
α,β(k,q)Π̄

c,v
n,m(k′,q)

)
(3.55)

Which vanishes.
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In the quasi-static limit, we set (d/dt)Π̄c,v
α,β(k,q) = 0 and obtain:

{(ẽc,k−q − ẽv,k) + (α− β)ℏΩ− ℏω}Π̄c,v
α,β(k,q, t)

= {fv
k − f c

k−q}
∑
k′

Ṽ v,c
k−k′Π̄

c,v
α,β(k

′,q)− iS(k,q, t) (3.56)

where the source term is given by:

S(k;q, t) = F v,c
{
f c
k−q(1− fv

k) +
〈
B†B

〉
(f c

k−q − fv
k)
}〈

(eCv−Cc)−q,0([d
†
c,v]

α[dTc,v]
β)q,0

〉
(3.57)

The solutions to Eq.(3.56) gives a set of zero width Lorentzian distributions; however, in

practice, these peaks have a finite width owing to the exciton lifetime. Thus, a better

approximation for the time derivative is given by:

d

dt
Π̄c,v

α,β(k,q) = −Γα,βΠ̄
c,v
α,β(k,q)

which yields:

{−iℏΓα,β + (ẽc,k−q − ẽv,k) + (α− β)ℏωq − ℏω}Π̄c,v
α,β(k,q, t)

= {fv
k − f c

k−q}
∑
k′

Ṽ v,c
k−k′Π̄

c,v
α,β(k

′,q)− iS(k,q, t) (3.58)

and the excited polaron decay rate Γα,β is given by the inverse of the average life time τα,β:

Γα,β = (τα,β)
−1 =

∣∣∣2ℏIm(Σα,β)
∣∣∣
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where Σα,β is the self energy of an electron, which has emitted (absorbed) α (β) phonons,

absorbing and re-emitting a photon. For now, we will focus on solving the quasi-static

solutions to Eq.(3.56), and we will treat the broadening as a fitting parameter.

3.4.2 Wannier Equation

Derivation in 2-D

We focus our attention on the quasi-static EOM, noting that the Lorentzian broad-

ening can always be added later. The inhomogeneous Eq.(3.56) can be solved by expanding

in the basis of its homogeneous equivalent. To do so, we must make some approximations.

We write the polaron dispersion as:

ẽλ,k = eλ,k − Σλ

≡ m̃λk
2 + Ẽλ

where m̃λ and Ẽλ are modifications to the original electron effective mass and band shift

caused by the Fröhlich interaction and Coulomb self energy. The main assumption here is

that the Coulomb self energy and Fröhlich interaction do not change the quadratic dispersion

of the original band structure. We now define the inverse transform of the multi-particle
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correlation function:

Π̄c,v
α,β(k;q) =

1

Vd

∫
ddreik·rΠ̄c,v

α,β(r,q)

Π̄c,v
α,β(r,q) =

Vd

(2π)d

∫
ddke−ik·rΠ̄c,v

α,β(k,q)

Thus, inverse transforming Eq.(3.56), we obtain:

{
m̃c(−i∇− q)2 + m̃v∇2 − Ṽ v,c(r)

}
Π̄c,v

α,β(r,q) = Ec,v
α,βΠ̄

c,v
α,β(r,q)− iS(q, t)Vdδ

d(r) (3.59)

Where Ec,v
α,β = (Ẽc − Ẽv + (α − β)ℏωq − ℏ(ω + iΓα,β)). To reduce clutter, we temporarily

drop the unnecessary subscripts and define:

Π(r) = f(r)Ψ(r)

We first solve the homogeneous equation with S(q) = 0. Our goal is to eliminate the first

order gradient operators in Eq.(3.59). We expand the differential terms as:

m̃c(−i∇− q)2Π = m̃c{[−f∇2Ψ− 2(∇f) · (∇Ψ)−Ψ∇2f + 2iq · [f∇Ψ+Ψ∇f ] + q2fΨ}

m̃v∇2Π = m̃v{f∇2Ψ+ 2(∇f) · (∇Ψ) + Ψ∇2f}

93



We seek to eliminate the linear order ∇Γ terms. Thus:

m̃c{−2(∇f) · (∇Ψ) + 2iq · f∇Ψ}+ m̃v{2(∇f) · (∇Ψ)} = 0

=⇒ (m̃c − m̃v)(∇f) = im̃cqf

yielding:

f = eiηc,vq·r, ηc,v =
m̃c

m̃c − m̃v

Eq.(3.59) is now reduced to:

{
m̃c

[
−∇2Ψ+Ψ(η2c,vq

2) + Ψq2 −Ψ(2ηc,vq
2)
]
+ m̃v

[
∇2Ψ−Ψη2c,vq

2
]
− Ṽ v,c(r)

}
Ψ = Ec,v

α,βΨ

Combining the first and second terms yields:

{
− M̃c,v∇2 − Ṽ v,c(r)

}
Γ =

(
Ec,v

α,β − m̃c(1− ηc,v)q
2

)
Ψ

where M̃c,v ≡ m̃c − m̃v. We can absorb the extra energy term into the definition of Ec,v
α,β

and re-introduce our band and phonon number subscripts to obtain the general solution:

Π̄c,v
α,β(r,q) =

(
eiηc,vq·r

)
Ψc,v

α,β(r), ηc,v = m̃c/M̃c,v
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Where:

{
− M̃c,v∇2 − V v,c(r)− 2ℏΩg∗vgc

Vdδ
d(r)

(2π)d

}
Ψc,v

α,β(r) = EΨc,v
α,β(r) (3.60)

and E is the Wannier energy. The solutions for Γ are those of the d-dimensional Wannier

wave functions with a Darwin perturbation arising from the Fröhlich interaction.

