
UC San Diego
Technical Reports

Title
Directional Gossip: Gossip in a Wide Area Network

Permalink
https://escholarship.org/uc/item/9301h5cx

Authors
Lin, Meng-Jang
Marzullo, Keith

Publication Date
1999-06-21
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/9301h5cx
https://escholarship.org
http://www.cdlib.org/


Directional Gossip: Gossip in a Wide Area Network

Meng-Jang Lin

University of Texas at Austin

Department of Electrical Engineering

Austin, TX

Keith Marzullo

University of California, San Diego

Department of Computer Science and Engineering

La Jolla, CA

March 4, 1999

1 Introduction

A reliable multicast protocol ensures that all of the intended recipients of a message m that do not

fail eventually deliver m. For example, consider the reliable multicast protocol of [10], and consider

a message m, sent by process p

1

, that is intended to be delivered by p

1

, p

2

, and p

3

. We impose

a directed spanning tree on these processes that is rooted at the message source. For example,

for m we could have the directed spanning tree p

1

! p

2

! p

3

. The message m propagates down

this spanning tree and acknowledgements of the receipt of m propagate back up the tree. A leaf

process in this tree delivers m when it receives m, and a non-leaf process delivers m when it gets

the acknowledgement for m from all of its children. If a non-leaf process (say, p

1

) does not get an

acknowedgement for m from one of its children (here, p

2

), then it removes the child from the tree

and \adopts" that child's children (here, p

3

). The process sends m to the newly-adopted children

and continues the broadcast. A similar monitoring and adoption approach is used to recover from

the failure of the root of the tree.

Reliable multicast protocols are intended for local area networks. Unfortunately, most imple-

mentations of reliable multicast do not scale well to large numbers of processes even when all are

in the same local area network [3]. For example, with the protocol given above, the sender cannot

deliver its own message m until it knows that all non-failed processes have already delivered m.

The latency can be reduced by using a bushy directed spanning tree, but doing so increases the

overhead of some processes, where by overhead we mean the number of messages a process sends

and receives in the reliable multicast of a single m. As the number of processes increases, either the

latency or the overhead at some processes increases. Hence, when a multicast is to be sent to a large

number of processes or processes located on a wide area network, a protocol like IP Multicast [4]

that has been speci�cally designed for these cases is preferable even though it is not as reliable as

reliable multicast.

More recently, gossip-based protocols have been developed to address scalability while still pro-

viding high reliability of message delivery. These protocols, which were �rst developed for replicated

database consistency management in the Xerox Corporate Internet [5], have been built to imple-

ment not only reliable multicast [3, 7] but also failure detection [11] and garbage collection [12].

1



Gossip protocols are scalable because they don't require as much synchronization as traditional re-

liable multicast protocols. A generic gossip protocol running at process p has a structure something

like the following:

when (p receives a new message m)

while (p believes that not enough of its neigbors have received m) f

q = a neighbor process of p;

send m to q;

g

Since they lack the amount of synchronization that traditional multicast protocols have, the

reliability of gossip-based protocols is evaluated in a di�erent manner. The mathematics of epi-

demiology are often applied, since the spread of a message with a gossip protocol is much like

the spread of a disease in a susceptible population. When the mathematics become intractable,

simulation is often used.

If one wished to implement gossip-based reliable multicast with as high reliability as possible,

then one would use a 
ooding protocol [2] like the following

when (p receives a new message m from neighbor q)

for each (r : r neighbor of p)

if (r != q) send m to r;

Flooding can be thought of as a degenerate gossip protocol in which a process chooses all the

neighbors that it doesn't know already have the message. Flooding, however, can have a high

overhead. Consider the undirected graph G = (V;E) in which the nodes V are processes and edges

E connect processes that are neighbors. The total number of messages sent in 
ooding a single

message in G is between jEj and 2jEj. If the processes are all on a single local area network, then

one can consider G to be a clique (that is, all processes can directly communicate with each other),

and so the number of messages is quadratic in jV j. Gossip protocols are attractive when G is a

clique because they provide negligably less reliability than 
ooding with a much lower overhead.