Absorption Spectrum from Wannier Series Expansion

There is a resonance whenever the photon energy allows Ec,v
α,β to equal the Wannier

Energy En. Following the work of Haug and Koch [46], we write the correlation function

as a linear combination of the solutions to the homogeneous Wannier Equation Ψc,v
n (r)[46]:

Ψc,v(r) =
∑
n

bc,vn Ψc,v
n (r)

Inserting this into Eq.(3.59), multiplying by [Γc,v
m (r)]∗, and integrating over real space, we

obtain:

∑
n

bc,vn [En − Ec,v
α,β]

∫
ddr[Ψc,v

m (r)]∗Ψc,v
n (r) = −iS(q, t)Vd[Ψ

c,v
m (0)]∗

Thus:

bc,vn =
S(q, t)Vd[Ψ

c,v
n (0)]∗

Ec,v
α,β − En

(3.61)
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which gives the momentum space correlation function:

Π̄c,v
α,β(k;q) =

∑
n

iS(q, t)[Ψc,v
n (0)]∗

Ec,v
α,β − En

∫
ddrΨc,v

n (r)e−i(k−ηc,vq)·r

Recalling that the raw absorption spectrum is given by:

A(ω) =
∑
εc>εv

∑
α,β

∑
q

Cα,β
c,v F c,v

∑
k

Πc,v
α,β(k;q)

and noting:

∑
k

∫
ddrF (r)e−ik·r = F (r = 0)

we obtain:

A(ω) =
∑
εc>εv

∑
α,β

∑
q

Cα,β
c,v F c,v

∑
n

iS(q, t)|Ψc,v
n (0)|2

Ec,v
α,β − En

(3.62)

The photon occupation number cane be recast as ∂t
〈
B†B

〉
= −(α(ω)− e(ω))

〈
B†B

〉
, such

that the absorption coefficient α(ω) can be defined in terms of the absorption spectrum as

α(ω) ≡ −Re
{
A(ω, t)/

〈
B†B

〉}
. Since S(q, t) ∝ (F c,v)∗

〈
B†B

〉
, the absorption coefficient is

given by:

α(ω) =
∑
εc>εv

∑
α,β

∑
q

Cα,β
c,v |F c,v|2

∑
n

Dc,v
α,β(q, T )|Ψ

c,v
n (0)|2Γc,v

α,β

(Ẽg
q + (α− β)ℏωq − ℏω − En)2 + (Γc,v

α,β)
2

(3.63)
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Where Ẽg
q = Ẽc − Ẽv + m̃cm̃vq

2/M̃c,v, Γα,β and the phonon contribution to the absorption

amplitude is given by the thermal average Dc,v
α,β(q, T ) =

〈
(eCv−Cc)−q,0([d

†
c,v]α[dTc,v]

β)q,0

〉
.

3.5 Generalized Interacting Polaron Model

We now consider a more realistic material, one which contains multiple phonon

branches. Furthermore, we will relax the constraint that the Phonon dispersion is constant.

Our new lattice and Frölich Hamiltonians are:

Hlatt =
∑
ν,q

(ℏΩν
q)(D

†
ν,qDν,q + 1

2) (3.64)

Hel−ph =
∑
ν,λ

∑
k,q

(ℏων,q)g
λ
ν,qP

λ,λ
k−q,k(Dν,−q +D†

ν,q) (3.65)

With ν the phonon branch. We adjust our unitary transformation to account for the new

quantum number:

T ≡ exp

[∑
λ,ν

∑
k,q

gλν,qP
λ,λ
k−q,kQ

ν
q

]
≡ exp

[∑
λ,ν

∑
k,q

Uλ,ν
k,q

]
≡ eU

We note the obvious relation between our previous transformation and our current one:

Uλ
k,q =

∑
ν U

λ,ν
k,q . We’ll find this to be a common theme when applying this new transfor-
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mation. For the transformation of Hlatt, we find:

[U,Hlatt] =
∑
ν′,q′

∑
ν,λ

∑
k,q

(ℏΩν′
q′)gλν,qP

λ,λ
k−q,k[Q

ν
q, D

†
ν′,q′Dν′,q′ ]

=
∑
ν′,q′

∑
ν,λ

∑
k,q

(ℏΩν′
q′)gλν,qP

λ,λ
k−q,k(−δν,ν′)(Dν′,q′δq′,−q +D†

ν′,q′δq′,q)

= −
∑
ν,λ

∑
k,q

(ℏων,q)g
λ
ν,qP

λ,λ
k−q,k(Dν,−q +D†

ν,q)

= −Hel−ph

We also have:

[U,Hel−ph] =
∑
λ,λ′

∑
k,k′

∑
q,q′

∑
ν,ν′

(ℏΩν′
q′)[U

λ,ν
k,q , U

λ′,ν′

k′,q′ + 2gλ
′

ν′,q′P
λ′,λ′

k′−q′,k′Dν′,−q′ ]

=
∑
λ,k

∑
q,q′

∑
ν,ν′

(ℏΩν′
q′)(gλν,q − gλ

′
ν′,q′)(P

λ,λ
k−q,k+q′ − P λ,λ

k−q−q′,k)Q
ν
qQ

ν′
q′

+
∑
λ,λ′

∑
k,k′

∑
q,q′

∑
ν,ν′

(ℏΩν′
q′)(gλν,qg

λ′
ν′,q′)[P

λ,λ
k−q,kQ

ν
q, P

λ′,λ′

k′−q′,k′Dν′,−q′ ]

The first term vanishes with a momentum transformation. The commutator in the second

term is:

[P λ,λ
k−q,kQ

ν
q, P

λ′,λ′

k′−q′,k′Dν′,−q′ ] = P λ,λ
k−q,kP

λ′,λ′

k′−q′,k′ [Q
ν
q, Dν′,−q′ ] + [P λ,λ

k−q,k, P
λ′,λ′

k′−q′,k′ ]Dν′,−q′Qν
q

= −δq′,−qδν′,νP
λ,λ
k−q,kP

λ′,λ′

k′−q′,k′

+ δλλ′(δk′−q′,kP
λ,λ′

k−q,k′ − δk′,k−qP
λ′,λ
k′−q′,k)D

ν′
−q′Qν

q
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The second term is eliminated by the same momentum transformation, thus:

[U,Hel−ph] = −2
∑
λλ′

∑
k,k′

∑
ν,q

gλν,qg
λ′
ν,−q(ℏων,q){Ψ†

λ,k−q(δλ,λ′δk′+q,k −Ψ†
λ′,k′+qΨλ,k)Ψλ′,k′}

= −2
∑
λ,k,q

(∑
ν

ℏων,q|gλν,q|2
)
P λ,λ
k−q,k−q

− 2
∑
λ,λ′

∑
k,k′

∑
q

(∑
ν

ℏων,q g
λ
ν,−qg

λ′
ν,q

)
Ψ†

λ,kΨ
†
λ′,k′Ψλ′,k′+qΨλ,k−q

The other Hamiltonians transform as before, and the general interacting polaron model is:

H̄pol =
∑
λ,k,q

{(
e−CλEλeCλ

)
k,k−q

P λ,λ
k−q,k −

(∑
ν

ℏων,q|gλν,q|2
)
P λ,λ
k,k

}
(3.66)

H̄latt =
∑
ν,q

ℏων,q(D
†
ν,qDν,q + 1

2) (3.67)

H̄em =
∑
q

ℏωq(B
†
qBq + 1

2) (3.68)

H̄pol−pol =
1
2

∑
λ,λ′

∑
k,k′

∑
q

Ṽ λ,λ′
q {δq,0P λ,λ

k,k−q − P λ,λ′

k,k′+qP
λ′,λ
k′,k−q} (3.69)

H̄pol−em = −i
∑
λ,λ′

∑
k,q

F λ,λ′
(
eCλ−Cλ′

)
q,0

P λ,λ′

k−q,kB
λ,λ′

(3.70)

where we have re-defined Cλ:

Cλ
k−k′ ≡

∑
ν

Cλ
ν,k−k′ =

∑
ν

gλν,k−k′Qν
k−k′ (3.71)
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and the modified Coulomb potential is now:

Ṽ λ,λ′
q =

∑
ν

Ṽ λ,λ′
ν,q (3.72)

= V λ,λ′
q −

∑
ν

(2ℏων,q)(g
λ
ν,q)

∗gλ
′

ν,q (3.73)

As for the Absorption spectrum, we must be careful in how we define the multi-particle

correlation function. We have:

Aq(t) =
∑

ελ>ελ′

∑
k,q′

F λ,λ′
(
eCλ−Cλ′

)
q′,0

P λ,λ′

k−q′,kBqδq,0 (3.74)

We define:

(d†λ,λ′)k,k′ =
∑
ν

(gλν,k−k′ − gλ
′

ν,k−k′)D
†
ν,k−k′

≡
∑
ν

[(d†λ,λ′)ν ]k,k′ (3.75)

and obtain:

A(t) =
∑

ελ>ελ′

∑
k,q

F λ,λ′∑
α,β

Cα,β
λ,λ′
(
BP λ,λ′

k−q,k

)
([d†λ,λ′ ]

α[dTλ,λ′ ]β)q,0 (3.76)
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Unlike before, we must expand the phonon contributions to account for the phonon branch:

([d†λ,λ′ ]
α[dTλ,λ′ ]β)q,0 =

∑
{να}

∑
{νβ}

(
α∏

i=1

(d†λ,λ′)νi

β∏
j=1

(dTλ,λ′)νj

)
q,0

=
∑

{να,q′
α}

∑
{νβ ,q′

β}

α−1∏
i=0

(d†λ,λ′)νi,q′
i

α+β−1∏
j=α

(dTλ,λ′)νj ,q′
j

(3.77)

where:

∑
{να,q′

α}

≡
∑
ν0,q′

0

∑
ν1,q′

1

· · ·
∑

να−1,q′
α−1

, q′ ≡ qi − qi+1,q0 ≡ q, qα+β = 0

For this general problem, we find it useful to shift these summations to the absorption

spectrum (note that, in our simplified model, we grouped the phonon momenta into one

operator; we will see shortly why we have split them for the general problem). The new

correlation function is:

Πc,v
α,β(k,q) ≡ BP c,v

k−q,k

α−1∏
i=0

(d†c,v)νi,q′
i

α+β∏
j=α

(dTc,v)νj ,q′
j

(3.78)

and the absorption spectrum becomes:

A(t) =
∑

ελ>ελ′

∑
k,q

F λ,λ′∑
α,β

Cα,β
λ,λ′

∑
{να,q′

α}

∑
{νβ ,q′

β}

Πc,v
α,β(k,q)

There are only four terms in the EOM that must be re-calculated for this new correlation

function: 1) Contributions from the lattice, 2) The coefficient from normal ordering the

phonon operators, 3) The Polaron dispersion, and 4) The spectrum side-band amplitude.
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We also note that the source term is modified to account for the new phonon contribution

of the correlation function. We begin with the lattice contributions:

[Πc,v
α,β(k,q), H̄latt] = BP λ,λ′

k−q,k

∑
ν,q′

(ℏων,q′)
α−1∏
i=0

(d†λ,λ′)νi,q′
i

[ α+β−1∏
j=α

(dTλ,λ′)νj ,q′
j
, D†

ν,q′

]
Dν,q′

+BP λ,λ′

k−q,k

∑
ν,q′

(ℏων,q′)D†
ν,q′

[ α−1∏
i=0

(d†λ,λ′)νi,q′
i
, Dν,q′

] α+β−1∏
j=α

(dTλ,λ′)νj ,q′
j

=

α+β−1∑
j=α

(ℏωνj ,−q′
j
)Πc,v

α,β(k,q)−
α−1∑
i=0

(ℏωνi,q′
i
)Πc,v

α,β(k,q) (3.79)

We now see why extracting the momenta is and phonon branch summations from the

correlation function for the most general problem is useful. The commutator would not

have been proportional to the correlation function had we not done so, since each mode

contributes a different factor of ℏων,q (of course, in the event that each mode has the same,

flat dispersion, we can reduce our correlation function back to the one in the simplified

problem). Phonon operator correlations, such as the normal ordering coefficient and the

side-band amplitudes, are derived in the appendix, sec. A.1. We are now ready to rewrite

the absorption spectrum in the form of Eq.(3.63):

α(ω) =
∑
εc>εv

∑
α,β

∑
q

|F c,v|2
∑
{α,β}

∑
n

Dc,v
{α,β}(q, T )|Ψ

c,v
n,{α,β}(0)|

2Γc,v
{α,β}(

Ẽ
{α,β}
g,q +∆E

{α,β}
ph − ℏω − E

{α,β}
n

)2
+
(
Γc,v
{α,β}

)2
(3.80)

Where we have introduced the notation {α, β} to represent a configuration of the phonon

branch and momentum of the absorbed and emitted phonons. The modified gap energy

Ẽ
{α,β}
g,q accounts for both the modified band gap of the polaron band structure as well as an

102



associated kinetic energy from the exciton center of mass, and ∆E
{α,β}
ph represents the net

energy gained (lost) from net absorption (emission) of phonons, and n denotes the Wannier

energy states. The normal ordering factor Cc,v
α,β has been absorbed into the amplitude piece.