If G is not a clique, then the reliability of gossip protocols is less. This is not hard to see, and

has already been observed in the context of the spreading of computer viruses [8, 9]. Consider a

process p

1

that is in a clique of n processes p

1

; p

2

; :::p

n

and that has a pendant neighbor q: that is,

the only neighbor of q is p

1

. Suppose that these processes are running a gossip protocol in which p

1

continues to forward a new message m as long as it believes that less than B of its neighbors have

received m. If p

1

receives a new message m from p

2

and p

1

selects its neighbors uniformly, then the

probability that q will receive m is 1� (

n�2

B�1)=(

n�1

f�1) = (f � 1)=(n � 1). Thus, f must be large (and

the corresponding overhead high) for the reliability of this protocol to be high. A more intelligent

protocol would have p

1

always forward new messages to q and use gossip to communicate with the

rest of its neighbors.

We present a protocol that behaves like this more intelligent protocol. Each process determines

a weight for each of its neighbors. This weight is measured dynamically and is the minimum

number of edges that must be removed for the process to become disconnected from its neighbor.

For example, assuming no links are down, p

1

would assign a weight of 1 to q and weights of n� 1

to each of its remaining n�1 neighbors. A process 
oods to neighbors that have small weights and

gossips to neighbors that have large weights.

2



2 System Model

We consider a wide area network of the size that a large corporation might have: 10

3

local area

networks with, on average, 10

2

processors per local area network. We model the structure of such

a network using the techniques presented in [1].

Consider two processors on di�erent local area networks that are connected by a single router

r. We assume that a process p

1

on one of the processors can send a message to a process p

2

on the

other processor via that router. In particular, if r is down then p

1

's message will not reach p

2

even

if there is another route connecting these two processors. This can be implemented in IP using

either hop counts or source routing.

3 Architecture

It has already been observed [13] that the overhead of gossip protocols in a wide area network can

be reduced by taking the network topology into account. For example, consider two local area

networks, each with the same number of processors and that are connected by a single router. If

one ignores the network topology, then on average a processor will have half of its neighbors in

one local area network and half of its neighbors in the other. Hence, on average half of the gossip

messages will traverse the router, which is an unnecessarily high load. The work in [13] addresses

this problem by having each processor aware of which local area network each of its neighbors is

in. A processor then only rarely decides to send a gossip message to a processor in another local

area network. This approach is attractive because it attenuates the tra�c across a router without

adding any additional changes to the gossip protocol. Its drawback is that it doesn't di�erentiate

between wide area tra�c and local area tra�c. The performance characteristics and the link failure

probabilities are di�erent for wide area networks and local area networks. Hence, we adopt a two-

level gossip hierarchy: one level for gossip within a local area network and another level for gossip

among local area networks.

Each local area network runs a gossip server that directs gossip to the local area networks that

are one hop away. Two gossip servers are neighbors if the local area networks with which they are

associated are connected by an internetwork router. For example, Figure 1 shows three local area

networks connected by routers A, B and C. Each gossip server is labeled with the routers that

are connected to its local area network. Two gossip servers are neighbors if they both have the

same internetwork router listed in their label. Hence, the neighbors relation of these three gossip

servers in this �gure is a three-clique. As will be discussed in the next section, the state that a

gossip server maintains is small, and so a gossip server could easily be replicated if the reliability

of a single server is not adequately high.

Messages are disseminated to the processes in a local area network, including the gossip servers,

using a traditional gossip protocol. When a gossip server receives a message m for the �rst time

via the local area network gossip protocol, it initates an wide area network gossip protocol with

message m. When a gossip server receives for the �rst time a message m via the wide area network

gossip protocol, it injects m into its local area network using the local area network gossip protocol.