3.5.1 Approximated Fitting Expression

While Eq.(3.80) gives a full description of the relevant physics, it is not practical for

fitting experimental data. In the presence of vibrational modes with arbitrary, momentum

dependent dispersion and matrix elements, the simultaneous requirement of energy and

momentum conservation prevents an accurate fitting. However, for the device in question,

the phonon bandwidth is very small, and we may approximate the phonons as belonging

to a flat band. In this limit, the phonon dispersion and matrix elements are constant (up

to some cutoff momentum q0), and the net phonon energy of
∑

ν mνℏΩν characterizes the

side-bands, where mν is the net number of phonons emitted from branch ν. In this case,

we define the polarization functions:

Πc,v
ν,mν

(k) ≡ (d†c,v)
mν
ν

∞∑
β=0

Cc,v
mν+β,β(d

†
c,v)

β
ν (d

T
c,v)

β
ν , mν ≥ 0 (3.81)

Πc,v
ν,mν

(k) ≡
∞∑
α=0

Cc,v
α,mν+α(d

†
c,v)

α
ν (d

T
c,v)

α
ν (d

T
c,v)

mν
ν , mν < 0 (3.82)

whose EOM would now have the form:

∑
{mν}

[
f(ω) +

∑
ν

mνℏΩν

]
Πc,v

{mν}(k) =
∑
{mν}

S{mν}(k) (3.83)
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where:

Πc,v
{mν}(k) ≡

∏
ν

Πc,v
ν,mν

(k) (3.84)

Following the procedure outlined in the Appendix, sec. A.1.3, we find that the contribution

to the amplitude of the phonon-side band from emitting mν phonons from branch ν is given

by:

Dc,v
ν = e−|gc,vν |2(1+2nν)e

1
2mνβΩνImν

(
|gc,vν |2

sinh(βℏΩν/2)

)
(3.85)

Which comes from re-writing the exponential function in Eq.(A.16) in terms of the modified

Bessel Functions of the first kind using the identity:

e
1
2 z(t+t−1) =

∞∑
m=−∞

tmIm(z)

and the absorption coefficient becomes:

α(ω) =
∑
εc>εv

|F c,v|2
∑

{mνϵZ}

∑
n

∏
ν D

c,v
ν Γc,v

ν

(Ẽν
g +

∑
ν mνℏΩν − ℏω − En,ν)2 + (Γc,v

mν )
2

(3.86)
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conventional superconductivity from magnetism in transition-metal dichalcogenides,”
Phys. Rev. B, vol. 95, p. 104 515, 10 Mar. 2017. doi: 10.1103/PhysRevB.95.104515.
[Online]. Available: https://link.aps.org/doi/10.1103/PhysRevB.95.104515.

[17] R. Wakatsuki and K. T. Law, Proximity effect and ising superconductivity in super-
conductor/transition metal dichalcogenide heterostructures, 2016. arXiv: 1604.04898
[cond-mat.supr-con]. [Online]. Available: https://arxiv.org/abs/1604.04898.

[18] J. Clarke, “THE PROXIMITY EFFECT BETWEEN SUPERCONDUCTING AND
NORMAL THIN FILMS IN ZERO FIELD,” Journal de Physique Colloques, vol. 29,
no. C2, pp. C2-3-C2–16, 1968. doi: 10.1051/jphyscol:1968201. [Online]. Available:
https://hal.science/jpa-00213516.

[19] P. G. DE GENNES, “Boundary effects in superconductors,” Rev. Mod. Phys., vol. 36,
pp. 225–237, 1 Jan. 1964. doi: 10.1103/RevModPhys.36.225. [Online]. Available:
https://link.aps.org/doi/10.1103/RevModPhys.36.225.

106



[20] E. M. Lifshitz, L. P. Pitaevskii, J. B. Sykes, and M. J. Kearsley, Statistical physics.
Part 2, Theory of the condensed state (Course of Theoretical Physics ; Volume 9), eng,
3rd ed. Oxford, [England: Butterworth-Heinemann, 1995 - 1980, isbn: 9780080503509.

[21] R. M. Fernandes, Lecture notes: Bcs theory of superconductivity.

[22] D. Arovas, Bcs theory of superconductivity, Apr. 2023.

[23] D. Ivanov, Bcs theory of superconductivity.

[24] U. Khanna, A. Kundu, S. Pradhan, and S. Rao, “Proximity-induced superconductivity
in weyl semimetals,” Phys. Rev. B, vol. 90, p. 195 430, 19 Nov. 2014. doi: 10.1103/
PhysRevB.90.195430. [Online]. Available: https://link.aps.org/doi/10.1103/
PhysRevB.90.195430.

[25] P. O. Sukhachov and E. V. Gorbar, “Superconductivity in weyl semimetals in a strong
pseudomagnetic field,” Phys. Rev. B, vol. 102, p. 014 513, 1 Jul. 2020. doi: 10.1103/
PhysRevB.102.014513. [Online]. Available: https://link.aps.org/doi/10.1103/
PhysRevB.102.014513.

[26] Z. Faraei and S. A. Jafari, “Induced superconductivity in fermi arcs,” Phys. Rev. B,
vol. 100, p. 035 447, 3 Jul. 2019. doi: 10.1103/PhysRevB.100.035447. [Online].
Available: https://link.aps.org/doi/10.1103/PhysRevB.100.035447.

[27] T. Meng and L. Balents, “Weyl superconductors,” Phys. Rev. B, vol. 86, p. 054 504, 5
Aug. 2012. doi: 10.1103/PhysRevB.86.054504. [Online]. Available: https://link.
aps.org/doi/10.1103/PhysRevB.86.054504.

[28] G. Bednik, A. A. Zyuzin, and A. A. Burkov, “Anomalous hall effect in weyl su-
perconductors,” New Journal of Physics, vol. 18, no. 8, p. 085 002, Aug. 2016. doi:
10.1088/1367-2630/18/8/085002. [Online]. Available: https://doi.org/10.1088%
2F1367-2630%2F18%2F8%2F085002.

[29] G. Bednik, A. A. Zyuzin, and A. A. Burkov, “Superconductivity in weyl metals,”
Phys. Rev. B, vol. 92, p. 035 153, 3 Jul. 2015. doi: 10.1103/PhysRevB.92.035153.
[Online]. Available: https://link.aps.org/doi/10.1103/PhysRevB.92.035153.

[30] A. A. Burkov and L. Balents, “Weyl semimetal in a topological insulator multilayer,”
Physical Review Letters, vol. 107, no. 12, Sep. 2011. doi: 10.1103/physrevlett.
107.127205. [Online]. Available: https://doi.org/10.1103%2Fphysrevlett.107.
127205.

[31] H. Wei, S.-P. Chao, and V. Aji, “Odd-parity superconductivity in weyl semimetals,”
Phys. Rev. B, vol. 89, p. 014 506, 1 Jan. 2014. doi: 10.1103/PhysRevB.89.014506.
[Online]. Available: https://link.aps.org/doi/10.1103/PhysRevB.89.014506.

[32] Y. Li and F. D. M. Haldane, “Topological nodal cooper pairing in doped weyl metals,”
Phys. Rev. Lett., vol. 120, p. 067 003, 6 Feb. 2018. doi: 10.1103/PhysRevLett.120.
067003. [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevLett.
120.067003.

107



[33] L. Fu and C. L. Kane, “Superconducting proximity effect and majorana fermions
at the surface of a topological insulator,” Phys. Rev. Lett., vol. 100, p. 096 407, 9
Mar. 2008. doi: 10.1103/PhysRevLett.100.096407. [Online]. Available: https:
//link.aps.org/doi/10.1103/PhysRevLett.100.096407.

[34] L. Fu and C. L. Kane, “Josephson current and noise at a superconductor/quantum-
spin-hall-insulator/superconductor junction,” Phys. Rev. B, vol. 79, p. 161 408, 16
Apr. 2009. doi: 10.1103/PhysRevB.79.161408. [Online]. Available: https://link.
aps.org/doi/10.1103/PhysRevB.79.161408.

[35] G. Y. Cho, J. H. Bardarson, Y.-M. Lu, and J. E. Moore, “Superconductivity of doped
weyl semimetals: Finite-momentum pairing and electronic analog of the 3he-A phase,”
Phys. Rev. B, vol. 86, p. 214 514, 21 Dec. 2012. doi: 10.1103/PhysRevB.86.214514.
[Online]. Available: https://link.aps.org/doi/10.1103/PhysRevB.86.214514.

[36] B. Lu, K. Yada, M. Sato, and Y. Tanaka, “Crossed surface flat bands of weyl semimetal
superconductors,” Phys. Rev. Lett., vol. 114, p. 096 804, 9 Mar. 2015. doi: 10.1103/
PhysRevLett.114.096804. [Online]. Available: https://link.aps.org/doi/10.
1103/PhysRevLett.114.096804.

[37] S. A. Yang, H. Pan, and F. Zhang, “Dirac and weyl superconductors in three dimen-
sions,” Phys. Rev. Lett., vol. 113, p. 046 401, 4 Jul. 2014. doi: 10.1103/PhysRevLett.
113.046401. [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevLett.
113.046401.

[38] R. Wang, L. Hao, B. Wang, and C. S. Ting, “Quantum anomalies in superconducting
weyl metals,” Phys. Rev. B, vol. 93, p. 184 511, 18 May 2016. doi: 10.1103/PhysRevB.
93.184511. [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevB.
93.184511.

[39] F. Setiawan, C.-T. Wu, and K. Levin, “Full proximity treatment of topological su-
perconductors in josephson-junction architectures,” Phys. Rev. B, vol. 99, p. 174 511,
17 May 2019. doi: 10 . 1103 / PhysRevB . 99 . 174511. [Online]. Available: https :
//link.aps.org/doi/10.1103/PhysRevB.99.174511.

[40] A. Mourachkine, “Determination of the coherence length and the cooper-pair size in
unconventional superconductors by tunneling spectroscopy,” Journal of Superconduc-
tivity, vol. 17, no. 6, pp. 711–724, Dec. 2004, issn: 1572-9605. doi: 10.1007/s10948-
004-0831-7. [Online]. Available: http://dx.doi.org/10.1007/s10948-004-0831-
7.

[41] R. Dawson and V. Aji, “Proximity effect of s-wave superconductor on an inversion-
broken weyl semimetal,” Phys. Rev. B, vol. 109, p. 094 517, 9 Mar. 2024. doi: 10.
1103/PhysRevB.109.094517. [Online]. Available: https://link.aps.org/doi/10.
1103/PhysRevB.109.094517.

[42] E. Sosenko, J. Zhang, and V. Aji, “Unconventional superconductivity and anoma-
lous response in hole-doped transition metal dichalcogenides,” Phys. Rev. B, vol. 95,
p. 144 508, 14 Apr. 2017. doi: 10.1103/PhysRevB.95.144508. [Online]. Available:
https://link.aps.org/doi/10.1103/PhysRevB.95.144508.

108



[43] W. L. McMillan, “Tunneling model of the superconducting proximity effect,” Phys.
Rev., vol. 175, pp. 537–542, 2 Nov. 1968. doi: 10.1103/PhysRev.175.537. [Online].
Available: https://link.aps.org/doi/10.1103/PhysRev.175.537.

[44] R. Landauer, “Spatial variation of currents and fields due to localized scatterers
in metallic conduction,” IBM Journal of Research and Development, vol. 32, no. 3,
pp. 306–316, 1988. doi: 10.1147/rd.323.0306.
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Appendix A

Phonon Assisted Optical
Absorption

A.1 Phonon Operator Correlations

To solve Eq.(3.63), we must obtain expressions for the polaron dispersion ẽλ,k, the

phonon contribution to the absorption spectrum Dc,v
α,β(q), and the coefficients Cα,β

c,v . We
begin by normal ordering our phonon operators.

A.1.1 Phonon Operator Normal Ordering

We note a consequence of the Baker-Campbell-Hausdorff Lemma, under the as-
sumption that operators A and B commute with their commutator [A,B]:

eA+B = eAeBe−
1
2 [A,B] (A.1)

Applying this, we first re-order the operators that yield the coefficients Cα,β
c,v :

Cλ
k,k′ − Cλ′

k,k′ = gλk−k′(D
†
k−k′ −Dk′−k)− gλ

′
k−k′(D

†
k−k′ −Dk′−k)

= (gλk−k′ − gλ
′

k−k′)D
†
k−k′ − (gλk−k′ − gλ

′
k−k′)Dk′−k

= (d†λ,λ′)k,k′ − (dTλ,λ′)k,k′

we have:

[d†λ,λ′ , d
T
λ,λ′ ]k,k′ =

∑
k′′

{(d†λ,λ′)k,k′′(dλ,λ′)k′,k′′ − (dλ,λ′)k′′,k(d
†
λ,λ′)k′′,k′}

=
∑
k′′

(gλk−k′′ − gλ
′

k−k′′)(gλk′−k′′ − gλ
′

k′−k′′)∗[D
†
k−k′′ , Dk′−k′′ ]

= −
∑
q

|gλq − gλ
′

q |2δk,k′

≡ −G̃λ,λ′δk,k′
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This is an identity, allowing us to use Eq.(A.1) to re-write the exponential in Eq.(3.30):