The protocol that we develop in this paper is the wide area network gossip protocol; we do not

address local area network issues further. In Section 1 we argued that to have a high reliability of

message delivery, a wide area network gossip protocol needs to have some information about the

network topology. Wide area networks can be large and their topology may change frequently, and

so we decided not to require each gossip server to have a priori knowledge about about the entire

network topology. Instead, all a gossip server needs to know is its neighbors, which is equivalent

3



Internetwork
Router

A

B

C

B, C

Gossip
Server

A, C

A, B

Figure 1: Gossip Server Architecture

to knowing the identity of all local area networks that are one hop away. This is the kind of

information that a network administrator will know about a local area network, and so a gossip

server can obtain this information from an administrator-generated con�guration �le.

We believe that the wide area gossip protocol should run on top of IP. Since the gossip protocol

determines information about the internetwork connectivity on the 
y, it needs to circumvent to

some degree the internet routing protocol. As will be described in the next section, a gossip server

records the trajectory a gossip message follows to determine the number of link-disjoint paths

between itself and a neighbor. Internet routing, on the other hand, abstracts away the notion

of a path; routing can change the trajectory of a message as routers fail or become overloaded.

Hence, wide area network gossip runs at the OSI transport level, but it thwarts many features of

the underlying network level.

4 Protocol

In this section we develop a wide area gossip protocol that we call directional gossip. We �rst

review some ideas from graph theory and then describe how we use them to measure weights. We

then describe the directional gossip protocol in terms of these weights.

4.1 Weights

A link cut set of a connected graph G is a set of edges that, if removed from G, will disconnect G.

A link cut set with respect to a pair of nodes p and q is a set of edges that, if removed from G, will

disconnect p and q. Clearly, the link cut set with respect to a pair of nodes is also a link cut set of

the graph.

A gossip server p assigns as a weight to a neighor gossip server q the size of the smallest link cut

set with respect to p and q. If this weight is low, then p will always send new messages to q; else

4



33

3 p

2 q

l

Figure 2: Weights

p q

Figure 3: Pathological Graph

it will send them to q only if p selects q as a neighbor with whom to gossip. The intuition behind

this strategy is similar to what was illustrated in Section 1. For example, if this weight is 2, then

there are two links, at least one of which must be up and selected when gossiping, for a message to

propogate from p to q. As the weight of a neighbor increases, the liklihood of at least one link in the

link cut set being up and selected becomes su�ciently large that p and q can exchange information

using gossip. Otherwise, p always forwards each new message to q.

Figure 2 gives an example of the weights of a gossip server p. All of the neighbors of p in the

four-clique have a weight three, since three edges must be deleted to isolate p from any of these

neighbors. The neighbor of p in the three-clique, however, has a weight of two since only the two

links connecting the four-clique and the three-clique need be deleted to isolate q from p.

One can imagine other weights that might be interesting. For example, consider the graph in

Figure 3 that consists of many long cycles, each distinct except for the (p; q) edge. The weight

that p would assign to q is large (in this graph, seven) since there are many link-disjoint paths

that connnect p and q. Thus, our strategy would most likely have p only probabilistically choose

q. If links fail frequently enough, however, then the probability that a message will make it along

one of the long cycles from p to q may be low. Hence, under these conditions p should always

forward to q. The bene�t of the strategy that we have is that the weights are easy to compute

dynamically and the strategy works well for common internetwork interconnection topologies. In

addition, our protocol measures the dynamic connectivity between two neighboring nodes. Under

the assumptions that the long links are often broken, the weight that p would assign q would in

fact be low.

5



4.2 Measuring Weights

We use the following version of Menger's Theorem, due to Ford and Fulkerson [6], in a method for

a gossip server to measure the weights of its neighbors.

For any two nodes of a graph, the maximum number of link-disjoint paths equals the

minimum number of links that separate them.

Thus, a gossip server can maintain for each of its neighbors a list of link-disjoint paths between

itself and that neighbor. The size of this set is the weight of the neighbor. A gossip server collects

these paths by observing the trajectories that gossip messages traverse, and it ensures through

randomization that all such paths are found.