[eCλ−Cλ′ ]q,0 =
∑
k1,k2

(
e
d†
λ,λ′
)
q,k1

(
e
−dT

λ,λ′
)
k1,k2

(
e
1
2

[
d†
λ,λ′ ,d

T
λ,λ′

])
k2,0

= e−
1
2 G̃λ,λ′

∑
α,β

(−1)β

(α!)(β!)
([d†λ,λ′ ]

α[dTλ,λ′ ]β)q,0

which yields the coefficients:

Cα,β
c,v = e−

1
2 G̃c,v

(−1)β

(α!)(β!)
(A.2)

Allowing for multiple phonon branches, we have:

[d†λ,λ′ , d
T
λ,λ′ ]k,k′ =

∑
ν,ν′

∑
k′′

{[(d†λ,λ′)ν ]k,k′′ [(d)ν
′

λ,λ′ ]k′,k′′ − [(d)νλ,λ′ ]k′′,k[(d
†)ν

′
λ,λ′ ]k′′,k′}

=
∑
ν,ν′

∑
k′′

(gλ,νk−k′′ − gλ
′,ν′

k−k′′)(g
λ,ν
k′−k′′ − gλ

′,ν′

k′−k′′)
∗[D†

ν,k−k′′ , Dν′,k′−k′′ ]

= −
∑
ν,q

|gλν,q − gλ
′

ν,q|2δk,k′

≡ −G̃λ,λ′δk,k′

where we have simply re-defined G̃λ,λ′ to account for the phonon branches.

A.1.2 Polaron Dispersion

Applying the Baker-Campbell-Hausdorff Lemma, we have:

H̄pol =
∑
λ,k,q

{(
e−CλEλeCλ

)
k,k−q

P λ,λ
k−q,k − ℏΩ|gλq|2P

λ,λ
k,k

}
=
∑
λ,k,q

[ ∞∑
n=0

(−1)n

n!

〈
[(Cλ)

(n), Eλ]k,k−q

〉
− ℏΩG̃λδq,0

]
P λ,λ
k−q,k

The correlations are only nonzero for even powers of n, thus:

∞∑
n=0

(−1)n

n!

〈
[(Cλ)

(n), Eλ]k,k−q

〉
=

∞∑
n=0

1

(2n)!

〈
[(Cλ)

(2n), Eλ]k,k−q

〉
(A.3)

Since the Q operators commute, so too do the Cλ operators, meaning the phonon operators
in Eq.(A.3) are already normal ordered (with respect to Cλ, not Dq). The correlations can
thus be calculated by performing pairwise Wick’s contractions between the Cλ operators.
Furthermore, since the operators commute, each correlation must yield the same value.
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This means we may write Eq.(A.3) as:

∞∑
n=0

1

(2n)!

〈
[(Cλ)

(2n), Eλ]k,k−q

〉
=

∞∑
n=0

1

(2n)!

(2n)!

(n!)(2n)

n∏
m=1

(
⟨[Cλ, [Cλ, Eλ]]k,k−q⟩

)m

(A.4)

From our initial work calculating how the electronic band structure transforms, we already
know what the commutator evaluates to:

[Cλ, [Cλ, Eλ]]k,k−q =
∑
q′

(Cλ)k,q′(Cλ)q′,k−q(ελ,k−q − 2ελ,q′ + ελ,k) (A.5)

Finally, we note that the two operator Wick’s contractions are given by:

⟨(Cλ)k(Cλ)q⟩ = gλkg
λ
q

〈
(D†

k −D−k)(D
†
q −D−q)

〉
= −gλkg

λ
q

〈
D†

kD−q +D−kD
†
q

〉
= −|gλk|2δk,−q(1 + 2nk) (A.6)

where nk = [exp(βℏΩk) − 1]−1 is the usual Planck distribution. Combining Eq.(A.5) and
Eq.(A.6), we have:

⟨[Cλ, [Cλ, Eλ]]k,k−q⟩ = −2
∑
q′

|gλq′ |2(1 + 2nq′)(ελ,k − εk−q′)δq,0 (A.7)

Combining this with Eq.(A.4) yields:〈(
e−CλEλeCλ

)
k,k−q

〉
=

∞∑
n=0

n∑
m=0

(−1)n−m

n!

(n!)δq,0
(n−m)!(m!)

(Ḡλ)
n−m

∑
k′

(Gλ)
m
k,k′ελ,k′ (A.8)

where we have used the binomial theorem while defining Ḡλ ≡
∑

q |gλ,q|2(1 + 2nq) and

(Gλ)k,k′ ≡ |gλk−k′ |2(1 + 2nk−k′). Thus:〈(
e−CλEλeCλ

)
k,k−q

〉
= δq,0e

−Ḡλ
∑
k′

(
eGλ
)
k,k′ελ,k′ (A.9)

Yielding the Polaron dispersion:

eλ,k = e−Ḡλ
∑
k′

(
eGλ
)
k,k′ελ,k′ − ℏΩG̃λ (A.10)
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which is consistent with the zero temperature expression Feldtmann et. al derived[47]. If
the model allows for multiple phonon branch, the Wick’s contractions become:〈

(Cλ)k(C
λ)q

〉
=
∑
ν,ν′

gλ,νk gλ,ν
′

q

〈
(D†

ν,k −Dν,−k)(D
†
ν′,q −Dν′,−q)

〉
= −

∑
ν,ν′

gλ,νk gλ,ν
′

q

〈
D†

ν,kDν′,q +Dν′,−kD
†
ν′,q

〉
= −

∑
ν

|gλ,νk |2δk,−q(1 + 2nν,k)

The momentum dependence of the contractions is unaffected by the presence of the phonon
branch index, and each contraction simply acquires an additional summation over the index.
We re-define:

Ḡλ ≡
∑
ν,q′

|gλν,q′ |2(1 + 2nν,q′)

(Gλ)k,k′ ≡
∑
ν

|gλν,k−k′ |2(1 + 2nν,k−k′)

to obtain the same expression for the Polaron dispersion.