Each gossip message m carries m:path which is the trajectory that m has traversed. Each

element in this trajectory identi�es an internetwork router that has forwardedm. The internetwork

router is implicity identi�ed by the pair of gossip servers that communicate via that router. Before

a gossip server s forwards m to another gossip server r, s adds an identi�er for r to the end of

m:path if m:path is not empty; otherwise, it sets m:path to the list hs; ri. Thus, given a trajectory

m:path of g > 1 gossip servers, we can construct a path INR(m:path) of g� 1 internetwork routers.

Note that the length of m:path is bounded by the diameter D of the wide area network.

Let Neighbors

s

be the set of neighbors of a gossip server s. For each neighbor r 2 Neighbors

s

,

each gossip server s maintains a list Paths

s

(r) of link-disjoint paths that connect s and r. This list

cannot contain more than jNeighbors

s

j paths. When a gossip server s receives a gossip message

m, for every r 2 Neighbors

s

such that r is in m:path, if for every path p 2 Paths

s

(r), p and

INR(m:path) do not have any common elements, then INR(m:path) is added to Paths

s

(r). A

simple implementation of this algorithm has O(D(log(D) + jNeighbors

s

j) running time for each

gossip message that a gossip server receives. The weight a gossip server s computes for its neighbor

r is then simply jPaths

s

(r)j.

The weights that a gossip server computes for its neighbors should by dynamic. For example,

consider Figure 2. If the link ` fails, then the weight that p assigns to its neighbor q should drop

from two to one. It is not hard to modify the above algorithm to dynamically maintain Paths

s

(r)

so that failures and recoveries are taken into account. Each element in m:path includes, as well

as the identity of a gossip server, the time that the gossip server �rst received m. Such a time

is interpreted, for each element in INR(m:path), as the time that m traversed that internetwork

router. Then, when INR(m:path) is compared with a path p 2 Paths

s

(r), when an element of p

is equal to an element of INR(m:path), then the time associated with the link in p is set to the

maximum of its current time and the time associated with the same link in INR(m:path). We can

then associate a time Time(p) with each element p 2 Paths

s

(r) as the oldest time of any link in p.

If Time(p) is too far in the past, then s can remove p from Paths

s

(r).

This simple method of aging link-disjoint paths can result in a temporarily low weight. For

example, consider the two gossip servers s and r in Figure 4. Assume that Paths

s

(r) contains

three paths: the direct path connecting s and r, the path indicated by dashed lines, and the path

indicated by dotted lines. Hence, s computes a weight of three for r. Now assume that the link `

fails. Eventually, the time associated with the dotted path will become old enough that this path

is removed from Paths

s

(r), at which point s computes a weight of two for r. This weight is too

low: three links must be removed for these two nodes to become disconnected. Eventually, though,

s will receive a message following the remaining link-disjoint path, and thus will again compute a

weight of three for r. And, as discussed in the next section, computing a too-low weight does not

hurt the reliability of the gossip protocol, but only increases the overhead.

6



rls

Figure 4: Dynamic Weight Computation

4.3 Directional Gossip

The protocol that a gossip server s executes is the following. We �rst give the initialization. A

gossip server only knows about the direct path connecting itself to a neighbor. Thus, s will assign

an initial weight of one to each of its neighbors. This weight may be low, and will have s forward

new messages to all of its neighbors. As s learns of more paths, it will compute more accurate

weights for its neighbors, and the overhead will correspondingly reduce.

init

for each r 2 Neighbors

s

: Paths

s

(r) = fINR(hs; ri)g;

Note that, in order to simplify the exposition, we haven't given a time for the last traversal of

this initial path. We assume that whenever a gossip server is added to a trajectory, the current

time is also added to the trajectory.

The next code block is executed when s receives a new gossip messagem. It �rst updates s:pathr

for each neighbor r that is in m:path. It then sends m to all neighbors that s believes may not

have m and that have a weight less than K. Gossip server s then chooses enough of the remaining

neighbors that may not have m so that at least B neighbors are sent m and at least one neighbor

is chosen at random to be sent m.

when s receives gossip message m for the �rst time: f

int sent = 0; for each r 2 Neighbors

s

if (r 2 m:path) UpdatePaths(Paths

s

(r), INR(Trim(m:path; r)));

for each r 2 Neighbors

s

AgePaths(Paths

s

(r));

for each r 2 Neighbors

s

if (r 62 m:path &&jPaths

s

(r)j < K)f

m

0

= m;

append r to m

0

;

send m

0

to r;

sent = sent + 1;

g

for each r 2 Choose(min(B; sent) of Neighbors

s

� fq : q 2 m:pathg)f

m

0

= m;

append (r;Now()) to m

0

;

7



send m

0

to r;

g

g

The following procedure updates the set of link-disjoint paths between itself and a neigbor based

on the trajectory that m has followed. It also updates the times that the links were last traversed.

The test for common links can be e�ciently implemented by having each path be a sorted list of

links, and sorting the trajectory T.

void UpdatePaths(ref set of paths P, trajectory T) f

if (all elements of P have no links in common with T) add T to P;

else for each p in P:

for each link `

1

2 p and link `

2

2 T:

if (`

1

and `

2

) name the same internetwork router)

set the time `

1

was last traversed to

max(time `

1

was last traversed, time `

2

was last traversed);

g

The following procedure determines if a path is to be removed because too much time has passed

since a link in the path has been traversed.

void Age(ref set of paths P) f

for each p in P:

if (there is a link ` in p: Now() � the last time ` was traversed > Timeout)

remove p from P;

g

Finally, the following function removes a pre�x from the sequence of gossip servers a message

has traversed.

server sequence Trim(server sequence S, gossip server s) f

return (the sequence S with all servers visisted before s removed)

g

5 Simulation

We built a simple discrete event simulator to measure the performance of directional gossip. Ths

simulator takes as input a graph with nodes representing gossip servers and links representing

internetwork routers. Messages are reliably sent between gossip servers and are delivered with a

time chosen from a uniform distribution. We do not model link failures or gossip server failures.

We simulated three protocols: 
ooding, gossip with a fanout B, and directional gossip with a

fanout B and a critical weight K. We compared the message overheads of these three di�erent pro-

tocols, and when interesting compared their reliability. We also measured the ability of directional

gossip to accurately measure weights.

We considered four di�erent network topologies: a ring of 16 gossip servers, a clique of 16 gossip

servers, two cliques of eight gossip servers, connected by a single link, and a topology meant to

resemble a wide area network.

8



Ring

Clique

Two Cliques

Wide Area Network

6 Discussion

References

[1] That paper that talks about how to model an internet.

[2] Gregory Andrews. Flooding protocols.

[3] Kenneth Birman and his friends. Bimodal multicast.

[4] Steve Deering. Some paper on IP Multicast.

[5] Alan Demers. Paper on epidemiological protocols.

[6] L. R. Ford and D. R. Fulkerson. Maximum 
ow through a network. Canadial Journal of

Mathematics 8(1956):399-404.

[7] Richard Golding. Paper on gossip.

[8] Je�ery Kephart. Paper on how hard it is to spread a virus with 
oppies.

[9] Meng-Jang Lin, Aleta Ricciardi, and Keith Marzullo. Security New Paradigms paper.

[10] F. B. Schneider, D. Gries, and R. D. Schlichting. Fault-tolerant broadcasts. Science of Com-

puter Programming 4(1):1{15, April 1984.

[11] Robbert van Rennesse. Paper on gossip-based failure detection.

[12] Robbert van Rennesse. Paper on gossip-based garbage collection.

[13] Robbert van Rennesse. Paper in which he talks about excess load on routers.

9