A.1.3 Spectrum Side-band Amplitude

To obtain the general spectrum side-band amplitude (i.e. arbitrary phonon branches
and momenta), we will make use of Eq.(3.58). In the general model, it reads:

[fc,v(ω)− Ec,v
{α,β}]Π̄

c,v
{α,β}(k,q) = S{α,β}(k,q) (A.11)

where Ec,v
{α,β} is the net phonon absorption/emission energy of a particular configuration

of absorbed and emitted phonons, and for convenience we have simplified the remaining
terms. Summing over all configurations, we have:∑

α,β

Cα,β
c,v

∑
{α,β}

[fc,v(ω)− Ec,v
{α,β}]Π̄

c,v
{α,β}(k,q) = Av,c

k,q

〈
(eCv−Cc)−q,0(e

Cc−Cv)q,0
〉

(A.12)

where:

Av,c
k,q ≡ F v,c

{
f c
k−q(1− fv

k) +
〈
B†B

〉
(f c

k−q − fv
k)
}

(A.13)

The R.H.S. of Eq.(A.12) comes from the original definition of S{α,β}(k,q) and Cα,β
c,v , and

can be seen as the result of calculating contributions to the EOM from H̄pol−em without
splitting up the phonon operators into absorption and emission pieces. We now note an
immediate implication of this expression: if the R.H.S. of Eq.(A.12) can be written as a
sum over all configurations of the absorbed and emitted phonons, then we may equate both
series element wise, and we will have obtained the side-band amplitudes. The R.H.S. is
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given by [59]:〈
(eCv−Cc)−q,0(e

Cc−Cv)q,0
〉
=
〈
e−(d†c,v⊗1−1⊗d†c,v)+(dTc,v⊗1−1⊗dTc,v)

〉
−q,0;q,0

=

(
e
−1
2

〈
{d†c,v ,dTc,v}

〉)
−q,−q

(
e

〈
dTc,v⊗d†c,v+d†c,v⊗dTc,v

〉)
−q,0;q,0

(
e
−1
2

〈
{d†c,v ,dTc,v}

〉)
0,0

(A.14)

The anti-commutator is:(
e
−1
2

〈
{d†c,v ,dTc,v}

〉)
k,k′

= e−
1
2
∑

ν,q |gcν,q−gvν,q|2(1+2nν,q)

= e−
1
2 (G̃c,v+2Ḡc,v) (A.15)

and the middle term is:(
e

〈
dTc,v⊗d†c,v+d†c,v⊗dTc,v

〉)
−q,0;q,0

=

(
eḠc,v+1eḠc,v

)
q,0

(A.16)

where (Ḡc,v)k,k′ ≡
∑

ν |gcνk−k′ − gvνk−k′ |2nν,k−k′ such that Ḡc,v =
∑

q(Ḡc,v)q,0. Expanding
the exponentials into their series form yields:(

eḠc,v+1eḠc,v

)
q,0

=
∑
α,β

1

α!β!
[(Ḡc,v + 1)α(Ḡc,v)

β]q,0

=
∑
α,β

1

α!β!

∑
{α,β}

α−1∏
i=0

(Ḡc,v + 1)νi,q′
i

α+β−1∏
j=α

(Ḡc,v)νl,q′
j

(A.17)

which gives the expected side band amplitude:

Dc,v
{α,β}(q, T ) =

1

α!β!
e−Ḡc,v−1

2 G̃c,v

α−1∏
i=0

(Ḡc,v + 1)νi,q′
i

α+β−1∏
j=α

(Ḡc,v)νl,q′
j

(A.18)

with
∑

i q
′
i +
∑

j q
′
j = q.

A.2 Exact Wannier Equation Solutions in 2-D

In the main text, we treat the Wannier function amplitudes and energies as fitting
parameters. However, for certain systems, it is possible to solve the Wannier equation ex-
actly. Here, we present exact solutions for a layered, two dimensional system with quadratic
dispersion by following chapter 10 of Haugh and Koch [46]. We consider two cases: 1) the
valence and conduction bands are within the same layer, and 2) the bands are separated
by a distance d. We treat the Fröhlich term as a Darwin perturbation of the Coulomb
interaction, and ignore it in this derivation. In polar coordinates, our Wannier equation is
given by:
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{−M̃c,v[∇2
ρ + ρ−2∂2

ϕ]− V v,c(ρ)}Ψ(ρ) = EΨ(ρ)

where ∇2
ρ = ρ−1∂ρ(ρ∂ρ), and the Coulomb interaction is left arbitrary. Following Haug and

Koch, we apply separation of variables and obtain:

ρ2

R
∇2

ρR+ M̃−1
c.v [ρ

2V v,c(ρ) + Eρ2]R = − 1

Φ
∂2
ϕΦ ≡ κ2 (A.19)

For periodic Φ(ϕ), we obtain the usual solution:

Φ(ϕ) ∼ eimϕ,mϵZ

with the constant κ replaced by the integer m, and for the radial equation:

−[∇2
ρ + M̃−1

c,v V
v,c(ρ)]R(ρ) =

E

M̃c,v

R(ρ)− m2

ρ2
R(ρ)

The Coulomb interaction will be of the form e2f(ρ). We define the parameters:

λ ≡ e2

αM̃c,v

=
1

αa0
, α2 = − 4E

M̃c,v

=⇒ λ2 = − e4

4M̃c,vE

and make the substitution r = ρα:[
− 1

r
∂r(r∂r)−

λ

α
f(r/α)

]
R(r) = −1

4
R(r)− m2

r2
R(r) (A.20)

A.2.1 Intra-Layer Coulomb Interaction

If the bands εv and εc are part of the same layer in the heterostructure, the
Coulomb interaction is given by:

V v,c
0 (ρ) =

e2

ρ

which yields the radial equation:[
1

r
∂r(r∂r) +

λ

r
− 1

4
− m2

r2

]
R(r) = 0

For large r, the radial function must obey:

∂2R∞
∂r2

− 1

4
R∞ = 0 =⇒ R∞(r) ∼ e−r/2
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At the origin, we must have:

−m2R0(r) = 0 =⇒ R0(r) ∼ r|m|

We make the Ansatz:

Rm(r) = rℓe−r/2γm(r), ℓ ≡ |m|

and obtain:

[r∂2
r + (2ℓ+ 1− r)∂r + λ− ℓ− 1

2 ]γm(r) = 0 (A.21)

As derived in Haugh and Koch. We employ the Frobenius method and take γm(r) ≡∑
k ckr

k. Plugging this into Eq.(A.21), we have:

∞∑
k=1

[k(k + 1) + (2ℓ+ 1)(k + 1)]ck+1r
k +

∞∑
k=0

(λ+ ℓ− 1
2 − k)ckr

k = 0

yielding the recursion relation:

ck+1 = ck
k − (λ− ℓ− 1

2)

(k + 1)(k + 2ℓ+ 1)
(A.22)

In order for the radial function to be normalizable, the polynomial γm(r) must have finite
order. Thus, there must be some aν such that, for all k > ν, ak = 0. We must have:

λ = ν + ℓ+ 1
2 ≡ n+ 1

2

where n is the principle quantum number. The allowed energy levels are given by:

En = − 4E0

(2n+ 1)2
, E0 ≡

e4

4M̃c,v

=
M̃c,v

4a20
(A.23)

which gives us an expression for α:

α =
2

a0(2n+ 1)

A.2.2 Inter-Layer Coulomb Interaction

If the bands εv and εc belong to layers separated by a distance d, Eq.(A.20)
becomes: [

1

r
∂r(r∂r) +

λ√
r2 + r20

− 1

4
− m2

r2

]
R(r) = 0 (A.24)

where r0 = αd. We can manipulate this expression into a form more suitable for the
Frobenius method by taking the transformation y2 = r2 + r20. The differential term in
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Eq.(A.24) is now:

1

r
∂r(r∂r)f =

1

r

{
r

(
∂y

∂r

)2∂2f

∂y2
+

[
∂y

∂r

(
r
∂

∂y

∂y

∂r
+ 1

)]
∂f

∂y

}
Noting:

∂y

∂r
=

r

y
=⇒ ∂

∂y

∂y

∂r
=

r20
ry2

we obtain:

1

r
∂r(r∂r)f =

(
y2 − r20

y2

)
∂2
yf +

1

y3
(y2 + r20)∂yf

Thus: [(
y2 − r20

y2

)
∂2
y +

1

y3
(y2 + r20)∂y +

λ

y
− 1

4
− m2

y2 − r20

]
R(y) = 0

For large y, we have:

∂2R∞
∂y2

− 1

4
R∞ = 0 =⇒ R∞(y) ∼ e−(y−r0)/2

And for y = r0, we have:

−m2R0(r) = 0 =⇒ R0(y) ∼ (y − r0)
|m|

This gives the Ansatz:

Rm(y) = (y − r0)
|m|e−(y−r0)/2γm(y)

which yields:{
y2 − r20

y2
∂2
y +

[
y2 − r20

y2

(
2ℓ

y − r0
− 1

)
+

y2 + r20
y3

]
∂y +

y2 − r20
y2

(
ℓ(ℓ− 1)

(y − r0)2
− ℓ

y − r0
+

1

4

)
+

y2 + r20
y3

(
ℓ

y − r0
− 1

2

)
+

λ

y
− 1

4
− ℓ2

y2 − r20

}
γm = 0 (A.25)

We will find it useful to re-write Eq.(A.25) as a function of (y − r0). After applying an
overall factor of y3(y2 − r20) to remove singularities, we find:
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x2A(x)γ′′m + xB(x)γ′m + C(x)γm = 0 (A.26)

where x = y − r0 and the polynomial factors are:

A(x) = x3 + 5r0x
2 + 8r20x+ 4r30

B(x) = −x4 + [2ℓ− 5r0 + 1]x3 + [10ℓr0 − 8r20 + 4r0]x
2

+ [16ℓr20 − 4r30 + 6r20]x+ 4r30(1 + 2ℓ)

C(x) = [λ− ℓ− 1
2 ]x

4 + [−1
4r0 + (4λ− 5ℓ− 2)]r0x

3

+ [−3
4r

2
0 + r0(5λ− 8ℓ− 3) + ℓ(2ℓ− 1)]r0x

2

+ [−1
2r

2
0 + r0(2λ− 4ℓ− 2) + ℓ(5ℓ− 4)]r20x+ 3ℓ2r30

Eq. (A.25) is now in Frobenius normal form with a regular singular point at x = 0. This
allows us to expand γm as:

γm(x) ≡
∞∑
k=0

ckx
k+p

where p is chosen such that c0 is nonzero for nonzero r0. Matching powers of x, we obtain
the recursion relation:

0 = ck−4[λ− ℓ− 1
2 − (k + p− 4)]

+ ck−3[(k + p− 3)(k + p− 3 + 2ℓ− 5r0) + r0(−1
4r0 + 4λ− 5ℓ− 2)]

+ ck−2(r0)[(k + p− 2)(5(k + p− 3) + 10ℓ− 8r0 + 4)− 3
4r

2
0 + r0(5λ− 8ℓ− 3) + ℓ(2ℓ− 1)]

+ ck−1(r
2
0)[(k + p− 1)(8(k + p− 2) + 16ℓ− 4r0 + 6)− 1

2r
2
0 + r0(2λ− 4ℓ− 2) + ℓ(5ℓ− 4)]

+ ck(r
3
0)[4(k + p)2 + 8ℓ(k + p) + 3ℓ2] (A.27)

At k = 0, we have:

c0(r0)
3[4p2 + 8ℓp+ 3ℓ2] = 0

For r0 = 0, this is trivially true for all p and we may take p = 0, which recovers the original
recursion relation given by Eq.(A.22). For nonzero r0, we must have:

p = ℓ(−1± 1
2)

The wave function should be non-singular at the origin, thus p = −ℓ/2, and the wave
functions are now given by:

R(x) = xℓ/2e−x/2f(x)

119



where f(x) is the polynomial:

f(x) =
ν∑

k=0

ckx
k

The order ν of f(x) is determined by the ck−4 coefficient in Eq.(A.27):

cv(λ− ℓ
2 − 1

2 − ν) = 0

=⇒ λ = 1
2(2ν + ℓ+ 1)

Defining the principle quantum number 2n = 2ν + ℓ, the energies are now:

En =
−4E0

(2n+ 1)2
, α =

2

a0(2n+ 1)

which are the energies of the Intra-layer problem, but with ℓ restricted to an even integer.
The coefficients satisfy:

0 = ck−4[
1
2(n− 3ℓ)− (k − 4)]

+ ck−3[(k + ℓ
2 − 3)(k + 3ℓ

2 − 3− 5r0) + r0(−1
4r0 + 2n− 5ℓ)]

+ ck−2(r0)[(k − ℓ
2 − 2)(5(k − 3) + 15ℓ

2 − 8r0 + 4)− 3
4r

2
0 + r0(

1
2(5n− 1)− 8ℓ− 3) + ℓ(2ℓ− 1)]

+ ck−1(r
2
0)[(k − ℓ

2 − 1)(8(k − 2) + 12ℓ− 4r0 + 6)− 1
2r

2
0 + r0(n− 4ℓ− 1) + ℓ(5ℓ− 4)]

+ ck(r
3
0)[4(k − ℓ

2)
2 + 8ℓ(k − ℓ

2) + 3ℓ2] (A.28)
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